Science.gov

Sample records for dislocation density gan

  1. High-resistance GaN epilayers with low dislocation density via growth mode modification

    NASA Astrophysics Data System (ADS)

    Xu, Z. Y.; Xu, F. J.; Wang, J. M.; Lu, L.; Yang, Z. J.; Wang, X. Q.; Shen, B.

    2016-09-01

    High-resistance GaN with low dislocation density adopting growth mode modification has been investigated by metalorganic chemical vapor deposition. The sheet resistance of the order of 1016 Ω/sq has been achieved at room temperature by diminishing the oxygen impurity level close to the substrate with an AlN blocking layer. Attributed to this method which offers more freedom to tailor the growth mode, a three-dimensional (3D) growth process is introduced by adjusting the growth pressure and temperature at the initial stage of the GaN epitaxy to improve the crystalline quality. The large 3D GaN grains formed during this period roughen the surface, and the following coalescence of the GaN grains causes threading dislocations bending, which finally remarkably reduces the dislocation density.

  2. Growth of low-threading-dislocation-density GaN on graphene by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    He, Shunyu; Xu, Yu; Qi, Lin; Li, Zongyao; Cao, Bing; Wang, Chinhua; Zhang, Jicai; Wang, Jianfeng; Xu, Ke

    2017-03-01

    Recently, gallium nitride (GaN) films grown on graphene have been widely studied. Here, we have grown low-threading-dislocation-density GaN films on graphene by hydride vapor phase epitaxy (HVPE). The full widths at half maximum (FWHMs) of X-ray rocking curves (XRCs) of the GaN films were 276 and 350 arcsec at the 0002 and 10\\bar{1}2 reflections, respectively. This shows that the threading dislocation densities are on the order of magnitude of 108 cm‑2, which is consistent with the results of cathodoluminescence (CL).

  3. Core properties and mobility of the basal screw dislocation in wurtzite GaN: a density functional theory study

    NASA Astrophysics Data System (ADS)

    Belabbas, I.; Chen, J.; Heggie, M. I.; Latham, C. D.; Rayson, M. J.; Briddon, P. R.; Nouet, G.

    2016-10-01

    We have performed first principles simulations, based on density functional theory (DFT), to investigate the core properties of the basal a -type screw dislocation in wurtzite gallium nitride. Our calculations demonstrate that the fully coordinated shuffle core configuration is the most energetically favourable. The calculated electronic structure of the a -type screw dislocation was found to exhibit exclusively shallow gap states which are not associated with any extended metallization. This may explain why a -type screw dislocations are less detrimental to the performance of GaN based electronic devices than c -type screw dislocations.

  4. Ultralow threading dislocation density in GaN epilayer on near-strain-free GaN compliant buffer layer and its applications in hetero-epitaxial LEDs

    PubMed Central

    Shih, Huan-Yu; Shiojiri, Makoto; Chen, Ching-Hsiang; Yu, Sheng-Fu; Ko, Chung-Ting; Yang, Jer-Ren; Lin, Ray-Ming; Chen, Miin-Jang

    2015-01-01

    High threading dislocation (TD) density in GaN-based devices is a long unresolved problem because of the large lattice mismatch between GaN and the substrate, which causes a major obstacle for the further improvement of next-generation high-efficiency solid-state lighting and high-power electronics. Here, we report InGaN/GaN LEDs with ultralow TD density and improved efficiency on a sapphire substrate, on which a near strain-free GaN compliant buffer layer was grown by remote plasma atomic layer deposition. This “compliant” buffer layer is capable of relaxing strain due to the absorption of misfit dislocations in a region within ~10 nm from the interface, leading to a high-quality overlying GaN epilayer with an unusual TD density as low as 2.2 × 105 cm−2. In addition, this GaN compliant buffer layer exhibits excellent uniformity up to a 6” wafer, revealing a promising means to realize large-area GaN hetero-epitaxy for efficient LEDs and high-power transistors. PMID:26329829

  5. Correlation between the residual stress and the density of threading dislocations in GaN layers grown by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Barchuk, M.; Röder, C.; Shashev, Y.; Lukin, G.; Motylenko, M.; Kortus, J.; Pätzold, O.; Rafaja, D.

    2014-01-01

    The correlation between the residual stress and the density of threading dislocations was investigated in polar GaN layers that were grown by using hydride vapor phase epitaxy (HVPE) on three different GaN templates. The first template type was GaN grown on sapphire by metal-organic vapor phase epitaxy. The second template type was a closed GaN nucleation layer grown on sapphire by HVPE. The third template type was a non-closed GaN nucleation layer grown by HVPE, which formed isolated pyramids on the sapphire surface. The residual stress was determined using the combination of micro-Raman spectroscopy and modified sin2 ψ method. The interplanar spacings needed for the sin2 ψ method were obtained from the reciprocal space maps that were measured using high-resolution X-ray diffraction. The density of threading dislocations was concluded from the broadening of the reciprocal lattice points that was measured using high-resolution X-ray diffraction as well. The fitting of the reciprocal space maps allowed the character of the threading dislocations to be described quantitatively in terms of the fractions of edge and screw dislocations. It was found that the threading dislocation density increases with increasing compressive residual stress. Furthermore, the dislocation density and the residual stress decrease with increasing thickness of the GaN layers. The edge component of the threading dislocations was dominant in all samples. Still, some differences in the character of the dislocations were observed for different templates.

  6. Low dislocation density InAlN/AlN/GaN heterostructures grown on GaN substrates and the effects on gate leakage characteristics

    NASA Astrophysics Data System (ADS)

    Kotani, Junji; Yamada, Atsushi; Ishiguro, Tetsuro; Tomabechi, Shuichi; Nakamura, Norikazu

    2016-04-01

    This paper reports on the electrical characterization of Ni/Au Schottky diodes fabricated on InAlN high-electron-mobility transistor (HEMT) structures grown on low dislocation density free-standing GaN substrates. InAlN HEMT structures were grown on sapphire and GaN substrates by metal-organic vapor phase epitaxy, and the effects of threading dislocation density on the leakage characteristics of Ni/Au Schottky diodes were investigated. Threading dislocation densities were determined to be 1.8 × 104 cm-2 and 1.2 × 109 cm-2 by the cathodoluminescence measurement for the HEMT structures grown on GaN and sapphire substrates, respectively. Leakage characteristics of Ni/Au Schottky diodes were compared between the two samples, and a reduction of the leakage current of about three to four orders of magnitude was observed in the forward bias region. For the high reverse bias region, however, no significant improvement was confirmed. We believe that the leakage current in the low bias region is governed by a dislocation-related Frenkel-Poole emission, and the leakage current in the high reverse bias region originates from field emission due to the large internal electric field in the InAlN barrier layer. Our results demonstrated that the reduction of dislocation density is effective in reducing leakage current in the low bias region. At the same time, it was also revealed that another approach will be needed, for instance, band modulation by impurity doping and insertion of insulating layers beneath the gate electrodes for a substantial reduction of the gate leakage current.

  7. Reduction of threading edge dislocation density in n-type GaN by Si delta-doping

    NASA Astrophysics Data System (ADS)

    Pan, Y. B.; Yang, Z. J.; Chen, Z. T.; Lu, Y.; Yu, T. J.; Hu, X. D.; Xu, K.; Zhang, G. Y.

    2006-01-01

    In this study, the defect structure of periodic Si delta-doping ( δ-doping) GaN films grown by low-pressure metalorganic chemical vapor deposition has been investigated by high-resolution X-ray diffraction. Rocking curves of five planes were investigated: (0 0 0 2), (1 0 1¯ 3), (1 0 1¯ 2), (1 0 1¯ 1) and (2 0 2¯ 1), respectively. Pseudo-Voigt function was used to simulate the rocking-curve of every plane. The effects of Si δ-doping on the different types of dislocations were discussed. It was demonstrated that Si δ-doping significantly reduces the threading dislocations with a pure edge character, and induces no changes in the threading dislocations with a screw component. The results are consistent with AFM results.

  8. Dislocation core structures in Si-doped GaN

    SciTech Connect

    Rhode, S. L. Fu, W. Y.; Sahonta, S.-L.; Kappers, M. J.; Humphreys, C. J.; Horton, M. K.; Pennycook, T. J.; Dusane, R. O.; Moram, M. A.

    2015-12-14

    Aberration-corrected scanning transmission electron microscopy was used to investigate the core structures of threading dislocations in plan-view geometry of GaN films with a range of Si-doping levels and dislocation densities ranging between (5 ± 1) × 10{sup 8} and (10 ± 1) × 10{sup 9} cm{sup −2}. All a-type (edge) dislocation core structures in all samples formed 5/7-atom ring core structures, whereas all (a + c)-type (mixed) dislocations formed either double 5/6-atom, dissociated 7/4/8/4/9-atom, or dissociated 7/4/8/4/8/4/9-atom core structures. This shows that Si-doping does not affect threading dislocation core structures in GaN. However, electron beam damage at 300 keV produces 4-atom ring structures for (a + c)-type cores in Si-doped GaN.

  9. The effects of Si doping on dislocation movement and tensile stress in GaN films

    NASA Astrophysics Data System (ADS)

    Moram, M. A.; Kappers, M. J.; Massabuau, F.; Oliver, R. A.; Humphreys, C. J.

    2011-04-01

    Dislocations in undoped GaN move in response to the in-plane tensile stress present during film growth. Dislocation movement during growth relieves tensile stress, produces arrays of a-type dislocations and reduces the overall dislocation density, with preferential reduction of (a+c)-type dislocations. However, Si-doping limits dislocation movement, limiting the relief of the tensile stress that develops during growth and limiting dislocation reduction, probably due to the formation of Si impurity atmospheres at dislocations. Consequently, Si-doped films are under relatively greater tensile stress compared to undoped GaN films grown under similar conditions. Alternative dopants could be chosen to reduce tensile stress development, such as Ge.

  10. Self-organization of dislocation-free, high-density, vertically aligned GaN nanocolumns involving InGaN quantum wells on graphene/SiO2 covered with a thin AlN buffer layer.

    PubMed

    Hayashi, Hiroaki; Konno, Yuta; Kishino, Katsumi

    2016-02-05

    We demonstrated the self-organization of high-density GaN nanocolumns on multilayer graphene (MLG)/SiO2 covered with a thin AlN buffer layer by RF-plasma-assisted molecular beam epitaxy. MLG/SiO2 substrates were prepared by the transfer of CVD graphene onto thermally oxidized SiO2/Si [100] substrates. Employing the MLG with an AlN buffer layer enabled the self-organization of high-density and vertically aligned nanocolumns. Transmission electron microscopy observation revealed that no threading dislocations, stacking faults, or twinning defects were included in the self-organized nanocolumns. The photoluminescence (PL) peak intensities of the self-organized GaN nanocolumns were 2.0-2.6 times higher than those of a GaN substrate grown by hydride vapor phase epitaxy. Moreover, no yellow luminescence or ZB-phase GaN emission was observed from the nanocolumns. An InGaN/GaN MQW and p-type GaN were integrated into GaN nanocolumns grown on MLG, displaying a single-peak PL emission at a wavelength of 533 nm. Thus, high-density nitride p-i-n nanocolumns were fabricated on SiO2/Si using the transferred MLG interlayer, indicating the possibility of developing visible nanocolumn LEDs on graphene/SiO2.

  11. Dislocation luminescence in GaN single crystals under nanoindentation

    PubMed Central

    2014-01-01

    This work presents an experimental study on the dislocation luminescence in GaN by nanoindentation, cathodoluminescence, and Raman. The dislocation luminescence peaking at 3.12 eV exhibits a series of special properties in the cathodoluminescence measurements, and it completely disappears after annealing at 500°C. Raman spectroscopy shows evidence for existence of vacancies in the indented region. A comprehensive investigation encompassing cathodoluminescence, Raman, and annealing experiments allow the assignment of dislocation luminescence to conduction-band-acceptor transition involving Ga vacancies. The nanoscale plasticity of GaN can be better understood by considering the dislocation luminescence mechanism. PMID:25593548

  12. Dislocation confinement in the growth of Na flux GaN on metalorganic chemical vapor deposition-GaN

    SciTech Connect

    Takeuchi, S. Asazu, H.; Nakamura, Y.; Sakai, A.; Imanishi, M.; Imade, M.; Mori, Y.

    2015-12-28

    We have demonstrated a GaN growth technique in the Na flux method to confine c-, (a+c)-, and a-type dislocations around the interface between a Na flux GaN crystal and a GaN layer grown by metalorganic chemical vapor deposition (MOCVD) on a (0001) sapphire substrate. Transmission electron microscopy (TEM) clearly revealed detailed interface structures and dislocation behaviors that reduced the density of vertically aligned dislocations threading to the Na flux GaN surface. Submicron-scale voids were formed at the interface above the dislocations with a c component in MOCVD-GaN, while no such voids were formed above the a-type dislocations. The penetration of the dislocations with a c component into Na flux GaN was, in most cases, effectively blocked by the presence of the voids. Although some dislocations with a c component in the MOCVD-GaN penetrated into the Na flux GaN, their propagation direction changed laterally through the voids. On the other hand, the a-type dislocations propagated laterally and collectively near the interface, when these dislocations in the MOCVD-GaN penetrated into the Na flux GaN. These results indicated that the dislocation propagation behavior was highly sensitive to the type of dislocation, but all types of dislocations were confined to within several micrometers region of the Na flux GaN from the interface. The cause of void formation, the role of voids in controlling the dislocation behavior, and the mechanism of lateral and collective dislocation propagation are discussed on the basis of TEM results.

  13. Nanostructural engineering of nitride nucleation layers for GaN substrate dislocation reduction.

    SciTech Connect

    Koleske, Daniel David; Lee, Stephen Roger; Lemp, Thomas Kerr; Coltrin, Michael Elliott; Cross, Karen Charlene; Thaler, Gerald

    2009-07-01

    With no lattice matched substrate available, sapphire continues as the substrate of choice for GaN growth, because of its reasonable cost and the extensive prior experience using it as a substrate for GaN. Surprisingly, the high dislocation density does not appear to limit UV and blue LED light intensity. However, dislocations may limit green LED light intensity and LED lifetime, especially as LEDs are pushed to higher current density for high end solid state lighting sources. To improve the performance for these higher current density LEDs, simple growth-enabled reductions in dislocation density would be highly prized. GaN nucleation layers (NLs) are not commonly thought of as an application of nano-structural engineering; yet, these layers evolve during the growth process to produce self-assembled, nanometer-scale structures. Continued growth on these nuclei ultimately leads to a fully coalesced film, and we show in this research program that their initial density is correlated to the GaN dislocation density. In this 18 month program, we developed MOCVD growth methods to reduce GaN dislocation densities on sapphire from 5 x 10{sup 8} cm{sup -2} using our standard delay recovery growth technique to 1 x 10{sup 8} cm{sup -2} using an ultra-low nucleation density technique. For this research, we firmly established a correlation between the GaN nucleation thickness, the resulting nucleation density after annealing, and dislocation density of full GaN films grown on these nucleation layers. We developed methods to reduce the nuclei density while still maintaining the ability to fully coalesce the GaN films. Ways were sought to improve the GaN nuclei orientation by improving the sapphire surface smoothness by annealing prior to the NL growth. Methods to eliminate the formation of additional nuclei once the majority of GaN nuclei were developed using a silicon nitride treatment prior to the deposition of the nucleation layer. Nucleation layer thickness was determined

  14. Radiation enhanced basal plane dislocation glide in GaN

    NASA Astrophysics Data System (ADS)

    Yakimov, Eugene B.; Vergeles, Pavel S.; Polyakov, Alexander Y.; Lee, In-Hwan; Pearton, Stephen J.

    2016-05-01

    A movement of basal plane segments of dislocations in GaN films grown by epitaxial lateral overgrowth under low energy electron beam irradiation (LEEBI) was studied by the electron beam induced current (EBIC) method. Only a small fraction of the basal plane dislocation segments were susceptible to irradiation and the movement was limited to relatively short distances. The effect is explained by the radiation enhanced dislocation glide (REDG) in the structure with strong pinning. A dislocation velocity under LEEBI with a beam current lower than 1 nA was estimated as about 10 nm/s. The results assuming the REDG for prismatic plane dislocations were presented.

  15. Structure and electronic properties of mixed (a + c) dislocation cores in GaN

    SciTech Connect

    Horton, M. K.; Rhode, S. L.; Moram, M. A.

    2014-08-14

    Classical atomistic models and atomic-resolution scanning transmission electron microscopy studies of GaN films reveal that mixed (a + c)-type dislocations have multiple different core structures, including a dissociated structure consisting of a planar fault on one of the (12{sup ¯}10) planes terminated by two different partial dislocations. Density functional theory calculations show that all cores introduce localized states into the band gap, which affects device performance.

  16. Synchrotron radiation x-ray topography and defect selective etching analysis of threading dislocations in GaN

    SciTech Connect

    Sintonen, Sakari Suihkonen, Sami; Jussila, Henri; Tuomi, Turkka O.; Lipsanen, Harri; Rudziński, Mariusz; Knetzger, Michael; Meissner, Elke; Danilewsky, Andreas

    2014-08-28

    The crystal quality of bulk GaN crystals is continuously improving due to advances in GaN growth techniques. Defect characterization of the GaN substrates by conventional methods is impeded by the very low dislocation density and a large scale defect analysis method is needed. White beam synchrotron radiation x-ray topography (SR-XRT) is a rapid and non-destructive technique for dislocation analysis on a large scale. In this study, the defect structure of an ammonothermal c-plane GaN substrate was recorded using SR-XRT and the image contrast caused by the dislocation induced microstrain was simulated. The simulations and experimental observations agree excellently and the SR-XRT image contrasts of mixed and screw dislocations were determined. Apart from a few exceptions, defect selective etching measurements were shown to correspond one to one with the SR-XRT results.

  17. Movement of basal plane dislocations in GaN during electron beam irradiation

    SciTech Connect

    Yakimov, E. B.; Vergeles, P. S.; Polyakov, A. Y.; Lee, In-Hwan; Pearton, S. J.

    2015-03-30

    The movement of basal plane segments of dislocations in low-dislocation-density GaN films grown by epitaxial lateral overgrowth as a result of irradiation with the probing beam of a scanning electron microscope was detected by means of electron beam induced current. Only a small fraction of the basal plane dislocations was susceptible to such changes and the movement was limited to relatively short distances. The effect is explained by the radiation enhanced dislocation glide for dislocations pinned by two different types of pinning sites: a low-activation-energy site and a high-activation-energy site. Only dislocation segments pinned by the former sites can be moved by irradiation and only until they meet the latter pinning sites.

  18. Reliability of AlGaN/GaN high electron mobility transistors on low dislocation density bulk GaN substrate: Implications of surface step edges

    SciTech Connect

    Killat, N. E-mail: Martin.Kuball@bristol.ac.uk; Montes Bajo, M.; Kuball, M. E-mail: Martin.Kuball@bristol.ac.uk; Paskova, T.; Evans, K. R.; Leach, J.; Li, X.; Özgür, Ü.; Morkoç, H.; Chabak, K. D.; Crespo, A.; Gillespie, J. K.; Fitch, R.; Kossler, M.; Walker, D. E.; Trejo, M.; Via, G. D.; Blevins, J. D.

    2013-11-04

    To enable gaining insight into degradation mechanisms of AlGaN/GaN high electron mobility transistors, devices grown on a low-dislocation-density bulk-GaN substrate were studied. Gate leakage current and electroluminescence (EL) monitoring revealed a progressive appearance of EL spots during off-state stress which signify the generation of gate current leakage paths. Atomic force microscopy evidenced the formation of semiconductor surface pits at the failure location, which corresponds to the interaction region of the gate contact edge and the edges of surface steps.

  19. Formation of helical dislocations in ammonothermal GaN substrate by heat treatment

    NASA Astrophysics Data System (ADS)

    Horibuchi, Kayo; Yamaguchi, Satoshi; Kimoto, Yasuji; Nishikawa, Koichi; Kachi, Tetsu

    2016-03-01

    GaN substrate produced by the basic ammonothermal method and an epitaxial layer on the substrate was evaluated using synchrotron radiation x-ray topography and transmission electron microscopy. We revealed that the threading dislocations present in the GaN substrate are deformed into helical dislocations and the generation of the voids by heat treatment in the substrate for the first observation in the GaN crystal. These phenomena are formed by the interactions between the dislocations and vacancies. The helical dislocation was formed in the substrate region, and not in the epitaxial layer region. Furthermore, the evaluation of the influence of the dislocations on the leakage current of Schottky barrier diodes fabricated on the epitaxial layer is discussed. The dislocations did not affect the leakage current characteristics of the epitaxial layer. Our results suggest that the deformation of dislocations in the GaN substrate does not adversely affect the epitaxial layer.

  20. Dislocation annihilation in regrown GaN on nanoporous GaN template with optimization of buffer layer growth

    NASA Astrophysics Data System (ADS)

    Soh, C. B.; Hartono, H.; Chow, S. Y.; Chua, S. J.; Fitzgerald, E. A.

    2007-01-01

    Nanoporous GaN template has been fabricated by electrochemical etching to give hexagonal pits with nanoscale pores of size 20-50nm in the underlying grains. The effect of GaN buffer layer grown at various temperatures from 650to1015°C on these as-fabricated nanopores templates is investigated by transmission electron microscopy. The buffer layer grown at the optimized temperature of 850°C partially fill up the pores and voids with annihilation of threading dislocations, serving as an excellent template for high-quality GaN growth. This phenomenon is, however, not observed for the samples grown with other temperature buffer layers. Micro-Raman measurements show significant strain relaxation and improvement in the crystal quality of the overgrown GaN layer on nanoporous GaN template as compared to overgrown on conventional GaN template.

  1. Threading dislocation reduction in transit region of GaN terahertz Gunn diodes

    NASA Astrophysics Data System (ADS)

    Li, Liang; Yang, Lin-An; Zhang, Jin-Cheng; Xue, Jun-Shuai; Xu, Sheng-Rui; Lv, Ling; Hao, Yue; Niu, Mu-Tong

    2012-02-01

    An effect of the position of notch-doping layer in 1-μm GaN Gunn diode on threading dislocations (TDs) distribution is investigated by transmission electron microscopy. Compared with the top-notching-layer (TNL) structure, the bottom-notching-layer (BNL) structure can efficiently reduce the TDs density and improve the crystal quality in the transit region of GaN Gunn diode because it exhibits twice-transition of growth mode from atomic step flow to layer-by-layer nucleation and leads to a significant annihilation of TDs before penetrating into the transit region. X-ray diffraction and Raman spectroscopy reveal that the BNL structure has less compressive stress than the TNL structure.

  2. Dislocation generation in GaN by dicing process

    NASA Astrophysics Data System (ADS)

    Taguchi, Hideyuki; Kitahara, Amane; Miyake, Syugo; Nakaue, Akimitu; Nishikawa, Atsushi; Fujiwara, Yasufumi

    2013-03-01

    In order to analyze effect of the dicing process on the GaN epitaxial layer, the GaN-wafer is cut in sizes of the 0.7 mm square and the 1.7 mm square. The crystal characteristics of the GaN-chips have been measured using X-ray measurements and Raman spectra measurements. The full-width half maximum (FWHM) values of the X-ray rocking curves of (0002), (10-13) and (10-12) of the 0.7 mm square GaN-chip become wider than that of before the dicing process. The E2 (high) peak of Raman spectra at the edge in the 0.7mm square GaN-chip is shifted to lower wave number. In consideration of crystallography, we infer from these results that both the crystal strains and the screw dislocations have been generated during the dicing process.

  3. Mass transport, faceting and behavior of dislocations in GaN

    SciTech Connect

    Nitta, S.; Kashima, T.; Kariya, M.; Yukawa, Y.; Yamaguchi, S.; Amano, H.; Akasaki, I.

    2000-07-01

    The behavior of threading dislocations during mass transport of GaN was investigated in detail by transmission electron microscopy. Mass transport occurred at the surface. Therefore, growing species are supplied from the in-plane direction. The behavior of threading dislocations was found to be strongly affected by the mass transport process as well as the high crystallographic anisotropy of the surface energy of the facets particular to GaN.

