NASA Technical Reports Server (NTRS)
Ostriker, Eve C.; Shu, Frank H.; Adams, Fred C.
1992-01-01
An overview is presented of the astronomical evidence that relatively massive, distended, gaseous disks form as a natural by-product of the process of star formation, and also the numerical evidence that SLING-amplified eccentric modes in the outer parts of such disks can drive one-armed spiral density waves in the inner parts by near-resonant excitation and propagation. An ordinary differential equation (ODE) of the second order that approximately governs the nonlocalized forcing of waves in a disk satisfying Lindblad resonance almost everywhere is derived. When transformed and appended with an extra model term, this ODE implies, for free waves, the usual asymptotic results of the WKBJ dispersion relationship and the propagation Goldreich-Tremaine (1978) formula for the resonant torque exerted on a localized Lindblad resonance. An analytical solution is given for the rate of energy and angular momentum transfer by nonlocalized near-resonant forcing in the case when the disk has power-law dependences on the radius of the surface density and temperature.
Coevolution of Binaries and Circumbinary Gaseous Disks
NASA Astrophysics Data System (ADS)
Fleming, David; Quinn, Thomas R.
2018-04-01
The recent discoveries of circumbinary planets by Kepler raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disk, and how the disk and binary interact. The central binary excites resonances in the surrounding protoplanetary disk that drive evolution in both the binary orbital elements and in the disk. To probe how these interactions impact both binary eccentricity and disk structure evolution, we ran N-body smooth particle hydrodynamics (SPH) simulations of gaseous protoplanetary disks surrounding binaries based on Kepler 38 for 10^4 binary orbital periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disk via a parametric instability and excite disk eccentricity growth. Eccentric binaries strongly couple to the disk causing eccentricity growth for both the disk and binary. Disks around sufficiently eccentric binaries strongly couple to the disk and develop an m = 1 spiral wave launched from the 1:3 eccentric outer Lindblad resonance (EOLR). This wave corresponds to an alignment of gas particle longitude of periastrons. We find that in all simulations, the binary semi-major axis decays due to dissipation from the viscous disk.
Sources of Shock Waves in the Protoplanetary Disk
NASA Astrophysics Data System (ADS)
Boss, A. P.; Durisen, R. H.
2005-12-01
Finding an appropriate heat source for melting the chondrules that constitute the bulk of many primitive meteorites is perhaps the most important outstanding problem in all of meteoritics. Shock waves within the Solar Nebula are one possible means for accomplishing this provided that they move with respect to the precursor aggregates at speeds of ~ 6 to 9 km s-1 in environments with appropriate nebular pressures and densities. Here we briefly review the status of four different mechanisms which have been proposed as sources of such shock fronts. We argue that two of them, the accretion shock at the nebular surface and shocks propagating inside the nebula launched by the impact of gas clumps falling onto the disk, are unlikely to work. Bow shocks driven by 1000-km-size planetesimals show more promise, but require the presence of Jupiter to raise the eccentricities of the planetesimals. We then focus this chapter on the fourth mechanism, which may be the dominant source of shocks in the early nebula. Wood (1996) proposed that the chondrule-producing shocks were due to nebular spiral arms. This hypothesis is now strongly supported by recent calculations of the evolution of gravitationally unstable disks. In a gaseous disk capable of forming Jupiter, the disk gas must have been close to marginal gravitational instability near or beyond Jupiter's orbit. Massive clumps and spirals due to such instability can drive spiral shock fronts inward with shock speeds as large as ~ 10 km s-1 at asteroidal orbits, sufficient to account for chondrule formation. Once Jupiter forms, it may either continue to drive strong shock fronts at asteroidal distances, or it may pump up the eccentricity of planetesimals, leading to chondrule processing for as long as the inner disk gas survives, a few Myr or so. Mixing and transport of solids in an unstable disk results in a scenario that unifies chondrite formation from chondrules, refractory inclusions, and matrix grains with disk processes associated with gas giant planet formation.
ON HYDRODYNAMIC MOTIONS IN DEAD ZONES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oishi, Jeffrey S.; Mac Low, Mordecai-Mark, E-mail: jsoishi@astro.berkeley.ed, E-mail: mordecai@amnh.or
We investigate fluid motions near the midplane of vertically stratified accretion disks with highly resistive midplanes. In such disks, the magnetorotational instability drives turbulence in thin layers surrounding a resistive, stable dead zone. The turbulent layers in turn drive motions in the dead zone. We examine the properties of these motions using three-dimensional, stratified, local, shearing-box, non-ideal, magnetohydrodynamical simulations. Although the turbulence in the active zones provides a source of vorticity to the midplane, no evidence for coherent vortices is found in our simulations. It appears that this is because of strong vertical oscillations in the dead zone. By analyzingmore » time series of azimuthally averaged flow quantities, we identify an axisymmetric wave mode particular to models with dead zones. This mode is reduced in amplitude, but not suppressed entirely, by changing the equation of state from isothermal to ideal. These waves are too low frequency to affect sedimentation of dust to the midplane, but may have significance for the gravitational stability of the resulting midplane dust layers.« less
How Bright are Planet-induced Spiral Arms in Scattered Light?
NASA Astrophysics Data System (ADS)
Dong, Ruobing; Fung, Jeffrey
2017-01-01
Recently, high angular resolution imaging instruments such as SPHERE and GPI have discovered many spiral-arm-like features in near-infrared scattered-light images of protoplanetary disks. Theory and simulations have suggested that these arms are most likely excited by planets forming in the disks; however, a quantitative relation between the arm-to-disk brightness contrast and planet mass is still missing. Using 3D hydrodynamics and radiative transfer simulations, we examine the morphology and contrast of planet-induced arms in disks. We find a power-law relation for the face-on arm contrast (δmax) as a function of planet mass ({M}{{p}}) and disk aspect ratio (h/r): {δ }\\max ≈ {({({M}{{p}}/{M}{{J}})/(h/r)}1.38)}0.22. With current observational capabilities, at a 30 au separation, the minimum planet mass for driving detectable arms in a disk around a 1 Myr, 1 {M}ȯ star at 140 pc at low inclinations is around Saturn mass. For planets more massive than Neptune masses, they typically drive multiple arms. Therefore, in observed disks with spirals, it is unlikely that each spiral arm originates from a different planet. We also find that only massive perturbers with at least multi-Jupiter masses are capable of driving bright arms with {δ }\\max ≳ 2 as found in SAO 206462, MWC 758, and LkHα 330, and these arms do not follow linear wave propagation theory. Additionally, we find that the morphology and contrast of the primary and secondary arms are largely unaffected by a modest level of viscosity with α ≲ 0.01. Finally, the contrast of the arms in the SAO 206462 disk suggests that the perturber SAO 206462 b at ∼100 au is about 5{--}10 {M}{{J}} in mass.
Effects of Disk Warping on the Inclination Evolution of Star-Disk-Binary Systems
NASA Astrophysics Data System (ADS)
Zanazzi, J. J.; Lai, Dong
2018-04-01
Several recent studies have suggested that circumstellar disks in young stellar binaries may be driven into misalignement with their host stars due to secular gravitational interactions between the star, disk and the binary companion. The disk in such systems is twisted/warped due to the gravitational torques from the oblate central star and the external companion. We calculate the disk warp profile, taking into account of bending wave propagation and viscosity in the disk. We show that for typical protostellar disk parameters, the disk warp is small, thereby justifying the "flat-disk" approximation adopted in previous theoretical studies. However, the viscous dissipation associated with the small disk warp/twist tends to drive the disk toward alignment with the binary or the central star. We calculate the relevant timescales for the alignment. We find the alignment is effective for sufficiently cold disks with strong external torques, especially for systems with rapidly rotating stars, but is ineffective for the majority of star-disk-binary systems. Viscous warp driven alignment may be necessary to account for the observed spin-orbit alignment in multi-planet systems if these systems are accompanied by an inclined binary companion.
Interaction of Saturn's dual rotation periods
NASA Astrophysics Data System (ADS)
Smith, C. G. A.
2018-03-01
We develop models of the interaction of Rossby wave disturbances in the northern and southern ionospheres of Saturn. We show that interhemispheric field-aligned currents allow the exchange of vorticity, modifying the background Rossby wave propagation speed. This leads to interaction of the northern and southern Rossby wave periods. In a very simple symmetric model without a plasma disk the periods merge when the overall conductivity is sufficiently high. A more complex model taking account of the inertia of the plasma disk and the asymmetry of the two hemispheres predicts a rich variety of possible wave modes. We find that merging of the northern and southern periods can only occur when (i) the conductivities of both hemispheres are sufficiently low (a criterion that is fulfilled for realistic parameters) and (ii) the background Rossby wave periods in the two hemispheres are identical. We reconcile the second criterion with the observations of a merged period that also drifts by noting that ranges of Rossby wave propagation speeds are possible in each hemisphere. We suggest that a merged disturbance in the plasma disk may act as an 'anchor' and drive Rossby waves in each hemisphere within the range of possible propagation speeds. This suggestion predicts behaviour that qualitatively matches the observed merging and splitting of the northern and southern rotation periods that occurred in 2013 and 2014. Low conductivity modes also show long damping timescales that are consistent with the persistence of the periodic signals.
Numerical 3D Hydrodynamics Study of Gravitational Instabilities in a Circumbinary Disk
NASA Astrophysics Data System (ADS)
Desai, Karna Mahadev; Steiman-Cameron, Thomas Y.; Michael, Scott; Cai, Kai; Durisen, Richard H.
2016-01-01
We present a 3D hydrodynamical study of gravitational instabilities (GIs) in a circumbinary protoplanetary disk around a Solar mass star and a brown dwarf companion (0.02 M⊙). GIs can play an important, and at times dominant, role in driving the structural evolution of protoplanetary disks. The reported simulations were performed employing CHYMERA, a radiative 3D hydrodynamics code developed by the Indiana University Hydrodynamics Group. The simulations include disk self-gravity and radiative cooling governed by realistic dust opacities. We examine the role of GIs in modulating the thermodynamic state of the disks, and determine the strengths of GI-induced density waves, non-axisymmetric density structures, radial mass transport, and gravitational torques. The principal goal of this study is to determine how the presence of the companion affects the nature and strength of GIs. Results are compared with a parallel simulation of a protoplanetary disk without the presence of the brown dwarf binary companion. We detect no fragmentation in either disk. A persistent vortex forms in the inner region of both disks. The vortex seems to be stabilized by the presence of the binary companion.
Design Alternatives to Improve Access Time Performance of Disk Drives Under DOS and UNIX
NASA Astrophysics Data System (ADS)
Hospodor, Andy
For the past 25 years, improvements in CPU performance have overshadowed improvements in the access time performance of disk drives. CPU performance has been slanted towards greater instruction execution rates, measured in millions of instructions per second (MIPS). However, the slant for performance of disk storage has been towards capacity and corresponding increased storage densities. The IBM PC, introduced in 1982, processed only a fraction of a MIP. Follow-on CPUs, such as the 80486 and 80586, sported 5-10 MIPS by 1992. Single user PCs and workstations, with one CPU and one disk drive, became the dominant application, as implied by their production volumes. However, disk drives did not enjoy a corresponding improvement in access time performance, although the potential still exists. The time to access a disk drive improves (decreases) in two ways: by altering the mechanical properties of the drive or by adding cache to the drive. This paper explores the improvement to access time performance of disk drives using cache, prefetch, faster rotation rates, and faster seek acceleration.
Disposal of waste computer hard disk drive: data destruction and resources recycling.
Yan, Guoqing; Xue, Mianqiang; Xu, Zhenming
2013-06-01
An increasing quantity of discarded computers is accompanied by a sharp increase in the number of hard disk drives to be eliminated. A waste hard disk drive is a special form of waste electrical and electronic equipment because it holds large amounts of information that is closely connected with its user. Therefore, the treatment of waste hard disk drives is an urgent issue in terms of data security, environmental protection and sustainable development. In the present study the degaussing method was adopted to destroy the residual data on the waste hard disk drives and the housing of the disks was used as an example to explore the coating removal process, which is the most important pretreatment for aluminium alloy recycling. The key operation points of the degaussing determined were: (1) keep the platter plate parallel with the magnetic field direction; and (2) the enlargement of magnetic field intensity B and action time t can lead to a significant upgrade in the degaussing effect. The coating removal experiment indicated that heating the waste hard disk drives housing at a temperature of 400 °C for 24 min was the optimum condition. A novel integrated technique for the treatment of waste hard disk drives is proposed herein. This technique offers the possibility of destroying residual data, recycling the recovered resources and disposing of the disks in an environmentally friendly manner.
The Three-Dimensionality of Spiral Shocks: Did Chondrules Catch a Breaking Wave?
NASA Astrophysics Data System (ADS)
Boley, A. C.; Durisen, R. H.; Pickett, M. K.
2005-12-01
Spiral shocks in vertically stratified disks lead to hydraulic/shock-jumps (hs-jumps) that stimulate large scale (tenths of an AU or more) radial and vertical motions, breaking surface waves, high-altitude shocks, and vortical flows. These effects are demonstrated by three-dimensional hydrodynamics simulations in Solar Nebula models. Trajectories of fluid elements, along with their thermal histories, suggest that hs-jumps mix the nebular gas and provide diverse pre-shock conditions, some of which are conducive to chondrule formation. In addition, hs-jumps may provide an energy source for driving nebular turbulence to size-sort chondrules.
Laser Optical Disk: The Coming Revolution in On-Line Storage.
ERIC Educational Resources Information Center
Fujitani, Larry
1984-01-01
Review of similarities and differences between magnetic-based and optical disk drives includes a discussion of the electronics necessary for their operation; describes benefits, possible applications, and future trends in development of laser-based drives; and lists manufacturers of laser optical disk drives. (MBR)
Finite Element Analysis of Flexural Vibrations in Hard Disk Drive Spindle Systems
NASA Astrophysics Data System (ADS)
LIM, SEUNGCHUL
2000-06-01
This paper is concerned with the flexural vibration analysis of the hard disk drive (HDD) spindle system by means of the finite element method. In contrast to previous research, every system component is here analytically modelled taking into account its structural flexibility and also the centrifugal effect particularly on the disk. To prove the effectiveness and accuracy of the formulated models, commercial HDD systems with two and three identical disks are selected as examples. Then their major natural modes are computed with only a small number of element meshes as the shaft rotational speed is varied, and subsequently compared with the existing numerical results obtained using other methods and newly acquired experimental ones. Based on such a series of studies, the proposed method can be concluded as a very promising tool for the design of HDDs and various other high-performance computer disk drives such as floppy disk drives, CD ROM drives, and their variations having spindle mechanisms similar to those of HDDs.
Mean PB To Failure - Initial results from a long-term study of disk storage patterns at the RACF
NASA Astrophysics Data System (ADS)
Caramarcu, C.; Hollowell, C.; Rao, T.; Strecker-Kellogg, W.; Wong, A.; Zaytsev, S. A.
2015-12-01
The RACF (RHIC-ATLAS Computing Facility) has operated a large, multi-purpose dedicated computing facility since the mid-1990’s, serving a worldwide, geographically diverse scientific community that is a major contributor to various HEPN projects. A central component of the RACF is the Linux-based worker node cluster that is used for both computing and data storage purposes. It currently has nearly 50,000 computing cores and over 23 PB of storage capacity distributed over 12,000+ (non-SSD) disk drives. The majority of the 12,000+ disk drives provide a cost-effective solution for dCache/XRootD-managed storage, and a key concern is the reliability of this solution over the lifetime of the hardware, particularly as the number of disk drives and the storage capacity of individual drives grow. We report initial results of a long-term study to measure lifetime PB read/written to disk drives in the worker node cluster. We discuss the historical disk drive mortality rate, disk drive manufacturers' published MPTF (Mean PB to Failure) data and how they are correlated to our results. The results help the RACF understand the productivity and reliability of its storage solutions and have implications for other highly-available storage systems (NFS, GPFS, CVMFS, etc) with large I/O requirements.
An Evolutionary Algorithm for Feature Subset Selection in Hard Disk Drive Failure Prediction
ERIC Educational Resources Information Center
Bhasin, Harpreet
2011-01-01
Hard disk drives are used in everyday life to store critical data. Although they are reliable, failure of a hard disk drive can be catastrophic, especially in applications like medicine, banking, air traffic control systems, missile guidance systems, computer numerical controlled machines, and more. The use of Self-Monitoring, Analysis and…
Application of photothermal effect to manufacture ultrasonic actuators (abstract)
NASA Astrophysics Data System (ADS)
Zhang, Shu-yi; Cheng, Li-ping; Shui, Xiu-ji; Yu, Jiong; Dong, Shu-xiang
2003-01-01
Photothermal (PT) effect has been applied to manufacture disks [A. C. Tam, a lecture at the Institute of Acoustics, Nanjing University, People's Republic of China (1996)] and magnetic head sliders for disk drives [A. C. Tam, C. C. Poon, and L. Crawforth, Analyt. Sci. 17, s 419 (2001)]. Now we apply the PT effect to manufacture ultrasonic motors (actuators). Recently, the ultrasonic actuators with different ultrasonic modes, such as Rayleigh (surface acoustic) mode, Lamb (plate) mode, etc., have been developed. We have designed and fabricated two rotary motors driven by surface acoustic wave (SAW) with different frequencies, but lower than 30 MHz [L. P. Cheng, G. M. Zhang, S. Y. Zhang, J. Yu, and X. J. Shui, Ultrasonics 39, 591 (2002)]. On the SAW motors (actuators), two Rayleigh wave beams were generated and propagating along the surface of a 128° YK-LiNbO3 substrate in opposite directions with each other as a stator, and a plastic disk with balls distributed along the circle of the disk was as a rotor. For miniaturizing the rotary SAW motors, and increasing the rotation velocity, the SAW frequency must be increased. Then we improve the manufacturing technology of the mechanical structure by PT effect instead of the conventional mechanical processes of the stator and rotor of the motor. A new type of rotary SAW motor (actuator) has been fabricated, in which both SAW beams with opposite propagating directions are excited by two pairs of interdigital transducers with the frequency between 30-50 MHz. In the surface of the stator (128° YX-LiNbO3 substrate), a hole with the depth about 500 μm is impinged by a focused pulsed Nd:YAG laser beam (PT effect) between two SAW propagating ways on the 128° YX-LiNbO3 substrate for fixing the axis of the motor, with the frequency between 30-50 MHz. In the bottom of the rotor (plastic disk), a lot of crown (flange) blocks with the high of 20-30 μm and the diameter of also 20-30 μm can be made by the focused pulsed Nd:YAG laser a focused continuous Ar+ laser heating (PT effect) for contacting with the stator. The symmetrical frictional force pairs produced between the crown blocks of the rotor with the local supporting SAW deformation points of the stator around the circle of the rotor to drive the motor to rotate. This kind of rotary SAW actuator can be applied to drive a recording head of HDD with satisfactory performance.
Rotational microfluidic motor for on-chip microcentrifugation
NASA Astrophysics Data System (ADS)
Shilton, Richie J.; Glass, Nick R.; Chan, Peggy; Yeo, Leslie Y.; Friend, James R.
2011-06-01
We report on the design of a surface acoustic wave (SAW) driven fluid-coupled micromotor which runs at high rotational velocities. A pair of opposing SAWs generated on a lithium niobate substrate are each obliquely passed into either side of a fluid drop to drive rotation of the fluid, and the thin circular disk set on the drop. Using water for the drop, a 5 mm diameter disk was driven with rotation speeds and start-up torques up to 2250 rpm and 60 nN m, respectively. Most importantly for lab-on-a-chip applications, radial accelerations of 172 m/s2 was obtained, presenting possibilities for microcentrifugation, flow sequencing, assays, and cell culturing in truly microscale lab-on-a-chip devices.
Effect of small floating disks on the propagation of gravity waves
NASA Astrophysics Data System (ADS)
De Santi, F.; Olla, P.
2017-04-01
A dispersion relation for gravity waves in water covered by disk-like impurities embedded in a viscous matrix is derived. The macroscopic equations are obtained by ensemble-averaging the fluid equations at the disk scale in the asymptotic limit of long waves and low disk surface fraction. Various regimes are identified depending on the disk radii and the thickness and viscosity of the top layer. Semi-quantitative analysis in the close-packing regime suggests dramatic modification of the dynamics, with orders of magnitude increase in wave damping and wave dispersion. A simplified model working in this regime is proposed. Possible applications to wave propagation in an ice-covered ocean are discussed and comparison with field data is provided.
Collective transport for active matter run-and-tumble disk systems on a traveling-wave substrate
Sándor, Csand; Libál, Andras; Reichhardt, Charles; ...
2017-01-17
Here, we examine numerically the transport of an assembly of active run-and-tumble disks interacting with a traveling-wave substrate. We show that as a function of substrate strength, wave speed, disk activity, and disk density, a variety of dynamical phases arise that are correlated with the structure and net flux of disks. We find that there is a sharp transition into a state in which the disks are only partially coupled to the substrate and form a phase-separated cluster state. This transition is associated with a drop in the net disk flux, and it can occur as a function of themore » substrate speed, maximum substrate force, disk run time, and disk density. Since variation of the disk activity parameters produces different disk drift rates for a fixed traveling-wave speed on the substrate, the system we consider could be used as an efficient method for active matter species separation. Within the cluster phase, we find that in some regimes the motion of the cluster center of mass is in the opposite direction to that of the traveling wave, while when the maximum substrate force is increased, the cluster drifts in the direction of the traveling wave. This suggests that swarming or clustering motion can serve as a method by which an active system can collectively move against an external drift.« less
Collective transport for active matter run-and-tumble disk systems on a traveling-wave substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sándor, Csand; Libál, Andras; Reichhardt, Charles
Here, we examine numerically the transport of an assembly of active run-and-tumble disks interacting with a traveling-wave substrate. We show that as a function of substrate strength, wave speed, disk activity, and disk density, a variety of dynamical phases arise that are correlated with the structure and net flux of disks. We find that there is a sharp transition into a state in which the disks are only partially coupled to the substrate and form a phase-separated cluster state. This transition is associated with a drop in the net disk flux, and it can occur as a function of themore » substrate speed, maximum substrate force, disk run time, and disk density. Since variation of the disk activity parameters produces different disk drift rates for a fixed traveling-wave speed on the substrate, the system we consider could be used as an efficient method for active matter species separation. Within the cluster phase, we find that in some regimes the motion of the cluster center of mass is in the opposite direction to that of the traveling wave, while when the maximum substrate force is increased, the cluster drifts in the direction of the traveling wave. This suggests that swarming or clustering motion can serve as a method by which an active system can collectively move against an external drift.« less
Head-Disk Interface Technology: Challenges and Approaches
NASA Astrophysics Data System (ADS)
Liu, Bo
Magnetic hard disk drive (HDD) technology is believed to be one of the most successful examples of modern mechatronics systems. The mechanical beauty of magnetic HDD includes simple but super high accuracy positioning head, positioning technology, high speed and stability spindle motor technology, and head-disk interface technology which keeps the millimeter sized slider flying over a disk surface at nanometer level slider-disk spacing. This paper addresses the challenges and possible approaches on how to further reduce the slider disk spacing whilst retaining the stability and robustness level of head-disk systems for future advanced magnetic disk drives.
NASA Astrophysics Data System (ADS)
Lee, Tzuo-Chang; Chen, Di
1987-01-01
We present in this paper an overview of Optotech's 5984 Optical Disk Drive. Key features such as the modulation code, the disk format, defect mapping scheme and the optical head and servo subsystem will be singled out for discussion. Description of Optotech's 5984 disk drive The Optotech 5984 optical disk drive is a write-once-read-mostly (WORM) rotating optical memory with 200 Megabyte capacity on each side of the disk. It has a 5 1/4 inch form factor that will fit into any personal computer full-height slot. The drive specification highlights are given in Table 1. A perspective view of the drive mechanical assembly is shown in Figure 1. The spindle that rotates the disk has a runout of less than 10 um. The rotational speed at 1200 revolutions per minute (rpm) is held to an accuracy of 10-3. The total angular tolerance from perfect perpendicular alignment between the rotating disk and the incident optical beam axis is held to less than 17 milliradians. The coarse seek is accomplished through a stepping motor driving the optical head with 1.3 milliseconds per step or 32 tracks per step. The analog channels including read/write, the phase lock loop and the servo loops for focus and track control are contained on one surface mount pc board while the digital circuitry that interfaces with the drive and the controller is on a separate pc board. A microprocessor 8039 is used to control the handshake and the sequence of R/W commands. A separate power board is used to provide power to the spindle and the stepping motors. In the following we will discuss some of the salient features in the drive and leave the details to three accompanying Optotech papers. These salient features are derived from a design that is driven by three major considerations. One is precise control of the one micron diameter laser spot to any desired location on the disk. The second consideration is effective management of media defects. Given the state of the art of the Te-based disk technology with an average raw defect density of approximately 10-5(compared to 10-draw error rate in high density magnetic hard disks), elaborate defect management tools are required to assure data integrity. The last consideration is, needless to say, low cost and high reliability.
Wave excitation at Lindblad resonances using the method of multiple scales
NASA Astrophysics Data System (ADS)
Horák, Jiří
2017-12-01
In this note, the method of multiple scales is adopted to the problem of excitation of non–axisymmetric acoustic waves in vertically integrated disk by tidal gravitational fields. We derive a formula describing a waveform of exited wave that is uniformly valid in a whole disk as long as only a single Lindblad resonance is present. Our formalism is subsequently applied to two classical problems: trapped p–mode oscillations in relativistic accretion disks and the excitation of waves in infinite disks.
NASA Technical Reports Server (NTRS)
Thomas, S.; Faghri, A.; Hankey, W.
1990-01-01
The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed was 0-300 RPM and the flow rate was 7.0-15.0 LPM. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Surface waves were found in the supercritical and subcritical regions at all flow rates studied. When the rotational speed of the disk is low, a standing wave at the edge of the disk was present. As the rotational speed increased, the surface waves changed from the wavy-laminar region to a region in which the waves ran nearly radially across the disk on top of a thin substrate of fluid.
Spiral density waves in a young protoplanetary disk.
Pérez, Laura M; Carpenter, John M; Andrews, Sean M; Ricci, Luca; Isella, Andrea; Linz, Hendrik; Sargent, Anneila I; Wilner, David J; Henning, Thomas; Deller, Adam T; Chandler, Claire J; Dullemond, Cornelis P; Lazio, Joseph; Menten, Karl M; Corder, Stuartt A; Storm, Shaye; Testi, Leonardo; Tazzari, Marco; Kwon, Woojin; Calvet, Nuria; Greaves, Jane S; Harris, Robert J; Mundy, Lee G
2016-09-30
Gravitational forces are expected to excite spiral density waves in protoplanetary disks, disks of gas and dust orbiting young stars. However, previous observations that showed spiral structure were not able to probe disk midplanes, where most of the mass is concentrated and where planet formation takes place. Using the Atacama Large Millimeter/submillimeter Array, we detected a pair of trailing symmetric spiral arms in the protoplanetary disk surrounding the young star Elias 2-27. The arms extend to the disk outer regions and can be traced down to the midplane. These millimeter-wave observations also reveal an emission gap closer to the star than the spiral arms. We argue that the observed spirals trace shocks of spiral density waves in the midplane of this young disk. Copyright © 2016, American Association for the Advancement of Science.
PLANET-DISK INTERACTION IN THREE DIMENSIONS: THE IMPORTANCE OF BUOYANCY WAVES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Zhaohuan; Stone, James M.; Rafikov, Roman R., E-mail: zhzhu@astro.princeton.edu, E-mail: jstone@astro.princeton.edu, E-mail: rrr@astro.princeton.edu
2012-10-20
We carry out local three-dimensional (3D) hydrodynamic simulations of planet-disk interaction in stratified disks with varied thermodynamic properties. We find that whenever the Brunt-Vaeisaelae frequency (N) in the disk is non-zero, the planet exerts a strong torque on the disk in the vicinity of the planet, with a reduction in the traditional 'torque cutoff'. In particular, this is true for adiabatic perturbations in disks with isothermal density structure, as should be typical for centrally irradiated protoplanetary disks. We identify this torque with buoyancy waves, which are excited (when N is non-zero) close to the planet, within one disk scale heightmore » from its orbit. These waves give rise to density perturbations with a characteristic 3D spatial pattern which is in close agreement with the linear dispersion relation. The torque due to these waves can amount to as much as several tens of percent of the total planetary torque, which is not expected based on analytical calculations limited to axisymmetric or low-m modes. Buoyancy waves should be ubiquitous around planets in the inner, dense regions of protoplanetary disks, where they might possibly affect planet migration.« less
Three-dimensional modeling of radiative disks in binaries
NASA Astrophysics Data System (ADS)
Picogna, G.; Marzari, F.
2013-08-01
Context. Circumstellar disks in binaries are perturbed by the companion gravity causing significant alterations of the disk morphology. Spiral waves due to the companion tidal force also develop in the vertical direction and affect the disk temperature profile. These effects may significantly influence the process of planet formation. Aims: We perform 3D numerical simulations of disks in binaries with different initial dynamical configurations and physical parameters. Our goal is to investigate their evolution and their propensity to grow planets. Methods: We use an improved version of the SPH code VINE modified to better account for momentum and energy conservation via variable smoothing and softening length. The energy equation includes a flux-limited radiative transfer algorithm. The disk cooling is obtained with the use of "boundary particles" populating the outer surfaces of the disk and radiating to infinity. We model a system made of star/disk + star/disk where the secondary star (and relative disk) is less massive than the primary. Results: The numerical simulations performed for different values of binary separation and disk density show that trailing spiral shock waves develop when the stars approach their pericenter. Strong hydraulic jumps occur at the shock front, in particular for small separation binaries, creating breaking waves, and a consistent mass stream between the two disks. Both shock waves and mass transfer cause significant heating of the disk. At apocenter these perturbations are reduced and the disks are cooled down and less eccentric. Conclusions: The disk morphology is substantially affected by the companion perturbations, in particular in the vertical direction. The hydraulic jumps may slow down or even halt the dust coagulation process. The disk is significantly heated up by spiral waves and mass transfer, and the high gas temperature may prevent the ice condensation by moving the "snow line" outward. The disordered motion triggered by the spiral waves may, on the other hand, favor direct formation of large planetesimals from pebbles. The strength of the hydraulic jumps, disk heating, and mass exchange depends on the binary separation, and for larger semi-major axes, the tidal spiral pattern is substantially reduced. The environment then appears less hostile to planet formation.
3D MHD Simulations of Waves Excited in an Accretion Disk by a Rotating Magnetized Star
NASA Astrophysics Data System (ADS)
Lovelace, R. V. E.; Romanova, M. M.
2014-01-01
We present results of global 3D MHD simulations of warp and density waves in accretion disks excited by a rotating star with a misaligned dipole magnetic field. A wide range of cases are considered. We find for example that if the star's magnetosphere corotates approximately with the inner disk, then a strong one-arm bending wave or warp forms. The warp corotates with the star and has a maximum amplitude (|zω|/r ~ 0.3) between the corotation radius and the radius of the vertical resonance. If the magnetosphere rotates more slowly than the inner disk, then a bending wave is excited at the disk-magnetosphere boundary, but it does not form a large-scale warp. In this case the angular rotation of the disk [Ω(r,z = 0)] has a maximum as a function of r so that there is an inner region where dΩ/dr > 0. In this region we observe radially trapped density waves in approximate agreement with the theoretical prediction of a Rossby wave instability in this region.
Nonlinear Propagation of Planet-Generated Tidal Waves
NASA Technical Reports Server (NTRS)
Rafikov, R. R.
2002-01-01
The propagation and evolution of planet-generated density waves in protoplanetary disks is considered. The evolution of waves, leading to shock formation and wake dissipation, is followed in the weakly nonlinear regime. The 2001 local approach of Goodman and Rafikov is extended to include the effects of surface density and temperature variations in the disk as well as the disk cylindrical geometry and nonuniform shear. Wave damping due to shocks is demonstrated to be a nonlocal process spanning a significant fraction of the disk. Torques induced by the planet could be significant drivers of disk evolution on timescales of approx. 10(exp 6)-10(exp 7) yr, even in the absence of strong background viscosity. A global prescription for angular momentum deposition is developed that could be incorporated into the study of gap formation in a gaseous disk around the planet.
Optimization of Smart Structure for Improving Servo Performance of Hard Disk Drive
NASA Astrophysics Data System (ADS)
Kajiwara, Itsuro; Takahashi, Masafumi; Arisaka, Toshihiro
Head positioning accuracy of the hard disk drive should be improved to meet today's increasing performance demands. Vibration suppression of the arm in the hard disk drive is very important to enhance the servo bandwidth of the head positioning system. In this study, smart structure technology is introduced into the hard disk drive to suppress the vibration of the head actuator. It has been expected that the smart structure technology will contribute to the development of small and light-weight mechatronics devices with the required performance. First, modeling of the system is conducted with finite element method and modal analysis. Next, the actuator location and the control system are simultaneously optimized using genetic algorithm. Vibration control effect with the proposed vibration control mechanisms has been evaluated by some simulations.
Thin-disk piezoceramic ultrasonic motor. Part I: design and performance evaluation.
Wen, Fuh Liang; Yen, Chi Yung; Ouyang, Minsun
2003-08-01
The purpose of this study is to gain the knowledge and experience in the design of thin-disk piezoceramic-driving ultrasonic actuator dedicated. In this paper, the design and construction of an innovative ultrasonic actuator is developed as a stator, which is a composite structure consisting of piezoceramic (PZT) membrane bonded on a metal sheet. Such a concentric PZT structure possesses the electrical and mechanical coupling characteristics in flexural wave. The driving ability of the actuator comes from the mechanical vibration of extension and shrinkage of a metal sheet due to the converse piezoelectric effect, corresponding to the frequency of a single-phase AC power. By applying the constraints on the specific geometry positions on the metal sheet, the various behaviors of flexural waves have been at the different directions. The rotor is impelled by the actuator with rotational speeds of 600 rpm in maximum using a friction-contact mechanism. Very high actuating and braking abilities are obtained. This simple and inexpensive structure of actuator demonstrates that the mechanical design of actuator and rotor could be done separately and flexibly according to the requirements for various applications. And, its running accuracy and positioning precision are described in Part II.A closed loop servo positioning control i.e. sliding mode control (SMC) is used to compensate automatically for nonlinearly mechanical behaviors such as dry friction, ultrasonic vibrating, slip-stick phenomena. Additionally, SMC scheme has been successfully applied to position tracking to prove the excellent robust performance in noise rejection.
A high-speed, large-capacity, 'jukebox' optical disk system
NASA Technical Reports Server (NTRS)
Ammon, G. J.; Calabria, J. A.; Thomas, D. T.
1985-01-01
Two optical disk 'jukebox' mass storage systems which provide access to any data in a store of 10 to the 13th bits (1250G bytes) within six seconds have been developed. The optical disk jukebox system is divided into two units, including a hardware/software controller and a disk drive. The controller provides flexibility and adaptability, through a ROM-based microcode-driven data processor and a ROM-based software-driven control processor. The cartridge storage module contains 125 optical disks housed in protective cartridges. Attention is given to a conceptual view of the disk drive unit, the NASA optical disk system, the NASA database management system configuration, the NASA optical disk system interface, and an open systems interconnect reference model.
Dynamics of the Trans-Neptune Region: Apsidal Waves in the Kuiper Belt
NASA Technical Reports Server (NTRS)
Ward, William R.; Hahn, Joseph M.
1998-01-01
The role of apsidal density waves propagating in a primordial trans-Neptune disk (i.e., Kuiper belt) is investigated. It is shown that Neptune launches apsidal waves at its secular resonance near 40 AU that propagate radially outward, deeper into the particle disk. The wavelength of apsidal waves is considerably longer than waves that might be launched at Lindblad resonances, because the pattern speed, g(sub s), resulting from the apsis precession of Neptune is much slower than its mean motion, Omega(sub s). If the early Kuiper belt had a sufficient surface density, sigma, the disk's wave response to Neptune's secular perturbation would have spread the disturbing torque radially over a collective scale lambda(sub *) approx. = r(2(mu)(sub d)Omega/ absolute value of r dg/dr)(sup 1/2), where mu(sub d)equivalent pi(sigma)r(exp 2)/(1 solar mass) and Omega(r) and g(r) are respectively the mean motion and precession frequency of the disk particles. This results in considerably smaller eccentricities at resonance than had the disk particles been treated as noninteracting test particles. Consequently, particles are less apt to be excited into planet-crossing orbits, implying that the erosion timescales reported by earlier test-particle simulations of the Kuiper belt may be underestimated. It is also shown that the torque the disk exerts upon the planet (due to its gravitational attraction for the disk's spiral wave pattern) damps the planet's eccentricity and further inhibits the planet's ability to erode the disk. Key words: celestial mechanics, stellar dynamics - comets: general minor planets, asteroids
Protoplanetary Disks as (Possibly) Viscous Disks
NASA Astrophysics Data System (ADS)
Rafikov, Roman R.
2017-03-01
Protoplanetary disks are believed to evolve on megayear timescales in a diffusive (viscous) manner as a result of angular momentum transport driven by internal stresses. Here we use a sample of 26 protoplanetary disks resolved by ALMA with measured (dust-based) masses and stellar accretion rates to derive the dimensionless α-viscosity values for individual objects, with the goal of constraining the angular momentum transport mechanism. We find that the inferred values of α do not cluster around a single value, but instead have a broad distribution extending from 10-4 to 0.04. Moreover, they correlate with neither the global disk parameters (mass, size, surface density) nor the stellar characteristics (mass, luminosity, radius). However, we do find a strong linear correlation between α and the central mass accretion rate \\dot{M}. This correlation is unlikely to result from the direct physical effect of \\dot{M} on internal stress on global scales. Instead, we suggest that it is caused by the decoupling of stellar \\dot{M} from the global disk characteristics in one of the following ways: (1) The behavior (and range) of α is controlled by a yet-unidentified parameter (e.g., ionization fraction, magnetic field strength, or geometry), ultimately driving the variation of \\dot{M}. (2) The central \\dot{M} is decoupled from the global accretion rate as a result of an instability, or mass accumulation (or loss in a wind or planetary accretion) in the inner disk. (3) Perhaps the most intriguing possibility is that angular momentum in protoplanetary disks is transported nonviscously, e.g., via magnetohydrodynamic winds or spiral density waves.
NASA Technical Reports Server (NTRS)
Baker, John
2012-01-01
Effects of accretion disks on spins and eccentricities of binaries, and implications for gravitational waves. John Baker Space-based gravitational wave observations will allow exquisitely precise measurements of massive black hole binary properties. Through several recently suggested processes, these properties may depend on interactions with accretion disks through the merger process. I will discuss ways that accretion may influence those binary properties which may be probed by gravitational-wave observations.
NSSDC activities with 12-inch optical disk drives
NASA Technical Reports Server (NTRS)
Lowrey, Barbara E.; Lopez-Swafford, Brian
1986-01-01
The development status of optical-disk data transfer and storage technology at the National Space Science Data Center (NSSDC) is surveyed. The aim of the R&D program is to facilitate the exchange of large volumes of data. Current efforts focus on a 12-inch 1-Gbyte write-once/read-many disk and a disk drive which interfaces with VAX/VMS computer systems. The history of disk development at NSSDC is traced; the results of integration and performance tests are summarized; the operating principles of the 12-inch system are explained and illustrated with diagrams; and the need for greater standardization is indicated.
Nonlinear vibrations analysis of rotating drum-disk coupling structure
NASA Astrophysics Data System (ADS)
Chaofeng, Li; Boqing, Miao; Qiansheng, Tang; Chenyang, Xi; Bangchun, Wen
2018-04-01
A dynamic model of a coupled rotating drum-disk system with elastic support is developed in this paper. By considering the effects of centrifugal and Coriolis forces as well as rotation-induced hoop stress, the governing differential equation of the drum-disk is derived by Donnell's shell theory. The nonlinear amplitude-frequency characteristics of coupled structure are studied. The results indicate that the natural characteristics of the coupling structure are sensitive to the supporting stiffness of the disk, and the sensitive range is affected by rotating speeds. The circumferential wave numbers can affect the characteristics of the drum-disk structure. If the circumferential wave number n = 1 , the vibration response of the drum keeps a stable value under an unbalanced load of the disk, there is no coupling effect if n ≠ 1 . Under the excitation, the nonlinear hardening characteristics of the forward traveling wave are more evident than that of the backward traveling wave. Moreover, because of the coupling effect of the drum and the disk, the supporting stiffness of the disk has certain effect on the nonlinear characteristics of the forward and backward traveling waves. In addition, small length-radius and thickness-radius ratios have a significant effect on the nonlinear characteristics of the coupled structure, which means nonlinear shell theory should be adopted to design rotating drum's parameter for its specific structural parameters.
Theories 3:30 p.m. DIRECTOR'S COFFEE BREAK - 2nd Flr X-Over 4:00 p.m. Accelerator Physics and Technology ; --Siri Steiner Temporary restrictions transferring disk drives If your hard drive breaks down and you try to you. They are just following a new rule. According to a recent DOE memo, no hard disk drive or
Analysis of cache for streaming tape drive
NASA Technical Reports Server (NTRS)
Chinnaswamy, V.
1993-01-01
A tape subsystem consists of a controller and a tape drive. Tapes are used for backup, data interchange, and software distribution. The backup operation is addressed. During a backup operation, data is read from disk, processed in CPU, and then sent to tape. The processing speeds of a disk subsystem, CPU, and a tape subsystem are likely to be different. A powerful CPU can read data from a fast disk, process it, and supply the data to the tape subsystem at a faster rate than the tape subsystem can handle. On the other hand, a slow disk drive and a slow CPU may not be able to supply data fast enough to keep a tape drive busy all the time. The backup process may supply data to tape drive in bursts. Each burst may be followed by an idle period. Depending on the nature of the file distribution in the disk, the input stream to the tape subsystem may vary significantly during backup. To compensate for these differences and optimize the utilization of a tape subsystem, a cache or buffer is introduced in the tape controller. Most of the tape drives today are streaming tape drives. A streaming tape drive goes into reposition when there is no data from the controller. Once the drive goes into reposition, the controller can receive data, but it cannot supply data to the tape drive until the drive completes its reposition. A controller can also receive data from the host and send data to the tape drive at the same time. The relationship of cache size, host transfer rate, drive transfer rate, reposition, and ramp up times for optimal performance of the tape subsystem are investigated. Formulas developed will also show the advantages of cache watermarks to increase the streaming time of the tape drive, maximum loss due to insufficient cache, tradeoffs between cache and reposition times and the effectiveness of cache on a streaming tape drive due to idle times or interruptions due in host transfers. Several mathematical formulas are developed to predict the performance of the tape drive. Some examples are given illustrating the usefulness of these formulas. Finally, a summary and some conclusions are provided.
Johnson, B R; Columbro, F; Araujo, D; Limon, M; Smiley, B; Jones, G; Reichborn-Kjennerud, B; Miller, A; Gupta, S
2017-10-01
In this paper, we present the design and measured performance of a novel cryogenic motor based on a superconducting magnetic bearing (SMB). The motor is tailored for use in millimeter-wave half-wave plate (HWP) polarimeters, where a HWP is rapidly rotated in front of a polarization analyzer or polarization-sensitive detector. This polarimetry technique is commonly used in cosmic microwave background polarization studies. The SMB we use is composed of fourteen yttrium barium copper oxide (YBCO) disks and a contiguous neodymium iron boron (NdFeB) ring magnet. The motor is a hollow-shaft motor because the HWP is ultimately installed in the rotor. The motor presented here has a 100 mm diameter rotor aperture. However, the design can be scaled up to rotor aperture diameters of approximately 500 mm. Our motor system is composed of four primary subsystems: (i) the rotor assembly, which includes the NdFeB ring magnet, (ii) the stator assembly, which includes the YBCO disks, (iii) an incremental encoder, and (iv) the drive electronics. While the YBCO is cooling through its superconducting transition, the rotor is held above the stator by a novel hold and release mechanism. The encoder subsystem consists of a custom-built encoder disk read out by two fiber optic readout sensors. For the demonstration described in this paper, we ran the motor at 50 K and tested rotation frequencies up to approximately 10 Hz. The feedback system was able to stabilize the rotation speed to approximately 0.4%, and the measured rotor orientation angle uncertainty is less than 0.15°. Lower temperature operation will require additional development activities, which we will discuss.
NASA Astrophysics Data System (ADS)
Johnson, B. R.; Columbro, F.; Araujo, D.; Limon, M.; Smiley, B.; Jones, G.; Reichborn-Kjennerud, B.; Miller, A.; Gupta, S.
2017-10-01
In this paper, we present the design and measured performance of a novel cryogenic motor based on a superconducting magnetic bearing (SMB). The motor is tailored for use in millimeter-wave half-wave plate (HWP) polarimeters, where a HWP is rapidly rotated in front of a polarization analyzer or polarization-sensitive detector. This polarimetry technique is commonly used in cosmic microwave background polarization studies. The SMB we use is composed of fourteen yttrium barium copper oxide (YBCO) disks and a contiguous neodymium iron boron (NdFeB) ring magnet. The motor is a hollow-shaft motor because the HWP is ultimately installed in the rotor. The motor presented here has a 100 mm diameter rotor aperture. However, the design can be scaled up to rotor aperture diameters of approximately 500 mm. Our motor system is composed of four primary subsystems: (i) the rotor assembly, which includes the NdFeB ring magnet, (ii) the stator assembly, which includes the YBCO disks, (iii) an incremental encoder, and (iv) the drive electronics. While the YBCO is cooling through its superconducting transition, the rotor is held above the stator by a novel hold and release mechanism. The encoder subsystem consists of a custom-built encoder disk read out by two fiber optic readout sensors. For the demonstration described in this paper, we ran the motor at 50 K and tested rotation frequencies up to approximately 10 Hz. The feedback system was able to stabilize the rotation speed to approximately 0.4%, and the measured rotor orientation angle uncertainty is less than 0.15°. Lower temperature operation will require additional development activities, which we will discuss.
Rossby Wave Instability in Astrophysical Disks
NASA Astrophysics Data System (ADS)
Lovelace, Richard; Li, Hui
2014-10-01
A brief review is given of the Rossby wave instability in astrophysical disks. In non-self-gravitating discs, around for example a newly forming stars, the instability can be triggered by an axisymmetric bump at some radius r0 in the disk surface mass-density. It gives rise to exponentially growing non-axisymmetric perturbation (proportional to Exp[im ϕ], m = 1,2,...) in the vicinity of r0 consisting of anticyclonic vortices. These vortices are regions of high pressure and consequently act to trap dust particles which in turn can facilitate planetesimal growth in protoplanetary disks. The Rossby vortices in the disks around stars and black holes may cause the observed quasi-periodic modulations of the disk's thermal emission. Stirling Colgate's long standing interest in all types of vortices - particularly tornados - had an important part in stimulating the research on the Rossby wave instability.
Large Format Multifunction 2-Terabyte Optical Disk Storage System
NASA Technical Reports Server (NTRS)
Kaiser, David R.; Brucker, Charles F.; Gage, Edward C.; Hatwar, T. K.; Simmons, George O.
1996-01-01
The Kodak Digital Science OD System 2000E automated disk library (ADL) base module and write-once drive are being developed as the next generation commercial product to the currently available System 2000 ADL. Under government sponsorship with the Air Force's Rome Laboratory, Kodak is developing magneto-optic (M-O) subsystems compatible with the Kodak Digital Science ODW25 drive architecture, which will result in a multifunction (MF) drive capable of reading and writing 25 gigabyte (GB) WORM media and 15 GB erasable media. In an OD system 2000 E ADL configuration with 4 MF drives and 100 total disks with a 50% ration of WORM and M-O media, 2.0 terabytes (TB) of versatile near line mass storage is available.
An Evaluation of Personal Health Information Remnants in Second-Hand Personal Computer Disk Drives
Neri, Emilio; Jonker, Elizabeth
2007-01-01
Background The public is concerned about the privacy of their health information, especially as more of it is collected, stored, and exchanged electronically. But we do not know the extent of leakage of personal health information (PHI) from data custodians. One form of data leakage is through computer equipment that is sold, donated, lost, or stolen from health care facilities or individuals who work at these facilities. Previous studies have shown that it is possible to get sensitive personal information (PI) from second-hand disk drives. However, there have been no studies investigating the leakage of PHI in this way. Objectives The aim of the study was to determine the extent to which PHI can be obtained from second-hand computer disk drives. Methods A list of Canadian vendors selling second-hand computer equipment was constructed, and we systematically went through the shuffled list and attempted to purchase used disk drives from the vendors. Sixty functional disk drives were purchased and analyzed for data remnants containing PHI using computer forensic tools. Results It was possible to recover PI from 65% (95% CI: 52%-76%) of the drives. In total, 10% (95% CI: 5%-20%) had PHI on people other than the owner(s) of the drive, and 8% (95% CI: 7%-24%) had PHI on the owner(s) of the drive. Some of the PHI included very sensitive mental health information on a large number of people. Conclusions There is a strong need for health care data custodians to either encrypt all computers that can hold PHI on their clients or patients, including those used by employees and subcontractors in their homes, or to ensure that their computers are destroyed rather than finding a second life in the used computer market. PMID:17942386
Three-dimensional modelling of thin liquid films over spinning disks
NASA Astrophysics Data System (ADS)
Zhao, Kun; Wray, Alex; Yang, Junfeng; Matar, Omar
2016-11-01
In this research the dynamics of a thin film flowing over a rapidly spinning, horizontal disk is considered. A set of non-axisymmetric evolution equations for the film thickness, radial and azimuthal flow rates are derived using a boundary-layer approximation in conjunction with the Karman-Polhausen approximation for the velocity distribution in the film. These highly nonlinear partial differential equations are then solved numerically in order to reveal the formation of two and three-dimensional large-amplitude waves that travel from the disk inlet to its periphery. The spatio-temporal profile of film thickness provides us with visualization of flow structures over the entire disk and by varying system parameters(volumetric flow rate of fluid and rotational speed of disk) different wave patterns can be observed, including spiral, concentric, smooth waves and wave break-up in exceptional conditions. Similar types of waves can be found by experimentalists in literature and CFD simulation and our results show good agreement with both experimental and CFD results. Furthermore, the semi-parabolic velocity profile assumed in our model under the waves is directly compared with CFD data in various flow regimes in order to validate our model. EPSRC UK Programme Grant EP/K003976/1.
PROTOPLANETARY DISK HEATING AND EVOLUTION DRIVEN BY SPIRAL DENSITY WAVES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafikov, Roman R., E-mail: rrr@ias.edu
2016-11-10
Scattered light imaging of protoplanetary disks often reveals prominent spiral arms, likely excited by massive planets or stellar companions. Assuming that these arms are density waves, evolving into spiral shocks, we assess their effect on the thermodynamics, accretion, and global evolution of the disk. We derive analytical expressions for the direct (irreversible) heating, angular momentum transport, and mass accretion rate induced by disk shocks of arbitrary amplitude. These processes are very sensitive to the shock strength. We show that waves of moderate strength (density jump at the shock ΔΣ/Σ ∼ 1) result in negligible disk heating (contributing at the ∼1%more » level to the energy budget) in passive, irradiated protoplanetary disks on ∼100 au scales, but become important within several au. However, shock heating is a significant (or even dominant) energy source in disks of cataclysmic variables, stellar X-ray binaries, and supermassive black hole binaries, heated mainly by viscous dissipation. Mass accretion induced by the spiral shocks is comparable to (or exceeds) the mass inflow due to viscous stresses. Protoplanetary disks featuring prominent global spirals must be evolving rapidly, in ≲0.5 Myr at ∼100 au. A direct upper limit on the evolution timescale can be established by measuring the gravitational torque due to the spiral arms from the imaging data. We find that, regardless of their origin, global spiral waves must be important agents of the protoplanetary disk evolution. They may serve as an effective mechanism of disk dispersal and could be related to the phenomenon of transitional disks.« less
NASA Astrophysics Data System (ADS)
Hirai, K.; Katoh, Y.; Terada, N.; Kawai, S.
2016-12-01
In accretion disks, magneto-rotational instability (MRI; Balbus & Hawley, 1991) makes the disk gas in the magnetic turbulent state and drives efficient mass accretion into a central star. MRI drives turbulence through the evolution of the parasitic instability (PI; Goodman & Xu, 1994), which is related to both Kelvin-Helmholtz (K-H) instability and magnetic reconnection. The wave number vector of PI is strongly affected by both magnetic diffusivity and fluid viscosity (Pessah, 2010). This fact makes MHD simulation of MRI difficult, because we need to employ the numerical diffusivity for treating discontinuities in compressible MHD simulation schemes. Therefore, it is necessary to use an MHD scheme that has both high-order accuracy so as to resolve MRI driven turbulence and small numerical diffusivity enough to treat discontinuities. We have originally developed an MHD code by employing the scheme proposed by Kawai (2013). This scheme focuses on resolving turbulence accurately by using a high-order compact difference scheme (Lele, 1992), and meanwhile, the scheme treats discontinuities by using the localized artificial diffusivity method (Kawai, 2013). Our code also employs the pipeline algorithm (Matsuura & Kato, 2007) for MPI parallelization without diminishing the accuracy of the compact difference scheme. We carry out a 3-dimensional ideal MHD simulation with a net vertical magnetic field in the local shearing box disk model. We use 256x256x128 grids. Simulation results show that the spatially averaged turbulent stress induced by MRI linearly grows until around 2.8 orbital periods, and decreases after the saturation. We confirm the strong enhancement of the K-H mode PI at a timing just before the saturation, identified by the enhancement of its anisotropic wavenumber spectra in the 2-dimensional wavenumber space. The wave number of the maximum growth of PI reproduced in the simulation result is larger than the linear analysis. This discrepancy is explained by the simulation result that a shear flow created by MRI locally becomes thinner and faster due to interactions between antiparallel vortices induced by K-H mode PI, and this structure induces small scale waves which break the shear flow itself. We report the results of the simulation, and discuss how the saturation amplitude of MRI is determined.
Mapping hard magnetic recording disks by TOF-SIMS
NASA Astrophysics Data System (ADS)
Spool, A.; Forrest, J.
2008-12-01
Mapping of hard magnetic recording disks by TOF-SIMS was performed both to produce significant analytical results for the understanding of the disk surface and the head disk interface in hard disk drives, and as an example of a macroscopic non-rectangular mapping problem for the technique. In this study, maps were obtained by taking discrete samples of the disk surface at set intervals in R and Θ. Because both in manufacturing, and in the disk drive, processes that may affect the disk surface are typically circumferential in nature, changes in the surface are likely to be blurred in the Θ direction. An algorithm was developed to determine the optimum relative sampling ratio in R and Θ. The results confirm what the experience of the analysts suggested, that changes occur more rapidly on disks in the radial direction, and that more sampling in the radial direction is desired. The subsequent use of statistical methods principle component analysis (PCA), maximum auto-correlation factors (MAF), and the algorithm inverse distance weighting (IDW) are explored.
Vorticity Transport and Wave Emission In A Protoplanetary Disk
NASA Technical Reports Server (NTRS)
Davis, S. S.; Davis, Sanford (Technical Monitor)
2002-01-01
Higher order numerical algorithms (4th order in time, 3rd order in space) are applied to the Euler equations and are used to examine vorticity transport and wave motion in a non-self gravitating, initially isentropic Keplerian disk. In this talk we will examine the response of the disk to an isolated vortex with a circulation about equal to the rotation rate of Jupiter. The vortex is located on the 4 AU circle and the nebula is simulated from 1 to 24 AU. We show that the vortex emits pressure-supported density and Rossby-type wave packets before it decays within a few orbits. The acoustic density waves evolve into weak (non entropy preserving) shock waves that propagate over the entire disk. The Rossby waves remain in the vicinity of the initial vortex disturbance, but are rapidly damped. Temporal frequencies and spatial wavenumbers are derived from the nonlinear simulation data and correlated with analytical dispersion relations from the linearized Euler and energy equations.
Modeling the X-Ray Timing Properties of Cygnus X-1 Caused by Waves Propagating in a Transition Disk
NASA Astrophysics Data System (ADS)
Misra, R.
2000-02-01
We show that waves propagating in a transition disk can explain the short-term temporal behavior of Cygnus X-1. In the transition-disk model, the spectrum is produced by saturated Comptonization within the inner region of the accretion disk where the temperature varies rapidly with radius. Recently, the spectrum from such a disk has been shown to fit the average broadband spectrum of this source better than that predicted by the soft-photon Comptonization model. Here we consider a simple model in which waves are propagating cylindrically symmetrically in the transition disk with a uniform propagation speed (cp). We show that this model can qualitatively explain (1) the variation of the power spectral density with energy, (2) the hard lags as a function of frequency, and (3) the hard lags as a function of energy for various frequencies. Thus, the transition-disk model can explain the average spectrum and the short-term temporal behavior of Cyg X-1.
Propagation of tidal disturbance in gaseous accretion disks
NASA Technical Reports Server (NTRS)
Lin, D. N. C.; Papaloizou, J. C. B.; Savonije, G. J.
1990-01-01
Linear wave propagation is studied in geometrically thin accretion disks where the equilibrium variables, such as density and temperature, are stratified in the direction normal to the plane of the disk; i.e., the vertical direction. It is shown, due to refraction effects, that waves excited by tidal disturbances induced by a satellite or a companion of the central object are not expected to reach the interior regions of the disk with a significant amplitude.
NASA Astrophysics Data System (ADS)
Ermann, Leonardo; Vergini, Eduardo; Shepelyansky, Dima L.
2017-08-01
We study the dynamics of a Bose-Einstein condensate in a Sinai-oscillator trap under a monochromatic driving force. Such a trap is formed by a harmonic potential and a repulsive disk located in the center vicinity corresponding to the first experiments of condensate formation by Ketterle and co-workers in 1995. We allow that the external driving allows us to model the regime of weak wave turbulence with the Kolmogorov energy flow from low to high energies. We show that in a certain regime of weak driving and weak nonlinearity such a turbulent energy flow is defeated by the Anderson localization that leads to localization of energy on low energy modes. This is in a drastic contrast to the random phase approximation leading to energy flow to high modes. A critical threshold is determined above which the turbulent flow to high energies becomes possible. We argue that this phenomenon can be studied with ultracold atoms in magneto-optical traps.
Ermann, Leonardo; Vergini, Eduardo; Shepelyansky, Dima L
2017-08-04
We study the dynamics of a Bose-Einstein condensate in a Sinai-oscillator trap under a monochromatic driving force. Such a trap is formed by a harmonic potential and a repulsive disk located in the center vicinity corresponding to the first experiments of condensate formation by Ketterle and co-workers in 1995. We allow that the external driving allows us to model the regime of weak wave turbulence with the Kolmogorov energy flow from low to high energies. We show that in a certain regime of weak driving and weak nonlinearity such a turbulent energy flow is defeated by the Anderson localization that leads to localization of energy on low energy modes. This is in a drastic contrast to the random phase approximation leading to energy flow to high modes. A critical threshold is determined above which the turbulent flow to high energies becomes possible. We argue that this phenomenon can be studied with ultracold atoms in magneto-optical traps.
On the effects of tidal interaction on thin accretion disks: An analytic study
NASA Technical Reports Server (NTRS)
Dgani, R.; Livio, M.; Regev, O.
1994-01-01
We calculate tidal effects on two-dimensional thin accretion disks in binary systems. We apply a perturbation expansion to obtain an analytic solution of the tidally induced waves. We obtain spiral waves that are stronger at the inner parts of the disks, in addition to a local disturbance which scales like the strength of the local tidal force. Our results agree with recent calculations of the linear response of the disk to tidal interaction.
Fast disk array for image storage
NASA Astrophysics Data System (ADS)
Feng, Dan; Zhu, Zhichun; Jin, Hai; Zhang, Jiangling
1997-01-01
A fast disk array is designed for the large continuous image storage. It includes a high speed data architecture and the technology of data striping and organization on the disk array. The high speed data path which is constructed by two dual port RAM and some control circuit is configured to transfer data between a host system and a plurality of disk drives. The bandwidth can be more than 100 MB/s if the data path based on PCI (peripheral component interconnect). The organization of data stored on the disk array is similar to RAID 4. Data are striped on a plurality of disk, and each striping unit is equal to a track. I/O instructions are performed in parallel on the disk drives. An independent disk is used to store the parity information in the fast disk array architecture. By placing the parity generation circuit directly on the SCSI (or SCSI 2) bus, the parity information can be generated on the fly. It will affect little on the data writing in parallel on the other disks. The fast disk array architecture designed in the paper can meet the demands of the image storage.
Local magnetohydrodynamic instabilities and the wave-driven dynamo in accretion disks
NASA Technical Reports Server (NTRS)
Vishniac, Ethan T.; Diamond, Patrick
1992-01-01
We consider the consequences of magnetic buoyancy and the magnetic shearing instability (MSI) on the strength and organization of the magnetic field in a thin accretion disk. We discuss a model in which the wave-driven dynamo growth rate is balanced by the dissipative effects of the MSI. As in earlier work, the net helicity is due to small advective motions driven by nonlinear interactions between internal waves. Assuming a simple model of the internal wave spectrum generated from the primary m = 1 internal waves, we find that the magnetic energy density saturates at about (H/r) exp 4/3 times the local pressure (where H is the disk thickness and r is its radius). On very small scales the shearing instability will produce an isotropic fluctuating field. For a stationary disk this is equivalent to a dimensionless 'viscosity' of about (H/r) exp 4/3. The vertical and radial diffusion coefficients will be comparable to each other. Magnetic buoyancy will be largely suppressed by the turbulence due to the MSI. We present a rough estimate of its effects and find that it removes magnetic flux from the disk at a rate comparable to that caused by turbulent diffusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flock, M.; Dzyurkevich, N.; Klahr, H.
2011-07-10
We present full 2{pi} global three-dimensional stratified magnetohydrodynamic (MHD) simulations of accretion disks. We interpret our results in the context of protoplanetary disks. We investigate the turbulence driven by the magnetorotational instability (MRI) using the PLUTO Godunov code in spherical coordinates with the accurate and robust HLLD Riemann solver. We follow the turbulence for more than 1500 orbits at the innermost radius of the domain to measure the overall strength of turbulent motions and the detailed accretion flow pattern. We find that regions within two scale heights of the midplane have a turbulent Mach number of about 0.1 and amore » magnetic pressure two to three orders of magnitude less than the gas pressure, while in those outside three scale heights the magnetic pressure equals or exceeds the gas pressure and the turbulence is transonic, leading to large density fluctuations. The strongest large-scale density disturbances are spiral density waves, and the strongest of these waves has m = 5. No clear meridional circulation appears in the calculations because fluctuating radial pressure gradients lead to changes in the orbital frequency, comparable in importance to the stress gradients that drive the meridional flows in viscous models. The net mass flow rate is well reproduced by a viscous model using the mean stress distribution taken from the MHD calculation. The strength of the mean turbulent magnetic field is inversely proportional to the radius, so the fields are approximately force-free on the largest scales. Consequently, the accretion stress falls off as the inverse square of the radius.« less
NASA Astrophysics Data System (ADS)
Wu, Lin
2011-04-01
The distribution dynamics of a thin lubricant film on a bit-patterned media disk and its effect on the performance of the ultralow flying air bearing slider of disk drives are studied by direct numerical simulations. Our analysis shows that the physics governing lubricant distribution dynamics changes when deep enough sub-100-nm nanostructures are patterned on the disk surface. Air shearing under the slider that dominates lubricant flow on a flat disk may become negligible on a bit-patterned media disk. Surface tension and disjoining pressure become dominant factors instead. Our results show that disks with nanoscale patterns/roughness may no longer be treated as flat, and the air bearing load may strongly depend not only on the geometric detail of disk patterns but also on how lubricants are distributed on the patterns when slider-disk clearance is reduced to sub-10-nm. Air bearing load and consequently the slider's flying attitude are affected by disk pattern geometry, average lubricant thickness, and material properties of lubricant such as the surface tension coefficient and Hamaker constant. The significantly expanded parameter space, upon which ultralow flying slider's dynamics depends, has to be seriously considered in evaluating the head/disk interface tribology performance of next generation patterned media magnetic recording systems.
A model for neutrino emission from nuclear accretion disks
NASA Astrophysics Data System (ADS)
Deaton, Michael
2015-04-01
Compact object mergers involving at least one neutron star can produce short-lived black hole accretion engines. Over tens to hundreds of milliseconds such an engine consumes a disk of hot, nuclear-density fluid, and drives changes to its surrounding environment through luminous emission of neutrinos. The neutrino emission may drive an ultrarelativistic jet, may peel off the disk's outer layers as a wind, may irradiate those winds or other forms of ejecta and thereby change their composition, may change the composition and thermodynamic state of the disk itself, and may oscillate in its flavor content. We present the full spatial-, angular-, and energy-dependence of the neutrino distribution function around a realistic model of a nuclear accretion disk, to inform future explorations of these types of behaviors. Spectral Einstein Code (SpEC).