  4. Effect of screw threading dislocations and inverse domain boundaries in GaN on the shape of reciprocal-space maps1

    PubMed Central

    Motylenko, Mykhaylo; Lukin, Gleb; Pätzold, Olf

    2017-01-01

    The microstructure of polar GaN layers, grown by upgraded high-temperature vapour phase epitaxy on [001]-oriented sapphire substrates, was studied by means of high-resolution X-ray diffraction and transmission electron microscopy. Systematic differences between reciprocal-space maps measured by X-ray diffraction and those which were simulated for different densities of threading dislocations revealed that threading dislocations are not the only microstructure defect in these GaN layers. Conventional dark-field transmission electron microscopy and convergent-beam electron diffraction detected vertical inversion domains as an additional microstructure feature. On a series of polar GaN layers with different proportions of threading dislocations and inversion domain boundaries, this contribution illustrates the capability and limitations of coplanar reciprocal-space mapping by X-ray diffraction to distinguish between these microstructure features. PMID:28381980

  5. Evolution of geometrically necessary dislocation density from computational dislocation dynamics

    NASA Astrophysics Data System (ADS)

    Guruprasad, P. J.; Benzerga, A. A.

    2009-07-01

    This paper presents a method for calculating GND densities in dislocation dynamics simulations. Evolution of suitably defined averages of GND density as well as maps showing the spatial nonuniform distribution of GNDs are analyzed under uniaxial loading. Focus is laid on the resolution dependence of the very notion of GND density, its dependence upon physical dimensions of plastically deformed specimens and its sensitivity to initial conditions. Acknowledgments Support from the National Science Foundation (CMMI-0748187) is gratefully acknowledged.

  6. Cross Slip of Dislocation Loops in GaN Under Shear

    DTIC Science & Technology

    2014-03-01

    systems unique to hexagonal close-packed ( hcp ) and wurtzite crystals. Therefore, it is important to understand cross slip of dislo- cations in GaN to...dislocations on different planes for hcp metals [24]. Table 2 The drag coefficients as functions of slip plane for screw (Bs) and edge (Be...plane. The mobility values are qualitatively con- sistent with earlier reports of dislocation motion in hcp - based structures. Staroselsky and Anand’s

  7. Depth dependence of defect density and stress in GaN grown on SiC

    SciTech Connect

    Faleev, N.; Temkin, H.; Ahmad, I.; Holtz, M.; Melnik, Yu.

    2005-12-15

    We report high resolution x-ray diffraction studies of the relaxation of elastic strain in GaN grown on SiC(0001). The GaN layers were grown with thickness ranging from 0.29 to 30 {mu}m. High level of residual elastic strain was found in thin (0.29 to 0.73 {mu}m thick) GaN layers. This correlates with low density of threading screw dislocations of 1-2x10{sup 7} cm{sup -2}, observed in a surface layer formed over a defective nucleation layer. Stress was found to be very close to what is expected from thermal expansion mismatch between the GaN and SiC. A model based on generation and diffusion of point defects accounts for these observations.

  8. Characterization of Stress Relaxation, Dislocations and Crystallographic Tilt Via X-ray Microdiffraction in GaN (0001) Layers Grown by Maskless Pendeo-Epitaxy

    SciTech Connect

    Barabash, R.I.; Ice, G.E.; Liu, W.; Einfeldt, S.; Hommel, D.; Roskowski, A.M.; Davis, R.F.

    2010-06-25

    Intrinsic stresses due to lattice mismatch and high densities of threading dislocations and extrinsic stresses resulting from the mismatch in the coefficients of thermal expansion are present in almost all III-Nitride heterostructures. Stress relaxation in the GaN layers occurs in conventional and in pendeo-epitaxial films via the formation of additional misfit dislocations, domain boundaries, elastic strain and wing tilt. Polychromatic X-ray microdiffraction, high resolution monochromatic X-ray diffraction and finite element simulations have been used to determine the distribution of strain, dislocations, sub-boundaries and crystallographic wing tilt in uncoalesced and coalesced GaN layers grown by maskless pendeo-epitaxy. An important parameter was the width-to-height ratio of the etched columns of GaN from which the lateral growth of the wings occurred. The strain and tilt across the stripes increased with the width-to-height ratio. Tilt boundaries formed in the uncoalesced GaN layers at the column/wing interfaces for samples with a large ratio. Sharper tilt boundaries were observed at the interfaces formed by the coalescence of two laterally growing wings. The wings tilted upward during cooling to room temperature for both the uncoalesced and the coalesced GaN layers. It was determined that finite element simulations that account for extrinsic stress relaxation can explain the experimental results for uncoalesced GaN layers. Relaxation of both extrinsic and intrinsic stress components in the coalesced GaN layers contribute to the observed wing tilt and the formation of sub-boundaries.

  9. Characterization of Stress Relaxation, Dislocations and Crystallographic Tilt Via X-ray Microdiffraction in GaN (0001) Layers Grown by Maskless Pendeo-Epitaxy

    SciTech Connect

    Barabash, Rozaliya; Ice, Gene E; Liu, Wenjun; Einfeldt, S.; Hommel, D.; Roskowski, A. M.; Davis, R. F.

    2005-01-01

    Intrinsic stresses due to lattice mismatch and high densities of threading dislocations and extrinsic stresses resulting from the mismatch in the coefficients of thermal expansion are present in almost all III-Nitride heterostructures. Stress relaxation in the GaN layers occurs in conventional and in pendeo-epitaxial films via the formation of additional misfit dislocations, domain boundaries, elastic strain and wing tilt. Polychromatic X-ray microdiffraction, high resolution monochromatic X-ray diffraction and finite element simulations have been used to determine the distribution of strain, dislocations, sub-boundaries and crystallographic wing tilt in uncoalesced and coalesced GaN layers grown by maskless pendeo-epitaxy. An important parameter was the width-to-height ratio of the etched columns of GaN from which the lateral growth of the wings occurred. The strain and tilt across the stripes increased with the width-to-height ratio. Tilt boundaries formed in the uncoalesced GaN layers at the column/wing interfaces for samples with a large ratio. Sharper tilt boundaries were observed at the interfaces formed by the coalescence of two laterally growing wings. The wings tilted upward during cooling to room temperature for both the uncoalesced and the coalesced GaN layers. It was determined that finite element simulations that account for extrinsic stress relaxation can explain the experimental results for uncoalesced GaN layers. Relaxation of both extrinsic and intrinsic stress components in the coalesced GaN layers contribute to the observed wing tilt and the formation of sub-boundaries.

  10. Method of growing GaN films with a low density of structural defects using an interlayer

    DOEpatents

    Bourret-Courchesne, Edith D.

    2003-01-01

    A dramatic reduction of the dislocation density in GaN was obtained by insertion of a single thin interlayer grown at an intermediate temperature (IT-IL) after the growth of an initial grown at high temperature. A description of the growth process is presented with characterization results aimed at understanding the mechanisms of reduction in dislocation density. A large percentage of the threading dislocations present in the first GaN epilayer are found to bend near the interlayer and do not propagate into the top layer which grows at higher temperature in a lateral growth mode. TEM studies show that the mechanisms of dislocation reduction are similar to those described for the epitaxial lateral overgrowth process, however a notable difference is the absence of coalescence boundaries.

  11. Selective-area growth of GaN nanocolumns on Si(111) substrates for application to nanocolumn emitters with systematic analysis of dislocation filtering effect of nanocolumns

    NASA Astrophysics Data System (ADS)

    Kishino, Katsumi; Ishizawa, Shunsuke

    2015-06-01

    The growth of highly uniform arrays of GaN nanocolumns with diameters from 122 to 430 nm on Si (111) substrates was demonstrated. The employment of GaN film templates with flat surfaces (root mean square surface roughness of 0.84 nm), which were obtained using an AlN/GaN superlattice (SL) buffer on Si, contributed to the high-quality selective-area growth of nanocolumns using a thin Ti mask of 5 nm thickness by rf-plasma-assisted molecular beam epitaxy. Although the GaN template included a large number of dislocations (dislocation density ˜1011 cm-2), the dislocation filtering effect of nanocolumns was enhanced with decreasing nanocolumn diameters (D). Systematic transmission electron microscopy (TEM) observation enabled us to explain the dependence of the dislocation propagation behavior in nanocolumns on the nanocolumn diameter for the first time. Plan-view TEM analysis was performed for nanocolumns with D = 120-324 nm by slicing the nanocolumns horizontally at a height of ˜300 nm above their bottoms and dislocation propagation through the nanocolumns was analyzed by the cross-sectional TEM observation of nanocolumns with D ˜ 200 nm. It was clarified that dislocations were effectively filtered in the bottom 300 nm region of the nanocolumns, the dislocation density of the nanocolumns decreased with decreasing D, and for narrow nanocolumns with D < 200 nm, dislocation-free crystals were obtained in the upper part of the nanocolumns. The dramatic improvement in the emission properties of GaN nanocolumns observed with decreasing diameter is discussed in relation to the decreased dislocation density. The laser action of InGaN/GaN-based nanocolumn arrays with a nanocolumn diameter of 170 nm and a period of 200 nm on Si under optical excitation was obtained with an emission wavelength of 407 nm. We also fabricated red-emitting InGaN-based nanocolumn light-emitting diodes on Si that operated at a wavelength of 652 nm, demonstrating vertical conduction through the Al

  12. On the origin of threading dislocations in GaN films

    NASA Astrophysics Data System (ADS)

    Moram, M. A.; Ghedia, C. S.; Rao, D. V. S.; Barnard, J. S.; Zhang, Y.; Kappers, M. J.; Humphreys, C. J.

    2009-10-01

    A series of GaN films were grown by metalorganic vapor phase epitaxy on nitrided sapphire using an initial annealed low-temperature nucleation layer (LT-NL), without employing any conventional threading dislocation (TD) reduction methods. Film thicknesses ranging from the LT-NL to 500 nm were used. The island network morphology was investigated at each growth stage using atomic force microscopy. Data from cathodoluminescence studies showed initially uniform luminescence, followed by the gradual development of bright (low TD) regions which had lateral sizes different from the island sizes at all times and which continued to increase in size after coalescence. The formation of low-energy arrays of a-type TDs also continued after island coalescence. X-ray diffraction, transmission electron microscopy (TEM) and AFM data indicated that the highest (a +c)-type TD densities were found in the LT-NL, but subsequently decreased due to TD loop formation (promoted by island facets) and reaction to produce a-type TDs. a-type TD densities were also high in the LT-NL but subsequently increased slightly, due to the reaction of (a +c)-type TDs. A very sharp dynamical `correlation' peak was also observed in XRD of the LT-NL, related to TDs with an a-component. Furthermore, defect formation was observed within the LT-NL using high-resolution TEM. These data are consistent with TD formation predominantly in the LT-NL, followed by TD movement at elevated growth temperatures. Initially, coalesced films had a high TD density with a spatially random TD arrangement, but progressively altered into a lower TD density, spatially clustered arrangement during growth. This type of microstructure may mistakenly be interpreted as arising from island coalescence.

  13. Study of different type of dislocations in GaN thin films

    NASA Astrophysics Data System (ADS)

    Yu, L. P.; Shi, J. Y.; Wang, Y. Z.; Zhang, H.

    2004-08-01

    High-resolution X-ray diffraction was used to analyze the type of dislocations in GaN epitaxial thin films. Rocking curves of five planes were investigated, (0 0 0 2) , (1 0 1¯ 3) , (1 0 1¯ 2) , (1 0 1¯ 1) , and (2 0 2¯ 1) , respectively. Pseudo-Voigt function was used to simulate the rocking-curve of every plane. Every extension of the rocking-curve was regarded as the effect of the interaction of the twist and tilt fractions of the dislocations. From the result, it is found that carrier mobility is more sensitive to substrate normal tilt dislocation than to in-plane twist and the interaction of the twist and tilt fractions also affect the carrier mobility.

  14. Coincident electron channeling and cathodoluminescence studies of threading dislocations in GaN.

    PubMed

    Naresh-Kumar, Gunasekar; Bruckbauer, Jochen; Edwards, Paul R; Kraeusel, Simon; Hourahine, Ben; Martin, Robert W; Kappers, Menno J; Moram, Michelle A; Lovelock, Stephen; Oliver, Rachel A; Humphreys, Colin J; Trager-Cowan, Carol

    2014-02-01

    We combine two scanning electron microscopy techniques to investigate the influence of dislocations on the light emission from nitride semiconductors. Combining electron channeling contrast imaging and cathodoluminescence imaging enables both the structural and luminescence properties of a sample to be investigated without structural damage to the sample. The electron channeling contrast image is very sensitive to distortions of the crystal lattice, resulting in individual threading dislocations appearing as spots with black-white contrast. Dislocations giving rise to nonradiative recombination are observed as black spots in the cathodoluminescence image. Comparison of the images from exactly the same micron-scale region of a sample demonstrates a one-to-one correlation between the presence of single threading dislocations and resolved dark spots in the cathodoluminescence image. In addition, we have also obtained an atomic force microscopy image from the same region of the sample, which confirms that both pure edge dislocations and those with a screw component (i.e., screw and mixed dislocations) act as nonradiative recombination centers for the Si-doped c-plane GaN thin film investigated.

  15. High dislocation density of tin induced by electric current

    SciTech Connect

    Liao, Yi-Han; Liang, Chien-Lung; Lin, Kwang-Lung; Wu, Albert T.

    2015-12-15

    A dislocation density of as high as 10{sup 17} /m{sup 2} in a tin strip, as revealed by high resolution transmission electron microscope, was induced by current stressing at 6.5 x 10{sup 3} A/ cm{sup 2}. The dislocations exist in terms of dislocation line, dislocation loop, and dislocation aggregates. Electron Backscattered Diffraction images reflect that the high dislocation density induced the formation of low deflection angle subgrains, high deflection angle Widmanstätten grains, and recrystallization. The recrystallization gave rise to grain refining.

  16. A dislocation density based constitutive model for cyclic deformation

    SciTech Connect

    Estrin, Y.; Braasch, H.; Brechet, Y.

    1996-10-01

    A new constitutive model describing material response to cyclic loading is presented. The model includes dislocation densities as internal variables characterizing the microstructural state of the material. In the formulation of the constitutive equations, the dislocation density evolution resulting from interactions between dislocations in channel-like dislocation patterns is considered. The capabilities of the model are demonstrated for INCONEL 738 LC and Alloy 800H.

  17. Kinetic path towards the passivation of threading dislocations in GaN by oxygen impurities

    NASA Astrophysics Data System (ADS)

    Christenson, Sayre; Xie, Weiyu; Sun, Yi-Yang; Zhang, S. B.

    2017-03-01

    Defect tolerance can be critically important for optoelectronics. GaN, specifically, tolerates a relatively large concentration of threading dislocations, but the physical origin of this tolerance remains a mystery. First-principles calculations reveal the removal of deep-level states from edge dislocations by oxygen passivation. This removal is, however, not a thermodynamic ground state but kinetically driven. Oxygen incorporation during growth can be harmful; it becomes beneficial if introduced in the cooling-down phase or post-growth thermal treatment at a significantly lower temperature. Our findings extend first-principles defect study to the nonequilibrium regime where low-diffusion-barrier defects affect electronic behavior of semiconductors in unexpected fashion.

  18. CONDENSED MATTER: STRUCTURE, THERMAL AND MECHANICAL PROPERTIES: Influence of dislocations in the GaN layer on the electrical properties of an AlGaN/GaN heterostructure

    NASA Astrophysics Data System (ADS)

    Gao, Zhi-Yuan; Hao, Yue; Zhang, Jin-Cheng; Li, Pei-Xian; Gu, Wen-Ping

    2009-11-01

    This paper reports on a comparative study of the spatial distributions of the electrical, optical, and structural properties in an AlGaN/GaN heterostructure. Edge dislocation density in the GaN template layer is shown to decrease in the regions of the wafer where the heterostructure sheet resistance increases and the GaN photoluminescence band-edge energy peak shifts to a high wavelength. This phenomenon is found to be attributed to the local compressive strain surrounding edge dislocation, which will generate a local piezoelectric polarization field in the GaN layer in the opposite direction to the piezoelectric polarization field in the AlGaN layer and thus help to increase the two-dimensional electron gas concentration.

  19. Gradual tilting of crystallographic orientation and configuration of dislocations in GaN selectively grown by vapour phase epitaxy methods

    PubMed

    Kuwan; Tsukamoto; Taki; Horibuchi; Oki; Kawaguchi; Shibata; Sawaki; Hiramatsu

    2000-01-01

    Cross-sectional transmission electron microscope (TEM) observation was performed for selectively grown gallium nitride (GaN) in order to examine the dependence of GaN microstructure on the growth conditions. The GaN films were grown by hydride vapour phase epitaxy (HVPE) or metalorganic vapour phase epitaxy (MOVPE) on GaN covered with a patterned mask. Thin foil specimens for TEM observation were prepared with focused ion beam (FIB) machining apparatus. It was demonstrated that the c-axis of GaN grown over the terrace of the mask tilts towards the centre of the terrace when the GaN is grown in a carrier gas of N2. The wider terrace results in a larger tilting angle if other growth conditions are identical. The tilting is attributed to 'horizontal dislocations' (HDs) generated during the overgrowth of GaN on the mask terrace. The HDs in HVPE-GaN have a semi-loop shape and are tangled with one another, while those in MOVPE-GaN are straight and lined up to form low-angle grain boundaries.

  20. Dislocations limited electronic transport in hydride vapour phase epitaxy grown GaN templates: A word of caution for the epitaxial growers

    SciTech Connect

    Chatterjee, Abhishek Khamari, Shailesh K.; Kumar, R.; Dixit, V. K.; Oak, S. M.; Sharma, T. K.

    2015-01-12

    GaN templates grown by hydride vapour phase epitaxy (HVPE) and metal organic vapour phase epitaxy (MOVPE) techniques are compared through electronic transport measurements. Carrier concentration measured by Hall technique is about two orders larger than the values estimated by capacitance voltage method for HVPE templates. It is learnt that there exists a critical thickness of HVPE templates below which the transport properties of epitaxial layers grown on top of them are going to be severely limited by the density of charged dislocations lying at layer-substrate interface. On the contrary MOVPE grown templates are found to be free from such limitations.

  1. Method to reduce dislocation density in silicon using stress

    DOEpatents

    Buonassisi, Anthony; Bertoni, Mariana; Argon, Ali; Castellanos, Sergio; Fecych, Alexandria; Powell, Douglas; Vogl, Michelle

    2013-03-05

    A crystalline material structure with reduced dislocation density and method of producing same is provided. The crystalline material structure is annealed at temperatures above the brittle-to-ductile transition temperature of the crystalline material structure. One or more stress elements are formed on the crystalline material structure so as to annihilate dislocations or to move them into less harmful locations.

  2. Reduction of crack density in ammonothermal bulk GaN growth

    NASA Astrophysics Data System (ADS)

    Letts, Edward; Key, Daryl; Hashimoto, Tadao

    2016-12-01

    The growth of high quality GaN by the ammonothermal method is appealing due to the potential to scale and achieve very high crystal quality. Several applications could benefit from the supply of very high quality GaN such as high power light emitting diodes, laser diodes, and high power electronics. Despite steady advancement by the few groups developing ammonothermal growth technology, high quality ammonothermal GaN wafers have yet be manufactured in great quantities. This paper reviews the current progress of ammonothermal growth at SixPoint Materials. Growths were performed at T<600 °C and P<300 MPa on GaN seed crystals produced by hydride vapor phase epitaxy (HVPE). For thin boules, <1 mm growth thickness, no cracking is observed. Historically however, SixPoint Materials' ammonothermal growth on HVPE seeds eventually experiences a curvature flip giving extremely high radius of curvature at a critical thickness. As the growth continues the radius of curvature degrades and cracking is observed. Since IWBNSVIII, SixPoint Materials has improved the crack free area for 5 mm thick boules from 5 to 80 mm2 to the complete seed area. This result is repeatable in multiple reactors. Careful selection of the HVPE seeds led to the greatest reduction in cracking. Seed selection combined with an additional technique has allowed boules to be grown crack free. X-ray diffraction was carried out on an ammonothermally grown boule at 90 points along a 44 mm line providing a mean (002) and (201) full width half max (FWHM) reflection of 29 and 35″ respectively using a beam spot of 0.3 mm x 0.3 mm and an open detector. The radius of curvature is typically between 3 and 20 m across the sample. Dislocation densities are routinely low 105 cm-2 .

  3. Dislocation blocking by AlGaN hot electron injecting layer in the epitaxial growth of GaN terahertz Gunn diode

    NASA Astrophysics Data System (ADS)

    Li, Liang; Yang, Lin'an; Zhang, Jincheng; Hao, Yue

    2013-09-01

    This paper reports an efficient method to improve the crystal quality of GaN Gunn diode with AlGaN hot electron injecting layer (HEI). An evident reduction of screw dislocation and edge dislocation densities is achieved by the strain management and the enhanced lateral growth in high temperature grown AlGaN HEI layer. Compared with the top hot electron injecting layer (THEI) structure, the bottom hot electron injecting layer (BHEI) structure enhances the crystal quality of transit region due to the growth sequence modulation of HEI layer. A high Hall mobility of 2934 cm2/Vs at 77 K, a nearly flat downtrend of Hall mobility at the temperature ranging from 300 to 573 K, a low intensity of ratio of yellow luminescence band to band edge emission, a narrow band edge emission line-width, and a smooth surface morphology are observed for the BHEI structural epitaxy of Gunn diode, which indicates that AlGaN BHEI structure is a promising candidate for fabrication of GaN Gunn diodes in terahertz regime.

  4. Prediction of Dislocation Cores in Aluminum from Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Woodward, C.; Trinkle, D. R.; Hector, L. G., Jr.; Olmsted, D. L.

    2008-02-01

    The strain field of isolated screw and edge dislocation cores in aluminum are calculated using density-functional theory and a flexible boundary condition method. Nye tensor density contours and differential displacement fields are used to accurately bound Shockley partial separation distances. Our results of 5 7.5 Å (screw) and 7.0 9.5 Å (edge) eliminate uncertainties resulting from the wide range of previous results based on Peierls-Nabarro and atomistic methods. Favorable agreement of the predicted cores with limited experimental measurements demonstrates the need for quantum mechanical treatment of dislocation cores.

  5. Reactivity of pyrites and dislocation density

    SciTech Connect

    Pollack, S.S.; Martello, D.V.; Diehl, J.R.; Tamilia, J.V. ); Graham, R.A. )

    1991-01-01

    Highly reactive coal pyrites and unstable museum specimens are easily distinguished from the stable pyrites by the growth of white crystals that cover samples exposed to room atmosphere for short periods of time. Continued exposure to the atmosphere will eventually cause the specimens to fall apart. The term rotten pyrite has been applied to museum specimens that fall apart in this way. SEM studies show that reactive (rotten) pyrites contain between 100 and 10,000 times more dislocations than stable pyrites. Shock-loading of a stable pyrite to 7.5 GPa and 17 GPa increased its reactivity by a factor of two, probably caused by an increase in the number of imperfections. However, shock-loading at 22 GPa decreased the reactivity of pyrite because the imperfections produced at the higher pressure were removed during annealing the sample received at the higher temperature. Although there was a factor of six difference between the most and least reactive shocked MCB (commercial pyrite) samples, shock-loading did not increase the reactivity of the MCB pyrite to that of the Queensland coal pyrite. The results in hand show that while shock-loading produces sufficient imperfections to increase the reactivity of pyrites, there is insufficient data to show that imperfections are the main reason why some coal pyrites are highly reactive. 9 refs., 1 fig., 1 tab.

  6. Single crystal plasticity by modeling dislocation density rate behavior

    SciTech Connect

    Hansen, Benjamin L; Bronkhorst, Curt; Beyerlein, Irene; Cerreta, E. K.; Dennis-Koller, Darcie

    2010-12-23

    The goal of this work is to formulate a constitutive model for the deformation of metals over a wide range of strain rates. Damage and failure of materials frequently occurs at a variety of deformation rates within the same sample. The present state of the art in single crystal constitutive models relies on thermally-activated models which are believed to become less reliable for problems exceeding strain rates of 10{sup 4} s{sup -1}. This talk presents work in which we extend the applicability of the single crystal model to the strain rate region where dislocation drag is believed to dominate. The elastic model includes effects from volumetric change and pressure sensitive moduli. The plastic model transitions from the low-rate thermally-activated regime to the high-rate drag dominated regime. The direct use of dislocation density as a state parameter gives a measurable physical mechanism to strain hardening. Dislocation densities are separated according to type and given a systematic set of interactions rates adaptable by type. The form of the constitutive model is motivated by previously published dislocation dynamics work which articulated important behaviors unique to high-rate response in fcc systems. The proposed material model incorporates thermal coupling. The hardening model tracks the varying dislocation population with respect to each slip plane and computes the slip resistance based on those values. Comparisons can be made between the responses of single crystals and polycrystals at a variety of strain rates. The material model is fit to copper.