System Identification of Mistuned Bladed Disks from Traveling Wave Response Measurements
NASA Technical Reports Server (NTRS)
Feiner, D. M.; Griffin, J. H.; Jones, K. W.; Kenyon, J. A.; Mehmed, O.; Kurkov, A. P.
2003-01-01
A new approach to modal analysis is presented. By applying this technique to bladed disk system identification methods, one can determine the mistuning in a rotor based on its response to a traveling wave excitation. This allows system identification to be performed under rotating conditions, and thus expands the applicability of existing mistuning identification techniques from integrally bladed rotors to conventional bladed disks.
NASA Astrophysics Data System (ADS)
Wu, Lin
2018-05-01
In this paper, we model the depletion dynamics of the molecularly thin layer of lubricants on a bit patterned media disk of hard disk drives under a sliding air bearing head. The dominant physics and consequently, the lubricant depletion dynamics on a patterned disk are shown to be significantly different from the well-studied cases of a smooth disk. Our results indicate that the surface tension effect, which is negligible on a flat disk, apparently suppresses depletion by enforcing a bottleneck effect around the disk pattern peak regions to thwart the migration of lubricants. When the disjoining pressure is relatively small, it assists the depletion. But, when the disjoining pressure becomes dominant, the disjoining pressure resists depletion. Disk pattern orientation plays a critical role in the depletion process. The effect of disk pattern orientation on depletion originates from its complex interaction with other intermingled factors of external air shearing stress distribution and lubricant particle trajectory. Patterning a disk surface with nanostructures of high density, large height/pitch ratio, and particular orientation is demonstrated to be one efficient way to alleviate the formation of lubricant depletion tracks.
On the Dynamics of Rocking Motion of the Hard-Disk Drive Spindle Motor System
NASA Astrophysics Data System (ADS)
Wang, Joseph
Excessive rocking motion of the spindle motor system can cause track misregistration resulting in poor throughput or even drive failure. The chance of excessive disk stack rocking increases as a result of decreasing torsional stiffness of spindle motor bearing system due to the market demand for low profile hard drives. As the track density increases and the vibration specification becomes increasingly stringent, rocking motion of a spindle motor system deserves even more attention and has become a primary challenge for a spindle motor system designer. Lack of understanding of the rocking phenomenon combined with misleading paradox has presented a great difficulty in the effort of avoiding the rocking motion in the hard-disk drive industry. This paper aims to provide fundamental understanding of the rocking phenomenon of a rotating spindle motor system, to clarify the paradox in disk-drive industry and to provide a design guide to an optimized spindle system. This paper, theoretically and experimentally, covers a few important areas of industrial interest including the prediction of rocking natural frequencies and mode shape of a rotating spindle, free vibration, and frequency response under common forcing functions such as rotating and fixed-plane forcing functions. The theory presented here meets with agreeable experimental observation.
40 CFR 63.11995 - In what form and how long must I keep my records?
Code of Federal Regulations, 2013 CFR
2013-07-01
... years. Records may be maintained in hard copy or computer-readable format including, but not limited to, on paper, microfilm, hard disk drive, floppy disk, compact disk, magnetic tape or microfiche. ...
40 CFR 63.11995 - In what form and how long must I keep my records?
Code of Federal Regulations, 2014 CFR
2014-07-01
... years. Records may be maintained in hard copy or computer-readable format including, but not limited to, on paper, microfilm, hard disk drive, floppy disk, compact disk, magnetic tape or microfiche. ...
40 CFR 63.11995 - In what form and how long must I keep my records?
Code of Federal Regulations, 2012 CFR
2012-07-01
... years. Records may be maintained in hard copy or computer-readable format including, but not limited to, on paper, microfilm, hard disk drive, floppy disk, compact disk, magnetic tape or microfiche. ...
A DOS Primer for Librarians: Part II.
ERIC Educational Resources Information Center
Beecher, Henry
1990-01-01
Provides an introduction to DOS commands and strategies for the effective organization and use of hard disks. Functions discussed include the creation of directories and subdirectories, enhanced copying, the assignment of disk drives, and backing up the hard disk. (CLB)
Rayleigh wave effects in an elastic half-space.
NASA Technical Reports Server (NTRS)
Aggarwal, H. R.
1972-01-01
Consideration of Rayleigh wave effects in a homogeneous isotropic linearly elastic half-space subject to an impulsive uniform disk pressure loading. An approximate formula is obtained for the Rayleigh wave effects. It is shown that the Rayleigh waves near the center of loading arise from the portion of the dilatational and shear waves moving toward the axis, after they originate at the edge of the load disk. A study is made of the vertical displacement due to Rayleigh waves at points on the axis near the surface of the elastic half-space.
NASA Astrophysics Data System (ADS)
Owocki, S.
2008-06-01
Stellar rotation can play an important role in structuring and enhancing the mass loss from massive stars. Initial 1D models focussed on the expected centrifugal enhancement of the line-driven mass flux from the equator of a rotating star, but the review here emphasizes that the loss of centrifugal support away from the stellar surface actually limits the steady mass flux to just the point-star CAK value, with models near critical rotation characterized by a slow, subcritical acceleration. Recent suggestions that such slow outflows might have high enough density to explain disks in Be or B[e] stars are examined in the context of 2D simulations of the ``Wind Compressed Disk'' (WCD) paradigm, together with a review of the tendency for poleward components of the line-driving force to inhibit WCD formation. When one accounts for equatorial gravity darkening, the net tendency is in fact for the relatively bright regions at higher latitude to drive a faster, denser ``bipolar'' outflow. I discuss the potential relevance for the bipolar form of nebulae from LBV stars like η Carinae, but emphasize that, since the large mass loss associated with the eruption of eta Carinae's Homunculus would heavily saturate line-driving, explaining its bipolar form requires development of analogous models for continuum-driven mass loss. I conclude with a discussion of how radiation seems inherently ill-suited to supporting or driving a geometrically thin, but optically thick disk or disk outflow. The disks inferred in Be and B[e] stars may instead be centrifugally ejected, with radiation inducing an ablation flow from the disk surface, and thus perhaps playing a greater role in destroying (rather than creating) an orbiting, circumstellar disk.
Radio-Loud Coronal Mass Ejections Without Shocks Near Earth
NASA Technical Reports Server (NTRS)
Gopalswamy, N.; SaintCyr, O. C.; MacDowall, R. J.; Kaiser, M. L.; Xie, H.; Makela, P.; Akiyama, S.
2010-01-01
Type II radio bursts are produced by low energy electrons accelerated in shocks driven by corona) mass ejections (CMEs). One can infer shocks near the Sun, in the Interplanetary medium, and near Earth depending on the wavelength range in which the type II bursts are produced. In fact, type II bursts are good indicators of CMEs that produce solar energetic particles. If the type 11 burst occurs from a source on the Earth-facing side of the solar disk, it is highly likely that a shock arrives at Earth in 2-3 days and hence can be used to predict shock arrival at Earth. However, a significant fraction of CMEs producing type II bursts were not associated shocks at Earth, even though the CMEs originated close to the disk center. There are several reasons for the lack of shock at 1 AU. CMEs originating at large central meridian distances (CMDs) may be driving a shock, but the shock may not be extended sufficiently to reach to the Sun-Earth line. Another possibility is CME cannibalism because of which shocks merge and one observes a single shock at Earth. Finally, the CME-driven shock may become weak and dissipate before reaching 1 AU. We examined a set of 30 type II bursts observed by the Wind/WAVES experiment that had the solar sources very close to the disk center (within a CMD of 15 degrees), but did not have shock at Earth. We find that the near-Sun speeds of the associated CMEs average to approx.600 km/s, only slightly higher than the average speed of CMEs associated with radio-quiet shocks. However, the fraction of halo CMEs is only approx.28%, compared to 40% for radio-quiet shocks and 72% for all radio-loud shocks. We conclude that the disk-center radio loud CMEs with no shocks at 1 AU are generally of lower energy and they drive shocks only close to the Sun.
Mach disk from underexpanded axisymmetric nozzle flow
NASA Technical Reports Server (NTRS)
Chang, I.-S.; Chow, W. L.
1974-01-01
The flowfield associated with the underexpanded axisymmetric nozzle freejet flow including the appearance of a Mach disk has been studied. It is shown that the location and size of the Mach disk are governed by the appearance of a triple-point shock configuration and the condition that the central core flow will reach a state of 'choking at a throat'. It is recognized that coalescence of waves requires special attention and the reflected wave, as well as the vorticity generated from these wave interactions, have to be taken accurately into account. The theoretical results obtained agreed well with the experimental data.
Development of multi-component explosive lenses for arbitrary phase velocity generation
NASA Astrophysics Data System (ADS)
Loiseau, Jason; Huneault, Justin; Petel, Oren; Goroshin, Sam; Frost, David; Higgins, Andrew; Zhang, Fan
2013-06-01
The combination of explosives with different detonation velocities and lens-like geometric shaping is a well-established technique for producing structured detonation waves. This technique can be extended to produce nearly arbitrary detonation phase velocities for the purposes of sequentially imploding pressurized tubes or driving Mach disks through high-density metalized explosives. The current study presents the experimental development of accelerating, multi-component lenses designed using simple geometric optics and idealized front curvature. The fast explosive component is either Composition C4 (VOD = 8 km/s) or Primasheet 1000 (VOD = 7 km/s), while the slow component varies from heavily amine-diluted nitromethane (amine mass fraction exceeding 20%) to packed metal and glass particle beds wetted with amine-sensitized nitromethane. The applicability of the geometric optic analog to such highly heterogeneous explosives is also investigated. The multi-layered lens technique is further developed as a means of generating a directed mass and momentum flux of metal particles via Mach-disk formation and jetting in circular and oval planar lenses.
Study of solar photospheric MHD oscillations: Observations with MDI, ASP and MWO
NASA Astrophysics Data System (ADS)
Norton, Aimee Ann
Magnetodydrodynamical waves are expected to be an important energy transport mechanism in the solar atmosphere. This thesis uses data from a spectro-polarimeter and longitudinal magnetographs to study characteristics of magneto-hydrodynamical oscillations at photospheric heights. Significant oscillatory magnetic power is observed with the Michelson Doppler Imager in three frequency regimes: 0.5--1.0, 3.0--3.5 and 5.5--6.0 mHz corresponding to timescales of magnetic evolution, p-modes and the three minute resonant sunspot oscillation. Spatial distribution of magnetogram oscillatory power exhibits the same general features in numerous datasets. Low frequency magnetogram power is found in rings with filamentary structure surrounding sunspots. Five minute power peaks in extended regions of plage. Three minute oscillations are observed in sunspot umbra. Phase angles between velocity and magnetic fluctuations are found to be approximately -90°, a signature of magnetoacoustic waves, in disk-center active region data. Phase dependence upon observation angle is established through sunspot values decreasing from -100° at disk-center towards -31° at the limb, confirming greater Alfen wave visibility at the limb. Consistent propagation direction or field-aligned velocities explain an unexpected phase jump from negative to positive values for divergent sunspot fields observed away from disk-center. Simultaneously obtained Stokes profiles and longitudinal magnetogram maps of a positive plage region provide time series which could be compared. The velocity signals are in excellent agreement. Magnetic flux correlates best with fluctuations in filling factor, not inclination angle or field strength, implying the responsible physical mechanism is internally unperturbed flux tubes being buffeted by external pressure fluctuations. Sampling signals from different heights of formation provides slight phase shifts and large propagation speeds for velocity, indicative of modified standing waves. Phase speeds associated with magnetic signals are characteristic of photospheric Alfven speeds for plage fields. The phase speed increase with height agrees with the altitude dependence of the Alfven speed. Observed fluctuations, phase angles and phase lags are interpreted as a superposition of signatures from the horizontal component of the driving mechanism sweeping the field lines in/out of the resolution area and the magnetic response of the flux tube to this buffeting.
40 CFR 63.9060 - In what form and how long must I keep my records?
Code of Federal Regulations, 2010 CFR
2010-07-01
... may be maintained in hard copy or computer-readable format including, but not limited to, on paper, microfilm, hard disk drive, floppy disk, compact disk, magnetic tape, or microfiche. (d) You must keep each...
Dielectric supported radio-frequency cavities
Yu, David U. L.; Lee, Terry G.
2000-01-01
A device which improves the electrical and thermomechanical performance of an RF cavity, for example, in a disk-loaded accelerating structure. A washer made of polycrystalline diamond is brazed in the middle to a copper disk washer and at the outer edge to the plane wave transformer tank wall, thus dissipating heat from the copper disk to the outer tank wall while at the same time providing strong mechanical support to the metal disk. The washer structure eliminates the longitudinal connecting rods and cooling channels used in the currently available cavities, and as a result minimizes problems such as shunt impedance degradation and field distortion in the plane wave transformer, and mechanical deflection and uneven cooling of the disk assembly.
NASA Astrophysics Data System (ADS)
Berry, M. V.
2018-07-01
Outgoing cylindrical waves scattered by a disk, or emerging from a source inside it, are represented by Hankel functions of order m. For large m, these waves decay rapidly outside the disk and resemble radially evanescent surface waves travelling around it. But they eventually leak weakly away, in a manner described accurately by the asymptotics of the Hankel function. The transition occurs at radial distance ∣m∣ (in wavelength units), which constitutes a circular caustic from which the radiation leaking out, described by the streamlines, appears to issue tangentially. In the evanescent region, the streamlines form spirals, whose windings get exponentially closer nearer the disk. These insights are intended to help graduate students demystify mathematics associated with scattering theory.
NASA Astrophysics Data System (ADS)
Bae, Jaehan; Nelson, Richard P.; Hartmann, Lee
2016-12-01
We have recently shown that spiral density waves propagating in accretion disks can undergo a parametric instability by resonantly coupling with and transferring energy into pairs of inertial waves (or inertial-gravity waves when buoyancy is important). In this paper, we perform inviscid three-dimensional global hydrodynamic simulations to examine the growth and consequence of this instability operating on the spiral waves driven by a Jupiter-mass planet in a protoplanetary disk. We find that the spiral waves are destabilized via the spiral wave instability (SWI), generating hydrodynamic turbulence and sustained radially alternating vertical flows that appear to be associated with long wavelength inertial modes. In the interval 0.3 {R}{{p}}≤slant R≤slant 0.7{R}{{p}}, where R p denotes the semimajor axis of the planetary orbit (assumed to be 5 au), the estimated vertical diffusion rate associated with the turbulence is characterized by {α }{diff}∼ (0.2{--}1.2)× {10}-2. For the disk model considered here, the diffusion rate is such that particles with sizes up to several centimeters are vertically mixed within the first pressure scale height. This suggests that the instability of spiral waves launched by a giant planet can significantly disperse solid particles and trace chemical species from the midplane. In planet formation models where the continuous local production of chondrules/pebbles occurs over Myr timescales to provide a feedstock for pebble accretion onto these bodies, this stirring of solid particles may add a time constraint: planetary embryos and large asteroids have to form before a gas giant forms in the outer disk, otherwise the SWI will significantly decrease the chondrule/pebble accretion efficiency.
Wave Excitation in Accretion Disks by Protoplanets
NASA Astrophysics Data System (ADS)
Koller, J.; Li, H.
2002-05-01
The ongoing discoveries of extrasolar planets in the recent years revealed remarkable properties and unexpected results concerning the formation process. We studied the perturbation of a protostellar accretion disk by a companion utilizing APOLLO, a fast hydro disk code well tested in the case of accretion disks without a companion (Li et al. 2001, ApJ, 551, 874). We consider limiting cases where the companion's mass is much smaller than the central protostar and resides in a circular keplerian orbit. The gravitational field of the protoplanet, embedded in a numerically thin disk, generates spiral density waves and Rossby instabilities resulting in a non-axisymmetric density distribution. We present nonlinear hydro simulations to investigate those non-axisymmetric density distribution with different disk and planet parameters in order to understand how disks respond to a fixed companion in orbit. This work has been supported by IGPP at LANL (award # 1109) and NASA (grant # NAG5-9223).
Hybrid RAID With Dual Control Architecture for SSD Reliability
NASA Astrophysics Data System (ADS)
Chatterjee, Santanu
2010-10-01
The Solid State Devices (SSD) which are increasingly being adopted in today's data storage Systems, have higher capacity and performance but lower reliability, which leads to more frequent rebuilds and to a higher risk. Although SSD is very energy efficient compared to Hard Disk Drives but Bit Error Rate (BER) of an SSD require expensive erase operations between successive writes. Parity based RAID (for Example RAID4,5,6)provides data integrity using parity information and supports losing of any one (RAID4, 5)or two drives(RAID6), but the parity blocks are updated more often than the data blocks due to random access pattern so SSD devices holding more parity receive more writes and consequently age faster. To address this problem, in this paper we propose a Model based System of hybrid disk array architecture in which we plan to use RAID 4(Stripping with Parity) technique and SSD drives as Data drives while any fastest Hard disk drives of same capacity can be used as dedicated parity drives. By this proposed architecture we can open the door to using commodity SSD's past their erasure limit and it can also reduce the need for expensive hardware Error Correction Code (ECC) in the devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajauria, Sukumar, E-mail: sukumar.rajauria@hgst.com; Canchi, Sripathi V., E-mail: sripathi.canchi@hgst.com; Schreck, Erhard
The kinetic friction and wear at high sliding speeds is investigated using the head-disk interface of hard disk drives, wherein the head and the disk are less than 10 nm apart and move at sliding speeds of 5–10 m/s relative to each other. While the spacing between the sliding surfaces is of the same order of magnitude as various AFM based fundamental studies on friction, the sliding speed is nearly six orders of magnitude larger, allowing a unique set-up for a systematic study of nanoscale wear at high sliding speeds. In a hard disk drive, the physical contact between the head andmore » the disk leads to friction, wear, and degradation of the head overcoat material (typically diamond like carbon). In this work, strain gauge based friction measurements are performed; the friction coefficient as well as the adhering shear strength at the head-disk interface is extracted; and an experimental set-up for studying friction between high speed sliding surfaces is exemplified.« less
Nanoscale wear and kinetic friction between atomically smooth surfaces sliding at high speeds
NASA Astrophysics Data System (ADS)
Rajauria, Sukumar; Canchi, Sripathi V.; Schreck, Erhard; Marchon, Bruno
2015-02-01
The kinetic friction and wear at high sliding speeds is investigated using the head-disk interface of hard disk drives, wherein the head and the disk are less than 10 nm apart and move at sliding speeds of 5-10 m/s relative to each other. While the spacing between the sliding surfaces is of the same order of magnitude as various AFM based fundamental studies on friction, the sliding speed is nearly six orders of magnitude larger, allowing a unique set-up for a systematic study of nanoscale wear at high sliding speeds. In a hard disk drive, the physical contact between the head and the disk leads to friction, wear, and degradation of the head overcoat material (typically diamond like carbon). In this work, strain gauge based friction measurements are performed; the friction coefficient as well as the adhering shear strength at the head-disk interface is extracted; and an experimental set-up for studying friction between high speed sliding surfaces is exemplified.
Electromagnetic brake/clutch device
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor)
1994-01-01
An electromagnetic brake/clutch device includes a drive shaft supported by at least one bearing for transmitting torque, a housing, affixed to prevent its rotation, surrounding the drive shaft, and an electromagnetically activated device within the housing to selectively prevent and allow rotation of the drive shaft. The electromagnetically activated device includes a plurality of cammed rollers to prevent counter-clockwise rotation of the drive shaft. The drive shaft includes a circumferential disk and the housing includes a reaction ring for engagement with the plurality of cammed rollers. The plurality of cammed rollers are released from engagement with the circumferential disk and the reaction ring by a plurality of tripping mechanisms within the housing. The tripping action uses the locking force to act as a release force merely by changing the boundary conditions of the roller interface angles. The tripping mechanisms include trippers for disengaging the plurality of cammed rollers and an anvil shaped portion for providing lateral movement of the trippers. The plurality of cammed rollers is preloaded to engagement with the circumferential disk and reaction ring by a spring, and is located with respect to an adjacent tripping mechanism with another spring.
NASA Astrophysics Data System (ADS)
Wong, G.
The unparalleled cost and form factor advantages of NAND flash memory has driven 35 mm photographic film, floppy disks and one-inch hard drives to extinction. Due to its compelling price/performance characteristics, NAND Flash memory is now expanding its reach into the once-exclusive domain of hard disk drives and DRAM in the form of Solid State Drives (SSDs). Driven by the proliferation of thin and light mobile devices and the need for near-instantaneous accessing and sharing of content through the cloud, SSDs are expected to become a permanent fixture in the computing infrastructure.
Survey of shock-wave structures of smooth-particle granular flows.
Padgett, D A; Mazzoleni, A P; Faw, S D
2015-12-01
We show the effects of simulated supersonic granular flow made up of smooth particles passing over two prototypical bodies: a wedge and a disk. We describe a way of computationally identifying shock wave locations in granular flows and tabulate the shock wave locations for flow over wedges and disks. We quantify the shock structure in terms of oblique shock angle for wedge impediments and shock standoff distance for disk impediments. We vary granular flow parameters including upstream volume fraction, average upstream velocity, granular temperature, and the collision coefficient of restitution. Both wedges and disks have been used in the aerospace community as prototypical impediments to flowing air in order to investigate the fundamentally different shock structures emanating from sharp and blunt bodies, and we present these results in order to increase the understanding of the fundamental behavior of supersonic granular flow.
Army Medical Imaging System - ARMIS
1992-08-08
modems , scanners, hard disk drives, dot matrix printers, erasable-optical disc drives, CD-ROM drives, WORM disc drives and tape drives are fully...can use 56K leased lines, TI links, digital data circuits, or public telephone lines. 3. ISDN The Integrated Services Digital Network, ISDN, is a
The Mercury System: Embedding Computation into Disk Drives
2004-08-20
enabling technologies to build extremely fast data search engines . We do this by moving the search closer to the data, and performing it in hardware...engine searches in parallel across a disk or disk surface 2. System Parallelism: Searching is off-loaded to search engines and main processor can
Single-frequency oscillation of thin-disk lasers due to phase-matched pumping.
Vorholt, Christian; Wittrock, Ulrich
2017-09-04
We present a novel pump concept that should lead to single-frequency operation of thin-disk lasers without the need for etalons or other spectral filters. The single-frequency operation is due to matching the standing wave pattern of partially coherent pump light to the standing wave pattern of the laser light inside the disk. The output power and the optical efficiency of our novel pump concept are compared with conventional pumping. The feasibility of our pump concept was shown in previous experiments.
NASA Astrophysics Data System (ADS)
Ruiz, Milton; Shapiro, Stuart L.
2017-10-01
Inspiraling and merging binary neutron stars are not only important source of gravitational waves, but also promising candidates for coincident electromagnetic counterparts. These systems are thought to be progenitors of short gamma-ray bursts (sGRBs). We have shown previously that binary neutron star mergers that undergo delayed collapse to a black hole surrounded by a weighty magnetized accretion disk can drive magnetically powered jets. We now perform magnetohydrodynamic simulations in full general relativity of binary neutron stars mergers that undergo prompt collapse to explore the possibility of jet formation from black hole- light accretion disk remnants. We find that after t -tBH˜26 (MNS/1.8 M⊙) ms (MNS is the ADM mass) following prompt black hole formation, there is no evidence of mass outflow or magnetic field collimation. The rapid formation of the black hole following merger prevents magnetic energy from approaching force-free values above the magnetic poles, which is required for the launching of a jet by the usual Blandford-Znajek mechanism. Detection of gravitational waves in coincidence with sGRBs may provide constraints on the nuclear equation of state (EOS): the fate of an NSNS merger-delayed or prompt collapse, and hence the appearance or nonappearance of an sGRB-depends on a critical value of the total mass of the binary, and this value is sensitive to the EOS.
Rossby Waves in the Protoplanetary Nebula
NASA Technical Reports Server (NTRS)
Sheehan, Daniel P.
1998-01-01
Fluid waves and instabilities are considered critical to the evolution of protoplanetary nebulae, particularly for their roles in mass, angular momentum, and energy transport. A number have been identified, however, notably absent, is an influential wave commonly found in planetary atmospheres and oceans: the planetary Rossby wave (PRW). Since, in the Earth's atmosphere, the PRW is of primary importance in shaping large-scale meteorological phenomena, it is reasonable to consider whether it might have similar importance in the protoplanetary nebula. The thrust of the research project this summer (1998) was to determine whether a nebular analog to the PRW is viable, a so-called nebular Rossby wave (NRW), and if so, to explore possible ramifications of this wave to the evolution of the nebula. This work was carried out primarily by S. Davis, J. Cuzzi and me, with significant discussions with P. Cassen. We believe we have established a good case for the NRW and as a result believe we have opened up a new and possibly interesting line of research in regard to the nebular development, in particular with regard to zonal jet formation, a potent accretion mechanism, and possible ties to vortex formation. The standard model of the protoplanetary nebula consists of a large disk of gas with about 1% entrained dust gravitationally bound to a large central mass, m(sub c) i.e., the protostar. The planet-forming region of the disk extends to roughly 100 A.U. in radius. Disk thickness, H, is believed to be on the order of 10-100 times less than disk radius. Disk lifetime is on the order of a million years.
Extending Digital Repository Architectures to Support Disk Image Preservation and Access
2011-06-01
Extending Digital Repository Architectures to Support Disk Image Preservation and Access Kam Woods School of Information and Library Science University...of North Carolina 216 Lenoir Drive, CB #3360 1-(919)-966-3598 kamwoods@email.unc.edu Christopher A. Lee School of Information and Library ... Science University of North Carolina 216 Lenoir Drive, CB #3360 1-(919)-962-7204 callee@ils.unc.edu Simson Garfinkel Graduate School of
NASA Technical Reports Server (NTRS)
Cranmer, Steven R.; Owocki, Stanley P.
1995-01-01
We calculate the radiative driving force for winds around rapidly rotating oblate B stars, and we estimate the impact these forces should have on the production of a wind compressed disk. The effects of limb darkening, gravity darkening, oblateness, and an arbitrary wind velocity field are included in the computation of vector 'oblate finite disk' (OFD) factors, which depend on both radius and colatitude in the wind. The impact of limb darkening alone, with or without rotation, can increase the mass loss by as much as 10% over values computed using the standard uniformly bright spherical finite disk factor. For rapidly rotating stars, limb darkening makes 'sub-stellar' gravity darkening the dominant effect in the radial and latitudinal OFD factors, and lessens the impact of gravity darkening at other visible latitudes (nearer to the oblate limb). Thus, the radial radiative driving is generally stronger over the poles and weaker over the equator, following the gravity darkening at these latitudes. The nonradial radiative driving is considerably smaller in magnitude than the radial component, but is directed both away from the equatorial plane and in a retrograde azimuthal direction, acting to decrease the effective stellar rotation velocity. These forces thus weaken the equatorward wind compression compared to wind models computed with nonrotating finite disk factors.
NASA Astrophysics Data System (ADS)
Sawa, Takeyasu; Fujimoto, M.
1993-05-01
The approximate dynamo equation, which yields asymptotic solutions for the large scale bisymmetric spiral (BSS) magnetic fields rotating rigidly over a large area of the galactic disk, is derived. The vertical thickness and the dynamo strength of the gaseous disk which are necessary to generate and sustain the BSS magnetic fields is determined. The globally BSS magnetic fields which propagate over the disk as a wave without being twisted more tightly are reproduced. A poloidal field configuration is theoretically predicted in the halo around the disk, and is observed in the edge-on galaxy NGC4631. Mathematical methods for the galactic dynamo are shown to be equivalent. Those methods give different growth rates between the BSS and the axisymmetric spiral (ASS) magnetic fields in the disk. Magnetohydrodynamical excitation is discussed between the BSS magnetic fields and the two armed spiral density waves.
Analysis of the dynamics and frequency spectrum synthesis of an optical-mechanical scanning device
NASA Technical Reports Server (NTRS)
Andryushkevichyus, A. I.; Kumpikas, A. L.; Kumpikas, K. L.
1973-01-01
A two-coordinate optical-mechanical scanning device (OMSD), the operating unit of which is a scanning disk, with directional and focusing optics and a board, on which the data carrier is placed, is examined. The disk and board are kinematically connected by a transmission mechanism, consisting of a worm and complex gear drive and a tightening screw-nut with correcting device, and it is run by a synchronous type motor. The dynamic errors in the system depend, first, on irregularities in rotation of the disk, fluctuations in its axis and vibrations of the table in the plane parallel to the plane of the disk. The basic sources of the fluctuations referred to above are residual disbalance of the rotor and other rotating masses, the periodic component of the driving torque of the synchronous motor, variability in the resistance, kinematic errors in the drive and other things. The fluctuations can be transmitted to the operating units through the kinematic link as a flexural-torsional system, as well as through vibrations of the housing of the device.
Theoretical, Experimental, and Computational Evaluation of Disk-Loaded Circular Wave Guides
NASA Technical Reports Server (NTRS)
Wallett, Thomas M.; Qureshi, A. Haq
1994-01-01
A disk-loaded circular wave guide structure and test fixture were fabricated. The dispersion characteristics were found by theoretical analysis, experimental testing, and computer simulation using the codes ARGUS and SOS. Interaction impedances were computed based on the corresponding dispersion characteristics. Finally, an equivalent circuit model for one period of the structure was chosen using equivalent circuit models for cylindrical wave guides of different radii. Optimum values for the discrete capacitors and inductors describing discontinuities between cylindrical wave guides were found using the computer code TOUCHSTONE.
The advantage of an alternative substrate over Al/NiP disks
NASA Astrophysics Data System (ADS)
Jiaa, Chi L.; Eltoukhy, Atef
1994-02-01
Compact-size disk drives with high storage densities are in high demand due to the popularity of portable computers and workstations. The contact-start-stop (CSS) endurance performance must improve in order to accomodate the higher number of on/off cycles. In this paper, we looked at 65 mm thin-film canasite substrate disks and evaluated their mechanical performance. We compared them with conventional aluminum NiP-plated disks in surface topography, take-off time with changes of skew angles and radius, CSS, drag test and glide height performance, and clamping effect. In addition, a new post-sputter process aimed at the improvement of take-off and glide as well as CSS performances was investigated and demonstrated for the canasite disks. From the test results, it is indicated that canasite achieved a lower take-off velocity, higher clamping resistance, and better glide height and CSS endurance performance. This study concludes that a new generation disk drive equipped with canasite substrate disks will consume less power from the motor due to faster take-off and lighter weight, achieve higher recording density since the head flies lower, can better withstand damage from sliding friction during the CSS operations, and will be less prone to disk distortion from clamping due to its superior mechanical properties.
A Layered Solution for Supercomputing Storage
Grider, Gary
2018-06-13
To solve the supercomputing challenge of memory keeping up with processing speed, a team at Los Alamos National Laboratory developed two innovative memory management and storage technologies. Burst buffers peel off data onto flash memory to support the checkpoint/restart paradigm of large simulations. MarFS adds a thin software layer enabling a new tier for campaign storageâbased on inexpensive, failure-prone disk drivesâbetween disk drives and tape archives.
Electromechanical transducer for acoustic telemetry system
Drumheller, D.S.
1993-06-22
An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.
Electromechanical transducer for acoustic telemetry system
Drumheller, Douglas S.
1993-01-01
An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.
Turbine disk cavity aerodynamics and heat transfer
NASA Technical Reports Server (NTRS)
Johnson, B. V.; Daniels, W. A.
1992-01-01
Experiments were conducted to define the nature of the aerodynamics and heat transfer for the flow within the disk cavities and blade attachments of a large-scale model, simulating the Space Shuttle Main Engine (SSME) turbopump drive turbines. These experiments of the aerodynamic driving mechanisms explored the following: (1) flow between the main gas path and the disk cavities; (2) coolant flow injected into the disk cavities; (3) coolant density; (4) leakage flows through the seal between blades; and (5) the role that each of these various flows has in determining the adiabatic recovery temperature at all of the critical locations within the cavities. The model and the test apparatus provide close geometrical and aerodynamic simulation of all the two-stage cavity flow regions for the SSME High Pressure Fuel Turbopump and the ability to simulate the sources and sinks for each cavity flow.
Compact Packaging of Photonic Millimeter-Wave Receiver
NASA Technical Reports Server (NTRS)
Nguyen, Hung; Pouch, John; Miranda, Felix; Levi, Anthony F.
2007-01-01
A carrier structure made from a single silicon substrate is the basis of a compact, lightweight, relatively inexpensive package that holds the main optical/electronic coupling components of a photonic millimeter-wave receiver based on a lithium niobate resonator disk. The design of the package is simple and provides for precise relative placement of optical components, eliminating the need for complex, bulky positioning mechanisms like those commonly used to align optical components to optimize focus and coupling. Although a prototype of the package was fabricated as a discrete unit, the design is amenable to integration of the package into a larger photonic and/or electronic receiver system. The components (see figure) include a lithium niobate optical resonator disk of 5-mm diameter and .200- m thickness, positioned adjacent to a millimeter- wave resonator electrode. Other components include input and output coupling prisms and input and output optical fibers tipped with ball lenses for focusing and collimation, respectively. Laser light is introduced via the input optical fiber and focused into the input coupling prism. The input coupling prism is positioned near (but not in contact with) the resonator disk so that by means of evanescent-wave coupling, the input laser light in the prism gives rise to laser light propagating circumferentially in guided modes in the resonator disk. Similarly, a portion of the circumferentially propagating optical power is extracted from the disk by evanescent-wave coupling from the disk to the output coupling prism, from whence the light passes through the collimating ball lens into the output optical fiber. The lens-tipped optical fibers must be positioned at a specified focal distance from the prisms. The optical fibers and the prisms must be correctly positioned relative to the resonator disk and must be oriented to obtain the angle of incidence (55 in the prototype) required for evanescent-wave coupling of light into and out of the desired guided modes in the resonator disk. To satisfy all these requirements, precise alignment features are formed in the silicon substrate by use of a conventional wet-etching process. These features include a 5-mm-diameter, 50- m-deep cavity that holds the disk; two trapezoidal-cross-section recesses for the prisms; and two grooves that hold the optical fibers at the correct positions and angles relative to the prisms and disk. The fiber grooves contain abrupt tapers, near the prisms, that serve as hard stops for positioning the lenses at the focal distance from the prisms. There are also two grooves for prismadjusting rods. The design provides a little slack in the prism recesses for adjusting the positions of the prisms by means of these rods to optimize the optical coupling.
Study on compensation algorithm of head skew in hard disk drives
NASA Astrophysics Data System (ADS)
Xiao, Yong; Ge, Xiaoyu; Sun, Jingna; Wang, Xiaoyan
2011-10-01
In hard disk drives (HDDs), head skew among multiple heads is pre-calibrated during manufacturing process. In real applications with high capacity of storage, the head stack may be tilted due to environmental change, resulting in additional head skew errors from outer diameter (OD) to inner diameter (ID). In case these errors are below the preset threshold for power on recalibration, the current strategy may not be aware, and drive performance under severe environment will be degraded. In this paper, in-the-field compensation of small DC head skew variation across stroke is proposed, where a zone table has been equipped. Test results demonstrating its effectiveness to reduce observer error and to enhance drive performance via accurate prediction of DC head skew are provided.
The Dynamics of Truncated Black Hole Accretion Disks. I. Viscous Hydrodynamic Case
NASA Astrophysics Data System (ADS)
Hogg, J. Drew; Reynolds, Christopher S.
2017-07-01
Truncated accretion disks are commonly invoked to explain the spectro-temporal variability in accreting black holes in both small systems, I.e., state transitions in galactic black hole binaries (GBHBs), and large systems, I.e., low-luminosity active galactic nuclei (LLAGNs). In the canonical truncated disk model of moderately low accretion rate systems, gas in the inner region of the accretion disk occupies a hot, radiatively inefficient phase, which leads to a geometrically thick disk, while the gas in the outer region occupies a cooler, radiatively efficient phase that resides in the standard geometrically thin disk. Observationally, there is strong empirical evidence to support this phenomenological model, but a detailed understanding of the dynamics of truncated disks is lacking. We present a well-resolved viscous, hydrodynamic simulation that uses an ad hoc cooling prescription to drive a thermal instability and, hence, produce the first sustained truncated accretion disk. With this simulation, we perform a study of the dynamics, angular momentum transport, and energetics of a truncated disk. We find that the time variability introduced by the quasi-periodic transition of gas from efficient cooling to inefficient cooling impacts the evolution of the simulated disk. A consequence of the thermal instability is that an outflow is launched from the hot/cold gas interface, which drives large, sub-Keplerian convective cells into the disk atmosphere. The convective cells introduce a viscous θ - ϕ stress that is less than the generic r - ϕ viscous stress component, but greatly influences the evolution of the disk. In the truncated disk, we find that the bulk of the accreted gas is in the hot phase.
The Dynamics of Truncated Black Hole Accretion Disks. I. Viscous Hydrodynamic Case
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogg, J. Drew; Reynolds, Christopher S.
Truncated accretion disks are commonly invoked to explain the spectro-temporal variability in accreting black holes in both small systems, i.e., state transitions in galactic black hole binaries (GBHBs), and large systems, i.e., low-luminosity active galactic nuclei (LLAGNs). In the canonical truncated disk model of moderately low accretion rate systems, gas in the inner region of the accretion disk occupies a hot, radiatively inefficient phase, which leads to a geometrically thick disk, while the gas in the outer region occupies a cooler, radiatively efficient phase that resides in the standard geometrically thin disk. Observationally, there is strong empirical evidence to supportmore » this phenomenological model, but a detailed understanding of the dynamics of truncated disks is lacking. We present a well-resolved viscous, hydrodynamic simulation that uses an ad hoc cooling prescription to drive a thermal instability and, hence, produce the first sustained truncated accretion disk. With this simulation, we perform a study of the dynamics, angular momentum transport, and energetics of a truncated disk. We find that the time variability introduced by the quasi-periodic transition of gas from efficient cooling to inefficient cooling impacts the evolution of the simulated disk. A consequence of the thermal instability is that an outflow is launched from the hot/cold gas interface, which drives large, sub-Keplerian convective cells into the disk atmosphere. The convective cells introduce a viscous θ − ϕ stress that is less than the generic r − ϕ viscous stress component, but greatly influences the evolution of the disk. In the truncated disk, we find that the bulk of the accreted gas is in the hot phase.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philippov, Alexander A.; Rafikov, Roman R.; Stone, James M., E-mail: sashaph@princeton.edu
Disk accretion at a high rate onto a white dwarf (WD) or a neutron star has been suggested to result in the formation of a spreading layer (SL)—a belt-like structure on the object's surface, in which the accreted matter steadily spreads in the poleward (meridional) direction while spinning down. To assess its basic characteristics, we perform two-dimensional hydrodynamic simulations of supersonic SLs in the relevant morphology with a simple prescription for cooling. We demonstrate that supersonic shear naturally present at the base of the SL inevitably drives sonic instability that gives rise to large-scale acoustic modes governing the evolution ofmore » the SL. These modes dominate the transport of momentum and energy, which is intrinsically global and cannot be characterized via some form of local effective viscosity (e.g., α-viscosity). The global nature of the wave-driven transport should have important implications for triggering Type I X-ray bursts in low-mass X-ray binaries. The nonlinear evolution of waves into a system of shocks drives effective rearrangement (sensitively depending on thermodynamical properties of the flow) and deceleration of the SL, which ultimately becomes transonic and susceptible to regular Kelvin–Helmholtz instability. We interpret this evolution in terms of the global structure of the SL and suggest that mixing of the SL material with the underlying stellar fluid should become effective only at intermediate latitudes on the accreting object's surface, where the flow has decelerated appreciably. In the near-equatorial regions the transport is dominated by acoustic waves and mixing is less efficient. We speculate that this latitudinal nonuniformity of mixing in accreting WDs may be linked to the observed bipolar morphology of classical nova ejecta.« less
Microgravity computing codes. User's guide
NASA Astrophysics Data System (ADS)
1982-01-01
Codes used in microgravity experiments to compute fluid parameters and to obtain data graphically are introduced. The computer programs are stored on two diskettes, compatible with the floppy disk drives of the Apple 2. Two versions of both disks are available (DOS-2 and DOS-3). The codes are written in BASIC and are structured as interactive programs. Interaction takes place through the keyboard of any Apple 2-48K standard system with single floppy disk drive. The programs are protected against wrong commands given by the operator. The programs are described step by step in the same order as the instructions displayed on the monitor. Most of these instructions are shown, with samples of computation and of graphics.
Simulation of aerodynamic noise and vibration noise in hard disk drives
NASA Astrophysics Data System (ADS)
Zhu, Lei; Shen, Sheng-Nan; Li, Hui; Zhang, Guo-Qing; Cui, Fu-Hao
2018-05-01
Internal flow field characteristics of HDDs are usually influenced by the arm swing during seek operations. This, in turn, can affect aerodynamic noise and airflow-induced noise. In this paper, the dynamic mesh method is used to calculate the flow-induced vibration (FIV) by transient structure analysis and the boundary element method (BEM) is utilized to predict the vibration noise. Two operational states are considered: the arm is fixed and swinging over the disk. Both aerodynamic noise and vibration noise inside drives increase rapidly with increase in disk rotation and arm swing velocities. The largest aerodynamic noise source is always located near the arm and swung with the arm.
Terabyte IDE RAID-5 Disk Arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
David A. Sanders et al.
2003-09-30
High energy physics experiments are currently recording large amounts of data and in a few years will be recording prodigious quantities of data. New methods must be developed to handle this data and make analysis at universities possible. We examine some techniques that exploit recent developments in commodity hardware. We report on tests of redundant arrays of integrated drive electronics (IDE) disk drives for use in offline high energy physics data analysis. IDE redundant array of inexpensive disks (RAID) prices now are less than the cost per terabyte of million-dollar tape robots! The arrays can be scaled to sizes affordablemore » to institutions without robots and used when fast random access at low cost is important.« less
Planet-driven Spiral Arms in Protoplanetary Disks. I. Formation Mechanism
NASA Astrophysics Data System (ADS)
Bae, Jaehan; Zhu, Zhaohuan
2018-06-01
Protoplanetary disk simulations show that a single planet can excite more than one spiral arm, possibly explaining the recent observations of multiple spiral arms in some systems. In this paper, we explain the mechanism by which a planet excites multiple spiral arms in a protoplanetary disk. Contrary to previous speculations, the formation of both primary and additional arms can be understood as a linear process when the planet mass is sufficiently small. A planet resonantly interacts with epicyclic oscillations in the disk, launching spiral wave modes around the Lindblad resonances. When a set of wave modes is in phase, they can constructively interfere with each other and create a spiral arm. More than one spiral arm can form because such constructive interference can occur for different sets of wave modes, with the exact number and launching position of the spiral arms being dependent on the planet mass as well as the disk temperature profile. Nonlinear effects become increasingly important as the planet mass increases, resulting in spiral arms with stronger shocks and thus larger pitch angles. This is found to be common for both primary and additional arms. When a planet has a sufficiently large mass (≳3 thermal masses for (h/r) p = 0.1), only two spiral arms form interior to its orbit. The wave modes that would form a tertiary arm for smaller mass planets merge with the primary arm. Improvements in our understanding of the formation of spiral arms can provide crucial insights into the origin of observed spiral arms in protoplanetary disks.
SPIRAL PATTERNS IN PLANETESIMAL CIRCUMBINARY DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demidova, Tatiana V.; Shevchenko, Ivan I., E-mail: iis@gao.spb.ru
Planet formation scenarios and the observed planetary dynamics in binaries pose a number of theoretical challenges, especially concerning circumbinary planetary systems. We explore the dynamical stirring of a planetesimal circumbinary disk in the epoch when the gas component disappears. For this purpose, following theoretical approaches by Heppenheimer and Moriwaki and Nakagawa, we develop a secular theory of the dynamics of planetesimals in circumbinary disks. If a binary is eccentric and its components have unequal masses, a spiral density wave is generated, engulfing the disk on a secular timescale, which may exceed 10{sup 7} yr, depending on the problem parameters. The spiralmore » pattern is transient; thus, its observed presence may betray a system’s young age. We explore the pattern both analytically and in numerical experiments. The derived analytical spiral is a modified lituus; it matches the numerical density wave in the gas-free case perfectly. Using the smoothed particle hydrodynamics scheme, we explore the effect of residual gas on the wave propagation.« less
On the tidal interaction between protostellar disks and companions
NASA Technical Reports Server (NTRS)
Lin, D. N. C.; Papaloizou, J. C. B.
1993-01-01
Formation of protoplanets and binary stars in a protostellar disk modifies the structure of the disk. Through tidal interactions, energy and angular momentum are transferred between the disk and protostellar or protoplanetary companion. We summarize recent progress in theoretical investigations of the disk-companion tidal interaction. We show that low-mass protoplanets excite density waves at their Lindblad resonances and that these waves are likely to be dissipated locally. When a protoplanet acquires sufficient mass, its tidal torque induces the formation of a gap in the vicinity of its orbit. Gap formation leads to the termination of protoplanetary growth by accretion. For proto-Jupiter to attain its present mass, we require that (1) the primordial solar nebula is heated by viscous dissipation; (2) the viscous evolution time scale of the nebula is comparable to the age of typical T Tauri stars with circumstellar disks; and (3) the mass distribution in the nebula is comparable to that estimated from a minimum-mass nebula model.
Digitized molecular diagnostics: reading disk-based bioassays with standard computer drives.
Li, Yunchao; Ou, Lily M L; Yu, Hua-Zhong
2008-11-01
We report herein a digital signal readout protocol for screening disk-based bioassays with standard optical drives of ordinary desktop/notebook computers. Three different types of biochemical recognition reactions (biotin-streptavidin binding, DNA hybridization, and protein-protein interaction) were performed directly on a compact disk in a line array format with the help of microfluidic channel plates. Being well-correlated with the optical darkness of the binding sites (after signal enhancement by gold nanoparticle-promoted autometallography), the reading error levels of prerecorded audio files can serve as a quantitative measure of biochemical interaction. This novel readout protocol is about 1 order of magnitude more sensitive than fluorescence labeling/scanning and has the capability of examining multiplex microassays on the same disk. Because no modification to either hardware or software is needed, it promises a platform technology for rapid, low-cost, and high-throughput point-of-care biomedical diagnostics.
Beam dynamics study of a 30 MeV electron linear accelerator to drive a neutron source
NASA Astrophysics Data System (ADS)
Kumar, Sandeep; Yang, Haeryong; Kang, Heung-Sik
2014-02-01
An experimental neutron facility based on 32 MeV/18.47 kW electron linac has been studied by means of PARMELA simulation code. Beam dynamics study for a traveling wave constant gradient electron accelerator is carried out to reach the preferential operation parameters (E = 30 MeV, P = 18 kW, dE/E < 12.47% for 99% particles). The whole linac comprises mainly E-gun, pre-buncher, buncher, and 2 accelerating columns. A disk-loaded, on-axis-coupled, 2π/3-mode type accelerating rf cavity is considered for this linac. After numerous optimizations of linac parameters, 32 MeV beam energy is obtained at the end of the linac. As high electron energy is required to produce acceptable neutron flux. The final neutron flux is estimated to be 5 × 1011 n/cm2/s/mA. Future development will be the real design of a 30 MeV electron linac based on S band traveling wave.
Angular Momentum Transport in Thin Magnetically Arrested Disks
NASA Astrophysics Data System (ADS)
Marshall, Megan D.; Avara, Mark J.; McKinney, Jonathan C.
2018-05-01
In accretion disks with large-scale ordered magnetic fields, the magnetorotational instability (MRI) is marginally suppressed, so other processes may drive angular momentum transport leading to accretion. Accretion could then be driven by large-scale magnetic fields via magnetic braking, and large-scale magnetic flux can build-up onto the black hole and within the disk leading to a magnetically-arrested disk (MAD). Such a MAD state is unstable to the magnetic Rayleigh-Taylor (RT) instability, which itself leads to vigorous turbulence and the emergence of low-density highly-magnetized bubbles. This instability was studied in a thin (ratio of half-height H to radius R, H/R ≈ 0.1) MAD simulation, where it has a more dramatic effect on the dynamics of the disk than for thicker disks. Large amounts of flux are pushed off the black hole into the disk, leading to temporary decreases in stress, then this flux is reprocessed as the stress increases again. Throughout this process, we find that the dominant component of the stress is due to turbulent magnetic fields, despite the suppression of the axisymmetric MRI and the dominant presence of large-scale magnetic fields. This suggests that the magnetic RT instability plays a significant role in driving angular momentum transport in MADs.
THE ROLES OF RADIATION AND RAM PRESSURE IN DRIVING GALACTIC WINDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Mahavir; Nath, Biman B., E-mail: mahavir@rri.res.in, E-mail: biman@rri.res.in
We study gaseous outflows from disk galaxies driven by the combined effects of ram pressure on cold gas clouds and radiation pressure on dust grains. Taking into account the gravity due to disk, bulge, and dark matter halo, and assuming continuous star formation in the disk, we show that radiation or ram pressure alone is not sufficient to drive escaping winds from disk galaxies and that both processes contribute. We show that in the parameter space of star formation rate (SFR) and rotation speed of galaxies the wind speed in galaxies with rotation speeds v{sub c} {<=} 200 km s{supmore » -1} and SFR {<=} 100 M{sub Sun} yr{sup -1} has a larger contribution from ram pressure, and that in high-mass galaxies with large SFR radiation from the disk has a greater role in driving galactic winds. The ratio of wind speed to circular speed can be approximated as v{sub w} / v{sub c} {approx} 10{sup 0.7}, [SFR/50{sub Sun }yr{sup -1}]{sup 0.4} [v{sub c}/120 km s{sup -1}]{sup -1.25}. We show that this conclusion is borne out by observations of galactic winds at low and high redshift and also of circumgalactic gas. We also estimate the mass loading factors under the combined effect of ram and radiation pressure, and show that the ratio of mass-loss rate to SFR scales roughly as v{sup -1}{sub c}{Sigma}{sub g}{sup -1}, where {Sigma}{sub g} is the gas column density in the disk.« less
NASA Technical Reports Server (NTRS)
Starkey, D.; Gehrels, Cornelis; Horne, Keith; Fausnaugh, M. M.; Peterson, B. M.; Bentz, M. C.; Kochanek, C. S.; Denney, K. D.; Edelson, R.; Goad, M. R.;
2017-01-01
We conduct a multi-wavelength continuum variability study of the Seyfert 1 galaxy NGC 5548 to investigate the temperature structure of its accretion disk. The 19 overlapping continuum light curves (1158 Angstrom to 9157 Angstrom) combine simultaneous Hubble Space Telescope, Swift, and ground-based observations over a 180 day period from 2014 January to July. Light-curve variability is interpreted as the reverberation response of the accretion disk to irradiation by a central time-varying point source. Our model yields the disk inclination i = 36deg +/- 10deg, temperature T(sub 1) = (44+/-6) times 10 (exp 3)K at 1 light day from the black hole, and a temperature radius slope (T proportional to r (exp -alpha)) of alpha = 0.99 +/- 0.03. We also infer the driving light curve and find that it correlates poorly with both the hard and soft X-ray light curves, suggesting that the X-rays alone may not drive the ultraviolet and optical variability over the observing period. We also decompose the light curves into bright, faint, and mean accretion-disk spectra. These spectra lie below that expected for a standard blackbody accretion disk accreting at L/L(sub Edd) = 0.1.
The performance of disk arrays in shared-memory database machines
NASA Technical Reports Server (NTRS)
Katz, Randy H.; Hong, Wei
1993-01-01
In this paper, we examine how disk arrays and shared memory multiprocessors lead to an effective method for constructing database machines for general-purpose complex query processing. We show that disk arrays can lead to cost-effective storage systems if they are configured from suitably small formfactor disk drives. We introduce the storage system metric data temperature as a way to evaluate how well a disk configuration can sustain its workload, and we show that disk arrays can sustain the same data temperature as a more expensive mirrored-disk configuration. We use the metric to evaluate the performance of disk arrays in XPRS, an operational shared-memory multiprocessor database system being developed at the University of California, Berkeley.
Dynamic stability and slider-lubricant interactions in hard disk drives
NASA Astrophysics Data System (ADS)
Ambekar, Rohit Pradeep
2007-12-01
Hard disk drives (HDD) have played a significant role in the current information age and have become the backbone of storage. The soaring demand for mass data storage drives the necessity for increasing capacity of the drives and hence the areal density on the disks as well as the reliability of the HDD. To achieve greater areal density in hard disk drives, the flying height of the airbearing slider continually decreases. Different proximity forces and interactions influence the air bearing slider resulting in fly height modulation and instability. This poses several challenges to increasing the areal density (current goal is 2Tb/in.2) as well as making the head-disk interface (HDI) more reliable. Identifying and characterizing these forces or interactions has become important for achieving a stable fly height at proximity and realizing the goals of areal density and reliability. Several proximity forces or interactions influencing the slider are identified through the study of touchdown-takeoff hysteresis. Slider-lubricant interaction which causes meniscus force between the slider and disk as well as airbearing surface contamination seems to be the most important factor affecting stability and reliability at proximity. In addition, intermolecular forces and disk topography are identified as important factors. Disk-to-slider lubricant transfer leads to lubricant pickup on the slider and also causes depletion of lubricant on the disk, affecting stability and reliability of the HDI. Experimental and numerical investigation as well as a parametric study of the process of lubricant transfer has been done using a half-delubed disk. In the first part of this parametric study, dependence on the disk lubricant thickness, lubricant type and slider ABS design has been investigated. It is concluded that the lubricant transfer can occur without slider-disk contact and there can be more than one timescale associated with the transfer. Further, the transfer increases non-linearly with increasing disk lubricant thickness. Also, the transfer depends on the type of lubricant used, and is less for Ztetraol than for Zdol. The slider ABS design also plays an important role, and a few suggestions are made to improve the ABS design for better lubricant performance. In the second part of the parametric study, the effect of carbon overcoat, lubricant molecular weight and inclusion of X-1P and A20H on the slider-lubricant interactions is investigated using a half-delubed disk approach. Based on the results, it is concluded that there exists a critical head-disk clearance above which there is negligible slider-lubricant interaction. The interaction starts at this critical clearance and increases in intensity as the head-disk clearance is further decreased below the critical clearance. Using shear stress simulations and previously published work a theory is developed to support the experimental observations. The critical clearance depends on various HDI parameters and hence can be reduced through proper design of the interface. Comparison of critical clearance on CHx and CHxNy media indicates that presence of nitrogen is better for HDI as it reduces the critical clearance, which is found to increase with increasing lubricant molecular weight and in presence of additives X-1P and A20H. Further experiments maintaining a fixed slider-disk clearance suggest that two different mechanisms dominate the disk-to-slider and slider-to-disk lubricant transfer. One of the key factors influencing the slider stability at proximity is the disk topography, since it provides dynamic excitation to the low-flying sliders and strongly influences its dynamics. The effect of circumferential as well as radial disk topography is investigated using a new method to measure the 2-D (true) disk topography. Simulations using CMLAir dynamic simulator indicate a strong dependence on the circumferential roughness and waviness features as well as radial features, which have not been studied intensively till now. The simulations with 2-D disk topography are viewed as more realistic than the 1-D simulations. Further, it is also seen that the effect of the radial features can be reduced through effective ABS design. Finally, an attempt has been made to establish correlations between some of the proximity interactions as well as others which may affect the HDI reliability by creating a relational chart. Such an organization serves to give a bigger picture of the various efforts being made in the field of HDI reliability and link them together. From this chart, a causal relationship is suggested between the electrostatic, intermolecular and meniscus forces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, X. L.; Meng, Q. X.; Yuan, C. X.
The visible light broadband perfect absorbers based on the silver (Ag) nano elliptical disks and holes array are studied using finite difference time domain simulations. The semiconducting indium silicon dioxide thin film is introduced as the space layer in this sandwiched structure. Utilizing the asymmetrical geometry of the structures, polarization sensitivity for transverse electric wave (TE)/transverse magnetic wave (TM) and left circular polarization wave (LCP)/right circular polarization wave (RCP) of the broadband absorption are gained. The absorbers with Ag nano disks and holes array show several peaks absorbance of 100% by numerical simulation. These simple and flexible perfect absorbers aremore » particularly desirable for various potential applications including the solar energy absorber.« less
Liang, S M; Chang, M H; Yang, Z Y
2014-01-01
This study aims at the design and development of electromagnetic-type intermittent shock wave generation in a liquid. The shock wave generated is focused at a focal point through an acoustic lens. This hardware device mainly consists of a full-wave bridge rectifier, 6 capacitors, a spark gap, and a flat coil. A metal disk is mounted in a liquid-filled tube and is placed in close proximity to the flat coil. Due to the repulsive force existing between the coil and disk shock waves are generated, while an eddy current is induced in the metal disk. Some components and materials associated with the device are also described. By increasing the capacitance content to enhance electric energy level, a highly focused pressure can be achieved at the focal point through an acoustic lens in order to lyse fat tissue. Focused pressures were measured at the focal point and its vicinity for different operation voltages. The designed shock wave generator with an energy intensity of 0.0016 mJ/mm(2) (at 4 kV) and 2000 firings or higher energy intensities with 1000 firings is found to be able to disrupt pig fat tissue.
Systems Suitable for Information Professionals.
ERIC Educational Resources Information Center
Blair, John C., Jr.
1983-01-01
Describes computer operating systems applicable to microcomputers, noting hardware components, advantages and disadvantages of each system, local area networks, distributed processing, and a fully configured system. Lists of hardware components (disk drives, solid state disk emulators, input/output and memory components, and processors) and…
How does a planet excite multiple spiral arms?
NASA Astrophysics Data System (ADS)
Bae, Jaehan; Zhu, Zhaohuan
2018-01-01
Protoplanetary disk simulations show that a single planet excites multiple spiral arms in the background disk, potentially supported by the multi-armed spirals revealed with recent high-resolution observations in some disks. The existence of multiple spiral arms is of importance in many aspects. It is empirically found that the arm-to-arm separation increases as a function of the planetary mass, so one can use the morphology of observed spiral arms to infer the mass of unseen planets. In addition, a spiral arm opens a radial gap as it steepens into a shock, so when a planet excites multiple spiral arms it can open multiple gaps in the disk. Despite the important implications, however, the formation mechanism of multiple spiral arms has not been fully understood by far.In this talk, we explain how a planet excites multiple spiral arms. The gravitational potential of a planet can be decomposed into a Fourier series, a sum of individual azimuthal modes having different azimuthal wavenumbers. Using a linear wave theory, we first demonstrate that appropriate sets of Fourier decomposed waves can be in phase, raising a possibility that constructive interference among the waves can produce coherent structures - spiral arms. More than one spiral arm can form since such constructive interference can occur at different positions in the disk for different sets of waves. We then verify this hypothesis using a suite of two-dimensional hydrodynamic simulations. Finally, we present non-linear behavior in the formation of multiple spiral arms.
Evolution of magnetic disk subsystems
NASA Astrophysics Data System (ADS)
Kaneko, Satoru
1994-06-01
The higher recording density of magnetic disk realized today has brought larger storage capacity per unit and smaller form factors. If the required access performance per MB is constant, the performance of large subsystems has to be several times better. This article describes mainly the technology for improving the performance of the magnetic disk subsystems and the prospects of their future evolution. Also considered are 'crosscall pathing' which makes the data transfer channel more effective, 'disk cache' which improves performance coupling with solid state memory technology, and 'RAID' which improves the availability and integrity of disk subsystems by organizing multiple disk drives in a subsystem. As a result, it is concluded that since the performance of the subsystem is dominated by that of the disk cache, maximation of the performance of the disk cache subsystems is very important.
The Disk and Jet of the Classical T Tauri Star AA Tau
NASA Technical Reports Server (NTRS)
Cox, A. W.; Grady, C. A.; Hamel, H.; Hornbeck, Jeremy; Russell, R.; Sitko, M.; Woodgate, B.
2013-01-01
Previous studies of the classical T Tauri star AA Tau have interpreted the UX Orionis-like photopolarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipolefield. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use the HST/STIS coronagraphic detection of the disk to measure the outer disk radius and inclination, and find that the inner disk is both misinclined and misaligned with respect to the outer disk. AA Tau drives a faint jet which is also misaligned with respect to the projection of the outer disk minor axis. The jet is also poorly collimated near the star. The measured inclination, 71+/-1deg, is above the inclination range suggested for stars with UX Orionis-like variability, indicating that dust grains in the disk have grown and settled toward the disk midplane.
Evaluation of Optical Disk Jukebox Software.
ERIC Educational Resources Information Center
Ranade, Sanjay; Yee, Fonald
1989-01-01
Discusses software that is used to drive and access optical disk jukeboxes, which are used for data storage. Categories of the software are described, user categories are explained, the design of implementation approaches is discussed, and representative software products are reviewed. (eight references) (LRW)
Numerical Modeling of Tidal Effects in Polytropic Accretion Disks
NASA Technical Reports Server (NTRS)
Godon, Patrick
1997-01-01
A two-dimensional time-dependent hybrid Fourier-Chebyshev method of collocation is developed and used for the study of tidal effects in accretion disks, under the assumptions of a polytropic equation of state and a standard alpha viscosity prescription. Under the influence of the m = 1 azimuthal component of the tidal potential, viscous oscillations in the outer disk excite an m = 1 eccentric instability in the disk. While the m = 2 azimuthal component of the tidal potential excites a Papaloizou-Pringle instability in the inner disk (a saturated m = 2 azimuthal mode), with an elliptic pattern rotating at about a fraction (approx. = 1/3) of the local Keplerian velocity in the inner disk. The period of the elliptic mode corresponds well to the periods of the short-period oscillations observed in cataclysmic variables. In cold disks (r(Omega)/c(sub s) = M approx. = 40) we also find a critical value of the viscosity parameter (alpha approx. = 0.01), below which shock dissipation dominates and is balanced by the wave amplification due to the wave action conservation. In this case the double spiral shock propagates all the way to the inner boundary with a Mach number M(sub s) approx. = 1.3.
NASA Technical Reports Server (NTRS)
Roth, Don J.; Kiser, James D.; Swickard, Suzanne M.; Szatmary, Steven A.; Kerwin, David P.
1993-01-01
An ultrasonic scan procedure using the pulse-echo contact configuration was employed to obtain maps of pore fraction variations in sintered silicon nitride samples in terms of ultrasonic material properties. Ultrasonic velocity, attenuation coefficient, and reflection coefficient images were obtained simultaneously over a broad band of frequencies (e.g., 30 to 110 MHz) by using spectroscopic analysis. Liquid and membrane (dry) coupling techniques and longitudinal and shear-wave energies were used. The major results include the following: Ultrasonic velocity (longitudinal and shear wave) images revealed and correlated with the extent of average through-thickness pore fraction variations in the silicon nitride disks. Attenuation coefficient images revealed pore fraction nonuniformity due to the scattering that occurred at boundaries between regions of high and low pore fraction. Velocity and attenuation coefficient images were each nearly identical for machined and polished disks, making the method readily applicable to machined materials. Velocity images were similar for wet and membrane coupling. Maps of apparent Poisson's ratio constructed from longitudinal and shear-wave velocities quantified Poisson's ratio variations across a silicon nitride disk. Thermal wave images of a disk indicated transient thermal behavior variations that correlated with observed variations in pore fraction and velocity and attenuation coefficients.
Hydraulic jumps in 'viscous' accretion disks. [in astronomical models
NASA Technical Reports Server (NTRS)
Michel, F. C.
1984-01-01
It is proposed that the dissipative process necessary for rapid accretion disk evolution is driven by hydraulic jump waves on the surface of the disk. These waves are excited by the asymmetric nature of the central rotator (e.g., neutron star magnetosphere) and spiral out into the disk to form a pattern corotating with the central object. Disk matter in turn is slowed slightly at each encounter with the jump and spirals inward. In this process, the disk is heated by true turbulence produced in the jumps. Additional effects, such as a systematic misalignment of the magnetic moment of the neutron star until it is nearly orthogonal, and systematic distortion of the magnetosphere in such a way as to form an even more asymmetric central 'paddle wheel', may enhance the interaction with inflowing matter. The application to X-ray sources corresponds to the 'slow' solutions of Ghosh and Lamb, and therefore to rms magnetic fields of about 4 x 10 to the 10th gauss. Analogous phenomena have been proposed to act in the formation of galactic spiral structure.
The fastest disk wind in APM 08279+5255 and its acceleration mechanism
NASA Astrophysics Data System (ADS)
Hagino, K.; Done, C.; Odaka, H.; Watanabe, S.; Takahashi, T.