  7. Dislocation

    MedlinePlus

    Joint dislocation ... It may be hard to tell a dislocated joint from a broken bone . Both are emergencies that ... to repair a ligament that tears when the joint is dislocated is needed. Injuries to nerves and ...

  8. Evolution of dislocation density and character in hot rolled titanium determined by X-ray diffraction

    SciTech Connect

    Dragomir, I.C. . E-mail: iuliana.cernatescu@mse.gatech.edu; Li, D.S.; Castello-Branco, G.A.; Garmestani, H.; Snyder, R.L.; Ribarik, G.; Ungar, T.

    2005-07-15

    X-ray Peak Profile Analysis was employed to determine the evolution dislocation density and dislocations type in hot rolled commercially pure titanium specimens. It was found that dislocation type is dominating the deformation mechanism at all rolling reduction levels studied here. A good agreement was found between the texture evolution and changes in dislocation slip system activity during the deformation process.

  9. Stress-free states of continuum dislocation fields: Rotations, grain boundaries, and the Nye dislocation density tensor

    NASA Astrophysics Data System (ADS)

    Limkumnerd, Surachate; Sethna, James P.

    2007-06-01

    We derive general relations between grain boundaries, rotational deformations, and stress-free states for the mesoscale continuum Nye dislocation density tensor. Dislocations generally are associated with long-range stress fields. We provide the general form for dislocation density fields whose stress fields vanish. We explain that a grain boundary (a dislocation wall satisfying Frank’s formula) has vanishing stress in the continuum limit. We show that the general stress-free state can be written explicitly as a (perhaps continuous) superposition of flat Frank walls. We show that the stress-free states are also naturally interpreted as configurations generated by a general spatially dependent rotational deformation. Finally, we propose a least-squares definition for the spatially dependent rotation field of a general (stressful) dislocation density field.

  10. Identifying dislocations and stacking faults in GaN films by scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Su, X. J.; Niu, M. T.; Zeng, X. H.; Huang, J.; Zhang, J. C.; Zhang, J. P.; Wang, J. F.; Xu, K.

    2016-08-01

    The application of annular bright field (ABF) and medium-angle annular dark field (MAADF) scanning transmission electron microscopy (STEM) imaging to crystalline defect analysis has been extended to dislocations and stacking faults (SFs). Dislocations and SFs have been imaged under zone-axis and two-beam diffraction conditions. Comparing to conventional two-beam diffraction contrast images, the ABF and MAADF images of dislocations and SFs not only are complementary and symmetrical with their peaks at dislocation core and SFs plane, but also show similar extinction phenomenon. It is demonstrated that conventional TEM rules for diffraction contrast, i.e. g · b and g · R invisibility criteria remain applicable. The contrast mechanism and extinction of dislocation and SFs in ABF and MAADF STEM are illuminated by zero-order Laue zone Kikuchi diffraction.

  11. Comparison of dislocation density tensor fields derived from discrete dislocation dynamics and crystal plasticity simulations of torsion

    SciTech Connect

    Jones, Reese E.; Zimmerman, Jonathan A.; Po, Giacomo; Mandadapu, Kranthi

    2016-02-01

    Accurate simulation of the plastic deformation of ductile metals is important to the design of structures and components to performance and failure criteria. Many techniques exist that address the length scales relevant to deformation processes, including dislocation dynamics (DD), which models the interaction and evolution of discrete dislocation line segments, and crystal plasticity (CP), which incorporates the crystalline nature and restricted motion of dislocations into a higher scale continuous field framework. While these two methods are conceptually related, there have been only nominal efforts focused at the global material response that use DD-generated information to enhance the fidelity of CP models. To ascertain to what degree the predictions of CP are consistent with those of DD, we compare their global and microstructural response in a number of deformation modes. After using nominally homogeneous compression and shear deformation dislocation dynamics simulations to calibrate crystal plasticity ow rule parameters, we compare not only the system-level stress-strain response of prismatic wires in torsion but also the resulting geometrically necessary dislocation density fields. To establish a connection between explicit description of dislocations and the continuum assumed with crystal plasticity simulations we ascertain the minimum length-scale at which meaningful dislocation density fields appear. Furthermore, our results show that, for the case of torsion, that the two material models can produce comparable spatial dislocation density distributions.

  12. Comparison of dislocation density tensor fields derived from discrete dislocation dynamics and crystal plasticity simulations of torsion

    DOE PAGES

    Jones, Reese E.; Zimmerman, Jonathan A.; Po, Giacomo; ...

    2016-02-01

    Accurate simulation of the plastic deformation of ductile metals is important to the design of structures and components to performance and failure criteria. Many techniques exist that address the length scales relevant to deformation processes, including dislocation dynamics (DD), which models the interaction and evolution of discrete dislocation line segments, and crystal plasticity (CP), which incorporates the crystalline nature and restricted motion of dislocations into a higher scale continuous field framework. While these two methods are conceptually related, there have been only nominal efforts focused at the global material response that use DD-generated information to enhance the fidelity of CPmore » models. To ascertain to what degree the predictions of CP are consistent with those of DD, we compare their global and microstructural response in a number of deformation modes. After using nominally homogeneous compression and shear deformation dislocation dynamics simulations to calibrate crystal plasticity ow rule parameters, we compare not only the system-level stress-strain response of prismatic wires in torsion but also the resulting geometrically necessary dislocation density fields. To establish a connection between explicit description of dislocations and the continuum assumed with crystal plasticity simulations we ascertain the minimum length-scale at which meaningful dislocation density fields appear. Furthermore, our results show that, for the case of torsion, that the two material models can produce comparable spatial dislocation density distributions.« less

  13. Dislocation density evolution during high pressure torsion of a nanocrystalline Ni-Fe alloy

    SciTech Connect

    Li, Hongqi; Wang, Y B; Ho, J C; Cao, Y; Liao, X Z; Ringer, S P; Zhu, Y T; Zhao, Y H; Lavernia, E J

    2009-01-01

    High-pressure torsion (HPT) induced dislocation density evolution in a nanocrystalline Ni-20wt.%Fe alloy was investigated using X-ray diffraction and transmission electron microscopy. Results suggest that the dislocation density evolution is different from that in coarse-grained materials. An HPT process first reduces the dislocation density within nanocrystalline grains and produces a large number of dislocations located at small-angle sub grain boundaries that are formed via grain rotation and coalescence. Continuing the deformation process eliminates the sub grain boundaries but significantly increases the dislocation density in grains. This phenomenon provides an explanation of the mechanical behavior of some nanostructured materials.

  14. Relationship of dislocation density of silicon to solar cell current loss at low temperature

    NASA Technical Reports Server (NTRS)

    Mandelkorn, J.; Baraona, C. R.; Lamneck, J. H., Jr.

    1972-01-01

    Large decreases in short circuit current of silicon solar cells have been reported to occur as temperature is decreased below -60 C. Experimental results are presented which relate high dislocation density of the silicon bulk material of cells to the large current loss effect. Solar cells were made by the same processes from a variety of silicon materials, namely low-dislocation-density, high-dislocation-density float-zone, and Czochralski silicon. All cells were etched in a manner which revealed the dislocation density of the cell bulk silicon. It was found that every cell made from any of the various low-dislocation starting materials obtained from three suppliers still had a low-dislocation bulk after cell processing, and that all such cells belonged to category good. Cells made from float-zone materials showed high dislocation densities in their bulk and either fell into category poor, or had intermediate losses of short-circuit current at low temperature.

  15. Highly-stable and low-state-density Al2O3/GaN interfaces using epitaxial n-GaN layers grown on free-standing GaN substrates

    NASA Astrophysics Data System (ADS)

    Kaneki, Shota; Ohira, Joji; Toiya, Shota; Yatabe, Zenji; Asubar, Joel T.; Hashizume, Tamotsu

    2016-10-01

    Interface characterization was carried out on Al2O3/GaN structures using epitaxial n-GaN layers grown on free-standing GaN substrates with relatively low dislocation density (<3 × 106 cm-2). The Al2O3 layer was prepared by atomic layer deposition. The as-deposited metal-oxide-semiconductor (MOS) sample showed a significant frequency dispersion and a bump-like feature in capacitance-voltage (C-V) curves at reverse bias, showing high-density interface states in the range of 1012 cm-1 eV-1. On the other hand, excellent C-V characteristics with negligible frequency dispersion were observed from the MOS sample after annealing under a reverse bias at 300 °C in air for 3 h. The reverse-bias-annealed sample showed state densities less than 1 × 1011 cm-1 eV-1 and small shifts of flat-band voltage. In addition, the C-V curve measured at 200 °C remained essentially similar compared with the room-temperature C-V curves. These results indicate that the present process realizes a stable Al2O3/GaN interface with low interface state densities.

  16. Dislocation Reduction Mechanisms in Gallium Nitride Films Grown by Canti-Bridge Epitaxy Method

    NASA Astrophysics Data System (ADS)

    Xing, Zhi-Gang; Wang, Jing; Pei, Xiao-Jiang; Wan, Wei; Chen, Hong; Zhou, Jun-Ming

    2007-08-01

    By using the special maskless V-grooved c-plane sapphire as the substrate, we previously developed a novel GaN LEO method, or the so-called canti-bridge epitaxy (CBE), and consequently wing-tilt-free GaN films were obtained with low dislocation densities, with which all the conventional difficulties can be overcome [J. Vacuum Sci. Technol. B 23 (2005) 2476]. Here the evolution manner of dislocations in the CBE GaN films is investigated using transmission electron microscopy. The mechanisms of dislocation reduction are discussed. Dislocation behaviour is found to be similar to that in the conventional LEO GaN films except the enhanced dislocation-combination at the coalescence boundary that is a major dislocation-reduction mechanism for the bent horizontal-propagating dislocations in the CBE GaN films. The enhancement of this dislocation-combination probability is believed to result from the inclined shape and the undulate morphology of the sidewalls, which can be readily obtained in a wide range of applicable film-growth conditions during the GaN CBE process. Further development of the GaN CBE method and better crystal-quality of the GaN film both are expected.

  17. Low-dislocation-density epitatial layers grown by defect filtering by self-assembled layers of spheres

    DOEpatents

    Wang, George T.; Li, Qiming

    2013-04-23

    A method for growing low-dislocation-density material atop a layer of the material with an initially higher dislocation density using a monolayer of spheroidal particles to bend and redirect or directly block vertically propagating threading dislocations, thereby enabling growth and coalescence to form a very-low-dislocation-density surface of the material, and the structures made by this method.

  18. Dislocations

    MedlinePlus

    ... Attempting to move or jam a dislocated bone back in can damage blood vessels, muscles, ligaments, and nerves. Apply an ice pack. Ice can ease swelling and pain in and around the joint. Use ibuprofen or ...

  19. Estimation of dislocation density from precession electron diffraction data using the Nye tensor.

    PubMed

    Leff, A C; Weinberger, C R; Taheri, M L

    2015-06-01

    The Nye tensor offers a means to estimate the geometrically necessary dislocation density of a crystalline sample based on measurements of the orientation changes within individual crystal grains. In this paper, the Nye tensor theory is applied to precession electron diffraction automated crystallographic orientation mapping (PED-ACOM) data acquired using a transmission electron microscope (TEM). The resulting dislocation density values are mapped in order to visualize the dislocation structures present in a quantitative manner. These density maps are compared with other related methods of approximating local strain dependencies in dislocation-based microstructural transitions from orientation data. The effect of acquisition parameters on density measurements is examined. By decreasing the step size and spot size during data acquisition, an increasing fraction of the dislocation content becomes accessible. Finally, the method described herein is applied to the measurement of dislocation emission during in situ annealing of Cu in TEM in order to demonstrate the utility of the technique for characterizing microstructural dynamics.

  20. Evolution of deep centers in GaN grown by hydride vapor phaseepitaxy

    SciTech Connect

    Fang, Z.-Q.; Look, D.C.; Jasinski, J.; Benamara, M.; Liliental-Weber, Z.; Molnar, R.J.

    2001-04-18

    Deep centers and dislocation densities in undoped n GaN, grown by hydride vapor phase epitaxy (HVPE), were characterized as a function of the layer thickness by deep level transient spectroscopy and transmission electron microscopy, respectively. As the layer thickness decreases, the variety and concentration of deep centers increase, in conjunction with the increase of dislocation density. Based on comparison with electron irradiation induced centers, some dominant centers in HVPE GaN are identified as possible point defects.

  1. Determination of edge and screw dislocation density in single crystals of high-purity iron

    SciTech Connect

    Park, Y.K.; Waber, J.T.; Snead, C.L. Jr.

    1985-01-01

    The trapping of positrons in dislocation-associated traps has been studied and the density of traps has been demonstrated to be in close agreement with the density of dislocations determined by TEM and etch-pit measurements on the same specimens. The specific trapping rates were determined.

  2. A New Method to Modify Two-Dimensional Electron Gas Density by GaN Cap Etching

    NASA Astrophysics Data System (ADS)

    Li, Zhongda; Chow, T. Paul

    2013-08-01

    We have experimentally demonstrated a new method for modifying the two-dimensional electron density (2DEG) at the AlGaN/GaN interface by etching of the GaN cap layer on top of the AlGaN. GaN MOS capacitors have been fabricated on samples with partially or fully etched GaN cap, and the 2DEG density has been extracted. The results show a linear relation between the 2DEG density and the thickness of the GaN cap being etched. We have also fabricated van der Pauw structures and obtained the 2DEG density using Hall measurements, and the results are consistent with that from the GaN MOS capacitors.

  3. Intermittent dislocation density fluctuations in crystal plasticity from a phase-field crystal model.

    PubMed

    Tarp, Jens M; Angheluta, Luiza; Mathiesen, Joachim; Goldenfeld, Nigel

    2014-12-31

    Plastic deformation mediated by collective dislocation dynamics is investigated in the two-dimensional phase-field crystal model of sheared single crystals. We find that intermittent fluctuations in the dislocation population number accompany bursts in the plastic strain-rate fluctuations. Dislocation number fluctuations exhibit a power-law spectral density 1/f2 at high frequencies f. The probability distribution of number fluctuations becomes bimodal at low driving rates corresponding to a scenario where low density of defects alternates at irregular times with high populations of defects. We propose a simple stochastic model of dislocation reaction kinetics that is able to capture these statistical properties of the dislocation density fluctuations as a function of shear rate.

  4. Density-dependent electron transport and precise modeling of GaN high electron mobility transistors

    SciTech Connect

    Bajaj, Sanyam Shoron, Omor F.; Park, Pil Sung; Krishnamoorthy, Sriram; Akyol, Fatih; Hung, Ting-Hsiang; Reza, Shahed; Chumbes, Eduardo M.; Khurgin, Jacob; Rajan, Siddharth

    2015-10-12

    We report on the direct measurement of two-dimensional sheet charge density dependence of electron transport in AlGaN/GaN high electron mobility transistors (HEMTs). Pulsed IV measurements established increasing electron velocities with decreasing sheet charge densities, resulting in saturation velocity of 1.9 × 10{sup 7 }cm/s at a low sheet charge density of 7.8 × 10{sup 11 }cm{sup −2}. An optical phonon emission-based electron velocity model for GaN is also presented. It accommodates stimulated longitudinal optical (LO) phonon emission which clamps the electron velocity with strong electron-phonon interaction and long LO phonon lifetime in GaN. A comparison with the measured density-dependent saturation velocity shows that it captures the dependence rather well. Finally, the experimental result is applied in TCAD-based device simulator to predict DC and small signal characteristics of a reported GaN HEMT. Good agreement between the simulated and reported experimental results validated the measurement presented in this report and established accurate modeling of GaN HEMTs.

  5. The application of water coupled nonlinear ultrasonics to quantify the dislocation density in aluminum 1100

    NASA Astrophysics Data System (ADS)

    Mostavi, Amir; Tehrani, N.; Kamali, N.; Ozevin, D.; Chi, S. W.; Indacochea, J. E.

    2017-02-01

    This article investigates water coupled nonlinear ultrasonic method to measure the dislocation density in aluminum 1100 specimens. The different levels of dislocation densities are introduced to the samples by applying different levels of plastic strains by tensile loading. The ultrasonic testing includes 2.25 MHz transducer as transmitter and 5.0 MHz transducer as receiver in an immersion tank. The results of immersion experiments are compared with oil-coupled experiments. While water has significant nonlinearity within itself, the immersion ultrasound results agree with the literature of oil coupled ultrasound results of the specimens that the nonlinearity coefficient increases with the increase of dislocation density in aluminum.

  6. GaN-Ready Aluminum Nitride Substrates for Cost-Effective, Very Low Dislocation Density III-Nitride LED's

    SciTech Connect

    Sandra Schujman; Leo Schowalter

    2010-10-15

    The objective of this project was to develop and then demonstrate the efficacy of a costeffective approach for a low defect density substrate on which AlInGaN LEDs can be fabricated. The efficacy of this “GaN-ready” substrate would then be tested by growing high efficiency, long lifetime InxGa1-xN blue LEDs. The approach used to meet the project objectives was to start with low dislocation density AlN single-crystal substrates and grow graded AlxGa1-xN layers on top. Pseudomorphic AlxGa1-xN epitaxial layers grown on bulk AlN substrates were used to fabricate light emitting diodes and demonstrate better device performance as a result of the low defect density in these layers when benched marked against state-of-the-art LEDs fabricated on sapphire substrates. The pseudomorphic LEDs showed excellent output powers compared to similar wavelength devices grown on sapphire substrates, with lifetimes exceeding 10,000 hours (which was the longest time that could reliably be estimated). In addition, high internal quantum efficiencies were demonstrated at high driving current densities even though the external quantum efficiencies were low due to poor photon extraction. Unfortunately, these pseudomorphic LEDs require high Al content so they emit in the ultraviolet. Sapphire based LEDs typically have threading dislocation densities (TDD) > 108 cm-2 while the pseudomorphic LEDs have TDD ≤ 105 cm-2. The resulting TDD, when grading the AlxGa1-xN layer all the way to pure GaN to produce a “GaN-ready” substrate, has varied between the mid 108 down to the 106 cm-2. These inconsistencies are not well understood. Finally, an approach to improve the LED structures on AlN substrates for light extraction efficiency was developed by thinning and roughening the substrate.

  7. Estimation of Dislocation Density in Cold-Rolled Commercially Pure Titanium by Using Synchrotron Diffraction

    NASA Astrophysics Data System (ADS)

    ALkhazraji, Hasan; Salih, Mohammed Z.; Zhong, Zhengye; Mhaede, Mansour; Brokmeier, Hans-Günter; Wagner, Lothar; Schell, N.

    2014-08-01

    Cold rolling (CR) leads to a heavy changes in the crystallographic texture and microstructure, especially crystal defects, such as dislocations, and stacking faults increase. The microstructure evolution in commercially pure titanium (cp-Ti) deformed by CR at the room temperature was determined by using the synchrotron peak profile analysis of full width at half maximum (FWHM). The computer program ANIZC has been used for the calculation of diffraction contrast factors of dislocations in elastically anisotropic hexagonal crystals. The dislocation density has a minimum value at 40 pct reduction. The increase of the dislocation density at higher deformation levels is caused by the nucleation of new generation of dislocations from the crystallite grain boundaries. The high-cycle fatigue strength (HCF) has a maximum value at 80 pct reduction and it has a minimum value at 40 pct reduction in the commercially pure titanium.

  8. Relationship of dislocation density of silicon to solar cell current loss at low temperature.

    NASA Technical Reports Server (NTRS)

    Mandelkorn, J.; Baraona, C. R.; Lamneck, J. H., Jr.

    1972-01-01

    Large decreases in short circuit current of silicon solar cells have been reported to occur as temperature is decreased below -60 C. Experimental results are presented which relate high dislocation density of the silicon bulk material of cells to the large current loss effect. These results reveal a direct relationship between low bulk dislocation density and low current loss at low temperature. Oxygen content does not appear to play a significant role in the low temperature-large current loss effect, since some Czochralski cells did not suffer from this effect whereas some float-zone cells did. Other float-zone silicon cells had only medium current losses at low temperature despite their high bulk dislocation density. It appears that use of low-dislocation-density silicon can eliminate the current loss problem in low temperature cell operation.

  9. High Efficiency m-plane LEDs on Low Defect Density Bulk GaN Substrates

    SciTech Connect

    David, Aurelien

    2012-10-15

    Solid-state lighting is a key technology for reduction of energy consumption in the US and worldwide. In principle, by replacing standard incandescent bulbs and other light sources with sources based on light-emitting diodes (LEDs), ultimate energy efficiency can be achieved. The efficiency of LEDs has improved tremendously over the past two decades, however further progress is required for solid- state lighting to reach its full potential. The ability of an LED at converting electricity to light is quantified by its internal quantum efficiency (IQE). The material of choice for visible LEDs is Gallium Nitride (GaN), which is at the basis of blue-emitting LEDs. A key factor limiting the performance of GaN LEDs is the so-called efficiency droop, whereby the IQE of the LED decreases significantly at high current density. Despite decades of research, efficiency droop remains a major issue. Since high-current operation is necessary for practical lighting applications, reducing droop is a major challenge for the scientific community and the LED industry. Our approach to solving the droop issue is the use of newly available low-defect-density bulk GaN non-polar substrates. In contrast to the standard foreign substrates (sapphire, silicon carbide, silicon) used in the industry, we have employed native bulk GaN substrates with very low defect density, thus ensuring exquisite material quality and high IQE. Whereas all commercial LEDs are grown along the c-plane crystal direction of GaN, we have used m-plane non-polar substrates; these drastically modify the physical properties of the LED and enable a reduction of droop. With this approach, we have demonstrated very high IQE performance and low droop. Our results focused on violet and blue LEDs. For these, we have demonstrated very high peak IQEs and current droops of 6% and 10% respectively (up to a high current density of 200A.cm-2). All these results were obtained under electrical operation. These high IQE and low droop

  10. Dislocation density of pure copper processed by accumulative roll bonding and equal-channel angular pressing

    SciTech Connect

    Miyajima, Yoji; Okubo, Satoshi; Abe, Hiroki; Okumura, Hiroki; Fujii, Toshiyuki; Onaka, Susumu; Kato, Masaharu

    2015-06-15

    The dislocation density of pure copper fabricated by two severe plastic deformation (SPD) processes, i.e., accumulative roll bonding and equal-channel angular pressing, was evaluated using scanning transmission electron microscopy/transmission electron microscopy observations. The dislocation density drastically increased from ~ 10{sup 13} m{sup −} {sup 2} to about 5 × 10{sup 14} m{sup −} {sup 2}, and then saturated, for both SPD processes.

  11. Strength of metals under vibrations - dislocation-density-function dynamics simulations

    NASA Astrophysics Data System (ADS)

    Cheng, B.; Leung, H. S.; Ngan, A. H. W.

    2015-06-01

    It is well known that ultrasonic vibration can soften metals, and this phenomenon has been widely exploited in industrial applications concerning metal forming and bonding. Recent experiments show that the simultaneous application of oscillatory stresses from audible to ultrasonic frequency ranges can lead to not only softening but also significant dislocation annihilation and subgrain formation in metal samples from the nano- to macro-size range. These findings indicate that the existing understanding of ultrasound softening - that the vibrations either impose additional stress waves to augment the quasi-static applied load, or cause heating of the metal, whereas the metal's intrinsic deformation resistance or mechanism remains unaltered - is far from complete. To understand the softening and the associated enhanced subgrain formation and dislocation annihilation, a new simulator based on the dynamics of dislocation-density functions is employed. This new simulator considers the flux, production and annihilation, as well as the Taylor and elastic interactions between dislocation densities. Softening during vibrations as well as enhanced cell formation is predicted. The simulations reveal the main mechanism for subcell formation under oscillatory loadings to be the enhanced elimination of statistically stored dislocations (SSDs) by the oscillatory stress, leaving behind geometrically necessary dislocations with low Schmid factors which then form the subgrain walls. The oscillatory stress helps the depletion of the SSDs, because the chance for them to meet up and annihilate is increased with reversals of dislocation motions. This is the first simulation effort to successfully predict the cell formation phenomenon under vibratory loadings.

  12. Stochastically forced dislocation density distribution in plastic deformation

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Amit K.; Aifantis, Elias C.

    2016-08-01

    The dynamical evolution of dislocations in plastically deformed metals is controlled by both deterministic factors arising out of applied loads and stochastic effects appearing due to fluctuations of internal stress. Such types of stochastic dislocation processes and the associated spatially inhomogeneous modes lead to randomness in the observed deformation structure. Previous studies have analyzed the role of randomness in such textural evolution, but none of these models have considered the impact of a finite decay time (all previous models assumed instantaneous relaxation which is "unphysical") of the stochastic perturbations in the overall dynamics of the system. The present article bridges this knowledge gap by introducing a colored noise in the form of an Ornstein-Uhlenbeck noise in the analysis of a class of linear and nonlinear Wiener and Ornstein-Uhlenbeck processes that these structural dislocation dynamics could be mapped on to. Based on an analysis of the relevant Fokker-Planck model, our results show that linear Wiener processes remain unaffected by the second time scale in the problem, but all nonlinear processes, both the Wiener type and Ornstein-Uhlenbeck type, scale as a function of the noise decay time τ . The results are expected to ramify existing experimental observations and inspire new numerical and laboratory tests to gain further insight into the competition between deterministic and random effects in modeling plastically deformed samples.

  13. Mushroom structure of GaN template for epitaxial growth of GaN

    NASA Astrophysics Data System (ADS)

    Lee, Sung Bo; Kwon, Tae-Wan; Park, Jungwon; Jin Choi, Won; Sung Park, Hae

    2012-07-01

    In the present study, we show the formation of mushroom morphology produced by a ramp anneal of a low-temperature GaN buffer layer. Structural analysis by transmission electron microscopy indicates that the cap of the mushroom has the stable wurtzitic GaN structure, whereas the stem possesses the metastable zinc-blende structure. With the air gap introduced between the substrate and the cap of the mushroom structure, threading dislocations propagate along its stem. The formation of the mushroom morphology is suggested to result from the nucleation of wurtzitic GaN on the surface of the low-temperature buffer layer during the ramp anneal, followed by mass transport of GaN from the buffer layer, which remains zinc-blende during the anneal, to the surface, because wurtzitic GaN has the lower structure energy than zinc-blende GaN. This study extends limits of the conventional use of the buffer layer, laying the foundation for the development of low-cost recipes for achieving GaN templates with a low density of threading dislocations.

  14. Influence of the Dislocation Density on the Performance of Heteroepitaxial Indium Phosphide Solar Cells

    NASA Technical Reports Server (NTRS)

    Jain, R. K.; Flood, D. J.

    1991-01-01

    Calculations are made to study the dependence of heteroepitaxial InP solar-cell efficiency on dislocation density. Effects of surface recombination velocity and cell emitter thickness are considered. Calculated results are compared with the available experimental results on representative InP solar cells. It is shown that heteroepitaxial InP cells with over 20 percent AM0 efficiency could be fabricated if dislocations are reduced to less than 100,000/sq cm.

  15. A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals

    SciTech Connect

    Mohamed, Mamdouh S.; Larson, Bennett C.; Tischler, Jonathan Z.; El-Azab, Anter

    2015-05-18

    The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoretical analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kr ner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.

  16. A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals

    DOE PAGES

    Mohamed, Mamdouh S.; Larson, Bennett C.; Tischler, Jonathan Z.; ...

    2015-05-18

    The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoreticalmore » analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kr ner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.« less

  17. A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals

    NASA Astrophysics Data System (ADS)

    Mohamed, Mamdouh S.; Larson, Bennett C.; Tischler, Jonathan Z.; El-Azab, Anter

    2015-09-01

    The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoretical analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kröner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.

  18. High voltage and high current density vertical GaN power diodes

    SciTech Connect

    Fischer, A. J.; Dickerson, J. R.; Armstrong, A. M.; Moseley, M. W.; Crawford, M. H.; King, M. P.; Allerman, A. A.; Kaplar, R. J.; van Heukelom, M. S.; Wierer, J. J.

    2016-01-01

    We report on the realization of a GaN high voltage vertical p-n diode operating at > 3.9 kV breakdown with a specific on-resistance < 0.9 mΩ.cm2. Diodes achieved a forward current of 1 A for on-wafer, DC measurements, corresponding to a current density > 1.4 kA/cm2. An effective critical electric field of 3.9 MV/cm was estimated for the devices from analysis of the forward and reverse current-voltage characteristics. Furthermore this suggests that the fundamental limit to the GaN critical electric field is significantly greater than previously believed.

  19. High voltage and high current density vertical GaN power diodes

    DOE PAGES

    Fischer, A. J.; Dickerson, J. R.; Armstrong, A. M.; ...

    2016-01-01

    We report on the realization of a GaN high voltage vertical p-n diode operating at > 3.9 kV breakdown with a specific on-resistance < 0.9 mΩ.cm2. Diodes achieved a forward current of 1 A for on-wafer, DC measurements, corresponding to a current density > 1.4 kA/cm2. An effective critical electric field of 3.9 MV/cm was estimated for the devices from analysis of the forward and reverse current-voltage characteristics. Furthermore this suggests that the fundamental limit to the GaN critical electric field is significantly greater than previously believed.

  20. Direct evidence of single quantum dot emission from GaN islands formed at threading dislocations using nanoscale cathodoluminescence: A source of single photons in the ultraviolet

    SciTech Connect

    Schmidt, Gordon Berger, Christoph; Veit, Peter; Metzner, Sebastian; Bertram, Frank; Bläsing, Jürgen; Dadgar, Armin; Strittmatter, André; Christen, Jürgen; Callsen, Gordon; Kalinowski, Stefan; Hoffmann, Axel

    2015-06-22

    Intense emission from GaN islands embedded in AlN resulting from GaN/AlN quantum well growth is directly resolved by performing cathodoluminescence spectroscopy in a scanning transmission electron microscope. Line widths down to 440 μeV are measured in a wavelength region between 220 and 310 nm confirming quantum dot like electronic properties in the islands. These quantum dot states can be structurally correlated to islands of slightly enlarged thicknesses of the GaN/AlN quantum well layer preferentially formed in vicinity to dislocations. The quantum dot states exhibit single photon emission in Hanbury Brown-Twiss experiments with a clear antibunching in the second order correlation function at zero time delay.

  1. Residual stress and dislocations density in silicon ribbons grown via optical zone melting

    NASA Astrophysics Data System (ADS)

    Augusto, A.; Pera, D.; Choi, H. J.; Bellanger, P.; Brito, M. C.; Maia Alves, J.; Vallêra, A. M.; Buonassisi, T.; Serra, J. M.

    2013-02-01

    We investigate the relationships between growth rate, time-temperature profile, residual stress, dislocation density, and electrical performance of silicon ribbons grown via optical zone melting. The time-temperature profiles of ribbons grown at different velocities were investigated using direct measurements and computational fluid dynamics (CFD) modeling. Residual stresses up to 20 MPa were measured using infrared birefringence imaging. The effect of crystallization speed on dislocation density and residual stress is discussed from the context of thermal stresses during growth. More broadly, we demonstrate the usefulness of combining spatially resolved stress and microstructure measurements with CFD simulations toward optimizing kerfless silicon wafer quality.

  2. On the luminescence of freshly introduced a-screw dislocations in low-resistance GaN

    SciTech Connect

    Medvedev, O. S. Vyvenko, O. F.; Bondarenko, A. S.

    2015-09-15

    Using scanning electron microscopy in the cathodoluminescence mode, it is shown that straight segments of a-screw dislocations introduced by plastic deformation at room temperature into unintentionally doped low-resistance gallium nitride luminesce in the spectral range 3.1–3.2 eV at 70 K. The spectral composition of dislocation luminescence shows a fine doublet structure with a component width of ∼15 meV and splitting of ∼30 meV, accompanied by LO-phonon replicas. Luminescent screw dislocations move upon exposure to an electron beam and at low temperatures, but retain immobility for a long time without external excitation. Optical transitions involving the quantum-well states of a stacking fault in a split-dislocation core are considered to be the most probable mechanism of the observed phenomenon.

  3. Role of dislocation-free GaN substrates in the growth of indium containing optoelectronic structures by plasma-assisted MBE

    NASA Astrophysics Data System (ADS)

    Skierbiszewski, C.; Siekacz, M.; Perlin, P.; Feduniewicz-Żmuda, A.; Cywiński, G.; Grzegory, I.; Leszczyński, M.; Wasilewski, Z. R.; Porowski, S.

    2007-07-01

    Plasma-assisted molecular beam epitaxy (PAMBE) has recently emerged as a viable tool for production of nitride blue-violet laser diodes operating at room temperature in continuous wave mode and high output powers [C. Skierbiszewski, P. Wisniewski, M. Siekacz, P. Perlin, A. Feduniewicz-Zmuda, G. Nowak, I. Grzegory, M. Leszczynski, S. Porowski, Appl. Phys. Lett. 88 (2006) 221108]. The present work reviews the current state of the art in this program as well as discusses its future directions. Two elements are given particular attention: (1) the epitaxial growth in metal-rich conditions, which enables effective lateral diffusion of N adatoms at low growth temperatures and (2) the role of threading dislocations in destabilizing the growth front. Low-temperature growth by PAMBE on dislocation-free GaN substrates is instrumental in achieving high performance of optoelectronic structures. The inherent to this process capability of sustaining two-dimensional step-flow growth mode (with straight and parallel atomic steps) at low growth temperatures opens up the way to the growth of strained multilayer structures with no compositional fluctuations and with flat interfaces.

  4. The Variation of the Dislocation Density in Aluminum Deformed to Large Steady-State Creep Strains

    DTIC Science & Technology

    1986-03-01

    axis of the specimen) using a South Bay Technology Model 650 Low Speed Diamond Wheel Saw and a high concentration Buehler (.006") wafering blade...primary creep where the material experiences hardening. However, another explanation might be a high initial moble dislocation density associated with

  5. Density of dislocations in CdHgTe heteroepitaxial structures on GaAs(013) and Si(013) substrates

    NASA Astrophysics Data System (ADS)

    Sidorov, Yu. G.; Yakushev, M. V.; Varavin, V. S.; Kolesnikov, A. V.; Trukhanov, E. M.; Sabinina, I. V.; Loshkarev, I. D.

    2015-11-01

    Epitaxial layers of Cd x Hg1- x Te (MCT) on GaAs(013) and Si(013) substrates were grown by molecular beam epitaxy. The introduction of ZnTe and CdTe intermediate layers into the structures made it possible to retain the orientation close to that of the substrate in MCT epitaxial layers despite the large mismatch between the lattice parameters. The structures were investigated using X-ray diffraction and transmission electron microscopy. The dislocation families predominantly removing the mismatch between the lattice parameters were found. Transmission electron microscopy revealed Γ-shaped misfit dislocations (MDs), which facilitated the annihilation of threading dislocations. The angles of rotation of the lattice due to the formation of networks of misfit dislocations were measured. It was shown that the density of threading dislocations in the active region of photodiodes is primarily determined by the network of misfit dislocations formed in the MCT/CdTe heterojunction. A decrease in the density of threading dislocations in the MCT film was achieved by cyclic annealing under conditions of the maximally facilitated nonconservative motion of dislocations. The dislocation density was determined from the etch pits.

  6. High breakdown single-crystal GaN p-n diodes by molecular beam epitaxy

    SciTech Connect

    Qi, Meng; Zhao, Yuning; Yan, Xiaodong; Li, Guowang; Verma, Jai; Fay, Patrick; Nomoto, Kazuki; Zhu, Mingda; Hu, Zongyang; Protasenko, Vladimir; Song, Bo; Xing, Huili Grace; Jena, Debdeep; Bader, Samuel

    2015-12-07

    Molecular beam epitaxy grown GaN p-n vertical diodes are demonstrated on single-crystal GaN substrates. A low leakage current <3 nA/cm{sup 2} is obtained with reverse bias voltage up to −20 V. With a 400 nm thick n-drift region, an on-resistance of 0.23 mΩ cm{sup 2} is achieved, with a breakdown voltage corresponding to a peak electric field of ∼3.1 MV/cm in GaN. Single-crystal GaN substrates with very low dislocation densities enable the low leakage current and the high breakdown field in the diodes, showing significant potential for MBE growth to attain near-intrinsic performance when the density of dislocations is low.

  7. A molecular dynamics study of dislocation density generation and plastic relaxation during shock of single crystal Cu

    NASA Astrophysics Data System (ADS)

    Sichani, Mehrdad M.; Spearot, Douglas E.

    2016-07-01

    The molecular dynamics simulation method is used to investigate the dependence of crystal orientation and shock wave strength on dislocation density evolution in single crystal Cu. Four different shock directions <100>, <110>, <111>, and <321> are selected to study the role of crystal orientation on dislocation generation immediately behind the shock front and plastic relaxation as the system reaches the hydrostatic state. Dislocation density evolution is analyzed for particle velocities between the Hugoniot elastic limit ( up H E L ) for each orientation up to a maximum of 1.5 km/s. Generally, dislocation density increases with increasing particle velocity for all shock orientations. Plastic relaxation for shock in the <110>, <111>, and <321> directions is primarily due to a reduction in the Shockley partial dislocation density. In addition, plastic anisotropy between these orientations is less apparent at particle velocities above 1.1 km/s. In contrast, plastic relaxation is limited for shock in the <100> orientation. This is partially due to the emergence of sessile stair-rod dislocations with Burgers vectors of 1/3<100> and 1/6<110>. The nucleation of 1/6<110> dislocations at lower particle velocities is mainly due to the reaction between Shockley partial dislocations and twin boundaries. On the other hand, for the particle velocities above 1.1 km/s, the nucleation of 1/3<100> dislocations is predominantly due to reaction between Shockley partial dislocations at stacking fault intersections. Both mechanisms promote greater dislocation densities after relaxation for shock pressures above 34 GPa compared to the other three shock orientations.

  8. Critical issues for homoepitaxial GaN growth by molecular beam epitaxy on hydride vapor-phase epitaxy-grown GaN substrates

    NASA Astrophysics Data System (ADS)

    Storm, D. F.; Hardy, M. T.; Katzer, D. S.; Nepal, N.; Downey, B. P.; Meyer, D. J.; McConkie, Thomas O.; Zhou, Lin; Smith, David J.

    2016-12-01

    While the heteroepitaxial growth of gallium nitride-based materials and devices on substrates such as SiC, sapphire, and Si has been well-documented, the lack of a cost-effective source of bulk GaN crystals has hindered similar progress on homoepitaxy. Nevertheless, freestanding GaN wafers are becoming more widely available, and there is great interest in growing GaN films and devices on bulk GaN substrates, in order to take advantage of the greatly reduced density of threading dislocations, particularly for vertical devices. However, homoepitaxial GaN growth is far from a trivial task due to the reactivity and different chemical sensitivities of N-polar (000_1) and Ga-polar (0001) GaN surfaces, which can affect the microstructure and concentrations of impurities in homoepitaxial GaN layers. In order to achieve high quality, high purity homoepitaxial GaN, it is necessary to investigate the effect of the ex situ wet chemical clean, the use of in situ cleaning procedures, the sensitivity of the GaN surface to thermal decomposition, and the effect of growth temperature. We review the current understanding of these issues with a focus on homoepitaxial growth of GaN by molecular beam epitaxy (MBE) on c-plane surfaces of freestanding GaN substrates grown by hydride vapor phase epitaxy (HVPE), as HVPE-grown substrates are most widely available. We demonstrate methods for obtaining homoepitaxial GaN layers by plasma-assisted MBE in which no additional threading dislocations are generated from the regrowth interface and impurity concentrations are greatly reduced.

  9. GaAsP solar cells on GaP/Si with low threading dislocation density

    NASA Astrophysics Data System (ADS)

    Yaung, Kevin Nay; Vaisman, Michelle; Lang, Jordan; Lee, Minjoo Larry

    2016-07-01

    GaAsP on Si tandem cells represent a promising path towards achieving high efficiency while leveraging the Si solar knowledge base and low-cost infrastructure. However, dislocation densities exceeding 108 cm-2 in GaAsP cells on Si have historically hampered the efficiency of such approaches. Here, we report the achievement of low threading dislocation density values of 4.0-4.6 × 106 cm-2 in GaAsP solar cells on GaP/Si, comparable with more established metamorphic solar cells on GaAs. Our GaAsP solar cells on GaP/Si exhibit high open-circuit voltage and quantum efficiency, allowing them to significantly surpass the power conversion efficiency of previous devices. The results in this work show a realistic path towards dual-junction GaAsP on Si cells with efficiencies exceeding 30%.

  10. Dislocation- and crystallographic-dependent photoelectrochemical wet etching of gallium nitride

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Craven, M. D.; Speck, J. S.; Den Baars, S. P.; Hu, E. L.

    2004-04-01

    Polarity and dislocation dependence study of photoelectrochemical wet etching on GaN was carried out on lateral epitaxial overgrown nonpolar (112¯0)a-GaN/(11¯02)r-plane sapphire substrate. This LEO nonpolar GaN sample has low dislocation density Ga- and N-faces exposed horizontally in opposite directions, which can be exposed to identical etching conditions for both polarity and dislocation dependence study. It is observed that N-face GaN is essentially much chemically active than Ga-face GaN, which shows the hexagonal pyramids with {101¯1¯} facets on the etched N face. No obvious etching was observed on Ga face in the same etch condition. As for dislocation dependence, the "wing" (low dislocation density) region was etched faster than the "window" (high dislocation density) region. Smooth etched surfaces were formed with the (1¯1¯22¯) facet as an etch stop plane both on Ga and N-wing region.

  11. A numerical spectral approach to solve the dislocation density transport equation

    NASA Astrophysics Data System (ADS)

    Djaka, K. S.; Taupin, V.; Berbenni, S.; Fressengeas, C.

    2015-09-01

    A numerical spectral approach is developed to solve in a fast, stable and accurate fashion, the quasi-linear hyperbolic transport equation governing the spatio-temporal evolution of the dislocation density tensor in the mechanics of dislocation fields. The approach relies on using the Fast Fourier Transform algorithm. Low-pass spectral filters are employed to control both the high frequency Gibbs oscillations inherent to the Fourier method and the fast-growing numerical instabilities resulting from the hyperbolic nature of the transport equation. The numerical scheme is validated by comparison with an exact solution in the 1D case corresponding to dislocation dipole annihilation. The expansion and annihilation of dislocation loops in 2D and 3D settings are also produced and compared with finite element approximations. The spectral solutions are shown to be stable, more accurate for low Courant numbers and much less computation time-consuming than the finite element technique based on an explicit Galerkin-least squares scheme.

  12. Fermi energy control of vacancy coalescence and dislocation density in melt-grown GaAs

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Gatos, H. C.; Lin, D. G.; Aoyama, T.

    1984-01-01

    A striking effect of the Fermi energy on the dislocation density in melt-grown GaAs has been discovered. Thus, a shift of the Fermi energy from 0.1 eV above to 0.2 eV below its intrinsic value (at high temperature, i.e., near 1100 K) increases the dislocation density by as much as five orders of magnitude. The Fermi energy shift was brought about by n-type and p-type doping at a level of about 10 to the 17th per cu cm (under conditions of optimum partial pressure of As, i.e., under optimum melt stoichiometry). This effect must be associated with the fact that the Fermi energy controls the charge state of vacancies (i.e., the occupancy of the associated electronic states) which in turn must control their tendency to coalesce and thus the dislocation density. It appears most likely that gallium vacancies are the critical species.

  13. Characterization and density control of GaN nanodots on Si (111) by droplet epitaxy using plasma-assisted molecular beam epitaxy.

    PubMed

    Yu, Ing-Song; Chang, Chun-Pu; Yang, Chung-Pei; Lin, Chun-Ting; Ma, Yuan-Ron; Chen, Chun-Chi

    2014-01-01

    In this report, self-organized GaN nanodots have been grown on Si (111) by droplet epitaxy method, and their density can be controlled from 1.1 × 10(10) to 1.1 × 10(11) cm(-2) by various growth parameters, such as substrate temperatures for Ga droplet formation, the pre-nitridation treatment of Si substrate, the nitridation duration for GaN crystallization, and in situ annealing after GaN formation. Based on the characterization of in situ RHEED, we can observe the surface condition of Si and the formation of GaN nanodots on Si. The surface nitridaiton treatment at 600°C provides a-SiNx layer which makes higher density of GaN nanodots. Crystal GaN nanodots can be observed by the HRTEM. The surface composition of GaN nanodots can be analyzed by SPEM and μ-XPS with a synchrotron x-ray source. We can find GaN nanodots form by droplet epitaxy and then in situ annealing make higher-degree nitridation of GaN nanodots.

  14. Bulk ammonothermal GaN

    NASA Astrophysics Data System (ADS)

    Dwiliński, R.; Doradziński, R.; Garczyński, J.; Sierzputowski, L. P.; Puchalski, A.; Kanbara, Y.; Yagi, K.; Minakuchi, H.; Hayashi, H.

    2009-05-01

    In this work, results of structural characterization of high-quality ammonothermal GaN are presented. Besides expected low dislocation density (being of the order of 10 3 cm -2) the most interesting feature seems perfect flatness of the crystal lattice of studied crystals. Regardless the size of crystals, lattice curvature radius exceeds 100 m, whereas better crystals reveal radius of several hundred meters and the best above 1000 m. Excellent crystallinity manifests in very narrow X-ray diffraction peaks of full-width at half-maximum (FWHM) values about 16 arcsec.

  15. Static Recovery Modeling of Dislocation Density in a Cold Rolled Clad Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Penlington, Alex

    Clad alloys feature one or more different alloys bonded to the outside of a core alloy, with non-equilibrium, interalloy interfaces. There is limited understanding of the recovery and recrystallization behaviour of cold rolled clad aluminum alloys. In order to optimize the properties of such alloys, new heat treatment processes may be required that differ from what is used for the monolithic alloys. This study examines the recovery behaviour of a cold rolled Novelis Fusion(TM) alloy containing an AA6XXX core with an AA3003 cladding on one side. The bond between alloys appears microscopically discrete and continuous, but has a 30 microm wide chemical gradient. The as-deformed structure at the interalloy region consists of pancaked sub-grains with dislocations at the misorientation boundaries and a lower density organized within the more open interiors. X-ray line broadening was used to extract the dislocation density from the interalloy region and an equivalently deformed AA6XXX following static annealing using a modified Williamson-Hall analysis. This analysis assumed that Gaussian broadening contributions in a pseudo-Voigt function corresponded only to strain from dislocations. The kinetics of the dislocation density evolution to recrystallization were studied isothermally at 2 minute intervals, and isochronally at 175 and 205°C. The data fit the Nes model, in which the interalloy region recovered faster than AA6XXX at 175°C, but was slower at 205°C. This was most likely caused by change in texture and chemistry within this region such as over-aging of AA6XXX . Simulation of a continuous annealing and self homogenization process both with and without pre-recovery indicates a detectable, though small change in the texture and grain size in the interalloy region.

  16. Grain structure and dislocation density measurements in a friction stir welded aluminum alloy using x-ray peak profile analysis

    SciTech Connect

    Woo, Wan Chuck; Balogh, Levente; Ungar, Prof Tomas; Choo, Hahn; Feng, Zhili

    2008-01-01

    The dislocation density and grain structure of a friction stir welded 6061-T6 aluminum alloy was determined as a function of distance from the weld centerline using high-resolution micro-beam x-ray diffraction. The results of the x-ray peak profile analysis show that the dislocation density is about 1.2 x 10^14 m-2 inside and 4.8 x 10^14 m-2 outside of the weld region. The average subgrain size is about 180 nm in both regions. Compared to the base material, the dislocation density was significantly decreased in the dynamic recrystallized zone of the friction stir welds, which is a good correlation with the TEM observations. The influence of the dislocation density on the strain hardening behavior during tensile deformation is also discussed.

  17. Weak-beam scanning transmission electron microscopy for quantitative dislocation density measurement in steels.

    PubMed

    Yoshida, Kenta; Shimodaira, Masaki; Toyama, Takeshi; Shimizu, Yasuo; Inoue, Koji; Yoshiie, Toshimasa; Milan, Konstantinovic J; Gerard, Robert; Nagai, Yasuyoshi

    2017-01-17

    To evaluate dislocations induced by neutron irradiation, we developed a weak-beam scanning transmission electron microscopy (WB-STEM) system by installing a novel beam selector, an annular detector, a high-speed CCD camera and an imaging filter in the camera chamber of a spherical aberration-corrected transmission electron microscope. The capabilities of the WB-STEM with respect to wide-view imaging, real-time diffraction monitoring and multi-contrast imaging are demonstrated using typical reactor pressure vessel steel that had been used in an European nuclear reactor for 30 years as a surveillance test piece with a fluence of 1.09 × 10(20) neutrons cm(-)(2) The quantitatively measured size distribution (average loop size = 3.6 ± 2.1 nm), number density of the dislocation loops (3.6 × 10(22) m(-3)) and dislocation density (7.8 × 10(13) m m(-)(3)) were carefully compared with the values obtained via conventional weak-beam transmission electron microscopy studies. In addition, cluster analysis using atom probe tomography (APT) further demonstrated the potential of the WB-STEM for correlative electron tomography/APT experiments.