2017-10-01
The luminous high-z quasar APM 08279+5255 has the most powerful ultra-fast outflow (UFO), which is claimed as the fastest disk wind with velocity of 0.7c. This extreme velocity is very important for constraining the physical mechanism to launch the UFOs because only magnetic driving mechanism can accelerate the winds up to velocities above 0.3c, at which radiation drag effects prevent radiation driving. We reanalyze all the observed data of this source with our spectral model of highly ionized disk winds constructed by 3D Monte Carlo radiation transfer simulation. This was applied to an archetypal disk wind in PDS 456, and successfully reproduced all the spectra observed with Suzaku in spite of their strong spectral variability. By applying our spectral model to APM 08279+5255, all the spectra observed with XMM-Newton, Chandra and Suzaku are explained with less extreme outflow velocities of 0.1-0.2c. In our analysis, the high energy absorption features, which were previously interpreted as absorption lines with extremely fast velocities, are produced by iron-K absorption edges from moderately ionized clumps embedded in the highly ionized wind. We also investigate the broadband SED, and find that it is X-ray weak and UV bright, which prefers the radiation driving.
Dynamics of ultraharmonic resonances in spiral galaxies
NASA Technical Reports Server (NTRS)
Artymowicz, Pawel; Lubow, Stephen H.
1992-01-01
The mildly nonlinear response of a fluid disk with pressure, viscosity, and self-gravity to spiral stellar forcing is considered as a model of the interstellar medium in spiral galaxies. Nonlinear effects are analyzed through a quasi-linear flow analysis ordered by successive powers of a dimensionless spiral perturbing force, which is the ratio of imposed nonaxisymmetric gravitational to axisymmetric gravitational forces. Waves with mn arms are launched from a position where the wavenumber of a free wave matches n times the wavenumber of the spiral forcing. The launched short wave in the gas is an interarm feature that is more tightly wrapped than the stellar wave. The gas wave extracts energy and angular momentum from the stellar wave, causing it to damp. The application of the results to the stellar disk alone reveals even stronger damping, as stars undergo Landau damping of the short wave. For parameters in M81, damping times are less than 10 exp 9 yr.
Time-resolved scanning Kerr microscopy of flux beam formation in hard disk write heads
NASA Astrophysics Data System (ADS)
Valkass, Robert A. J.; Spicer, Timothy M.; Burgos Parra, Erick; Hicken, Robert J.; Bashir, Muhammad A.; Gubbins, Mark A.; Czoschke, Peter J.; Lopusnik, Radek
2016-06-01
To meet growing data storage needs, the density of data stored on hard disk drives must increase. In pursuit of this aim, the magnetodynamics of the hard disk write head must be characterized and understood, particularly the process of "flux beaming." In this study, seven different configurations of perpendicular magnetic recording (PMR) write heads were imaged using time-resolved scanning Kerr microscopy, revealing their detailed dynamic magnetic state during the write process. It was found that the precise position and number of driving coils can significantly alter the formation of flux beams during the write process. These results are applicable to the design and understanding of current PMR and next-generation heat-assisted magnetic recording devices, as well as being relevant to other magnetic devices.
Recent Cooperative Research Activities of HDD and Flexible Media Transport Technologies in Japan
NASA Astrophysics Data System (ADS)
Ono, Kyosuke
This paper presents the recent status of industry-university cooperative research activities in Japan on the mechatronics of information storage and input/output equipment. There are three research committees for promoting information exchange on technical problems and research topics of head-disk interface in hard disk drives (HDD), flexible media transport and image printing processes which are supported by the Japan Society of Mechanical Engineering (JSME), the Japanese Society of Tribologists (JAST) and the Japan Society of Precision Engineering (JSPE). For hard disk drive technology, the Storage Research Consortium (SRC) is supporting more than 40 research groups in various different universities to perform basic research for future HDD technology. The past and present statuses of these activities are introduced, particularly focusing on HDD and flexible media transport mechanisms.
Enhancing Soundtracks From Old Movies
NASA Technical Reports Server (NTRS)
Frazer, Robert E.
1992-01-01
Proposed system enhances soundtracks of old movies. Signal on optical soundtrack of film digitized and processed to reduce noise and improve quality; timing signals added, and signal recorded on compact disk. Digital comparator and voltage-controlled oscillator synchronizes speed of film-drive motor and compact disk motor. Frame-coded detector reads binary frame-identifying marks on film. Digital comparator generates error signal if marks on film do not match those on compact disk.
Vibration and flutter of mistuned bladed-disk assemblies
NASA Technical Reports Server (NTRS)
Kaza, K. R. V.; Kielb, R. E.
1984-01-01
An analytical model for investigating vibration and flutter of mistuned bladed disk assemblies is presented. This model accounts for elastic, inertial and aerodynamic coupling between bending and torsional motions of each individual blade, elastic and inertial couplings between the blades and the disk, and aerodynamic coupling among the blades. The disk was modeled as a circular plate with constant thickness and each blade was represented by a twisted, slender, straight, nonuniform, elastic beam with a symmetric cross section. The elastic axis, inertia axis, and the tension axis were taken to be noncoincident and the structural warping of the section was explicitly considered. The blade aerodynamic loading in the subsonic and supersonic flow regimes was obtained from two-dimensional unsteady, cascade theories. All the possible standing wave modes of the disk and traveling wave modes of the blades were included. The equations of motion were derived by using the energy method in conjunction with the assumed mode shapes for the disk and the blades. Continuities of displacement and slope at the blade-disk junction were maintained. The equations were solved to investigate the effects of blade-disk coupling and blade frequency mistuning on vibration and flutter. Results showed that the flexibility of practical disks such as those used for current generation turbofans did not have a significant influence on either the tuned or mistuned flutter characteristics. However, the disk flexibility may have a strong influence on some of the system frequencies and on forced response.
Vibration and flutter of mistuned bladed-disk assemblies
NASA Technical Reports Server (NTRS)
Rao, K.; Kaza, V.; Kielb, R. E.
1984-01-01
An analytical model for investigating vibration and flutter of mistuned bladed disk assemblies is presented. This model accounts for elastic, inertial and aerodynamic coupling between bending and torsional motions of each individual blade, elastic and inertial couplings between the blades and the disk, and aerodynamic coupling among the blades. The disk was modeled as a circular plate with constant thickness and each blade was represented by a twisted, slender, straight, nonuniform, elastic beam with a symmetric cross section. The elastic axis, inertia axis, and the tension axis were taken to be noncoincident and the structural warping of the section was explicitly considered. The blade aerodynamic loading in the subsonic and supersonic flow regimes was obtained from two-dimensional unsteady, cascade theories. All the possible standing wave modes of the disk and traveling wave modes of the blades were included. The equations of motion were derived by using the energy method in conjunction with the assumed mode shapes for the disk and the blades. Continuities of displacement and slope at the blade-disk junction were maintained. The equations were solved to investigate the effects of blade-disk coupling and blade frequency mistuning on vibration and flutter. Results showed that the flexibility of practical disks such as those used for current generation turbufans did not have a significant influence on either the tuned or mistuned flutter characteristics. However, the disk flexibility may have a strong influence on some of the system frequencies and on forced response.
Maintenance of Microcomputers. Manual and Apple II Session, IBM Session.
ERIC Educational Resources Information Center
Coffey, Michael A.; And Others
This guide describes maintenance procedures for IBM and Apple personal computers, provides information on detecting and diagnosing problems, and details diagnostic programs. Included are discussions of printers, terminals, disks, disk drives, keyboards, hardware, and software. The text is supplemented by various diagrams. (EW)
Sensorless optimal sinusoidal brushless direct current for hard disk drives
NASA Astrophysics Data System (ADS)
Soh, C. S.; Bi, C.
2009-04-01
Initiated by the availability of digital signal processors and emergence of new applications, market demands for permanent magnet synchronous motors have been surging. As its back-emf is sinusoidal, the drive current should also be sinusoidal for reducing the torque ripple. However, in applications like hard disk drives, brushless direct current (BLDC) drive is adopted instead of sinusoidal drive for simplification. The adoption, however, comes at the expense of increased harmonics, losses, torque pulsations, and acoustics. In this paper, we propose a sensorless optimal sinusoidal BLDC drive. First and foremost, the derivation for an optimal sinusoidal drive is presented, and a power angle control scheme is proposed to achieve an optimal sinusoidal BLDC. The scheme maintains linear relationship between the motor speed and drive voltage. In an attempt to execute the sensorless drive, an innovative power angle measurement scheme is devised, which takes advantage of the freewheeling diodes and measures the power angle through the detection of diode voltage drops. The objectives as laid out will be presented and discussed in this paper, supported by derivations, simulations, and experimental results. The proposed scheme is straightforward, brings about the benefits of sensorless sinusoidal drive, negates the need for current sensors by utilizing the freewheeling diodes, and does not incur additional cost.
Disks, Young Stars, and Radio Waves: The Quest for Forming Planetary Systems
NASA Astrophysics Data System (ADS)
Chandler, C. J.; Shepherd, D. S.
2008-08-01
Kant and Laplace suggested the Solar System formed from a rotating gaseous disk in the 18th century, but convincing evidence that young stars are indeed surrounded by such disks was not presented for another 200 years. As we move into the 21st century the emphasis is now on disk formation, the role of disks in star formation, and on how planets form in those disks. Radio wavelengths play a key role in these studies, currently providing some of the highest-spatial-resolution images of disks, along with evidence of the growth of dust grains into planetesimals. The future capabilities of EVLA and ALMA provide extremely exciting prospects for resolving disk structure and kinematics, studying disk chemistry, directly detecting protoplanets, and imaging disks in formation.
Front-Side Type II Radio Bursts Without Shocks Near Earth
NASA Technical Reports Server (NTRS)
Gopalswamy, N.; Makela, P.; Xie, H.; Yashiro, S.; Akiyama, S.
2011-01-01
Type II radio bursts are due to shocks driven by coronal mass ejections (CMEs), so the shocks are expected to arrive at Earth in 2-3 days if the source is on the front-side of the Sun. However, a significant fraction of front-side CMEs producing type II bursts did not result in shocks at 1 AU. On can think of several possibilities for the lack of shocks: (1) CMEs originating at large central meridian distances may be driving a shock, but the shock may not be extended sufficiently to reach to the Sun-Earth line. (2) CME cannibalism results in the merger of shocks so that one observes a single shock at Earth even though there are two type II bursts near the Sun. (3) CME-driven shocks may become weak and dissipate before reaching 1 AU. We examined a set of 30 type II bursts observed by the Wind/WAVES experiment that had the solar sources very close to the disk center (within a CMD of 15 degrees), but did not have shock at Earth. We find that the near-Sun speeds of the associated CMEs average to approx.600 km/s, only slightly higher than the average speed of CM Es associated with radio-quiet shocks. However, the fraction of halo CMEs is only -28%, compared to 40% for radio-quiet shocks and 72% for all radio-loud shocks. We conclude that the disk-center radio loud CMEs with no shocks at 1 AU are generally of lower energy and they drive shocks only close to the Sun.
Radio-loud CMEs from the Disk Center Lacking Shocks at 1 AU
NASA Technical Reports Server (NTRS)
Gopalswamy, N; Makela, P.; Akiyama, S.; Yashiro, S.; Xie, H.; MacDowall, R. J.; Kaiser, M. L.
2013-01-01
A coronal mass ejection (CME) associated with a type II burst and originating close to the center of the solar disk typically results in a shock at Earth in 2-3 days and hence can be used to predict shock arrival at Earth. However, a significant fraction (about 28%) of such CMEs producing type II bursts were not associated with shocks at Earth. We examined a set of 21 type II bursts observed by the Wind/WAVES experiment at decameter-hectometric (DH) wavelengths that had CME sources very close to the disk center (within a central meridian distance of 30 degrees), but did not have a shock at Earth. We find that the near-Sun speeds of these CMEs average to 644 km/s, only slightly higher than the average speed of CMEs associated with radio-quiet shocks. However, the fraction of halo CMEs is only 30%, compared to 54% for the radio-quiet shocks and 91% for all radio-loud shocks. We conclude that the disk-center radio-loud CMEs with no shocks at 1 AU are generally of lower energy and they drive shocks only close to the Sun and dissipate before arriving at Earth. There is also evidence for other possible processes that lead to the lack of shock at 1 AU: (i) overtaking CME shocks merge and one observes a single shock at Earth, and (ii) deflection by nearby coronal holes can push the shocks away from the Sun-Earth line, such that Earth misses these shocks. The probability of observing a shock at 1 AU increases rapidly above 60% when the CME speed exceeds 1000 km/s and when the type II bursts propagate to frequencies below 1 MHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, S. M., E-mail: liangsm@cc.feu.edu.tw; Yang, Z. Y.; Chang, M. H.
This study aims at the design and development of electromagnetic-type intermittent shock wave generation in a liquid. The shock wave generated is focused at a focal point through an acoustic lens. This hardware device mainly consists of a full-wave bridge rectifier, 6 capacitors, a spark gap, and a flat coil. A metal disk is mounted in a liquid-filled tube and is placed in close proximity to the flat coil. Due to the repulsive force existing between the coil and disk shock waves are generated, while an eddy current is induced in the metal disk. Some components and materials associated withmore » the device are also described. By increasing the capacitance content to enhance electric energy level, a highly focused pressure can be achieved at the focal point through an acoustic lens in order to lyse fat tissue. Focused pressures were measured at the focal point and its vicinity for different operation voltages. The designed shock wave generator with an energy intensity of 0.0016 mJ/mm{sup 2} (at 4 kV) and 2000 firings or higher energy intensities with 1000 firings is found to be able to disrupt pig fat tissue.« less
Preliminary characterization of a laser-generated plasma sheet
Keiter, P. A.; Malamud, G.; Trantham, M.; ...
2014-12-10
We present the results from recent experiments to create a flowing plasma sheet. Two groups of three laser beams with nominally 1.5 kJ of energy per group were focused to separate pointing locations, driving a shock into a wedge target. As the shock breaks out of the wedge, the plasma is focused on center, creating a sheet of plasma. Measurements at 60 ns indicate the plasma sheet has propagated 2825 microns with an average velocity of 49 microns/ns. These experiments follow previous experiments, which are aimed at studying similar physics as that found in the hot spot region of cataclysmicmore » variables. Krauland et al created a flowing plasma, which represents the flowing plasma from the secondary star. This flow interacted with a stationary object, which represented the disk around the white dwarf. A reverse shock is a shock formed when a freely expanding plasma encounters an obstacle. Reverse shocks can be generated by a blast wave propagating through a medium. As a result, they can also be found in binary star systems where the flowing gas from a companion star interacts with the accretion disk of the primary star.« less
Jet Launching in Resistive GR-MHD Black Hole–Accretion Disk Systems
NASA Astrophysics Data System (ADS)
Qian, Qian; Fendt, Christian; Vourellis, Christos
2018-05-01
We investigate the launching mechanism of relativistic jets from black hole sources, in particular the strong winds from the surrounding accretion disk. Numerical investigations of the disk wind launching—the simulation of the accretion–ejection transition—have so far almost only been done for nonrelativistic systems. From these simulations we know that resistivity, or magnetic diffusivity, plays an important role for the launching process. Here we extend this treatment to general relativistic magnetohydrodynamics (GR-MHD), applying the resistive GR-MHD code rHARM. Our model setup considers a thin accretion disk threaded by a large-scale open magnetic field. We run a series of simulations with different Kerr parameter, field strength, and diffusivity level. Indeed, we find strong disk winds with, however, mildly relativistic speed, the latter most probably due to our limited computational domain. Further, we find that magnetic diffusivity lowers the efficiency of accretion and ejection, as it weakens the efficiency of the magnetic lever arm of the disk wind. As a major driving force of the disk wind we disentangle the toroidal magnetic field pressure gradient; however, magnetocentrifugal driving may also contribute. Black hole rotation in our simulations suppresses the accretion rate owing to an enhanced toroidal magnetic field pressure that seems to be induced by frame dragging. Comparing the energy fluxes from the Blandford–Znajek-driven central spine and the surrounding disk wind, we find that the total electromagnetic energy flux is dominated by the total matter energy flux of the disk wind (by a factor of 20). The kinetic energy flux of the matter outflow is comparatively small and comparable to the Blandford–Znajek electromagnetic energy flux.
Ultra-fast movies of thin-film laser ablation
NASA Astrophysics Data System (ADS)
Domke, Matthias; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.
2012-11-01
Ultra-short-pulse laser irradiation of thin molybdenum films from the glass substrate side initiates an intact Mo disk lift off free from thermal effects. For the investigation of the underlying physical effects, ultra-fast pump-probe microscopy is used to produce stop-motion movies of the single-pulse ablation process, initiated by a 660-fs laser pulse. The ultra-fast dynamics in the femtosecond and picosecond ranges are captured by stroboscopic illumination of the sample with an optically delayed probe pulse of 510-fs duration. The nanosecond and microsecond delay ranges of the probe pulse are covered by an electronically triggered 600-ps laser. Thus, the setup enables an observation of general laser ablation processes from the femtosecond delay range up to the final state. A comparison of time- and space-resolved observations of film and glass substrate side irradiation of a 470-nm molybdenum layer reveals the driving mechanisms of the Mo disk lift off initiated by glass-side irradiation. Observations suggest that a phase explosion generates a liquid-gas mixture in the molybdenum/glass interface about 10 ps after the impact of the pump laser pulse. Then, a shock wave and gas expansion cause the molybdenum layer to bulge, while the enclosed liquid-gas mixture cools and condenses at delay times in the 100-ps range. The bulging continues for approximately 20 ns, when an intact Mo disk shears and lifts off at a velocity of above 70 m/s. As a result, the remaining hole is free from thermal effects.
Frequency doubled high-power disk lasers in pulsed and continuous-wave operation
NASA Astrophysics Data System (ADS)
Weiler, Sascha; Hangst, Alexander; Stolzenburg, Christian; Zawischa, Ivo; Sutter, Dirk; Killi, Alexander; Kalfhues, Steffen; Kriegshaeuser, Uwe; Holzer, Marco; Havrilla, David
2012-03-01
The disk laser with multi-kW output power in infrared cw operation is widely used in today's manufacturing, primarily in the automotive industry. The disk technology combines high power (average and/or peak power), excellent beam quality, high efficiency and high reliability with low investment and operating costs. Additionally, the disk laser is ideally suited for frequency conversion due to its polarized output with negligible depolarization losses. Laser light in the green spectral range (~515 nm) can be created with a nonlinear crystal. Pulsed disk lasers with green output of well above 50 W (extracavity doubling) in the ps regime and several hundreds of Watts in the ns regime with intracavity doubling are already commercially available whereas intracavity doubled disk lasers in continuous wave operation with greater than 250 W output are in test phase. In both operating modes (pulsed and cw) the frequency doubled disk laser offers advantages in existing and new applications. Copper welding for example is said to show much higher process reliability with green laser light due to its higher absorption in comparison to the infrared. This improvement has the potential to be very beneficial for the automotive industry's move to electrical vehicles which requires reliable high-volume welding of copper as a major task for electro motors, batteries, etc.
Everything You Always Wanted to Know about Computers but Were Afraid to Ask.
ERIC Educational Resources Information Center
DiSpezio, Michael A.
1989-01-01
An overview of the basics of computers is presented. Definitions and discussions of processing, programs, memory, DOS, anatomy and design, central processing unit (CPU), disk drives, floppy disks, and peripherals are included. This article was designed to help teachers to understand basic computer terminology. (CW)
Optical Disks Compete with Videotape and Magnetic Storage Media: Part I.
ERIC Educational Resources Information Center
Urrows, Henry; Urrows, Elizabeth
1988-01-01
Describes the latest technology in videotape cassette systems and other magnetic storage devices and their possible effects on optical data disks. Highlights include Honeywell's Very Large Data Store (VLDS); Exabyte's tape cartridge storage system; standards for tape drives; and Masstor System's videotape cartridge system. (LRW)
Li, F Y; Sheng, Z M; Chen, M; Yu, L L; Meyer-ter-Vehn, J; Mori, W B; Zhang, J
2014-10-01
Attosecond bursts of coherent synchrotronlike radiation are found when driving ultrathin relativistic electron disks in a quasi-one-dimensional regime of wakefield acceleration, in which the laser waist is larger than the wake wavelength. The disks of overcritical density shrink radially due to focusing wakefields, thus providing the transverse currents for the emission of an intense, radially polarized, half-cycle pulse of about 100 attoseconds in duration. The electromagnetic pulse first focuses to a peak intensity (7×10(20)W/cm(2)) 10 times larger than the driving pulse and then emerges as a conical beam. Basic dynamics of the radiative process are derived analytically and in agreement with particle-in-cell simulations. By making use of gas targets instead of solids to form the ultrathin disks, this method allows for high repetition rates required for applications.
Time-resolved scanning Kerr microscopy of flux beam formation in hard disk write heads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valkass, Robert A. J., E-mail: rajv202@ex.ac.uk; Spicer, Timothy M.; Burgos Parra, Erick
To meet growing data storage needs, the density of data stored on hard disk drives must increase. In pursuit of this aim, the magnetodynamics of the hard disk write head must be characterized and understood, particularly the process of “flux beaming.” In this study, seven different configurations of perpendicular magnetic recording (PMR) write heads were imaged using time-resolved scanning Kerr microscopy, revealing their detailed dynamic magnetic state during the write process. It was found that the precise position and number of driving coils can significantly alter the formation of flux beams during the write process. These results are applicable tomore » the design and understanding of current PMR and next-generation heat-assisted magnetic recording devices, as well as being relevant to other magnetic devices.« less
NASA Technical Reports Server (NTRS)
Slater, G. L.; Shelley, Stuart; Jacobson, Mark
1993-01-01
In this paper, the design, analysis, and test of a low cost, linear proof mass actuator for vibration control is presented. The actuator is based on a linear induction coil from a large computer disk drive. Such disk drives are readily available and provide the linear actuator, current feedback amplifier, and power supply for a highly effective, yet inexpensive, experimental laboratory actuator. The device is implemented as a force command input system, and the performance is virtually the same as other, more sophisticated, linear proof mass systems.
Spin waves in planar quasicrystal of Penrose tiling
NASA Astrophysics Data System (ADS)
Rychły, J.; Mieszczak, S.; Kłos, J. W.
2018-03-01
We investigated two-dimensional magnonic structures which are the counterparts of photonic quasicrystals forming Penrose tiling. We considered the slab composed of Ni (or Py) disks embedded in Fe (or Co) matrix. The disks are arranged in quasiperiodic Penrose-like structure. The infinite quasicrystal was approximated by its rectangular section with periodic boundary conditions applied. This approach allowed us to use the plane wave method to find the frequency spectrum of eigenmodes for spin waves and their spatial profiles. The calculated integrated density of states shows more distinctive magnonic gaps for the structure composed of materials of high magnetic contrast (Ni and Fe) and relatively high filling fraction. This proves the impact of quasiperiodic long-range order on the spectrum of spin waves. We also investigated the localization of spin wave eingenmodes resulting from the quasiperiodicity of the structure.
NASA Astrophysics Data System (ADS)
Yi, Shu-Xu; Cheng, K. S.; Taam, Ronald E.
2018-06-01
Among the four black hole (BH) binary merger events detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO), six progenitor BHs have masses greater than 20 M ⊙. The existence of such massive BHs suggests that extreme metal-poor stars are the progenitors. An alternative possibility, that a pair of stellar mass BHs each with mass ∼7 M ⊙ increases to >20 M ⊙ via accretion from a disk surrounding a supermassive BH (SMBH) in an active galactic nucleus (AGN), is considered. The growth of mass of the binary and the transfer of orbital angular momentum to the disk accelerates the merger. Based on the recent numerical work of Tang et al., it is found that, in the disk of a low-mass AGN with mass ∼106 M ⊙ and Eddington ratio >0.01, the mass of an individual BH in the binary can grow to >20 M ⊙ before coalescence, provided that accretion takes place at a rate more than 10 times the Eddington value. This mechanism predicts a new class of gravitational wave (GW) sources involving the merger of two extreme Kerr black holes associated with AGNs and a possible electromagnetic wave counterpart.
An Azimuthal Asymmetry in the LkHα 330 Disk
NASA Astrophysics Data System (ADS)
Isella, Andrea; Pérez, Laura M.; Carpenter, John M.; Ricci, Luca; Andrews, Sean; Rosenfeld, Katherine
2013-09-01
Theory predicts that giant planets and low mass stellar companions shape circumstellar disks by opening annular gaps in the gas and dust spatial distribution. For more than a decade it has been debated whether this is the dominant process that leads to the formation of transitional disks. In this paper, we present millimeter-wave interferometric observations of the transitional disk around the young intermediate mass star LkHα 330. These observations reveal a lopsided ring in the 1.3 mm dust thermal emission characterized by a radius of about 100 AU and an azimuthal intensity variation of a factor of two. By comparing the observations with a Gaussian parametric model, we find that the observed asymmetry is consistent with a circular arc, that extends azimuthally by about 90° and emits about 1/3 of the total continuum flux at 1.3 mm. Hydrodynamic simulations show that this structure is similar to the azimuthal asymmetries in the disk surface density that might be produced by the dynamical interaction with unseen low mass companions orbiting within 70 AU from the central star. We argue that such asymmetries might lead to azimuthal variations in the millimeter-wave dust opacity and in the dust temperature, which will also affect the millimeter-wave continuum emission. Alternative explanations for the observed asymmetry that do not require the presence of companions cannot be ruled out with the existing data. Further observations of both the dust and molecular gas emission are required to derive firm conclusions on the origin of the asymmetry observed in the LkHα 330 disk.
Electrostatic ion-cyclotron waves in a nonuniform magnetic field
NASA Technical Reports Server (NTRS)
Cartier, S. L.; Dangelo, N.; Merlino, R. L.
1985-01-01
The properties of electrostatic ion-cyclotron waves excited in a single-ended cesium Q machine with a nonuniform magnetic field are described. The electrostatic ion-cyclotron waves are generated in the usual manner by drawing an electron current to a small exciter disk immersed in the plasma column. The parallel and perpendicular (to B) wavelengths and phase velocities are determined by mapping out two-dimensional wave phase contours. The wave frequency f depends on the location of the exciter disk in the nonuniform magnetic field, and propagating waves are only observed in the region where f is approximately greater than fci, where fci is the local ion-cyclotron frequency. The parallel phase velocity is in the direction of the electron drift. From measurements of the plasma properties along the axis, it is inferred that the electron drift velocity is not uniform along the entire current channel. The evidence suggests that the waves begin being excited at that axial position where the critical drift velocity is first exceeded, consistent with a current-driven excitation mechanism.
Traveling Wave Amplifier Driven by a Large Diameter Annular Electron Beam in a Disk-Loaded Structure
2015-10-30
IV MARY LOU ROBINSON, DR-IV Project Officer Chief, High Power Electromagnetics Division This report is published in the interest of scientific and...unlimited. 13. SUPPLEMENTARY NOTES OPS-15-9244 14. ABSTRACT This project studies the viability of a high - power traveling wave tube (TWT) using a novel...CHRISTINE codes. Fair agreement was observed. The preliminary conclusion is that the disk-on-rod TWT is a viable, high - power extension to the conventional
Solving Reynolds Equation in the Head-Disk Interface of Hard Disk Drives by Using a Meshless Method
NASA Astrophysics Data System (ADS)
Bao-Jun, Shi; Ting-Yi, Yang; Jian, Zhang; Yun-Dong, Du
2010-05-01
With the decrease of the flying height of the magnetic head/slider in hard disk drives (HDDs), Reynolds equation, which is used to describe the pressure distribution of the air bearing film in HDDs, must be modified to account for the rarefaction effect. Meshless local Petrov-Galerkin (MLPG) method has been successfully used in some fields of solid mechanics and fluid mechanics and was proven to be an efficacious method. No meshes are needed in MLPG method either for the interpolation of the trial and test functions, or for the integration of the weak form of the related differential equation. We solve Reynolds equation in the head-disk interface (HDI) of HDDs by using MLPG method. The pressure distribution of the air baring film by using MLPG method is obtained and compared with the exact solution and that obtained by using a least square finite difference (LSFD) method. We also investigate effects of the bearing number on the pressure value and the center of pressure based on this meshless method for different film-thickness ratios.
TESTING THE PROPAGATING FLUCTUATIONS MODEL WITH A LONG, GLOBAL ACCRETION DISK SIMULATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogg, J Drew; Reynolds, Christopher S.
2016-07-20
The broadband variability of many accreting systems displays characteristic structures; log-normal flux distributions, root-mean square (rms)-flux relations, and long inter-band lags. These characteristics are usually interpreted as inward propagating fluctuations of the mass accretion rate in an accretion disk driven by stochasticity of the angular momentum transport mechanism. We present the first analysis of propagating fluctuations in a long-duration, high-resolution, global three-dimensional magnetohydrodynamic (MHD) simulation of a geometrically thin ( h / r ≈ 0.1) accretion disk around a black hole. While the dynamical-timescale turbulent fluctuations in the Maxwell stresses are too rapid to drive radially coherent fluctuations in themore » accretion rate, we find that the low-frequency quasi-periodic dynamo action introduces low-frequency fluctuations in the Maxwell stresses, which then drive the propagating fluctuations. Examining both the mass accretion rate and emission proxies, we recover log-normality, linear rms-flux relations, and radial coherence that would produce inter-band lags. Hence, we successfully relate and connect the phenomenology of propagating fluctuations to modern MHD accretion disk theory.« less
SNOW LINES AS PROBES OF TURBULENT DIFFUSION IN PROTOPLANETARY DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owen, James E.
2014-07-20
Sharp chemical discontinuities can occur in protoplanetary disks, particularly at ''snow lines'' where a gas-phase species freezes out to form ice grains. Such sharp discontinuities will diffuse out due to the turbulence suspected to drive angular momentum transport in accretion disks. We demonstrate that the concentration gradient—in the vicinity of the snow line—of a species present outside a snow line but destroyed inside is strongly sensitive to the level of turbulent diffusion (provided the chemical and transport timescales are decoupled) and provides a direct measurement of the radial ''Schmidt number'' (the ratio of the angular momentum transport to radial turbulentmore » diffusion). Taking as an example the tracer species N{sub 2}H{sup +}, which is expected to be destroyed inside the CO snow line (as recently observed in TW Hya) we show that ALMA observations possess significant angular resolution to constrain the Schmidt number. Since different turbulent driving mechanisms predict different Schmidt numbers, a direct measurement of the Schmidt number in accretion disks would allow inferences to be made about the nature of the turbulence.« less
Chen, Wentao; Zhang, Weidong
2009-10-01
In an optical disk drive servo system, to attenuate the external periodic disturbances induced by inevitable disk eccentricity, repetitive control has been used successfully. The performance of a repetitive controller greatly depends on the bandwidth of the low-pass filter included in the repetitive controller. However, owing to the plant uncertainty and system stability, it is difficult to maximize the bandwidth of the low-pass filter. In this paper, we propose an optimality based repetitive controller design method for the track-following servo system with norm-bounded uncertainties. By embedding a lead compensator in the repetitive controller, both the system gain at periodic signal's harmonics and the bandwidth of the low-pass filter are greatly increased. The optimal values of the repetitive controller's parameters are obtained by solving two optimization problems. Simulation and experimental results are provided to illustrate the effectiveness of the proposed method.
Schrödinger Evolution of Self-Gravitating Disks
NASA Astrophysics Data System (ADS)
Batygin, Konstantin
2018-04-01
An understanding of the long-term evolution of self-gravitating disks ranks among the classic problems of dynamical astronomy. In this talk, I will describe an intriguing connection between the secular inclination dynamics of a Lagrange-Laplace disk and the time-dependent Schrödinger equation. Within the context of this formalism, nodal bending waves correspond to the eigen-modes of a quasiparticle’s wavefunction, confined in an infinite square well with boundaries given by the radial extent of the disk. I will further show that external secular perturbations upon self-gravitating disks exhibit a mathematical similarity to quantum scattering theory, yielding an analytic criterion for the gravitational rigidity of a nearly-Keplerian disk under external perturbations.
Migration of Gas Giant Planets in a Gravitationally Unstable Disk
NASA Astrophysics Data System (ADS)
Desai, Karna Mahadev; Steiman-Cameron, Thomas Y.; Michael, Scott; Durisen, Richard H.
2017-01-01
Understanding the migration of giant planets in gravitationally unstable protoplanetary disks is important for understanding planetary system architecture, especially the existence of planets orbiting close to and at large distances from their stars. Migration rates can determine the efficiency of planet formation and survival rates of planets. We present results from simulations of 0.3, 1, and 3 Jupiter-mass planets in a 0.14 M⊙ protoplanetary disk around a 1 M⊙ star, where the disk is marginally unstable to gravitational instabilities (GIs). Each planet is simulated separately. We use CHYMERA, a radiative 3D hydrodynamics code developed by the Indiana University Hydrodynamics Group. The simulations include radiative cooling governed by realistic dust opacities. The planets are inserted into the disk, once the disk has settled into its quasi-steady GI-active phase. We simulate each of the 0.3, 1, and 3 Jupiter-mass planets by inserting it at three different locations in the disk, at the corotation radius and at the inner and outer Lindblad resonances. No matter where placed, the 3 Jupiter-mass planets tend to drift inexorably inward but with a rate that slows after many orbital periods. The 1 Jupiter-mass planets migrate mostly inward, but their motion can be delayed or reversed near the corotation of the two-armed wave. The 0.3 Jupiter-mass planets are much less predictable and frequently migrate outward. We analyze how the density of matter and waves in the disk at different azimuthal locations affect the migration.
The accretion and spreading of matter on white dwarfs
NASA Astrophysics Data System (ADS)
Fisker, Jacob Lund; Balsara, Dinshaw S.; Burger, Tom
2006-10-01
For a slowly rotating non-magnetized white dwarf the accretion disk extends all the way to the star. At the interface between the accretion disk and the star, the matter moves through a boundary layer (BL) and then spreads toward the poles as new matter continuously piles up behind it. We have solved the 3d compressible Navier-Stokes equations on an axisymmetric grid to determine the structure of this BL for different accretion rates (states). The high states show a spreading BL which sets off a gravity wave in the surface matter. The accretion flow moves supersonically over the cusp making it susceptible to the rapid development of gravity wave and/or Kelvin-Helmholtz instabilities. This BL is optically thick and extends more than 30° to either side of the disk plane after 3/4 of a Keplerian rotation period (tK = 19 s). The low states also show a spreading BL, but here the accretion flow does not set off gravity waves and it is optically thin.
Development of Wave Turbine Emulator in a Laboratory Environment
NASA Astrophysics Data System (ADS)
Vinatha, U.; Vittal K, P.
2013-07-01
Wave turbine emulator (WTE) is an important equipment for developing wave energy conversion system. The emulator reflects the actual behavior of the wave turbine by reproducing the characteristics of real wave turbine without reliance on natural wave resources and actual wave turbine. It offers a controllable test environment that allows the evaluation and improvement of control schemes for electric generators. The emulator can be used for research applications to drive an electrical generator in a similar way as a practical wave turbine. This article presents the development of a WTE in a laboratory environment and studies on the behavior of electrical generator coupled to the emulator. The structure of a WTE consists of a PC where the characteristics of the turbine are implemented, ac drive to emulate the turbine rotor, feedback mechanism from the drive and power electronic equipment to control the drive. The feedback signal is acquired by the PC through an A/D converter, and the signal for driving the power electronic device comes from the PC through a D/A converter.
The magnetic nature of disk accretion onto black holes.
Miller, Jon M; Raymond, John; Fabian, Andy; Steeghs, Danny; Homan, Jeroen; Reynolds, Chris; van der Klis, Michiel; Wijnands, Rudy
2006-06-22
Although disk accretion onto compact objects-white dwarfs, neutron stars and black holes-is central to much of high-energy astrophysics, the mechanisms that enable this process have remained observationally difficult to determine. Accretion disks must transfer angular momentum in order for matter to travel radially inward onto the compact object. Internal viscosity from magnetic processes and disk winds can both in principle transfer angular momentum, but hitherto we lacked evidence that either occurs. Here we report that an X-ray-absorbing wind discovered in an observation of the stellar-mass black hole binary GRO J1655 - 40 (ref. 6) must be powered by a magnetic process that can also drive accretion through the disk. Detailed spectral analysis and modelling of the wind shows that it can only be powered by pressure generated by magnetic viscosity internal to the disk or magnetocentrifugal forces. This result demonstrates that disk accretion onto black holes is a fundamentally magnetic process.
NASA Astrophysics Data System (ADS)
Belyaev, Mikhail A.; Quataert, Eliot
2018-04-01
We present unstratified 3D MHD simulations of an accretion disk with a boundary layer (BL) that have a duration ˜1000 orbital periods at the inner radius of the accretion disk. We find the surprising result that angular momentum piles up in the boundary layer, which results in a rapidly rotating belt of accreted material at the surface of the star. The angular momentum stored in this belt increases monotonically in time, which implies that angular momentum transport mechanisms in the BL are inefficient and do not couple the accretion disk to the star. This is in spite of the fact that magnetic fields are advected into the BL from the disk and supersonic shear instabilities in the BL excite acoustic waves. In our simulations, these waves only carry a small fraction (˜10%) of the angular momentum required for steady state accretion. Using analytical theory and 2D viscous simulations in the R - ϕ plane, we derive an analytical criterion for belt formation to occur in the BL in terms of the ratio of the viscosity in the accretion disk to the viscosity in the BL. Our MHD simulations have a dimensionless viscosity (α) in the BL that is at least a factor of ˜100 smaller than that in the disk. We discuss the implications of these results for BL dynamics and emission.
Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel
2006-09-19
A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.
Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel
2006-10-10
A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.
Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel
2006-07-11
A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.
Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel
2007-02-27
A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldbaum, Nathan J.; Krumholz, Mark R.; Forbes, John C., E-mail: ngoldbau@illinois.edu
2016-08-10
Self-gravity and stellar feedback are capable of driving turbulence and transporting mass and angular momentum in disk galaxies, but the balance between them is not well understood. In the previous paper in this series, we showed that gravity alone can drive turbulence in galactic disks, regulate their Toomre Q parameters to ∼1, and transport mass inwards at a rate sufficient to fuel star formation in the centers of present-day galaxies. In this paper we extend our models to include the effects of star formation feedback. We show that feedback suppresses galaxies’ star formation rates by a factor of ∼5 andmore » leads to the formation of a multi-phase atomic and molecular interstellar medium. Both the star formation rate and the phase balance produced in our simulations agree well with observations of nearby spirals. After our galaxies reach steady state, we find that the inclusion of feedback actually lowers the gas velocity dispersion slightly compared to the case of pure self-gravity, and also slightly reduces the rate of inward mass transport. Nevertheless, we find that, even with feedback included, our galactic disks self-regulate to Q ∼ 1, and transport mass inwards at a rate sufficient to supply a substantial fraction of the inner disk star formation. We argue that gravitational instability is therefore likely to be the dominant source of turbulence and transport in galactic disks, and that it is responsible for fueling star formation in the inner parts of galactic disks over cosmological times.« less
Design and implementation of scalable tape archiver
NASA Technical Reports Server (NTRS)
Nemoto, Toshihiro; Kitsuregawa, Masaru; Takagi, Mikio
1996-01-01
In order to reduce costs, computer manufacturers try to use commodity parts as much as possible. Mainframes using proprietary processors are being replaced by high performance RISC microprocessor-based workstations, which are further being replaced by the commodity microprocessor used in personal computers. Highly reliable disks for mainframes are also being replaced by disk arrays, which are complexes of disk drives. In this paper we try to clarify the feasibility of a large scale tertiary storage system composed of 8-mm tape archivers utilizing robotics. In the near future, the 8-mm tape archiver will be widely used and become a commodity part, since recent rapid growth of multimedia applications requires much larger storage than disk drives can provide. We designed a scalable tape archiver which connects as many 8-mm tape archivers (element archivers) as possible. In the scalable archiver, robotics can exchange a cassette tape between two adjacent element archivers mechanically. Thus, we can build a large scalable archiver inexpensively. In addition, a sophisticated migration mechanism distributes frequently accessed tapes (hot tapes) evenly among all of the element archivers, which improves the throughput considerably. Even with the failures of some tape drives, the system dynamically redistributes hot tapes to the other element archivers which have live tape drives. Several kinds of specially tailored huge archivers are on the market, however, the 8-mm tape scalable archiver could replace them. To maintain high performance in spite of high access locality when a large number of archivers are attached to the scalable archiver, it is necessary to scatter frequently accessed cassettes among the element archivers and to use the tape drives efficiently. For this purpose, we introduce two cassette migration algorithms, foreground migration and background migration. Background migration transfers cassettes between element archivers to redistribute frequently accessed cassettes, thus balancing the load of each archiver. Background migration occurs the robotics are idle. Both migration algorithms are based on access frequency and space utility of each element archiver. To normalize these parameters according to the number of drives in each element archiver, it is possible to maintain high performance even if some tape drives fail. We found that the foreground migration is efficient at reducing access response time. Beside the foreground migration, the background migration makes it possible to track the transition of spatial access locality quickly.
Oleinick, Alexander; Zhu, Feng; Yan, Jiawei; Mao, Bingwei; Svir, Irina; Amatore, Christian
2013-06-24
Recessed generator-collector assemblies consisting of an array of recessed disks (generator electrodes) with a gold layer (collector electrode) deposited over the top-plane insulator reportedly allow increased selectivity and sensitivity during electrochemical detection of dopamine (DA) in the presence of ascorbic acid (AA), a situation which is frequently encountered. In sensor design, the potential of the disk electrodes is set to the wave plateau of DA, whereas the plane electrode is biased at the irreversible wave plateau of AA before the onset of the DA oxidation wave. Thus, AA is scavenged but DA is allowed to enter the nanocavities to be oxidized at the disk electrodes, and its signal is further amplified by redox cycling between disk and plane electrodes. Several different theoretical approaches are elaborated herein to analyze the behavior of the system, and their conclusions are successfully tested by experiments. This reveals the crucial role of the plane-electrode area which screens access to the recessed disks (i.e. acts as a diffusional Faraday cage) and simultaneously contributes to amplification of the analyte signal through positive feedback, as occurs in interdigitated arrays and scanning electrochemical microscopy. Simulations also allow for the evaluation of the benefits of different geometries inspired by the above design and different operating modes for increasing the sensor performance. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
TMR tape drive for a 15 TB cartridge
NASA Astrophysics Data System (ADS)
Biskeborn, Robert G.; Fontana, Robert E.; Lo, Calvin S.; Czarnecki, W. Stanley; Liang, Jason; Iben, Icko E. T.; Decad, Gary M.; Hipolito, Venus A.
2018-05-01
This paper highlights the development of tunnel magnetoresistive (TMR) sensors for magnetic tape recording applications. This has led to the introduction of a tape drives supporting a 15 TB native tape cartridge, currently the highest capacity available. Underscoring this development is the fact that the TMR sensors must run in continual contact with the tape media. This is contrasted with modern hard disk drive (hdd) sensors, which fly above the disk platters. Various challenges encountered in developing and deploying TMR are presented. In addition, advances to the write transducer are also discussed. Lastly, the authors show that future density scaling for tape recording, unlike that for hdd, is not facing limits imposed by photolithography or superparamagnetic physics, suggesting that cartridge capacity improvements of 4 to 6x will be achieved in the next 4 to 8 years.
Electromagnetic wave scattering from some vegetation samples
NASA Technical Reports Server (NTRS)
Karam, Mostafa A.; Fung, Adrian K.; Antar, Yahia M.
1988-01-01
For an incident plane wave, the field inside a thin scatterer (disk and needle) is estimated by the generalized Rayleigh-Gans (GRG) approximation. This leads to a scattering amplitude tensor equal to that obtained via the Rayleigh approximation (dipole term) with a modifying function. For a finite-length cylinder the inner field is estimated by the corresponding field for the same cylinder of infinite lenght. The effects of different approaches in estimating the field inside the scatterer on the backscattering cross section are illustrated numerically for a circular disk, a needle, and a finite-length cylinder as a function of the wave number and the incidence angle. Finally, the modeling predictions are compared with measurements.
Incompressible Modes Excited by Supersonic Shear in Boundary Layers: Acoustic CFS Instability
NASA Astrophysics Data System (ADS)
Belyaev, Mikhail A.
2017-02-01
We present an instability for exciting incompressible modes (e.g., gravity or Rossby modes) at the surface of a star accreting through a boundary layer. The instability excites a stellar mode by sourcing an acoustic wave in the disk at the boundary layer, which carries a flux of energy and angular momentum with the opposite sign as the energy and angular momentum density of the stellar mode. We call this instability the acoustic Chandrasekhar-Friedman-Schutz (CFS) instability, because of the direct analogy to the CFS instability for exciting modes on a rotating star by emission of energy in the form of gravitational waves. However, the acoustic CFS instability differs from its gravitational wave counterpart in that the fluid medium in which the acoustic wave propagates (I.e., the accretion disk) typically rotates faster than the star in which the incompressible mode is sourced. For this reason, the instability can operate even for a non-rotating star in the presence of an accretion disk. We discuss applications of our results to high-frequency quasi-periodic oscillations in accreting black hole and neutron star systems and dwarf nova oscillations in cataclysmic variables.
Incompressible Modes Excited by Supersonic Shear in Boundary Layers: Acoustic CFS Instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belyaev, Mikhail A., E-mail: mbelyaev@berkeley.edu
We present an instability for exciting incompressible modes (e.g., gravity or Rossby modes) at the surface of a star accreting through a boundary layer. The instability excites a stellar mode by sourcing an acoustic wave in the disk at the boundary layer, which carries a flux of energy and angular momentum with the opposite sign as the energy and angular momentum density of the stellar mode. We call this instability the acoustic Chandrasekhar–Friedman–Schutz (CFS) instability, because of the direct analogy to the CFS instability for exciting modes on a rotating star by emission of energy in the form of gravitationalmore » waves. However, the acoustic CFS instability differs from its gravitational wave counterpart in that the fluid medium in which the acoustic wave propagates (i.e., the accretion disk) typically rotates faster than the star in which the incompressible mode is sourced. For this reason, the instability can operate even for a non-rotating star in the presence of an accretion disk. We discuss applications of our results to high-frequency quasi-periodic oscillations in accreting black hole and neutron star systems and dwarf nova oscillations in cataclysmic variables.« less
Protecting SSD Data Against Attacks
NASA Astrophysics Data System (ADS)
Marelli, A.; Micheloni, R.
When a drive is broken and we have to throw it away, we want to be sure that no hackers can recover the data stored in that disk, especially in the enterprise environment where sensitive date are stored on the drive, such as financial transactions or military applications.
ICRF fast wave current drive and mode conversion current drive in EAST tokamak
NASA Astrophysics Data System (ADS)
Yin, L.; Yang, C.; Gong, X. Y.; Lu, X. Q.; Du, D.; Chen, Y.
2017-10-01
Fast wave in the ion-cyclotron resonance frequency (ICRF) range is a promising candidate for non-inductive current drive (CD), which is essential for long pulse and high performance operation of tokamaks. A numerical study on the ICRF fast wave current drive (FWCD) and mode-conversion current drive (MCCD) in the Experimental Advanced Superconducting Tokamak (EAST) is carried out by means of the coupled full wave and Ehst-Karney parameterization methods. The results show that FWCD efficiency is notable in two frequency regimes, i.e., f ≥ 85 MHz and f = 50-65 MHz, where ion cyclotron absorption is effectively avoided, and the maximum on-axis driven current per unit power can reach 120 kA/MW. The sensitivity of the CD efficiency to the minority ion concentration is confirmed, owing to fast wave mode conversion, and the peak MCCD efficiency is reached for 22% minority-ion concentration. The effects of the wave-launch position and the toroidal wavenumber on the efficiency of current drive are also investigated.
Fabrication of piezoelectric ceramic micro-actuator and its reliability for hard disk drives.
Jing, Yang; Luo, Jianbin; Yang, Wenyan; Ju, Guoxian
2004-11-01
A new U-type micro-actuator for precisely positioning a magnetic head in high-density hard disk drives was proposed and developed. The micro-actuator is composed of a U-type stainless steel substrate and two piezoelectric ceramic elements. Using a high-d31 piezoelectric coefficient PMN-PZT ceramic plate and adopting reactive ion etching process fabricate the piezoelectric elements. Reliability against temperature was investigated to ensure the practical application to the drive products. The U-type substrate attached to each side via piezoelectric elements also was simulated by the finite-element method and practically measured by a laser Doppler vibrometer in order to testify the driving mechanics of it. The micro-actuator coupled with two piezoelectric elements featured large displacement of 0.875 microm and high-resonance frequency over 22 kHz. The novel piezoelectric micro-actuators then possess a useful compromise performance to displacement, resonance frequency, and generative force. The results reveal that the new design concept provides a valuable alternative for multilayer piezoelectric micro-actuators.
NASA Technical Reports Server (NTRS)
Dunning, R. S.
1973-01-01
Equations are developed which give the pressure profile, the forces and torques on a disk pendulum by means of point source wave theory from acoustics. The pressure, force and torque equations for an unbaffled disk are developed. These equations are then used to calculate the apparent mass and apparent inertia for the pendulum.
Investigation of Plasmas Having Complex, Dynamic Evolving Morphology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellan, Paul M.
2017-01-03
Three different types of plasmas have been investigated using both experimental and theoretical methods. The first type of plasma is dense, highly ionized, governed by magnetohydrodynamics, and highly dynamic. This plasma is relevant to solar coronal loops, astrophysical jets, and other situations where strong magnetic forces act on the plasma. A well-diagnosed laboratory experiment creates a magnetohydrodynamically driven highly collimated plasma jet. This jet undergoes a kink instability such that it rapidly develops a corkscrew shape. The kink causes lateral acceleration of the jet, and this lateral acceleration drives a Rayleigh-Taylor instability that in turn chokes the current flowing inmore » the jet and causes a magnetic reconnection. The magnetic reconnection causes electron and ion heating as well as emission of whistler waves. This entire sequence of events has been observed, measured in detail, and related to theoretical models. The second type of plasma is a transient rf-produced plasma used as a seed plasma for the magnetohydrodynamic experiments described above. Detailed atomic physics ionization processes have been investigated and modeled. The third type of plasma that has been studied is a dusty plasma where the dust particles are spontaneously growing ice grains. The rapid growth of the ice grains to large size and their highly ordered alignment has been investigated as well as collective motion of the ice grains, including well-defined flows on the surface of nested toroids. In addition to the experimental work described above, several related theoretical models have been developed, most notably a model showing how a complex interaction between gravity and magnetic fields on extremely weakly ionized plasma in an accretion disk provides an electric power source that can drive astrophysical jets associated with the accretion disk. Eighteen papers reporting this work have been published in a wide variety of journals.« less
Vorticity Transport and Wave Emission in the Protoplanetary Nebula
NASA Technical Reports Server (NTRS)
Davis, S. S.; DeVincenzi, Donald (Technical Monitor)
2001-01-01
Higher order numerical algorithms (4th order in time, 3rd order in space) are applied to the Euler/Energy equations and are used to examine vorticity transport and wave motion in a non-self gravitating, initially isentropic Keplerian disk. In this talk we will examine the response of the nebula to an isolated vortex with a circulation about equal to the rotation rate of Jupiter. The vortex is located on the 4 AU circle and the nebula is simulated from 1 to 24 AU. We show that the vortex emits pressure-supported density and Rossby-type wave packets before it decays within a few orbits. The acoustic density waves evolve into weak (non entropy preserving) shock waves that propagate over the entire disk. The Rossby waves remain in the vicinity of the initial vortex disturbance, but are rapidly damped. Temporal frequencies and spatial wavenumbers are derived using the simulation data and compared with analytical dispersion relations from the linearized Euler/Energy equations.
The Weekly Fab Five: Things You Should Do Every Week To Keep Your Computer Running in Tip-Top Shape.
ERIC Educational Resources Information Center
Crispen, Patrick
2001-01-01
Describes five steps that school librarians should follow every week to keep their computers running at top efficiency. Explains how to update virus definitions; run Windows update; run ScanDisk to repair errors on the hard drive; run a disk defragmenter; and backup all data. (LRW)
Operation of a long-pulse backward-wave oscillator using a disk cathode
NASA Astrophysics Data System (ADS)
Hahn, Kelly; Fuks, Mikhail I.; Schamiloglu, Edl
2001-08-01
Recent work at the University of New Mexico has studied the use of a circular disk cathode as the electron source in a long-pulse Backward Wave Oscillator (BWO) experiment. The use of this cathode was motivated by recent studies by Loza and Strelkov of the General Physics Institute in Russia that demonstrated that a relativistic electron beam with stable cross section could be sustained for over one microsecond. In our first investigations using this new cathode configuration we found that the microwave pulse length generated from a long pulse BWO increased somewhat compared to the case when a traditional annular `cookie-cutter' cathode was used. We attribute this pulse lengthening to the hypothesis that the disk cathode generates a relativistic electron beam that is less likely to radially expand, thereby minimizing wall interception and the generation of unwanted plasma. In this paper we describe details of work- in-progress relating to a comparison of microwave generation from a disk cathode and annular cathode in a long-pulse BWO.
Current-drive by lower hybrid waves in the presence of energetic alpha-particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisch, N.J.; Rax, J.M.
1991-10-01
Many experiments have now proved the effectiveness of lower hybrid waves for driving toroidal current in tokamaks. The use of these waves, however, to provide all the current in a reactor is thought to be uncertain because the waves may not penetrate the center of the more energetic reactor plasma, and, if they did, the wave power may be absorbed by alpha particles rather than by electrons. This paper explores the conditions under which lower-hybrid waves might actually drive all the current. 26 refs.
Radial Instabilities of a Pulsating Air Bubble in Water
1990-01-30
ERASEDISPLAY GOTO 100 ELSE C CALL ERASEDISPLAY CALL EXIr ENDIF END I 1 257 3 PRCA PM SHAPE VIRTUAL DRIVE(16384) WAVE1 (16384) , WAVE2 (16L8 4 ’ ,DC(16384)3...INTEGER DRIVE, WAVE1, WAVE2 , DC INTEGER ROW, COL, NCHAR, I, OSCADR, GENADR, INFO (50) , MAXVAL, MAXV INTEGER KOUNT REAL GEN, ATEMP, WTEMP, WATT, FREQ...IREC=1 26D CALL GETWAV (1, DC, OSCADR, I REC) CALL GETWAV (2, DRIVE, OSCADR, IREC) CALL GETWAV (3, WAVE1, OSCADR, IREC) CALL GETWAV (4, WAVE2 ,OSCADR
An Arctic Ice/Ocean Coupled Model with Wave Interactions
2013-09-30
motion in the presence of currents and waves. In the wave attenuation experiments, between 35 and 80 ‘ice floes’ (0.99 m diameter wooden disks) were...moored with springs to the tank floor and plane waves were sent down, with an array of wave probes to measure the reflected and transmitted waves...waves propagating in the MIZ as opposed to the acoustic wave solution shown. This outcome offers significant new capabilities for tracking fully
Bolborici, V; Dawson, F P; Pugh, M C
2014-03-01
Piezoelectric traveling wave rotary ultrasonic motors are motors that generate torque by using the friction force between a piezoelectric composite ring (or disk-shaped stator) and a metallic ring (or disk-shaped rotor) when a traveling wave is excited in the stator. The motor speed is proportional to the amplitude of the traveling wave and, in order to obtain large amplitudes, the stator is excited at frequencies close to its resonance frequency. This paper presents a non-empirical partial differential equations model for the stator, which is discretized using the finite volume method. The fundamental frequency of the discretized model is computed and compared to the experimentally-measured operating frequency of the stator of Shinsei USR60 piezoelectric motor. Copyright © 2013 Elsevier B.V. All rights reserved.
Studies of Young, Star-forming Circumstellar Disks
NASA Astrophysics Data System (ADS)
Bae, Jaehan
2017-08-01
Disks of gas and dust around forming stars - circumstellar disks - last only a few million years. This is a very small fraction of the entire lifetime of Sun-like stars, several billion years. Nevertheless, by the time circumstellar disks dissipate stars complete building up their masses, giant planets finish accreting gas, and terrestrial bodies are nearly fully grown and ready for their final assembly to become planets. Understanding the evolution of circumstellar disks are thus crucial in many contexts. Using numerical simulations as the primary tool, my thesis has focused on the studies of various physical processes that can occur throughout the lifetime of circumstellar disks, from their formation to dispersal. Chapters 2, 3, and 4 emphasize the importance of early evolution, during which time a forming star-disk system obtains mass from its natal cloud: the infall phase. In Chapter 2 and 3, I have modeled episodic outbursts of accretion in protostellar systems resulting from disk instabilities - gravitational instability and magnetorotational instability. I showed that outbursts occur preferentially during the infall phase, because the mass addition provides more favorable conditions for gravitational instability to initiate the outburst cycle, and that forming stars build up a significant fraction of their masses through repeated short-lived, episodic outbursts. The infall phase can also be important for the formation of planets. Recent ALMA observations revealed sets of bright and dark rings in circumstellar disks of young, forming stars, potentially indicating early formation of planets. In Chapter 4, I showed that infall streams can create radial pressure bumps near the outer edge of the mass landing on the disk, from which vortices can form, collecting solid particles very efficiently to make initial seeds of planets. The next three chapters highlight the role of planets in setting the observational appearance and the evolution of circumstellar disks. When a planet forms in a disk, the gravitational interaction between the planet and disk can create structures, such as spiral arms and gaps. In Chapter 5, I compared the disk structures formed by planetary companions in numerical simulations with the observed structures in the disk surrounding an 8 Myr-old Herbig Ae star SAO 206462. Based on the experiments, I made predictions for the mass and position of a currently unrevealed planet, which can help guide future observations to search for more conclusive evidence for the existence of a planetary companion in the system. In Chapter 6, I showed for the first time in global simulation domains that spiral waves, driven for instance by planets or gravitational instability, can be unstable due to resonant interactions with inertial modes, breaking into turbulence. In Chapter 7, I showed that the spiral wave instability operates on the waves launched by planets and that the resulting turbulence can significantly stir up solid particles from the disk midplane. The stirring of solid particles can have influences on the observation appearance of the parent disk and on the subsequent assembly of planetary bodies in the disk. Finally, in Chapter 8, I investigated the dispersal of circumstellar disks via photoevaporative winds, finding that the photoevaporative loss alone, coupled with a range of initial angular momenta of protostellar clouds, can explain the observed decline of the disk frequency with increasing age. The findings and future possibilities are summarized in Chapter 9.
Sonic boom generated by a slender body aerodynamically shaded by a disk spike
NASA Astrophysics Data System (ADS)
Potapkin, A. V.; Moskvichev, D. Yu.
2018-03-01
The sonic boom generated by a slender body of revolution aerodynamically shaded by another body is numerically investigated. The aerodynamic shadow is created by a disk placed upstream of the slender body across a supersonic free-stream flow. The disk size and its position upstream of the body are chosen in such a way that the aerodynamically shaded flow is quasi-stationary. A combined method of phantom bodies is used for sonic boom calculations. The method is tested by calculating the sonic boom generated by a blunted body and comparing the results with experimental investigations of the sonic boom generated by spheres of various diameters in ballistic ranges and wind tunnels. The test calculations show that the method of phantom bodies is applicable for calculating far-field parameters of shock waves generated by both slender and blunted bodies. A possibility of reducing the shock wave intensity in the far field by means of the formation of the aerodynamic shadow behind the disk placed upstream of the body is estimated. The calculations are performed for the incoming flow with the Mach number equal to 2. The effect of the disk size on the sonic boom level is calculated.
Relativistic Dynamics and Mass Exchange in Binary Black Hole Mini-disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowen, Dennis B.; Campanelli, Manuela; Mewes, Vassilios
We present the first exploration of gas dynamics in a relativistic binary black hole (BH) system in which an accretion disk (a “mini-disk”) orbits each BH. We focus on 2D hydrodynamical studies of comparable-mass, non-spinning systems. Relativistic effects alter the dynamics of gas in this environment in several ways. Because the gravitational potential between the two BHs becomes shallower than in the Newtonian regime, the mini-disks stretch toward the L1 point and the amount of gas passing back and forth between the mini disks increases sharply with decreasing binary separation. This “sloshing” is quasi-periodically modulated at 2 and 2.75 timesmore » the binary orbital frequency, corresponding to timescales of hours to days for supermassive binary black holes (SMBBHs). In addition, relativistic effects add an m = 1 component to the tidally driven spiral waves in the disks that are purely m = 2 in Newtonian gravity; this component becomes dominant when the separation is ≲100 gravitational radii. Both the sloshing and the spiral waves have the potential to create distinctive radiation features that may uniquely mark SMBBHs in the relativistic regime.« less
Relativistic Dynamics and Mass Exchange in Binary Black Hole Mini-disks
NASA Astrophysics Data System (ADS)
Bowen, Dennis B.; Campanelli, Manuela; Krolik, Julian H.; Mewes, Vassilios; Noble, Scott C.
2017-03-01
We present the first exploration of gas dynamics in a relativistic binary black hole (BH) system in which an accretion disk (a “mini-disk”) orbits each BH. We focus on 2D hydrodynamical studies of comparable-mass, non-spinning systems. Relativistic effects alter the dynamics of gas in this environment in several ways. Because the gravitational potential between the two BHs becomes shallower than in the Newtonian regime, the mini-disks stretch toward the L1 point and the amount of gas passing back and forth between the mini disks increases sharply with decreasing binary separation. This “sloshing” is quasi-periodically modulated at 2 and 2.75 times the binary orbital frequency, corresponding to timescales of hours to days for supermassive binary black holes (SMBBHs). In addition, relativistic effects add an m = 1 component to the tidally driven spiral waves in the disks that are purely m = 2 in Newtonian gravity; this component becomes dominant when the separation is ≲100 gravitational radii. Both the sloshing and the spiral waves have the potential to create distinctive radiation features that may uniquely mark SMBBHs in the relativistic regime.
Experimental dynamic characterizations and modelling of disk vibrations for HDDs.
Pang, Chee Khiang; Ong, Eng Hong; Guo, Guoxiao; Qian, Hua
2008-01-01
Currently, the rotational speed of spindle motors in HDDs (Hard-Disk Drives) are increasing to improve high data throughput and decrease rotational latency for ultra-high data transfer rates. However, the disk platters are excited to vibrate at their natural frequencies due to higher air-flow excitation as well as eccentricities and imbalances in the disk-spindle assembly. These factors contribute directly to TMR (Track Mis-Registration) which limits achievable high recording density essential for future mobile HDDs. In this paper, the natural mode shapes of an annular disk mounted on a spindle motor used in current HDDs are characterized using FEM (Finite Element Methods) analysis and verified with SLDV (Scanning Laser Doppler Vibrometer) measurements. The identified vibration frequencies and amplitudes of the disk ODS (Operating Deflection Shapes) at corresponding disk mode shapes are modelled as repeatable disturbance components for servo compensation in HDDs. Our experimental results show that the SLDV measurements are accurate in capturing static disk mode shapes without the need for intricate air-flow aero-elastic models, and the proposed disk ODS vibration model correlates well with experimental measurements from a LDV.
Investigating dust trapping in transition disks with millimeter-wave polarization
NASA Astrophysics Data System (ADS)
Pohl, A.; Kataoka, A.; Pinilla, P.; Dullemond, C. P.; Henning, Th.; Birnstiel, T.
2016-08-01
Context. Spatially resolved polarized (sub-)mm emission has been observed for example in the protoplanetary disk around HL Tau. Magnetically aligned grains are commonly interpreted as the source of polarization. However, self-scattering by large dust grains with a high enough albedo is another polarization mechanism, which is becoming a compelling method independent of the spectral index to constrain the dust grain size in protoplanetary disks. Aims: We study the dust polarization at mm wavelengths in the dust trapping scenario proposed for transition disks, when a giant planet opens a gap in the disk. We investigate the characteristic polarization patterns and their dependence on disk inclination, dust size evolution, planet position, and observing wavelength. Methods: We combine two-dimensional hydrodynamical simulations of planet-disk interactions with self-consistent dust growth models. These size-dependent dust density distributions are used for follow-up three-dimensional radiative transfer calculations to predict the polarization degree at ALMA bands due to scattered thermal emission. Results: Dust self-scattering has been proven to be a viable mechanism for producing polarized mm-wave radiation. We find that the polarization pattern of a disk with a planetary gap after 1 Myr of dust evolution shows a distinctive three-ring structure. Two narrow inner rings are located at the planet gap edges. A third wider ring of polarization is situated in the outer disk beyond 100 au. For increasing observing wavelengths, all three rings change their position slightly, where the innermost and outermost rings move inward. This distance is detectable when comparing the results at ALMA bands 3, 6, and 7. Within the highest polarized intensity regions the polarization vectors are oriented in the azimuthal direction. For an inclined disk there is an interplay between polarization originating from a flux gradient and inclination-induced quadrupole polarization. For intermediate inclined transition disks, the polarization degree is as high as ~2% at λ = 3.1 mm (band 3), which is well above the detection limit of future ALMA observations.
Multisensory Public Access Catalogs on CD-ROM.
ERIC Educational Resources Information Center
Harrison, Nancy; Murphy, Brower
1987-01-01
BiblioFile Intelligent Catalog is a CD-ROM-based public access catalog system which incorporates graphics and sound to provide a multisensory interface and artificial intelligence techniques to increase search precision. The system can be updated frequently and inexpensively by linking hard disk drives to CD-ROM optical drives. (MES)
NASA Technical Reports Server (NTRS)
Tilghman, Chris; Askey, William; Hopkins, Steven
1989-01-01
Isothermal-forging apparatus produces long shafts integral with disks. Equipment based on modification of conventional isothermal-forging equipment, required stroke cut by more than half. Enables forging of shafts as long as 48 in. (122 cm) on typical modified conventional forging press, otherwise limited to making shafts no longer than 18 in. (46cm). Removable punch, in which forged material cools after plastic deformation, essential novel feature of forging apparatus. Technology used to improve such products as components of gas turbines and turbopumps and of other shaft/disk parts for powerplants, drive trains, or static structures.
Dynamics of binary and planetary-system interaction with disks - Eccentricity changes
NASA Technical Reports Server (NTRS)
Atrymowicz, Pawel
1992-01-01
Protostellar and protoplanetary systems, as well as merging galactic nuclei, often interact tidally and resonantly with the astrophysical disks via gravity. Underlying our understanding of the formation processes of stars, planets, and some galaxies is a dynamical theory of such interactions. Its main goals are to determine the geometry of the binary-disk system and, through the torque calculations, the rate of change of orbital elements of the components. We present some recent developments in this field concentrating on eccentricity driving mechanisms in protoplanetary and protobinary systems. In those two types of systems the result of the interaction is opposite. A small body embedded in a disk suffers a decrease of orbital eccentricity, whereas newly formed binary stars surrounded by protostellar disks may undergo a significant orbital evolution increasing their eccentricities.
The evolution of a dead zone in a circumplanetary disk
NASA Astrophysics Data System (ADS)
Chen, Cheng; Martin, Rebecca; Zhu, Zhaohuan
2018-01-01
Studying the evolution of a circumplanetary disk can help us to understand the formation of Jupiter and the four Galilean satellites. With the grid-based hydrodynamic code, FARGO3D, we simulate the evolution of a circumplanetary disk with a dead zone, a region of low turbulence. Tidal torques from the sun constrain the size of the circumplanetary disk to about 0.4 R_H. The dead zone provides a cold environment for icy satellite formation. However, as material builds up there, the temperature of the dead zone may reach the critical temperature required for the magnetorotational instability to drive turbulence. Part of the dead zone accretes on to the planet in an accretion outburst. We explore possible disk parameters that provide a suitable environment for satellite formation.
The air bubble entrapped under a drop impacting on a solid surface
NASA Astrophysics Data System (ADS)
Thoroddsen, S. T.; Etoh, T. G.; Takehara, K.; Ootsuka, N.; Hatsuki, Y.
2005-12-01
We present experimental observations of the disk of air caught under a drop impacting onto a solid surface. By imaging the impact through an acrylic plate with an ultra-high-speed video camera, we can follow the evolution of the air disk as it contracts into a bubble under the centre of the drop. The initial size and contraction speed of the disk were measured for a range of impact Weber and Reynolds numbers. The size of the initial disk is related to the bottom curvature of the drop at the initial contact, as measured in free-fall. The initial contact often leaves behind a ring of micro-bubbles, marking its location. The air disk contracts at a speed comparable to the corresponding air disks caught under a drop impacting onto a liquid surface. This speed also seems independent of the wettability of the liquid, which only affects the azimuthal shape of the contact line. For some impact conditions, the dynamics of the contraction leaves a small droplet at the centre of the bubble. This arises from a capillary wave propagating from the edges of the contracting disk towards the centre. As the wave converges its amplitude grows until it touches the solid substrate, thereby pinching off the micro-droplet at the plate, in the centre of the bubble. The effect of increasing liquid viscosity is to slow down the contraction speed and to produce a more irregular contact line leaving more micro-bubbles along the initial ring.
Müller, O; Lützenkirchen-Hecht, D; Frahm, R
2015-03-01
A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.
Time-resolved measurement of global synchronization in the dust acoustic wave
NASA Astrophysics Data System (ADS)
Williams, J. D.
2014-10-01
A spatially and temporally resolved measurement of the synchronization of the naturally occurring dust acoustic wave to an external drive and the relaxation from the driven wave mode back to the naturally occuring wave mode is presented. This measurement provides a time-resolved measurement of the synchronization of the self-excited dust acoustic wave with an external drive and the return to the self-excited mode. It is observed that the wave synchronizes to the external drive in a distinct time-dependent fashion, while there is an immediate loss of synchronization when the external modulation is discontinued.
Multiplexed microimmunoassays on a digital versatile disk.
Morais, Sergi; Tortajada-Genaro, Luis A; Arnandis-Chover, Tania; Puchades, Rosa; Maquieira, Angel
2009-07-15
Multiplexed microimmunoassays for five critical compounds were developed using a digital versatile disk (DVD) as an analytical support and detecting technology. To this end, coating conjugates were adsorbed on the polycarbonate face of the disk; a pool of specific antibodies, gold labeled secondary antibodies, and silver amplification were addressed for developing the assays. The detection principle is based on the capture of attenuated analog signals with the disk drive that were proportional to optical density of the immunoreaction product. The multiplexed assay achieved detection limits (IC10) of 0.06, 0.25, 0.37, 0.16, and 0.10 microg/L, sensitivities of (IC50) 0.54, 1.54, 2.62, 2.02, and 5.9 microg/L, and dynamic ranges of 2 orders of magnitude for atrazine, chlorpyrifos, metolachlor, sulfathiazole, and tetracycline, respectively. The features of the methodology were verified by analyzing natural waters and compared with reference chromatographic methods, showing its potential for high-throughput multiplexed screening applications. Analytes of different chemical nature (pesticides and antibiotics) were directly quantified without sample treatment or preconcentration in a total time of 30 min with similar sensitivity and selectivity to the ELISA plate format using the same immunoreagents. The multianalyte capabilities of immunoassaying methods developed with digital disk and drive demonstrated the competitiveness to quantify targets that require different sample treatment and instrumentation by chromatographic methods.
Blade loss transient dynamics analysis with flexible bladed disk
NASA Technical Reports Server (NTRS)
Gallardo, V. C.; Black, G.; Bach, L.; Cline, S.; Storace, A.
1983-01-01
The transient dynamic response of a flexible bladed disk on a flexible rotor in a two rotor system is formulated by modal synthesis and a Lagrangian approach. Only the nonequilibrated one diameter flexible mode is considered for the flexible bladed disk, while the two flexible rotors are represented by their normal modes. The flexible bladed disk motion is modeled as a combination of two one diameter standing waves, and is coupled inertially and gyroscopically to the flexible rotors. Application to a two rotor model shows that a flexible bladed disk on one rotor can be driven into resonance by an unbalance in the other rotor, and at a frequency equal to the difference in the rotor speeds.
Nanoscale roughness contact in a slider-disk interface.
Hua, Wei; Liu, Bo; Yu, Shengkai; Zhou, Weidong
2009-07-15
The nanoscale roughness contact between molecularly smooth surfaces of a slider-disk interface in a hard disk drive is analyzed, and the lubricant behavior at very high shear rate is presented. A new contact model is developed to study the nanoscale roughness contact behavior by classifying various forms of contact into slider-lubricant contact, slider-disk elastic contact and plastic contact. The contact pressure and the contact probabilities of the three types of contact are investigated. The new contact model is employed to explain and provide insight to an interesting experimental result found in a thermal protrusion slider. The protrusion budget for head surfing in the lubricant, which is the ideal state for contact recording, is also discussed.
Electronic Structure and Transport in Magnetic Multilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2008-02-18
ORNL assisted Seagate Recording Heads Operations in the development of CIPS pin Valves for application as read sensors in hard disk drives. Personnel at ORNL were W. H. Butler and Xiaoguang Zhang. Dr. Olle Heinonen from Seagate RHO also participated. ORNL provided codes and materials parameters that were used by Seagate to model CIP GMR in their heads. The objectives were to: (1) develop a linearized Boltzmann transport code for describing CIP GMR based on realistic models of the band structure and interfaces in materials in CIP spin valves in disk drive heads; (2) calculate the materials parameters needed asmore » inputs to the Boltzmann code; and (3) transfer the technology to Seagate Recording Heads.« less
On disk-planet interactions and orbital eccentricities
NASA Technical Reports Server (NTRS)
Ward, William R.
1988-01-01
While Lindblad resonances both within and without a perturber's orbit excite its eccentricity, the present study of the eccentricity evolution due to the density wave interaction between a planetesimal and a Keplerian disk notes that coronation resonances in these regions lose their eccentricity damping effectiveness if the object is embedded in a continuous disk without a gap. Attention is given to another class of Lindblad resonances which, under these conditions, operates on disk material coorbiting with the perturber; these resonances thereby become the most important source of eccentricity damping. A model problem indicates that eccentricity ultimately undergoes decay.
Mass storage technology in networks
NASA Astrophysics Data System (ADS)
Ishii, Katsunori; Takeda, Toru; Itao, Kiyoshi; Kaneko, Reizo
1990-08-01
Trends and features of mass storage subsystems in network are surveyed and their key technologies spotlighted. Storage subsystems are becoming increasingly important in new network systems in which communications and data processing are systematically combined. These systems require a new class of high-performance mass-information storage in order to effectively utilize their processing power. The requirements of high transfer rates, high transactional rates and large storage capacities, coupled with high functionality, fault tolerance and flexibility in configuration, are major challenges in storage subsystems. Recent progress in optical disk technology has resulted in improved performance of on-line external memories to optical disk drives, which are competing with mid-range magnetic disks. Optical disks are more effective than magnetic disks in using low-traffic random-access file storing multimedia data that requires large capacity, such as in archive use and in information distribution use by ROM disks. Finally, it demonstrates image coded document file servers for local area network use that employ 130mm rewritable magneto-optical disk subsystems.
The Outer Disks of Herbig Stars From the UV to NIR
NASA Technical Reports Server (NTRS)
Grady, C.; Fukagawa, M.; Maruta, Y.; Ohta, Y.; Wisniewski, J.; Hashimoto, J.; Okamoto, Y.; Momose, M.; Currie, T.; Mcelwain, M.;
2014-01-01
Spatially-resolved imaging of Herbig stars and related objects began with HST, but intensified with commissioning of high-contrast imagers on 8-m class telescopes. The bulk of the data taken from the ground have been polarized intensity imagery at H-band, with the majority of the sources observed as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) survey. Sufficiently many systems have been imaged that we discuss disk properties in scattered, polarized light in terms of groups defined by the IR spectral energy distribution. We find novel phenomena in many of the disks, including spiral density waves, and discuss the disks in terms of clearing mechanisms. Some of the disks have sufficient data to map the dust and gas components, including water ice dissociation products.
NASA Technical Reports Server (NTRS)
Grady, C. A.; Currie, T.
2012-01-01
We present high-resolution, H-band, imaging observations, collected with Subaru/HiCIAO, of the scattered light from the transitional disk around SAO 206462 (HD 135344B). Although previous sub-mm imagery suggested the existence of the dust-depleted cavity at r approximates 46 AU, our observations reveal the presence of scattered light components as close as 0".2 (approx 28 AU) from the star. Moreover, we have discovered two small-scale spiral structures lying within 0".5 (approx 70 AU). We present models for the spiral structures using the spiral density wave theory, and derive a disk aspect ratio of h approx 0.1, which is consistent with previous sub-mm observations. This model can potentially give estimates of the temperature and rotation profiles of the disk based on dynamical processes, independently from sub-mm observations. It also predicts the evolution of the spiral structures, which can be observable on timescales of 10-20 years, providing conclusive tests of the model. While we cannot uniquely identify the origin of these spirals, planets embedded in the disk may be capable of exciting the observed morphology. Assuming that this is the case, we can make predictions on the locations and, possibly, the masses of the unseen planets. Such planets may be detected by future multi-wavelengths observations.
NASA Technical Reports Server (NTRS)
Muto, T.; Grady, C. A.; Hashimoto, J.; Fukagawa, M.; Hornbeck, J. B.; Sitko, M.; Russell, R.; Werren, C.; Cure, M; Currie, T.;
2012-01-01
We present high-resolution, H-band, imaging observations, collected with Subaru /HiCIAO, of the scattered light from the transitional disk around SAO 206462 (HD 1353448). Although previous sub-mm imagery suggested the existence of the dust-depleted cavity at r <= 46 AU, our observations reveal the presence of scattered light components as close as O".2 (approx 28 AU) from the star. Moreover , we have discovered two small-scale spiral structures lying within 0".5 (approx 70 AU). We present models for the spiral structures using the spiral density wave theory, and derive a disk aspect ratio of h approx. 0.1, which is consistent with previous sub-mm observations. This model can potentially give estimates of the temperature and rotation profiles of the disk based on dynamical processes. independently from sub-nun observations. It also predicts the evolution of the spiral structures, which can be observable on timescales of 10-20 years, providing conclusive tests of the model. While we cannot uniquely identify the origin of these spirals, planets embedded in the disk may be capable of exciting the observed morphology. Assuming that this is the case, we can make predictions on the locations and, possibly, the masses of the unseen planets. Such planets may be detected by future multi-wavelengths observations,
Wave chaos in the elastic disk.
Sondergaard, Niels; Tanner, Gregor
2002-12-01
The relation between the elastic wave equation for plane, isotropic bodies and an underlying classical ray dynamics is investigated. We study, in particular, the eigenfrequencies of an elastic disk with free boundaries and their connection to periodic rays inside the circular domain. Even though the problem is separable, wave mixing between the shear and pressure component of the wave field at the boundary leads to an effective stochastic part in the ray dynamics. This introduces phenomena typically associated with classical chaos as, for example, an exponential increase in the number of periodic orbits. Classically, the problem can be decomposed into an integrable part and a simple binary Markov process. Similarly, the wave equation can, in the high-frequency limit, be mapped onto a quantum graph. Implications of this result for the level statistics are discussed. Furthermore, a periodic trace formula is derived from the scattering matrix based on the inside-outside duality between eigenmodes and scattering solutions and periodic orbits are identified by Fourier transforming the spectral density.
Localized sources of propagating acoustic waves in the solar photosphere
NASA Technical Reports Server (NTRS)
Brown, Timothy M.; Bogdan, Thomas J.; Lites, Bruce W.; Thomas, John H.
1992-01-01
A time series of Doppler measurements of the solar photosphere with moderate spatial resolution is described which covers a portion of the solar disk surrounding a small sunspot group. At temporal frequencies above 5.5 mHz, the Doppler field probes the spatial and temporal distribution of regions that emit acoustic energy. In the frequency range between 5.5 and 7.5 mHz, inclusive, a small fraction of the surface area emits a disproportionate amount of acoustic energy. The regions with excess emission are characterized by a patchy structure at spatial scales of a few arcseconds and by association (but not exact co-location) with regions having substantial magnetic field strength. These observations bear on the conjecture that most of the acoustic energy driving solar p-modes is created in localized regions occupying a small fraction of the solar surface area.
Nanoscale modeling for ultrathin liquid films: Spreading and coupled layering
NASA Astrophysics Data System (ADS)
Phillips, David Michael
The hard disk drive (HDD) industry is currently experiencing a compound annual growth rate of 100% for the areal density. Current production drives have an areal density of 80 Gbit in-2, and drives with an areal density of 100 Gbit in-2 have been recently demonstrated. While much of this growth has been fueled by the development of new read/write heads, some of this gain was achieved by reducing the spacing between the heads and the magnetic media. This in turn reduces the spacing at the head-disk interface (HDI). The HDI in a HDD system consists of a slider, which contains the read/write heads, flying over the disk surface on an air bearing. The current designed separation distance, or fly height, is less than 10 nm. This spacing is expected to reduce to a mere 5 nm within the next few years. With the reduced fly height, intermittent contacts at the HDI become more probable. Only a thin lubricant film of perfluoropolyether (PFPE) and a sputtered carbon overcoat on the disk surface protect the slider and the stored data from mechanical and thermal damage. The PFPE film is quite thin, with a thickness of less than 2 nm or about a monolayer of molecules. During an HDI contact, the PFPE film is considered sacrificial and is often depleted in the contact area. In order to maintain adequate protection for the disk surface, PFPE molecules from the surrounding film must replenish the depleted area. This replenishment ability directly opposes the requirement that the PFPE film must not spin-off of the disk surface due to the disk rotation rate, which is as high as 10,000 RPM in current drives. To balance the PFPE films to sufficiently meet both requirements, HDD manufacturers functionalized the endgroups of the PFPE molecules to allow some portion of the lubricant film to reversibly bond with the disk overcoat. The result is a lubricant film that has a slower replenishment but does not spin-off. The work presented here focuses on the replenishment ability of thin films of liquid PFPE. The experimental analogue of replenishment is the one-dimensional spreading analysis. PFPEs with functional endgroups demonstrated coupled molecular layering and dewetting phenomena during the spreading analysis, while PFPEs with nonfunctional endgroups did not. All of the PFPE thin films spread via a diffusive process and had diffusion coefficients that depended on the local film thickness. A theoretical analysis is presented here for both the governing equation and the disjoining pressure driving force for the PFPE thin film spreading. For PFPEs with non-functional endgroups, a reasonable analysis is performed on the diffusion coefficient for two classes of film: submonolayer and multilayer. The diffusion coefficient of PFPEs with functional endgroups are qualitatively linked to the gradient of the film disjoining pressure. To augment this theory, both lattice-based and off-lattice Monte Carlo simulations are conducted for PFPE film models. The lattice-based model shows the existence of a critical functional endgroup interaction strength. It is also used to study the break-up of molecular layers for a spreading film via a fractal analysis. The off-lattice model is used to calculate the anisotropic pressure tensor for the model PFPE thin film and subsequently the film disjoining pressure. The model also qualitatively analyzes of the self diffusion in the film.
Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy.
Tombesi, F; Meléndez, M; Veilleux, S; Reeves, J N; González-Alfonso, E; Reynolds, C S
2015-03-26
Powerful winds driven by active galactic nuclei are often thought to affect the evolution of both supermassive black holes and their host galaxies, quenching star formation and explaining the close relationship between black holes and galaxies. Recent observations of large-scale molecular outflows in ultraluminous infrared galaxies support this quasar-feedback idea, because they directly trace the gas from which stars form. Theoretical models suggest that these outflows originate as energy-conserving flows driven by fast accretion-disk winds. Proposed connections between large-scale molecular outflows and accretion-disk activity in ultraluminous galaxies were incomplete because no accretion-disk wind had been detected. Conversely, studies of powerful accretion-disk winds have until now focused only on X-ray observations of local Seyfert galaxies and a few higher-redshift quasars. Here we report observations of a powerful accretion-disk wind with a mildly relativistic velocity (a quarter that of light) in the X-ray spectrum of IRAS F11119+3257, a nearby (redshift 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow. The active galactic nucleus is responsible for about 80 per cent of the emission, with a quasar-like luminosity of 1.5 × 10(46) ergs per second. The energetics of these two types of wide-angle outflows is consistent with the energy-conserving mechanism that is the basis of the quasar feedback in active galactic nuclei that lack powerful radio jets (such jets are an alternative way to drive molecular outflows).
RESONANT CLUMPING AND SUBSTRUCTURE IN GALACTIC DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molloy, Matthew; Smith, Martin C.; Shen, Juntai
2015-05-10
We describe a method to extract resonant orbits from N-body simulations, exploiting the fact that they close in frames rotating with a constant pattern speed. Our method is applied to the N-body simulation of the Milky Way by Shen et al. This simulation hosts a massive bar, which drives strong resonances and persistent angular momentum exchange. Resonant orbits are found throughout the disk, both close to the bar and out to the very edges of the disk. Using Fourier spectrograms, we demonstrate that the bar is driving kinematic substructure even in the very outer parts of the disk. We identifymore » two major orbit families in the outskirts of the disk, one of which makes significant contributions to the kinematic landscape, namely, the m:l = 3:−2 family, resonating with the bar. A mechanism is described that produces bimodal distributions of Galactocentric radial velocities at selected azimuths in the outer disk. It occurs as a result of the temporal coherence of particles on the 3:−2 resonant orbits, which causes them to arrive simultaneously at pericenter or apocenter. This resonant clumping, due to the in-phase motion of the particles through their epicycle, leads to both inward and outward moving groups that belong to the same orbital family and consequently produce bimodal radial velocity distributions. This is a possible explanation of the bimodal velocity distributions observed toward the Galactic anticenter by Liu et al. Another consequence is that transient overdensities appear and dissipate (in a symmetric fashion), resulting in a periodic pulsing of the disk’s surface density.« less
Evaluating Non-In-Place Update Techniques for Flash-Based Transaction Processing Systems
NASA Astrophysics Data System (ADS)
Wang, Yongkun; Goda, Kazuo; Kitsuregawa, Masaru
Recently, flash memory is emerging as the storage device. With price sliding fast, the cost per capacity is approaching to that of SATA disk drives. So far flash memory has been widely deployed in consumer electronics even partly in mobile computing environments. For enterprise systems, the deployment has been studied by many researchers and developers. In terms of the access performance characteristics, flash memory is quite different from disk drives. Without the mechanical components, flash memory has very high random read performance, whereas it has a limited random write performance because of the erase-before-write design. The random write performance of flash memory is comparable with or even worse than that of disk drives. Due to such a performance asymmetry, naive deployment to enterprise systems may not exploit the potential performance of flash memory at full blast. This paper studies the effectiveness of using non-in-place-update (NIPU) techniques through the IO path of flash-based transaction processing systems. Our deliberate experiments using both open-source DBMS and commercial DBMS validated the potential benefits; x3.0 to x6.6 performance improvement was confirmed by incorporating non-in-place-update techniques into file system without any modification of applications or storage devices.
GLOBAL SIMULATIONS OF GALACTIC WINDS INCLUDING COSMIC-RAY STREAMING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruszkowski, Mateusz; Yang, H.-Y. Karen; Zweibel, Ellen, E-mail: mateuszr@umich.edu, E-mail: hsyang@astro.umd.edu, E-mail: zweibel@astro.wisc.edu
2017-01-10
Galactic outflows play an important role in galactic evolution. Despite their importance, a detailed understanding of the physical mechanisms responsible for the driving of these winds is lacking. In an effort to gain more insight into the nature of these flows, we perform global three-dimensional magnetohydrodynamical simulations of an isolated Milky Way-size starburst galaxy. We focus on the dynamical role of cosmic rays (CRs) injected by supernovae, and specifically on the impact of the streaming and anisotropic diffusion of CRs along the magnetic fields. We find that these microphysical effects can have a significant effect on the wind launching andmore » mass loading factors, depending on the details of the plasma physics. Due to the CR streaming instability, CRs propagating in the interstellar medium scatter on self-excited Alfvén waves and couple to the gas. When the wave growth due to the streaming instability is inhibited by some damping process, such as turbulent damping, the coupling of CRs to the gas is weaker and their effective propagation speed faster than the Alfvén speed. Alternatively, CRs could scatter from “extrinsic turbulence” that is driven by another mechanism. We demonstrate that the presence of moderately super-Alfvénic CR streaming enhances the efficiency of galactic wind driving. Cosmic rays stream away from denser regions near the galactic disk along partially ordered magnetic fields and in the process accelerate more tenuous gas away from the galaxy. For CR acceleration efficiencies broadly consistent with the observational constraints, CRs reduce the galactic star formation rates and significantly aid in launching galactic winds.« less
Mechanisms driving the global and seasonal structure of the 16-day planetary wave
NASA Astrophysics Data System (ADS)
Nguyen, V.; Chang, L. C.; Liu, H.; Palo, S. E.
2013-12-01
Past observations have shown that the effects of the quasi 16-day planetary wave, representing the second symmetric Rossby normal mode, are prevalent throughout the middle atmosphere and occasionally, some portions of the upper atmosphere. In the presented work, we investigate the mechanisms driving the propagation of the quasi 16-day planetary wave from a source in the lower atmosphere to higher altitudes by using the NCAR Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM). The quasi 16-day planetary wave is simulated in the model by introducing perturbations in geopotential height at the lower boundary of the model and comparing it to a control run. Analysis of the model runs over the course of a year show that the background zonal winds play an important role in driving seasonal changes in the quasi 16-day planetary wave structure. Derived quasi-geostrophic potential vorticity gradient and Eliassen-Palm flux from the model output also show that the penetration of the wave into regions of mean wind instability can drive wave amplification in certain regions. The model results are compared to the quasi 16-day wave structure derived from TIMED-SABER observations to identify similarities/differences between the model and observations, and provide further insight into the mechanisms driving the wave propagation.
Experimental investigation of turbine disk cavity aerodynamics and heat transfer
NASA Technical Reports Server (NTRS)
Daniels, W. A.; Johnson, B. V.
1993-01-01
An experimental investigation of turbine disk cavity aerodynamics and heat transfer was conducted to provide an experimental data base that can guide the aerodynamic and thermal design of turbine disks and blade attachments for flow conditions and geometries simulating those of the space shuttle main engine (SSME) turbopump drive turbines. Experiments were conducted to define the nature of the aerodynamics and heat transfer of the flow within the disk cavities and blade attachments of a large scale model simulating the SSME turbopump drive turbines. These experiments include flow between the main gas path and the disk cavities, flow within the disk cavities, and leakage flows through the blade attachments and labyrinth seals. Air was used to simulate the combustion products in the gas path. Air and carbon dioxide were used to simulate the coolants injected at three locations in the disk cavities. Trace amounts of carbon dioxide were used to determine the source of the gas at selected locations on the rotors, the cavity walls, and the interstage seal. The measurements on the rotor and stationary walls in the forward and aft cavities showed that the coolant effectiveness was 90 percent or greater when the coolant flow rate was greater than the local free disk entrainment flow rate and when room temperature air was used as both coolant and gas path fluid. When a coolant-to-gas-path density ratio of 1.51 was used in the aft cavity, the coolant effectiveness on the rotor was also 90 percent or greater at the aforementioned condition. However, the coolant concentration on the stationary wall was 60 to 80 percent at the aforementioned condition indicating a more rapid mixing of the coolant and flow through the rotor shank passages. This increased mixing rate was attributed to the destabilizing effects of the adverse density gradients.
Study of Solid State Drives performance in PROOF distributed analysis system
NASA Astrophysics Data System (ADS)
Panitkin, S. Y.; Ernst, M.; Petkus, R.; Rind, O.; Wenaus, T.
2010-04-01
Solid State Drives (SSD) is a promising storage technology for High Energy Physics parallel analysis farms. Its combination of low random access time and relatively high read speed is very well suited for situations where multiple jobs concurrently access data located on the same drive. It also has lower energy consumption and higher vibration tolerance than Hard Disk Drive (HDD) which makes it an attractive choice in many applications raging from personal laptops to large analysis farms. The Parallel ROOT Facility - PROOF is a distributed analysis system which allows to exploit inherent event level parallelism of high energy physics data. PROOF is especially efficient together with distributed local storage systems like Xrootd, when data are distributed over computing nodes. In such an architecture the local disk subsystem I/O performance becomes a critical factor, especially when computing nodes use multi-core CPUs. We will discuss our experience with SSDs in PROOF environment. We will compare performance of HDD with SSD in I/O intensive analysis scenarios. In particular we will discuss PROOF system performance scaling with a number of simultaneously running analysis jobs.
Elastic metamaterial beam with remotely tunable stiffness
NASA Astrophysics Data System (ADS)
Qian, Wei; Yu, Zhengyue; Wang, Xiaole; Lai, Yun; Yellen, Benjamin B.
2016-02-01
We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ˜30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.
Tracking the Disk Wind Behavior of MAXI J1305-704
NASA Astrophysics Data System (ADS)
Sinclair, Kimberly Poppy; Miller, Jon M.
2017-01-01
There is still much to be understood about black hole accretion disks and their relationship to black hole disk winds. In an attempt to better understand these relationships, we have analyzed the x-ray transient black hole binary MAXI J1305-704 during its outburst in 2012 in order to draw conclusions about the parameters of its disk. The source showed strong absorption signs, as detected by Chandra, on April 21, 2012. From this date on, we analyzed SWIFT observations of the source, using XSPEC from HEASOFT, in order to find strong signals of absorption. By modeling 67 successive observations over the period of 74 days, we were able to closely track the evolution of various disk properties, from inner disk temperature, to power law index, to column density. We could also analyze various parameter relationships in order to determine if there is a statistically significant correlation between any of the properties of a disk. We found that there are strong linear relationships between disk temperature & ionization, photon index & disk temperature, and photon index & ionization. These relationships seem to imply that the corona, in addition to the disk, may be driving the wind properties. Additionally, the counterintuitive relationship between disk temperature and ionization, where disk temperature increases as ionization decreases, seems to imply that there are mechanisms at play in the disk system that are not yet fully understood.
Albach, Daniel; Chanteloup, Jean-Christophe
2015-01-12
A comprehensive experimental benchmarking of Yb(3+):YAG crystalline and co-sintered ceramic disks of similar thickness and doping level is presented in the context of high average power laser amplifier operation. Comparison is performed considering gain, depolarization and wave front deformation quantitative measurements and analysis.
MIGRATION TRAPS IN DISKS AROUND SUPERMASSIVE BLACK HOLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellovary, Jillian M.; Low, Mordecai-Mark Mac; McKernan, Barry
Accretion disks around supermassive black holes (SMBHs) in active galactic nuclei (AGNs) contain stars, stellar mass black holes, and other stellar remnants, which perturb the disk gas gravitationally. The resulting density perturbations exert torques on the embedded masses causing them to migrate through the disk in a manner analogous to planets in protoplanetary disks. We determine the strength and direction of these torques using an empirical analytic description dependent on local disk gradients, applied to two different analytic, steady-state disk models of SMBH accretion disks. We find that there are radii in such disks where the gas torque changes sign,more » trapping migrating objects. Our analysis shows that major migration traps generally occur where the disk surface density gradient changes sign from positive to negative, around 20–300R{sub g}, where R{sub g} = 2GM/c{sup 2} is the Schwarzschild radius. At these traps, massive objects in the AGN disk can accumulate, collide, scatter, and accrete. Intermediate mass black hole formation is likely in these disk locations, which may lead to preferential gap and cavity creation at these radii. Our model thus has significant implications for SMBH growth as well as gravitational wave source populations.« less
Coherent structures in interacting vortex rings
NASA Astrophysics Data System (ADS)
Deng, Jian; Xue, Jingyu; Mao, Xuerui; Caulfield, C. P.
2017-02-01
We investigate experimentally the nonlinear structures that develop from interacting vortex rings induced by a sinusoidally oscillating ellipsoidal disk in fluid at rest. We vary the scaled amplitude or Keulegan-Carpenter number 0.3
An 80 au cavity in the disk around HD 34282
NASA Astrophysics Data System (ADS)
van der Plas, G.; Ménard, F.; Canovas, H.; Avenhaus, H.; Casassus, S.; Pinte, C.; Caceres, C.; Cieza, L.
2017-11-01
Context. Large cavities in disks are important testing grounds for the mechanisms proposed to drive disk evolution and dispersion, such as dynamical clearing by planets and photoevaporation. Aims: We aim to resolve the large cavity in the disk around HD 34282, whose presence has been predicted by previous studies modeling the spectral energy distribution of the disk. Methods: Using ALMA band 7 observations we studied HD 34282 with a spatial resolution of 0.10″ × 0.17'' at 345 GHz. Results: We resolve the disk around HD 34282 into a ring between 0.24'' and 1.15'' (78 and 374 au adopting a distance of 325 pc). The emission in this ring shows azimuthal asymmetry centered at a radial distance of 0.46'' and a position angle of 135° and an azimuthal FWHM of 51°. We detect CO emission both inside the disk cavity and as far out as 2.7 times the radial extent of the dust emission. Conclusions: Both the large disk cavity and the azimuthal structure in the disk around HD 34282 can be explained by the presence of a 50 Mjup brown dwarf companion at a separation of ≈0.1''.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kastner, Joel H.; Punzi, Kristina; Hily-Blant, Pierre
2014-09-20
We have conducted the first comprehensive millimeter-wave molecular emission line surveys of the evolved circumstellar disks orbiting the nearby, roughly solar-mass, pre-main-sequence (T Tauri) stars, TW Hya (D = 54 pc) and V4046 Sgr AB (D = 73 pc). Both disks are known to retain significant residual gaseous components despite the advanced ages of their host stars (∼8 Myr and ∼21 Myr, respectively). Our unbiased broadband radio spectral surveys of the TW Hya and V4046 Sgr disks were performed with the Atacama Pathfinder Experiment 12 m telescope, and are intended to yield a complete census of the bright molecular emissionmore » lines in the range 275-357 GHz (1.1-0.85 mm). We find that lines of {sup 12}CO, {sup 13}CO, HCN, CN, and C{sub 2}H, all of which lie in the higher frequency (>330 GHz) range, constitute the strongest molecular emission from both disks in the spectral region surveyed. The molecule C{sub 2}H is detected here for the first time in both disks, as is CS in the TW Hya disk. The survey results also include the first measurements of the full suite of the hyperfine transitions of CN N = 3 → 2 and C{sub 2}H N = 4 → 3 in both disks. Modeling of these CN and C{sub 2}H hyperfine complexes in the spectrum of TW Hya indicates that the emission from both species is optically thick and may originate from very cold (≲10 K) disk regions. The latter result, if confirmed, would suggest the efficient production of CN and C{sub 2}H in the outer disk and/or near the disk midplane. It furthermore appears that the fractional abundances of CN and C{sub 2}H are significantly enhanced in these evolved protoplanetary disks, relative to the fractional abundances of the same molecules in the environments of deeply embedded protostars. These results, combined with previous determinations of the enhanced abundances of other species (such as HCO{sup +}) in T Tauri star disks, underscore the importance of properly accounting for high-energy (FUV and X-ray) radiation from the central T Tauri star when modeling protoplanetary disk gas chemistry and physical conditions.« less
Minidisks in Binary Black Hole Accretion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, Geoffrey; MacFadyen, Andrew, E-mail: gsr257@nyu.edu
Newtonian simulations have demonstrated that accretion onto binary black holes produces accretion disks around each black hole (“minidisks”), fed by gas streams flowing through the circumbinary cavity from the surrounding circumbinary disk. We study the dynamics and radiation of an individual black hole minidisk using 2D hydrodynamical simulations performed with a new general relativistic version of the moving-mesh code Disco. We introduce a comoving energy variable that enables highly accurate integration of these high Mach number flows. Tidally induced spiral shock waves are excited in the disk and propagate through the innermost stable circular orbit, providing a Reynolds stress thatmore » causes efficient accretion by purely hydrodynamic means and producing a radiative signature brighter in hard X-rays than the Novikov–Thorne model. Disk cooling is provided by a local blackbody prescription that allows the disk to evolve self-consistently to a temperature profile where hydrodynamic heating is balanced by radiative cooling. We find that the spiral shock structure is in agreement with the relativistic dispersion relation for tightly wound linear waves. We measure the shock-induced dissipation and find outward angular momentum transport corresponding to an effective alpha parameter of order 0.01. We perform ray-tracing image calculations from the simulations to produce theoretical minidisk spectra and viewing-angle-dependent images for comparison with observations.« less
Application of M-JPEG compression hardware to dynamic stimulus production.
Mulligan, J B
1997-01-01
Inexpensive circuit boards have appeared on the market which transform a normal micro-computer's disk drive into a video disk capable of playing extended video sequences in real time. This technology enables the performance of experiments which were previously impossible, or at least prohibitively expensive. The new technology achieves this capability using special-purpose hardware to compress and decompress individual video frames, enabling a video stream to be transferred over relatively low-bandwidth disk interfaces. This paper will describe the use of such devices for visual psychophysics and present the technical issues that must be considered when evaluating individual products.
Experimental analysis and flow visualization of a thin liquid film on a stationary and rotating disk
NASA Technical Reports Server (NTRS)
Thomas, S.; Faghri, A.; Hankey, W.
1991-01-01
The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed ranged from 0-300 rpm and the flow rate varied from 7.0-15.0 lpm. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Upstream from the jump, the film thickness was determined by the inertial and frictional forces on the fluid, and the radial spreading of the film. The surface tension at the edge of the disk affected the film thickness downstream from the jump. For the rotating disk, the film thickness was dependent upon the inertial and frictional forces near the center of the disk and the centrifugal forces near the edge of the disk.
NASA Astrophysics Data System (ADS)
Durisen, R. H.; Boss, A. P.; Mayer, L.; Nelson, A. F.; Quinn, T.; Rice, W. K. M.
Protoplanetary gas disks are likely to experience gravitational instabilities (GIs) during some phase of their evolution. Density perturbations in an unstable disk grow on a dynamic timescale into spiral arms that produce efficient outward transfer of angular momentum and inward transfer of mass through gravitational torques. In a cool disk with sufficiently rapid cooling, the spiral arms in an unstable disk form self-gravitating clumps. Whether gas giant protoplanets can form by such a disk instability process is the primary question addressed by this review. We discuss the wide range of calculations undertaken by ourselves and others using various numerical techniques, and we report preliminary results from a large multicode collaboration. Additional topics include triggering mechanisms for GIs, disk heating and cooling, orbital survival of dense clumps, interactions of solids with GI-driven waves and shocks, and hybrid scenarios where GIs facilitate core accretion. The review ends with a discussion of how well disk instability and core accretion fare in meeting observational constraints.
RAID-2: Design and implementation of a large scale disk array controller
NASA Technical Reports Server (NTRS)
Katz, R. H.; Chen, P. M.; Drapeau, A. L.; Lee, E. K.; Lutz, K.; Miller, E. L.; Seshan, S.; Patterson, D. A.
1992-01-01
We describe the implementation of a large scale disk array controller and subsystem incorporating over 100 high performance 3.5 inch disk drives. It is designed to provide 40 MB/s sustained performance and 40 GB capacity in three 19 inch racks. The array controller forms an integral part of a file server that attaches to a Gb/s local area network. The controller implements a high bandwidth interconnect between an interleaved memory, an XOR calculation engine, the network interface (HIPPI), and the disk interfaces (SCSI). The system is now functionally operational, and we are tuning its performance. We review the design decisions, history, and lessons learned from this three year university implementation effort to construct a truly large scale system assembly.
Clogging and jamming transitions in periodic obstacle arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Hong; Reichhardt, Charles; Olson Reichhardt, Cynthia Jane
2017-03-29
We numerically examine clogging transitions for bidisperse disks flowing through a two-dimensional periodic obstacle array. Here, we show that clogging is a probabilistic event that occurs through a transition from a homogeneous flowing state to a heterogeneous or phase-separated jammed state where the disks form dense connected clusters. The probability for clogging to occur during a fixed time increases with increasing particle packing and obstacle number. For driving at different angles with respect to the symmetry direction of the obstacle array, we show that certain directions have a higher clogging susceptibility. It is also possible to have a size-specific cloggingmore » transition in which one disk size becomes completely immobile while the other disk size continues to flow.« less
Chemistry in protoplanetary disks
NASA Astrophysics Data System (ADS)
Semenov, D. A.
2012-01-01
In this lecture I discuss recent progress in the understanding of the chemical evolution of protoplanetary disks that resemble our Solar system during the first ten million years. At the verge of planet formation, strong variations of temperature, density, and radiation intensities in these disks lead to a layered chemical structure. In hot, dilute and heavily irradiated atmosphere only simple radicals, atoms, and atomic ions can survive, formed and destroyed by gas-phase processes. Beneath the atmosphere a partly UV-shielded, warm molecular layer is located, where high-energy radiation drives rich chemistry, both in the gas phase and on dust surfaces. In a cold, dense, dark disk midplane many molecules are frozen out, forming thick icy mantles where surface chemistry is active and where complex (organic) species are synthesized.
A submicron device to rectify a square-wave angular velocity.
Moradian, A; Miri, M F
2011-02-01
We study a system composed of two thick dielectric disks separated by a thin layer of an electrolyte solution. Initially both plates have the same surface charge distribution. The surface charge distribution has no rotational symmetry. We show that the top plate experiences a torque [Formula: see text]([Formula: see text]) if it rotates about its axis by an angle [Formula: see text] . The torque can be controlled by varying the electrolyte concentration, the separation and the surface charge density of the plates. For a specific example of charged rods attached to the plates, we find [Formula: see text]([Formula: see text]) [Formula: see text] sin(4[Formula: see text]) . We also study the dynamics of the system. We consider the case where the angular velocity of the bottom disk is a square-wave signal. We find that the average angular velocity of the top disk is not zero.
Data Management, the Victorian era child of the 21st century
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farber, Rob
2007-03-30
Do you remember when a gigabyte disk drive was “a lot” of storage in that by-gone age of the 20th century? Still in our first decade of the 21st century, major supercomputer sites now speak of storage in terms of petabytes, 1015 bytes, or six orders of magnitude increase in capacity over a gigabyte! Unlike our archaic “big” disk drive where all the data was in one place, HPC storage is now distributed across many machines and even across the Internet. Collaborative research engages many scientists who need to find and use each others data, preferably in an automated fashion,more » which complicates an already muddled problem.« less
Use of redundant arrays of inexpensive disks in orthodontic practice.
Graham, David Matthew; Graham, Michael James; Mupparapu, Mel
2017-04-01
In a time when orthodontists are getting away from paper charts and going digital with their patient data and imaging, practitioners need to be prepared for a potential hardware failure in their data infrastructure. Although a backup plan in accordance with the Security Rule of the Health Insurance Portability and Accountability Act (HIPAA) of 1996 may prevent data loss in case of a disaster or hard drive failure, it does little to ensure business and practice continuity. Through the implementation of a common technique used in information technology, the redundant array of inexpensive disks, a practice may continue normal operations without interruption if a hard drive fails. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
A Disk-Based System for Producing and Distributing Science Products from MODIS
NASA Technical Reports Server (NTRS)
Masuoka, Edward; Wolfe, Robert; Sinno, Scott; Ye Gang; Teague, Michael
2007-01-01
Since beginning operations in 1999, the MODIS Adaptive Processing System (MODAPS) has evolved to take advantage of trends in information technology, such as the falling cost of computing cycles and disk storage and the availability of high quality open-source software (Linux, Apache and Perl), to achieve substantial gains in processing and distribution capacity and throughput while driving down the cost of system operations.
A Layered Solution for Supercomputing Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grider, Gary
To solve the supercomputing challenge of memory keeping up with processing speed, a team at Los Alamos National Laboratory developed two innovative memory management and storage technologies. Burst buffers peel off data onto flash memory to support the checkpoint/restart paradigm of large simulations. MarFS adds a thin software layer enabling a new tier for campaign storage—based on inexpensive, failure-prone disk drives—between disk drives and tape archives.
NASA Technical Reports Server (NTRS)
Jones, Robert E.; Kramarchuk, Ihor; Williams, Wallace D.; Pouch, John J.; Gilbert, Percy
1989-01-01
Computer-controlled thermal-wave microscope developed to investigate III-V compound semiconductor devices and materials. Is nondestructive technique providing information on subsurface thermal features of solid samples. Furthermore, because this is subsurface technique, three-dimensional imaging also possible. Microscope uses intensity-modulated electron beam of modified scanning electron microscope to generate thermal waves in sample. Acoustic waves generated by thermal waves received by transducer and processed in computer to form images displayed on video display of microscope or recorded on magnetic disk.
Imaging the Disk and Jet of the Classical T Tauri Star AA Tau
NASA Astrophysics Data System (ADS)
Cox, Andrew; Grady, C.; Hammel, H. B.; Hornbeck, J.; Russell, R. W.; Sitko, M. L.; Woodgate, B. E.
2013-01-01
Previous studies of the classical T Tauri star AA Tau have interpreted the UX Orionis-like photo-polarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipole field. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use HST/STIS coronagraphic imagery to measure the V magnitude of the star for both STIS corona graphic observations, compare these data with optical photometry in the literature and find that unlike other classical T Tauri stars observed on the same HST program, the disk is most robustly detected at optical minimum light. We measure the outer disk radius, major axis position angle, and disk inclination, and find that the inner disk, as reported in the literature, is both mis-inclined and misaligned with respect to the outer disk. AA Tau drives a faint jet which is also misaligned with respect to the projection of the outer disk minor axis and which is poorly collimated near the star. The measured outer disk inclination, 71±1 degrees, is out of the inclination band suggested for stars with UX Orionis-like variability where no grain growth has occurred in the disk. The faintness of the disk, the small disk size, and visibility of the star and despite the high inclination, all indicate that the disk must have experienced grain growth and settling toward the disk midplane, which we verify by comparing the observed disk with model imagery from the literature.
A Resonantly Excited Disk-Oscillation Model of High-Frequency QPOs of Microquasars
NASA Astrophysics Data System (ADS)
Kato, Shoji
2012-12-01
A possible model of twin high-frequency QPOs (HF QPOs) of microquasars is examined. The disk is assumed to have global magnetic fields and to be deformed with a two-armed pattern. In this deformed disk, a set of a two-armed (m = 2) vertical p-mode oscillation and an axisymmetric (m = 0) g-mode oscillation is considered. They resonantly interact through the disk deformation when their frequencies are the same. This resonant interaction amplifies the set of the above oscillations in the case where these two oscillations have wave energies of opposite signs. These oscillations are assumed to be excited most efficiently in the case where the radial group velocities of these two waves vanish at the same place. The above set of oscillations is not unique, depending on the node number n, of oscillations in the vertical direction. We consider that the basic two sets of oscillations correspond to the twin QPOs. The frequencies of these oscillations depend on the disk parameters, such as the strength of the magnetic fields. For observational mass ranges of GRS 1915+ 105, GRO J1655-40, XTE J1550-564, and HEAO H1743-322, the spins of these sources are estimated. High spins of these sources can be described if the disks have weak poloidal magnetic fields as well as toroidal magnetic fields of moderate strength. In this model the 3:2 frequency ratio of high-frequency QPOs is not related to their excitation, but occurs by chance.
COLD CO GAS IN THE DISK OF THE YOUNG ERUPTIVE STAR EX LUP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kóspál, Á.; Ábrahám, P.; Moór, A.
EX Lupi-type objects (EXors) form a sub-class of T Tauri stars, defined by sudden sporadic flare-ups of 1–5 mag at optical wavelengths. These eruptions are attributed to enhanced mass accretion from the circumstellar disk to the star, and may constitute important events in shaping the structure of the inner disk and the forming planetary system. Although disk properties must play a fundamental role in driving the outbursts, they are surprisingly poorly known. In order to characterize the dust and gas components of EXor disks, here we report on observations of the {sup 12}CO J = 3−2 and 4–3 lines, and themore » {sup 13}CO 3–2 line in EX Lup, the prototype of the EXor class. We reproduce the observed line fluxes and profiles with a line radiative transfer model and compare the obtained parameters with corresponding ones of other T Tauri disks.« less
Chemical Evolution of a Protoplanetary Disk
NASA Astrophysics Data System (ADS)
Semenov, Dmitry A.
2011-12-01
In this paper we review recent progress in our understanding of the chemical evolution of protoplanetary disks. Current observational constraints and theoretical modeling on the chemical composition of gas and dust in these systems are presented. Strong variations of temperature, density, high-energy radiation intensities in these disks, both radially and vertically, result in a peculiar disk chemical structure, where a variety of processes are active. In hot, dilute and heavily irradiated atmosphere only the most photostable simple radicals and atoms and atomic ions exist, formed by gas-phase processes. Beneath the atmosphere a partly UV-shielded, warm molecular layer is located, where high-energy radiation drives rich ion-molecule and radical-radical chemistry, both in the gas phase and on dust surfaces. In a cold, dense, dark disk midplane many molecules are frozen out, forming thick icy mantles where surface chemistry is active and where complex polyatomic (organic) species are synthesized. Dynamical processes affect disk chemical composition by enriching it in abundances of complex species produced via slow surface processes, which will become detectable with ALMA.
Using AORSA to simulate helicon waves in DIII-D
NASA Astrophysics Data System (ADS)
Lau, C.; Jaeger, E. F.; Bertelli, N.; Berry, L. A.; Blazevski, D.; Green, D. L.; Murakami, M.; Park, J. M.; Pinsker, R. I.; Prater, R.
2015-12-01
Recent efforts have shown that helicon waves (fast waves at > 20ωci) may be an attractive option for driving efficient off-axis current drive during non-inductive tokamak operation for DIII-D, ITER and DEMO. For DIII-D scenarios, the ray tracing code, GENRAY, has been extensively used to study helicon current drive efficiency and location as a function of many plasma parameters. The full wave code, AORSA, which is applicable to arbitrary Larmor radius and can resolve arbitrary ion cyclotron harmonic order, has been recently used to validate the ray tracing technique at these high cyclotron harmonics. If the SOL is ignored, it will be shown that the GENRAY and AORSA calculated current drive profiles are comparable for the envisioned high beta advanced scenarios for DIII-D, where there is high single pass absorption due to electron Landau damping and minimal ion damping. AORSA is also been used to estimate possible SOL effects on helicon current drive coupling and SOL absorption due to collisional and slow wave effects.
NASA Astrophysics Data System (ADS)
Zhang, B.; Hou, Y. J.; Zhang, J.
2018-03-01
Aims: We aim to ascertain the physical parameters of a propagating wave over the solar disk detected by the Interface Region Imaging Spectrograph (IRIS). Methods: Using imaging data from the IRIS and the Solar Dynamic Observatory (SDO), we tracked bright spots to determine the parameters of a propagating transverse wave in active region (AR) loops triggered by activation of a filament. Deriving the Doppler velocity of Si IV line from spectral observations of IRIS, we have determined the rotating directions of active region loops which are relevant to the wave. Results: On 2015 December 19, a filament was located on the polarity inversion line of the NOAA AR 12470. The filament was activated and then caused a C1.1 two-ribbon flare. Between the flare ribbons, two rotation motions of a set of bright loops were observed to appear in turn with opposite directions. Following the end of the second rotation, a propagating wave and an associated transverse oscillation were detected in these bright loops. In 1400 Å channel, there was bright material flowing along the loops in a wave-like manner, with a period of 128 s and a mean amplitude of 880 km. For the transverse oscillation, we tracked a given loop and determine the transverse positions of the tracking loop in a limited longitudinal range. In both of 1400 Å and 171 Å channels, approximately four periods are distinguished during the transverse oscillation. The mean period of the oscillation is estimated as 143 s and the displacement amplitude as between 1370 km and 690 km. We interpret these oscillations as a propagating kink wave and obtain its speed of 1400 km s-1. Conclusions: Our observations reveal that a flare associated with filament activation could trigger a kink propagating wave in active region loops over the solar disk. Movies associated to Figs. 1-4 are available at http://https://www.aanda.org
Laser-driven Mach waves for gigabar-range shock experiments
NASA Astrophysics Data System (ADS)
Swift, Damian; Lazicki, Amy; Coppari, Federica; Saunders, Alison; Nilsen, Joseph
2017-10-01
Mach reflection offers possibilities for generating planar, supported shocks at higher pressures than are practical even with laser ablation. We have studied the formation of Mach waves by algebraic solution and hydrocode simulation for drive pressures at much than reported previously, and for realistic equations of state. We predict that Mach reflection continues to occur as the drive pressure increases, and the pressure enhancement increases monotonically with drive pressure even though the ``enhancement spike'' characteristic of low-pressure Mach waves disappears. The growth angle also increases monotonically with pressure, so a higher drive pressure seems always to be an advantage. However, there are conditions where the Mach wave is perturbed by reflections. We have performed trial experiments at the Omega facility, using a laser-heated halfraum to induce a Mach wave in a polystyrene cone. Pulse length and energy limitations meant that the drive was not maintained long enough to fully support the shock, but the results indicated a Mach wave of 25-30 TPa from a drive pressure of 5-6 TPa, consistent with simulations. A similar configuration should be tested at the NIF, and a Z-pinch driven configuration may be possible. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Laser-driven Mach waves for gigabar-range shock experiments
NASA Astrophysics Data System (ADS)
Swift, Damian; Jenei, Amy; Coppari, Federica; Saunders, Alison; Nilsen, Joseph
2017-06-01
Mach reflection offers possibilities for generating planar, supported shocks at higher pressures than are practical even with laser ablation. We have studied the formation of Mach waves by algebraic solution and hydrocode simulation for drive pressures at much than reported previously, and for realistic equations of state. We predict that Mach reflection continues to occur as the drive pressure increases, and the pressure enhancement increases monotonically with drive pressure even though the ``enhancement spike'' characteristic of low-pressure Mach waves disappears. The growth angle also increases monotonically with pressure, so a higher drive pressure seems always to be an advantage. However, there are conditions where the Mach wave is perturbed by reflections. We have performed trial experiments at the Omega facility, using a laser-heated halfraum to induce a Mach wave in a polystyrene cone. Pulse length and energy limitations meant that the drive was not maintained long enough to fully support the shock, but the results indicated a Mach wave of 25-30 TPa from a drive pressure of 5-6 TPa, consistent with simulations. A similar configuration should perform well at the NIF, and a Z-pinch driven configuration may be possible. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Pinsker, Robert I.
2015-09-24
This introductory-level tutorial article describes the application of plasma waves in the lower hybrid range of frequencies for current drive in tokamaks. Wave damping mechanisms in a nearly collisionless hot magnetized plasma are briefly described, and the connections between the properties of the damping mechanisms and the optimal choices of wave properties (mode, frequency, wavelength) are explored. The two wave modes available for current drive in the lower hybrid range of frequencies (LHRF) are described and compared. The terms applied to these waves in different applications of plasma physics are elucidated. Here, the character of the ray paths of thesemore » waves in the LHRF is illustrated in slab and toroidal geometries. An upcoming experiment on one of these two wave modes, the “helicon” or “whistler”, to be carried out on the DIII-D tokamak, is described.« less
The Triggering of Large-Scale Waves by CME Initiation
NASA Astrophysics Data System (ADS)
Forbes, Terry
Studies of the large-scale waves generated at the onset of a coronal mass ejection (CME) can provide important information about the processes in the corona that trigger and drive CMEs. The size of the region where the waves originate can indicate the location of the magnetic forces that drive the CME outward, and the rate at which compressive waves steepen into shocks can provide a measure of how the driving forces develop in time. However, in practice it is difficult to separate the effects of wave formation from wave propagation. The problem is particularly acute for the corona because of the multiplicity of wave modes (e.g. slow versus fast MHD waves) and the highly nonuniform structure of the solar atmosphere. At the present time large-scale numerical simulations provide the best hope for deconvolving wave propagation and formation effects from one another.
Simulations of the Boundary Layer Between a White Dwarf and Its Accretion Disk
NASA Astrophysics Data System (ADS)
Balsara, Dinshaw S.; Fisker, Jacob Lund; Godon, Patrick; Sion, Edward M.
2009-09-01
Using a 2.5D time-dependent numerical code we recently developed, we solve the full compressible Navier-Stokes equations to determine the structure of the boundary layer (BL) between the white dwarf (WD) and the accretion disk in nonmagnetic cataclysmic variable systems. In this preliminary work, our numerical approach does not include radiation. In the energy equation, we either take the dissipation function (Φ) into account or we assume that the energy dissipated by viscous processes is instantly radiated away (Φ = 0). For a slowly rotating nonmagnetized accreting WD, the accretion disk extends all the way to the stellar surface. There, the matter impacts and spreads toward the poles as new matter continuously piles up behind it. We carry out numerical simulations for different values of the alpha-viscosity parameter (α), corresponding to different mass accretion rates. In the high viscosity cases (α = 0.1), the spreading BL sets off a gravity wave in the surface matter. The accretion flow moves supersonically over the cusp making it susceptible to the rapid development of gravity wave and/or Kelvin-Helmholtz shearing instabilities. This BL is optically thick and extends more than 30° to either side of the disk plane after only 3/4 of a Keplerian rotation period (tK = 19 s). In the low viscosity cases (α = 0.001), the spreading BL does not set off gravity waves and it is optically thin.
Quasi-periodic Behavior of Mini-disks in Binary Black Holes Approaching Merger
NASA Astrophysics Data System (ADS)
Bowen, Dennis B.; Mewes, Vassilios; Campanelli, Manuela; Noble, Scott C.; Krolik, Julian H.; Zilhão, Miguel
2018-01-01
We present the first magnetohydrodynamic simulation in which a circumbinary disk around a relativistic binary black hole feeds mass to individual accretion disks (“mini-disks”) around each black hole. Mass flow through the accretion streams linking the circumbinary disk to the mini-disks is modulated quasi-periodically by the streams’ interaction with a nonlinear m = 1 density feature, or “lump,” at the inner edge of the circumbinary disk: the stream supplying each mini-disk comes into phase with the lump at a frequency 0.74 times the binary orbital frequency. Because the binary is relativistic, the tidal truncation radii of the mini-disks are not much larger than their innermost stable circular orbits; consequently, the mini-disks’ inflow times are shorter than the conventional estimate and are comparable to the stream modulation period. As a result, the mini-disks are always in inflow disequilibrium, with their masses and spiral density wave structures responding to the stream’s quasi-periodic modulation. The fluctuations in each mini-disk’s mass are so large that as much as 75% of the total mini-disk mass can be contained within a single mini-disk. Such quasi-periodic modulation of the mini-disk structure may introduce distinctive time-dependent features in the binary’s electromagnetic emission.
Disks around merging binary black holes: From GW150914 to supermassive black holes
NASA Astrophysics Data System (ADS)
Khan, Abid; Paschalidis, Vasileios; Ruiz, Milton; Shapiro, Stuart L.
2018-02-01
We perform magnetohydrodynamic simulations in full general relativity of disk accretion onto nonspinning black hole binaries with mass ratio q =29 /36 . We survey different disk models which differ in their scale height, total size and magnetic field to quantify the robustness of previous simulations on the initial disk model. Scaling our simulations to LIGO GW150914 we find that such systems could explain possible gravitational wave and electromagnetic counterparts such as the Fermi GBM hard x-ray signal reported 0.4 s after GW150915 ended. Scaling our simulations to supermassive binary black holes, we find that observable flow properties such as accretion rate periodicities, the emergence of jets throughout inspiral, merger and postmerger, disk temperatures, thermal frequencies, and the time delay between merger and the boost in jet outflows that we reported in earlier studies display only modest dependence on the initial disk model we consider here.
Local fragmentation of thin disks in Eddington-inspired gravity
NASA Astrophysics Data System (ADS)
Roshan, Mahmood; Kazemi, Ali; De Martino, Ivan
2018-06-01
We find the generalized version of the Toomre's criterion for the stability of a rotating thin disk in the context of Eddington inspired Born-Infeld (EiBI) gravity which possesses one free parameter χ. To do so we use the weak field limit of the theory and find the dispersion relation for the propagation of matter density waves on the surface of a self-gravitating and differentially rotating disk. Finally we find a new version of Toomre's stability criterion for thin disks. We show that EiBI gravity with negative χ destabilizes all the rotating thin disks. On the other hand EiBI with positive χ substantially can suppress the local fragmentation, and has stabilizing effects against axi-symmetric perturbations. More specifically, we show that only an annulus remains unstable on the surface of the disk. The width of the annulus directly depends on the magnitude of χ.
NASA Astrophysics Data System (ADS)
Yan, Yiying; Lü, Zhiguo; Zheng, Hang
2013-11-01
We investigate the fluorescence spectrum of a two-level system driven by a monochromatic classical field by the Born-Markovian master equation based on a unitary transformation. The main purpose is to understand the effects of counter-rotating-wave terms of the driving on spectral features of the fluorescence. We have derived an analytical expression for the fluorescence spectrum, which is different from Mollow's theory, while Mollow's result on resonance is the limiting case of ours in moderately weak driving regimes. Our results demonstrate precisely that the counter-rotating-wave terms of the driving play an important role in the fluorescence spectrum for intense driving: (i) the counter-rotating coupling suppresses the red sideband in the Mollow triplet and it enhances the blue one in explicitly contrast to the well-known equal intensity of the sideband in Mollow's theory, (ii) the higher-order Mollow triplets appear as a characteristic spectral feature arising from counter-rotating-wave terms of the driving, and (iii) a significant frequency shift of the sidebands is observed, which depends on both the detuning and driving strength.
Lin, Long; Wang, Sihong; Niu, Simiao; Liu, Chang; Xie, Yannan; Wang, Zhong Lin
2014-02-26
In this work, we introduced an innovative noncontact, free-rotating disk triboelectric nanogenerator (FRD-TENG) for sustainably scavenging the mechanical energy from rotary motions. Its working principle was clarified through numerical calculations of the relative-rotation-induced potential difference, which serves as the driving force for the electricity generation. The unique characteristic of the FRD-TENG enables its high output performance compared to its working at the contact mode, with an effective output power density of 1.22 W/m(2) for continuously driving 100 light-emitting diodes. Ultrahigh stability of the output and exceptional durability of the device structure were achieved, and the reliable output was utilized for fast/effective charging of a lithium ion battery. Based on the relationship between its output performance and the parameters of the mechanical stimuli, the FRD-TENG could be employed as a self-powered mechanical sensor, for simultaneously detecting the vertical displacement and rotation speed. The FRD-TENG has superior advantages over the existing disk triboelectric nanogenerator, and exhibits significant progress toward practical applications of nanogenerators for both energy harvesting and self-powered sensor networks.
Automated Camouflage Pattern Generation Technology Survey.
1985-08-07
supported by high speed data communications? Costs: 9 What are your rates? $/CPU hour: $/MB disk storage/day: S/connect hour: other charges: What are your... data to the workstation, tape drives are needed for backing up and archiving completed patterns, 256 megabytes of on-line hard disk space as a minimum...is needed to support multiple processes and data files, and 4 megabytes of actual or virtual memory is needed to process the largest expected single
Prospects for Off-axis Current Drive via High Field Side Lower Hybrid Current Drive in DIII-D
NASA Astrophysics Data System (ADS)
Wukitch, S. J.; Shiraiwa, S.; Wallace, G. M.; Bonoli, P. T.; Holcomb, C.; Park, J. M.; Pinsker, R. I.
2017-10-01
An outstanding challenge for an economical, steady state tokamak is efficient off-axis current drive scalable to reactors. Previous studies have focused on high field side (HFS) launch of lower hybrid waves for current drive (LHCD) in double null configurations in reactor grade plasmas. The goal of this work is to find a HFS LHCD scenario for DIII-D that balances coupling, power penetration and damping. The higher magnetic field on the HFS improves wave accessibility, which allows for lower n||waves to be launched. These waves penetrate farther into the plasma core before damping at higher Te yielding a higher current drive efficiency. Utilizing advanced ray tracing and Fokker Planck simulation tools (GENRAY+CQL3D), wave penetration, absorption and drive current profiles in high performance DIII-D H-Mode plasmas were investigated. We found LH scenarios with single pass absorption, excellent wave penetration to r/a 0.6-0.8, FWHM r/a=0.2 and driven current up to 0.37 MA/MW coupled. These simulations indicate that HFS LHCD has potential to achieve efficient off-axis current drive in DIII-D and the latest results will be presented. Work supported by U.S. Dept. of Energy, Office of Science, Office of Fusion Energy Sciences, using User Facility DIII-D, under Award No. DE-FC02-04ER54698 and Contract No. DE-FC02-01ER54648 under Scientific Discovery through Advanced Computing Initiative.
Status of international optical disk standards
NASA Astrophysics Data System (ADS)
Chen, Di; Neumann, John
1999-11-01
Optical technology for data storage offers media removability with unsurpassed reliability. As the media are removable, data interchange between the media and drives from different sources is a major concern. The optical recording community realized, at the inception of this new storage technology development, that international standards for all optical recording disk/cartridge must be established to insure the healthy growth of this industry and for the benefit of the users. Many standards organizations took up the challenge and numerous international standards were established which are now being used world-wide. This paper provides a brief summary of the current status of the international optical disk standards.
NASA Astrophysics Data System (ADS)
Kim, Sun Ho; Hwang, Yong Seok; Jeong, Seung Ho; Wang, Son Jong; Kwak, Jong Gu
2017-10-01
An efficient current drive scheme in central or off-axis region is required for the steady state operation of tokamak fusion reactors. The current drive by using the fast wave in frequency range higher than two times lower hybrid resonance (w>2wlh) could be such a scheme in high density, high temperature reactor-grade tokamak plasmas. First, it has relatively higher parallel electric field to the magnetic field favorable to the current generation, compared to fast waves in other frequency range. Second, it can deeply penetrate into high density plasmas compared to the slow wave in the same frequency range. Third, parasitic coupling to the slow wave can contribute also to the current drive avoiding parametric instability, thermal mode conversion and ion heating occured in the frequency range w<2wlh. In this study, the propagation boundary, accessibility, and the energy flow of the fast wave are given via cold dispersion relation and group velocity. The power absorption and current drive efficiency are discussed qualitatively through the hot dispersion relation and the polarization. Finally, those characteristics are confirmed with ray tracing code GENRAY for the KSTAR plasmas.