  18. A dislocation density-based continuum model of the anisotropic shock response of single crystal α-cyclotrimethylene trinitramine

    NASA Astrophysics Data System (ADS)

    Luscher, D. J.; Addessio, F. L.; Cawkwell, M. J.; Ramos, K. J.

    2017-01-01

    We have developed a model for the finite deformation thermomechanical response of α-cyclotrimethylene trinitramine (RDX). Our model accounts for nonlinear thermoelastic lattice deformation through a free energy-based equation of state developed by Cawkwell et al. (2016) in combination with temperature and pressure dependent elastic constants, as well as dislocation-mediated plastic slip on a set of slip systems motivated by experimental observation. The kinetics of crystal plasticity are modeled using the Orowan equation relating slip rate to dislocation density and the dislocation velocity developed by Austin and McDowell (2011), which naturally accounts for transition from thermally activated to dislocation drag limited regimes. Evolution of dislocation density is specified in terms of local ordinary differential equations reflecting dislocation-dislocation interactions. This paper presents details of the theory and parameterization of the model, followed by discussion of simulations of flyer plate impact experiments. Impact conditions explored within this combined simulation and experimental effort span shock pressures ranging from 1 to 3 GPa for four crystallographic orientations and multiple specimen thicknesses. Simulation results generated using this model are shown to be in strong agreement with velocimetry measurements from the corresponding plate impact experiments. Finally, simulation results are used to motivate conclusions about the nature of dislocation-mediated plasticity in RDX.

  19. Growth of freestanding GaN using pillar-epitaxial lateral overgrowth from GaN nanocolumns

    NASA Astrophysics Data System (ADS)

    Bougrioua, Z.; Gibart, P.; Calleja, E.; Jahn, U.; Trampert, A.; Ristic, J.; Utrera, M.; Nataf, G.

    2007-12-01

    Dislocation-free and strain-free GaN nanopillars, grown on Si by molecular beam epitaxy, were used as nanoseeds for a new form of epitaxial lateral overgrowth (ELO) by metalorganic vapour phase epitaxy (MOVPE) until full coalescence. Such overgrown GaN films are almost relaxed and were used as templates for producing thick GaN layers by halide vapour phase epitaxy (HVPE). The final GaN film is easily separated from the starting Si substrate. This is henceforth a new technology to produce freestanding GaN. The GaN crystal quality was assessed by transmission electron microscopy (TEM), photo- and cathodoluminescence (PL, CL). It was seen that the pillar-ELO is produced from a limited number of nanopillars. Some dislocations and basal stacking faults are formed during the coalescence. However, those that propagate parallel to the substrate do not replicate in the top layer and it is expected that the thickened material present a reduced defect density.

  20. DLTS study of n-type GaN grown by MOCVD on GaN substrates

    NASA Astrophysics Data System (ADS)

    Tokuda, Y.; Matsuoka, Y.; Ueda, H.; Ishiguro, O.; Soejima, N.; Kachi, T.

    2006-10-01

    Electron traps in n-type GaN layers grown homoepitaxially by MOCVD on free-standing GaN substrates have been characterized using DLTS for vertical Schottky diodes. Two free-standing HVPE GaN substrates (A and B), obtained from two different sources, are used. The Si-doped GaN layers with the thickness of 5 μm are grown on an area of 0.9×0.9 cm 2 of substrate A and on an area of 1×1 cm 2 of substrate B. Two traps labeled B1 (Ec-0.23 eV) and B2 (Ec-0.58 eV) are observed with trap B2 dominant in GaN on both substrates. There exist no dislocation-related traps which have been previously observed in MOCVD GaN on sapphire. This might be correlated to the reduction in dislocation density due to the homoepitaxial growth. However, it is found that there is a large variation, more than an order of magnitude, in trap B2 concentration and that the B2 spatial distributions are different between the two substrates used.

  1. Influence of vicinal sapphire substrate on the properties of N-polar GaN films grown by metal-organic chemical vapor deposition

    SciTech Connect

    Lin, Zhiyu; Zhang, Jincheng Xu, Shengrui; Chen, Zhibin; Yang, Shuangyong; Tian, Kun; Hao, Yue; Su, Xujun; Shi, Xuefang

    2014-08-25

    The influence of vicinal sapphire substrates on the growth of N-polar GaN films by metal-organic chemical vapor deposition is investigated. Smooth GaN films without hexagonal surface feature are obtained on vicinal substrate. Transmission electron microscope results reveal that basal-plane stacking faults are formed in GaN on vicinal substrate, leading to a reduction in threading dislocation density. Furthermore, it has been found that there is a weaker yellow luminescence in GaN on vicinal substrate than that on (0001) substrate, which might be explained by the different trends of the carbon impurity incorporation.

  2. Stress and Defect Control in GaN Using Low Temperature Interlayers

    SciTech Connect

    Akasaki, I.; Amano, H.; Chason, E.; Figiel, J.; Floro, J.A.; Han, J.; Hearne, S.; Iwaya, M.; Kashima, T.; Katsuragcawa, M.

    1998-12-04

    In organometallic vapor phase epitaxial growth of Gail on sapphire, the role of the low- temperature-deposited interlayers inserted between high-temperature-grown GaN layers was investigated by in situ stress measurement, X-ray diffraction, and transmission electron microscopy. Insertion of a series of low temperature GaN interlayers reduces the density of threading dislocations while simultaneously increasing the tensile stress during growth, ultimately resulting in cracking of the GaN film. Low temperature AIN interlayers were found to be effective in suppressing cracking by reducing tensile stress. The intedayer approach permits tailoring of the film stress to optimize film structure and properties.

  3. Application of a Dislocation Density-Based Constitutive Model to Al-Alloyed TWIP Steel

    NASA Astrophysics Data System (ADS)

    Kim, Jinkyung; Estrin, Yuri; De Cooman, Bruno Charles

    2013-09-01

    High Mn steels exhibit an exceptional combination of high strength and large ductility owing to their high strain-hardening rate during deformation. The addition of Al is needed to improve the mechanical performance of TWIP steel by means of the control of the stacking fault energy. In this study, a constitutive modeling approach, which can describe the strain-hardening behavior and the effect of Al on the mechanical properties, was used. In order to understand the deformation behavior of Fe18Mn0.6C and Fe18Mn0.6C1.5Al TWIP steels, a comparative study of the microstructural evolution was conducted by means of transmission electron microscopy and electron backscatter diffraction. The microstructure analysis focused on dislocations, stacking faults, and mechanical twins as these are the defects controlling the strain-hardening behavior of TWIP steels. A comparison of the strain-hardening behavior of Fe18Mn0.6C and Fe18Mn0.6C1.5Al TWIP steels was made in terms of a dislocation density-based constitutive model that goes back to the Kubin-Estrin model. The densities of mobile and forest dislocations are coupled in order to account for the interaction between the two dislocation populations during straining. The model was used to estimate the contribution of dynamic strain aging to the flow stress. As deformation twinning occurred only in a subset of the grains, the grain population was subdivided into twinned grains and twin-free grains. Different constitutive equations were used for the two families of grains. The analysis revealed that (i) the grain size and dynamic recovery effects determine the strain-hardening behavior of the twin-free grains, (ii) the deformation twins, which act as effective barriers to dislocation motion, are the predominant elements of the microstructure that governs the strain hardening of the twinned grains, and (iii) the DSA contribution to strain hardening of TWIP steel is only minor.

  4. Electrical characterization of dislocations in gallium nitride using advanced scanning probe techniques

    NASA Astrophysics Data System (ADS)

    Simpkins, Blake Shelley Ginsberg

    GaN-based materials are promising for high speed and power applications such as amplifier and communications circuits. Ga, In, and AIN-based alloys span a wide optical range (2--6.1 eV) and exhibit strong polarizations making them useful in many devices; however, films are highly defective (˜10 8 dislocations cm-2) due to lack of suitable substrates. Thus, nanoscale electronic characterization of these dislocations is critical for device and growth optimization. Scanning probe techniques enable characterization at length-scales unattainable by conventional techniques. First, scanning Kelvin probe microscopy (SKPM) was used to image surface potential variations due to charged dislocations in HVPE-grown GaN. The film's structural evolution "with thickness was monitored showing a decrease in dislocation density, likely through dislocation reaction. Numerical simulations were used to investigate tip-size effects when imaging highly localized (tens of nm) potential variations indicating that measured dislocation induced potential features in GaN can be much smaller (˜80%) than true variations. Next, capacitance variations in MBE-grown HFETs, due to dislocations-induced carrier depletion, were imaged with scanning capacitance microscopy (SCM). The distribution of these charged centers was correlated with buffer schemes showing that an AIN buffer leads to pseudomorphic (2D) nucleation and randomly distributed misfit dislocations while deposition directly on SiC results in island (3D) nucleation and a domain structure with dislocations grouped at domain boundaries. Hall measurements and numerical simulations were also carried out to further study the implications of these microstructures. Numerical results indicated that randomly distributed dislocations deplete a larger fraction of free carriers than the same density of grouped dislocations and correlated favorably with Hall results. Correlated SKPM and conductive AFM (C-AFM) measurements were then used to study

  5. Air-bridged lateral epitaxial overgrowth of GaN thin films

    NASA Astrophysics Data System (ADS)

    Kidoguchi, Isao; Ishibashi, Akihiko; Sugahara, Gaku; Ban, Yuzaburoh

    2000-06-01

    A promising technique of selective lateral epitaxy, namely air-bridged lateral epitaxial overgrowth, is demonstrated in order to reduce the wing tilt as well as the threading dislocation density in GaN thin films. A seed GaN layer was etched to make ridge-stripe along <11¯00>GaN direction and a GaN material was regrown from the exposed (0001) top facet of the ridged GaN seed structures, whose sidewalls and etched bottoms were covered with silicon nitride mask, using low-pressure metalorganic vapor phase epitaxy. The density of dislocations in the wing region was reduced to be <107cm-2, which was at least two orders of magnitude lower than that of underlying GaN. The magnitude of the wing tilt was determined to be 0.08° by x-ray diffraction (XRD) measurements, which was smaller than other lateral epitaxial overgrown GaN thin films. The full width at half maximum of XRD for the wing region was 138 arc sec, indicating high uniformity of c-axis orientation.

  6. MOCVD growth of N-polar GaN on on-axis sapphire substrate: Impact of AlN nucleation layer on GaN surface hillock density

    NASA Astrophysics Data System (ADS)

    Marini, Jonathan; Leathersich, Jeffrey; Mahaboob, Isra; Bulmer, John; Newman, Neil; (Shadi) Shahedipour-Sandvik, F.

    2016-05-01

    We report on the impact of growth conditions on surface hillock density of N-polar GaN grown on nominally on-axis (0001) sapphire substrate by metal organic chemical vapor deposition (MOCVD). Large reduction in hillock density was achieved by implementation of an optimized high temperature AlN nucleation layer and use of indium surfactant in GaN overgrowth. A reduction by more than a factor of five in hillock density from 1000 to 170 hillocks/cm-2 was achieved as a result. Crystal quality and surface morphology of the resultant GaN films were characterized by high resolution x-ray diffraction and atomic force microscopy and found to be relatively unaffected by the buffer conditions. It is also shown that the density of smaller surface features is unaffected by AlN buffer conditions.

  7. A dislocation density-based continuum model of the anisotropic shock response of single crystal α-cyclotrimethylene trinitramine

    SciTech Connect

    Luscher, Darby Jon; Addessio, Francis L.; Cawkwell, Marc Jon; Ramos, Kyle James

    2017-01-01

    Here, we have developed a model for the finite deformation thermomechanical response of α-cyclotrimethylene trinitramine (RDX). Our model accounts for nonlinear thermoelastic lattice deformation through a free energy-based equation of state developed by Cawkwell et al. (2016) in combination with temperature and pressure dependent elastic constants, as well as dislocation-mediated plastic slip on a set of slip systems motivated by experimental observation. The kinetics of crystal plasticity are modeled using the Orowan equation relating slip rate to dislocation density and the dislocation velocity developed by Austin and McDowell (2011), which naturally accounts for transition from thermally activated to dislocation drag limited regimes. Evolution of dislocation density is specified in terms of local ordinary differential equations reflecting dislocation–dislocation interactions. This paper presents details of the theory and parameterization of the model, followed by discussion of simulations of flyer plate impact experiments. Impact conditions explored within this combined simulation and experimental effort span shock pressures ranging from 1 to 3 GPa for four crystallographic orientations and multiple specimen thicknesses. Simulation results generated using this model are shown to be in strong agreement with velocimetry measurements from the corresponding plate impact experiments. Finally, simulation results are used to motivate conclusions about the nature of dislocation-mediated plasticity in RDX.

  8. A dislocation density-based continuum model of the anisotropic shock response of single crystal α-cyclotrimethylene trinitramine

    DOE PAGES

    Luscher, Darby Jon; Addessio, Francis L.; Cawkwell, Marc Jon; ...

    2017-01-01

    Here, we have developed a model for the finite deformation thermomechanical response of α-cyclotrimethylene trinitramine (RDX). Our model accounts for nonlinear thermoelastic lattice deformation through a free energy-based equation of state developed by Cawkwell et al. (2016) in combination with temperature and pressure dependent elastic constants, as well as dislocation-mediated plastic slip on a set of slip systems motivated by experimental observation. The kinetics of crystal plasticity are modeled using the Orowan equation relating slip rate to dislocation density and the dislocation velocity developed by Austin and McDowell (2011), which naturally accounts for transition from thermally activated to dislocation dragmore » limited regimes. Evolution of dislocation density is specified in terms of local ordinary differential equations reflecting dislocation–dislocation interactions. This paper presents details of the theory and parameterization of the model, followed by discussion of simulations of flyer plate impact experiments. Impact conditions explored within this combined simulation and experimental effort span shock pressures ranging from 1 to 3 GPa for four crystallographic orientations and multiple specimen thicknesses. Simulation results generated using this model are shown to be in strong agreement with velocimetry measurements from the corresponding plate impact experiments. Finally, simulation results are used to motivate conclusions about the nature of dislocation-mediated plasticity in RDX.« less

  9. Highly transparent ammonothermal bulk GaN substrates

    SciTech Connect

    Jiang, WK; Ehrentraut, D; Downey, BC; Kamber, DS; Pakalapati, RT; Do Yoo, H; D'Evelyn, MP

    2014-10-01

    A novel apparatus has been employed to grow ammonothermal (0001) gallium nitride (GaN) with diameters up to 2 in The crystals have been characterized by x-ray diffraction rocking-curve (XRC) analysis, optical and scanning electron microscopy (SEM), cathodoluminescence (CL), and optical spectroscopy. High crystallinity GaN with FWHM values about 20-50 arcsec and dislocation densities below 1 x 10(5) cm(-2) have been obtained. High optical transmission was achieved with an optical absorption coefficient below 1 cm(-1) at a wavelength of 450 nm. (C) 2014 Elsevier B.V. All rights reserved.

  10. Preparation of Freestanding GaN Wafers by Hydride Vapor Phase Epitaxy with Void-Assisted Separation

    NASA Astrophysics Data System (ADS)

    Oshima, Yuichi; Eri, Takeshi; Shibata, Masatomo; Sunakawa, Haruo; Kobayashi, Kenji; Ichihashi, Toshinari; Usui, Akira

    2003-01-01

    We have developed a novel technique for preparing large-scale freestanding GaN wafers. Hydride vapor phase epitaxy (HVPE) growth of thick GaN layer was performed on a GaN template with a thin TiN film on the top. After the cooling process of the HVPE growth, the thick GaN layer was easily separated from the template by the assistance of many voids generated around the TiN film. As a result, a freestanding GaN wafer was obtained. The wafer obtained had a diameter of 45 mm, and a mirror-like surface. The-full-width-at-half-maximum (FWHM) of (0002) and (10\\bar{1}0) peaks in the X-ray rocking curve profile were 60 and 92 arcsec, respectively. The dislocation density was evaluated at 5× 106 cm-3 by etch pit density measurement.

  11. Selective area growth of high-density GaN nanowire arrays on Si(111) using thin AlN seeding layers

    NASA Astrophysics Data System (ADS)

    Wu, C. H.; Lee, P. Y.; Chen, K. Y.; Tseng, Y. T.; Wang, Y. L.; Cheng, K. Y.

    2016-11-01

    Selective area growth (SAG) of high-density (2.5×109 cm-2) GaN nanowires (NWs) on Si(111) substrate by plasma-assisted molecular beam epitaxy is presented. The effects of morphology and thickness of the AlN seeding layer on the quality of SAG GaN NWs are investigated. A thin AlN seeding layer of 30 nm thick with a surface roughness of less than 0.5 nm is suitable for high quality SAG GaN NWs growth. High-density AlN nanopedestal arrays used as seeds for SAG GaN NWs are fabricated from thin AlN seeding layers using soft nanoimprint lithography. By adjusting the growth temperature and Ga/N flux ratio, hexagonal shaped SAG GaN NWs are realized. The quality of SAG GaN NWs is evaluated by low temperature photoluminescence (PL) measurements. Three major groups of PL peaks at 3.47, 3.45, and 3.41 eV are identified. The peak at 3.471 eV is related to the neutral donor-bound exciton emission, and the 3.41 eV broadband emission is attributed to stacking faults or structural defects. The 3.45 eV peak is identified as the emission due to exciton recombination at polar inversion domain boundaries of NWs.

  12. High strain gradient plasticity associated with wedge indentation into face-centered cubic single crystals: Geometrically necessary dislocation densities

    NASA Astrophysics Data System (ADS)

    Kysar, Jeffrey W.; Gan, Yong X.; Morse, Timothy L.; Chen, Xi; Jones, Milton E.

    2007-07-01

    Experimental studies on indentation into face-centered cubic (FCC) single crystals such as copper and aluminum were performed to reveal the spatially resolved variation in crystal lattice rotation induced due to wedge indentation. The crystal lattice curvature tensors of the indented crystals were calculated from the in-plane lattice rotation results as measured by electron backscatter diffraction (EBSD). Nye's dislocation density tensors for plane strain deformation of both crystals were determined from the lattice curvature tensors. The least L2-norm solutions to the geometrically necessary dislocation densities for the case in which three effective in-plane slip systems were activated in the single crystals associated with the indentation were determined. Results show the formation of lattice rotation discontinuities along with a very high density of geometrically necessary dislocations.

  13. Prediction of Dislocation Cores in Aluminum from Density Functional Theory (Postprint)

    DTIC Science & Technology

    2009-02-01

    demonstrates the need for quantum mechanical treatment of dislocation cores. 15. SUBJECT TERMS plastic deformation, dislocation, energy , fault...field that decreases as the inverse of the distance from the core. In fcc metals dislocations can reduce elastic energy by separating into Shockley...partial dislocations connected by a stacking fault [1]. For materi- als with large stacking fault energies (i.e., aluminum) this separation can be quite

  14. Nucleation and coalescence effects on the density of self-induced GaN nanowires grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Consonni, V.; Knelangen, M.; Trampert, A.; Geelhaar, L.; Riechert, H.

    2011-02-01

    The evolution of the density of self-induced GaN nanowires as a function of the growth time, gallium rate, and growth temperature has been investigated by scanning and transmission electron microscopy. Nucleation and coalescence effects have been disentangled and quantified by distinguishing between single nanowires and nanowire clusters. Owing to the very specific nanowire nucleation mechanism involving a shape transition from spherical-cap-shaped islands, the nanowire density does not follow the standard island nucleation theory. Furthermore, the detrimental nanowire coalescence process can be significantly reduced by raising the growth temperature.

  15. Hybrid density functional theory studies of AlN and GaN under uniaxial strain.

    PubMed

    Qin, Lixia; Duan, Yifeng; Shi, Hongliang; Shi, Liwei; Tang, Gang

    2013-01-30

    The structural stability, spontaneous polarization, piezoelectric response, and electronic structure of AlN and GaN under uniaxial strain along the [0001] direction are systematically investigated using HSE06 range-separated hybrid functionals. Our results exhibit interesting behavior. (i) AlN and GaN share the same structural transition from wurtzite to a graphite-like phase at very large compressive strains, similarly to other wurtzite semiconductors. Our calculations further reveal that this well-known phase transition is driven by the transverse-acoustic soft phonon mode associated with elastic instabilities. (ii) The applied tensile strain can either drastically suppress or strongly enhance the polarization and piezoelectricity, based on the value of the strain. Furthermore, large enhancements of polarization and piezoelectricity close to the phase-transition regions at large compressive strains are predicted, similar to those previously predicted in ferroelectric fields. Our calculations indicate that such colossal enhancements are strongly correlated to phase transitions when large atomic displacements are generated by external strains. (iii) Under the same strain, AlN and GaN have significantly different electronic properties: both wurtzite and graphite-like AlN always display direct band structures, while the the bandgap of wurtzite GaN is always direct and that of graphite-like GaN always indirect. Furthermore, the bandgap of graphite-like AlN is greatly enhanced by large compressive strain, but that of wurtzite GaN is not sensitive to compressive strain. Our results are drastically different from those for equibiaxial strain (Duan et al 2012 Appl. Phys. Lett. 100 022104).

  16. Hybrid density functional theory studies of AlN and GaN under uniaxial strain

    NASA Astrophysics Data System (ADS)

    Qin, Lixia; Duan, Yifeng; Shi, Hongliang; Shi, Liwei; Tang, Gang

    2013-01-01

    The structural stability, spontaneous polarization, piezoelectric response, and electronic structure of AlN and GaN under uniaxial strain along the [0001] direction are systematically investigated using HSE06 range-separated hybrid functionals. Our results exhibit interesting behavior. (i) AlN and GaN share the same structural transition from wurtzite to a graphite-like phase at very large compressive strains, similarly to other wurtzite semiconductors. Our calculations further reveal that this well-known phase transition is driven by the transverse-acoustic soft phonon mode associated with elastic instabilities. (ii) The applied tensile strain can either drastically suppress or strongly enhance the polarization and piezoelectricity, based on the value of the strain. Furthermore, large enhancements of polarization and piezoelectricity close to the phase-transition regions at large compressive strains are predicted, similar to those previously predicted in ferroelectric fields. Our calculations indicate that such colossal enhancements are strongly correlated to phase transitions when large atomic displacements are generated by external strains. (iii) Under the same strain, AlN and GaN have significantly different electronic properties: both wurtzite and graphite-like AlN always display direct band structures, while the the bandgap of wurtzite GaN is always direct and that of graphite-like GaN always indirect. Furthermore, the bandgap of graphite-like AlN is greatly enhanced by large compressive strain, but that of wurtzite GaN is not sensitive to compressive strain. Our results are drastically different from those for equibiaxial strain (Duan et al 2012 Appl. Phys. Lett. 100 022104).

  17. Microstructure of laterally overgrown GaN layers

    SciTech Connect

    Liliental-Weber, Zuzanna; Cherns, David

    2001-04-03

    Transmission electron microscopy study of plan-view and cross-section samples of epitaxial laterally overgrown (ELOG) GaN samples is described. Two types of dislocation with the same type of Burgers vector but different line direction have been observed. It is shown that threading edge dislocations bend to form dislocation segments in the c-plane as a result of shear stresses developed in the wing material along the stripe direction. It is shown that migration of these dislocations involves both glide and climb. Propagation of threading parts over the wing area is an indication of high density of point defects present in the wing areas on the ELOG samples. This finding might shed new light on the optical properties of such samples.

  18. An Optimal Density Functional Theory Method for GaN and ZnO

    SciTech Connect

    Yu, H.G.

    2011-08-25

    We report an optimal DFT method (bBLYP) for studying the GaN and ZnO systems. It is developed by modifying the exchange functional in the hybrid BLYP method in order to overcome the flaw of traditional DFT that often predict a rather small band gap for those semiconductors. Results show that the bBLYP method can describe not only correct band gaps of both GaN and ZnO wurtzite crystals, but also accurate properties of relevant small molecules. The application study of crystal-cut nanoparticles and nanowires reveals a new mechanism for band gap narrowing in GaN/ZnO.