Current drive by helicon waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Manash Kumar; Bora, Dhiraj; ITER Organization, Cadarache Centre-building 519, 131008 St. Paul-Lez-Durance
2009-01-01
Helicity in the dynamo field components of helicon wave is examined during the novel study of wave induced helicity current drive. Strong poloidal asymmetry in the wave magnetic field components is observed during helicon discharges formed in a toroidal vacuum chamber of small aspect ratio. High frequency regime is chosen to increase the phase velocity of helicon waves which in turn minimizes the resonant wave-particle interactions and enhances the contribution of the nonresonant current drive mechanisms. Owing to the strong poloidal asymmetry in the wave magnetic field structures, plasma current is driven mostly by the dynamo-electric-field, which arise due tomore » the wave helicity injection by helicon waves. Small, yet finite contribution from the suppressed wave-particle resonance cannot be ruled out in the operational regime examined. A brief discussion on the parametric dependence of plasma current along with numerical estimations of nonresonant components is presented. A close agreement between the numerical estimation and measured plasma current magnitude is obtained during the present investigation.« less
Magnetic Recording Media Technology for the Tb/in2 Era"
Bertero, Gerardo [Western Digital
2017-12-09
Magnetic recording has been the technology of choice of massive storage of information. The hard-disk drive industry has recently undergone a major technological transition from longitudinal magnetic recording (LMR) to perpendicular magnetic recording (PMR). However, convention perpendicular recording can only support a few new product generations before facing insurmountable physical limits. In order to support sustained recording areal density growth, new technological paradigms, such as energy-assisted recording and bit-patterined media recording are being contemplated and planned. In this talk, we will briefly discuss the LMR-to-PMR transition, the extendibility of current PMR recording, and the nature and merits of new enabling technologies. We will also discuss a technology roadmap toward recording densities approaching 10 Tv/in2, approximately 40 times higher than in current disk drives.
Optimization of Materials and Interfaces for Spintronic Devices
NASA Astrophysics Data System (ADS)
Clark, Billy
In recent years' Spintronic devices have drawn a significant amount of research attention. This interest comes in large part from their ability to enable interesting and new technology such as Spin Torque Transfer Random Access Memory or improve existing technology such as High Signal Read Heads for Hard Disk Drives. For the former we worked on optimizing and improving magnetic tunnel junctions by optimizing their thermal stability by using Ta insertion layers in the free layer. We further tried to simplify the design of the MTJ stack by attempting to replace the Co/Pd multilayer with CoPd alloy. In this dissertation, we detail its development and examine the switching characteristics. Lastly we look at a highly spin polarized material, Fe2MnGe, for optimizing Hard Drive Disk read heads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belyaev, Mikhail A.; Rafikov, Roman R.; Stone, James M., E-mail: rrr@astro.princeton.edu
The nature of angular momentum transport in the boundary layers of accretion disks has been one of the central and long-standing issues of accretion disk theory. In this work we demonstrate that acoustic waves excited by supersonic shear in the boundary layer serve as an efficient mechanism of mass, momentum, and energy transport at the interface between the disk and the accreting object. We develop the theory of angular momentum transport by acoustic modes in the boundary layer, and support our findings with three-dimensional hydrodynamical simulations, using an isothermal equation of state. Our first major result is the identification ofmore » three types of global modes in the boundary layer. We derive dispersion relations for each of these modes that accurately capture the pattern speeds observed in simulations to within a few percent. Second, we show that angular momentum transport in the boundary layer is intrinsically nonlocal, and is driven by radiation of angular momentum away from the boundary layer into both the star and the disk. The picture of angular momentum transport in the boundary layer by waves that can travel large distances before dissipating and redistributing angular momentum and energy to the disk and star is incompatible with the conventional notion of local transport by turbulent stresses. Our results have important implications for semianalytical models that describe the spectral emission from boundary layers.« less
Imaging the Disk and Jet of the Classical T Tauri Star AA Tau
NASA Technical Reports Server (NTRS)
Cox, Andrew W.; Grady, Carol A.; Hammel, Heidi B.; Hornbeck, Jeremy; Russell, Ray W.; Sitko, Michael L.; Woodgate, Bruce E.
2013-01-01
Previous studies of the classical T Tauri star AA Tau have interpreted the UX-Orionis-like photo-polarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipole field. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use Hubble Space Telescope (HST)/STIS coronagraphic imagery to measure the V magnitude of the star for both STIS coronagraphic observations, compare these data with optical photometry in the literature, and find that, unlike other classical T Tauri stars observed in the same HST program, the disk is most robustly detected in scattered light at stellar optical minimum light.We measure the outer disk radius, 1 inch.15 plus-minus 0 inch.10, major-axis position angle, and disk inclination and find that the inner disk, as reported in the literature, is both misinclined and misaligned with respect to the outer disk. AA Tau drives a faint jet, detected in both STIS observations and in follow-on Goddard Fabry-Perot imagery, which is also misaligned with respect to the projection of the outer disk minor axis and is poorly collimated near the star, but which can be traced 21 inches from the star in data from 2005. The measured outer disk inclination, 71deg plus-minus 1deg, is out of the range of inclinations suggested for stars with UX-Orionis-like variability when no grain growth has occurred in the disk. The faintness of the disk, small disk size, and detection of the star despite the high inclination all indicate that the dust disk must have experienced grain growth and settling toward the disk midplane, which we verify by comparing the observed disk with model imagery from the literature.
IMAGING THE DISK AND JET OF THE CLASSICAL T TAURI STAR AA TAU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Andrew W.; Grady, Carol A.; Hammel, Heidi B.
2013-01-01
Previous studies of the classical T Tauri star AA Tau have interpreted the UX-Orionis-like photo-polarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipole field. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use Hubble Space Telescope (HST)/STIS coronagraphic imagery to measure the V magnitude of the star for both STIS coronagraphic observations, compare these data with optical photometry in the literature, and find that, unlike other classical T Tauri stars observed in the same HST program, the disk is most robustlymore » detected in scattered light at stellar optical minimum light. We measure the outer disk radius, 1.''15 {+-} 0.''10, major-axis position angle, and disk inclination and find that the inner disk, as reported in the literature, is both misinclined and misaligned with respect to the outer disk. AA Tau drives a faint jet, detected in both STIS observations and in follow-on Goddard Fabry-Perot imagery, which is also misaligned with respect to the projection of the outer disk minor axis and is poorly collimated near the star, but which can be traced 21'' from the star in data from 2005. The measured outer disk inclination, 71 Degree-Sign {+-} 1 Degree-Sign , is out of the range of inclinations suggested for stars with UX-Orionis-like variability when no grain growth has occurred in the disk. The faintness of the disk, small disk size, and detection of the star despite the high inclination all indicate that the dust disk must have experienced grain growth and settling toward the disk midplane, which we verify by comparing the observed disk with model imagery from the literature.« less
Finite-element analysis of vibrational modes in piezoelectric ceramic disks.
Kunkel, H A; Locke, S; Pikeroen, B
1990-01-01
The natural vibrational modes of axially symmetric piezoelectric ceramic disks have been calculated by the finite-element method. The disks are of the type used as active elements in compressional wave ultrasonic transducers, and are electrically polarized in thickness with full electrodes on the disk's major faces. To optimize disk geometry for ultrasonic transducer application, the dependence of the vibrational modes on the disk diameter-to-thickness ratio for ratios from 0.2 (a tall cylinder) to 10.0 (a thin disk) has been studied. Series and parallel resonance frequencies for each of the modes are determined through an eigenfrequency analysis, and effective electromechanical coupling coefficients are calculated. The modal displacement fields in the disk are calculated to determine the physical nature of each mode. An analysis of the complete spectrum of piezoelectrically active modes as a function of diameter-thickness ratio is presented for the ceramic PZT-5H, including and identification of radial, edge, length expander, thickness shear, and thickness extensional vibrations. From this analysis, optimal diameter-to-thickness ratios for good transducer performance are discussed.
Jointly Constructing Semantic Waves: Implications for Teacher Training
ERIC Educational Resources Information Center
Macnaught, Lucy; Maton, Karl; Martin, J. R.; Matruglio, Erika
2013-01-01
This paper addresses how teachers can be trained to enable cumulative knowledge-building. It focuses on the final intervention stage of the "Disciplinarity, Knowledge and Schooling" ("DISKS") project at the University of Sydney. In this special issue, Maton identifies "semantic waves" as a crucial characteristic of…
Modelling of Resonantly Forced Density Waves in Dense Planetary Rings
NASA Astrophysics Data System (ADS)
Lehmann, M.; Schmidt, J.; Salo, H.
2014-04-01
Density wave theory, originally proposed to explain the spiral structure of galactic disks, has been applied to explain parts of the complex sub-structure in Saturn's rings, such as the wavetrains excited at the inner Lindblad resonances (ILR) of various satellites. The linear theory for the excitation and damping of density waves in Saturn's rings is fairly well developed (e.g. Goldreich & Tremaine [1979]; Shu [1984]). However, it fails to describe certain aspects of the observed waves. The non-applicability of the linear theory is already indicated by the "cusplike" shape of many of the observed wave profiles. This is a typical nonlinear feature which is also present in overstability wavetrains (Schmidt & Salo [2003]; Latter & Ogilvie [2010]). In particular, it turns out that the detailed damping mechanism, as well as the role of different nonlinear effects on the propagation of density waves remain intransparent. First attemps are being made to investigate the excitation and propagation of nonlinear density waves within a hydrodynamical formalism, which is also the natural formalism for describing linear density waves. A simple weakly nonlinear model, derived from a multiple-scale expansion of the hydrodynamic equations, is presented. This model describes the damping of "free" spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients, where the effects of the hydrodynamic nonlinearities are included. The model predicts that density waves are linearly unstable in a ring region where the conditions for viscous overstability are met, which translates to a steep dependence of the shear viscosity with respect to the disk's surface density. The possibility that this dependence could lead to a growth of density waves with increasing distance from the resonance, was already mentioned in Goldreich & Tremaine [1978]. Sufficiently far away from the ILR, the surface density perturbation caused by the wave, is predicted to saturate to a constant value due to the effects of nonlinear viscous damping. A qualitatively similar behaviour has also been predicted for the damping of nonlinear density waves, as described within a streamline formalism (Borderies, Goldreich & Tremaine [1985]). The damping lengths which follow from the weakly nonlinear model depend more or less strongly on a set of different input parameters, such as the viscosity and the surface density of the unperturbed ring state. Further, they depend on the wave's amplitude at resonance. For a real wave, which has been excited by an external satellite, this amplitude can be deduced from the magnitude of the satellite's forcing potential. Appart from that, hydrodynamical simulations are being developed to study the nonlinear damping of resonantly forced density waves.
Using AORSA to simulate helicon waves in DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, C., E-mail: lauch@ornl.gov; Blazevski, D.; Green, D. L.
2015-12-10
Recent efforts have shown that helicon waves (fast waves at > 20ω{sub ci}) may be an attractive option for driving efficient off-axis current drive during non-inductive tokamak operation for DIII-D, ITER and DEMO. For DIII-D scenarios, the ray tracing code, GENRAY, has been extensively used to study helicon current drive efficiency and location as a function of many plasma parameters. The full wave code, AORSA, which is applicable to arbitrary Larmor radius and can resolve arbitrary ion cyclotron harmonic order, has been recently used to validate the ray tracing technique at these high cyclotron harmonics. If the SOL is ignored,more » it will be shown that the GENRAY and AORSA calculated current drive profiles are comparable for the envisioned high beta advanced scenarios for DIII-D, where there is high single pass absorption due to electron Landau damping and minimal ion damping. AORSA is also been used to estimate possible SOL effects on helicon current drive coupling and SOL absorption due to collisional and slow wave effects.« less
Using AORSA to simulate helicon waves in DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Cornwall H; Jaeger, E. F.; Bertelli, Nicola
2015-01-01
Recent efforts have shown that helicon waves (fast waves at >20 omega(ci)) may be an attractive option for driving efficient off-axis current drive during non-inductive tokamak operation for DIII-D, ITER and DEMO. For DIII-D scenarios, the ray tracing code, GENRAY, has been extensively used to study helicon current drive efficiency and location as a function of many plasma parameters. The full wave code, AORSA, which is applicable to arbitrary Larmor radius and can resolve arbitrary ion cyclotron harmonic order, has been recently used to validate the ray tracing technique at these high cyclotron harmonics. If the SOL is ignored, itmore » will be shown that the GENRAY and AORSA calculated current drive profiles are comparable for the envisioned high beta advanced scenarios for DIII-D, where there is high single pass absorption due to electron Landau damping and minimal ion damping. AORSA is also been used to estimate possible SOL effects on helicon current drive coupling and SOL absorption due to collisional and slow wave effects.« less
Atomistic Tight-Binding Theory Applied to Structural and Optical Properties of Silicon Nanodisks
NASA Astrophysics Data System (ADS)
Sukkabot, Worasak
2018-05-01
The use of ultrathin crystalline silicon (c-Si) wafers in solar cells necessitates a highly effective light absorber to compensate for poor light absorption. One route to overcoming this problem is to use a periodic array of Si nanodisks on ultrathin c-Si. In the present manuscript, we numerically investigate the effects of the geometrical parameters of the Si nanodisks, including disk diameter (D) and length (L), on the structural and optical properties, using atomistic tight-binding theory. These computations confirm that the electronic structure and optical properties are sensitive to the structural parameters. As the disk diameter and length increase, the single-electron energies decrease, and the single-hole energies increase. These calculations also reveal that, because of the quantum confinement effect, the optical band gaps gradually decrease independently of the increasing disk diameter and length. The optical spectra can be tuned across the visible region by varying the disk diameter and length, which is a useful feature for optimizing light absorption in solar cell applications. As the disk diameter and length increased, the optical intensities also increased; however, the atomistic electron-hole interactions and ground electron-hole wave function overlap progressively decreased. The ground electron-hole wave function overlap, Stokes shift, and fine structure splitting decreased as the disk diameter and length were increased. Thus, Si nanodisks with a large diameter and length might be a suitable candidate source of entangled photons. The Si nanodisks in this study also show promise for applications to solar cells based on ultrathin c-Si wafers.
Pushing Particles with Waves: Current Drive and α-Channeling
FISCH, Nathaniel J.
2016-01-01
It can be advantageous to push particles with waves in tokamaks or other magnetic confinement devices, relying on wave-particle resonances to accomplish specific goals. Waves that damp on electrons or ions in toroidal fusion devises can drive currents if the waves are launched with toroidal asymmetry. Theses currents are important for tokamaks, since they operate in the absence of an electric field with curl, enabling steady state operation. The lower hybrid wave and the electron cyclotron wave have been demonstrated to drive significant currents. Non-inductive current also stabilizes deleterious tearing modes. Waves can also be used to broker the energymore » transfer between energetic alpha particles and the background plasma. Alpha particles born through fusion reactions in a tokamak reactor tend to slow down on electrons, but that could take up to hundreds of milliseconds. Before that happens, the energy in these alpha particles can destabilize on collisionless timescales toroidal Alfven modes and other waves, in a way deleterious to energy confinement. However, it has been speculated that this energy might be instead be channeled instead into useful energy, that heats fuel ions or drives current. Furthermore, an important question is the extent to which these effects can be accomplished together.« less
A Survey of Coronal Dimmings and EIT Wave Transients
NASA Technical Reports Server (NTRS)
Thompson, Barbara J.
2003-01-01
We present the results of a comprehensive catalog of EIT wave transients and coronal dimmings. We will compiled a set of more than 170 events, and we present strong evidence for the association of the co-development of coronal dimmings and EIT waves. Both limb and disk events are included in this study. We also include the speeds, locations, and associated flare timing in this study.
NASA Astrophysics Data System (ADS)
Hadjloum, Massinissa; El Gibari, Mohammed; Li, Hongwu; Daryoush, Afshin S.
2017-06-01
A large performance improvement of polymer phase modulators is reported by using buried in-plane coupled microstrip (CMS) driving electrodes, instead of standard vertical Micro-Strip electrodes. The in-plane CMS driving electrodes have both low radio frequency (RF) losses and high overlap integral between optical and RF waves compared to the vertical designs. Since the optical waveguide and CMS electrodes are located in the same plane, optical injection and microwave driving access cannot be separated perpendicularly without intersection between them. A via-less transition between grounded coplanar waveguide access and CMS driving electrodes is introduced in order to provide broadband excitation of optical phase modulators and avoid the intersection of the optical core and the electrical probe. Simulation and measurement results of the benzocyclobutene polymer as a cladding material and the PMMI-CPO1 polymer as an optical core with an electro-optic coefficient of 70 pm/V demonstrate a broadband operation of 67 GHz using travelling-wave driving electrodes with a half-wave voltage of 4.5 V, while satisfying its low RF losses and high overlap integral between optical and RF waves of in-plane CMS electrodes.
Ganapolskii, E M; Eremenko, Z E; Tarasov, Yu V
2009-04-01
The influence of random axially homogeneous surface roughness on spectral properties of dielectric resonators of circular disk form is studied both theoretically and experimentally. To solve the equations governing the dynamics of electromagnetic fields, the method of eigenmode separation is applied previously developed with reference to inhomogeneous systems subject to arbitrary external static potential. We prove theoretically that it is the gradient mechanism of wave-surface scattering that is highly responsible for nondissipative loss in the resonator. The influence of side-boundary inhomogeneities on the resonator spectrum is shown to be described in terms of effective renormalization of mode wave numbers jointly with azimuth indices in the characteristic equation. To study experimentally the effect of inhomogeneities on the resonator spectrum, the method of modeling in the millimeter wave range is applied. As a model object, we use a dielectric disk resonator (DDR) fitted with external inhomogeneities randomly arranged at its side boundary. Experimental results show good agreement with theoretical predictions as regards the predominance of the gradient scattering mechanism. It is shown theoretically and confirmed in the experiment that TM oscillations in the DDR are less affected by surface inhomogeneities than TE oscillations with the same azimuth indices. The DDR model chosen for our study as well as characteristic equations obtained thereupon enable one to calculate both the eigenfrequencies and the Q factors of resonance spectral lines to fairly good accuracy. The results of calculations agree well with obtained experimental data.
Secular Evolution of Spiral Galaxies
2003-01-01
recombination (z=1000). Furthermore, the BigBang nucleosynthesis model also requires a signi cantamount of non- baryonic dark matter (Primack 1999) ifthe universe...momentum (as well as energy) outward. Associ-ated with this outward angular momentum transport isan expected secular redistribution of disk matter , co...mode, a secular transfer of energy andangular momentum between the disk matter and thedensity wave. The existence of the phase shift betweenthe
Hirota, Akihiko; Ito, Shin-ichi
2006-06-01
Using real-time hard disk recording, we have developed an optical system for the long-duration detection of changes in membrane potential from 1,020 sites with a high temporal resolution. The signal-to-noise ratio was sufficient for analyzing the spreading pattern of excitatory waves in frog atria in a single sweep.
Large-scale Density Structures in Magneto-rotational Disk Turbulence
NASA Astrophysics Data System (ADS)
Youdin, Andrew; Johansen, A.; Klahr, H.
2009-01-01
Turbulence generated by the magneto-rotational instability (MRI) is a strong candidate to drive accretion flows in disks, including sufficiently ionized regions of protoplanetary disks. The MRI is often studied in local shearing boxes, which model a small section of the disk at high resolution. I will present simulations of large, stratified shearing boxes which extend up to 10 gas scale-heights across. These simulations are a useful bridge to fully global disk simulations. We find that MRI turbulence produces large-scale, axisymmetric density perturbations . These structures are part of a zonal flow --- analogous to the banded flow in Jupiter's atmosphere --- which survives in near geostrophic balance for tens of orbits. The launching mechanism is large-scale magnetic tension generated by an inverse cascade. We demonstrate the robustness of these results by careful study of various box sizes, grid resolutions, and microscopic diffusion parameterizations. These gas structures can trap solid material (in the form of large dust or ice particles) with important implications for planet formation. Resolved disk images at mm-wavelengths (e.g. from ALMA) will verify or constrain the existence of these structures.
Status of emerging standards for removable computer storage media and related contributions of NIST
NASA Technical Reports Server (NTRS)
Podio, Fernando L.
1992-01-01
Standards for removable computer storage media are needed so that users may reliably interchange data both within and among various computer installations. Furthermore, media interchange standards support competition in industry and prevent sole-source lock-in. NIST participates in magnetic tape and optical disk standards development through Technical Committees X3B5, Digital Magnetic Tapes, X3B11, Optical Digital Data Disk, and the Joint Technical Commission on Data Permanence. NIST also participates in other relevant national and international standards committees for removable computer storage media. Industry standards for digital magnetic tapes require the use of Standard Reference Materials (SRM's) developed and maintained by NIST. In addition, NIST has been studying care and handling procedures required for digital magnetic tapes. NIST has developed a methodology for determining the life expectancy of optical disks. NIST is developing care and handling procedures for optical digital data disks and is involved in a program to investigate error reporting capabilities of optical disk drives. This presentation reflects the status of emerging magnetic tape and optical disk standards, as well as NIST's contributions in support of these standards.
Gravitational Instabilities in a Young Protoplanetary Disk with Embedded Objects
NASA Astrophysics Data System (ADS)
Desai, Karna M.; Steiman-Cameron, Thomas Y.; Durisen, Richard H.
2018-01-01
Gravitational Instabilities (GIs), a mechanism for angular momentum transport, are more prominent during the early phases of protoplanetary disk evolution when the disk is relatively massive. In my dissertation work, I performed radiative 3D hydrodynamics simulations (by employing the code, CHYMERA) and extensively studied GIs by inserting different objects in the ‘control disk’ (a 0.14 M⊙ protoplanetary disk around a 1 M⊙ star).Studying planetary migration helps us better constrain planet formation models. To study the migration of Jovian planets, in 9 separate simulations, each of the 0.3 MJ, 1 MJ, and 3 MJ planets was inserted near the Inner and Outer Lindblad Resonances and the Corotation Radius (CR) of the dominant GI-induced two-armed spiral density wave in the disk. I found the migration timescales to be longer in a GI-active disk when compared to laminar disks. The 3 MJ planet controls its own orbital evolution, while the migration of a 0.3 MJ planet is stochastic in nature. I defined a ‘critical mass’ as the mass of an arm of the dominant two-armed spiral density wave within the planet’s Hill diameter. Planets above this mass control their own destiny, and planets below this mass are scattered by the disk. This critical mass could provide a recipe for predicting the migration behavior of planets in GI-active disks.To understand the stochastic migration of low-mass planets, I performed a simulation of 240 zero-mass planet-tracers (hereafter, planets) by inserting these at a range of locations in the control disk (an equivalent of 240 simulations of Saturn-mass or lower-mass objects). I calculated a Diffusion Coefficient (3.6 AU2/ 1000 yr) to characterize the stochastic migration of planets. I analyzed the increase in the eccentricity dispersion and compared it with the observed exoplanet eccentricities. The diffusion of planets can be a slow process, resulting in the survival of small planetary cores. Stochastic migration of planets is dynamically similar to the radial migration of stars in the Milky Way (MW). In MW, the CR of transient spiral arms can cause radial migration of stars.Also, to determine the effects of a companion, I studied GIs in a circumbinary disk with a 0.2 M⊙ brown dwarf companion.
Studies of rotating liquid floating zones on Skylab IV
NASA Technical Reports Server (NTRS)
Carruthers, J. R.; Gibson, E. G.; Klett, M. G.; Facemire, B. R.
1975-01-01
Liquid zones of water, soap solution and soap foam were deployed between two aligned circular disks which were free to rotate about the zone axis in the microgravity environment of Skylab IV. Such a configuration is of interest in the containerless handling of melts for possible future space processing crystal growth experiments. Three basic types of zone surface deformation and instability were observed for these rotational conditions; axisymmetric shape changes under single disk rotation, nonaxisymmetric, whirling, C-modes for long zones with equal rotation of both disks, and capillary wave phenomena for short zones with equal rotation of both disks. The sources of these instabilities and the conditions promoting them are analyzed in detail from video tape recordings of the Skylab experiments.
Modelling of deep gaps created by giant planets in protoplanetary disks
NASA Astrophysics Data System (ADS)
Kanagawa, Kazuhiro D.; Tanaka, Hidekazu; Muto, Takayuki; Tanigawa, Takayuki
2017-12-01
A giant planet embedded in a protoplanetary disk creates a gap. This process is important for both theory and observation. Using results of a survey for a wide parameter range with two-dimensional hydrodynamic simulations, we constructed an empirical formula for the gap structure (i.e., the radial surface density distribution), which can reproduce the gap width and depth obtained by two-dimensional simulations. This formula enables us to judge whether an observed gap is likely to be caused by an embedded planet or not. The propagation of waves launched by the planet is closely connected to the gap structure. It makes the gap wider and shallower as compared with the case where an instantaneous wave damping is assumed. The hydrodynamic simulations show that the waves do not decay immediately at the launching point of waves, even when the planet is as massive as Jupiter. Based on the results of hydrodynamic simulations, we also obtained an empirical model of wave propagation and damping in cases of deep gaps. The one-dimensional gap model with our wave propagation model is able to reproduce the gap structures in hydrodynamic simulations well. In the case of a Jupiter-mass planet, we also found that the waves with a smaller wavenumber (e.g., m = 2) are excited and transport the angular momentum to a location far away from the planet. The wave with m = 2 is closely related with a secondary wave launched by a site opposite from the planet.
Accretions Disks Around Class O Protostars: The Case of VLA 1623
NASA Astrophysics Data System (ADS)
Pudritz, Ralph E.; Wilson, Christine D.; Carlstrom, John E.; Lay, Oliver P.; Hills, Richard E.; Ward-Thompson, Derek
1996-10-01
Continuum emission at 220 and 355 GHz from the prototype class 0 source VLA 1623 has been detected using the James Clerk Maxwell Telescope-Caltech Submillimeter Observatory interferometer. Gaussian fits to the data place an upper limit of 70 AU on the half-width at half-maximum radius of the emission, which implies an upper limit of ~175 AU for the cutoff radius of the circumstellar disk in the system. In the context of existing collapse models, this disk could be magnetically supported on the largest scales and have an age of ~6 x 104 yr, consistent with previous suggestions that class 0 sources are quite young. The innermost region of the disk within ~6 AU is likely to be in centrifugal support, which is likely large enough to provide a drive for the outflow according to current theoretical models. Alternatively, if 175 AU corresponds to the centrifugal radius of the disk, the age of the system is ~2 x 105 yr, closer to age estimates for class I sources.
Submillimeter heterodyne spectroscopy of star forming regions
NASA Astrophysics Data System (ADS)
Groppi, Christopher Emil
The sub-mm wave portion of the electromagnetic spectrum is on the frontier of both scientific and technical research in astrophysics. Being a relatively young field, scientific advancement is driven by advancements in detector technology. In this thesis, I discuss the design, construction, testing and deployment of two sub-mm wave heterodyne array receivers. Polestar is a 4 pixel (2 x 2) heterodyne array built for operation in the 810 GHz atmospheric window. It is in operation at the AST/RO telescope at the South Pole. This receiver has increased imaging speed in this band at AST/RO by a factor of ˜20 compared to previous receiver systems. DesertStar is a 7 pixel, hexagonally close packed heterodyne array receiver built to operate in the 345 GHz atmospheric window at the Heinrich Hertz Telescope in Arizona. This system will be a facility instrument at the telescope, and will increase mapping speed over the existing dual polarization single beam receiver at the telescope now by a factor of ˜16. Both these receiver systems enable scientific projects requiring large area imaging that were previously impossible. I also discuss two scientific applications of sub-mm wave receiver systems. We have used multiple telescopes to observe several mm, sub-mm transitions and continuum emission towards the R CrA molecular cloud core. Originally thought to be associated with high mass star formation, we find that the driving source behind the mm-wave emission is a low mass protostar. The close proximity of R CrA allows us to achieve high spatial resolution even with single dish mm-wave and sub-mm wave telescopes. With this resolution, we are able to disentangle the effects of infall, rotation and outflow motions. We also use vibrationally excited HCN emission to probe the protostellar accretion disk in a sample of nearby high and low mass protostars of varying ages. While these observations are difficult with single dish telescopes, we show the promise of the technique, and report results on 4 sources.
Microstructurally based variations on the dwell fatgue life of titanium alloy IMI 834
NASA Technical Reports Server (NTRS)
Thomsen, Mark L.; Hoeppner, David W.
1994-01-01
An experimental study was undertaken to determine the role of microstructure on the fatigue life reduction observed in titanium alloy IMI 834 under dwell loading conditions. The wave forms compared were a trapezoid with 15 and 30 second hold times at the maximum test load and a baseline, 10 Hertz, haversine. The stress ratio for both loading wave forms was 0.10. The fatigue loading of each specimen was conducted in a vacuum within a scanning electron microscope chamber which minimized the possibility that the laboratory environment would adversely affect the material behavior. Two microstructural conditions were investigated in the experimental program. The first involved standard 'disk' material with equiaxed alpha in a transformed beta matrix. The second material was cut from the same disk forging as the first but was heat treated to obtain a martensitic alpha prime microstructure. Tensile tests were performed prior to the onset of the fatigue loading portion of the study, and it was determined that the yield strengths of the specimens from both material conditions were within ten percent. The maximum fatigue loads were chosen to be 72 percent of the average yield strength for both materials as determined from the tensile tests. It was found that the cycles to failure from the 10 Hertz loading wave form were reduced by a factor of approximately five when the loading was changed to the trapezoidal wave form for the standard 'disk' material. The fatigue life reduction for the martensitic structure under identical test conditions was approximately 1.75. The improvement observed with the martensitic structure also was accompanied by an increase in overall fatigue life for the wave forms tested. This paper will review the results and conclusions of this effort.
Experiment to investigate current drive by fast Alfven waves in a small tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gahl, J.; Ishihara, O.; Wong, K.
1985-07-01
An experiment has been carried out to study current generation by Doppler shifted cyclotron resonance heating of minority ions with a unidirectional wave in the small tokamak at Texas Tech University. One of the objectives of the experiment is to understand in detail the wave-particle interactions through which fast (compressional) Alfven waves in the ion cyclotron range of frequencies drive currents in toroidal devices.
Hydrocarbon Emission Rings in Protoplanetary Disks Induced by Dust Evolution
NASA Astrophysics Data System (ADS)
Bergin, Edwin A.; Du, Fujun; Cleeves, L. Ilsedore; Blake, G. A.; Schwarz, K.; Visser, R.; Zhang, K.
2016-11-01
We report observations of resolved C2H emission rings within the gas-rich protoplanetary disks of TW Hya and DM Tau using the Atacama Large Millimeter Array. In each case the emission ring is found to arise at the edge of the observable disk of millimeter-sized grains (pebbles) traced by submillimeter-wave continuum emission. In addition, we detect a C3H2 emission ring with an identical spatial distribution to C2H in the TW Hya disk. This suggests that these are hydrocarbon rings (I.e., not limited to C2H). Using a detailed thermo-chemical model we show that reproducing the emission from C2H requires a strong UV field and C/O > 1 in the upper disk atmosphere and outer disk, beyond the edge of the pebble disk. This naturally arises in a disk where the ice-coated dust mass is spatially stratified due to the combined effects of coagulation, gravitational settling and drift. This stratification causes the disk surface and outer disk to have a greater permeability to UV photons. Furthermore the concentration of ices that transport key volatile carriers of oxygen and carbon in the midplane, along with photochemical erosion of CO, leads to an elemental C/O ratio that exceeds unity in the UV-dominated disk. Thus the motions of the grains, and not the gas, lead to a rich hydrocarbon chemistry in disk surface layers and in the outer disk midplane.
NASA Astrophysics Data System (ADS)
Flaccomio, E.
2014-07-01
Proto-planetary disks are affected by radiative and magnetic interactions with the central object. X-ray/UV coronal and accretion-shock emission may drive gas ionization and heating and, consequently, photo-evaporation and disk dispersal. The magnetosphere connecting the star and inner disk mediates mass and angular momentum exchanges and modifies the disk structure. These interconnected processes are highly dynamic and involve material emitting in different bands: the inner disk dust (mIR), the stellar photosphere (optical), accretion shocks (UV/X-rays), and coronae (X-rays). I will present selected results form the Coordinated Synoptic Investigation of NGC2264 (CSI-NGC2264), an unprecedented multi-wavelength month-long observing campaign of the NGC2264 region. Three space telescopes (Spitzer, CoRoT, and Chandra) simultaneously monitored a rich sample of ~3Myr old stars in the mIR, optical, and X-ray bands, providing new insights on the dynamics of the respective emitting regions and their interactions. First, I will discuss magnetic flares: for the first time we observe the heating phase (in the optical), the decay (in X-rays), and, possibly, the disk response to the flare (in the mIR). I will then focus on the longer time-scale relation between X-ray (coronal) and optical (photospheric)/mIR(disk) emission, with particular reference to the obscuration of coronal plasma by temporally varying disk structures.
Understanding the Accretion Engine in Pre-main Sequence Stars
NASA Astrophysics Data System (ADS)
Gómez de Castro, Ana I.
2009-05-01
Planetary systems are angular momentum reservoirs generated during star formation as a result of the joint action of gravity and angular momentum conservation. The accretion process drives to the generation of powerful engines able to drive the optical jets and the molecular outflows. A fraction of the engine energy is released into heating the circumstellar plasma to temperatures between 3000 K to 10 MK depending on the plasma location and density. There are very important unsolved problems concerning the nature of the engine, its evolution and its impact in the chemical evolution of the disk. Of special relevance is the understanding of the shear layer between the stellar photosphere and the disk; this layer controls a significant fraction of the magnetic field building up and the subsequent dissipative processes ought to be studied in the UV.
An implantable seal-less centrifugal pump with integrated double-disk motor.
Schima, H; Schmallegger, H; Huber, L; Birgmann, I; Reindl, C; Schmidt, C; Roschal, K; Wieselthaler, G; Trubel, W; Losert, U
1995-07-01
Thrombus formation and sealing problems at the shaft as well as the compact and efficient design of the driving unit have been major difficulties in the construction of a long-term implantable centrifugal pump. To eliminate the problems of the seal, motor size, and efficiency, two major steps were taken by modifying the Vienna implantable centrifugal pump. First, a special driving unit was developed, in which the permanent magnets of the motor themselves are used for coupling the force into the rotor. Second, the rotor shaft in the pumping chamber was eliminated by adopting a concept recently presented by Ohara. The rotor is supported by 3 pins, which run on a carbon disk, whose concave shape leads to stabilization. The device has the following specifications: size: 65 mm (diameter) by 35 mm (height), 101 cm3; priming volume 30 cm3, 240 g; and a 6-pole brushless double disk DC motor. The required input power of the described prototype is 15 W at 150 mm Hg, 5 L/min (overall eta = 11%), and has an in vitro index of hemolysis (IH) of 0.0046 g/100 L. The test for in vitro thrombus growth exhibited far less thrombus formation in the new design than in designs with axles. In conclusion, the design of a special driving unit and the elimination of the axle led to the construction of a small pump with very low blood traumatization.
Instability of counter-rotating stellar disks
NASA Astrophysics Data System (ADS)
Hohlfeld, R. G.; Lovelace, R. V. E.
2015-09-01
We use an N-body simulation, constructed using GADGET-2, to investigate an accretion flow onto an astrophysical disk that is in the opposite sense to the disk's rotation. In order to separate dynamics intrinsic to the counter-rotating flow from the impact of the flow onto the disk, we consider an initial condition in which the counter-rotating flow is in an annular region immediately exterior the main portion of the astrophysical disk. Such counter-rotating flows are seen in systems such as NGC 4826 (known as the "Evil Eye Galaxy"). Interaction between the rotating and counter-rotating components is due to two-stream instability in the boundary region. A multi-armed spiral density wave is excited in the astrophysical disk and a density distribution with high azimuthal mode number is excited in the counter-rotating flow. Density fluctuations in the counter-rotating flow aggregate into larger clumps and some of the material in the counter-rotating flow is scattered to large radii. Accretion flow processes such as this are increasingly seen to be of importance in the evolution of multi-component galactic disks.
A Comparison Study and Software Implementation of NORDA Ocean Models.
1980-10-08
L01?C07 ’EEEEElshhhh A COMPARISON STUDY AND SOFTWARE IMPLEMENTATION OF NORDA OCEAN MODELS J&IEA m/ MST* f-....~ cre mx IRSD~I?( J 300 Unicorn Park...34- NOO-79- 741 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK AREA 6 WORK UNIT NUMBERSJAYC0, 300 Unicorn Park Drive...before another execution of the energetics program, move them back to disk. Note that the outputs of the preprocessor reside on disk, they should not be
HECWRC, Flood Flow Frequency Analysis Computer Program 723-X6-L7550
1989-02-14
AGENCY NAME AND ADDRESS, ORDER NO., ETC. (1 NTS sells, leave blank) 11. PRICE INFORMA-ION Price includes documentation: Price code: DO1 $50.00 12 ...required is 256 K. Math coprocessor (8087/80287/80387) is highly recommended but not required. 16. DATA FILE TECHNICAL DESCRIPTION The software is...disk drive (360 KB or 1.2 MB). A 10 MB or larger hard disk is recommended. Math coprocessor (8087/80287/80387) is highly recommended but not renuired
NASA Technical Reports Server (NTRS)
Chen, J. C.
1995-01-01
A disk-on-rod inside a corrugated horn is one of the horn configurations for dual-frequency or wide-band operation. A mode-matching analysis method is described. A disk-on-rod inside a corrugated horn is represented as a series of coaxial waveguide sections and circular waveguide sections connected to each other. Three kinds of junctions need to be considered: coaxial-to-coaxial, coaxial-to-circular, and circular-to-circular. A computer program was developed to calculate the scattering matrix and the radiation pattern of a disk-on-rod inside a corrugated horn. The software as verified by experiment, and good agreement between calculation and measurement was obtained. The disk-on-rod inside a corrugated horn design gives an option to the Deep Space Network dual-frequency operation system, which currently is a two-horn/one-dichroic plate system.
The successful of finite element to invent particle cleaning system by air jet in hard disk drive
NASA Astrophysics Data System (ADS)
Jai-Ngam, Nualpun; Tangchaichit, Kaitfa
2018-02-01
Hard Disk Drive manufacturing has faced very challenging with the increasing demand of high capacity drives for Cloud-based storage. Particle adhesion has also become increasingly important in HDD to gain more reliability of storage capacity. The ability to clean on surfaces is more complicated in removing such particles without damaging the surface. This research is aim to improve the particle cleaning in HSA by using finite element to develop the air flow model then invent the prototype of air cleaning system to remove particle from surface. Surface cleaning by air pressure can be applied as alternative for the removal of solid particulate contaminants that is adhering on a solid surface. These technical and economic challenges have driven the process development from traditional way that chemical solvent cleaning. The focus of this study is to develop alternative way from scrub, ultrasonic, mega sonic on surface cleaning principles to serve as a foundation for the development of new processes to meet current state-of-the-art process requirements and minimize the waste from chemical cleaning for environment safety.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavel, Nicolaie; Luenstedt, Kai; Petermann, Klaus
2007-12-01
The laser performances of the 1.06 {mu}m 4F3/2 --> 4I11/2 four-level transition and of the 0.9 {mu}m 4F3/2 --> I9/24 quasi-three-level transition were investigated using multipass pumped Nd-based media in thin-disk geometry. When pumping at 0.81 {mu}m into the 4F5/2 level, continuous-wave laser operation was obtained with powers in excess of 10 W at 1.06 {mu}m, in the multiwatt region at 0.91 {mu}m in Nd:YVO4 and Nd:GdVO4, and at 0.95 {mu}m in Nd:YAG. Intracavity frequency-doubled Nd:YVO4 thin-disk lasers with output powers of 6.4 W at 532 nm and of 1.6 W at 457 nm were realized at this pumping wavelength.more » The pumping at 0.88 {mu}m, which is directed into the 4F3/2 emitting level, was also employed, and Nd:YVO4 and Nd:GdVO4 thin-disk lasers with {approx}9 W output power at 1.06 {mu}m and visible laser radiation at 0.53 {mu}m with output power in excess of 4 W were realized. Frequency-doubled Nd:vanadate thin-disk lasers with deep blue emission at 0.46 {mu}m were obtained under pumping directly into the 4F3/2 emitting level.« less
An analytic model for buoyancy resonances in protoplanetary disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lubow, Stephen H.; Zhu, Zhaohuan, E-mail: lubow@stsci.edu, E-mail: zhzhu@astro.princeton.edu
2014-04-10
Zhu et al. found in three-dimensional shearing box simulations a new form of planet-disk interaction that they attributed to a vertical buoyancy resonance in the disk. We describe an analytic linear model for this interaction. We adopt a simplified model involving azimuthal forcing that produces the resonance and permits an analytic description of its structure. We derive an analytic expression for the buoyancy torque and show that the vertical torque distribution agrees well with the results of the Athena simulations and a Fourier method for linear numerical calculations carried out with the same forcing. The buoyancy resonance differs from themore » classic Lindblad and corotation resonances in that the resonance lies along tilted planes. Its width depends on damping effects and is independent of the gas sound speed. The resonance does not excite propagating waves. At a given large azimuthal wavenumber k{sub y} > h {sup –1} (for disk thickness h), the buoyancy resonance exerts a torque over a region that lies radially closer to the corotation radius than the Lindblad resonance. Because the torque is localized to the region of excitation, it is potentially subject to the effects of nonlinear saturation. In addition, the torque can be reduced by the effects of radiative heat transfer between the resonant region and its surroundings. For each azimuthal wavenumber, the resonance establishes a large scale density wave pattern in a plane within the disk.« less
NASA Astrophysics Data System (ADS)
Madigan, Ann-Marie; Halle, Andrew; Moody, Mackenzie; McCourt, Michael; Nixon, Chris; Wernke, Heather
2018-02-01
In some galaxies, the stars orbiting the supermassive black hole take the form of an eccentric nuclear disk, in which every star is on a coherent, apsidally aligned orbit. The most famous example of an eccentric nuclear disk is the double nucleus of Andromeda, and there is strong evidence for many more in the local universe. Despite their apparent ubiquity, however, a dynamical explanation for their longevity has remained a mystery: differential precession should wipe out large-scale apsidal-alignment on a short timescale. Here we identify a new dynamical mechanism which stabilizes eccentric nuclear disks, and explain for the first time the negative eccentricity gradient seen in the Andromeda nucleus. The stabilizing mechanism drives oscillations of the eccentricity vectors of individual orbits, both in direction (about the mean body of the disk) and in magnitude. Combined with the negative eccentricity gradient, the eccentricity oscillations push some stars near the inner edge of the disk extremely close to the black hole, potentially leading to tidal disruption events (TDEs). Order of magnitude calculations predict extremely high rates in recently formed eccentric nuclear disks (∼0.1–1 {{yr}}-1 {{gal}}-1). Unless the stellar disks are replenished, these rates should decrease with time as the disk depletes in mass. If eccentric nuclear disks form during gas-rich major mergers, this may explain the preferential occurrence of TDEs in recently merged and post-merger (E+A/K+A) galaxies.
Bootstrap and fast wave current drive for tokamak reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehst, D.A.
1991-09-01
Using the multi-species neoclassical treatment of Hirshman and Sigmar we study steady state bootstrap equilibria with seed currents provided by low frequency (ICRF) fast waves and with additional surface current density driven by lower hybrid waves. This study applies to reactor plasmas of arbitrary aspect ratio. IN one limit the bootstrap component can supply nearly the total equilibrium current with minimal driving power (< 20 MW). However, for larger total currents considerable driving power is required (for ITER: I{sub o} = 18 MA needs P{sub FW} = 15 MW, P{sub LH} = 75 MW). A computational survey of bootstrap fractionmore » and current drive efficiency is presented. 11 refs., 8 figs.« less
Using magnons to probe spintronic materials properties
NASA Astrophysics Data System (ADS)
McMichael, Robert
2012-02-01
For many spin-based electronic devices, from the read sensors in modern hard disk drives to future spintronic logic concepts, the device physics originates in spin polarized currents in ferromagnetic metals. In this talk, I will describe a novel ``Spin Wave Doppler'' method that uses the interaction of spin waves with spin-polarized currents to determine the spin drift velocity and the spin current polarization [1]. Owing to differences between the band structures of majority-spin and minority-spin electrons, the electrical current also carries an angular momentum current and magnetic moment current. Passing these coupled currents though a magnetic wire changes the linear excitations of the magnetization, i.e spin waves. Interestingly, the excitations can be described as drifting ``downstream'' with the electron flow. We measure this drift velocity by monitoring the spin-wave-mediated transmission between pairs of periodically patterned antennas on magnetic wires as a function of current density in the wire. The transmission frequency resonance shifts by 2πδf = vk where the drift velocity v is proportional to both the current density and the current polarization P. I will discuss measurements of the spin polarization of the current in Ni80Fe20 [2], and novel alloys (CoFe)1-xGax [3] and (Ni80Fe20)1-xGdx [4]. [4pt] [1] V. Vlaminck and M. Bailleul, Science, 322, 410 (2008) [0pt] [2] M. Zhu, C. L. Dennis, and R. D. McMichael, Phys. Rev. B, 81, 140407 (2010). [0pt] [3] M. Zhu, B. D. Soe, R. D. McMichael, M. J. Carey, S. Maat, and J. R. Childress, Appl. Phys. Lett., 98, 072510 (2011). [0pt] [4] R. L. Thomas, M. Zhu, C. L. Dennis, V. Misra and R. D. McMichael, J. Appl. Phys., 110, 033902 (2011).
15 CFR Supplement No. 8 to Part 742 - Self-Classification Report for Encryption Items
Code of Federal Regulations, 2011 CFR
2011-01-01
... forensics (v) Cryptographic accelerator (vi) Data backup and recovery (vii) Database (viii) Disk/drive... (MAN) (xxii) Modem (xxiii) Network convergence or infrastructure n.e.s. (xxiv) Network forensics (xxv...
15 CFR Supplement No. 8 to Part 742 - Self-Classification Report for Encryption Items
Code of Federal Regulations, 2014 CFR
2014-01-01
... forensics (v) Cryptographic accelerator (vi) Data backup and recovery (vii) Database (viii) Disk/drive... (MAN) (xxii) Modem (xxiii) Network convergence or infrastructure n.e.s. (xxiv) Network forensics (xxv...
15 CFR Supplement No. 8 to Part 742 - Self-Classification Report for Encryption Items
Code of Federal Regulations, 2013 CFR
2013-01-01
... forensics (v) Cryptographic accelerator (vi) Data backup and recovery (vii) Database (viii) Disk/drive... (MAN) (xxii) Modem (xxiii) Network convergence or infrastructure n.e.s. (xxiv) Network forensics (xxv...
15 CFR Supplement No. 8 to Part 742 - Self-Classification Report for Encryption Items
Code of Federal Regulations, 2012 CFR
2012-01-01
... forensics (v) Cryptographic accelerator (vi) Data backup and recovery (vii) Database (viii) Disk/drive... (MAN) (xxii) Modem (xxiii) Network convergence or infrastructure n.e.s. (xxiv) Network forensics (xxv...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergin, Edwin A.; Du, Fujun; Schwarz, K.
We report observations of resolved C{sub 2}H emission rings within the gas-rich protoplanetary disks of TW Hya and DM Tau using the Atacama Large Millimeter Array. In each case the emission ring is found to arise at the edge of the observable disk of millimeter-sized grains (pebbles) traced by submillimeter-wave continuum emission. In addition, we detect a C{sub 3}H{sub 2} emission ring with an identical spatial distribution to C{sub 2}H in the TW Hya disk. This suggests that these are hydrocarbon rings (i.e., not limited to C{sub 2}H). Using a detailed thermo-chemical model we show that reproducing the emission frommore » C{sub 2}H requires a strong UV field and C/O > 1 in the upper disk atmosphere and outer disk, beyond the edge of the pebble disk. This naturally arises in a disk where the ice-coated dust mass is spatially stratified due to the combined effects of coagulation, gravitational settling and drift. This stratification causes the disk surface and outer disk to have a greater permeability to UV photons. Furthermore the concentration of ices that transport key volatile carriers of oxygen and carbon in the midplane, along with photochemical erosion of CO, leads to an elemental C/O ratio that exceeds unity in the UV-dominated disk. Thus the motions of the grains, and not the gas, lead to a rich hydrocarbon chemistry in disk surface layers and in the outer disk midplane.« less
Relationship between the size of a camphor-driven rotor and its angular velocity.
Koyano, Yuki; Gryciuk, Marian; Skrobanska, Paulina; Malecki, Maciej; Sumino, Yutaka; Kitahata, Hiroyuki; Gorecki, Jerzy
2017-07-01
We consider a rotor made of two camphor disks glued below the ends of a plastic stripe. The disks are floating on a water surface and the plastic stripe does not touch the surface. The system can rotate around a vertical axis located at the center of the stripe. The disks dissipate camphor molecules. The driving momentum comes from the nonuniformity of surface tension resulting from inhomogeneous surface concentration of camphor molecules around the disks. We investigate the stationary angular velocity as a function of rotor radius ℓ. For large ℓ the angular velocity decreases for increasing ℓ. At a specific value of ℓ the angular velocity reaches its maximum and, for short ℓ it rapidly decreases. Such behavior is confirmed by a simple numerical model. The model also predicts that there is a critical rotor size below which it does not rotate. Within the introduced model we analyze the type of this bifurcation.
Magnetic Fields in the Interstellar Medium
NASA Astrophysics Data System (ADS)
Clark, Susan
2017-01-01
The Milky Way is magnetized. Invisible magnetic fields thread the Galaxy on all scales and play a vital but still poorly understood role in regulating flows of gas in the interstellar medium and the formation of stars. I will present highlights from my thesis work on magnetic fields in the diffuse interstellar gas and in accretion disks. At high Galactic latitudes, diffuse neutral hydrogen is organized into an intricate network of slender linear features. I will show that these neutral hydrogen “fibers” are extremely well aligned with the ambient magnetic field as traced by both starlight polarization (Clark et al. 2014) and Planck 353 GHz polarized dust emission (Clark et al. 2015). The structure of the neutral interstellar medium is more tightly coupled to the magnetic field than previously known. Because the orientation of neutral hydrogen is an independent predictor of the local dust polarization angle, our work provides a new tool in the search for inflationary gravitational wave B-mode polarization in the cosmic microwave background, which is currently limited by dust foreground contamination. Magnetic fields also drive accretion in astrophysical disks via the magnetorotational instability (MRI). I analytically derive the behavior of this instability in the weakly nonlinear regime and show that the saturated state of the instability depends on the geometry of the background magnetic field. The analytical model describes the behavior of the MRI in a Taylor-Couette flow, a set-up used by experimentalists in the ongoing quest to observe MRI in the laboratory (Clark & Oishi 2016a, 2016b).
Gravitational Instability of Small Particles in Stratified Dusty Disks
NASA Astrophysics Data System (ADS)
Shi, J.; Chiang, E.
2012-12-01
Self-gravity is an attractive means of forming the building blocks of planets, a.k.a. the first-generation planetesimals. For ensembles of dust particles to aggregate into self-gravitating, bound structures, they must first collect into regions of extraordinarily high density in circumstellar gas disks. We have modified the ATHENA code to simulate dusty, compressible, self-gravitating flows in a 3D shearing box configuration, working in the limit that dust particles are small enough to be perfectly entrained in gas. We have used our code to determine the critical density thresholds required for disk gas to undergo gravitational collapse. In the strict limit that the stopping times of particles in gas are infinitesimally small, our numerical simulations and analytic calculations reveal that the critical density threshold for gravitational collapse is orders of magnitude above what has been commonly assumed. We discuss how finite but still short stopping times under realistic conditions can lower the threshold to a level that may be attainable. Nonlinear development of gravitational instability in a stratified dusty disk. Shown are volume renderings of dust density for the bottom half of a disk at t=0, 6, 8, and 9 Omega^{-1}. The initial disk first develops shearing density waves. These waves then steep and form long extending filament along the azimuth. These filaments eventually break and form very dense dust clumps. The time evolution of the maximum dust density within the simulation box. Run std32 stands for a standard run which has averaged Toomre's Q=0.5. Qgtrsim 1.0 for the rest runs in the plot (Z1 has twice metallicity than the standard; Q1 has twice Q_g, the Toomre's Q for the gas disk alone; M1 has twice the dust-to-gas ratio than the standard at the midplane; R1 is constructed so that the midplane density exceeds the Roche criterion however the Toomre's Q is above unity.)
Reducing disk storage of full-3D seismic waveform tomography (F3DT) through lossy online compression
NASA Astrophysics Data System (ADS)
Lindstrom, Peter; Chen, Po; Lee, En-Jui
2016-08-01
Full-3D seismic waveform tomography (F3DT) is the latest seismic tomography technique that can assimilate broadband, multi-component seismic waveform observations into high-resolution 3D subsurface seismic structure models. The main drawback in the current F3DT implementation, in particular the scattering-integral implementation (F3DT-SI), is the high disk storage cost and the associated I/O overhead of archiving the 4D space-time wavefields of the receiver- or source-side strain tensors. The strain tensor fields are needed for computing the data sensitivity kernels, which are used for constructing the Jacobian matrix in the Gauss-Newton optimization algorithm. In this study, we have successfully integrated a lossy compression algorithm into our F3DT-SI workflow to significantly reduce the disk space for storing the strain tensor fields. The compressor supports a user-specified tolerance for bounding the error, and can be integrated into our finite-difference wave-propagation simulation code used for computing the strain fields. The decompressor can be integrated into the kernel calculation code that reads the strain fields from the disk and compute the data sensitivity kernels. During the wave-propagation simulations, we compress the strain fields before writing them to the disk. To compute the data sensitivity kernels, we read the compressed strain fields from the disk and decompress them before using them in kernel calculations. Experiments using a realistic dataset in our California statewide F3DT project have shown that we can reduce the strain-field disk storage by at least an order of magnitude with acceptable loss, and also improve the overall I/O performance of the entire F3DT-SI workflow significantly. The integration of the lossy online compressor may potentially open up the possibilities of the wide adoption of F3DT-SI in routine seismic tomography practices in the near future.
Reducing Disk Storage of Full-3D Seismic Waveform Tomography (F3DT) Through Lossy Online Compression
Lindstrom, Peter; Chen, Po; Lee, En-Jui
2016-05-05
Full-3D seismic waveform tomography (F3DT) is the latest seismic tomography technique that can assimilate broadband, multi-component seismic waveform observations into high-resolution 3D subsurface seismic structure models. The main drawback in the current F3DT implementation, in particular the scattering-integral implementation (F3DT-SI), is the high disk storage cost and the associated I/O overhead of archiving the 4D space-time wavefields of the receiver- or source-side strain tensors. The strain tensor fields are needed for computing the data sensitivity kernels, which are used for constructing the Jacobian matrix in the Gauss-Newton optimization algorithm. In this study, we have successfully integrated a lossy compression algorithmmore » into our F3DT SI workflow to significantly reduce the disk space for storing the strain tensor fields. The compressor supports a user-specified tolerance for bounding the error, and can be integrated into our finite-difference wave-propagation simulation code used for computing the strain fields. The decompressor can be integrated into the kernel calculation code that reads the strain fields from the disk and compute the data sensitivity kernels. During the wave-propagation simulations, we compress the strain fields before writing them to the disk. To compute the data sensitivity kernels, we read the compressed strain fields from the disk and decompress them before using them in kernel calculations. Experiments using a realistic dataset in our California statewide F3DT project have shown that we can reduce the strain-field disk storage by at least an order of magnitude with acceptable loss, and also improve the overall I/O performance of the entire F3DT-SI workflow significantly. The integration of the lossy online compressor may potentially open up the possibilities of the wide adoption of F3DT-SI in routine seismic tomography practices in the near future.« less
Prater, Ronald; Moeller, Charles P.; Pinsker, Robert I.; ...
2014-06-26
Fast waves at frequencies far above the ion cyclotron frequency and approaching the lower hybrid frequency (also called “helicons” or “whistlers”) have application to off-axis current drive in tokamaks with high electron beta. The high frequency causes the whistler-like behavior of the wave power nearly following field lines, but with a small radial component, so the waves spiral slowly toward the plasma center. The high frequency also contributes to strong damping. Modeling predicts robust off-axis current drive with good efficiency compared to alternatives in high performance discharges in DIII-D and Fusion Nuclear Science Facility (FNSF) when the electron beta ismore » above about 1.8%. Detailed analysis of ray behavior shows that ray trajectories and damping are deterministic (that is, not strongly affected by plasma profiles or initial ray conditions), unlike the chaotic ray behavior in lower frequency fast wave experiments. Current drive was found to not be sensitive to the launched value of the parallel index of refraction n||, so wave accessibility issues can be reduced. Finally, use of a traveling wave antenna provides a very narrow n|| spectrum, which also helps avoid accessibility problems.« less
NASA Technical Reports Server (NTRS)
Cantrell, J. H., Jr.; Winfree, W. P.
1980-01-01
The solution of the nonlinear differential equation which describes an initially sinusoidal finite-amplitude elastic wave propagating in a solid contains a static-displacement term in addition to the harmonic terms. The static-displacement amplitude is theoretically predicted to be proportional to the product of the squares of the driving-wave amplitude and the driving-wave frequency. The first experimental verification of the elastic-wave static displacement in a solid (the 111 direction of single-crystal germanium) is reported, and agreement is found with the theoretical predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Currie, Thayne; Kudo, Tomoyuki; Muto, Takayuki
2014-12-01
We report the first independent, second epoch (re-)detection of a directly imaged protoplanet candidate. Using L' high-contrast imaging of HD 100546 taken with the Near-Infrared Coronagraph and Imager on Gemini South, we recover ''HD 100546 b'' with a position and brightness consistent with the original Very Large Telescope/NAos-COnica detection from Quanz et al., although data obtained after 2013 will be required to decisively demonstrate common proper motion. HD 100546 b may be spatially resolved, up to ≈12-13 AU in diameter, and is embedded in a finger of thermal IR-bright, polarized emission extending inward to at least 0.''3. Standard hot-start models implymore » a mass of ≈15 M{sub J} . However, if HD 100546 b is newly formed or made visible by a circumplanetary disk, both of which are plausible, its mass is significantly lower (e.g., 1-7 M{sub J} ). Additionally, we discover a thermal IR-bright disk feature, possibly a spiral density wave, at roughly the same angular separation as HD 100546 b but 90° away. Our interpretation of this feature as a spiral arm is not decisive, but modeling analyses using spiral density wave theory implies a wave launching point exterior to ≈0.''45 embedded within the visible disk structure: plausibly evidence for a second, hitherto unseen, wide-separation planet. With one confirmed protoplanet candidate and evidence for one to two others, HD 100546 is an important evolutionary precursor to intermediate-mass stars with multiple super-Jovian planets at moderate/wide separations like HR 8799.« less
Observability of characteristic binary-induced structures in circumbinary disks
NASA Astrophysics Data System (ADS)
Avramenko, R.; Wolf, S.; Illenseer, T. F.
2017-07-01
Context. A substantial fraction of protoplanetary disks form around stellar binaries. The binary system generates a time-dependent non-axisymmetric gravitational potential, inducing strong tidal forces on the circumbinary disk. This leads to a change in basic physical properties of the circumbinary disk, which should in turn result in unique structures that are potentially observable with the current generation of instruments. Aims: The goal of this study is to identify these characteristic structures, constrain the physical conditions that cause them, and evaluate the feasibility of observing them in circumbinary disks. Methods: To achieve this, first we perform 2D hydrodynamic simulations. The resulting density distributions are post-processed with a 3D radiative transfer code to generate re-emission and scattered light maps. Based on these distributions, we study the influence of various parameters, such as the mass of the stellar components, mass of the disk, and binary separation on observable features in circumbinary disks. Results: We find that the Atacama Large (sub-)Millimetre Array (ALMA) as well as the European Extremely Large Telescope (E-ELT) are capable of tracing asymmetries in the inner region of circumbinary disks, which are affected most by the binary-disk interaction. Observations at submillimetre/millimetre wavelengths allow the detection of the density waves at the inner rim of the disk and inner cavity. With the E-ELT one can partially resolve the innermost parts of the disk in the infrared wavelength range, including the disk's rim, accretion arms, and potentially the expected circumstellar disks around each of the binary components.
Evaluation of blue light exposure to beta brainwaves on simulated night driving
NASA Astrophysics Data System (ADS)
Purawijaya, Dandri Aly; Fitri, Lulu Lusianti; Suprijanto
2015-09-01
Numbers of night driving accident in Indonesia since 2010 are exponentially rising each year with total of loss more than 50 billion rupiah. One of the causes that contribute to night driving accident is drowsiness. Drowsiness is affected by circadian rhythm resulted from the difference of blue light quality and quantity between night and day. Blue light may effect on human physiology through non-visual pathway by suppressing melatonin hormone suppression that influence drowsiness. Meanwhile, the production of hormones and other activities in brain generate bioelectrical activity such as brainwaves and can be recorded using Electroencephalograph (EEG). Therefore, this research objective is to evaluate the effect of blue light exposure to beta brainwave emergence during night driving simulation to a driver. This research was conducted to 4 male subjects who are able to drive and have a legitimate car driving license. The driving simulator was done using SCANIA Truck Driving Simulator on freeform driving mode in dark environment. Subjects drove for total 32 minutes. The data collections were taken in 2 days with 16 minutes for each day. The 16 minutes were divided again into 8 minutes adaptation in dark and 8 minutes for driving either in blue light exposure or in total darkness. While driving the simulation, subjects' brainwaves were recorded using EEG EMOTIV 14 Channels, exposed by LED monochromatic blue light with 160 Lux from source and angle 45o and sat 1 m in front of the screen. Channels used on this research were for visual (O1; O2), cognition (F3; F4; P7; P8), and motor (FC5; FC6). EEG brainwave result was filtered with EEGLab to obtain beta waves at 13 - 30 Hz frequencies. Results showed that beta waves response to blue light varied for each subject. Blue light exposure either increased or decreased beta waves in 2 minutes pattern and maintaining beta waves on cognition and motor area in 3 out of 4 subjects. Meanwhile, blue light exposure did not maintain and induce beta waves fluctuation on visual area of another 2 subjects. The conclusion of this research is that blue light exposure affected the pattern of beta waves on frontal, parietal, premotor cortex and visual lobes.
Binary-disk interaction. II. Gap-opening criteria for unequal-mass binaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Valle, Luciano; Escala, Andrés, E-mail: ldelvalleb@gmail.com
We study the interaction of an unequal-mass binary with an isothermal circumbinary disk, motivated by the theoretical and observational evidence that after a major merger of gas-rich galaxies, a massive gaseous disk with a supermassive black hole binary will be formed in the nuclear region. We focus on the gravitational torques that the binary exerts on the disk and how these torques can drive the formation of a gap in the disk. This exchange of angular momentum between the binary and the disk is mainly driven by the gravitational interaction between the binary and a strong nonaxisymmetric density perturbation thatmore » is produced in the disk, in response to the presence of the binary. Using smoothed particle hydrodynamics numerical simulations, we test two gap-opening criteria, one that assumes the geometry of the density perturbation is an ellipsoid/thick spiral and another that assumes a flat spiral geometry for the density perturbation. We find that the flat spiral gap-opening criterion successfully predicts which simulations will have a gap in the disk and which will not. We also study the limiting cases predicted by the gap-opening criteria. Since the viscosity in our simulations is considerably smaller than the expected value in the nuclear regions of gas-rich merging galaxies, we conclude that in such environments the formation of a circumbinary gap is unlikely.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casassus, S.; Marino, S.; Pérez, S.
2015-10-01
The finding of residual gas in the large central cavity of the HD 142527 disk motivates questions regarding the origin of its non-Keplerian kinematics and possible connections with planet formation. We aim to understand the physical structure that underlies the intra-cavity gaseous flows, guided by new molecular-line data in CO(6–5) with unprecedented angular resolutions. Given the warped structure inferred from the identification of scattered-light shadows cast on the outer disk, the kinematics are consistent, to first order, with axisymmetric accretion onto the inner disk occurring at all azimuths. A steady-state accretion profile, fixed at the stellar accretion rate, explains themore » depth of the cavity as traced in CO isotopologues. The abrupt warp and evidence for near free-fall radial flows in HD 142527 resemble theoretical models for disk tearing, which could be driven by the reported low-mass companion, whose orbit may be contained in the plane of the inner disk. The companion’s high inclination with respect to the massive outer disk could drive Kozai oscillations over long timescales; high-eccentricity periods may perhaps account for the large cavity. While shadowing by the tilted disk could imprint an azimuthal modulation in the molecular-line maps, further observations are required to ascertain the significance of azimuthal structure in the density field inside the cavity of HD 142527.« less
Apparatus for and method of operating a cylindrical pulsed induction mass launcher
Cowan, M. Jr.; Duggin, B.W.; Widner, M.M.