  19. Change in equilibrium position of misfit dislocations at the GaN/sapphire interface by Si-ion implantation into sapphire—I. Microstructural characterization

    SciTech Connect

    Lee, Sung Bo Han, Heung Nam Lee, Dong Nyung; Ju, Jin-Woo; Kim, Young-Min; Yoo, Seung Jo; Kim, Jin-Gyu

    2015-07-15

    Much research has been done to reduce dislocation densities for the growth of GaN on sapphire, but has paid little attention to the elastic behavior at the GaN/sapphire interface. In this study, we have examined effects of the addition of Si to a sapphire substrate on its elastic property and on the growth of GaN deposit. Si atoms are added to a c-plane sapphire substrate by ion implantation. The ion implantation results in scratches on the surface, and concomitantly, inhomogeneous distribution of Si. The scratch regions contain a higher concentration of Si than other regions of the sapphire substrate surface, high-temperature GaN being poorly grown there. However, high-temperature GaN is normally grown in the other regions. The GaN overlayer in the normally-grown regions is observed to have a lower TD density than the deposit on the bare sapphire substrate (with no Si accommodated). As compared with the film on an untreated, bare sapphire, the cathodoluminescence defect density decreases by 60 % for the GaN layer normally deposited on the Si-ion implanted sapphire. As confirmed by a strain mapping technique by transmission electron microscopy (geometric phase analysis), the addition of Si in the normally deposited regions forms a surface layer in the sapphire elastically more compliant than the GaN overlayer. The results suggest that the layer can largely absorb the misfit strain at the interface, which produces the overlayer with a lower defect density. Our results highlight a direct correlation between threading-dislocation density in GaN deposits and the elastic behavior at the GaN/sapphire interface, opening up a new pathway to reduce threading-dislocation density in GaN deposits.

  20. A quantitative study of the effect of surface texture on plasticity induced surface roughness and dislocation density of crystalline materials

    NASA Astrophysics Data System (ADS)

    Zamiri, Amir R.; Pourboghrat, Farhang; Bieler, Thomas R.

    2008-10-01

    Microscale simulations are used to study the effects of the surface texture and plastic deformation on surface roughness and dislocation density, which are important parameters controlling some surface physical properties such as electron work function (EWF) and phonon emission of crystalline materials. The results of the simulations on superconducting niobium show that the intensity and the components of the surface texture have significant effects on the plasticity induced surface roughness and dislocation density. A weak surface texture develops a rough surface after plastic deformation, which is due to the different plastic "shear rates and directions" behavior in the grains with different orientations. Some grains with specific orientation experience more plastic deformation, and therefore develop an intragrain surface roughness due to the development of microtexture and inhomogeneous plastic deformation inside the grain. Due to an inhomogeneous plastic deformation, the dislocation density not only is different in the grains with different orientations but also is inhomogeneous within a grain. Therefore, it may be possible to design surface texture to obtain optimal EWF and minimal electron emission and control surface roughness and dislocation density in polycrystalline materials.

  1. X-ray and neutron diffraction measurements of dislocation density and subgrain size in a friction stir welded aluminum alloy

    SciTech Connect

    Claussen, Bjorn; Woo, Wanchuck; Zhili, Feng; Edward, Kenik; Ungar, Tamas

    2009-01-01

    The dislocation density and subgrain size were determined in the base material and friction-stir welds of 6061-T6 aluminum alloy. High-resolution X-ray diffraction measurement was performed in the base material. The result of the line profile analysis of the X-ray diffraction peak shows that the dislocation density is about 4.5 x 10{sup 14} m{sup 02} and the subgrain size is about 200 nm. Meanwhile, neutron diffraction measurements have been performed to observe the diffraction peaks during friction-stir welding (FSW). The deep penetration capability of the neutron enables us to measure the peaks from the midplane of the Al plate underneath the tool shoulder of the friction-stir welds. The peak broadening analysis result using the Williamson-Hall method shows the dislocation density of about 3.2 x 10{sup 15} m{sup -2} and subgrain size of about 160 nm. The significant increase of the dislocation density is likely due to the severe plastic deformation during FSW. This study provides an insight into understanding the transient behavior of the microstructure under severe thermomechanical deformation.

  2. Evaluation of dislocation densities in HgCdTe films by high-resolution x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Wang, Qingxue; Yang, Jianrong; Wei, Yanfeng; Fang, Weizheng; He, Li

    2005-01-01

    The dislocation densities in HgCdTe films grown on CdZnTe by Liquid Phase Epitaxy (LPE) are calculated based on their effects on the x-ray rocking curves. The dislocation densities derived from three kinds of methods, i.e. FWHM of X-ray double axis diffraction, Williamson-Hall plot and Pseudo-Voigt function, are approximately the same. It is found that the thickness of HgCdTe epilayers about 10 um is large enough so that effect of crystallize size on the rocking curves width can be ignored. Because the intrinsic FWHM of HgCdTe and the instrumental function of high resolution X-ray diffraction are neglected in Williamson-Hall plot and Pseudo-Voigt function, the dislocation densities obtained by these methods are a little larger than those derived from the first kind of method. Among three kinds of methods, Pseudo-Voigt function method is the easiest one to fit the rocking curves and calculate the dislocation densities.

  3. Nanoheteroepitaxy of GaN on AlN/Si(111) nanorods fabricated by nanosphere lithography

    NASA Astrophysics Data System (ADS)

    Lee, Donghyun; Shin, In-Su; Jin, Lu; Kim, Donghyun; Park, Yongjo; Yoon, Euijoon

    2016-06-01

    Nanoheteroepitaxy (NHE) of GaN on an AlN/Si(111) nanorod structure was investigated by metal-organic chemical vapor deposition. Silica nanosphere lithography was employed to fabricate a periodic hexagonal nanorod array with a narrow gap of 30 nm between the nanorods. We were successful in obtaining a fully coalesced GaN film on the AlN/Si(111) nanorod structure. Transmission electron microscopy revealed that threading dislocation (TD) bending and termination by stacking faults occurred near the interface between GaN and the AlN/Si(111) nanorods, resulting in the reduction of TD density for the NHE GaN layer. The full width at half-maximum of the X-ray rocking curve for (102) plane of the NHE GaN was found to decrease down to 728 arcsec from 1005 arcsec for the GaN layer on a planar AlN/Si(111) substrate, indicating that the crystalline quality of the NHE GaN was improved. Also, micro-Raman measurement showed that tensile stress in the NHE GaN layer was reduced significantly as much as 70% by introducing air voids between the nanorods.

  4. Characterization of 100 mm Diameter 4H-Silicon Carbide CrystalsWith Extremely Low Basal Plane Dislocation Density

    SciTech Connect

    M Dudley; N Zhang; Y Zhang; B Raghothamachar; S Byrappa; G Choi; E Drachev; M Loboda

    2011-12-31

    Synchrotron White Beam X-ray Topography (SWBXT) studies are presented of basal plane dislocation (BPD) configurations and behavior in a new generation of 100mm diameter, 4H-SiC wafers with extremely low BPD densities (3-4 x 10{sup 2} cm{sup -2}). The conversion of non-screw oriented, glissile BPDs into sessile threading edge dislocations (TEDs) is observed to provide pinning points for the operation of single ended Frank-Read sources. In some regions, once converted TEDs are observed to re-convert back into BPDs in a repetitive process which provides multiple BPD pinning points.

  5. Reduced Dislocation Density in GaxIn1-xP Compositionally Graded Buffer Layers through Engineered Glide Plane Switch

    SciTech Connect

    Schulte, Kevin L.; France, Ryan M.; McMahon, William E.; Norman, Andrew G.; Guthrey, Harvey L.; Geisz, John F.

    2016-11-17

    In this work we develop control over dislocation glide dynamics in GaxIn1-xP compositionally graded buffer layers (CGBs) through control of CuPt ordering on the group-III sublattice. The ordered structure is metastable in the bulk, so any glissile dislocation that disrupts the ordered pattern will release stored energy, and experience an increased glide force. Here we show how this connection between atomic ordering and dislocation glide force can be exploited to control the threading dislocation density (TDD) in GaxIn1-xP CGBs. When ordered GaxIn1-xP is graded from the GaAs lattice constant to InP, the order parameter ..eta.. decreases as x decreases, and dislocation glide switches from one set of glide planes to the other. This glide plane switch (GPS) is accompanied by the nucleation of dislocations on the new glide plane, which typically leads to increased TDD. We develop control of the GPS position within a GaxIn1-xP CGB through manipulation of deposition temperature, surfactant concentration, and strain-grading rate. We demonstrate a two-stage GaxIn1-xP CGB from GaAs to InP with sufficiently low TDD for high performance devices, such as the 4-junction inverted metamorphic multi-junction solar cell, achieved through careful control the GPS position. Experimental results are analyzed within the context of a model that considers the force balance on dislocations on the two competing glide planes as a function of the degree of ordering.

  6. Reduced dislocation density in GaxIn1-xP compositionally graded buffer layers through engineered glide plane switch

    NASA Astrophysics Data System (ADS)

    Schulte, K. L.; France, R. M.; McMahon, W. E.; Norman, A. G.; Guthrey, H. L.; Geisz, J. F.

    2017-04-01

    In this work we develop control over dislocation glide dynamics in GaxIn1-xP compositionally graded buffer layers (CGBs) through control of CuPt ordering on the group-III sublattice. The ordered structure is metastable in the bulk, so any glissile dislocation that disrupts the ordered pattern will release stored energy, and experience an increased glide force. Here we show how this connection between atomic ordering and dislocation glide force can be exploited to control the threading dislocation density (TDD) in GaxIn1-xP CGBs. When ordered GaxIn1-xP is graded from the GaAs lattice constant to InP, the order parameter η decreases as x decreases, and dislocation glide switches from one set of glide planes to the other. This glide plane switch (GPS) is accompanied by the nucleation of dislocations on the new glide plane, which typically leads to increased TDD. We develop control of the GPS position within a GaxIn1-xP CGB through manipulation of deposition temperature, surfactant concentration, and strain-grading rate. We demonstrate a two-stage GaxIn1-xP CGB from GaAs to InP with sufficiently low TDD for high performance devices, such as the 4-junction inverted metamorphic multi-junction solar cell, achieved through careful control the GPS position. Experimental results are analyzed within the context of a model that considers the force balance on dislocations on the two competing glide planes as a function of the degree of ordering.

  7. Constitutive model based on dislocation density and ductile fracture of monel 400 thin sheet under tension

    NASA Astrophysics Data System (ADS)

    Wang, Chuanjie; Xue, Shaoxi; Chen, Gang; Zhang, Peng

    2017-02-01

    In micro-scaled plastic deformation, material strength and ductile fracture behaviors of thin sheet in tension are quite different from those in macro-scale. In this study, uniaxial tensile tests of Monel 400 thin sheets with different microstructures were carried out to investigate the plastic deformation size effect in micro-scale. The experimental results indicate that the flow stress and fracture strain departure from the traditional empirical formula when there are only fewer grains across the thickness. And the number of dimples on the fracture surface is getting smaller with the decreasing ratio of specimen thickness to grain size. Then, a constitutive model based on dislocation density considering the free surface effect in micro-scale is proposed to reveal the mechanism of the flow stress size effect. In addition, a model is proposed considering the surface roughening inducing the thickness nonuniform and the decrease of micro-voids resulting from the reduction of grain boundary density with the decreasing ratio of specimen thickness to grain size. The interactive effects of the surface roughening and the decrease of micro-voids result in the earlier fracture in micro tension of the specimen with fewer grains across the thickness.

  8. Constitutive model based on dislocation density and ductile fracture of Monel 400 thin sheet under tension

    NASA Astrophysics Data System (ADS)

    Wang, Chuanjie; Xue, Shaoxi; Chen, Gang; Zhang, Peng

    2017-03-01

    In micro-scaled plastic deformation, material strength and ductile fracture behaviors of thin sheet in tension are quite different from those in macro-scale. In this study, uniaxial tensile tests of Monel 400 thin sheets with different microstructures were carried out to investigate the plastic deformation size effect in micro-scale. The experimental results indicate that the flow stress and fracture strain departure from the traditional empirical formula when there are only fewer grains across the thickness. And the number of dimples on the fracture surface is getting smaller with the decreasing ratio of specimen thickness to grain size. Then, a constitutive model based on dislocation density considering the free surface effect in micro-scale is proposed to reveal the mechanism of the flow stress size effect. In addition, a model is proposed considering the surface roughening inducing the thickness nonuniform and the decrease of micro-voids resulting from the reduction of grain boundary density with the decreasing ratio of specimen thickness to grain size. The interactive effects of the surface roughening and the decrease of micro-voids result in the earlier fracture in micro tension of the specimen with fewer grains across the thickness.

  9. Dislocation densities and stored energy after cold rolling of Al-Mg alloys: Investigations by resistivity and differential scanning calorimetry

    SciTech Connect

    Verdier, M.; Flandin, L.; Brechet, Y.; Groma, I.; Lendvai, J.; Guyot, P.

    1997-08-15

    The authors have shown that the heat released during heating samples of Al-2.5%Mg cold rolled at different strains stems from two contributions: one corresponds to the annihilation of defects during recrystallization and the other to desegregation of solute atoms from the core of dislocations. A low temperature endotherm peak is also observed and can be attributed to dissolution of Mg clusters formed in dislocation walls. The authors have shown that the hardness of the material can be described by a single internal variable which is the density of dislocations. In contrast to this, the energy stored during cold rolling can not be described by a single variable theory. As a consequence, the yield stress alone can not be sufficient to depict stored energy and thus recrystallization kinetics.

  10. The structure of dislocations in (In,Al,Ga)N wurtzite films grown epitaxially on (0001) or (112xAF2) GaN or AlN substrates

    NASA Astrophysics Data System (ADS)

    Jones, K. A.; Batyrev, I. G.

    2012-12-01

    When dislocations have to be nucleated in the film to accommodate the lattice mismatch with the substrate, the shear stress acting in the glide plane, projection of the edge component of the Burgers vector lying in the growth plane, shear stress required for the dislocation to glide, and ability to decompose into partial dislocation pairs with an associated stacking fault are considered. This is done for growth on the (0001) or (112¯2) substrates by calculating the angle the slip plane, h, makes with the growth plane, length of the Burgers vector, b, angle between b and the dislocation line, l, projection of b onto the normal to l lying in the growth plane, and planar density of h. The planar density is used as a measure of the shear stress required to move the dislocation, and it is computed by determining the interplanar spacing, d, and accounting for the atoms that lie in parallel planes, which are made possible by the fact that the wurtzite unit cell contains four atoms per lattice point. Only dislocations with pyramidal glide planes are considered for growth on the (0001) substrate because the plane strain generated by the lattice mismatch does not generate any shear stress in the basal or prismatic planes. Only one member of the family of planes is considerate for this growth plane because of its high symmetry. For growth on the (112¯2) plane both slip in the basal plane and the prismatic plane normal to the Burgers vector in it are examined.

  11. Experimental study and modeling of the influence of screw dislocations on the performance of Au/n-GaN Schottky diodes

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Chen, X. D.; Fung, S.; Beling, C. D.; Ling, C. C.

    2003-11-01

    Current-voltage (I-V) characteristics of macroscopic Schottky diodes fabricated on different GaN templates grown by metalogranic chemical vapor deposition on sapphire substrates were investigated. The number of dislocations under the Au Schottky contact was determined by atomic force microscopy combined with hot H3PO4 etching and the screw dislocations in the GaN films were found to have a strong influence on the reverse leakage current of the Au/n-GaN Schottky diodes. The leakage current is increased when high-density screw dislocations exist under the Au Schottky contact. A model based upon the presence of dislocations at the Au/GaN interface has been used to explain this behavior. It has been proposed that these dislocations result in the lowering of the barrier height in the localized regions, and thus significantly affect the reverse I-V characteristics of the Schottky diodes.

  12. Gamma Prime Precipitation, Dislocation Densities, and TiN in Creep-Exposed Inconel 617 Alloy

    NASA Astrophysics Data System (ADS)

    Krishna, Ram; Atkinson, Helen V.; Hainsworth, Sarah V.; Gill, Simon P.

    2016-01-01

    Inconel 617 is a solid-solution-strengthened Ni-based superalloy with a small amount of gamma prime (γ') present. Here, samples are examined in the as-received condition and after creep exposure at 923 K (650 °C) for 574 hours and 45,000 hours and at 973 K (700 °C) for 4000 hours. The stress levels are intermediate (estimated, respectively, as of the order of 350, 275, and 200 MPa) and at levels of interest for the future operation of power plant. The hardness of the specimens has been measured in the gage length and the head. TEM thin foils have been obtained to quantify dislocation densities (3.5 × 1013 for the as-received, 5.0 × 1014, 5.9 × 1014, and 3.5 × 1014 lines/m2 for the creep-exposed specimens, respectively). There are no previous data in the literature for dislocation densities in this alloy after creep exposure. There is some evidence from the dislocation densities that for the creep-exposed samples, the higher hardness in the gage length in comparison with the creep test specimen head is due to work hardening rather than any other effect. Carbon replicas have been used to extract gamma prime precipitates. The morphology of γ' precipitates in the `as-received' condition was spheroidal with an average diameter of 18 nm. The morphology of these particles does not change with creep exposure but the size increases to 30 nm after 574 hours at 923 K (650 °C) but with little coarsening in 45,000 hours. At 973 K (700 °C) 4000 hours, the average gamma prime size is 32 nm. In the TEM images of the replicas, the particles overlap, and therefore, a methodology has been developed to estimate the volume fraction of gamma prime in the alloy given the carbon replica film thickness. The results are 5.8 vol pct in the as-received and then 2.9, 3.2, and 3.4 vol pct, respectively, for the creep-exposed specimens. The results are compared with predictions from thermodynamic analysis given the alloy compositions. Thermodynamic prediction shows that nitrogen

  13. Assessment of lattice strain, rotation and dislocation content using electron back-scatter diffraction

    NASA Astrophysics Data System (ADS)

    Wilkinson, Angus J.

    2011-11-01

    Cross-correlation based analysis methods have been developed for electron back scatter diffraction (EBSD) patterns that improve the angular sensitivity to ~10-4 rads. This enables EBSD to be used to study the much smaller misorientations and even local elastic strain fields that are typical in semiconducting materials. Mapping of the lattice rotations and elastic strain variations provides sufficient detail for quantitative analysis of the threading dislocation density through the Nye tensor. The analysis will be briefly described and applications given to GaN and Si/SiGe based systems. Measurements of tilt, twist and elastic strain variations in GaN layers on basal plane sapphire will be reported and compared to results for some epitaxial lateral over grown (ELOG) GaN samples. The effects of misfit interfacial dislocations on the spatial distribution of the full strain and rotation tensors in a partially relaxed SiGe layer will also be shown.

  14. Polarity control of GaN grown on pulsed-laser-deposited AlN/GaN template by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Yoo, Jinyeop; Shojiki, Kanako; Tanikawa, Tomoyuki; Kuboya, Shigeyuki; Hanada, Takashi; Katayama, Ryuji; Matsuoka, Takashi

    2016-05-01

    We report on the polarity control of GaN regrown on pulsed-laser-deposition-grown N-polar AlN on a metalorganic-vapor-phase-epitaxy-grown Ga-polar GaN template. The polarity of the regrown GaN, which was confirmed using aqueous KOH solutions, can be inverted from that of AlN by inserting a low-temperature GaN (LT-GaN) buffer layer. We hypothetically ascribe the Ga-polarity selection of GaN on the LT-GaN buffer layer to the mixed polarity of LT-GaN grains and higher growth rate of the Ga-polar grain, which covers up the N-polar grain during the initial stage of the high-temperature growth. The X-ray rocking curve analysis revealed that the edge-dislocation density in the N-polar regrown GaN is 5 to 8 times smaller than that in the Ga-polar regrown GaN. N-polar GaN grows directly on N-polar AlN at higher temperatures. Therefore, nucleus islands grow larger than those of LT-GaN and the area fraction of coalescence boundaries between islands, where edge dislocations emerge, becomes smaller.

  15. Growth of Low Defect Density Gallium Nitride (GaN) Films on Novel Tantalum Carbide (TaC) Substrates for Improved Device Performance

    DTIC Science & Technology

    2009-05-01

    on SiC substrates by pulse laser deposition (PLD) (10) and on magnesium oxide ( MgO ) substrates by electron beam evaporation (11), using TaC films...matched to GaN than currently used substrates. We created the TaC substrate, using pulse laser deposition (PLD) of TaC onto (0001) SiC substrates at...films grown on SiC or sapphire, and they contained more than an order of magnitude fewer dislocations compared to a typical value of 4 x 109 cm–2

  16. Comparative study on hydrostatic strain, stress and dislocation density of Al{sub 0.3}Ga{sub 0.7}N/GaN heterostructure before and after a-Si{sub 3}N{sub 4} passivation

    SciTech Connect

    Dinara, Syed Mukulika Jana, Sanjay Kr.; Mukhopadhyay, Partha; Ghosh, Saptarsi; Bhattacharya, Sekhar; Biswas, Dhrubes

    2015-08-28

    The hydrostatic strain, stress and dislocation densities were comparatively analyzed before and after passivation of amorphous silicon nitride (a-Si{sub 3}N{sub 4}) layer on Al{sub 0.3}Ga{sub 0.7}N/GaN heterostructure by nondestructive high resolution x-ray diffraction (HRXRD) technique. The crystalline quality, in-plane and out-of plane strain were evaluated from triple-axis (TA) (ω-2θ) diffraction profile across the (002) reflection plane and double-axis (DA) (ω-2θ) glancing incidence (GI) diffraction profile across (105) reflection plane. The hydrostatic strain and stress of Al{sub 0.3}Ga{sub 0.7}N barrier layer were increased significantly after passivation and both are tensile in nature. The dislocation density of GaN was also analyzed and no significant change was observed after passivation of the heterostructure. The crystalline quality was not degraded after passivation on the heterostructure confirmed by the full-width-half-maximum (FWHM) analysis.

  17. Micro-strain, dislocation density and surface chemical state analysis of multication thin films

    NASA Astrophysics Data System (ADS)

    Jayaram, P.; Pradyumnan, P. P.; Karazhanov, S. Zh.

    2016-11-01

    Multication complex metal oxide thin films are rapidly expanding the class of materials with many technologically important applications. Herein this work, the surface of the pulsed laser deposited thin films of Zn2SnO4 and multinary compounds obtained by substitution/co-substitution of Sn4+ with In3+ and Ga3+ are studied by X-ray photoelectron emission spectroscopy (X-PES) method. Peaks corresponding to the elements of Zn, Sn, Ga, In and O on the film surface has been identified and contribution of the elements has been studied by the computer aided surface analysis (CASA) software. Binding energies, full-width at half maximum (FWHM), spin-orbit splitting energies, asymmetric peak-shape fitting parameters and quantification of elements in the films are discussed. Studies of structural properties of the films by x-ray diffraction (XRD) technique showed inverse spinel type lattice with preferential orientation. Micro-strain, dislocation density and crystallite sizes in the film surface have been estimated.

  18. Structural defects in bulk GaN

    NASA Astrophysics Data System (ADS)

    Liliental-Weber, Z.; dos Reis, R.; Mancuso, M.; Song, C. Y.; Grzegory, I.; Porowski, S.; Bockowski, M.

    2014-10-01

    Transmission Electron Microscopy (TEM) studies of undoped and Mg doped GaN layers grown on the HVPE substrates by High Nitrogen Pressure Solution (HNPS) with the multi-feed-seed (MFS) configuration are shown. The propagation of dislocations from the HVPE substrate to the layer is observed. Due to the interaction between these dislocations in the thick layers much lower density of these defects is observed in the upper part of the HNPS layers. Amorphous Ga precipitates with attached voids pointing toward the growth direction are observed in the undoped layer. This is similar to the presence of Ga precipitates in high-pressure platelets, however the shape of these precipitates is different. The Mg doped layers do not show Ga precipitates, but MgO rectangular precipitates are formed, decorating the dislocations. Results of TEM studies of HVPE layers grown on Ammonothermal substrates are also presented. These layers have superior crystal quality in comparison to the HNPS layers, as far as density of dislocation is concern. Occasionally some small inclusions can be found, but their chemical composition was not yet determined. It is expected that growth of the HNPS layers on these substrate will lead to large layer thickness obtained in a short time and with high crystal perfection needed in devices.

  19. Relationship between dislocation and the visible luminescence band observed in ZnO epitaxial layers grown on c-plane p-GaN templates by chemical vapor deposition technique

    NASA Astrophysics Data System (ADS)

    Saroj, Rajendra K.; Dhar, S.