1992-06-30
An electromagnetic cylindrical projectile mass launcher and a method of operation is provided which includes a cylindrical projectile having a conducting armature, a cylindrical barrel in which the armature is received, a plurality of electromagnetic drive coil stages, a plurality of pulse energy sources, and a pulsed power arrangement for generating magnetic pulses forming a pulsed magnetic wave along the length of the launcher barrel. The pulsed magnetic wave provides a propelling force on the projectile along the drive coil. The pulsed magnetic wave of the drive coil stages is advanced along the armature faster than the projectile to thereby generate an induced current wave in the armature. The pulsed generation of the magnetic wave minimizes electromagnetic heating of the projectile and provides for smooth acceleration of the projectile through the barrel of the launcher. 2 figs.
Apparatus for and method of operating a cylindrical pulsed induction mass launcher
Cowan, Jr., Maynard; Duggin, Billy W.; Widner, Melvin M.
1992-01-01
An electromagnetic cylindrical projectile mass launcher and a method of operation is provided which includes a cylindrical projectile having a conducting armature, a cylindrical barrel in which the armature is received, a plurality of electromagnetic drive coil stages, a plurality of pulse energy sources, and a pulsed power arrangement for generating magnetic pulses forming a pulsed magnetic wave along the length of the launcher barrel. The pulsed magnetic wave provides a propelling force on the projectile along the drive coil. The pulsed magnetic wave of the drive coil stages is advanced along the armature faster than the projectile to thereby generate an induced current wave in the armature. The pulsed generation of the magnetic wave minimizes electromagnetic heating of the projectile and provides for smooth acceleration of the projectile through the barrel of the launcher.
Physics and Hard Disk Drives-A Career in Industry
NASA Astrophysics Data System (ADS)
Lambert, Steven
2014-03-01
I will participate in a panel discussion about ``Career Opportunities for Physicists.'' I enjoyed 27 years doing technology development and product support in the hard disk drive business. My PhD in low temperature physics was excellent training for this career since I learned how to work in a lab, analyze data, write and present technical information, and define experiments that got to the heart of a problem. An academic position did not appeal to me because I had no passion to pursue a particular topic in basic physics. My work in industry provided an unending stream of challenging problems to solve, and it was a rich and rewarding experience. I'm now employed by the APS to focus on our interactions with physicists in industry. I welcome the chance to share my industrial experience with students, post-docs, and others who are making decisions about their career path. Industrial Physics Fellow, APS Headquarters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuyama, H., E-mail: matsu@phys.sci.hokudai.ac.jp; Nara, D.; Kageyama, R.
We developed a micrometer-sized magnetic tip integrated onto the write head of a hard disk drive for spin-polarized scanning tunneling microscopy (SP-STM) in the modulated tip magnetization mode. Using SP-STM, we measured a well-defined in-plane spin-component of the tunneling current of the rough surface of a polycrystalline NiFe film. The spin asymmetry of the NiFe film was about 1.3% within the bias voltage range of -3 to 1 V. We obtained the local spin component image of the sample surface, switching the magnetic field of the sample to reverse the sample magnetization during scanning. We also obtained a spin imagemore » of the rough surface of a polycrystalline NiFe film evaporated on the recording medium of a hard disk drive.« less
MIDAS - ESO's new image processing system
NASA Astrophysics Data System (ADS)
Banse, K.; Crane, P.; Grosbol, P.; Middleburg, F.; Ounnas, C.; Ponz, D.; Waldthausen, H.
1983-03-01
The Munich Image Data Analysis System (MIDAS) is an image processing system whose heart is a pair of VAX 11/780 computers linked together via DECnet. One of these computers, VAX-A, is equipped with 3.5 Mbytes of memory, 1.2 Gbytes of disk storage, and two tape drives with 800/1600 bpi density. The other computer, VAX-B, has 4.0 Mbytes of memory, 688 Mbytes of disk storage, and one tape drive with 1600/6250 bpi density. MIDAS is a command-driven system geared toward the interactive user. The type and number of parameters in a command depends on the unique parameter invoked. MIDAS is a highly modular system that provides building blocks for the undertaking of more sophisticated applications. Presently, 175 commands are available. These include the modification of the color-lookup table interactively, to enhance various image features, and the interactive extraction of subimages.
NASA Astrophysics Data System (ADS)
Cordle, Michael; Rea, Chris; Jury, Jason; Rausch, Tim; Hardie, Cal; Gage, Edward; Victora, R. H.
2018-05-01
This study aims to investigate the impact that factors such as skew, radius, and transition curvature have on areal density capability in heat-assisted magnetic recording hard disk drives. We explore a "ballistic seek" approach for capturing in-situ scan line images of the magnetization footprint on the recording media, and extract parametric results of recording characteristics such as transition curvature. We take full advantage of the significantly improved cycle time to apply a statistical treatment to relatively large samples of experimental curvature data to evaluate measurement capability. Quantitative analysis of factors that impact transition curvature reveals an asymmetry in the curvature profile that is strongly correlated to skew angle. Another less obvious skew-related effect is an overall decrease in curvature as skew angle increases. Using conventional perpendicular magnetic recording as the reference case, we characterize areal density capability as a function of recording position.
NASA Astrophysics Data System (ADS)
2012-05-01
WE RECOMMEND Scientific American—The Amateur Scientist 3.0 Article collection spans the decades DynaKar DynaKar drives dynamics experiments The Fundamentals of Imaging Author covers whole imaging spectrum Teaching Secondary Physics Effective teaching is all in the approach Novel Materials and Smart Applications/Novel materials sample pack Resources kit samples smart materials WORTH A LOOK Cryptic disk Metal disk spins life into discussions about energy, surfaces and kinetics HANDLE WITH CARE The New Resourceful Physics Teacher Book brings creativity to physics WEB WATCH Apps for tablets and smartphones can aid physics teaching
The solar nebula and the planetesimal disk
NASA Technical Reports Server (NTRS)
Ward, W. R.
1984-01-01
Two popular theories of solar system formation are briefly reviewed, then used as background in an examination of several new developments related to planetary ring dynamics that promise to have great impact on future research. Most important are the incorporation of accretion disk and density wave theories into cosmogonic theory. A successful integration of these mechanisms may significantly constrain evolutionary models of the early solar system and also provide new insight into the mechanisms themselves.
The solar nebula and the planetesimal disk
NASA Astrophysics Data System (ADS)
Ward, W. R.
Two popular theories of solar system formation are briefly reviewed, then used as background in an examination of several new developments related to planetary ring dynamics that promise to have great impact on future research. Most important are the incorporation of accretion disk and density wave theories into cosmogonic theory. A successful integration of these mechanisms may significantly constrain evolutionary models of the early solar system and also provide new insight into the mechanisms themselves.
Spatial gene drives and pushed genetic waves.
Tanaka, Hidenori; Stone, Howard A; Nelson, David R
2017-08-08
Gene drives have the potential to rapidly replace a harmful wild-type allele with a gene drive allele engineered to have desired functionalities. However, an accidental or premature release of a gene drive construct to the natural environment could damage an ecosystem irreversibly. Thus, it is important to understand the spatiotemporal consequences of the super-Mendelian population genetics before potential applications. Here, we use a reaction-diffusion model for sexually reproducing diploid organisms to study how a locally introduced gene drive allele spreads to replace the wild-type allele, although it possesses a selective disadvantage s > 0. Using methods developed by Barton and collaborators, we show that socially responsible gene drives require 0.5 < s < 0.697, a rather narrow range. In this "pushed wave" regime, the spatial spreading of gene drives will be initiated only when the initial frequency distribution is above a threshold profile called "critical propagule," which acts as a safeguard against accidental release. We also study how the spatial spread of the pushed wave can be stopped by making gene drives uniquely vulnerable ("sensitizing drive") in a way that is harmless for a wild-type allele. Finally, we show that appropriately sensitized drives in two dimensions can be stopped, even by imperfect barriers perforated by a series of gaps.
NASA Astrophysics Data System (ADS)
JANG, G. H.; LEE, S. H.; JUNG, M. S.
2002-03-01
Free vibration of a spinning flexible disk-spindle system supported by ball bearing and flexible shaft is analyzed by using Hamilton's principle, FEM and substructure synthesis. The spinning disk is described by using the Kirchhoff plate theory and von Karman non-linear strain. The rotating spindle and stationary shaft are modelled by Rayleigh beam and Euler beam respectively. Using Hamilton's principle and including the rigid body translation and tilting motion, partial differential equations of motion of the spinning flexible disk and spindle are derived consistently to satisfy the geometric compatibility in the internal boundary between substructures. FEM is used to discretize the derived governing equations, and substructure synthesis is introduced to assemble each component of the disk-spindle-bearing-shaft system. The developed method is applied to the spindle system of a computer hard disk drive with three disks, and modal testing is performed to verify the simulation results. The simulation result agrees very well with the experimental one. This research investigates critical design parameters in an HDD spindle system, i.e., the non-linearity of a spinning disk and the flexibility and boundary condition of a stationary shaft, to predict the free vibration characteristics accurately. The proposed method may be effectively applied to predict the vibration characteristics of a spinning flexible disk-spindle system supported by ball bearing and flexible shaft in the various forms of computer storage device, i.e., FDD, CD, HDD and DVD.
Magneto-thermal Disk Winds from Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Bai, Xue-Ning; Ye, Jiani; Goodman, Jeremy; Yuan, Feng
2016-02-01
The global evolution and dispersal of protoplanetary disks (PPDs) are governed by disk angular-momentum transport and mass-loss processes. Recent numerical studies suggest that angular-momentum transport in the inner region of PPDs is largely driven by magnetized disk wind, yet the wind mass-loss rate remains unconstrained. On the other hand, disk mass loss has conventionally been attributed to photoevaporation, where external heating on the disk surface drives a thermal wind. We unify the two scenarios by developing a one-dimensional model of magnetized disk winds with a simple treatment of thermodynamics as a proxy for external heating. The wind properties largely depend on (1) the magnetic field strength at the wind base, characterized by the poloidal Alfvén speed vAp, (2) the sound speed cs near the wind base, and (3) how rapidly poloidal field lines diverge (achieve {R}-2 scaling). When {v}{Ap}\\gg {c}{{s}}, corotation is enforced near the wind base, resulting in centrifugal acceleration. Otherwise, the wind is accelerated mainly by the pressure of the toroidal magnetic field. In both cases, the dominant role played by magnetic forces likely yields wind outflow rates that exceed purely hydrodynamical mechanisms. For typical PPD accretion-rate and wind-launching conditions, we expect vAp to be comparable to cs at the wind base. The resulting wind is heavily loaded, with a total wind mass-loss rate likely reaching a considerable fraction of the wind-driven accretion rate. Implications for modeling global disk evolution and planet formation are also discussed.
A critical analysis of shock models for chondrule formation
NASA Astrophysics Data System (ADS)
Stammler, Sebastian M.; Dullemond, Cornelis P.
2014-11-01
In recent years many models of chondrule formation have been proposed. One of those models is the processing of dust in shock waves in protoplanetary disks. In this model, the dust and the chondrule precursors are overrun by shock waves, which heat them up by frictional heating and thermal exchange with the gas. In this paper we reanalyze the nebular shock model of chondrule formation and focus on the downstream boundary condition. We show that for large-scale plane-parallel chondrule-melting shocks the postshock equilibrium temperature is too high to avoid volatile loss. Even if we include radiative cooling in lateral directions out of the disk plane into our model (thereby breaking strict plane-parallel geometry) we find that for a realistic vertical extent of the solar nebula disk the temperature decline is not fast enough. On the other hand, if we assume that the shock is entirely optically thin so that particles can radiate freely, the cooling rates are too high to produce the observed chondrules textures. Global nebular shocks are therefore problematic as the primary sources of chondrules.
Isentropic compressive wave generator and method of making same
Barker, L.M.
An isentropic compressive wave generator and method of making same are disclosed. The wave generator comprises a disk or flat pillow member having component materials of different shock impedances formed in a configuration resulting in a smooth shock impedance gradient over the thickness thereof for interpositioning between an impactor member and a target specimen for producing a shock wave of a smooth predictable rise time. The method of making the pillow member comprises the reduction of the component materials to a powder form and forming the pillow member by sedimentation and compressive techniques.
Zhu, Zihang; Zhao, Shanghong; Zheng, Wanze; Wang, Wei; Lin, Baoqin
2015-11-10
A novel frequency 12-tupling optical millimeter-wave (mm-wave) generation using two cascaded dual-parallel Mach-Zehnder modulators (DP-MZMs) without an optical filter is proposed and demonstrated by computer simulation. By properly adjusting the amplitude and phase of radio frequency (RF) driving signal and the direct current (DC) bias points of two DP-MZMs, a 120 GHz mm-wave with an optical sideband suppression ratio (OSSR) of 25.1 dB and a radio frequency spurious suppression ratio (RFSSR) of 19.1 dB is shown to be generated from a 10 GHz RF driving signal, which largely reduces the response frequency of electronic devices. Furthermore, it is also proved to be valid that even if the phase difference of RF driving signals, the RF driving voltage, and the DC bias voltage deviate from the ideal values to a certain degree, the performance is still acceptable. Since no optical filter is employed to suppress the undesired optical sidebands, a high-spectral-purity mm-wave signal tunable from 48 to 216 GHz can be obtained theoretically when a RF driving signal from 4 to 18 GHz is applied to the DP-MZMs, and the system can be readily implemented in wavelength-division-multiplexing upconversion systems to provide high-quality optical local oscillator signal.
NASA Astrophysics Data System (ADS)
Lyu, Pin; Chen, Wenli; Li, Hui; Shen, Lian
2017-11-01
In recent studies, Yang, Meneveau & Shen (Physics of Fluids, 2014; Renewable Energy, 2014) developed a hybrid numerical framework for simulation of offshore wind farm. The framework consists of simulation of nonlinear surface waves using a high-order spectral method, large-eddy simulation of wind turbulence on a wave-surface-fitted curvilinear grid, and an actuator disk model for wind turbines. In the present study, several more precise wind turbine models, including the actuator line model, actuator disk model with rotation, and nacelle model, are introduced into the computation. Besides offshore wind turbines on fixed piles, the new computational framework has the capability to investigate the interaction among wind, waves, and floating wind turbines. In this study, onshore, offshore fixed pile, and offshore floating wind farms are compared in terms of flow field statistics and wind turbine power extraction rate. The authors gratefully acknowledge financial support from China Scholarship Council (No. 201606120186) and the Institute on the Environment of University of Minnesota.
Huygens' optical vector wave field synthesis via in-plane electric dipole metasurface.
Park, Hyeonsoo; Yun, Hansik; Choi, Chulsoo; Hong, Jongwoo; Kim, Hwi; Lee, Byoungho
2018-04-16
We investigate Huygens' optical vector wave field synthesis scheme for electric dipole metasurfaces with the capability of modulating in-plane polarization and complex amplitude and discuss the practical issues involved in realizing multi-modulation metasurfaces. The proposed Huygens' vector wave field synthesis scheme identifies the vector Airy disk as a synthetic unit element and creates a designed vector optical field by integrating polarization-controlled and complex-modulated Airy disks. The metasurface structure for the proposed vector field synthesis is analyzed in terms of the signal-to-noise ratio of the synthesized field distribution. The design of practical metasurface structures with true vector modulation capability is possible through the analysis of the light field modulation characteristics of various complex modulated geometric phase metasurfaces. It is shown that the regularization of meta-atoms is a key factor that needs to be considered in field synthesis, given that it is essential for a wide range of optical field synthetic applications, including holographic displays, microscopy, and optical lithography.
NASA Astrophysics Data System (ADS)
Silsbee, Kedron; Rafikov, Roman R.
2015-01-01
Detections of planets in eccentric, close (separations of ~20 AU) binary systems such as α Cen or γ Cep provide an important test of planet formation theories. Gravitational perturbations from the companion are expected to excite high planetesimal eccentricities, resulting in destruction rather than growth of objects with sizes of up to several hundred kilometers in collisions of similar-sized bodies. It was recently suggested that the gravity of a massive axisymmetric gaseous disk in which planetesimals are embedded drives rapid precession of their orbits, suppressing eccentricity excitation. However, disks in binaries are themselves expected to be eccentric, leading to additional planetesimal excitation. Here we develop a secular theory of eccentricity evolution for planetesimals perturbed by the gravity of an elliptical protoplanetary disk (neglecting gas drag) and the companion. For the first time, we derive an expression for the disturbing function due to an eccentric disk, which can be used for a variety of other astrophysical problems. We obtain explicit analytical solutions for planetesimal eccentricity evolution neglecting gas drag and delineate four different regimes of dynamical excitation. We show that in systems with massive (gsim 10-2 M ⊙) disks, planetesimal eccentricity is usually determined by the gravity of the eccentric disk alone, and is comparable to the disk eccentricity. As a result, the latter imposes a lower limit on collisional velocities of solids, making their growth problematic. In the absence of gas drag, this fragmentation barrier can be alleviated if the gaseous disk rapidly precesses or if its own self-gravity is efficient at lowering disk eccentricity.
DUST DISK AROUND A BLACK HOLE IN GALAXY NGC 4261
NASA Technical Reports Server (NTRS)
2002-01-01
This is a Hubble Space Telescope image of an 800-light-year-wide spiral-shaped disk of dust fueling a massive black hole in the center of galaxy, NGC 4261, located 100 million light-years away in the direction of the constellation Virgo. By measuring the speed of gas swirling around the black hole, astronomers calculate that the object at the center of the disk is 1.2 billion times the mass of our Sun, yet concentrated into a region of space not much larger than our solar system. The strikingly geometric disk -- which contains enough mass to make 100,000 stars like our Sun -- was first identified in Hubble observations made in 1992. These new Hubble images reveal for the first time structure in the disk, which may be produced by waves or instabilities in the disk. Hubble also reveals that the disk and black hole are offset from the center of NGC 4261, implying some sort of dynamical interaction is taking place, that has yet to be fully explained. Credit: L. Ferrarese (Johns Hopkins University) and NASA Image files in GIF and JPEG format, captions, and press release text may be accessed on Internet via anonymous ftp from oposite.stsci.edu in /pubinfo:
NASA Astrophysics Data System (ADS)
Sahai, R.; Claussen, M. J.; Schnee, S.; Morris, M. R.; Sánchez Contreras, C.
2011-09-01
We report the results of a pilot multiwavelength survey in the radio continuum (X, Ka, and Q bands, i.e., from 3.6 cm to 7 mm) carried out with the Expanded Very Large Array (EVLA) in order to confirm the presence of very large dust grains in dusty disks and torii around the central stars in a small sample of post-asymptotic giant branch (pAGB) objects, as inferred from millimeter (mm) and submillimeter (submm) observations. Supporting mm-wave observations were also obtained with the Combined Array for Research in Millimeter-wave Astronomy toward three of our sources. Our EVLA survey has resulted in a robust detection of our most prominent submm emission source, the pre-planetary nebula (PPN) IRAS 22036+5306, in all three bands, and the disk-prominent pAGB object, RV Tau, in one band. The observed fluxes are consistent with optically thin free-free emission, and since they are insignificant compared to their submm/mm fluxes, we conclude that the latter must come from substantial masses of cool, large (mm-sized) grains. We find that the power-law emissivity in the cm-to-submm range for the large grains in IRAS22036 is νβ, with β = 1-1.3. Furthermore, the value of β in the 3-0.85 mm range for the three disk-prominent pAGB sources (β <= 0.4) is significantly lower than that of IRAS22036, suggesting that the grains in pAGB objects with circumbinary disks are likely larger than those in the dusty waists of pre-planetary nebulae.
NASA Astrophysics Data System (ADS)
Forgan, Duncan H.; Ilee, John D.; Meru, Farzana
2018-06-01
The spiral waves detected in the protostellar disk surrounding Elias 2-27 have been suggested as evidence of the disk being gravitationally unstable. However, previous work has shown that a massive, stable disk undergoing an encounter with a massive companion are also consistent with the observations. We compare the spiral morphology of smoothed particle hydrodynamic simulations modeling both cases. The gravitationally unstable disk produces symmetric, tightly wound spiral arms with constant pitch angle, as predicted by the literature. The companion disk’s arms are asymmetric, with pitch angles that increase with radius. However, these arms are not well-fitted by standard analytic expressions, due to the high disk mass and relatively low companion mass. We note that differences (or indeed similarities) in morphology between pairs of spirals is a crucial discriminant between scenarios for Elias 2-27, and hence future studies must fit spiral arms individually. If Elias 2-27 continues to show symmetric tightly wound spiral arms in future observations, then we posit that it is the first observed example of a gravitationally unstable protostellar disk.
Defect reduction of patterned media templates and disks
NASA Astrophysics Data System (ADS)
Luo, Kang; Ha, Steven; Fretwell, John; Ramos, Rick; Ye, Zhengmao; Schmid, Gerard; LaBrake, Dwayne; Resnick, Douglas J.; Sreenivasan, S. V.
2010-05-01
Imprint lithography has been shown to be an effective technique for the replication of nano-scale features. Acceptance of imprint lithography for manufacturing will require a demonstration of defect levels commensurate with cost-effective device production. This work summarizes the results of defect inspections of hard disks patterned using Jet and Flash Imprint Lithography (J-FILTM). Inspections were performed with optical based automated inspection tools. For the hard drive market, it is important to understand the defectivity of both the template and the imprinted disk. This work presents a methodology for automated pattern inspection and defect classification for imprint-patterned media. Candela CS20 and 6120 tools from KLA-Tencor map the optical properties of the disk surface, producing highresolution grayscale images of surface reflectivity and scattered light. Defects that have been identified in this manner are further characterized according to the morphology. The imprint process was tested after optimizing both the disk cleaning and adhesion layers processes that precede imprinting. An extended imprint run was performed and both the defect types and trends are reported.
Planet Formation in Stellar Binaries: How Disk Gravity Can Lower theFragmentation Barrier
NASA Astrophysics Data System (ADS)
Silsbee, Kedron; Rafikov, Roman R.
2014-11-01
Binary star systems present a challenge to current theories of planet formation. Perturbations from the companion star dynamically excite the protoplanetary disk, which can lead to destructive collisions between planetesimals, and prevent growth from 1 km to 100 km sized planetesimals. Despite this apparent barrier to coagulation, planets have been discovered within several small-separation (<20 AU), eccentric (eb 0.4) binaries, such as alpha Cen and gamma Cep. We address this problem by analytically exploring planetesimal dynamics under the simultaneous action of (1) binary perturbation, (2) gas drag (which tends to align planetesimal orbits), and (3), the gravity of an eccentric protoplanetary disk. We then use our dynamical solutions to assess the outcomes of planetesimal collisions (growth, destruction, erosion) for a variety of disk models. We find that planets in small-separation binaries can form at their present locations if the primordial protoplanetary disks were massive (>0.01M⊙) and not very eccentric (eccentricity of order several per cent at the location of planet). This constraint on the disk mass is compatible with the high masses of the giant planets in known gamma Cep-like binaries, which require a large mass reservoir for their formation. We show that for these massive disks, disk gravity is dominant over the gravity of the binary companion at the location of the observed planets. Therefore, planetesimal growth is highly sensitive to disk properties. The requirement of low disk eccentricity is in line with the recent hydrodynamic simulations that tend to show gaseous disks in eccentric binaries developing very low eccentricity, at the level of a few percent. A massive purely axisymmetric disk makes for a friendlier environment for planetesimal growth by driving rapid apsidal precession of planetesimals, and averaging out the eccentricity excitation from the binary companion. When the protoplanetary disk is eccentric we find that the most favorable conditions for planetesimal growth emerge when the disk is non-precessing and is apsidally aligned with the orbit of the binary.
Faster, Better, Cheaper: A Decade of PC Progress.
ERIC Educational Resources Information Center
Crawford, Walt
1997-01-01
Reviews the development of personal computers and how computer components have changed in price and value. Highlights include disk drives; keyboards; displays; memory; color graphics; modems; CPU (central processing unit); storage; direct mail vendors; and future possibilities. (LRW)
Planetesimal formation during protoplanetary disk buildup
NASA Astrophysics Data System (ADS)
Drążkowska, J.; Dullemond, C. P.
2018-06-01
Context. Models of dust coagulation and subsequent planetesimal formation are usually computed on the backdrop of an already fully formed protoplanetary disk model. At the same time, observational studies suggest that planetesimal formation should start early, possibly even before the protoplanetary disk is fully formed. Aims: In this paper we investigate under which conditions planetesimals already form during the disk buildup stage, in which gas and dust fall onto the disk from its parent molecular cloud. Methods: We couple our earlier planetesimal formation model at the water snow line to a simple model of disk formation and evolution. Results: We find that under most conditions planetesimals only form after the buildup stage, when the disk becomes less massive and less hot. However, there are parameters for which planetesimals already form during the disk buildup. This occurs when the viscosity driving the disk evolution is intermediate (αv 10-3-10-2) while the turbulent mixing of the dust is reduced compared to that (αt ≲ 10-4), and with the assumption that the water vapor is vertically well-mixed with the gas. Such a αt ≪ αv scenario could be expected for layered accretion, where the gas flow is mostly driven by the active surface layers, while the midplane layers, where most of the dust resides, are quiescent. Conclusions: In the standard picture where protoplanetary disk accretion is driven by global turbulence, we find that no planetesimals form during the disk buildup stage. Planetesimal formation during the buildup stage is only possible in scenarios in which pebbles reside in a quiescent midplane while the gas and water vapor are diffused at a higher rate.
Fast and Slow Precession of Gaseous Debris Disks around Planet-accreting White Dwarfs
NASA Astrophysics Data System (ADS)
Miranda, Ryan; Rafikov, Roman R.
2018-04-01
Spectroscopic observations of some metal-rich white dwarfs (WDs), believed to be polluted by planetary material, reveal the presence of compact gaseous metallic disks orbiting them. The observed variability of asymmetric, double-peaked emission-line profiles in about half of such systems could be interpreted as the signature of precession of an eccentric gaseous debris disk. The variability timescales—from decades down to 1.4 year (recently inferred for the debris disk around HE 1349–2305)—are in rough agreement with the rate of general relativistic (GR) precession in the test-particle limit. However, it has not been demonstrated that this mechanism can drive such a fast, coherent precession of a radially extended (out to 1 {R}ȯ ) gaseous disk mediated by internal stresses (pressure). Here, we use the linear theory of eccentricity evolution in hydrodynamic disks to determine several key properties of eccentric modes in gaseous debris disks around WDs. We find a critical dependence of both the precession period and radial eccentricity distribution of the modes on the inner disk radius, r in. For small inner radii, {r}in}≲ (0.2{--}0.4) {R}ȯ , the modes are GR-driven, with periods of ≈1–10 year. For {r}in}≳ (0.2{--}0.4) {R}ȯ , the modes are pressure dominated, with periods of ≈3–20 year. Correspondence between the variability periods and inferred inner radii of the observed disks is in general agreement with this trend. In particular, the short period of HE 1349–2305 is consistent with its small r in. Circum-WD debris disks may thus serve as natural laboratories for studying the evolution of eccentric gaseous disks.
Global simulations of protoplanetary disks with net magnetic flux. I. Non-ideal MHD case
NASA Astrophysics Data System (ADS)
Béthune, William; Lesur, Geoffroy; Ferreira, Jonathan
2017-04-01
Context. The planet-forming region of protoplanetary disks is cold, dense, and therefore weakly ionized. For this reason, magnetohydrodynamic (MHD) turbulence is thought to be mostly absent, and another mechanism has to be found to explain gas accretion. It has been proposed that magnetized winds, launched from the ionized disk surface, could drive accretion in the presence of a large-scale magnetic field. Aims: The efficiency and the impact of these surface winds on the disk structure is still highly uncertain. We present the first global simulations of a weakly ionized disk that exhibits large-scale magnetized winds. We also study the impact of self-organization, which was previously demonstrated only in non-stratified models. Methods: We perform numerical simulations of stratified disks with the PLUTO code. We compute the ionization fraction dynamically, and account for all three non-ideal MHD effects: ohmic and ambipolar diffusions, and the Hall drift. Simplified heating and cooling due to non-thermal radiation is also taken into account in the disk atmosphere. Results: We find that disks can be accreting or not, depending on the configuration of the large-scale magnetic field. Magnetothermal winds, driven both by magnetic acceleration and heating of the atmosphere, are obtained in the accreting case. In some cases, these winds are asymmetric, ejecting predominantly on one side of the disk. The wind mass loss rate depends primarily on the average ratio of magnetic to thermal pressure in the disk midplane. The non-accreting case is characterized by a meridional circulation, with accretion layers at the disk surface and decretion in the midplane. Finally, we observe self-organization, resulting in axisymmetric rings of density and associated pressure "bumps". The underlying mechanism and its impact on observable structures are discussed.
NASA Technical Reports Server (NTRS)
1976-01-01
Space Spin-Offs, Inc. under a contract with Lewis Research Center and Marshall Space Flight Center produced a new water-powered saw that cuts through concrete and steel plate reducing danger of explosion or electric shock in rescue and other operations. In prototype unit efficient water-powered turbine drives an 8 inch diameter grinding disk at 6,600 rpm. Exhaust water cools disk and workpiece quenching any sparks produced by cutting head. At maximum power, tool easily cuts through quarter inch steel plate. Adapter heads for chain saws, impact wrenches, heavy duty drills, and power hack saws can be fitted.
Driving ionospheric outflows and magnetospheric O + energy density with Alfvén waves
Chaston, C. C.; Bonnell, J. W.; Reeves, Geoffrey D.; ...
2016-05-11
We show how dispersive Alfvén waves observed in the inner magnetosphere during geomagnetic storms can extract O + ions from the topside ionosphere and accelerate these ions to energies exceeding 50 keV in the equatorial plane. This occurs through wave trapping, a variant of “shock” surfing, and stochastic ion acceleration. These processes in combination with the mirror force drive field-aligned beams of outflowing ionospheric ions into the equatorial plane that evolve to provide energetic O + distributions trapped near the equator. These waves also accelerate preexisting/injected ion populations on the same field lines. We show that the action of dispersivemore » Alfvén waves over several minutes may drive order of magnitude increases in O + ion pressure to make substantial contributions to magnetospheric ion energy density. These wave accelerated ions will enhance the ring current and play a role in the storm time evolution of the magnetosphere.« less
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-07-01
What causes the large-scale spiral structures found in some protoplanetary disks? Most models assume theyre created by newly-forming planets, but a new study suggests that planets might have nothing to do with it.Perturbations from Planets?In some transition disks protoplanetary disks with gaps in their inner regions weve directly imaged large-scale spiral arms. Many theories currently attribute the formation of these structures to young planets: either the direct perturbations of a planet embedded in the disk cause the spirals, or theyre indirectly caused by the orbit of a planetary body outside of the arms.Another example of spiral arms detected in a protoplanetary disk, MWC 758. [NASA/ESA/ESO/M. Benisty et al.]But what if you could get spirals without any planets? A team of scientists led by Matas Montesinos (University of Chile) have recently published a study in which they examine what happens to a shadowed protoplanetary disk.Casting Shadows with WarpsIn the teams setup, they envision a protoplanetary disk that is warped: the inner region is slightly tilted relative to the outer region. As the central star casts light out over its protoplanetary disk, this disk warping would cause some regions of the disk to be shaded in a way that isnt axially symmetric with potentially interesting implications.Montesinos and collaborators ran 2D hydrodynamics simulations to determine what happens to the motion of particles within the disk when they pass in and out of the shadowed regions. Since the shadowed regions are significantly colder than the illuminated disk, the pressure in these regions is much lower. Particles are therefore accelerated and decelerated as they pass through these regions, and the lack of axial symmetry causes spiral density waves to form in the disk as a result.Initial profile for the stellar heating rate per unit area for one of the authors simulations. The regions shadowed as a result of the disk warp subtend 0.5 radians each (shown on the left and right sides of the disks here). [Montesinos et al. 2016]Observations of Shadow SpiralsIn the authors models, two shadowed regions result in the formation of two spiral arms. The arms that develop start at a pitch angle of 1522, and gradually evolve to a shallower 1114 pitch at distances of ~65150 AU.The more luminous the central star, the more quickly the spiral arms form, due to the greater contrast between illuminated and shadowed disk regions: for a 0.25 solar-mass disk illuminated by a 1 solar-luminosity star, arms start to form after about 2500 orbits. If we increasethe stars brightness to 100 solar luminosities, the arms form after only 150 orbits.Montesinos and collaborators conclude by testing whether or not such spiral structures would be observable. They use a 3D radiative transfer code to produce scattered-light predictions of what the disk would look like to direct-imaging telescopes. They find that these shadow-induced spirals should be detectable.This first study clearly demonstrates that large-scale spiral density waves can form in protoplanetary disks without the presence of planets. The authors now plan to add more detailed physics to their models to better understand what we might observe when looking at systems that were shapedin this way.Density evolution in two shadowed disks. Top row: disk illuminated by a 100 L star, at 150, 250, and 500 orbits (from left to right). Bottom row: disk illuminated by a 1 L star, at 2500, 3500, and 4000 orbits. The rightmost top and bottom panels show control simulations (no shadows were present on the disk) after 1000 and 6000 orbits. (A different type of spiral starts to develop in the bottom control simulation as a result of a gravitational instability, but it never extends to the edges of the disk.) [Montesinos et al. 2016]CitationMatas Montesinos et al 2016 ApJ 823 L8. doi:10.3847/2041-8205/823/1/L8
Spike-like solitary waves in incompressible boundary layers driven by a travelling wave.
Feng, Peihua; Zhang, Jiazhong; Wang, Wei
2016-06-01
Nonlinear waves produced in an incompressible boundary layer driven by a travelling wave are investigated, with damping considered as well. As one of the typical nonlinear waves, the spike-like wave is governed by the driven-damped Benjamin-Ono equation. The wave field enters a completely irregular state beyond a critical time, increasing the amplitude of the driving wave continuously. On the other hand, the number of spikes of solitary waves increases through multiplication of the wave pattern. The wave energy grows in a sequence of sharp steps, and hysteresis loops are found in the system. The wave energy jumps to different levels with multiplication of the wave, which is described by winding number bifurcation of phase trajectories. Also, the phenomenon of multiplication and hysteresis steps is found when varying the speed of driving wave as well. Moreover, the nature of the change of wave pattern and its energy is the stability loss of the wave caused by saddle-node bifurcation.
Chen, Zhongxian; Yu, Haitao; Wen, Cheng
2014-01-01
The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability. PMID:25152913
Chen, Zhongxian; Yu, Haitao; Wen, Cheng
2014-01-01
The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability.
Milky Way Tomography with K and M Dwarf Stars: The Vertical Structure of the Galactic Disk
NASA Astrophysics Data System (ADS)
Ferguson, Deborah; Gardner, Susan; Yanny, Brian
2017-07-01
We use the number density distributions of K and M dwarf stars with vertical height from the Galactic disk, determined using observations from the Sloan Digital Sky Survey, to probe the structure of the Milky Way disk across the survey’s footprint. Using photometric parallax as a distance estimator we analyze a sample of several million disk stars in matching footprints above and below the Galactic plane, and we determine the location and extent of vertical asymmetries in the number counts in a variety of thin- and thick-disk subsamples in regions of some 200 square degrees within 2 kpc in vertical distance from the Galactic disk. These disk asymmetries present wave-like features as previously observed on other scales and at other distances from the Sun. We additionally explore the scale height of the disk and the implied offset of the Sun from the Galactic plane at different locations, noting that the scale height of the disk can differ significantly when measured using stars only above or only below the plane. Moreover, we compare the shape of the number density distribution in the north for different latitude ranges with a fixed range in longitude and find the shape to be sensitive to the selected latitude window. We explain why this may be indicative of a change in stellar populations in the latitude regions compared, possibly allowing access to the systematic metallicity difference between thin- and thick-disk populations through photometry.
Milky Way Tomography with K and M Dwarf Stars: The Vertical Structure of the Galactic Disk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferguson, Deborah; Gardner, Susan; Yanny, Brian
2017-07-10
We use the number density distributions of K and M dwarf stars with vertical height from the Galactic disk, determined using observations from the Sloan Digital Sky Survey, to probe the structure of the Milky Way disk across the survey’s footprint. Using photometric parallax as a distance estimator we analyze a sample of several million disk stars in matching footprints above and below the Galactic plane, and we determine the location and extent of vertical asymmetries in the number counts in a variety of thin- and thick-disk subsamples in regions of some 200 square degrees within 2 kpc in verticalmore » distance from the Galactic disk. These disk asymmetries present wave-like features as previously observed on other scales and at other distances from the Sun. We additionally explore the scale height of the disk and the implied offset of the Sun from the Galactic plane at different locations, noting that the scale height of the disk can differ significantly when measured using stars only above or only below the plane. Moreover, we compare the shape of the number density distribution in the north for different latitude ranges with a fixed range in longitude and find the shape to be sensitive to the selected latitude window. We explain why this may be indicative of a change in stellar populations in the latitude regions compared, possibly allowing access to the systematic metallicity difference between thin- and thick-disk populations through photometry.« less
Milky Way tomography with K and M dwarf stars: The vertical structure of the galactic disk
Ferguson, Deborah; Gardner, Susan; Yanny, Brian
2017-06-02
Here, we use the number density distributions of K and M dwarf stars with vertical height from the Galactic disk, determined using observations from the Sloan Digital Sky Survey (SDSS), to probe the structure of the Milky Way disk across the survey's footprint. Using photometric parallax as a distance estimator we analyze a sample of several million disk stars in matching footprints above and below the Galactic plane, and we determine the location and extent of vertical asymmetries in the number counts in a variety of thin and thick disk subsamples in regions of some 200 square degrees within 2more » kpc in vertical distance from the Galactic disk. These disk asymmetries present wave-like features as previously observed on other scales and distances from the Sun. We additionally explore the scale height of the disk and the implied offset of the Sun from the Galactic plane at different locations, noting that the scale height of the disk can differ significantly when measured using stars only above or only below the plane. Moreover, we compare the shape of the number density distribution in the north for different latitude ranges with a fixed range in longitude and find the shape to be sensitive to the selected latitude window. We explain why this may be indicative of a change in stellar populations in the compared latitude regions, possibly allowing access to the systematic metallicity difference between thin and thick disk populations through photometry.« less
Optical vibration measurement of mechatronics devices
NASA Astrophysics Data System (ADS)
Yanabe, Shigeo
1993-09-01
An optical vibration measuring system which enables to detect both linear and angular displacement of 25 nm and 5 prad was developed. The system is mainly composed of a He-Ne laser, a displacement detecting photo-diode and lenses, and has linear and angular displacement magnification mechanism using two different principles of optical lever. The system was applied to measure vibrational characteristics of magnetic head slider of hard disk drives and to measure stator teeth driving velocities of ultrasonic motor.
NASA Technical Reports Server (NTRS)
Sitko, Michael L.; Carpenter, William J.; Kimes, Robin L.; Lynch, David K.; Russell, Ray W.; Rudy, Richard J.; Mazuk, Stephan M.; Venturini, Catherine C.; Puetter, Richard C.; Grady, Carol A.;
2007-01-01
Infrared photometry and spectroscopy covering a time span of a quarter century are presented for HD 31648 (MWC 480) and HD 163296 (MWC 275). Both are isolated Herbig Ae stars that exhibit signs of active accretion, including driving bipolar flows with embedded Herbig-Haro (HH) objects. HD 163296 was found to be relatively quiescent photometrically in its inner disk region, with the exception of a major increase in emitted flux in a broad wavelength region centered near 3 pm in 2002. In contrast, HD 31648 has exhibited sporadic changes in the entire 3-13 pm region throughout this span of time. In both stars the changes in the 1-5 pm flux indicate structural changes in the region of the disk near the dust sublimation zone, possibly causing its distance from the star to vary with time. Repeated thermal cycling through this region will result in the preferential survival of large grains, and an increase in the degree of crystallinity. The variability observed in these objects has important consequences for the interpretation of other types of observations. For example, source variability will compromise models based on interferometry measurements unless the interferometry observations are accompanied by nearly-simultaneous photometric data.
NASA Astrophysics Data System (ADS)
Sitko, Michael L.; Carpenter, William J.; Kimes, Robin L.; Wilde, J. Leon; Lynch, David K.; Russell, Ray W.; Rudy, Richard J.; Mazuk, Stephan M.; Venturini, Catherine C.; Puetter, Richard C.; Grady, Carol A.; Polomski, Elisha F.; Wisnewski, John P.; Brafford, Suellen M.; Hammel, H. B.; Perry, R. Brad
2008-05-01
Infrared photometry and spectroscopy covering a time span of a quarter-century are presented for HD 31648 (MWC 480) and HD 163296 (MWC 275). Both are isolated Herbig Ae stars that exhibit signs of active accretion, including driving bipolar flows with embedded Herbig-Haro (HH) objects. HD 163296 was found to be relatively quiescent photometrically in its inner disk region, with the exception of a major increase in emitted flux in a broad wavelength region centered near 3 μm in 2002. In contrast, HD 31648 has exhibited sporadic changes in the entire 3-13 μm region throughout this span of time. In both stars, the changes in the 1-5 μm flux indicate structural changes in the region of the disk near the dust sublimation zone, possibly causing its distance from the star to vary with time. Repeated thermal cycling through this region will result in the preferential survival of large grains, and an increase in the degree of crystallinity. The variability observed in these objects has important consequences for the interpretation of other types of observations. For example, source variability will compromise models based on interferometry measurements unless the interferometry observations are accompanied by nearly simultaneous photometric data.
"Observing" the Circumnuclear Stars and Gas in Disk Galaxy Simulations
NASA Astrophysics Data System (ADS)
Cook, Angela; Hicks, Erin K. S.
2018-06-01
We present simulations based on theoretical models of common disk processes designed to represent potential inflow observed within the central 500 pc of local Seyfert galaxies. Mock observations of these n-body plus smoothed particle hydrodynamical simulations provide the conceptual framework in which to identify the driving inflow mechanism, for example nuclear bars, and to quantify to the inflow based on observable properties. From these mock observations the azimuthal average of the flux distribution, velocity dispersion, and velocity of both the stars and interstellar medium on scales of 50pc have been measured at a range of inclinations angles. A comparison of the simulated disk galaxies with these observed azimuthal averages in 40 Seyfert galaxies measured as part of the KONA (Keck OSIRIS Nearby AGN) survey will be presented.
Redundant array of independent disks: practical on-line archiving of nuclear medicine image data.
Lear, J L; Pratt, J P; Trujillo, N
1996-02-01
While various methods for long-term archiving of nuclear medicine image data exist, none support rapid on-line search and retrieval of information. We assembled a 90-Gbyte redundant array of independent disks (RAID) system using 10-, 9-Gbyte disk drives. The system was connected to a personal computer and software was used to partition the array into 4-Gbyte sections. All studies (50,000) acquired over a 7-year period were archived in the system. Based on patient name/number and study date, information could be located within 20 seconds and retrieved for display and analysis in less than 5 seconds. RAID offers a practical, redundant method for long-term archiving of nuclear medicine studies that supports rapid on-line retrieval.
Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules
Bollard, Jean; Connelly, James N.; Whitehouse, Martin J.; Pringle, Emily A.; Bonal, Lydie; Jørgensen, Jes K.; Nordlund, Åke; Moynier, Frédéric; Bizzarro, Martin
2017-01-01
The most abundant components of primitive meteorites (chondrites) are millimeter-sized glassy spherical chondrules formed by transient melting events in the solar protoplanetary disk. Using Pb-Pb dates of 22 individual chondrules, we show that primary production of chondrules in the early solar system was restricted to the first million years after the formation of the Sun and that these existing chondrules were recycled for the remaining lifetime of the protoplanetary disk. This finding is consistent with a primary chondrule formation episode during the early high-mass accretion phase of the protoplanetary disk that transitions into a longer period of chondrule reworking. An abundance of chondrules at early times provides the precursor material required to drive the efficient and rapid formation of planetary objects via chondrule accretion. PMID:28808680
NASA Astrophysics Data System (ADS)
Boss, A. P.; Durisen, R. H.
2005-03-01
Chondrules are millimeter-sized spherules found throughout primitive chondritic meteorites. Flash heating by a shock front is the leading explanation of their formation. However, identifying a mechanism for creating shock fronts inside the solar nebula has been difficult. In a gaseous disk capable of forming Jupiter, the disk must have been marginally gravitationally unstable at and beyond Jupiter's orbit. We show that this instability can drive inward spiral shock fronts with shock speeds of up to ~10 km s-1 at asteroidal orbits, sufficient to account for chondrule formation. The mixing and transport of solids in such a disk, combined with the planet-forming tendencies of gravitational instabilities, results in a unified scenario linking chondrite production with gas giant planet formation.
Kabei, N; Tuichiya, K; Sakurai, Y
1994-09-01
When designing a turbo-type blood pump as an artificial heart, the gap between a rotating shaft and a pump housing should be perfectly sealed to prevent any leakage or contamination through a seal. In addition, blood coagulation in a blood chamber must be avoided. To overcome these problems, we proposed five different nonrotating-type turbo pumps: a caudal-fin-type axial-flow pump, a caudal-fin-type centrifugal pump, a nutating-column-type centrifugal pump, a nutating-collapsible-tube-type centrifugal pump, and an oscillating-disk-type centrifugal pump. We selected and developed the oscillating-disk-type centrifugal pump that consists of a disk, a driving rod, a seal, an oscillation mechanism, and a pump housing. The disk is mounted on the end of the rod, which is connected to a high-speed DC motor through an oscillation mechanism. The rod and the disk do not rotate, but they oscillate in the pump housing. This movement of the disk generates forward fluid flow around the axis (i.e., the rotational fluid flow). Centrifugal force due to fluid rotation supports the pressure difference between the outlet and the inlet. The diameter of the disk is 39 mm, the maximum inner diameter of the pump housing is 40 mm, and the volume of the blood chamber for 25 degrees' oscillation is 16.9 ml. The performance of the pump was tested in a mock circulatory system.(ABSTRACT TRUNCATED AT 250 WORDS)
A Method to Constrain the Size of the Protosolar Nebula
NASA Astrophysics Data System (ADS)
Kretke, K. A.; Levison, H. F.; Buie, M. W.; Morbidelli, A.
2012-04-01
Observations indicate that the gaseous circumstellar disks around young stars vary significantly in size, ranging from tens to thousands of AU. Models of planet formation depend critically upon the properties of these primordial disks, yet in general it is impossible to connect an existing planetary system with an observed disk. We present a method by which we can constrain the size of our own protosolar nebula using the properties of the small body reservoirs in the solar system. In standard planet formation theory, after Jupiter and Saturn formed they scattered a significant number of remnant planetesimals into highly eccentric orbits. In this paper, we show that if there had been a massive, extended protoplanetary disk at that time, then the disk would have excited Kozai oscillations in some of the scattered objects, driving them into high-inclination (i >~ 50°), low-eccentricity orbits (q >~ 30 AU). The dissipation of the gaseous disk would strand a subset of objects in these high-inclination orbits; orbits that are stable on Gyr timescales. To date, surveys have not detected any Kuiper-belt objects with orbits consistent with this dynamical mechanism. Using these non-detections by the Deep Ecliptic Survey and the Palomar Distant Solar System Survey we are able to rule out an extended gaseous protoplanetary disk (RD >~ 80 AU) in our solar system at the time of Jupiter's formation. Future deep all sky surveys such as the Large Synoptic Survey Telescope will allow us to further constrain the size of the protoplanetary disk.
AORSA full wave calculations of helicon waves in DIII-D and ITER
NASA Astrophysics Data System (ADS)
Lau, C.; Jaeger, E. F.; Bertelli, N.; Berry, L. A.; Green, D. L.; Murakami, M.; Park, J. M.; Pinsker, R. I.; Prater, R.
2018-06-01
Helicon waves have been recently proposed as an off-axis current drive actuator for DIII-D, FNSF, and DEMO tokamaks. Previous ray tracing modeling using GENRAY predicts strong single pass absorption and current drive in the mid-radius region on DIII-D in high beta tokamak discharges. The full wave code AORSA, which is valid to all order of Larmor radius and can resolve arbitrary ion cyclotron harmonics, has been used to validate the ray tracing technique. If the scrape-off-layer (SOL) is ignored in the modeling, AORSA agrees with GENRAY in both the amplitude and location of driven current for DIII-D and ITER cases. These models also show that helicon current drive can possibly be an efficient current drive actuator for ITER. Previous GENRAY analysis did not include the SOL. AORSA has also been used to extend the simulations to include the SOL and to estimate possible power losses of helicon waves in the SOL. AORSA calculations show that another mode can propagate in the SOL and lead to significant (~10%–20%) SOL losses at high SOL densities. Optimizing the SOL density profile can reduce these SOL losses to a few percent.
AORSA full wave calculations of helicon waves in DIII-D and ITER
Lau, Cornwall; Jaeger, E.F.; Bertelli, Nicola; ...
2018-04-11
Helicon waves have been recently proposed as an off-axis current drive actuator for DIII-D, FNSF, and DEMO tokamaks. Previous ray tracing modeling using GENRAY predicts strong single pass absorption and current drive in the mid-radius region on DIII-D in high beta tokamak discharges. The full wave code AORSA, which is valid to all order of Larmor radius and can resolve arbitrary ion cyclotron harmonics, has been used to validate the ray tracing technique. If the scrape-off-layer (SOL) is ignored in the modeling, AORSA agrees with GENRAY in both the amplitude and location of driven current for DIII-D and ITER cases.more » These models also show that helicon current drive can possibly be an efficient current drive actuator for ITER. Previous GENRAY analysis did not include the SOL. AORSA has also been used to extend the simulations to include the SOL and to estimate possible power losses of helicon waves in the SOL. AORSA calculations show that another mode can propagate in the SOL and lead to significant (~10-20%) SOL losses at high SOL densities. Optimizing the SOL density profile can reduce these SOL losses to a few percent.« less
AORSA full wave calculations of helicon waves in DIII-D and ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Cornwall; Jaeger, E.F.; Bertelli, Nicola
Helicon waves have been recently proposed as an off-axis current drive actuator for DIII-D, FNSF, and DEMO tokamaks. Previous ray tracing modeling using GENRAY predicts strong single pass absorption and current drive in the mid-radius region on DIII-D in high beta tokamak discharges. The full wave code AORSA, which is valid to all order of Larmor radius and can resolve arbitrary ion cyclotron harmonics, has been used to validate the ray tracing technique. If the scrape-off-layer (SOL) is ignored in the modeling, AORSA agrees with GENRAY in both the amplitude and location of driven current for DIII-D and ITER cases.more » These models also show that helicon current drive can possibly be an efficient current drive actuator for ITER. Previous GENRAY analysis did not include the SOL. AORSA has also been used to extend the simulations to include the SOL and to estimate possible power losses of helicon waves in the SOL. AORSA calculations show that another mode can propagate in the SOL and lead to significant (~10-20%) SOL losses at high SOL densities. Optimizing the SOL density profile can reduce these SOL losses to a few percent.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silsbee, Kedron; Rafikov, Roman R., E-mail: ksilsbee@astro.princeton.edu
2015-01-10
Detections of planets in eccentric, close (separations of ∼20 AU) binary systems such as α Cen or γ Cep provide an important test of planet formation theories. Gravitational perturbations from the companion are expected to excite high planetesimal eccentricities, resulting in destruction rather than growth of objects with sizes of up to several hundred kilometers in collisions of similar-sized bodies. It was recently suggested that the gravity of a massive axisymmetric gaseous disk in which planetesimals are embedded drives rapid precession of their orbits, suppressing eccentricity excitation. However, disks in binaries are themselves expected to be eccentric, leading to additionalmore » planetesimal excitation. Here we develop a secular theory of eccentricity evolution for planetesimals perturbed by the gravity of an elliptical protoplanetary disk (neglecting gas drag) and the companion. For the first time, we derive an expression for the disturbing function due to an eccentric disk, which can be used for a variety of other astrophysical problems. We obtain explicit analytical solutions for planetesimal eccentricity evolution neglecting gas drag and delineate four different regimes of dynamical excitation. We show that in systems with massive (≳ 10{sup –2} M {sub ☉}) disks, planetesimal eccentricity is usually determined by the gravity of the eccentric disk alone, and is comparable to the disk eccentricity. As a result, the latter imposes a lower limit on collisional velocities of solids, making their growth problematic. In the absence of gas drag, this fragmentation barrier can be alleviated if the gaseous disk rapidly precesses or if its own self-gravity is efficient at lowering disk eccentricity.« less
Tropical Waves and the Quasi-Biennial Oscillation in a 7-km Global Climate Simulation
NASA Technical Reports Server (NTRS)
Holt, Laura A.; Alexander, M. Joan; Coy, Lawrence; Molod, Andrea; Putman, William; Pawson, Steven
2016-01-01
This study investigates tropical waves and their role in driving a quasi-biennial oscillation (QBO)-like signal in stratospheric winds in a global 7-km-horizontal-resolution atmospheric general circulation model. The Nature Run (NR) is a 2-year global mesoscale simulation of the Goddard Earth Observing System Model, version 5 (GEOS-5). In the tropics, there is evidence that the NR supports a broad range of convectively generated waves. The NR precipitation spectrum resembles the observed spectrum in many aspects, including the preference for westward-propagating waves. However, even with very high horizontal resolution and a healthy population of resolved waves, the zonal force provided by the resolved waves is still too low in the QBO region and parameterized gravity wave drag is the main driver of the NR QBO-like oscillation (NRQBO). The authors suggest that causes include coarse vertical resolution and excessive dissipation. Nevertheless, the very-high-resolution NR provides an opportunity to analyze the resolved wave forcing of the NR-QBO. In agreement with previous studies, large-scale Kelvin and small-scale waves contribute to the NRQBO driving in eastward shear zones and small-scale waves dominate the NR-QBO driving in westward shear zones. Waves with zonal wavelength,1000 km account for up to half of the small-scale (,3300 km) resolved wave forcing in eastward shear zones and up to 70% of the small-scale resolved wave forcing in westward shear zones of the NR-QBO.
Near-Infrared Polarimetric Imaging of Disks around Young Intermediate-mass Stars in SEEDS
NASA Astrophysics Data System (ADS)
Fukagawa, Misato; Hashimoto, Jun; Grady, C. A.; Momose, Munetake; Wisniewski, J. P.; Okamoto, Yoshiko; Muto, Takayuki; Kusakabe, Nobuhiko; Bonnefoy, Mickael; Kotani, Takayuki; Maruta, Yayoi; Tamura, Motohide; Seeds/Hiciao/Ao188 Collaboration,
2013-07-01
We present our recent results to directly image circumstellar disks around Herbig Fe/Ae/Be stars in scattered light with Subaru. Observations of such young disks are critically important to understand how disks evolve possibly under the mutual interaction with new-born planets. One of the observational approaches is direct imaging in scattered light, and the progress in this field since PPV can be found in the ability to prove inner regions of disks. This improvement largely owes to the technique of polarization differential imaging (PDI) which provides higher contrast by extracting scattered light from the disk while suppressing unpolarized stellar light. Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) is the project dedicated to exoplanet hunting and study of circumstellar disks by direct imaging. Since its beginning in 2009, thirteen Herbig Fe/Ae/Be stars have been observed primarily in H band (1.6 micron). The PDI method has been employed with adaptive optics, enabling us to look into the inner region as close as 0.2 arcsec (˜30 AU) in radius with the typical angular resolution of 0.06 arcsec (˜8 AU). As a result, the SEEDS imagery has newly uncovered rich structures such as spiral arms, inner holes, and gaps for (pre-)transitional disks while suggested the variably illuminated disks for primordial systems. The highlight is the discovery of two spiral arms each for SAO 206462 and MWC 758. The spiral feature has been uniquely found toward Herbig Fe/Aes so far, which might be due to their warmer disks producing arms loosely wound and more easily detected. The observed morphology can be interpreted by the density-wave model, and those disks are implied to harbor Jupiter-mass companions as the exciting sources of the spiral structures according to these models.
Innovative technologies for powder metallurgy-based disk superalloys: Progress and proposal
NASA Astrophysics Data System (ADS)
Chong-Lin, Jia; Chang-Chun, Ge; Qing-Zhi, Yan
2016-02-01
Powder metallurgy (PM) superalloys are an important class of high temperature structural materials, key to the rotating components of aero engines. In the purview of the present challenges associated with PM superalloys, two novel approaches namely, powder preparation and the innovative spray-forming technique (for making turbine disk) are proposed and studied. Subsequently, advanced technologies like electrode-induction-melting gas atomization (EIGA), and spark-plasma discharge spheroidization (SPDS) are introduced, for ceramic-free superalloy powders. Presently, new processing routes are sought after for preparing finer and cleaner raw powders for disk superalloys. The progress of research in spray-formed PM superalloys is first summarized in detail. The spray-formed superalloy disks specifically exhibit excellent mechanical properties. This paper reviews the recent progress in innovative technologies for PM superalloys, with an emphasis on new ideas and approaches, central to the innovation driving techniques like powder processing and spray forming. Project supported by the National Natural Science Foundation of China (Grant Nos. 50974016 and 50071014).
2009-09-30
Mooring Records and a High- Resolution General Circulation Model Harper Simmons School of Fisheries and Ocean Sciences 903 Koyukuk Drive Fairbanks AK...oceanographic community has been to develop a global internal wave prediction system analogous to those already in place for surface waves. Early steps have... Fisheries and Ocean Sciences,903 Koyukuk Drive,Fairbanks,AK,99775 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND
Electromagnetic or other directed energy pulse launcher
Ziolkowski, Richard W.
1990-01-01
The physical realization of new solutions of wave propagation equations, such as Maxwell's equations and the scaler wave equation, produces localized pulses of wave energy such as electromagnetic or acoustic energy which propagate over long distances without divergence. The pulses are produced by driving each element of an array of radiating sources with a particular drive function so that the resultant localized packet of energy closely approximates the exact solutions and behaves the same.
Design and performance of heart assist or artificial heart control systems
NASA Technical Reports Server (NTRS)
Webb, J. A., Jr.; Gebben, V. D.
1978-01-01
The factors leading to the design of a controlled driving system for either a heart assist pump or artificial heart are discussed. The system provides square pressure waveform to drive a pneumatic-type blood pump. For assist usage the system uses an R-wave detector circuit that can detect the R-wave of the electrocardiogram in the presence of electrical disturbances. This circuit provides a signal useful for synchronizing an assist pump with the natural heart. It synchronizes a square wave circuit, the output of which is converted into square waveforms of pneumatic pressure suitable for driving both assist device and artificial heart. The pressure levels of the driving waveforms are controlled by means of feedback channels to maintain physiological regulation of the artificial heart's output flow. A more compact system that could achieve similar regulatory characteristics is also discussed.
Improvement of thermal management in the composite Yb:YAG/YAG thin-disk laser
NASA Astrophysics Data System (ADS)
Kuznetsov, I. I.; Mukhin, I. B.; Palashov, O. V.
2016-04-01
To improve the thermal management in the composite Yb:YAG/YAG thin-disk laser a new design of laser head is developed. Thermal-induced phase distortions, small signal gain and lasing in the upgraded laser head are investigated and compared with previously published results. A substantial decrease of the thermal lens optical power and phase aberrations and increase of the laser slope efficiency are observed. A continuous-wave laser with 440 W average power and 44% slope efficiency is constructed.
Gravitational Instabilities in a Young Protoplanetary Disk with Embedded Objects
NASA Astrophysics Data System (ADS)
Desai, Karna M.
Gravitational Instabilities (GIs), a mechanism for angular momentum transport, are prominent during the early phases of protoplanetary disk evolution when the disk is relatively massive. In this dissertation, I analyze GIs by inserting different objects in a disk by employing 3D hydrodynamics simulations. GIs in a circumbinary disks are studied to determine how the presence of the companion affects the nature and strength of GIs in the disk. The circumbinary disk achieves a state of sustained marginal instability similar to an identical disk without the companion. A realistic evolution of the binary is detected. Planet and disk interactions play an important role in the evolution of planetary systems. To study this interaction during the early phases of planet formation, a migration study of Jovian planets in a GI-active disk is conducted. I find the migration timescales to be longer in a GI-active disk, when compared to laminar disks. The 3 MJupiter planet controls its own orbital evolution, while the migration of a 0.3 MJupiter planet is stochastic in nature. I define a 'critical mass' as the mass of an arm of the dominant two-armed spiral density wave within the planet's Hill diameter. Planets above this mass control their own destiny, and planets below this mass are scattered by the disk. This critical mass could provide a recipe for predicting the migration behavior of planets in GI-active disks. To understand the stochastic migration of low-mass planets, I perform a simulation of 240 zero-mass planet-tracers by inserting these at a range of locations in the disk. A Diffusion Coefficient is calculated to characterize the stochastic migration of low-mass objects. The eccentricity dispersion for the sample is also studied. I find that the diffusion of planets can be a slow process, resulting in the survival of small planetary cores.
Höfflin, Jens; Torres Delgado, Saraí M; Suárez Sandoval, Fralett; Korvink, Jan G; Mager, Dario
2015-06-21
We present a design for wireless power transfer, via inductively coupled coils, to a spinning disk. The rectified and stabilised power feeds an Arduino-compatible microcontroller (μC) on the disc, which in turn drives and monitors various sensors and actuators. The platform, which has been conceived to flexibly prototype such systems, demonstrates the feasibility of a wireless power supply and the use of a μC circuit, for example for Lab-on-a-disk applications, thereby eliminating the need for cumbersome slip rings or batteries, and adding a cogent and new degree of freedom to the setup. The large number of sensors and actuators included demonstrate that a wide range of physical parameters can be easily monitored and altered. All devices are connected to the μC via an I(2)C bus, therefore can be easily exchanged or augmented by other devices in order to perform a specific task on the disk. The wireless power supply takes up little additional physical space and should work in conjunction with most existing Lab-on-a-disk platforms as a straightforward add-on, since it does not require modification of the rotation axis and can be readily adapted to specific geometrical requirements.
Mapping Gas Flows from the Disk to the Circumgalactic Medium
NASA Astrophysics Data System (ADS)
Zheng, Yong
2017-08-01
The feedback efficiency in galaxies remains a crucial component in simulations that is not well constrained by observations. To understand how effectively feedback drives metals into the circumgalactic medium (CGM), we propose to map the metal flows from the disk to the CGM of the nearby dwarf irregular galaxy IC 1613. This will be the first spatial and kinematic map of gas flows from the disk to the halo of a dwarf galaxy. In archival COS spectra of two IC 1613 stars we detect blue-shifted SiII, CII, and SiIV absorption lines, indicative of the existence of multiphase outflows from the disk. We propose to observe two more UV bright stars in IC 1613's disk to assess the covering fraction and strength of the outflow in relation to the galaxy's resolved star formation. We will also observe three QSO sightlines at 0.1, 0.3, and 0.5 Rvir to measure the ionization profile of the gas and the extent of the outflows. We will relate our measurements to the detailed observed star formation history of IC 1613 to directly determine the mass loading factor and feedback efficiency. The proposal will provide critical information on how galaxies evolve and how metals circulate between the disk and the CGM.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., the following definitions apply to this subchapter: Act means the Social Security Act. ANSI stands for... required documents. Electronic media means: (1) Electronic storage media including memory devices in computers (hard drives) and any removable/transportable digital memory medium, such as magnetic tape or disk...
Code of Federal Regulations, 2011 CFR
2011-10-01
..., the following definitions apply to this subchapter: Act means the Social Security Act. ANSI stands for... required documents. Electronic media means: (1) Electronic storage media including memory devices in computers (hard drives) and any removable/transportable digital memory medium, such as magnetic tape or disk...
Code of Federal Regulations, 2010 CFR
2010-10-01
..., the following definitions apply to this subchapter: Act means the Social Security Act. ANSI stands for... required documents. Electronic media means: (1) Electronic storage media including memory devices in computers (hard drives) and any removable/transportable digital memory medium, such as magnetic tape or disk...
ERIC Educational Resources Information Center
Lent, John
1984-01-01
This article describes a computer network system that connects several microcomputers to a single disk drive and one copy of software. Many schools are switching to networks as a cheaper and more efficient means of computer instruction. Teachers may be faced with copywriting problems when reproducing programs. (DF)
NASA Astrophysics Data System (ADS)
Kato, Shoji; Honma, Fumio; Matsumoto, Ryoji
1988-03-01
Viscous instability of the transonic region of the conventional geometrically thin alpha-type accretion disks is examined analytically. For simplicity, isothermal disks and isothermal perturbations are assumed. It is found that when the value of alpha is larger than a critical value the disk is unstable against two types of perturbations. One is local propagating perturbations of inertial acoustic waves. Results suggest the possibility that unstable perturbations develop to overstable global oscillations which are restricted only in the innermost region of the disk. The other is standing growing perturbations localized just at the transonic point. The cause of these instabilities is that the azimuthal component of the Lagrangian velocity variation associated with the perturbations becomes in phase with the variation of the viscous stress force. Because of this phase matching work is done on perturbations, and they are amplified.
The gas drag in a circular binary system
NASA Astrophysics Data System (ADS)
Ciecielä G, P.; Ida, S.; Gawryszczak, A.; Burkert, A.
2007-07-01
We investigate the motion of massless particles orbiting the primary star in a close circular binary system with particular focus on the gas drag effects. These are the first calculations with particles ranging in size from 1 m to 10 km, which account for the presence of a tidally perturbed gaseous disk. We have found numerically that the radial mass transport by the tidal waves plays a crucial role in the orbital evolution of particles. In the outer region of the gaseous disk, where its perturbation is strongest, the migration rate of a particle for all considered sizes is enhanced by a factor of 3 with respect to the axisymmetric disk in radial equilibrium. Similar enhancement is observed in the damping rate of inclinations. We present a simple analytical argument proving that the migration rate of a particle in such a disk is enhanced due to the enhanced mass flux of gas colliding with the particle. Thus the enhancement factor does not depend on the sign of the radial gas velocity, and the migration is always directed inward. Within the framework of the perturbation theory, we derive more general, approximate formulae for short-term variations of the particle semi-major axis, eccentricity, and inclination in a disk out of radial equilibrium. The basic version of the formulae applies to the axisymmetric disk, but we present how to account for departures from axial symmetry by introducing effective components of the gas velocity. Comparison with numerical results proves that our formulae are correct within several percent. We have also found in numerical simulations that the tidal waves introduce coherence in periastron longitude and eccentricity for particles on neighboring orbits. The degree of the coherence depends on the particle size and on the distance from the primary star, being most prominent for particles with 10 m radius. The results are important mainly in the context of planetesimal formation and, to a lesser degree, during the early planetesimal accretion stage.
Ultralow drive voltage silicon traveling-wave modulator.
Baehr-Jones, Tom; Ding, Ran; Liu, Yang; Ayazi, Ali; Pinguet, Thierry; Harris, Nicholas C; Streshinsky, Matt; Lee, Poshen; Zhang, Yi; Lim, Andy Eu-Jin; Liow, Tsung-Yang; Teo, Selin Hwee-Gee; Lo, Guo-Qiang; Hochberg, Michael
2012-05-21
There has been great interest in the silicon platform as a material system for integrated photonics. A key challenge is the development of a low-power, low drive voltage, broadband modulator. Drive voltages at or below 1 Vpp are desirable for compatibility with CMOS processes. Here we demonstrate a CMOS-compatible broadband traveling-wave modulator based on a reverse-biased pn junction. We demonstrate operation with a drive voltage of 0.63 Vpp at 20 Gb/s, a significant improvement in the state of the art, with an RF energy consumption of only 200 fJ/bit.
The anti-fatigue driving system design based on the eye blink detect
NASA Astrophysics Data System (ADS)
Yang, Shuyu; Song, Xin; Zhang, Li; Yu, Jie
2017-01-01
Traffic accident is one of the severe social problems in the world, but the appraisal and prevention of the fatigue driving is still a difficult problem that can not be solved. This paper is to study the results of fatigue driving and the existing antifatigue driving products, collecting brain wave with the TGAM (ThinkGear AM) Brain Wave Sensor Chip. We analyze the collected waveform based on eye blink detect algorithm to work out current situation of the driver. According to the analysis results, Sound Module and controllable speed car will make a series of feedback. Finally, an effective Anti- Fatigue Driving System is designed based on all above.
TG wave autoresonant control of plasma temperature
NASA Astrophysics Data System (ADS)
Kabantsev, A. A.; Driscoll, C. F.
2015-06-01
The thermal correction term in the Trivelpiece-Gould (TG) wave's frequency has been used to accurately control the temperature of electron plasma, by applying a swept-frequency continuous drive autoresonantly locked in balance with the cyclotron cooling. The electron temperature can be either "pegged" at a desired value (by constant drive frequency); or varied cyclically (following the tailored frequency course), with rates limited by the cooling time (on the way down) and by chosen drive amplitude (on the way up).
High-Frequency Peaks in the Power Spectrum of Solar Velocity Observations from the GOLF Experiment
NASA Astrophysics Data System (ADS)
García, R. A.; Pallé, P. L.; Turck-Chièze, S.; Osaki, Y.; Shibahashi, H.; Jefferies, S. M.; Boumier, P.; Gabriel, A. H.; Grec, G.; Robillot, J. M.; Cortés, T. Roca; Ulrich, R. K.
1998-09-01
The power spectrum of more than 630 days of full-disk solar velocity data, provided by the GOLF spectrophotometer aboard the Solar and Heliospheric Observatory, has revealed the presence of modelike structure well beyond the acoustic cutoff frequency for the solar atmosphere (νac~5.4 mHz). Similar data produced by full-disk instruments deployed in Earth-based networks (BiSON and IRIS) had not shown any peak structure above νac: this is probably due to the higher levels of noise that are inherent in Earth-based experiments. We show that the observed peak structure (νac<=ν<=7.5 mHz) can be explained by a simple two-wave interference model if the high-frequency waves are partially reflected at the back side of the Sun.
Traveling wave ultrasonic motor using polymer-based vibrator
NASA Astrophysics Data System (ADS)
Wu, Jiang; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro
2016-01-01
With the characteristics of low density, low elastic modulus, and low mechanical loss, poly(phenylene sulfide) (PPS) is a promising material for fabricating lightweight ultrasonic motors (USMs). For the first time, we used PPS to fabricate an annular elastomer with teeth and glued a piece of piezoelectric-ceramic annular disk to the bottom of the elastomer to form a vibrator. To explore for a material suitable for the rotor surface coming in contact with the PPS-based vibrator, several disk-shaped rotors made of different materials were fabricated to form traveling wave USMs. The polymer-based USM rotates successfully as the conventional metal-based USMs. The experimental results show that the USM with the aluminum rotor has the largest torque, which indicates that aluminum is the most suitable for the rotor surface among the tested materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyra, Wladimir; Mac Low, Mordecai-Mark, E-mail: wlyra@jpl.nasa.gov, E-mail: mordecai@amnh.org
It has been suggested that the transition between magnetorotationally active and dead zones in protoplanetary disks should be prone to the excitation of vortices via Rossby wave instability (RWI). However, the only numerical evidence for this has come from alpha disk models, where the magnetic field evolution is not followed, and the effect of turbulence is parameterized by Laplacian viscosity. We aim to establish the phenomenology of the flow in the transition in three-dimensional resistive-magnetohydrodynamical models. We model the transition by a sharp jump in resistivity, as expected in the inner dead zone boundary, using the PENCIL CODE to simulatemore » the flow. We find that vortices are readily excited in the dead side of the transition. We measure the mass accretion rate finding similar levels of Reynolds stress at the dead and active zones, at the {alpha} Almost-Equal-To 10{sup -2} level. The vortex sits in a pressure maximum and does not migrate, surviving until the end of the simulation. A pressure maximum in the active zone also triggers the RWI. The magnetized vortex that results should be disrupted by parasitical magneto-elliptic instabilities, yet it subsists in high resolution. This suggests that either the parasitic modes are still numerically damped or that the RWI supplies vorticity faster than they can destroy it. We conclude that the resistive transition between the active and dead zones in the inner regions of protoplanetary disks, if sharp enough, can indeed excite vortices via RWI. Our results lend credence to previous works that relied on the alpha-disk approximation, and caution against the use of overly reduced azimuthal coverage on modeling this transition.« less
An ALMA Survey of Planet Forming Disks in Rho Ophiuchus
NASA Astrophysics Data System (ADS)
Cox, Erin Guilfoil; Looney, Leslie; Harris, Robert J.; Dong, Jiayin; Segura-Cox, Dominique; Tobin, John J.; Sadavoy, Sarah; Li, Zhi-Yun; Dunham, Michael; Perez, Laura M.; Chandler, Claire J.; Kratter, Kaitlin M.; Melis, Carl; Chiang, Hsin-Fang
2017-01-01
Relatively evolved (~ 1 Myr old) protostars with little residual natal envelope, but massive disks, are commonly assumed to be the sites of ongoing planet formation. Critical to our study of these objects is information about the available mass reservior and dust structure, as they directly tie in to how much mass is available for planets as well as the modes of planet formation that occur (i.e., core-accretion vs. gravitational instability). Millimeter-wave observations provide this critical information as continuum emission is relatively optically thin, allowing for mass estimates, and the availability of high-resolution interferometry, allowing structure constraints. We present high-resolution observations of the population of Class II protostars in the Rho-Ophiuchus cloud (d ~ 130 pc). Our survey observed ~50 of these older protostars at 870µm, using the Atacama Large Millimeter/submillimeter Array (ALMA). Out of these sources, there are ~10 transition disks, where we see a ring of dust emission surrounding the central protostar -- indicative of ongoing planet formation -- as well as many binary systems. Both of these stages have implications for star and planet formation. We present results from both 1-D and 2-D disk modeling, where we try to understand disk substructure that might indicate on-going planet formation, in particular, transition disk cavities, disk gaps, and asymmetries in the dust emission.
Environmental Effects for Gravitational-wave Astrophysics
NASA Astrophysics Data System (ADS)
Barausse, Enrico; Cardoso, Vitor; Pani, Paolo
2015-05-01
The upcoming detection of gravitational waves by terrestrial interferometers will usher in the era of gravitational-wave astronomy. This will be particularly true when space-based detectors will come of age and measure the mass and spin of massive black holes with exquisite precision and up to very high redshifts, thus allowing for better understanding of the symbiotic evolution of black holes with galaxies, and for high-precision tests of General Relativity in strong-field, highly dynamical regimes. Such ambitious goals require that astrophysical environmental pollution of gravitational-wave signals be constrained to negligible levels, so that neither detection nor estimation of the source parameters are significantly affected. Here, we consider the main sources for space-based detectors - the inspiral, merger and ringdown of massive black-hole binaries and extreme mass-ratio inspirals - and account for various effects on their gravitational waveforms, including electromagnetic fields, cosmological evolution, accretion disks, dark matter, “firewalls” and possible deviations from General Relativity. We discover that the black-hole quasinormal modes are sharply different in the presence of matter, but the ringdown signal observed by interferometers is typically unaffected. The effect of accretion disks and dark matter depends critically on their geometry and density profile, but is negligible for most sources, except for few special extreme mass-ratio inspirals. Electromagnetic fields and cosmological effects are always negligible. We finally explore the implications of our findings for proposed tests of General Relativity with gravitational waves, and conclude that environmental effects will not prevent the development of precision gravitational-wave astronomy.
Disk Masses for Embedded Class I Protostars in the Taurus Molecular Cloud
NASA Astrophysics Data System (ADS)
Sheehan, Patrick D.; Eisner, Josh A.
2017-12-01
Class I protostars are thought to represent an early stage in the lifetime of protoplanetary disks, when they are still embedded in their natal envelope. Here we measure the disk masses of 10 Class I protostars in the Taurus Molecular Cloud to constrain the initial mass budget for forming planets in disks. We use radiative transfer modeling to produce synthetic protostar observations and fit the models to a multi-wavelength data set using a Markov Chain Monte Carlo fitting procedure. We fit these models simultaneously to our new Combined Array for Research in Millimeter-wave Astronomy 1.3 mm observations that are sensitive to the wide range of spatial scales that are expected from protostellar disks and envelopes so as to be able to distinguish each component, as well as broadband spectral energy distributions compiled from the literature. We find a median disk mass of 0.018 {M}ȯ on average, more massive than the Taurus Class II disks, which have median disk mass of ∼ 0.0025 {M}ȯ . This decrease in disk mass can be explained if dust grains have grown by a factor of 75 in grain size, indicating that by the Class II stage, at a few Myr, a significant amount of dust grain processing has occurred. However, there is evidence that significant dust processing has occurred even during the Class I stage, so it is likely that the initial mass budget is higher than the value quoted here.
Disk heating and bending instability in galaxies with counterrotation
NASA Astrophysics Data System (ADS)
Khoperskov, Sergey; Bertin, Giuseppe
2017-01-01
With the help of high-resolution long-slit and integral-field spectroscopy observations, the number of confirmed cases of galaxies with counterrotation is increasing rapidly. The evolution of such counterrotating galaxies remains far from being well understood. In this paper we study the dynamics of counterrotating collisionless stellar disks by means of N-body simulations. We show that, in the presence of counterrotation, an otherwise gravitationally stable disk can naturally generate bending waves accompanied by strong disk heating across the disk plane, that is in the vertical direction. Such a conclusion is found to hold even for dynamically warm systems with typical values of the initial vertical-to-radial velocity dispersion ratio σz/σR ≈ 0.5, for which the role of pressure anisotropy should be unimportant. We note that, during evolution, the σz/σR ratio tends to rise up to values close to unity in the case of locally Jeans-stable disks, whereas in disks that are initially Jeans-unstable it may reach even higher values, especially in the innermost regions. This unusual behavior of the σz/σR ratio in galaxies with counterrotation appears not to have been noticed earlier. Our investigations of systems made of two counterrotating components with different mass-ratios suggest that even apparently normal disk galaxies (I.e., with a minor counterrotating component so as to escape detection in current observations) might be subject to significant disk heating especially in the vertical direction.
NASA Astrophysics Data System (ADS)
Pinsker, R. I.
2014-10-01
In hot magnetized plasmas, two types of linear collisionless absorption processes are used to heat and drive noninductive current: absorption at ion or electron cyclotron resonances and their harmonics, and absorption by Landau damping and the transit-time-magnetic-pumping (TTMP) interactions. This tutorial discusses the latter process, i.e., parallel interactions between rf waves and electrons in which cyclotron resonance is not involved. Electron damping by the parallel interactions can be important in the ICRF, particularly in the higher harmonic region where competing ion cyclotron damping is weak, as well as in the Lower Hybrid Range of Frequencies (LHRF), which is in the neighborhood of the geometric mean of the ion and electron cyclotron frequencies. On the other hand, absorption by parallel processes is not significant in conventional ECRF schemes. Parallel interactions are especially important for the realization of high current drive efficiency with rf waves, and an application of particular recent interest is current drive with the whistler or helicon wave at high to very high (i.e., the LHRF) ion cyclotron harmonics. The scaling of absorption by parallel interactions with wave frequency is examined and the advantages and disadvantages of fast (helicons/whistlers) and slow (lower hybrid) waves in the LHRF in the context of reactor-grade tokamak plasmas are compared. In this frequency range, both wave modes can propagate in a significant fraction of the discharge volume; the ways in which the two waves can interact with each other are considered. The use of parallel interactions to heat and drive current in practice will be illustrated with examples from past experiments; also looking forward, this tutorial will provide an overview of potential applications in tokamak reactors. Supported by the US Department of Energy under DE-FC02-04ER54698.
A magnetic torsional wave near the Galactic Centre traced by a 'double helix' nebula.
Morris, Mark; Uchida, Keven; Do, Tuan
2006-03-16
The magnetic field in the central few hundred parsecs of the Milky Way has a dipolar geometry and is substantially stronger than elsewhere in the Galaxy, with estimates ranging up to a milligauss (refs 1-6). Characterization of the magnetic field at the Galactic Centre is important because it can affect the orbits of molecular clouds by exerting a drag on them, inhibit star formation, and could guide a wind of hot gas or cosmic rays away from the central region. Here we report observations of an infrared nebula having the morphology of an intertwined double helix about 100 parsecs from the Galaxy's dynamical centre, with its axis oriented perpendicular to the Galactic plane. The observed segment is about 25 parsecs in length, and contains about 1.25 full turns of each of the two continuous, helically wound strands. We interpret this feature as a torsional Alfvén wave propagating vertically away from the Galactic disk, driven by rotation of the magnetized circumnuclear gas disk. The direct connection between the circumnuclear disk and the double helix is ambiguous, but the images show a possible meandering channel that warrants further investigation.
Probing the Circumstellar Disks of Be Stars with Contemporaneous Optical and IR Spectroscopy
NASA Astrophysics Data System (ADS)
Bjorkman, Karen S.; Hesselbach, E. N.; Wisniewski, J. P.; Bjorkman, J. E.
2006-12-01
Asymmetric double-peaked hydrogen emission line profiles in classical Be stars have been interpreted as evidence of one-armed density waves in the circumstellar disks. Contemporaneous optical and IR spectroscopy can aid in mapping the density structure of these one-armed waves as a function of radius. Furthermore, variability has been detected in these stars over both short (days to weeks) and longer (months) time-scales. We present preliminary results from contemporaneous Ritter Observatory (Hα) and IRTF SpeX (0.8-5.4 μm) spectroscopy of 16 classical Be stars observed in September 2005 and January 2006. The data illustrate a range of line profiles common in Be stars and show significant variability. These observations are the first of a larger project to utilize combined optical and IR data to investigate the physical details of these circumstellar disks. This research has been supported in part by a NASA GSRP fellowship to JPW, a NASA LTSA grant to KSB, and an NSF grant to JEB. We thank the NASA IRTF for observing time allocations and support. We thank the Ritter observing team, and especially Nancy Morrison, for crucial assistance with the supporting optical observations.
Resonance Trapping due to Nebula Disk Torques
NASA Astrophysics Data System (ADS)
Hahn, J. M.; Ward, W. R.
1996-03-01
A protoplanet embedded in the solar nebula launches spiral density waves from its Lindblad resonances in the gas disk, and its gravitational attraction for these disturbances results in a mutual torque exerted between the protoplanet and the disk. Consequently the orbit of a sufficiently massive protoplanet may decay on a timescale shorter than the nebula lifetime, and this mechanism is most significant during the formation of the cores of the giant planets. Due to their increased mobility, migrating protoplanets may have been able to accrete large swaths of the disk and/or encounter other protoplanets. Thus disk torques may have played an important role in determining the formation history and orbit spacings of the giant planets. An interesting phenomenon also associated with orbit decay is resonance trapping, whereby a large body is able to halt further orbit decay of smaller bodies at commensurability resonances. Examples of this effect include the trapping of planetesimals experiencing aerodynamic gas drag and dust suffering Poynting-Robertson drag. Below we address the cosmogonic implications of resonance trapping of planetary embryos experiencing orbit decay due to nebula disk torques. The following employs an approach similar to Malhotra's (1993) discussion of the gas drag trapping problem.
Exploration of high harmonic fast wave heating on the National Spherical Torus Experiment
NASA Astrophysics Data System (ADS)
Wilson, J. R.; Bell, R. E.; Bernabei, S.; Bitter, M.; Bonoli, P.; Gates, D.; Hosea, J.; LeBlanc, B.; Mau, T. K.; Medley, S.; Menard, J.; Mueller, D.; Ono, M.; Phillips, C. K.; Pinsker, R. I.; Raman, R.; Rosenberg, A.; Ryan, P.; Sabbagh, S.; Stutman, D.; Swain, D.; Takase, Y.; Wilgen, J.
2003-05-01
High harmonic fast wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [M. Ono, S. M. Kaye, S. Neumeyer et al., in Proceedings of the 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999 (IEEE, Piscataway, NJ, 1999), p. 53] is such a device. An rf heating system has been installed on the NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the ST concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge.
An ocean kinetic energy converter for low-power applications using piezoelectric disk elements
NASA Astrophysics Data System (ADS)
Viñolo, C.; Toma, D.; Mànuel, A.; del Rio, J.
2013-09-01
The main problem facing long-term electronic system deployments in the sea, is to find a feasible way to supply them with the power they require. Harvesting mechanical energy from the ocean wave oscillations and converting it into electrical energy, provides an alternative method for creating self-contained power sources. However, the very low and varying frequency of ocean waves, which generally varies from 0.1 Hz to 2 Hz, presents a hurdle which has to be overcome if this mechanical energy is to be harvested. In this paper, a new sea wave kinetic energy converter is described using low-cost disk piezoelectric elements, which has no dependence on their excitement frequency, to feed low-consumption maritime-deployed electronic devices. The operating principles of the piezoelectric device technique are presented, including analytical formulations describing the transfer of energy. Finally, a prototypical design, which generates electrical energy from the motion of a buoy, is introduced. The paper concludes with the the behavior study of the piezoelectric prototype device as a power generator.
Energy conversion and momentum coupling of the sub-kJ laser ablation of aluminum in air atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mori, Koichi; Maruyama, Ryo; Shimamura, Kohei
2015-08-21
Energy conversion and momentum coupling using nano-second 1-μm-wavelength pulse laser irradiation on an aluminum target were measured in air and nitrogen gas atmospheres over a wide range of laser pulse energies from sub-J to sub-kJ. From the expansion rate of the shock wave, the blast-wave energy conversion efficiency, η{sub bw}, was deduced as 0.59 ± 0.02 in the air atmosphere at an ambient pressure from 30 to 101 kPa for a constant laser fluence at 115 J/cm{sup 2}. Moreover, the momentum coupling of a circular disk target was formulated uniquely as a function of the dimensionless shock-wave radius and the ratio of the lasermore » spot radius to the disk radius, while η{sub bw} could be approximated as constant for the laser fluence from 4.7 to 4.1 kJ/cm{sup 2}, and the ambient pressure from 0.1 to 101 kPa.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ruby Thuy; Diaz, Luis A.; Imholte, D. Devin
Since the 2011 price spike of rare earth elements (REEs), research on permanent magnet recycling has blossomed globally to reduce future REE criticality. Hard disk drives (HDDs) have emerged as one feasible feedstock for recovering valuable REEs such as praseodymium, neodymium, and dysprosium. However, current processes for recycling e-waste only focus on certain metals due to feedstock and metal price uncertainties. In addition, some believe that recycling REEs is unprofitable. To shed some light on the economic viability of REE recycling from HDDs, this paper combines techno-economic information of a hydrometallurgical process with end-of-life HDD availability in a simulation model.more » Results showed that adding REEs to HDD recycling was profitable given current prices. As a result, recovered REEs could meet up to 5.1% rest of world (excluding China) magnet demand. Aluminum, gold, copper scrap and REEs were the primary main revenue streams from HDD recycling.« less
Nguyen, Ruby Thuy; Diaz, Luis A.; Imholte, D. Devin; ...
2017-06-05
Since the 2011 price spike of rare earth elements (REEs), research on permanent magnet recycling has blossomed globally to reduce future REE criticality. Hard disk drives (HDDs) have emerged as one feasible feedstock for recovering valuable REEs such as praseodymium, neodymium, and dysprosium. However, current processes for recycling e-waste only focus on certain metals due to feedstock and metal price uncertainties. In addition, some believe that recycling REEs is unprofitable. To shed some light on the economic viability of REE recycling from HDDs, this paper combines techno-economic information of a hydrometallurgical process with end-of-life HDD availability in a simulation model.more » Results showed that adding REEs to HDD recycling was profitable given current prices. As a result, recovered REEs could meet up to 5.1% rest of world (excluding China) magnet demand. Aluminum, gold, copper scrap and REEs were the primary main revenue streams from HDD recycling.« less
Recycling potential of neodymium: the case of computer hard disk drives.
Sprecher, Benjamin; Kleijn, Rene; Kramer, Gert Jan
2014-08-19
Neodymium, one of the more critically scarce rare earth metals, is often used in sustainable technologies. In this study, we investigate the potential contribution of neodymium recycling to reducing scarcity in supply, with a case study on computer hard disk drives (HDDs). We first review the literature on neodymium production and recycling potential. From this review, we find that recycling of computer HDDs is currently the most feasible pathway toward large-scale recycling of neodymium, even though HDDs do not represent the largest application of neodymium. We then use a combination of dynamic modeling and empirical experiments to conclude that within the application of NdFeB magnets for HDDs, the potential for loop-closing is significant: up to 57% in 2017. However, compared to the total NdFeB production capacity, the recovery potential from HDDs is relatively small (in the 1-3% range). The distributed nature of neodymium poses a significant challenge for recycling of neodymium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keck, M. L.; Brenneman, L. W.; Ballantyne, D. R.
We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN) by applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity profile, which suggests an intense, compact illuminating source. We find a preliminary, near-maximal black hole spinmore » $$a\\gt 0.9$$ accounting for statistical and systematic modeling errors. We find a relatively moderate reflection fraction with respect to predictions for the lamp post geometry, in which the illuminating corona is modeled as a point source. Through a time-resolved spectral analysis, we find that modest coronal and inner disk reflection (IDR) flux variation drives the spectral variability during the observations. We discuss various physical scenarios for the IDR model and we find that a compact corona is consistent with the observed features.« less
Evidence of Nuclear Disks from the Radial Distribution of CCSNe in Starburst Galaxies
NASA Astrophysics Data System (ADS)
Herrero-Illana, Rubén; Pérez-Torres, Miguel Ángel; Alberdi, Antxon
Galaxy-galaxy interactions are expected to be responsible for triggering massive star formation and possibly accretion onto a supermassive black hole, by providing large amounts of dense molecular gas down to the central kiloparsec region. Several scenarios to drive the gas further down to the central ˜ 100 pc, have been proposed, including the formation of a nuclear disk around the black hole, where massive stars would produce supernovae. Here, we probe the radial distribution of supernovae and supernova remnants in the nuclear regions of the starburst galaxies M82, Arp 299-A, and Arp 220, by using high-angular resolution (≲ 0.'1) radio observations. We derived scale-length values for the putative nuclear disks, which range from ˜ 20-30 pc for Arp 299-A and Arp 220, up to ˜ 140 pc for M82. The radial distribution of SNe for the nuclear disks in Arp 299-A and Arp 220 is also consistent with a power-law surface density profile of exponent γ = 1, as expected from detailed hydrodynamical simulations of nuclear disks. This study is detailed in Herrero-Illana, Perez-Torres, and Alberdi [11].
NASA Astrophysics Data System (ADS)
Keck, M. L.; Brenneman, L. W.; Ballantyne, D. R.; Bauer, F.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Dauser, T.; Elvis, M.; Fabian, A. C.; Fuerst, F.; García, J.; Grefenstette, B. W.; Hailey, C. J.; Harrison, F. A.; Madejski, G.; Marinucci, A.; Matt, G.; Reynolds, C. S.; Stern, D.; Walton, D. J.; Zoghbi, A.
2015-06-01
We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN) by applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity profile, which suggests an intense, compact illuminating source. We find a preliminary, near-maximal black hole spin a\\gt 0.9 accounting for statistical and systematic modeling errors. We find a relatively moderate reflection fraction with respect to predictions for the lamp post geometry, in which the illuminating corona is modeled as a point source. Through a time-resolved spectral analysis, we find that modest coronal and inner disk reflection (IDR) flux variation drives the spectral variability during the observations. We discuss various physical scenarios for the IDR model and we find that a compact corona is consistent with the observed features.
NASA Astrophysics Data System (ADS)
Testik, Firat Yener
An experimental and theoretical study has been conducted to obtain a fundamental understanding of the dynamics of the sand, water and a solid object interaction as progressive gravity waves impinge on a sloping beach. Aside from obvious scientific interest, this exceedingly complex physical problem is important for naval applications, related to the behavior of disk/cylindrical shaped objects (mines) in the coastal waters. To address this problem, it was divided into a set of simpler basic problems. To begin, nonlinear progressive waves were investigated experimentally in a wave tank for the case of a rigid (impermeable) sloping bottom. Parameterizations for wave characteristics were proposed and compared with the experiments. In parallel, a numerical wave tank model (NWT) was calibrated using experimental data from a single run, and wave field in the wave tank was simulated numerically for the selected experiments. Subsequently, a layer of sand was placed on the slope and bottom topography evolution processes (ripple and sandbar dynamics, bottom topography relaxation under variable wave forcing, etc.) were investigated experimentally. Models for those processes were developed and verified by experimental measurements. Flow over a circular cylinder placed horizontally on a plane wall was also studied. The far-flow field of the cylinder placed in the wave tank was investigated experimentally and numerical results from the NWT simulations were compared with the experimental data. In the mean time, the near-flow velocity/vorticity field around a short cylinder under steady and oscillatory flow was studied in a towing tank. Horseshoe vortex formation and periodic shedding were documented and explained. With the understanding gained through the aforementioned studies, dynamics and burial/scour around the bottom objects in the wave tank were studied. Possible scenarios on the behavior of the disk-shaped objects were identified and explained. Scour around 3D cylindrical objects was investigated. Different scour regimes were identified experimentally and explained theoretically. Proper physical parameterizations on the time evolution and equilibrium scour characteristics were proposed and verified experimentally.
Miller, James H; Potty, Gopu R; Kim, Hui-Kwan
2016-01-01
We modeled the effects of pile driving on crustaceans, groundfish, and other animals near the seafloor. Three different waves were investigated, including the compressional wave, shear wave, and interface wave. A finite element (FE) technique was employed in and around the pile, whereas a parabolic equation (PE) code was used to predict propagation at long ranges from the pile. Pressure, particle displacement, and particle velocity are presented as a function of range at the seafloor for a shallow-water environment near Rhode Island. We discuss the potential effects on animals near the seafloor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vukovic, M.; Harper, M.; Breun, R.
1995-12-31
Current drive experiments on the Phaedrus-T tokamak performed with a low field side two-strap fast wave antenna at frequencies below {omega}{sub cH} show loop volt drops of up to 30% with strap phasing (0, {pi}/2). RF induced density fluctuations in the plasma core have also been observed with a microwave reflectometer. It is believed that they are caused by kinetic Alfven waves generated by mode conversion of fast waves at the Alfven resonance. Correlation of the observed density fluctuations with the magnitude of the {Delta}V{sub loop} suggest that the {Delta}V{sub loop} is attributable to current drive/heating due to mode convertedmore » kinetic Alfven waves. The toroidal cold plasma wave code LION is used to model the Alfven resonance mode conversion surfaces in the experiments while the cylindrical hot plasma kinetic wave code ISMENE is used to model the behavior of kinetic Alfven waves at the Alfven resonance location. Initial results obtained from limited density, magnetic field, antenna phase, and impurity scans show good agreement between the RF induced density fluctuations and the predicted behavior of the kinetic Alfven waves. Detailed comparisons between the density fluctuations and the code predictions are presented.« less
Dielectric Haloscopes: A New Way to Detect Axion Dark Matter.
Caldwell, Allen; Dvali, Gia; Majorovits, Béla; Millar, Alexander; Raffelt, Georg; Redondo, Javier; Reimann, Olaf; Simon, Frank; Steffen, Frank
2017-03-03
We propose a new strategy to search for dark matter axions in the mass range of 40-400 μeV by introducing dielectric haloscopes, which consist of dielectric disks placed in a magnetic field. The changing dielectric media cause discontinuities in the axion-induced electric field, leading to the generation of propagating electromagnetic waves to satisfy the continuity requirements at the interfaces. Large-area disks with adjustable distances boost the microwave signal (10-100 GHz) to an observable level and allow one to scan over a broad axion mass range. A sensitivity to QCD axion models is conceivable with 80 disks of 1 m^{2} area contained in a 10 T field.
NASA Technical Reports Server (NTRS)
Cowie, L. L.; Rybicki, G. B.
1982-01-01
Waves of star formation in a uniform, differentially rotating disk galaxy are treated analytically as a propagating detonation wave front. It is shown, that if single solitary waves could be excited, they would evolve asymptotically to one of two stable spiral forms, each of which rotates with a fixed pattern speed. Simple numerical solutions confirm these results. However, the pattern of waves that develop naturally from an initially localized disturbance is more complex and dies out within a few rotation periods. These results suggest a conclusive observational test for deciding whether sequential star formation is an important determinant of spiral structure in some class of galaxies.
NASA Technical Reports Server (NTRS)
Lin, C. C.
1971-01-01
The question whether the galactic spiral arms are material objects or wave patterns is discussed. A semiempirical approach is adopted in presenting the concept of density waves. The theory of density waves is considered, giving attention to a survey of theoretical developments by analytical methods, the implication of a spiral pattern of density waves, spirals with moderately small pitch angle, and the origin and permanence of galactic spirals. The theoretical aspects discussed are tested against more detailed observations in the Milky Way system. It is pointed out that the density wave concept introduced by Lindblad, including the material concentration of both gas and stars, is the essential basis for the spiral structure of disk-shaped galaxies.
Protoplanetary Disks in Multiple Star Systems
NASA Astrophysics Data System (ADS)
Harris, Robert J.
Most stars are born in multiple systems, so the presence of a stellar companion may commonly influence planet formation. Theory indicates that companions may inhibit planet formation in two ways. First, dynamical interactions can tidally truncate circumstellar disks. Truncation reduces disk lifetimes and masses, leaving less time and material for planet formation. Second, these interactions might reduce grain-coagulation efficiency, slowing planet formation in its earliest stages. I present three observational studies investigating these issues. First is a spatially resolved Submillimeter Array (SMA) census of disks in young multiple systems in the Taurus-Auriga star-forming region to study their bulk properties. With this survey, I confirmed that disk lifetimes are preferentially decreased in multiples: single stars have detectable millimeter-wave continuum emission twice as often as components of multiples. I also verified that millimeter luminosity (proportional to disk mass) declines with decreasing stellar separation. Furthermore, by measuring resolved-disk radii, I quantitatively tested tidal-truncation theories: results were mixed, with a few disks much larger than expected. I then switch focus to the grain-growth properties of disks in multiple star systems. By combining SMA, Combined Array for Research in Millimeter Astronomy (CARMA), and Jansky Very Large Array (VLA) observations of the circumbinary disk in the UZ Tau quadruple system, I detected radial variations in the grain-size distribution: large particles preferentially inhabit the inner disk. Detections of these theoretically predicted variations have been rare. I related this to models of grain coagulation in gas disks and find that our results are consistent with growth limited by radial drift. I then present a study of grain growth in the disks of the AS 205 and UX Tau multiple systems. By combining SMA, Atacama Large Millimeter/submillimeter Array (ALMA), and VLA observations, I detected radial variations of the grain-size distribution in the AS 205 A disk, but not in the UX Tau A disk. I find that some combination of radial drift and fragmentation limits growth in the AS 205 A disk. In the final chapter, I summarize my findings that, while multiplicity clearly influences bulk disk properties, it does not obviously inhibit grain growth. Other investigations are suggested.
NASA Astrophysics Data System (ADS)
Alava, M. J.; Heikkinen, J. A.; Hellsten, T.
1995-07-01
In order to reduce or to avoid ion cyclotron damping, the use of frequencies below the ion cyclotron frequency of minority ion species or the second harmonic of majority ion species has been proposed for fast wave current drive based on direct electron absorption. For these scenarios, the Alfven or ion-ion hybrid resonance can appear on the high field side of a tokamak. The presence of these resonances causes parasitic absorption, competing with the electron Landau damping and transit time magnetic pumping responsible for the fast wave current drive. In the present study, neglecting effects from toroidicity, the mode conversion at the Alfven resonance is shown to be of the order of 5 to 10% in the current drive scenarios for the planned ITER experiment. If the single pass absorption in the centre can be made sufficiently high, the conversion at the Alfven resonance becomes negligible
Investigation of the effect of Alfven resonance absorption on fast wave current drive in ITER
NASA Astrophysics Data System (ADS)
Alava, M. J.; Heikkinen, J. A.; Hellsten, T.
The use of frequencies below the ion cyclotron frequency of minority ion species or second harmonic of majority species has been proposed for fast wave current drive in order to reduce or to avoid ion cyclotron damping. For these scenarios, the Alfven resonance can appear on the high field side of a tokamak. The presence of this resonance causes parasitic absorption competing with the electron Landau damping and transit time magnetic pumping responsible for the fast wave current drive. In the present study, the mode conversion at the Alfven resonance is shown to be of the order of 5 to 10 percent in the current drive scenarios for the planned International Thermonuclear Experimental Reactor (ITER) experiment. However, if the single pass absorption in the center can be made sufficiently high, the conversion at the Alfven resonance becomes negligible.
REVIEWS OF TOPICAL PROBLEMS: The modern view of the nature of the spiral structure of galaxies
NASA Astrophysics Data System (ADS)
Efremov, Yurii N.; Korchagin, V. I.; Marochnik, L. S.; Suchkov, A. A.
1989-04-01
The current state of the Lin-Shu density wave theory is discussed in the light of modern observational data. Much attention is paid to the problem of wave excitation and to the response of the interstellar gas to the wave gravitational potential. It is noted that the major predictions of the density wave theory—the galactic shock waves, the spiral velocity field of stars, and the age gradient across the spiral arms—have become fundamental observational facts at present, so that the density wave theory now has no competition from alternative theories. The nature of flocculent spirals is also discussed since, unlike regular spirals, they are probably not connected with density waves but with the effects of induced star formation in differentially rotating galactic disks.
Advanced optical disk storage technology
NASA Technical Reports Server (NTRS)
Haritatos, Fred N.
1996-01-01
There is a growing need within the Air Force for more and better data storage solutions. Rome Laboratory, the Air Force's Center of Excellence for C3I technology, has sponsored the development of a number of operational prototypes to deal with this growing problem. This paper will briefly summarize the various prototype developments with examples of full mil-spec and best commercial practice. These prototypes have successfully operated under severe space, airborne and tactical field environments. From a technical perspective these prototypes have included rewritable optical media ranging from a 5.25-inch diameter format up to the 14-inch diameter disk format. Implementations include an airborne sensor recorder, a deployable optical jukebox and a parallel array of optical disk drives. They include stand-alone peripheral devices to centralized, hierarchical storage management systems for distributed data processing applications.
TURBULENCE, TRANSPORT, AND WAVES IN OHMIC DEAD ZONES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gole, Daniel; Simon, Jacob B.; Armitage, Philip J.
We use local numerical simulations to study a vertically stratified accretion disk with a resistive mid-plane that damps magnetohydrodynamic (MHD) turbulence. This is an idealized model for the dead zones that may be present at some radii in protoplanetary and dwarf novae disks. We vary the relative thickness of the dead and active zones to quantify how forced fluid motions in the dead zone change. We find that the residual Reynolds stress near the mid-plane decreases with increasing dead zone thickness, becoming negligible in cases where the active to dead mass ratio is less than a few percent. This impliesmore » that purely Ohmic dead zones would be vulnerable to episodic accretion outbursts via the mechanism of Martin and Lubow. We show that even thick dead zones support a large amount of kinetic energy, but this energy is largely in fluid motions that are inefficient at angular momentum transport. Confirming results from Oishi and Mac Low, the perturbed velocity field in the dead zone is dominated by an oscillatory, vertically extended circulation pattern with a low frequency compared to the orbital frequency. This disturbance has the properties predicted for the lowest order r mode in a hydrodynamic disk. We suggest that in a global disk similar excitations would lead to propagating waves, whose properties would vary with the thickness of the dead zone and the nature of the perturbations (isothermal or adiabatic). Flows with similar amplitudes would buckle settled particle layers and could reduce the efficiency of pebble accretion.« less
Studies of large amplitude Alfvén waves and wave-wave interactions in LAPD
NASA Astrophysics Data System (ADS)
Carter, T. A.; Brugman, B.; Auerbach, D. W.
2006-10-01
Electromagnetic turbulence is thought to play an important role in plasmas in astrophysical settings (e.g. the interstellar medium, accretion disks) and in the laboratory (e.g. transport in magnetic fusion devices). From a weak turbulence point of view, nonlinear interactions between shear Alfvén waves are fundamental to the turbulent energy cascade in magnetic turbulence. An overview of experiments on large amplitude shear Alfvén waves in the Large Plasma Device (LAPD) will be presented. Large amplitude Alfvén waves (δB/B ˜1%) are generated either using a resonant cavity or loop antennas. Properties of Alfvén waves generated by these sources will be discussed, along with evidence of heating, background density modification and electron acceleration by the waves. An overview of experiments on wave-wave interactions will be given along with a discussion of future directions.
A Future Accelerated Cognitive Distributed Hybrid Testbed for Big Data Science Analytics
NASA Astrophysics Data System (ADS)
Halem, M.; Prathapan, S.; Golpayegani, N.; Huang, Y.; Blattner, T.; Dorband, J. E.
2016-12-01
As increased sensor spectral data volumes from current and future Earth Observing satellites are assimilated into high-resolution climate models, intensive cognitive machine learning technologies are needed to data mine, extract and intercompare model outputs. It is clear today that the next generation of computers and storage, beyond petascale cluster architectures, will be data centric. They will manage data movement and process data in place. Future cluster nodes have been announced that integrate multiple CPUs with high-speed links to GPUs and MICS on their backplanes with massive non-volatile RAM and access to active flash RAM disk storage. Active Ethernet connected key value store disk storage drives with 10Ge or higher are now available through the Kinetic Open Storage Alliance. At the UMBC Center for Hybrid Multicore Productivity Research, a future state-of-the-art Accelerated Cognitive Computer System (ACCS) for Big Data science is being integrated into the current IBM iDataplex computational system `bluewave'. Based on the next gen IBM 200 PF Sierra processor, an interim two node IBM Power S822 testbed is being integrated with dual Power 8 processors with 10 cores, 1TB Ram, a PCIe to a K80 GPU and an FPGA Coherent Accelerated Processor Interface card to 20TB Flash Ram. This system is to be updated to the Power 8+, an NVlink 1.0 with the Pascal GPU late in 2016. Moreover, the Seagate 96TB Kinetic Disk system with 24 Ethernet connected active disks is integrated into the ACCS storage system. A Lightweight Virtual File System developed at the NASA GSFC is installed on bluewave. Since remote access to publicly available quantum annealing computers is available at several govt labs, the ACCS will offer an in-line Restricted Boltzmann Machine optimization capability to the D-Wave 2X quantum annealing processor over the campus high speed 100 Gb network to Internet 2 for large files. As an evaluation test of the cognitive functionality of the architecture, the following studies utilizing all the system components will be presented; (i) a near real time climate change study generating CO2 fluxes and (ii) a deep dive capability into an 8000 x8000 pixel image pyramid display and (iii) Large dense and sparse eigenvalue decomposition.
A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, X. T., E-mail: xthe@iapcm.ac.cn; Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871; IFSA Collaborative Innovation Center of MoE, Shanghai Jiao-Tong University, Shanghai 200240
A new hybrid-drive (HD) nonisobaric ignition scheme of inertial confinement fusion (ICF) is proposed, in which a HD pressure to drive implosion dynamics increases via increasing density rather than temperature in the conventional indirect drive (ID) and direct drive (DD) approaches. In this HD (combination of ID and DD) scheme, an assembled target of a spherical hohlraum and a layered deuterium-tritium capsule inside is used. The ID lasers first drive the shock to perform a spherical symmetry implosion and produce a large-scale corona plasma. Then, the DD lasers, whose critical surface in ID corona plasma is far from the radiationmore » ablation front, drive a supersonic electron thermal wave, which slows down to a high-pressure electron compression wave, like a snowplow, piling up the corona plasma into high density and forming a HD pressurized plateau with a large width. The HD pressure is several times the conventional ID and DD ablation pressure and launches an enhanced precursor shock and a continuous compression wave, which give rise to the HD capsule implosion dynamics in a large implosion velocity. The hydrodynamic instabilities at imploding capsule interfaces are suppressed, and the continuous HD compression wave provides main pdV work large enough to hotspot, resulting in the HD nonisobaric ignition. The ignition condition and target design based on this scheme are given theoretically and by numerical simulations. It shows that the novel scheme can significantly suppress implosion asymmetry and hydrodynamic instabilities of current isobaric hotspot ignition design, and a high-gain ICF is promising.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, C. S.; Arber, T. D., E-mail: c.s.brady@warwick.ac.uk
2016-10-01
Two of the central problems in our understanding of the solar chromosphere are how the upper chromosphere is heated and what drives spicules. Estimates of the required chromospheric heating, based on radiative and conductive losses, suggest a rate of ∼0.1 erg cm{sup −3} s{sup −1} in the lower chromosphere and drops to ∼10{sup −3} erg cm{sup −3} s{sup −1} in the upper chromosphere. The chromosphere is also permeated by spicules, higher density plasma from the lower atmosphere propelled upwards at speeds of ∼10–20 km s{sup −1}, for so-called Type I spicules, which reach heights of ∼3000–5000 km above the photosphere.more » A clearer understanding of chromospheric dynamics, its heating, and the formation of spicules is thus of central importance to solar atmospheric science. For over 30 years it has been proposed that photospheric driving of MHD waves may be responsible for both heating and spicule formation. This paper presents results from a high-resolution MHD treatment of photospheric driven Alfvén and kink waves propagating upwards into an expanding flux tube embedded in a model chromospheric atmosphere. We show that the ponderomotive coupling from Alfvén and kink waves into slow modes generates shocks, which both heat the upper chromosphere and drive spicules. These simulations show that wave driving of the solar chromosphere can give a local heating rate that matches observations and drive spicules consistent with Type I observations all within a single coherent model.« less
The Mass Dependence between Protoplanetary Disks and their Stellar Hosts
NASA Astrophysics Data System (ADS)
Andrews, Sean M.; Rosenfeld, Katherine A.; Kraus, Adam L.; Wilner, David J.
2013-07-01
We present a substantial extension of the millimeter (mm) wave continuum photometry catalog for circumstellar dust disks in the Taurus star-forming region, based on a new "snapshot" λ = 1.3 mm survey with the Submillimeter Array. Combining these new data with measurements in the literature, we construct a mm-wave luminosity distribution, f(L mm), for Class II disks that is statistically complete for stellar hosts with spectral types earlier than M8.5 and has a 3σ depth of roughly 3 mJy. The resulting census eliminates a longstanding selection bias against disks with late-type hosts, and thereby demonstrates that there is a strong correlation between L mm and the host spectral type. By translating the locations of individual stars in the Hertzsprung-Russell diagram into masses and ages, and adopting a simple conversion between L mm and the disk mass, Md , we confirm that this correlation corresponds to a statistically robust relationship between the masses of dust disks and the stars that host them. A Bayesian regression technique is used to characterize these relationships in the presence of measurement errors, data censoring, and significant intrinsic scatter: the best-fit results indicate a typical 1.3 mm flux density of ~25 mJy for 1 M ⊙ hosts and a power-law scaling L_mm ∝ M_{\\ast}^{1.5-2.0}. We suggest that a reasonable treatment of dust temperature in the conversion from L mm to Md favors an inherently linear Md vpropM * scaling, with a typical disk-to-star mass ratio of ~0.2%-0.6%. The measured rms dispersion around this regression curve is ±0.7 dex, suggesting that the combined effects of diverse evolutionary states, dust opacities, and temperatures in these disks imprint a full width at half-maximum range of a factor of ~40 on the inferred Md (or L mm) at any given host mass. We argue that this relationship between Md and M * likely represents the origin of the inferred correlation between giant planet frequency and host star mass in the exoplanet population, and provides some basic support for the core accretion model for planet formation. Moreover, we caution that the effects of incompleteness and selection bias must be considered in comparative studies of disk evolution, and illustrate that fact with statistical comparisons of f(L mm) between the Taurus catalog presented here and incomplete subsamples in the Ophiuchus, IC 348, and Upper Sco young clusters.
The detection and study of pre-planetary disks
NASA Technical Reports Server (NTRS)
Sargent, A. I.; Beckwith, S. V. W.
1994-01-01
A variety of evidence suggests that at least 50% of low-mass stars are surrounded by disks of the gas and dust similar to the nebula that surrounded the Sun before the formation of the planets. The properties of these disks may bear strongly on the way in which planetary systems form and evolve. As a result of major instrumental developments over the last decade, it is now possible to detect and study the circumstellar environments of the very young, solar-type stars in some detail, and to compare the results with theoretical models of the early solar system. For example, millimeter-wave aperture synthesis imaging provides a direct means of studying in detail the morphology, temperature and density distributions, velocity field and chemical constituents in the outer disks, while high resolution, near infrared spectroscopy probes the inner, warmer parts; the emergence of gaps in the disks, possibly reflecting the formation of planets, may be reflected in the variation of their dust continuum emission with wavelength. We review progress to date and discuss likely directions for future research.
NASA Technical Reports Server (NTRS)
Zhao, J.; Couvidat, S.; Bogart, R. S.; Parchevsky, K. V.; Birch, A. C.; Duvall, Thomas L., Jr.; Beck, J. G.; Kosovichev, A. G.; Scherrer, P. H.
2011-01-01
The Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory (SDO/HMI) provides continuous full-disk observations of solar oscillations. We develop a data-analysis pipeline based on the time-distance helioseismology method to measure acoustic travel times using HMI Doppler-shift observations, and infer solar interior properties by inverting these measurements. The pipeline is used for routine production of near-real-time full-disk maps of subsurface wave-speed perturbations and horizontal flow velocities for depths ranging from 0 to 20 Mm, every eight hours. In addition, Carrington synoptic maps for the subsurface properties are made from these full-disk maps. The pipeline can also be used for selected target areas and time periods. We explain details of the pipeline organization and procedures, including processing of the HMI Doppler observations, measurements of the travel times, inversions, and constructions of the full-disk and synoptic maps. Some initial results from the pipeline, including full-disk flow maps, sunspot subsurface flow fields, and the interior rotation and meridional flow speeds, are presented.
Galactic scale gas flows in colliding galaxies: 3-dimensional, N-body/hydrodynamics experiments
NASA Technical Reports Server (NTRS)
Lamb, Susan A.; Gerber, Richard A.; Balsara, Dinshaw S.
1994-01-01
We present some results from three dimensional computer simulations of collisions between models of equal mass galaxies, one of which is a rotating, disk galaxy containing both gas and stars and the other is an elliptical containing stars only. We use fully self consistent models in which the halo mass is 2.5 times that of the disk. In the experiments we have varied the impact parameter between zero (head on) and 0.9R (where R is the radius of the disk), for impacts perpendicular to the disk plane. The calculations were performed on a Cray 2 computer using a combined N-body/smooth particle hydrodynamics (SPH) program. The results show the development of complicated flows and shock structures in the direction perpendicular to the plane of the disk and the propagation outwards of a density wave in both the stars and the gas. The collisional nature of the gas results in a sharper ring than obtained for the star particles, and the development of high volume densities and shocks.
Thin disk laser with unstable resonator and reduced output coupler
NASA Astrophysics Data System (ADS)
Gavili, Anwar; Shayganmanesh, Mahdi
2018-05-01
In this paper, feasibility of using unstable resonator with reduced output coupling in a thin disk laser is studied theoretically. Unstable resonator is modeled by wave-optics using Collins integral and iterative method. An Yb:YAG crystal with 250 micron thickness is considered as a quasi-three level active medium and modeled by solving rate equations of energy levels populations. The amplification of laser beam in the active medium is calculated based on the Beer-Lambert law and Rigrod method. Using generalized beam parameters method, laser beam parameters like, width, divergence, M2 factor, output power as well as near and far-field beam profiles are calculated for unstable resonator. It is demonstrated that for thin disk laser (with single disk) in spite of the low thickness of the disk which leads to low gain factor, it is possible to use unstable resonator (with reduced output coupling) and achieve good output power with appropriate beam quality. Also, the behavior of output power and beam quality versus equivalent Fresnel number is investigated and optimized value of output coupling for maximum output power is achieved.
Isentropic compressive wave generator impact pillow and method of making same
Barker, Lynn M.
1985-01-01
An isentropic compressive wave generator and method of making same. The w generator comprises a disk or flat "pillow" member having component materials of different shock impedances formed in a configuration resulting in a smooth shock impedance gradient over the thickness thereof for interpositioning between an impactor member and a target specimen for producing a shock wave of a smooth predictable rise time. The method of making the pillow member comprises the reduction of the component materials to a powder form and forming the pillow member by sedimentation and compressive techniques.
Lateral Membrane Waves Constitute a Universal Dynamic Pattern of Motile Cells
NASA Astrophysics Data System (ADS)
Döbereiner, Hans-Günther; Dubin-Thaler, Benjamin J.; Hofman, Jake M.; Xenias, Harry S.; Sims, Tasha N.; Giannone, Grégory; Dustin, Michael L.; Wiggins, Chris H.; Sheetz, Michael P.
2006-07-01
We have monitored active movements of the cell circumference on specifically coated substrates for a variety of cells including mouse embryonic fibroblasts and T cells, as well as wing disk cells from fruit flies. Despite having different functions and being from multiple phyla, these cell types share a common spatiotemporal pattern in their normal membrane velocity; we show that protrusion and retraction events are organized in lateral waves along the cell membrane. These wave patterns indicate both spatial and temporal long-range periodic correlations of the actomyosin gel.
A review of high magnetic moment thin films for microscale and nanotechnology applications
Scheunert, Gunther; Heinonen, O.; Hardeman, R.; ...
2016-02-17
Here, the creation of large magnetic fields is a necessary component in many technologies, ranging from magnetic resonance imaging, electric motors and generators, and magnetic hard disk drives in information storage. This is typically done by inserting a ferromagnetic pole piece with a large magnetisation density M S in a solenoid. In addition to large M S, it is usually required or desired that the ferromagnet is magnetically soft and has a Curie temperature well above the operating temperature of the device. A variety of ferromagnetic materials are currently in use, ranging from FeCo alloys in, for example, hard diskmore » drives, to rare earth metals operating at cryogenic temperatures in superconducting solenoids. These latter can exceed the limit on M S for transition metal alloys given by the Slater-Pauling curve. This article reviews different materials and concepts in use or proposed for technological applications that require a large M S, with an emphasis on nanoscale material systems, such as thin and ultra-thin films. Attention is also paid to other requirements or properties, such as the Curie temperature and magnetic softness. In a final summary, we evaluate the actual applicability of the discussed materials for use as pole tips in electromagnets, in particular, in nanoscale magnetic hard disk drive read-write heads; the technological advancement of the latter has been a very strong driving force in the development of the field of nanomagnetism.« less
Planetesimal Formation by the Streaming Instability in a Photoevaporating Disk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrera, Daniel; Johansen, Anders; Davies, Melvyn B.
2017-04-10
Recent years have seen growing interest in the streaming instability as a candidate mechanism to produce planetesimals. However, these investigations have been limited to small-scale simulations. We now present the results of a global protoplanetary disk evolution model that incorporates planetesimal formation by the streaming instability, along with viscous accretion, photoevaporation by EUV, FUV, and X-ray photons, dust evolution, the water ice line, and stratified turbulence. Our simulations produce massive (60–130 M {sub ⊕}) planetesimal belts beyond 100 au and up to ∼20 M {sub ⊕} of planetesimals in the middle regions (3–100 au). Our most comprehensive model forms 8more » M {sub ⊕} of planetesimals inside 3 au, where they can give rise to terrestrial planets. The planetesimal mass formed in the inner disk depends critically on the timing of the formation of an inner cavity in the disk by high-energy photons. Our results show that the combination of photoevaporation and the streaming instability are efficient at converting the solid component of protoplanetary disks into planetesimals. Our model, however, does not form enough early planetesimals in the inner and middle regions of the disk to give rise to giant planets and super-Earths with gaseous envelopes. Additional processes such as particle pileups and mass loss driven by MHD winds may be needed to drive the formation of early planetesimal generations in the planet-forming regions of protoplanetary disks.« less
Simulating a Thin Accretion Disk Using PLUTO
NASA Astrophysics Data System (ADS)
Phillipson, Rebecca; Vogeley, Michael S.; Boyd, Patricia T.
2017-08-01
Accreting black hole systems such as X-ray binaries and active galactic nuclei exhibit variability in their luminosity on many timescales ranging from milliseconds to tens of days, and even hundreds of days. The mechanism(s) driving this variability and the relationship between short- and long-term variability is poorly understood. Current studies on accretion disks seek to determine how the changes in black hole mass, the rate at which mass accretes onto the central black hole, and the external environment affect the variability on scales ranging from stellar-mass black holes to supermassive black holes. Traditionally, the fluid mechanics equations governing accretion disks have been simplified by considering only the kinematics of the disk, and perhaps magnetic fields, in order for their phenomenological behavior to be predicted analytically. We seek to employ numerical techniques to study accretion disks including more complicated physics traditionally ignored in order to more accurately understand their behavior over time. We present a proof-of-concept three dimensional, global simulation using the astrophysical hydrodynamic code PLUTO of a simplified thin disk model about a central black hole which will serve as the basis for development of more complicated models including external effects such as radiation and magnetic fields. We also develop a tool to generate a synthetic light curve that displays the variability in luminosity of the simulation over time. The preliminary simulation and accompanying synthetic light curve demonstrate that PLUTO is a reliable code to perform sophisticated simulations of accretion disk systems which can then be compared to observational results.
Galactoseismology: From The Milky Way To XUV Disks
NASA Astrophysics Data System (ADS)
Chakrabarti, Sukanya
The variety of discrepancies between observations and simulations on galactic scales, from the anisotropic distribution of dwarf galaxies to the "too big to fail" problem (where massive satellites in simulations are too dense relative to observations), suggests that we may not yet fully understand galaxy formation. If these satellites exist, they would leave traces of their passage in extended HI disks. Extended HI disks of galaxies reach to several times the optical radius, presenting the largest possible cross-section for interaction with sub-halos at large distances (where theoretical models expect them to be). We will provide definitive constraints on the distribution of dark matter in spiral galaxies by building on our ongoing work in characterizing galactic satellites from analysis of disturbances in extended HI disks with respect to hydrodynamical simulations. Spiral galaxies in the Local Volume (from the Milky Way to the XUV disks discovered by GALEX) exhibit a wealth of unexplained morphology, but these morphological signatures have not yet been used to place constraints on the evolution of HI disks and the dark matter distribution. We are now poised to make significant progress in Galactoseismology, i.e. connect morphological disturbances with the mass distribution. By using the FIRE model for explicit star formation and feedback, we will also develop a better understanding for the star formation history of our Galaxy and XUV Disks. Our Milky Way models will be informed by the HST proper motions, and will match the observed planar disturbances, the warp, and vertical waves recently discovered by the RAVE and LAMOST surveys. We are also carrying high resolution simulations with the Gizmo code that incorporates the FIRE model to develop a comprehensive understanding of the star formation history and star formation rate (that matches Spitzer observations) of the Milky Way. These models will provide a much needed interpretative framework for JWST and WFIRST observations. By mapping to the HI image, the GALEX UV image, the multi-wavelength SED of XUV disks, as well as the masses and deprojected distances of the satellites in a statistically robust way using a Monte Carlo Markov Chain analysis, we will produce evolutionary histories of XUV disks and their satellite populations for the first time. This will enable an apples-to-apples comparison for XUV disks in the Local Volume. There is currently no study that has examined the morphological effects of satellites in cosmological simulations on the gas and stellar disk. This is a critical test of the distribution (the number, the mass, and orbits) of satellites in cosmological simulations. We will also investigate if the vast polar structure (VPOS) of dwarf galaxies around the Milky Way is a serious problem for the Lambda-CDM paradigm. Here we ask two simple questions: 1) Is the VPOS dynamically coherent? If the VPOS is a serious problem for Lambda-CDM, one expects that it should persist over a dynamical time and should not be unique to the present day. 2) Are there certain satellites that drive the appearance of the planar structure at present day? If so, it is critical to examine whether a sub-set excluding these satellites resembles cosmological simulations. Our preliminary results show that this structure is not dynamically coherent, and is driven by two satellites: Leo I and Leo II, both of which have extreme kinematic properties. We will also examine the evolution of the VPOS in non-spherical and time-dependent potentials. We will seek to obtain more accurate proper motions of Leo II in the upcoming HST cycle, as we find that Leo II particularly influences the fit to the planar structure. These results will have far-reaching impact in understanding data from many NASA missions - HST, GALEX, Spitzer, and Herschel to JWST and WFIRST missions. We will also provide a framework for understanding data from the GAIA and GALAH surveys of the Milky Way.
The NANOGrav Nine-Year Data Set: Limits on the Isotropic Stochastic Gravitational Wave Background
NASA Technical Reports Server (NTRS)
Arzoumanian, Z.; Brazier, A.; Burke-Spolaor, S.; Chamberlin, S. J.; Chatterjee, S.; Christy, B.; Cordes, J. M.; Cornish, N. J.; Crowter, K.; Demorest, P. B.;
2016-01-01
We compute upper limits on the nanohertz-frequency isotropic stochastic gravitational wave background (GWB) using the 9 year data set from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) collaboration. Well-tested Bayesian techniques are used to set upper limits on the dimensionless strain amplitude (at a frequency of 1 yr(exp -1) for a GWB from supermassive black hole binaries of A(sub gw) less than 1.5 x 10(exp -15). We also parameterize the GWB spectrum with a broken power-law model by placing priors on the strain amplitude derived from simulations of Sesana and McWilliams et al. Using Bayesian model selection we find that the data favor a broken power law to a pure power law with odds ratios of 2.2 and 22 to one for the Sesana and McWilliams prior models, respectively. Using the broken power-law analysis we construct posterior distributions on environmental factors that drive the binary to the GW-driven regime including the stellar mass density for stellar-scattering, mass accretion rate for circumbinary disk interaction, and orbital eccentricity for eccentric binaries, marking the first time that the shape of the GWB spectrum has been used to make astrophysical inferences. Returning to a power-law model, we place stringent limits on the energy density of relic GWs, OMEGA(sub gw) (f) h squared less than 4.2 x 10(exp -10). Our limit on the cosmic string GWB, OMEGA(sub gw) (f) h squared less than 2.2 x 10(exp -10), translates to a conservative limit on the cosmic string tension with G mu less than 3.3 x 10(exp -8), a factor of four better than the joint Planck and high-l‚ cosmic microwave background data from other experiments.
Local Area Networks: Are There Advantages for Primary Schools?
ERIC Educational Resources Information Center
Aherran, Anne
1986-01-01
Examines the relative merits of using computer networks (several computers linked together and sharing a single disk drive) and stand-alone systems (self-contained units operating independently) in Australian primary school classrooms. Advances several arguments favoring stand-alone systems, which improve accessibility and enhance individual…
How to Program the Principal's Office for the Computer Age.
ERIC Educational Resources Information Center
Frankel, Steven
1983-01-01
Explains why principals' offices need computers and discusses the characteristics of inexpensive personal business computers, including their operating systems, disk drives, memory, and compactness. Reviews software available for word processing, accounting, database management, and communications, and compares the Kaypro II, Morrow, and Osborne I…
ERIC Educational Resources Information Center
Cowan, Les
1990-01-01
Outlines and analyzes new trends and developments at the Association for Information and Image Management's 1990 spring conference. The growth of imaging and the optical storage industry is emphasized, and new developments that are discussed include hardware; optical disk drives; jukeboxes; local area networks (LANs); bar codes; image displays;…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oishi, Jeffrey S.; Mac Low, Mordecai-Mark, E-mail: jsoishi@stanford.edu, E-mail: mordecai@amnh.org
2011-10-10
The magnetorotational instability (MRI) may dominate outward transport of angular momentum in accretion disks, allowing material to fall onto the central object. Previous work has established that the MRI can drive a mean-field dynamo, possibly leading to a self-sustaining accretion system. Recently, however, simulations of the scaling of the angular momentum transport parameter {alpha}{sub SS} with the magnetic Prandtl number Pm have cast doubt on the ability of the MRI to transport astrophysically relevant amounts of angular momentum in real disk systems. Here, we use simulations including explicit physical viscosity and resistivity to show that when vertical stratification is included,more » mean-field dynamo action operates, driving the system to a configuration in which the magnetic field is not fully helical. This relaxes the constraints on the generated field provided by magnetic helicity conservation, allowing the generation of a mean field on timescales independent of the resistivity. Our models demonstrate the existence of a critical magnetic Reynolds number Rm{sub crit}, below which transport becomes strongly Pm-dependent and chaotic, but above which the transport is steady and Pm-independent. Prior simulations showing Pm dependence had Rm < Rm{sub crit}. We conjecture that this steady regime is possible because the mean-field dynamo is not helicity-limited and thus does not depend on the details of the helicity ejection process. Scaling to realistic astrophysical parameters suggests that disks around both protostars and stellar mass black holes have Rm >> Rm{sub crit}. Thus, we suggest that the strong Pm dependence seen in recent simulations does not occur in real systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oishi, Jeffrey S.; /KIPAC, Menlo Park; Low, Mordecai-Mark Mac
2012-02-14
The magnetorotational instability (MRI) may dominate outward transport of angular momentum in accretion disks, allowing material to fall onto the central object. Previous work has established that the MRI can drive a mean-field dynamo, possibly leading to a self-sustaining accretion system. Recently, however, simulations of the scaling of the angular momentum transport parameter {alpha}{sub SS} with the magnetic Prandtl number Pm have cast doubt on the ability of the MRI to transport astrophysically relevant amounts of angular momentum in real disk systems. Here, we use simulations including explicit physical viscosity and resistivity to show that when vertical stratification is included,more » mean field dynamo action operates, driving the system to a configuration in which the magnetic field is not fully helical. This relaxes the constraints on the generated field provided by magnetic helicity conservation, allowing the generation of a mean field on timescales independent of the resistivity. Our models demonstrate the existence of a critical magnetic Reynolds number Rm{sub crit}, below which transport becomes strongly Pm-dependent and chaotic, but above which the transport is steady and Pm-independent. Prior simulations showing Pm-dependence had Rm < Rm{sub crit}. We conjecture that this steady regime is possible because the mean field dynamo is not helicity-limited and thus does not depend on the details of the helicity ejection process. Scaling to realistic astrophysical parameters suggests that disks around both protostars and stellar mass black holes have Rm >> Rm{sub crit}. Thus, we suggest that the strong Pm dependence seen in recent simulations does not occur in real systems.« less
Striped tertiary storage arrays
NASA Technical Reports Server (NTRS)
Drapeau, Ann L.