    2016-08-01

    ZnO epitaxial layers are grown on c-plane GaN (p-type)/sapphire substrates using a chemical vapor deposition technique. Structural and luminescence properties of these layers have been studied systematically as a function of various growth parameters. It has been found that high quality ZnO epitaxial layers can indeed be grown on GaN films at certain optimum conditions. It has also been observed that the growth temperature and growth time have distinctly different influences on the screw and edge dislocation densities. While the growth temperature affects the density of edge dislocations more strongly than that of screw dislocations, an increase of growth duration leads to a rapid drop in the density of screw dislocation, whereas the density of edge dislocation hardly changes. Densities of both edge and screw dislocations are found to be minimum at a growth temperature of 500 °C. Interestingly, the defect related visible luminescence intensity also shows a minimum at the same temperature. Our study indeed suggests that the luminescence feature is related to threading edge dislocation. A continuum percolation model, where the defects responsible for visible luminescence are considered to be formed under the influence of the strain field surrounding the threading edge dislocations, is proposed. The theory explains the observed variation of the visible luminescence intensity as a function of the concentration of the dislocations.

  20. Dislocation-assisted tunnelling of charge carriers across the Schottky barrier on the hydride vapour phase epitaxy grown GaN

    NASA Astrophysics Data System (ADS)

    Chatterjee, Abhishek; Khamari, Shailesh K.; Dixit, V. K.; Oak, S. M.; Sharma, T. K.

    2015-11-01

    Barrier height and Ideality factor of Ni/n-GaN Schottky diodes are measured by performing temperature dependent current-voltage measurements. The measured value of barrier height is found to be much smaller than the theoretically calculated Schottky-Mott barrier height for the Ni/n-GaN diodes. Furthermore, a high value of ideality factor (>2) is measured at low temperatures. In order to understand these results, we need to consider a double Gaussian distribution of barrier height where the two components are related to the thermionic emission and thermionic filed emission mediated by dislocation-assisted tunnelling of carriers across the Schottky barrier. Thermionic emission is seen to dominate at temperatures higher than 170 K while the dislocation-assisted tunnelling dominates at low temperatures. The value of characteristic tunnelling energy measured from the forward bias current-voltage curves also confirms the dominance of dislocation-assisted tunnelling at low temperatures which is strongly corroborated by the Hall measurements. However, the value of characteristic tunnelling energy for high temperature range cannot be supported by the Hall results. This discrepancy can be eliminated by invoking a two layer model to analyse the Hall data which confirms that the charged dislocations, which reach the sample surface from the layer-substrate interface, provide an alternate path for the transport of carriers. The dislocation-assisted tunnelling of carriers governs the values of Schottky diode parameters at low temperature and the same is responsible for the observed inhomogeneity in the values of barrier height. The present analysis is applicable wherever the charge transport characteristics are severely affected by the presence of a degenerate layer at GaN-Sapphire interface and dislocations lines pierce the Schottky junction to facilitate the tunnelling of carriers.

  1. Neutron diffraction measurement of residual stresses, dislocation density and texture in Zr-bonded U-10Mo "mini" fuel foils and plates

    NASA Astrophysics Data System (ADS)

    Brown, D. W.; Okuniewski, M. A.; Sisneros, T. A.; Clausen, B.; Moore, G. A.; Balogh, L.

    2016-12-01

    Al clad U-10Mo fuel plates are being considered for conversion of several research reactors from high-enriched to low-enriched U fuel. Neutron diffraction measurements of the textures, residual phase stresses, and dislocation densities in the individual phases of the mini-foils throughout several processing steps and following hot-isostatic pressing to the Al cladding, have been completed. Recovery and recrystallization of the bare U-10Mo fuel foil, as indicated by the dislocation density and texture, are observed depending on the state of the material prior to annealing and the duration and temperature of the annealing process. In general, the cladding procedure significantly reduces the dislocation density, but the final state of the clad plate, both texture and dislocation density, depends strongly on the final processing step of the fuel foil. In contrast, the residual stress state of the final plate is dominated by the thermal expansion mismatch of the constituent materials.

  2. Neutron diffraction measurement of residual stresses, dislocation density and texture in Zr-bonded U-10Mo “mini” fuel foils and plates

    SciTech Connect

    Brown, Donald William; Okuniewski, Maria A.; Sisneros, Thomas A.; Clausen, Bjorn; Moore, Glenn A.; Balogh, Levente

    2016-12-01

    Here, Al clad U-10Mo fuel plates are being considered for conversion of several research reactors from high-enriched to low-enriched U fuel. Neutron diffraction measurements of the textures, residual phase stresses, and dislocation densities in the individual phases of the mini-foils throughout several processing steps and following hot-isostatic pressing to the Al cladding, have been completed. Recovery and recrystallization of the bare U-10Mo fuel foil, as indicated by the dislocation density and texture, are observed depending on the state of the material prior to annealing and the duration and temperature of the annealing process. In general, the cladding procedure significantly reduces the dislocation density, but the final state of the clad plate, both texture and dislocation density, depends strongly on the final processing step of the fuel foil. In contrast, the residual stress state of the final plate is dominated by the thermal expansion mismatch of the constituent materials.

  3. MOCVD growth of GaN on Si through novel substrate modification techniques

    NASA Astrophysics Data System (ADS)

    Gagnon, Jarod C.

    GaN is a semiconductor material with great potential for use in high power electronics and optoelectronics due to the high electron mobility, high breakdown voltage, high thermal stability, and large direct bandgap of GaN. Si is a desirable substrate material for GaN heteroepitaxy due to the low cost of production, large wafer sizes available, and current widespread use in the electronics industry. The growth of GaN/Si devices suffers from the lattice and CTE mismatches between GaN and Si and therefore multiple methods of strain reduction have been employed to counter these effects. In this work we presented two novel methods of substrate modification to promote the growth of device quality GaN on Si. Initial work focused on the implantation of AlN/Si(111) substrates with N+ ions below the AlN/Si(111) interface. A reduction in the initial compressive stress in GaN films as well as the degree of tensile stress generation during growth was observed on implanted samples. Optical microscopy of the GaN surfaces showed reduced channeling crack density on implanted substrates. Transmission electron microscopy (TEM) studies showed a disordered layer in the Si substrate at the implantation depth which consisted of a mixture of polycrystalline and amorphous Si. Evidence was provided to suggest that the disordered layer at the implantation depth was acting as a compliant layer which decoupled the GaN film from the bulk Si substrate and partially accommodated the tensile stress formed during growth and cooling. A reduction in threading dislocation (TD) density on ion implanted substrates was also observed. Additional studies showed that by increasing the lateral size of AlN islands, the tensile growth stress and TD density in GaN films on ion implanted substrates could be further reduced. XRD studies showed an expansion of the AlN lattice on implanted substrates with larger lateral island sizes. The final tensile growth stress of films on implanted substrates was further

  4. Zn-dopant dependent defect evolution in GaN nanowires

    NASA Astrophysics Data System (ADS)

    Yang, Bing; Liu, Baodan; Wang, Yujia; Zhuang, Hao; Liu, Qingyun; Yuan, Fang; Jiang, Xin

    2015-10-01

    Zn doped GaN nanowires with different doping levels (0, <1 at%, and 3-5 at%) have been synthesized through a chemical vapor deposition (CVD) process. The effect of Zn doping on the defect evolution, including stacking fault, dislocation, twin boundary and phase boundary, has been systematically investigated by transmission electron microscopy and first-principles calculations. Undoped GaN nanowires show a hexagonal wurtzite (WZ) structure with good crystallinity. Several kinds of twin boundaries, including (101&cmb.macr;3), (101&cmb.macr;1) and (202&cmb.macr;1), as well as Type I stacking faults (...ABABC&cmb.b.line;BCB...), are observed in the nanowires. The increasing Zn doping level (<1 at%) induces the formation of screw dislocations featuring a predominant screw component along the radial direction of the GaN nanowires. At high Zn doping level (3-5 at%), meta-stable cubic zinc blende (ZB) domains are generated in the WZ GaN nanowires. The WZ/ZB phase boundary (...ABABAC&cmb.b.line;BA...) can be identified as Type II stacking faults. The density of stacking faults (both Type I and Type II) increases with increasing the Zn doping levels, which in turn leads to a rough-surface morphology in the GaN nanowires. First-principles calculations reveal that Zn doping will reduce the formation energy of both Type I and Type II stacking faults, favoring their nucleation in GaN nanowires. An understanding of the effect of Zn doping on the defect evolution provides an important method to control the microstructure and the electrical properties of p-type GaN nanowires.Zn doped GaN nanowires with different doping levels (0, <1 at%, and 3-5 at%) have been synthesized through a chemical vapor deposition (CVD) process. The effect of Zn doping on the defect evolution, including stacking fault, dislocation, twin boundary and phase boundary, has been systematically investigated by transmission electron microscopy and first-principles calculations. Undoped GaN nanowires show a

  5. Anisotropic structural and optical properties of semi-polar (11–22) GaN grown on m-plane sapphire using double AlN buffer layers

    PubMed Central

    Zhao, Guijuan; Wang, Lianshan; Yang, Shaoyan; Li, Huijie; Wei, Hongyuan; Han, Dongyue; Wang, Zhanguo

    2016-01-01

    We report the anisotropic structural and optical properties of semi-polar (11–22) GaN grown on m-plane sapphire using a three-step growth method which consisted of a low temperature AlN buffer layer, followed by a high temperature AlN buffer layer and GaN growth. By introducing double AlN buffer layers, we substantially improve the crystal and optical qualities of semi-polar (11–22) GaN, and significantly reduce the density of stacking faults and dislocations. The high resolution x-ray diffraction measurement revealed that the in-plane anisotropic structural characteristics of GaN layer are azimuthal dependent. Transmission electron microscopy analysis showed that the majority of dislocations in the GaN epitaxial layer grown on m-sapphire are the mixed-type and the orientation of GaN layer was rotated 58.4° against the substrate. The room temperature photoluminescence (PL) spectra showed the PL intensity and wavelength have polarization dependence along parallel and perpendicular to the [1–100] axis (polarization degrees ~ 0.63). The realization of a high polarization semi-polar GaN would be useful to achieve III-nitride based lighting emission device for displays and backlighting. PMID:26861595

  6. Microtwins and their effect on accumulation of excess dislocation density in grains with different types of crystal lattice bending in deformed austenitic steel

    SciTech Connect

    Gibert, Ivan; Kiseleva, Svetlana Popova, Natalya Koneva, Nina Kozlov, Eduard

    2016-01-15

    The investigation of excess dislocation density accumulation in the deformed polycrystalline austenitic steel was carried out using transmission electron microscopy (TEM). The distributions of the excess dislocation density in the grains of the deformed austenitic steel with different bending types were obtained and plotted. It was established that in the austenitic polycrystalline steel at the deformation degrees ε = 14 and 25 % the distributions of the excess dislocation density are multimodal. In both cases the grain with compound bending is more stressed. The values of the average excess dislocation density in the grains with the compound and simple bending are less at ε = 25 % than that at ε = 14 %. This is explained by a significant relaxation of the internal stresses in steel with the increase of the deformation degree from 14 % to 25 %. The increase of the number of twinning systems and the material volume fraction covered by twinning leads to the internal stress relaxation and consequently to the increase of the excess dislocation density. The presence of microtwins in the deformed material has an influence on the distribution of the excess dislocation density. In the deformed polycrystalline austenitic steel the number of grains with compound bending is increased with the increase of the plastic deformation degree.

  7. The Use of Selective Area Growth for the Reduction of Threading Dislocation Densities in Heteroepitaxy.

    DTIC Science & Technology

    1994-03-31

    M. Umeo, J. Appi Phys. 68,5115 (1990). 8. M. Tamura A. Hashimoto and N. Sugiyama, J Appl. Phys. 70,4770 (1991). 9. M.S. Abrahams , L.R. Weisberg, CJ... microanalysis to correspond to the loss of Zn. We present a mechanism for the formation of the facets as a result of the change in the dislocation structure

  8. Dislocations as a boundary between charge density wave and oxygen rich phases in a cuprate high temperature superconductor

    NASA Astrophysics Data System (ADS)

    Poccia, Nicola; Ricci, Alessandro; Campi, Gaetano; Bianconi, Antonio

    2017-03-01

    Multiple functional ionic and electronic orders are observed in high temperature superconducting cuprates. The charge density wave order is one of them and it is spatially localized in different regions of the material. It is also known that the oxygen interstitials introduced by chemical intercalation self-organize in different oxygen rich regions corresponding with hole rich regions in the CuO2 layers left empty by the charge density wave order domains. However, what happens in between these two orders is not known, and neither there is a method to control this spatial separation. Here we demonstrate by using scanning nano x-ray diffraction, that dislocations or grain boundaries in the material can act as boundary between charge density wave and oxygen rich phases in a optimally doped {{La}}2{{CuO}}4+y high temperature superconductor. Dislocations can be used therefore to control the anti-correlation of the charge density wave order with the oxygen interstitials in specific portion of the material.

  9. The Effect of Grain Size and Dislocation Density on the Tensile Properties of Ni-SiCNP Composites During Annealing

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Huang, Hefei; Thorogood, Gordon James; Jiang, Li; Ye, Xiangxi; Li, Zhijun; Zhou, Xingtai

    2016-03-01

    The grain size refinement, enhancement of mechanical properties, and static recrystallization behavior of metallic nickel-silicon carbide nano-particle (Ni-3wt.%SiCNP) composites, milled for times ranging from 8 to 48 h have been examined. One set of Ni-SiCNP composite samples were annealed at 300 °C for 250 h, while the other set of samples were maintained at room temperature for control purposes (reference). The electron backscatter diffraction results indicate that the grain size of the annealed Ni-SiCNP composite was refined due to grain restructuring during static recrystallization. The x-ray diffraction results indicate that low-temperature annealing effectively reduced the density of dislocations; this can be explained by the dislocation pile-up model. Additionally, the tensile tests indicated that the annealed Ni-SiCNP composite had a significant increase in strength due to an increase of the Hall-Petch strengthening effect with a slight increase in the total elongation. The decrease of dislocation pile-up in the grain interiors and the increase in grain boundary sliding are assumed to be the main mechanisms at play. The relationship between the microstructural evolution and the variation of tensile properties is examined in this study.

  10. Raman mapping of hexagonal hillocks in N-polar GaN grown on c-plane sapphire

    NASA Astrophysics Data System (ADS)

    Jiang, Teng; Lin, Zhiyu; Zhang, Jincheng; Xu, Shengrui; Huang, Jun; Niu, Mutong; Gao, Xiaodong; Guo, Lixin; Hao, Yue

    2017-04-01

    A large amount of huge hexagonal hillocks were observed on the surface of N-polar GaN film grown on c-plane sapphire substrate by MOCVD. The distribution of residual stress and dislocation density in a typical hexagonal hillock was investigated by the mapping measurement of Micro-Raman and Cathodoluminescence (CL) spectroscopy. It is found that the residual stress at the top region of the hillock is much smaller than that of the sidewall region and the region around the hillock. Meanwhile, the CL images confirmed that the dislocation density around the hexagonal hillock is higher than the top region of the hillock. The bending and annihilation of the dislocations during the growth of the hexagonal hillock result in the relaxation of residual stress which should be responsible for the spatial variation of dislocation density and residual stress.

  11. Ionic liquid gating on atomic layer deposition passivated GaN: Ultra-high electron density induced high drain current and low contact resistance

    NASA Astrophysics Data System (ADS)

    Zhou, Hong; Du, Yuchen; Ye, Peide D.

    2016-05-01

    Herein, we report on achieving ultra-high electron density (exceeding 1014 cm-2) in a GaN bulk material device by ionic liquid gating, through the application of atomic layer deposition (ALD) of Al2O3 to passivate the GaN surface. Output characteristics demonstrate a maximum drain current of 1.47 A/mm, the highest reported among all bulk GaN field-effect transistors, with an on/off ratio of 105 at room temperature. An ultra-high electron density exceeding 1014 cm-2 accumulated at the surface is confirmed via Hall-effect measurement and transfer length measurement. In addition to the ultra-high electron density, we also observe a reduction of the contact resistance due to the narrowing of the Schottky barrier width on the contacts. Taking advantage of the ALD surface passivation and ionic liquid gating technique, this work provides a route to study the field-effect and carrier transport properties of conventional semiconductors in unprecedented ultra-high charge density regions.

  12. Strain-induced step bunching in orientation-controlled GaN on Si

    NASA Astrophysics Data System (ADS)

    Narita, Tetsuo; Iguchi, Hiroko; Horibuchi, Kayo; Otake, Nobuyuki; Hoshi, Shinichi; Tomita, Kazuyoshi

    2016-05-01

    We report a technique for the fabrication of high-quality GaN-on-silicon (Si) substrates for use in various power applications. GaN epitaxial layers were generated on Si(111) vicinal faces that had been previously covered with a thin coating of Al2O3 to control the orientation of the AlN seed layers. We obtained orientation-controlled GaN layers and found a linear relationship between the GaN c-axis and Si[111] tilt angles. As a result, the threading dislocation density in the AlN seed layer was reduced and high-quality GaN layers were generated. The X-ray rocking curves for these layers exhibited full width at half maximum values of 390‧‧ and 550‧‧ for the (004) and (114) reflections, respectively. Significant step bunching was observed on a GaN(0001) vicinal face produced using this technique, attributed to strain-induced attractive interactions between steps. Thus, by controlling the strain near the surface layer, we achieved the step flow growth of GaN on Si.

  13. High-quality GaN films obtained by air-bridged lateral epitaxial growth

    NASA Astrophysics Data System (ADS)

    Ishibashi, Akihiko; Kidoguchi, Isao; Sugahara, Gaku; Ban, Yuzaburoh

    2000-12-01

    High-quality GaN films with low dislocation density and low wing tilt of c-axis orientation have been successfully obtained by a promising technique of selected area growth, namely air-bridged lateral epitaxial growth (ABLEG). A GaN film was grown from the exposed (0 0 0 1) top facet of the ridged GaN seed structures, whose side walls and etched bottoms were covered with silicon nitride mask, using low-pressure metalorganic vapor-phase epitaxy. The ridge-stripe structures of the GaN seed were constructed in the 1 1¯00 GaN direction. At the optimum growth temperature of 950°C, only the 1 1 2¯ 0 and {0 0 0 1} facets were obtained. Continuing the growth led to fabricating the air-bridged structure, where the coalescence of the wing region occurred. From the transmission electron microscopy study, it was found that most of the vertical dislocations along the c-axis were confined to the seed region, while the horizontal dislocations were newly generated in the vicinity of coalescence boundary. The densities of the vertical dislocations were about 9×10 8 cm -2 in the seed region, while below 1×10 6 cm -2 in other regions. The densities of the horizontal dislocations were about 1×10 6 cm -2 in the wing region and 4×10 7 cm -2 in the vicinity of the coalescence boundary, respectively. The X-ray diffraction (XRD) measurements revealed that the tilt angle of c-axis relative to underlying seed GaN was about 297 arcsec (0.083°), and the full-width at half-maximum of the XRD curve for the wing region was 138 arcsec, indicating that the wing region has high uniformity of c-axis orientation. Both of the wing and the coalescence boundary region exhibited atomically smooth surfaces with stepped terraces, whose root mean square roughness was found to be 0.089 nm by atomic force microscopy measurements.

  14. GaN HEMTs

    NASA Astrophysics Data System (ADS)

    Anderson, Jonathan W.; Lee, Kyoung-Keun; Piner, Edwin L.

    2012-03-01

    Gallium nitride (GaN) has enormous potential for applications in high electron mobility transistors (HEMTs) used in RF and power devices. Intrinsic device properties such as high electron mobility, high breakdown voltage, very high current density, electron confinement in a narrow channel, and high electron velocity in the 2-dimensional electron gas of the HEMT structure are due in large part to the wide band gap of this novel semiconductor material system. This presentation discusses the properties of GaN that make it superior to other semiconductor materials, and outlines the research that will be undertaken in a new program at Texas State University to advance GaN HEMT technology. This program's aim is to further innovate the exceptional performance of GaN through improved material growth processes and epitaxial structure design.

  15. GaN and AlGaN/GaN heterostructures grown on two dimensional BN templates

    NASA Astrophysics Data System (ADS)

    Snure, Michael; Siegel, Gene; Look, David C.; Paduano, Qing

    2017-04-01

    Two dimension materials, like BN and graphene, have been shown to be excellent templates for the growth and fabrication of freestanding III-nitride materials. In this paper we study the effects of BN morphology on GaN and AlGaN/GaN heterostructures grown on these templates. The crystallinity, transport, and optical properties of the GaN layer are examined and found to be well correlated to the BN template. The self-separation of GaN from the BN/sapphire template is also connected to morphology, resulting in freestanding GaN layers. Transport properties of Si doped GaN and AlGaN/GaN heterostructures were examined for different BN templates. The bulk GaN mobility was closely linked to the morphology of the BN template resulting in room temperature mobility from 395 to 520 cm2/Vs. The range in 3D mobility can be linked to increased dislocation densities in GaN grown on rougher BN templates. High 2DEG mobility ( 2000 cm2/Vs at 300 K) is achieved in AlGaN/GaN grown on atomically smooth BN templates, with a sheet electron density of 1×1013 cm-2, comparable to values obtained on conventional substrates. Samples grown on BN/sapphire showed mobilities (at 9 K) from 33000 cm2/Vs to 15200 cm2/Vs depending on BN roughness. The differences are associated with variations in AlGaN/GaN interface-roughness scattering and dislocation density due to the BN template morphology.

  16. (-201) β-Gallium oxide substrate for high quality GaN materials

    NASA Astrophysics Data System (ADS)

    Roqan, I. S.; Muhammed, M. M.

    2014-03-01

    (-201) oriented β-Ga2O3 has the potential to be used as a transparent and conductive substrate for GaN-growth. The key advantages of Ga2O3 are its small lattice mismatches (4.7%), appropriate structural, thermal and electrical properties and a competitive price compared to other substrates. Optical characterization show that GaN layers grown on (-201) oriented β-Ga2O3 are dominated by intense bandedge emission with a high luminescence efficiency. Atomic force microscopy studies show a modest threading dislocation density of ~108 cm-2, while complementary Raman spectroscopy indicates that the GaN epilayer is of high quality with slight compressive strain. Room temperature time-findings suggest that the limitation of the photoluminescence lifetime (~500 ps) is due to nonradiative recombination arising from threading dislocation. Therefore, by optimizing the growth conditions, high quality material with significant optical efficiency can be obtained.

  17. Control of GaN crystal habit by solution stirring in the Na-flux method

    NASA Astrophysics Data System (ADS)

    Murakami, Kosuke; Imade, Mamoru; Imanishi, Masayuki; Honjo, Masatomo; Imabayashi, Hiroki; Matsuo, Daisuke; Nakamura, Kosuke; Maruyama, Mihoko; Yoshimura, Masashi; Mori, Yusuke

    2017-01-01

    In our previous study, we succeeded in fabricating low-curvature GaN wafers with low dislocation density by the Na-flux coalescence growth technique. However, the crystals consisted of many pyramidal grains with (10\\bar{1}1) facets, leading to an increase in the oxygen concentration in the crystal, an increase in the lattice constant, and blackening. In this study, we attempted to improve the crystal habit of the GaN crystals by employing a solution-stirring technique in the coalescence growth on multipoint seeds. Scanning electron microscope images indicated that the c-face area became larger by increasing the stirring rate and growth period. We concluded that solution stirring in the Na-flux coalescence growth technique is an effective approach to improve the crystal habit and uniformize the lattice constant of GaN crystals.

  18. The Weighted Burgers Vector: a new quantity for constraining dislocation densities and types using electron backscatter diffraction on 2D sections through crystalline materials.

    PubMed

    Wheeler, J; Mariani, E; Piazolo, S; Prior, D J; Trimby, P; Drury, M R

    2009-03-01

    The Weighted Burgers Vector (WBV) is defined here as the sum, over all types of dislocations, of [(density of intersections of dislocation lines with a map) x (Burgers vector)]. Here we show that it can be calculated, for any crystal system, solely from orientation gradients in a map view, unlike the full dislocation density tensor, which requires gradients in the third dimension. No assumption is made about gradients in the third dimension and they may be non-zero. The only assumption involved is that elastic strains are small so the lattice distortion is entirely due to dislocations. Orientation gradients can be estimated from gridded orientation measurements obtained by EBSD mapping, so the WBV can be calculated as a vector field on an EBSD map. The magnitude of the WBV gives a lower bound on the magnitude of the dislocation density tensor when that magnitude is defined in a coordinate invariant way. The direction of the WBV can constrain the types of Burgers vectors of geometrically necessary dislocations present in the microstructure, most clearly when it is broken down in terms of lattice vectors. The WBV has three advantages over other measures of local lattice distortion: it is a vector and hence carries more information than a scalar quantity, it has an explicit mathematical link to the individual Burgers vectors of dislocations and, since it is derived via tensor calculus, it is not dependent on the map coordinate system. If a sub-grain wall is included in the WBV calculation, the magnitude of the WBV becomes dependent on the step size but its direction still carries information on the Burgers vectors in the wall. The net Burgers vector content of dislocations intersecting an area of a map can be simply calculated by an integration round the edge of that area, a method which is fast and complements point-by-point WBV calculations.