1993-01-01
Data stripping is a technique for increasing the throughput and reducing the response time of large access to a storage system. In striped magnetic or optical disk arrays, a single file is striped or interleaved across several disks; in a striped tape system, files are interleaved across tape cartridges. Because a striped file can be accessed by several disk drives or tape recorders in parallel, the sustained bandwidth to the file is greater than in non-striped systems, where access to the file are restricted to a single device. It is argued that applying striping to tertiary storage systems will provide needed performance and reliability benefits. The performance benefits of striping for applications using large tertiary storage systems is discussed. It will introduce commonly available tape drives and libraries, and discuss their performance limitations, especially focusing on the long latency of tape accesses. This section will also describe an event-driven tertiary storage array simulator that is being used to understand the best ways of configuring these storage arrays. The reliability problems of magnetic tape devices are discussed, and plans for modeling the overall reliability of striped tertiary storage arrays to identify the amount of error correction required are described. Finally, work being done by other members of the Sequoia group to address latency of accesses, optimizing tertiary storage arrays that perform mostly writes, and compression is discussed.
NASA Astrophysics Data System (ADS)
Klemm, Richard A.; Davis, Andrew E.; Wang, Qing X.; Yamamoto, Takashi; Cerkoney, Daniel P.; Reid, Candy; Koopman, Maximiliaan L.; Minami, Hidetoshi; Kashiwagi, Takanari; Rain, Joseph R.; Doty, Constance M.; Sedlack, Michael A.; Morales, Manuel A.; Watanabe, Chiharu; Tsujimoto, Manabu; Delfanazari, Kaveh; Kadowaki, Kazuo
2017-12-01
We show for high-symmetry disk, square, or equilateral triangular thin microstrip antennas of any composition respectively obeying C ∞v , C 4v , and C 3v point group symmetries, that the transverse magnetic electromagnetic cavity mode wave functions are restricted in form to those that are one-dimensional representations of those point groups. Plots of the common nodal points of the ten lowest-energy non-radiating two-dimensional representations of each of these three symmetries are presented. For comparison with symmetry-broken disk intrinsic Josephson junction microstrip antennas constructed from the highly anisotropic layered superconductor Bi2Sr2CaCu2O8+δ (BSCCO), we present plots of the ten lowest frequency orthonormal wave functions and of their emission power angular distributions. These results are compared with previous results for square and equilateral triangular thin microstrip antennas.
Electromagnetic wave extinction within a forested canopy
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1989-01-01
A forested canopy is modeled by a collection of randomly oriented finite-length cylinders shaded by randomly oriented and distributed disk- or needle-shaped leaves. For a plane wave exciting the forested canopy, the extinction coefficient is formulated in terms of the extinction cross sections (ECSs) in the local frame of each forest component and the Eulerian angles of orientation (used to describe the orientation of each component). The ECSs in the local frame for the finite-length cylinders used to model the branches are obtained by using the forward-scattering theorem. ECSs in the local frame for the disk- and needle-shaped leaves are obtained by the summation of the absorption and scattering cross-sections. The behavior of the extinction coefficients with the incidence angle is investigated numerically for both deciduous and coniferous forest. The dependencies of the extinction coefficients on the orientation of the leaves are illustrated numerically.
ALMA Observations of Polarization from Dust Scattering in the IM Lup Protoplanetary Disk
NASA Astrophysics Data System (ADS)
Hull, Charles L. H.; Yang, Haifeng; Li, Zhi-Yun; Kataoka, Akimasa; Stephens, Ian W.; Andrews, Sean; Bai, Xuening; Cleeves, L. Ilsedore; Hughes, A. Meredith; Looney, Leslie; Pérez, Laura M.; Wilner, David
2018-06-01
We present 870 μm ALMA observations of polarized dust emission toward the Class II protoplanetary disk IM Lup. We find that the orientation of the polarized emission is along the minor axis of the disk, and that the value of the polarization fraction increases steadily toward the center of the disk, reaching a peak value of ∼1.1%. All of these characteristics are consistent with models of self-scattering of submillimeter-wave emission from an optically thin inclined disk. The distribution of the polarization position angles across the disk reveals that, while the average orientation is along the minor axis, the polarization orientations show a significant spread in angles; this can also be explained by models of pure scattering. We compare the polarization with that of the Class I/II source HL Tau. A comparison of cuts of the polarization fraction across the major and minor axes of both sources reveals that IM Lup has a substantially higher polarization fraction than HL Tau toward the center of the disk. This enhanced polarization fraction could be due a number of factors, including higher optical depth in HL Tau, or scattering by larger dust grains in the more evolved IM Lup disk. However, models yield similar maximum grain sizes for both HL Tau (72 μm) and IM Lup (61 μm, this work). This reveals continued tension between grain-size estimates from scattering models and from models of the dust emission spectrum, which find that the bulk of the (unpolarized) emission in disks is most likely due to millimeter-sized (or even centimeter-sized) grains.
Signatures of Young Planets in the Continuum Emission from Protostellar Disks
NASA Astrophysics Data System (ADS)
Isella, Andrea; Turner, Neal J.
2018-06-01
Many protostellar disks show central cavities, rings, or spiral arms likely caused by low-mass stellar or planetary companions, yet few such features are conclusively tied to bodies embedded in the disks. We note that even small features on the disk surface cast shadows, because the starlight grazes the surface. We therefore focus on accurately computing the disk thickness, which depends on its temperature. We present models with temperatures set by the balance between starlight heating and radiative cooling, which are also in vertical hydrostatic equilibrium. The planet has 20, 100, or 1000 M ⊕, ranging from barely enough to perturb the disk significantly, to clearing a deep tidal gap. The hydrostatic balance strikingly alters the appearance of the model disk. The outer walls of the planet-carved gap puff up under starlight heating, throwing a shadow across the disk beyond. The shadow appears in scattered light as a dark ring that could be mistaken for a gap opened by another more distant planet. The surface brightness contrast between outer wall and shadow for the 1000 M ⊕ planet is an order of magnitude greater than a model neglecting the temperature disturbances. The shadow is so deep that it largely hides the planet-launched outer arm of the spiral wave. Temperature gradients are such that outer low-mass planets undergoing orbital migration will converge within the shadow. Furthermore, the temperature perturbations affect the shape, size, and contrast of features at millimeter and centimeter wavelengths. Thus radiative heating and cooling are key to the appearance of protostellar disks with embedded planets.
Dynamics of acoustically levitated disk samples.
Xie, W J; Wei, B
2004-10-01
The acoustic levitation force on disk samples and the dynamics of large water drops in a planar standing wave are studied by solving the acoustic scattering problem through incorporating the boundary element method. The dependence of levitation force amplitude on the equivalent radius R of disks deviates seriously from the R3 law predicted by King's theory, and a larger force can be obtained for thin disks. When the disk aspect ratio gamma is larger than a critical value gamma(*) ( approximately 1.9 ) and the disk radius a is smaller than the critical value a(*) (gamma) , the levitation force per unit volume of the sample will increase with the enlargement of the disk. The acoustic levitation force on thin-disk samples ( gamma= gamma(*) ) can be formulated by the shape factor f(gamma,a) when a= a(*) (gamma) . It is found experimentally that a necessary condition of the acoustic field for stable levitation of a large water drop is to adjust the reflector-emitter interval H slightly above the resonant interval H(n) . The simulation shows that the drop is flattened and the central parts of its top and bottom surface become concave with the increase of sound pressure level, which agrees with the experimental observation. The main frequencies of the shape oscillation under different sound pressures are slightly larger than the Rayleigh frequency because of the large shape deformation. The simulated translational frequencies of the vertical vibration under normal gravity condition agree with the theoretical analysis.
Studies of Disks Around the Sun and Other Stars
NASA Technical Reports Server (NTRS)
Stern, S. Alan (Principal Investigator)
1996-01-01
We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation, the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and to the ultimate fate of comet clouds around the Sun and other stars. According to 'standard' theory, both the Kuiper Disk and the Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for inferring the presence of planetary systems. This two-element program consists modeling collisions in the Kuiper Disk and the dust disks around other stars. The modeling effort focuses on moving from our simple, first-generation, Kuiper disk collision rate model, to a time-dependent, second-generation model that incorporates physical collisions, velocity evolution, dynamical erosion, and various dust transport mechanisms. This second generation model will be used to study the evolution of surface mass density and the object-size spectrum in the disk. The observational effort focuses on obtaining submm/mm-wave flux density measurements of 25-30 IR excess stars in order to better constrain the masses, spatial extents and structure of their dust ensembles.
Dynamics of acoustically levitated disk samples
NASA Astrophysics Data System (ADS)
Xie, W. J.; Wei, B.
2004-10-01
The acoustic levitation force on disk samples and the dynamics of large water drops in a planar standing wave are studied by solving the acoustic scattering problem through incorporating the boundary element method. The dependence of levitation force amplitude on the equivalent radius R of disks deviates seriously from the R3 law predicted by King’s theory, and a larger force can be obtained for thin disks. When the disk aspect ratio γ is larger than a critical value γ*(≈1.9) and the disk radius a is smaller than the critical value a*(γ) , the levitation force per unit volume of the sample will increase with the enlargement of the disk. The acoustic levitation force on thin-disk samples (γ⩽γ*) can be formulated by the shape factor f(γ,a) when a⩽a*(γ) . It is found experimentally that a necessary condition of the acoustic field for stable levitation of a large water drop is to adjust the reflector-emitter interval H slightly above the resonant interval Hn . The simulation shows that the drop is flattened and the central parts of its top and bottom surface become concave with the increase of sound pressure level, which agrees with the experimental observation. The main frequencies of the shape oscillation under different sound pressures are slightly larger than the Rayleigh frequency because of the large shape deformation. The simulated translational frequencies of the vertical vibration under normal gravity condition agree with the theoretical analysis.
Development of a bi-directional standing wave linear piezoelectric actuator with four driving feet.
Liu, Yingxiang; Shi, Shengjun; Li, Chunhong; Chen, Weishan; Wang, Liang; Liu, Junkao
2018-03-01
A bi-directional standing wave linear piezoelectric ultrasonic actuator with four driving feet is proposed in this work. Two sandwich type transducers operated in longitudinal-bending hybrid modes are set parallelly. The working mode of the transducer is not simple hybrid vibrations of a longitudinal one and a bending one, but a special coupling vibration mode contained both longitudinal and bending components. Two transducers with the same structure and unsymmetrical boundary conditions are set parallelly to accomplish the bi-directional driving: the first transducer can push the runner forward, while the other one produces the backward driving. In the experiments, two voltages with different amplitudes are applied on the two transducers, respectively: the one with higher voltage serves as the actuator, whereas the other one applied with lower voltage is used to reduce the frictional force. The prototype achieves maximum no-load speed and thrust force of 244 mm/s and 9.8 N. This work gives a new idea for the construction of standing wave piezoelectric ultrasonic actuator with bi-directional driving ability. Copyright © 2017 Elsevier B.V. All rights reserved.
Properties of Planet-Forming Prostellar Disks
NASA Technical Reports Server (NTRS)
Lindstrom, David (Technical Monitor); Lubow, Stephen
2005-01-01
The proposal achieved many of its objectives. The main area of investigation was the interaction of young planets with surrounding protostellar disks. The grant funds were used to support visits by CoIs and visitors: Gordon Ogilvie, Gennaro D Angelo, and Matthew Bate. Funds were used for travel and partial salary support for Lubow. We made important progress in two areas described in the original proposal: secular resonances (Section 3) and nonlinear waves in three dimensions (Section 5). In addition, we investigated several new areas: planet migration, orbital distribution of planets, and noncoorbital corotation resonances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Zhaohuan; Stone, James M.; Rafikov, Roman R., E-mail: zhzhu@astro.princeton.edu, E-mail: jstone@astro.princeton.edu, E-mail: rrr@astro.princeton.edu
Some regions in protoplanetary disks are turbulent, while some regions are quiescent (e.g. the dead zone). In order to study how planets open gaps in both inviscid hydrodynamic disk (e.g. the dead zone) and the disk subject to magnetorotational instability (MRI), we carried out both shearing box two-dimensional inviscid hydrodynamical simulations and three-dimensional unstratified magnetohydrodynamical (MHD) simulations (having net vertical magnetic fields) with a planet at the box center. We found that, due to the nonlinear wave steepening, even a low mass planet can open gaps in both cases, in contradiction to the ''thermal criterion'' for gap opening. In ordermore » to understand if we can represent the MRI turbulent stress with the viscous {alpha} prescription for studying gap opening, we compare gap properties in MRI-turbulent disks to those in viscous HD disks having the same stress, and found that the same mass planet opens a significantly deeper and wider gap in net vertical flux MHD disks than in viscous HD disks. This difference arises due to the efficient magnetic field transport into the gap region in MRI disks, leading to a larger effective {alpha} within the gap. Thus, across the gap, the Maxwell stress profile is smoother than the gap density profile, and a deeper gap is needed for the Maxwell stress gradient to balance the planetary torque density. Comparison with previous results from net toroidal flux/zero flux MHD simulations indicates that the magnetic field geometry plays an important role in the gap opening process. We also found that long-lived density features (termed zonal flows) produced by the MRI can affect planet migration. Overall, our results suggest that gaps can be commonly produced by low mass planets in realistic protoplanetary disks, and caution the use of a constant {alpha}-viscosity to model gaps in protoplanetary disks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katkov, Ivan Yu.; Sil'chenko, Olga K.; Moiseev, Alexei V., E-mail: katkov.ivan@gmail.com, E-mail: moisav@gmail.com, E-mail: olga@sai.msu.su
We used deep, long-slit spectra and integral-field spectral data to study the stars, ionized gas kinematics, and stellar population properties in the lenticular barred galaxy NGC 7743. We show that ionized gas at distances larger than 1.5 kpc from the nucleus settles in the disk, which is significantly inclined toward the stellar disk of the galaxy. Making different assumptions about the geometry of the disks and including different sets of emission lines in the fitting, under the assumption of thin, flat-disk circular rotation, we obtain the full possible range of angles between the disks to be 34{sup 0} {+-} 9{supmore » 0} or 77{sup 0} {+-} 9{sup 0}. The most probable origin of the inclined disk is the external gas accretion from a satellite orbiting the host galaxy, with a corresponding angular momentum direction. The published data on the H I distribution around NGC 7743 suggest that the galaxy has a gas-rich environment. The emission-line ratio diagrams imply the domination of shock waves in the ionization state of the gaseous disk, whereas the contribution of photoionization from recent star formation seems to be negligible. In some parts of the disk, a difference between the velocities of the gas emitting from the forbidden lines and Balmer lines is detected. This may be caused by the mainly shock-excited inclined disk, whereas some fraction of the Balmer-line emission is produced by a small amount of gas excited by young stars in the main stellar disk of NGC 7743. In the circumnuclear region (R < 200 pc), some evidence of the active galactic nucleus jet's interaction with an ambient interstellar medium was found.« less
Outward Migration of Giant Planets in Orbital Resonance
NASA Astrophysics Data System (ADS)
D'Angelo, G.; Marzari, F.
2013-05-01
A pair of giant planets interacting with a gaseous disk may be subject to convergent orbital migration and become locked into a mean motion resonance. If the orbits are close enough, the tidal gaps produced by the planets in the disk may overlap. This represents a necessary condition to activate the outward migration of the pair. However, a number of other conditions must also be realized in order for this mechanism to operate. We have studied how disk properties, such as turbulence viscosity, temperature, surface density gradient, mass, and age, may affect the outcome of the outward migration process. We have also investigated the implications on this mechanism of the planets' gas accretion. If the pair resembles Jupiter and Saturn, the 3:2 orbital resonance may drive them outward until they reach stalling radii for migration, which are within ~10 AU of the star for disks representative of the early proto-solar nebula. However, planet post-formation conditions in the disk indicate that such planets become typically locked in the 1:2 orbital resonance, which does not lead to outward migration. Planet growth via gas accretion tends to alter the planets' mass-ratio and/or the disk accretion rate toward the star, reducing or inhibiting outward migration. Support from NASA Outer Planets Research Program and NASA Origins of Solar Systems Program is gratefully acknowledged.
Supermassive black holes do not correlate with galaxy disks or pseudobulges.
Kormendy, John; Bender, R; Cornell, M E
2011-01-20
The masses of supermassive black holes are known to correlate with the properties of the bulge components of their host galaxies. In contrast, they seem not to correlate with galaxy disks. Disk-grown 'pseudobulges' are intermediate in properties between bulges and disks; it has been unclear whether they do or do not correlate with black holes in the same way that bulges do. At stake in this issue are conclusions about which parts of galaxies coevolve with black holes, possibly by being regulated by energy feedback from black holes. Here we report pseudobulge classifications for galaxies with dynamically detected black holes and combine them with recent measurements of velocity dispersions in the biggest bulgeless galaxies. These data confirm that black holes do not correlate with disks and show that they correlate little or not at all with pseudobulges. We suggest that there are two different modes of black-hole feeding. Black holes in bulges grow rapidly to high masses when mergers drive gas infall that feeds quasar-like events. In contrast, small black holes in bulgeless galaxies and in galaxies with pseudobulges grow as low-level Seyfert galaxies. Growth of the former is driven by global processes, so the biggest black holes coevolve with bulges, but growth of the latter is driven locally and stochastically, and they do not coevolve with disks and pseudobulges.
Exploration of High Harmonic Fast Wave Heating on the National Spherical Torus Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.R. Wilson; R.E. Bell; S. Bernabei
2003-02-11
High Harmonic Fast Wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high-beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [Ono, M., Kaye, S.M., Neumeyer, S., et al., Proceedings, 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999, (IEEE, Piscataway, NJ (1999), p. 53.)] is such a device. An radio-frequency (rf) heating system has been installed on NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the STmore » concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode (high-confinement mode) discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge.« less
2007-03-01
electric charge to drive movement, eg. a micromirror . These two actuator types have different characteristics and apply dif- ferent forces. The thermal...actuators include micromirrors , comb drives, cantilevers and scratch drives. A scratch drive actuator uses an applied square wave voltage to operate, as
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-21
... the HDA incorporate semiconductor, magnetic, mechanical, and manufacturing process design into an..., mechanical surface design and manufacturing process design. It takes approximately [xxx] hours to design... brand names ``Barracuda'' and ``Desktop''. HDDs are designed in the United States and assembled either...
X-ray Magnetic Linear Dichroism of Fe-Ni Alloys on Cu(111)
2001-04-01
the study of magnetism and magnetic materials. This control allows for the study of the relationship between magnetic and structural properties for...effect in NiFe /Cu systems that are relevant to magnetic disk drive heads. Using core-level photoelectron spectroscopies on magnetized samples allows
ERIC Educational Resources Information Center
Fisher, Patience; And Others
This guide was prepared to help teachers of the Lincoln Public School's introductory computer programming course in BASIC to make the necessary adjustments for changes made in the course since the purchase of microcomputers and such peripheral devices as television monitors and disk drives, and the addition of graphics. Intended to teach a…
Questions to Answer before You Branch out on a CD-ROM Network.
ERIC Educational Resources Information Center
Simpson, Carol Mann
1992-01-01
Examines issues that librarians must address when purchasing databases on CD-ROM for networking. Highlights include network licenses; costs; restrictions on network rights; ownership of CD-ROMs; hardware requirements; fees for upgrading software; CD-ROM servers; pricing options; training materials; and disk drives. (LRW)
Current drive with combined electron cyclotron wave and high harmonic fast wave in tokamak plasmas
NASA Astrophysics Data System (ADS)
Li, J. C.; Gong, X. Y.; Dong, J. Q.; Wang, J.; Zhang, N.; Zheng, P. W.; Yin, C. Y.
2016-12-01
The current driven by combined electron cyclotron wave (ECW) and high harmonic fast wave is investigated using the GENRAY/CQL3D package. It is shown that no significant synergetic current is found in a range of cases with a combined ECW and fast wave (FW). This result is consistent with a previous study [Harvey et al., in Proceedings of IAEA TCM on Fast Wave Current Drive in Reactor Scale Tokamaks (Synergy and Complimentarily with LHCD and ECRH), Arles, France, IAEA, Vienna, 1991]. However, a positive synergy effect does appear with the FW in the lower hybrid range of frequencies. This positive synergy effect can be explained using a picture of the electron distribution function induced by the ECW and a very high harmonic fast wave (helicon). The dependence of the synergy effect on the radial position of the power deposition, the wave power, the wave frequency, and the parallel refractive index is also analyzed, both numerically and physically.
Neoclassical Current Drive by Waves with a Symmetric Spectrum
NASA Astrophysics Data System (ADS)
Helander, Per
2000-10-01
It is well known that plasma waves can produce electric currents if the waves have an asymmetric spectrum, so that they either interact preferentially with electrons travelling in one direction along the magnetic field or impart net parallel momentum to the electrons [1]. This directionality creates an asymmetry in the electron distribution function and thereby produces a current parallel to the field. We demonstrate, somewhat surprisingly, that in a plasma confined by a curved magnetic field no such spectral asymmetry is necessary for current drive if the effect of collisions is properly taken into account. For instance, in a toroidal plasma a current can be produced by a spectrally symmetric wave field if this field is instead up-down asymmetric, which is frequently the case for electron cyclotron current drive (ECCD) in tokamaks. We have calculated the resulting current drive efficiency and found it to be smaller than that of the conventional current drive mechanism in the banana regime, but not insignificant in the plateau regime. The results will be compared with experiments in DIII-D, where the measured efficiency exceeds the classical prediction [2]. Our calculations are focused on this case of ECCD in tokamaks, but the basic physical mechanism is much more general. It is of a universal neoclassical nature and applies to all wave-particle interaction in curved magnetic fields. [1] N.J. Fisch, Rev. Mod. Phys. 59, 175 (1987). [2] Y. R. Lin-Liu et al., 26th EPS Conf. on Contr. Fusion and Plasma Phys.(European Phys. Soc. Paris, 1999) Vol. 23J, p 1245.
The formation of planetary disks and winds: an ultraviolet view
NASA Astrophysics Data System (ADS)
Gómez de Castro, Ana I.
2009-04-01
Planetary systems are angular momentum reservoirs generated during star formation. This accretion process produces very powerful engines able to drive the optical jets and the molecular outflows. A fraction of the engine energy is released into heating thus the temperature of the engine ranges from the 3000 K of the inner disk material to the 10 MK in the areas where magnetic reconnection occurs. There are important unsolved problems concerning the nature of the engine, its evolution and the impact of the engine in the chemical evolution of the inner disk. Of special relevance is the understanding of the shear layer between the stellar photosphere and the disk; this layer controls a significant fraction of the magnetic field building up and the subsequent dissipative processes ougth to be studied in the UV. This contribution focus on describing the connections between 1 Myr old suns and the Sun and the requirements for new UV instrumentation to address their evolution during this period. Two types of observations are shown to be needed: monitoring programmes and high resolution imaging down to, at least, milliarsecond scales.
The radial distribution of supernovae in nuclear starbursts
NASA Astrophysics Data System (ADS)
Herrero-Illana, R.; Pérez-Torres, M. A.; Alberdi, A.
2013-05-01
Galaxy-galaxy interactions are expected to be responsible for triggering massive star formation and possibly accretion onto a supermassive black hole, by providing large amounts of dense molecular gas down to the central kiloparsec region. Several scenarios to drive the gas further down to the central ˜100 pc, have been proposed, including the formation of a nuclear disk around the black hole, where massive stars would produce supernovae. Here, we probe the radial distribution of supernovae and supernova remnants in the nuclear regions of the starburst galaxies M82, Arp 299-A, and Arp 220, by using high-angular resolution (≲ 0.''1) radio observations. We derived scale-length values for the putative nuclear disks, which range from ˜20-30 pc for Arp 299-A and Arp 220, up to ˜140 pc for M82. The radial distribution of SNe for the nuclear disks in Arp 299-A and Arp 220 is also consistent with a power-law surface density profile of exponent γ = 1, as expected from detailed hydrodynamical simulations of nuclear disks. This study is detailed in te{herrero-illana12}.
Real-time MST radar signal processing using a microcomputer running under FORTH
NASA Technical Reports Server (NTRS)
Bowhill, S. A.
1983-01-01
Data on power, correlation time, and velocity were obtained at the Urbana radar using microcomputer and a single floppy disk drive. This system includes the following features: (1) measurement of the real and imaginary components of the received signal at 20 altitudes spaced by 1.5 km; (2) coherent integration of these components over a 1/8-s time period; (3) continuous real time display of the height profiles of the two coherently integrated components; (4) real time calculation of the 1 minute averages of the power and autocovariance function up to 6 lags; (5) output of these data to floppy disk once every 2 minutes; (6) display of the 1 minute power profiles while the data are stored to the disk; (7) visual prompting for the operator to change disks when required at the end of each hour of data; and (8) continuous audible indication of the status of the interrupt service routine. Accomplishments were enabled by two developments: the use of a new correlation algorithm and the use of the FORTH language to manage the various low level and high level procedures involved.
Isotopic effect in experiments on lower hybrid current drive in the FT-2 tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lashkul, S. I., E-mail: Serguey.lashkul@mail.ioffe.ru; Altukhov, A. B.; Gurchenko, A. D., E-mail: aleksey.gurchenko@mail.ioffe.ru
To analyze factors influencing the limiting value of the plasma density at which lower hybrid (LH) current drive terminates, the isotopic factor (the difference in the LH resonance densities in hydrogen and deuterium plasmas) was used for the first time in experiments carried out at the FT-2 tokamak. It is experimentally found that the efficiency of LH current drive in deuterium plasma is appreciably higher than that in hydrogen plasma. The significant role of the parametric decay of the LH pumping wave, which hampers the use of the LH range of RF waves for current drive at high plasma densities,more » is confirmed. It is demonstrated that the parameters characterizing LH current drive agree well with the earlier results obtained at large tokamaks.« less
NASA Astrophysics Data System (ADS)
Chang, Hung-Pin; Qian, Jiangyuan; Bachman, Mark; Congdon, Philip; Li, Guann-pyng
2002-07-01
A novel planarization technique, compressive molding planarization (CMP) is developed for implementation of a multi-layered micro coil device. Applying CMP and other micromachining techniques, a multi-layered micro coil device has been designed and fabricated, and its use in the magnetic micro actuators for hard disk drive applications has been demonstrated, showing that it can produce milli-Newton of magnetic force suitable for driving a micro actuator. The novel CMP technique can be equally applicable in other MEMS devices fabrication to ease the process integration for the complicated structure.
Apparatus for Teaching Physics.
ERIC Educational Resources Information Center
Minnix, Richard B.; Carpenter, D. Rae, Jr., Eds.
1982-01-01
Thirteen demonstrations using a capacitor-start induction motor fitted with an aluminum disk are described. Demonstrations illustrate principles from mechanics, fluids (Bernoulli's principle), waves (chladni patterns and doppler effect), magnetism, electricity, and light (mechanical color mixing). In addition, the instrument can measure friction…
Highly efficient 400 W near-fundamental-mode green thin-disk laser.
Piehler, Stefan; Dietrich, Tom; Rumpel, Martin; Graf, Thomas; Ahmed, Marwan Abdou
2016-01-01
We report on the efficient generation of continuous-wave, high-brightness green laser radiation. Green lasers are particularly interesting for reliable and reproducible deep-penetration welding of copper or for pumping Ti:Sa oscillators. By intracavity second-harmonic generation in a thin-disk laser resonator designed for fundamental-mode operation, an output power of up to 403 W is demonstrated at a wavelength of 515 nm with almost diffraction-limited beam quality. The unprecedented optical efficiency of 40.7% of green output power with respect to the pump power of the thin-disk laser is enabled by the intracavity use of a highly efficient grating waveguide mirror, which combines the functions of wavelength stabilization and spectral narrowing, as well as polarization selection in a single element.
Magnetically driven jets and winds
NASA Technical Reports Server (NTRS)
Lovelace, R. V. E.; Berk, H. L.; Contopoulos, J.
1991-01-01
Four equations for the origin and propagation of nonrelativistic jets and winds are derived from the basic conservation laws of ideal MHD. The axial current density is negative in the vicinity of the axis and positive at larger radii; there is no net current because this is energetically favored. The magnetic field is essential for the jet solutions in that the zz-component of the magnetic stress acts, in opposition to gravity, to drive matter through the slow magnetosonic critical point. For a representative self-consistent disk/jet solution relevant to a protostellar system, the reaction of the accreted mass expelled in the jets is 0.1, the ratio of the power carried by the jets to the disk luminosity is 0.66, and the ratio of the boundary layer to disk luminosities is less than about 0.13. The star's rotation rate decreases with time even for rotation rates much less than the breakup rate.
Magnetic printing characteristics using master disk with perpendicular magnetic anisotropy
NASA Astrophysics Data System (ADS)
Fujiwara, Naoto; Nishida, Yoichi; Ishioka, Toshihide; Sugita, Ryuji; Yasunaga, Tadashi
With the increase in recording density and capacity of hard-disk drives (HDD), high speed, high precision and low cost servo writing method has become an issue in HDD industry. The magnetic printing was proposed as the ultimate solution for this issue [1-3]. There are two types of magnetic printing methods, which are 'Bit Printing (BP)' and 'Edge Printing (EP)'. BP method is conducted by applying external field whose direction is vertical to the plane of both master disk (Master) and perpendicular magnetic recording (PMR) media (Slave). On the other hand, EP method is conducted by applying external field toward down track direction of both master and slave. In BP for bit length shorter than 100 nm, the SNR of perpendicular anisotropic master was higher than isotropic master. And the SNR of EP for the bit length shorter than 50 nm was demonstrated.
Dead Zone Accretion Flows in Protostellar Disks
NASA Technical Reports Server (NTRS)
Turner, Neal; Sano, T.
2008-01-01
Planets form inside protostellar disks in a dead zone where the electrical resistivity of the gas is too high for magnetic forces to drive turbulence. We show that much of the dead zone nevertheless is active and flows toward the star while smooth, large-scale magnetic fields transfer the orbital angular momentum radially outward. Stellar X-ray and radionuclide ionization sustain a weak coupling of the dead zone gas to the magnetic fields, despite the rapid recombination of free charges on dust grains. Net radial magnetic fields are generated in the magnetorotational turbulence in the electrically conducting top and bottom surface layers of the disk, and reach the midplane by ohmic diffusion. A toroidal component to the fields is produced near the midplane by the orbital shear. The process is similar to the magnetization of the solar tachocline. The result is a laminar, magnetically driven accretion flow in the region where the planets form.
Role of viscous friction in the reverse rotation of a disk.
de Castro, Pablo; Parisio, Fernando
2014-07-01
The mechanical response of a circularly driven disk in a dissipative medium is considered. We focus on the role played by viscous friction in the spinning motion of the disk, especially on the effect called reverse rotation, where the intrinsic and orbital rotations are antiparallel. Contrary to what happens in the frictionless case, where steady reverse rotations are possible, we find that this dynamical behavior may exist only as a transient when dissipation is considered. Whether or not reverse rotations in fact occur depends on the initial conditions and on two parameters, one related to dragging, inertia, and driving, the other associated with the geometric configuration of the system. The critical value of this geometric parameter (separating the regions where reverse rotation is possible from those where it is forbidden) as a function of viscosity is well adjusted by a q-exponential function.
NASA Astrophysics Data System (ADS)
Xiong, Shaomin; Wu, Haoyu; Bogy, David
2014-09-01
Heat assisted magnetic recording (HAMR) is expected to increase the storage areal density to more than 1 Tb/in2 in hard disk drives (HDDs). In this technology, a laser is used to heat the magnetic media to the Curie point (~400-600 °C) during the writing process. The lubricant on the top of a magnetic disk could evaporate and be depleted under the laser heating. The change of the lubricant can lead to instability of the flying slider and failure of the head-disk interface (HDI). In this study, a HAMR test stage is developed to study the lubricant thermal behavior. Various heating conditions are controlled for the study of the lubricant thermal depletion. The effects of laser heating repetitions and power levels on the lubricant depletion are investigated experimentally. The lubricant reflow behavior is discussed as well.
NASA Astrophysics Data System (ADS)
Wei, Wei; Bo-Jiang, Ding; Y, Peysson; J, Decker; Miao-Hui, Li; Xin-Jun, Zhang; Xiao-Jie, Wang; Lei, Zhang
2016-01-01
The optimized synergy conditions between electron cyclotron current drive (ECCD) and lower hybrid current drive (LHCD) with normal parameters of the EAST tokamak are studied by using the C3PO/LUKE code based on the understanding of the synergy mechanisms so as to obtain a higher synergistic current and provide theoretical reference for the synergistic effect in the EAST experiment. The dependences of the synergistic effect on the parameters of two waves (lower hybrid wave (LHW) and electron cyclotron wave (ECW)), including the radial position of the power deposition, the power value of the LH and EC waves, and the parallel refractive indices of the LHW (N∥) are presented and discussed. Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant Nos. 2011GB102000, 2012GB103000, and 2013GB106001), the National Natural Science Foundation of China (Grant Nos. 11175206 and 11305211), the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics (Grant No. 11261140328), and the Fundamental Research Funds for the Central Universities of China (Grant No. JZ2015HGBZ0472).
High Performance Simulations of Accretion Disk Dynamics and Jet Formations Around Kerr Black Holes
NASA Technical Reports Server (NTRS)
Nishikawa, Ken-Ichi; Mizuno, Yosuke; Watson, Michael
2007-01-01
We investigate jet formation in black-hole systems using 3-D General Relativistic Particle-In-Cell (GRPIC) and 3-D GRMHD simulations. GRPIC simulations, which allow charge separations in a collisionless plasma, do not need to invoke the frozen condition as in GRMHD simulations. 3-D GRPIC simulations show that jets are launched from Kerr black holes as in 3-D GRMHD simulations, but jet formation in the two cases may not be identical. Comparative study of black hole systems with GRPIC and GRMHD simulations with the inclusion of radiate transfer will further clarify the mechanisms that drive the evolution of disk-jet systems.
Local protoplanetary disk ionisation by T Tauri star energetic particles
NASA Astrophysics Data System (ADS)
Fraschetti, F.; Drake, J.; Cohen, O.; Garraffo, C.
2017-10-01
The evolution of protoplanetary disks is believed to be driven largely by viscosity. The ionization of the disk that gives rise to viscosity is caused by X-rays from the central star or by energetic particles released by shock waves travelling into the circumstellar medium. We have performed test-particle numerical simulations of GeV-scale protons traversing a realistic magnetised wind of a young solar mass star with a superposed small-scale turbulence. The large-scale field is generated via an MHD model of a T Tauri wind, whereas the isotropic (Kolmogorov power spectrum) turbulent component is synthesised along the particles' trajectories. We have combined Chandra observations of T Tauri flares with solar flare scaling for describing the energetic particle spectrum. In contrast with previous models, we find that the disk ionization is dominated by X-rays except within narrow regions where the energetic particles are channelled onto the disk by the strongly tangled and turbulent field lines; the radial thickness of such regions broadens with the distance from the central star (5 stellar radii or more). In those regions, the disk ionization due to energetic particles can locally dominate the stellar X-rays, arguably, out to large distances (10, 100 AU) from the star.
NASA Astrophysics Data System (ADS)
McIntosh, Daniel H.; CANDELS Collaboration
2017-01-01
The premiere HST/WFC3 Treasury program CANDELS (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey) has produced detailed visual classifications for statistically useful samples of bright (H>24.5mag) galaxies during and after z~2, the epoch of peak galaxy development. By averaging multiple classifications per galaxy that encompass spheroid-only, bulge-dominated, disk-dominated, disk-only, and irregular/peculiar appearances at visible rest-frame wavelengths, we find that 90% of massive (>1e10 Msun) galaxies at 0.6
The dynamics of a flexible bladed disc on a flexible rotor in a two-rotor system
NASA Technical Reports Server (NTRS)
Gallardo, V. C.; Stallone, M. J.
1984-01-01
This paper describes the development of the analysis of the transient dynamic response of a bladed disk on a flexible rotor. The rotating flexible bladed disk is considered as a module in a complete turbine engine structure. The analysis of the flexible bladed disk (FBD) module is developed for the non-equilibrated one-diameter axial mode. The FBD motion is considered as a sum of two standing axial waves constrained to the rotor. The FBD is coupled inertially and gyroscopically to its rotor support, and indirectly through connecting elements, to the adjacent rotor and/or other supporting structures. Incorporated in the basic Turbine Engine Transient Response Analysis program (TETRA), the FBD module is demonstrated with a two-rotor model where the FBD can be excited into resonance by an unbalance in the adjacent rotor and at a frequency equal to the differential rotor speed. The FBD module also allows the analysis of two flexible bladed disks in the same rotor.
Gravitational Instabilities, Chondrule Formation, and the FU Orionis Phenomenon
NASA Astrophysics Data System (ADS)
Boley, Aaron C.; Durisen, Richard H.
2008-10-01
Using analytic arguments and numerical simulations, we examine whether chondrule formation and the FU Orionis phenomenon can be caused by the burstlike onset of gravitational instabilities (GIs) in dead zones. At least two scenarios for bursting dead zones can work, in principle. If the disk is on the verge of fragmentation, GI activation near r ~ 4-5 AU can produce chondrule-forming shocks, at least under extreme conditions. Mass fluxes are also high enough during the onset of GIs to suggest that the outburst is related to an FU Orionis phenomenon. This situation is demonstrated by numerical simulations. In contrast, as supported by analytic arguments, if the burst takes place close to r ~ 1 AU, then even low pitch angle spiral waves can create chondrule-producing shocks and outbursts. We also study the stability of the massive disks in our simulations against fragmentation and find that although disk evolution is sensitive to changes in opacity, the disks we study do not fragment, even at high resolution and even for extreme assumptions.
NASA Astrophysics Data System (ADS)
Hoadley, Keri; France, Kevin
2017-01-01
Understanding the evolution of gas over the lifetime of protoplanetary disks provides us with important clues about how planet formation mechanisms drive the diversity of exoplanetary systems observed to date. In the first part of my talk, I will discuss how we use emission line observations of molecular hydrogen (H2) in the far-ultraviolet (far-UV) with the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope to study the warm molecular regions (a < 10 AU) of planet-forming disks. We compare the observations with analytic disk models that produce synthetic H2 profiles, and we statistically determine the disk representations that best replicate the data. I will discuss the results of our comparisons and how the modeled radial distributions of H2 in the disk help provide important constraints on the effective density of gas left in the inner disk of protoplanetary disks at various disk evolutionary stages. Finally, I will talk about follow-up studies that look to connect the warm, UV-pumped molecular populations of the inner disk to thermally-excited molecules observed in similar regions of the disk in the near- to mid-IR.In the second part of my talk, I will discuss the observational requirements in the UV and IR band passes to gain further insights into the behavior of the warm, gaseous protoplanetary disk, focusing specifically on a spectrograph concept for the next-generation LUVOIR Surveyor. I will discuss a testbed instrument, the Colorado High-resolution Echelle Stellar Spectrograph (CHESS), built as a demonstration of one component of the LUVOIR spectrograph and new technological improvements to UV optical components for the next generation of near- to far-UV astrophysical observatories. CHESS is a far-UV sounding rocket experiment designed to probe the warm and cool atoms and molecules near sites of recent star formation in the local interstellar medium. I will talk about the science goals, design, research and development (R&D) components, and calibration of the CHESS instrument. I will end by presenting the initial data reduction and results of the flight observations taken during the second launch of CHESS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pérez, Laura M.; Chandler, Claire J.; Isella, Andrea
We present Atacama Large Millimeter/submillimeter Array (ALMA) observations in the dust continuum (690 GHz, 0.45 mm) and {sup 12}CO J = 6-5 spectral line emission of the transitional disks surrounding the stars SAO 206462 and SR 21. These ALMA observations resolve the dust-depleted disk cavities and extended gaseous disks, revealing large-scale asymmetries in the dust emission of both disks. We modeled these disk structures with a ring and an azimuthal Gaussian, where the azimuthal Gaussian is motivated by the steady-state vortex solution from Lyra and Lin. Compared to recent observations of HD 142527, Oph IRS 48, and LkHα 330, these are low-contrastmore » (≲ 2) asymmetries. Nevertheless, a ring alone is not a good fit, and the addition of a vortex prescription describes these data much better. The asymmetric component encompasses 15% and 28% of the total disk emission in SAO 206462 and SR 21, respectively, which corresponds to a lower limit of 2 M {sub Jup} of material within the asymmetry for both disks. Although the contrast in the dust asymmetry is low, we find that the turbulent velocity inside it must be large (∼20% of the sound speed) in order to drive these azimuthally wide and radially narrow vortex-like structures. We obtain residuals from the ring and vortex fitting that are still significant, tracing non-axisymmetric emission in both disks. We compared these submillimeter observations with recently published H-band scattered light observations. For SR 21 the scattered light emission is distributed quite differently from the submillimeter continuum emission, while for SAO 206462 the submillimeter residuals are suggestive of spiral-like structure similar to the near-IR emission.« less
The Orbit of the Companion to HD 100453A: Binary-driven Spiral Arms in a Protoplanetary Disk
NASA Astrophysics Data System (ADS)
Wagner, Kevin; Dong, Ruobing; Sheehan, Patrick; Apai, Dániel; Kasper, Markus; McClure, Melissa; Morzinski, Katie M.; Close, Laird; Males, Jared; Hinz, Phil; Quanz, Sascha P.; Fung, Jeffrey
2018-02-01
HD 100453AB is a 10 ± 2 Myr old binary whose protoplanetary disk was recently revealed to host a global two-armed spiral structure. Given the relatively small projected separation of the binary (1.″05, or ∼108 au), gravitational perturbations by the binary seemed to be a likely driving force behind the formation of the spiral arms. However, the orbit of these stars remained poorly understood, which prevented a proper treatment of the dynamical influence of the companion on the disk. We observed HD 100453AB between 2015 and 2017, utilizing extreme adaptive optics systems on the Very Large Telescope and the Magellan Clay Telescope. We combined the astrometry from these observations with published data to constrain the parameters of the binary’s orbit to a = 1.″06 ± 0.″09, e = 0.17±0.07, and i = 32.°5 ± 6.°5. We utilized publicly available ALMA 12CO data to constrain the inclination of the disk, {i}{{disk}}∼ 28^\\circ , which is relatively coplanar with the orbit of the companion and consistent with previous estimates from scattered light images. Finally, we input these constraints into hydrodynamic and radiative transfer simulations to model the structural evolution of the disk. We find that the spiral structure and truncation of the circumprimary disk in HD 100453 are consistent with a companion-driven origin. Furthermore, we find that the primary star’s rotation, its outer disk, and the companion exhibit roughly the same direction of angular momentum, and thus the system likely formed from the same parent body of material.
NASA Astrophysics Data System (ADS)
Nakatani, Riouhei; Hosokawa, Takashi; Yoshida, Naoki; Nomura, Hideko; Kuiper, Rolf
2018-04-01
Protoplanetary disks are thought to have lifetimes of several million yr in the solar neighborhood, but recent observations suggest that the disk lifetimes are shorter in a low-metallicity environment. We perform a suite of radiation hydrodynamics simulations of photoevaporating protoplanetary disks to study their long-term evolution of ∼10,000 yr and the metallicity dependence of mass-loss rates. Our simulations follow hydrodynamics, extreme and far-ultraviolet (FUV) radiative transfer, and nonequilibrium chemistry in a self-consistent manner. Dust-grain temperatures are also calculated consistently by solving the radiative transfer of the stellar irradiation and grain (re-)emission. We vary the disk metallicity over a wide range of {10}-4 {Z}ȯ ≤slant Z≤slant 10 {Z}ȯ . The photoevaporation rate is lower with higher metallicity in the range of {10}-1 {Z}ȯ ≲ Z≲ 10 {Z}ȯ , because dust shielding effectively prevents FUV photons from penetrating and heating the dense regions of the disk. The photoevaporation rate sharply declines at even lower metallicities in {10}-2 {Z}ȯ ≲ Z≲ {10}-1 {Z}ȯ , because FUV photoelectric heating becomes less effective than dust–gas collisional cooling. The temperature in the neutral region decreases, and photoevaporative flows are excited only in an outer region of the disk. At {10}-4 {Z}ȯ ≤slant Z≲ {10}-2 {Z}ȯ , H I photoionization heating acts as a dominant gas heating process and drives photoevaporative flows with a roughly constant rate. The typical disk lifetime is shorter at Z = 0.3 {Z}ȯ than at Z={Z}ȯ , being consistent with recent observations of the extreme outer galaxy.
Young chondrules in CB chondrites from a giant impact in the early Solar System.
Krot, Alexander N; Amelin, Yuri; Cassen, Patrick; Meibom, Anders
2005-08-18
Chondrules, which are the major constituent of chondritic meteorites, are believed to have formed during brief, localized, repetitive melting of dust (probably caused by shock waves) in the protoplanetary disk around the early Sun. The ages of primitive chondrules in chondritic meteorites indicate that their formation started shortly after that of the calcium-aluminium-rich inclusions (4,567.2 +/- 0.7 Myr ago) and lasted for about 3 Myr, which is consistent with the dissipation timescale for protoplanetary disks around young solar-mass stars. Here we report the 207Pb-206Pb ages of chondrules in the metal-rich CB (Bencubbin-like) carbonaceous chondrites Gujba (4,562.7 +/- 0.5 Myr) and Hammadah al Hamra 237 (4,562.8 +/- 0.9 Myr), which formed during a single-stage, highly energetic event. Both the relatively young ages and the single-stage formation of the CB chondrules are inconsistent with formation during a nebular shock wave. We conclude that chondrules and metal grains in the CB chondrites formed from a vapour-melt plume produced by a giant impact between planetary embryos after dust in the protoplanetary disk had largely dissipated. These findings therefore provide evidence for planet-sized objects in the earliest asteroid belt, as required by current numerical simulations of planet formation in the inner Solar System.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamberti, J.
1983-06-28
A water wave energy transducer comprises a boat having pivoted arms projecting out over the water, a float being mounted on the outboard end of each arm so that the arms are oscillated by wave action on the floats. Drive sprockets fixed on the arms coaxially with their pivots are connected by drive chains with two driven sprockets coaxial, respectively, with two gears which mesh with one another and one of which meshes with an output gear. The driven sprockets are coupled with the coaxial gears by one-way clutches which are oppositely arranged so that one drives when the sprocketsmore » turn in one direction and the other drives when the sprockets turn in the opposite direction. Hence, the output gear is driven in the same direction by both upward and downward movement of the floats. The output gear is connected by a speed increasing gear train with an electric generator which can supply current to a motor for propelling the boat, or through a cable to the shore when the boat is anchored.« less
Keck, M. L.; Brenneman, L. W.; Ballantyne, D. R.; ...
2015-06-15
We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN) by applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity profile, which suggests an intense, compact illuminating source. We find a preliminary, near-maximal black hole spinmore » $$a\\gt 0.9$$ accounting for statistical and systematic modeling errors. We find a relatively moderate reflection fraction with respect to predictions for the lamp post geometry, in which the illuminating corona is modeled as a point source. Through a time-resolved spectral analysis, we find that modest coronal and inner disk reflection (IDR) flux variation drives the spectral variability during the observations. As a result, we discuss various physical scenarios for the IDR model and we find that a compact corona is consistent with the observed features.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keck, M. L.; Brenneman, L. W.; Ballantyne, D. R.
We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN) by applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity profile, which suggests an intense, compact illuminating source. We find a preliminary, near-maximal black hole spinmore » $$a\\gt 0.9$$ accounting for statistical and systematic modeling errors. We find a relatively moderate reflection fraction with respect to predictions for the lamp post geometry, in which the illuminating corona is modeled as a point source. Through a time-resolved spectral analysis, we find that modest coronal and inner disk reflection (IDR) flux variation drives the spectral variability during the observations. As a result, we discuss various physical scenarios for the IDR model and we find that a compact corona is consistent with the observed features.« less
Scaling Relations for the Efficiency of Radial Migration in Disk Galaxies
NASA Astrophysics Data System (ADS)
Daniel, Kathryne J.
2018-01-01
Radial migration is frequently recognized as an internal, secular process that could play an important role in disk galaxy evolution. The driving mechanism for radial migration is transient spiral patterns, which rearrange the orbital angular momentum distribution of disk stars around corotation without causing kinematic heating. Should radial migration be an efficient process, it could cause a substantial fraction of disk stars to move large radial distances over the lifetime of the disk, thus having a significant impact on the disk’s kinematic, structural and chemical evolution. Observational and simulated data are consistent with radial migration being important for kinematically cold stellar populations and less so for populations with hot kinematics. I will present an analytic criterion that determines which stars are in orbits that could lead to radial migration. I will then show some scaling relations for the efficacy of radial migration that result from applying this analytic criterion to a series of models that have a variety of distribution functions and spiral patterns in systems with an assumed flat rotation curve. Most importantly, I will argue that these scaling relations can be used to place constraints on the efficiency of radial migration, where stronger spiral patterns and kinematically cold populations will lead to a higher fraction of stars in orbits that can lead to radial migration.
Accretion disk winds as the jet suppression mechanism in the microquasar GRS 1915+105.
Neilsen, Joseph; Lee, Julia C
2009-03-26
Stellar-mass black holes with relativistic jets, also known as microquasars, mimic the behaviour of quasars and active galactic nuclei. Because timescales around stellar-mass black holes are orders of magnitude smaller than those around more distant supermassive black holes, microquasars are ideal nearby 'laboratories' for studying the evolution of accretion disks and jet formation in black-hole systems. Whereas studies of black holes have revealed a complex array of accretion activity, the mechanisms that trigger and suppress jet formation remain a mystery. Here we report the presence of a broad emission line in the faint, hard states and narrow absorption lines in the bright, soft states of the microquasar GRS 1915+105. ('Hard' and 'soft' denote the character of the emitted X-rays.) Because the hard states exhibit prominent radio jets, we argue that the broad emission line arises when the jet illuminates the inner accretion disk. The jet is weak or absent during the soft states, and we show that the absorption lines originate when the powerful radiation field around the black hole drives a hot wind off the accretion disk. Our analysis shows that this wind carries enough mass away from the disk to halt the flow of matter into the radio jet.
Speckles in interstellar radio-wave scattering
NASA Technical Reports Server (NTRS)
Desai, K. M.; Gwinn, C. R.; Reynolds, J.; King, E. A.; Jauncey, D.; Nicholson, G.; Flanagan, C.; Preston, R. A.; Jones, D. L.
1991-01-01
Observations of speckles in the scattering disk of the Vela pulsar are presented and speckle techniques for studying and circumventing scattering of radio waves by the turbulent interstellar plasma are discussed. The speckle pattern contains, in a hologrammatic fashion, complete information on the structure of the radio source as well as the distribution of the scattering material. Speckle observations of interstellar scattering of radio waves are difficult because of their characteristically short timescales and narrow bandwidths. Here, first observations are presented, taken at 13 cm wavelength with elements of the SHEVE VLBI network, of speckles in interstellar scattering.
Misaligned Accretion and Jet Production
NASA Astrophysics Data System (ADS)
King, Andrew; Nixon, Chris
2018-04-01
Disk accretion onto a black hole is often misaligned from its spin axis. If the disk maintains a significant magnetic field normal to its local plane, we show that dipole radiation from Lense–Thirring precessing disk annuli can extract a significant fraction of the accretion energy, sharply peaked toward small disk radii R (as R ‑17/2 for fields with constant equipartition ratio). This low-frequency emission is immediately absorbed by surrounding matter or refracted toward the regions of lowest density. The resultant mechanical pressure, dipole angular pattern, and much lower matter density toward the rotational poles create a strong tendency to drive jets along the black hole spin axis, similar to the spin-axis jets of radio pulsars, also strong dipole emitters. The coherent primary emission may explain the high brightness temperatures seen in jets. The intrinsic disk emission is modulated at Lense–Thirring frequencies near the inner edge, providing a physical mechanism for low-frequency quasi-periodic oscillations (QPOs). Dipole emission requires nonzero hole spin, but uses only disk accretion energy. No spin energy is extracted, unlike the Blandford–Znajek process. Magnetohydrodynamic/general-relativistic magnetohydrodynamic (MHD/GRMHD) formulations do not directly give radiation fields, but can be checked post-process for dipole emission and therefore self-consistency, given sufficient resolution. Jets driven by dipole radiation should be more common in active galactic nuclei (AGN) than in X-ray binaries, and in low accretion-rate states than high, agreeing with observation. In non-black hole accretion, misaligned disk annuli precess because of the accretor’s mass quadrupole moment, similarly producing jets and QPOs.
Babinet's principle in the Fresnel regime studied using ultrasound
NASA Astrophysics Data System (ADS)
Hitachi, Akira; Takata, Momo
2010-07-01
The diffraction of ultrasound by a circular disk and an aperture of the same size has been investigated as a demonstration of Babinet's principle in the Fresnel regime. The amplitude and the phase of the diffracted ultrasonic waves are measured and a graphical treatment of the results is performed by drawing vectors in the complex plane. The results verify Babinet's principle. It is also found that the incident wave is π /2 behind the phase of the wave passing through on the central axis of a circular aperture. Because both waves travel the same path and the same distance, they should be in phase. This paradox has previously been regarded as a defect of Fresnel's theory.
NASA Technical Reports Server (NTRS)
Hitchman, Matthew H.; Brasseur, Guy
1988-01-01
A parameterization of the effects of Rossby waves in the middle atmosphere is proposed for use in two-dimensional models. By adding an equation for conservation of Rossby wave activity, closure is obtained for the meridional eddy fluxes and body force due to Rossby waves. Rossby wave activity is produced in a climatological fashion at the tropopause, is advected by a group velocity which is determined solely by model zonal winds, and is absorbed where it converges. Absorption of Rossby wave activity causes both an easterly torque and an irreversible mixing of potential vorticity, represented by the meridional eddy diffusivity, K(yy). The distribution of Rossby wave driving determines the distribution of K(yy), which is applied to all of the chemical constituents. This provides a self-consistent coupling of the wave activity with the winds, tracer distributions and the radiative field. Typical winter stratospheric values for K(yy) of 2 million sq m/sec are obtained. Poleward tracer advection is enhanced and meridional tracer gradients are reduced where Rossby wave activity is absorbed in the model.
NASA Astrophysics Data System (ADS)
Lee, Joong Seok; Lee, Il Kyu; Seung, Hong Min; Lee, Jun Kyu; Kim, Yoon Young
2017-03-01
Joints with slowly varying tapered shapes, such as linear or exponential profiles, are known to transmit incident wave power efficiently between two waveguides with dissimilar impedances. This statement is valid only when the considered joint length is longer than the wavelengths of the incident waves. When the joint length is shorter than the wavelengths, however, appropriate shapes of such subwavelength joints for efficient power transmission have not been explored much. In this work, considering one-dimensional torsional wave motion in a cylindrical elastic waveguide system, optimal shapes or radial profiles of a subwavelength joint maximizing the power transmission coefficient are designed by a gradient-based optimization formulation. The joint is divided into a number of thin disk elements using the transfer matrix approach and optimal radii of the disks are determined by iterative shape optimization processes for several single or bands of wavenumbers. Due to the subwavelength constraint, the optimized joint profiles were found to be considerably different from the slowly varying tapered shapes. Specifically, for bands of wavenumbers, peculiar gourd-like shapes were obtained as optimal shapes to maximize the power transmission coefficient. Numerical results from the proposed optimization formulation were also experimentally realized to verify the validity of the present designs.
Rotation of a metal gear disk in an ultrasonic levitator
NASA Astrophysics Data System (ADS)
Rendon, Pablo L.; Boullosa, Ricardo R.; Salazar, Laura
2016-11-01
The phenomenon known as acoustic radiation pressure is well-known to be associated with the time-averaged momentum flux of an acoustic wave, and precisely because it is a time-averaged effect, it is relatively easy to observe experimentally. An ultrasonic levitator makes use of this effect to levitate small particles. Although it is a less-well studied effect, the transfer of angular momentum using acoustic waves in air or liquids has nonetheless been the subject of some recent studies. This transfer depends on the scattering and absorbing properties of the object and is achieved, typically, through the generation of acoustic vortex beams. In the present study, we examine the manner in which the acoustic standing wave located between two disks of an ultrasonic levitator in air may transfer angular momentum to objects with different shapes. In this case, a non-spherical object is subjected to, in addition to the radiation force, a torque which induces rotation. Analytical solutions for the acoustic force and torque are available, but limited to a few simple cases. In general, a finite element model must be used to obtain solutions. Thus, we develop and validate a finite element simulation in order to calculate directly the torque and radiation force.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ansdell, M.; Williams, J. P.; Gaidos, E.
We present ten young (≲10 Myr) late-K and M dwarf stars observed in K2 Campaign 2 that host protoplanetary disks and exhibit quasi-periodic or aperiodic dimming events. Their optical light curves show ∼10–20 dips in flux over the 80-day observing campaign with durations of ∼0.5–2 days and depths of up to ∼40%. These stars are all members of the ρ Ophiuchus (∼1 Myr) or Upper Scorpius (∼10 Myr) star-forming regions. To investigate the nature of these “dippers” we obtained: optical and near-infrared spectra to determine stellar properties and identify accretion signatures; adaptive optics imaging to search for close companions thatmore » could cause optical variations and/or influence disk evolution; and millimeter-wavelength observations to constrain disk dust and gas masses. The spectra reveal Li i absorption and Hα emission consistent with stellar youth (<50 Myr), but also accretion rates spanning those of classical and weak-line T Tauri stars. Infrared excesses are consistent with protoplanetary disks extending to within ∼10 stellar radii in most cases; however, the sub-millimeter observations imply disk masses that are an order of magnitude below those of typical protoplanetary disks. We find a positive correlation between dip depth and WISE-2 (Wide-field Infrared Survey Explorer-2) excess, which we interpret as evidence that the dipper phenomenon is related to occulting structures in the inner disk, although this is difficult to reconcile with the weakly accreting aperiodic dippers. We consider three mechanisms to explain the dipper phenomenon: inner disk warps near the co-rotation radius related to accretion; vortices at the inner disk edge produced by the Rossby Wave Instability; and clumps of circumstellar material related to planetesimal formation.« less
Mottled Protoplanetary Disk Ionization by Magnetically Channeled T Tauri Star Energetic Particles
NASA Astrophysics Data System (ADS)
Fraschetti, F.; Drake, J. J.; Cohen, O.; Garraffo, C.
2018-02-01
The evolution of protoplanetary disks is believed to be driven largely by angular momentum transport resulting from magnetized disk winds and turbulent viscosity. The ionization of the disk that is essential for these processes has been thought to be due to host star coronal X-rays but could also arise from energetic particles produced by coronal flares, or traveling shock waves, and advected by the stellar wind. We have performed test-particle numerical simulations of energetic protons propagating into a realistic T Tauri stellar wind, including a superposed small-scale magnetostatic turbulence. The isotropic (Kolmogorov power spectrum) turbulent component is synthesized along the individual particle trajectories. We have investigated the energy range [0.1–10] GeV, consistent with expectations from Chandra X-ray observations of large flares on T Tauri stars and recent indications by the Herschel Space Observatory of a significant contribution of energetic particles to the disk ionization of young stars. In contrast with a previous theoretical study finding a dominance of energetic particles over X-rays in the ionization throughout the disk, we find that the disk ionization is likely dominated by X-rays over much of its area, except within narrow regions where particles are channeled onto the disk by the strongly tangled and turbulent magnetic field. The radial thickness of such regions is 5 stellar radii close to the star and broadens with increasing radial distance. This likely continues out to large distances from the star (10 au or greater), where particles can be copiously advected and diffused by the turbulent wind.
On the Formation of Multiple Concentric Rings and Gaps in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Bae, Jaehan; Zhu, Zhaohuan; Hartmann, Lee
2017-12-01
As spiral waves driven by a planet in a gaseous disk steepen into a shock, they deposit angular momentum, opening a gap in the disk. This has been well studied using both linear theory and numerical simulations, but so far only for the primary spiral arm: the one directly attached to the planet. Using 2D hydrodynamic simulations, we show that the secondary and tertiary arms driven by a planet can also open gaps as they steepen into shocks. The depths of the secondary/tertiary gaps in surface density grow with time in a low-viscosity disk (α =5× {10}-5), so even low-mass planets (e.g., super-Earth or mini-Neptune-mass) embedded in the disk can open multiple observable gaps, provided that sufficient time has passed. Applying our results to the HL Tau disk, we show that a single 30 Earth-mass planet embedded in the ring at 68.8 au (B5) can reasonably well reproduce the positions of the two major gaps at 13.2 and 32.3 au (D1 and D2), and roughly reproduce two other major gaps at 64.2 and 74.7 au (D5 and D6) seen in the mm continuum. The positions of secondary/tertiary gaps are found to be sensitive to the planetary mass and the disk temperature profile, so with accurate observational measurements of the temperature structure, the positions of multiple gaps can be used to constrain the mass of the planet. We also comment on the gaps seen in the TW Hya and HD 163296 disk.
SIGNATURES OF GRAVITATIONAL INSTABILITY IN RESOLVED IMAGES OF PROTOSTELLAR DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Ruobing; Vorobyov, Eduard; Pavlyuchenkov, Yaroslav
2016-06-01
Protostellar (class 0/I) disks, which have masses comparable to those of their nascent host stars and are fed continuously from their natal infalling envelopes, are prone to gravitational instability (GI). Motivated by advances in near-infrared (NIR) adaptive optics imaging and millimeter-wave interferometry, we explore the observational signatures of GI in disks using hydrodynamical and Monte Carlo radiative transfer simulations to synthesize NIR scattered light images and millimeter dust continuum maps. Spiral arms induced by GI, located at disk radii of hundreds of astronomical units, are local overdensities and have their photospheres displaced to higher altitudes above the disk midplane; therefore,more » arms scatter more NIR light from their central stars than inter-arm regions, and are detectable at distances up to 1 kpc by Gemini/GPI, VLT/SPHERE, and Subaru/HiCIAO/SCExAO. In contrast, collapsed clumps formed by disk fragmentation have such strong local gravitational fields that their scattering photospheres are at lower altitudes; such fragments appear fainter than their surroundings in NIR scattered light. Spiral arms and streamers recently imaged in four FU Ori systems at NIR wavelengths resemble GI-induced structures and support the interpretation that FUors are gravitationally unstable protostellar disks. At millimeter wavelengths, both spirals and clumps appear brighter in thermal emission than the ambient disk and can be detected by ALMA at distances up to 0.4 kpc with one hour integration times at ∼0.″1 resolution. Collapsed fragments having masses ≳1 M {sub J} can be detected by ALMA within ∼10 minutes.« less
Experimental investigation on sandwich structure ring-type ultrasonic motor.
Peng, Taijiang; Shi, Hongyan; Liang, Xiong; Luo, Feng; Wu, Xiaoyu
2015-02-01
This paper presents a manufacture method for a sandwich structure Ultrasonic Motor (USM) and experiment. Two pieces of rotor clamped on a stator, and a stainless steel disk-spring is bonded on the hollow rotor disk to provide the press by a nut assembled on the shaft. The stator is made of a double-side Printed-Circuit Board (PCB) which is sawed out the ring in the center and connected on the board with three legs. On each side of the ring surface, there are electrodes connected at the same position via through hole. The three layer drive circuit for sine, cosine, and ground signal is connected on the board through each leg. There are many piezoelectric components (PZT) bonded between two electrodes and fill soldering tin on each electrode. Then PZT is welded on PCB by reflow soldering. Finally, rub the gibbous soldering tin down to the position of PZT surface makes sure the surface contacts with rotor evenly. The welding process can also be completed by Surface Mounted Technology (SMT). A prototype motor is manufactured by this method. Two B03 model shapes of the stator are obtained by the finite element analysis and the optimal frequency of the motor is 56.375 kHz measured by impedance instrument. The theoretical analysis is conducted for the relationship between the revolving speed of the USM and thickness of stator ring, number of the travelling waves, PZT amplitude, frequency and the other parameters. The experiment result shows that the maximum revolving speed is 116 RPM and the maximum torque is 25 N mm, when the actuate voltage is 200 VAC. Copyright © 2014 Elsevier B.V. All rights reserved.
A Dynamic Analysis of the Medium Tank Battalion. Volume I
1978-06-01
best available copy. W. KEY WORDS (Cortinue an reverse oIde If necessary And Identifty block number) CONSTRUCTION; PLANNING; MANAGEMENT; MODELS...unit, with 64K, 8-bit bytes, (2) Dual-disk drive, 2 Discs at 262K, 8-bit bytes, (3) Cathode Ray Tube Console and Keyboard, (4) High- speed printer, (5
Mobile Learning on the Basis of the Cloud Services
ERIC Educational Resources Information Center
Makarchuk, Tatyana
2017-01-01
Spreading of interactive applications for mobile devices became one of the trends of IT development in 2015-2017. In higher education mobile applications are being used to advance the productivity of professors and students, which raises the overall quality of education. In the article SkyDrive, GoogleDisk mobile applications' features for group…