  19. The effect of illumination power density on carbon defect configuration in silicon doped GaN

    NASA Astrophysics Data System (ADS)

    Kaess, Felix; Reddy, Pramod; Alden, Dorian; Klump, Andrew; Hernandez-Balderrama, Luis H.; Franke, Alexander; Kirste, Ronny; Hoffmann, Axel; Collazo, Ramón; Sitar, Zlatko

    2016-12-01

    A study of efficacy of point defect reduction via Fermi level control during growth of GaN:Si as a function of above bandgap illumination power density and hence excess minority carrier density is presented. Electrical characterization revealed an almost two-fold increase in carrier concentration and a three-fold increase in mobility by increasing the illumination power density from 0 to 1 W cm-2, corroborating a decrease in compensation and ionic impurity scattering. The effect was further supported by the photoluminescence studies, which showed a monotonic decrease in yellow luminescence (attributed to CN) as a function of illumination power density. Secondary ion mass spectroscopy studies showed no effect of illumination on the total incorporation of Si or C. Thus, it is concluded that Fermi level management changed the configuration of the C impurity as the CN-1 configuration became energetically less favorable due to excess minority carriers.

  20. MOVPE growth of GaN on 6-inch SOI-substrates: effect of substrate parameters on layer quality and strain

    NASA Astrophysics Data System (ADS)

    Lemettinen, J.; Kauppinen, C.; Rudzinski, M.; Haapalinna, A.; Tuomi, T. O.; Suihkonen, S.

    2017-04-01

    We demonstrate that higher crystalline quality, lower strain and improved electrical characteristics can be achieved in gallium nitride (GaN) epitaxy by using a silicon-on-insulator (SOI) substrate compared to a bulk silicon (Si) substrate. GaN layers were grown by metal–organic vapor phase epitaxy on 6-inch bulk Si and SOI wafers using the standard step graded AlGaN and AlN approach. The GaN layers grown on SOI exhibited lower strain according to x-ray diffraction analysis. Defect selective etching measurements suggested that the use of SOI substrate for GaN epitaxy reduces the dislocation density approximately by a factor of two. Furthermore, growth on SOI substrate allows one to use a significantly thinner AlGaN buffer compared to bulk Si. Synchrotron radiation x-ray topography analysis confirmed that the stress relief mechanism in GaN on SOI epitaxy is the formation of a dislocation network to the SOI device Si layer. In addition, the buried oxide layer significantly improves the vertical leakage characteristics as the onset of the breakdown is delayed by approximately 400 V. These results show that the GaN on the SOI platform is promising for power electronics applications.

  1. Influence of different aspect ratios on the structural and electrical properties of GaN thin films grown on nanoscale-patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Lee, Fang-Wei; Ke, Wen-Cheng; Cheng, Chun-Hong; Liao, Bo-Wei; Chen, Wei-Kuo

    2016-07-01

    This study presents GaN thin films grown on nanoscale-patterned sapphire substrates (NPSSs) with different aspect ratios (ARs) using a homemade metal-organic chemical vapor deposition system. The anodic aluminum oxide (AAO) technique is used to prepare the dry etching mask. The cross-sectional view of the scanning electron microscope image shows that voids exist between the interface of the GaN thin film and the high-AR (i.e. ∼2) NPSS. In contrast, patterns on the low-AR (∼0.7) NPSS are filled full of GaN. The formation of voids on the high-AR NPSS is believed to be due to the enhancement of the lateral growth in the initial growth stage, and the quick-merging GaN thin film blocks the precursors from continuing to supply the bottom of the pattern. The atomic force microscopy images of GaN on bare sapphire show a layer-by-layer surface morphology, which becomes a step-flow surface morphology for GaN on a high-AR NPSS. The edge-type threading dislocation density can be reduced from 7.1 × 108 cm-2 for GaN on bare sapphire to 4.9 × 108 cm-2 for GaN on a high-AR NPSS. In addition, the carrier mobility increases from 85 cm2/Vs for GaN on bare sapphire to 199 cm2/Vs for GaN on a high-AR NPSS. However, the increased screw-type threading dislocation density for GaN on a low-AR NPSS is due to the competition of lateral growth on the flat-top patterns and vertical growth on the bottom of the patterns that causes the material quality of the GaN thin film to degenerate. Thus, the experimental results indicate that the AR of the particular patterning of a NPSS plays a crucial role in achieving GaN thin film with a high crystalline quality.

  2. The dislocation density and twin-boundary frequency determined by X-ray peak profile analysis in cold rolled magnetron-sputter deposited nanotwinned copper

    SciTech Connect

    Csiszar, Gabor; Ungar, Tamas; Balogh, Levente; Misra, Amit; Zhang Xinghang

    2011-08-15

    The dislocation density and the average twin boundary frequency is determined quantitatively in as-deposited and cold-rolled nanotwinned Cu thin films by high-resolution X-ray line profile analysis. After cold-rolling the dislocation density increases considerably, whereas the twin boundary frequency decreases only slightly. The physical parameters of the substructure provided by the quantitative X-ray analysis are in agreement with earlier transmission electron microscopy observations. The flow stress of the as-deposited and the cold-rolled films is directly correlated with the average thickness of twin lamellae and the dislocation density by taking into account the Hall-Petch and Taylor type strengthening mechanisms.

  3. A nitrogen doped low-dislocation density free-standing single crystal diamond plate fabricated by a lift-off process

    SciTech Connect

    Mokuno, Yoshiaki Kato, Yukako; Tsubouchi, Nobuteru; Chayahara, Akiyoshi; Yamada, Hideaki; Shikata, Shinichi

    2014-06-23

    A nitrogen-doped single crystal diamond plate with a low dislocation density is fabricated by chemical vapor deposition (CVD) from a high pressure high temperature synthetic type IIa seed substrate by ion implantation and lift-off processes. To avoid sub-surface damage, the seed surface was subjected to deep ion beam etching. In addition, we introduced a nitrogen flow during the CVD step to grow low-strain diamond at a relatively high growth rate. This resulted in a plate with low birefringence and a dislocation density as low as 400 cm{sup −2}, which is the lowest reported value for a lift-off plate. Reproducing this lift-off process may allow mass-production of single crystal CVD diamond plates with low dislocation density and consistent quality.

  4. Hydride vapor phase GaN films with reduced density of residual electrons and deep traps

    SciTech Connect

    Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Yugova, T. G.; Cox, H.; Helava, H.; Makarov, Yu.; Usikov, A. S.

    2014-05-14

    Electrical properties and deep electron and hole traps spectra are compared for undoped n-GaN films grown by hydride vapor phase epitaxy (HVPE) in the regular process (standard HVPE samples) and in HVPE process optimized for decreasing the concentration of residual donor impurities (improved HVPE samples). It is shown that the residual donor density can be reduced by optimization from ∼10{sup 17} cm{sup −3} to (2–5) × 10{sup 14} cm{sup −3}. The density of deep hole traps and deep electron traps decreases with decreased donor density, so that the concentration of deep hole traps in the improved samples is reduced to ∼5 × 10{sup 13} cm{sup −3} versus 2.9 × 10{sup 16} cm{sup −3} in the standard samples, with a similar decrease in the electron traps concentration.

  5. Laser diodes with 353 nm wavelength enabled by reduced-dislocation-density AlGaN templates

    SciTech Connect

    Crawford, Mary H.; Allerman, Andrew A.; Armstrong, Andrew M.; Smith, Michael L.; Cross, Karen C.

    2015-10-30

    We fabricated optically pumped and electrically injected ultraviolet (UV) lasers on reduced-threading-dislocation-density (reduced-TDD) AlGaN templates. The overgrowth of sub-micron-wide mesas in the Al0.32Ga0.68N templates enabled a tenfold reduction in TDD, to (2–3) × 108 cm–2. Optical pumping of AlGaN hetero-structures grown on the reduced-TDD templates yielded a low lasing threshold of 34 kW/cm2 at 346 nm. Room-temperature pulsed operation of laser diodes at 353 nm was demonstrated, with a threshold of 22.5 kA/cm2. Furthermore, reduced-TDD templates have been developed across the entire range of AlGaN compositions, presenting a promising approach for extending laser diodes into the deep UV.

  6. Laser diodes with 353 nm wavelength enabled by reduced-dislocation-density AlGaN templates

    DOE PAGES

    Crawford, Mary H.; Allerman, Andrew A.; Armstrong, Andrew M.; ...

    2015-10-30

    We fabricated optically pumped and electrically injected ultraviolet (UV) lasers on reduced-threading-dislocation-density (reduced-TDD) AlGaN templates. The overgrowth of sub-micron-wide mesas in the Al0.32Ga0.68N templates enabled a tenfold reduction in TDD, to (2–3) × 108 cm–2. Optical pumping of AlGaN hetero-structures grown on the reduced-TDD templates yielded a low lasing threshold of 34 kW/cm2 at 346 nm. Room-temperature pulsed operation of laser diodes at 353 nm was demonstrated, with a threshold of 22.5 kA/cm2. Furthermore, reduced-TDD templates have been developed across the entire range of AlGaN compositions, presenting a promising approach for extending laser diodes into the deep UV.

  7. Dislocation densities reduction in MBE-grown AlN thin films by high-temperature annealing

    NASA Astrophysics Data System (ADS)

    Nemoz, Maud; Dagher, Roy; Matta, Samuel; Michon, Adrien; Vennéguès, Philippe; Brault, Julien

    2017-03-01

    AlN thin films, grown on (0001) sapphire substrates by molecular beam epitaxy (MBE), were annealed at high temperature (up to 1650 °C) in flowing N2. X-ray diffraction (XRD) studies, combined with Williamson-Hall and Srikant plots, have shown that annealing leads to a strong reduction of both edge and mixed threading dislocation densities, as confirmed by transmission electron microscopy (TEM) images, up to 75%. Moreover, it is found that annealing at high temperatures allows the relaxation of the tensile strain in the AlN film due to the growth process. In addition, the morphological properties of the films were determined by atomic force microscopy (AFM) and show that the annealing conditions have a strong impact on the surface morphology and roughness. Finally, an annealing at 1550 °C for 20 min appears as an ideal tradeoff to enhance the structural properties while preserving the initial AlN surface morphology.

  8. [Elbow dislocation].

    PubMed

    de Pablo Márquez, B; Castillón Bernal, P; Bernaus Johnson, M C; Ibañez Aparicio, N M

    2017-03-09

    Elbow dislocation is the most frequent dislocation in the upper limb after shoulder dislocation. Closed reduction is feasible in outpatient care when there is no associated fracture. A review is presented of the different reduction procedures.

  9. Neutron Diffraction Measurement of Residual Stresses, Dislocation Density and Texture in Zr-bonded U-10Mo ''Mini'' Fuel Foils and Plates

    SciTech Connect

    Brown, Donald W.; Okuniewski, M. A.; Sisneros, Thomas A.; Clausen, Bjorn; Moore, G. A.; Balogh, L

    2014-08-07

    Aluminum clad monolithic uranium 10 weight percent molybdenum (U-10Mo) fuel plates are being considered for conversion of several research and test nuclear reactors from high-enriched to low-enriched uranium fuel due to the inherently high density of fissile material. Comprehensive neutron diffraction measurements of the evolution of the textures, residual phase stresses, and dislocation densities in the individual phases of the mini-foils throughout several processing steps and following hot-isostatic pressing to the Al cladding, have been completed. Recovery and recrystallization of the bare U-10Mo fuel foil, as indicated by the dislocation density and texture, are observed depending on the state of the material prior to annealing and the duration and temperature of the annealing process. In general, the HIP procedure significantly reduces the dislocation density, but the final state of the clad plate, both texture and dislocation density, depends strongly on the final processing step of the fuel foil. In contrast, the residual stresses in the clad fuel plate do not depend strongly on the final processing step of the bare foil prior to HIP bonding. Rather, the residual stresses are dominated by the thermal expansion mismatch of the constituent materials of the fuel plate.

  10. Enhanced terahertz radiation from high stacking fault density nonpolar GaN

    NASA Astrophysics Data System (ADS)

    Metcalfe, Grace D.; Shen, Hongen; Wraback, Michael; Hirai, Asako; Wu, Feng; Speck, James S.

    2008-06-01

    Terahertz emission from high stacking fault density m-GaN has been observed using ultrafast pulse excitation. The terahertz signal exhibits a 360° periodicity with sample rotation and a polarity flip at 180°, characteristic of real carrier transport in an in-plane electric field parallel to the c axis induced by stacking fault (SF)-terminated internal polarization at wurtzite domain boundaries. The terahertz emission can be enhanced by several times relative to that from a SF-free m-GaN sample, for which the terahertz signal emanates from surface surge currents and diffusion-driven carrier transport normal to the surface and is independent of the c-axis orientation.

  11. Microstructures of GaN and In{sub x}Ga{sub 1-x}N films grown by MOCVD on free-standing GaN templates

    SciTech Connect

    Jasinski, J.; Liliental-Weber, Z.; Huang, D.; Reshchikov, M.A.; Yun, F.; Morkoc, H.; Sone, C.; Park, S.S.; Lee, K.Y.

    2002-04-30

    We summarize structural properties of thick HVPE GaN templates from the point of view of their application as substrates for growth of nitride layers. This is followed by the results of optical and structural studies, mostly transmission electron microscopy, of nitride layers grown by MOCVD on top of the HVPE substrates. The results indicate high structural quality of these layers with a low density of threading dislocations (in the range of 10{sup 6} cm{sup -2}). Convergent beam electron diffraction studies showed that the MOCVD GaN films have Ga-polarity, the same polarity as the HVPE GaN substrates. Structural studies of an InGaN layer grown on top of the MOCVD GaN film showed the presence of two layers, which differed in lattice parameter and composition. The upper layer, on the top of the structure had a c-lattice parameter about 2% larger than that of GaN and contained 10.3 {+-} 0.8% of In. Values measured for the thinner, intermediate layer adjacent to the GaN layer were about 2 .5 times lower.

  12. Structural Defects in Laterally Overgrown GaN Layers Grown onNon-polar Substrates

    SciTech Connect

    Liliental-Weber, Z.; Ni, X.; Morkoc, H.

    2007-02-14

    Transmission electron microscopy was used to study defects in lateral epitaxial layers of GaN which were overgrown on a template of a-plane (11{und 2}0) GaN grown on (1{und 1}02) r-plane Al2O3. A high density of basal stacking faults is formed in these layers because the c-planes of wurtzite structure are arranged along the growth direction. Density of these faults is decreasing at least by two orders of magnitude lower in the wings compared to the seed areas. Prismatic stacking faults and threading dislocations are also observed, but their densities drastically decrease in the wings. The wings grow with opposite polarities and the Ga-wing width is at least 6 times larger than N-wing and coalescence is rather difficult. Some tilt and twist was detected using Large Angle Convergent Beam Electron Diffraction.

  13. Adsorption of ammonia on hydrogen covered GaN(0001) surface - Density Functional Theory study

    NASA Astrophysics Data System (ADS)

    Kempisty, Paweł; Strak, Paweł; Sakowski, Konrad; Krukowski, Stanisław

    2014-09-01

    Density Functional Theory (DFT) simulations of ammonia adsorption at clean and H-covered surface confirmed that ammonia may dissociate into NH2 radical and H adatom or remain in the molecular form. The remaining hydrogen atoms are attached to Ga atoms where the charge transfer to the surface is possible. The calculations show that for the molecular process, the ammonia adsorption energy is close to 2.0 eV, independent of hydrogen coverage. The dissociative process is strongly H-coverage dependent, for low H-coverage the adsorption energy is close to 2.8 eV, for high coverage changes by more than 4 eV reaching negative values. Thus for low coverage the energetically preferred adsorption is dissociative, for high is molecular. The dissociation energy and preferred mode change are related to the change of the Fermi level pinning from Ga broken bond state to valence band maximum (VBM), confirming the decisive role of charge transfer in the adsorption processes.

  14. X-Ray and Neutron Diffraction Measurements of Dislocation Density and Subgrain Size in a Friction-Stir-Welded Aluminum Alloy

    SciTech Connect

    Woo, Wan Chuck; Ungar, Prof Tomas; Feng, Zhili; Kenik, Edward A; Clausen, B

    2009-01-01

    The dislocation density and subgrain size were determined in the base material and friction-stir welds of 6061-T6 aluminum alloy. High-resolution X-ray diffraction measurement was performed in the base material. The result of the line profile analysis of the X-ray diffraction peak shows that the dislocation density is about 4.5 x 10{sup 14} m{sup -2} and the subgrain size is about 200 nm. Meanwhile, neutron diffraction measurements have been performed to observe the diffraction peaks during friction-stir welding (FSW). The deep penetration capability of the neutron enables us to measure the peaks from the midplane of the Al plate underneath the tool shoulder of the friction-stir welds. The peak broadening analysis result using the Williamson-Hall method shows the dislocation density of about 3.2 x 10{sup 15} m{sup -2} and subgrain size of about 160 nm. The significant increase of the dislocation density is likely due to the severe plastic deformation during FSW. This study provides an insight into understanding the transient behavior of the microstructure under severe thermomechanical deformation.

  15. Neutron diffraction measurement of residual stresses, dislocation density and texture in Zr-bonded U-10Mo “mini” fuel foils and plates

    DOE PAGES

    Brown, Donald William; Okuniewski, Maria A.; Sisneros, Thomas A.; ...

    2016-12-01

    Here, Al clad U-10Mo fuel plates are being considered for conversion of several research reactors from high-enriched to low-enriched U fuel. Neutron diffraction measurements of the textures, residual phase stresses, and dislocation densities in the individual phases of the mini-foils throughout several processing steps and following hot-isostatic pressing to the Al cladding, have been completed. Recovery and recrystallization of the bare U-10Mo fuel foil, as indicated by the dislocation density and texture, are observed depending on the state of the material prior to annealing and the duration and temperature of the annealing process. In general, the cladding procedure significantly reducesmore » the dislocation density, but the final state of the clad plate, both texture and dislocation density, depends strongly on the final processing step of the fuel foil. In contrast, the residual stress state of the final plate is dominated by the thermal expansion mismatch of the constituent materials.« less

  16. High Quality, Low Cost Ammonothermal Bulk GaN Substrates

    SciTech Connect

    Ehrentraut, D; Pakalapati, RT; Kamber, DS; Jiang, WK; Pocius, DW; Downey, BC; McLaurin, M; D'Evelyn, MP

    2013-12-18

    Ammonothermal GaN growth using a novel apparatus has been performed on c-plane, m-plane, and semipolar seed crystals with diameters between 5 mm and 2 in. to thicknesses of 0.5-3 mm. The highest growth rates are greater than 40 mu m/h and rates in the 10-30 mu m/h range are routinely observed for all orientations. These values are 5-100x larger than those achieved by conventional ammonothermal GaN growth. The crystals have been characterized by X-ray diffraction rocking-curve (XRC) analysis, optical and scanning electron microscopy (SEM), cathodoluminescence (CL), optical spectroscopy, and capacitance-voltage measurements. The crystallinity of the grown crystals is similar to or better than that of the seed crystals, with FWHM values of about 20-100 arcsec and dislocation densities of 1 x 10(5)-5 x 10(6) cm(-2). Dislocation densities below 10(4) cm(-2) are observed in laterally-grown crystals. Epitaxial InGaN quantum well structures have been successfully grown on ammonothermal wafers. (C) 2013 The Japan Society of Applied Physics

  17. Nearly stress-free substrates for GaN homoepitaxy

    NASA Astrophysics Data System (ADS)

    Hermann, M.; Gogova, D.; Siche, D.; Schmidbauer, M.; Monemar, B.; Stutzmann, M.; Eickhoff, M.

    2006-08-01

    High-quality 300 μm thick GaN crack-free layers grown by hydride vapor phase epitaxy (HVPE) on c-plane sapphire without buffer layers and separated from the substrate by laser lift-off were investigated by high resolution X-ray diffraction (XRD), low-temperature photoluminescence and cathodoluminescence. All these characterization techniques confirm the high structural quality of the resulting material. Lateral X-ray mapping of the free-standing bulk-like GaN shows a homogeneous compressive stress of less than 40 MPa and a heterogeneous stress of about 80 MPa. The formation of twin grains (domains) were observed both in the reciprocal space mapping of the (2 0 .5) reflection and in rocking curve measurements. The latter ones revealed an estimated lateral coherence length of about 1.2 μm. The crystallite size along the c-axis is estimated to be larger than 20 μm. An upper limit of the density of dislocations with a component of the Burgers vector along the c-axis (screw and mixed type) of 1.3×10 7 cm -2 was extracted from the XRD data, while transmission electron microscopy measurements revealed a dislocation density of 1.7×10 7 cm -2. Thus, these layers are suitable as lattice-parameter and thermal-expansion matched substrates for strain-free homoepitaxy of GaN-based device heterostructures.

  18. Impact of d -band filling on the dislocation properties of bcc transition metals: The case of tantalum-tungsten alloys investigated by density-functional theory

    NASA Astrophysics Data System (ADS)

    Li, Hong; Draxl, Claudia; Wurster, Stefan; Pippan, Reinhard; Romaner, Lorenz

    2017-03-01

    We address the impact of tantalum alloying on dislocation properties of tungsten. To that aim, we calculate elastic constants, atomic-row displacement energy, dislocation core energy, and Peierls stress for different degrees of alloying within the framework of density-functional theory. We show that the elastic shear constants decrease monotonously with Ta content. Conversely, atomic-row displacement energy and, consequently, core energy and Peierls stress show a nonmonotonous behavior. These quantities peak at 25 at% Ta, indicating a tendency for embrittlement of W at such alloying concentrations. Our findings are in agreement with the experimental literature.

  19. The importance of structural inhomogeneity in GaN thin films

    NASA Astrophysics Data System (ADS)

    Liliental-Weber, Z.; Reis, Roberto dos; Weyher, Jan L.; Staszczak, Grzegorz; Jakieła, Rafał

    2016-12-01

    This paper describes two types of MOCVD-grown n-type GaN layers (Samples A and B) with similar carrier concentration but behaved differently under galvanic photo-etching. In order to understand this behavior, Transmission Electron Microscopy (TEM) for cross-section and plan-view samples, Secondary Ion Mass Spectroscopy (SIMS) and photoluminescence (PL) techniques were applied. SIMS studies showed that Si, C and O are approximately at the same concentration in both samples, but Sample B also contained Fe and Mg. Both GaN samples were grown on sapphire substrate with Ga growth polarity, which was confirmed by Convergent Beam Electron Diffraction (CBED). Despite a smaller layer thickness in Sample B, the density of edge dislocations is almost one order of magnitude lower than in Sample A. In addition, planar defects formed in this sample in the transition area between the undoped buffer and Si doped layers resulted in a substantial decrease in the density of screw dislocations at the sample surface. These planar defects most probably gave rise to the PL lines observed at 3.42 eV and 3.32 eV. The new PL lines that only appeared in Sample B might be related to Mg impurities found in this sample. There were no detectable gettering of these impurities at dislocations using different diffraction conditions. However, Fe rich platelets were found only in Sample B due to the presence of Fe as well as hexagonal features, similar to defects reported earlier in highly Mg-doped GaN. These structural and chemical non-uniformities between the two GaN samples can explain their different etching behaviors. This paper demonstrates that samples with similar carrier concentrations do not necessarily ensure similar structural and optical properties and that additional material characterization are needed to ensure that devices built on such samples have similar performance.

  20. Dislocation-Based Si-Nanodevices

    NASA Astrophysics Data System (ADS)

    Reiche, Manfred; Kittler, Martin; Buca, Dan; Hähnel, Angelika; Zhao, Qing-Tai; Mantl, Siegfried; Gösele, Ulrich

    2010-04-01

    The realization of defined dislocation networks by hydrophobic wafer bonding allows the electrical characterization of individual dislocations. The present paper investigates the properties of such dislocations in samples containing high dislocations densities down to only six dislocations. The current induced by a single dislocation is determined by extrapolation of the current measured for various dislocation densities. Based on our present and previously reported analyses the electronic properties of individual dislocations can be inferred. The investigations show that dislocations in the channel of metal-oxide-semiconductor field-effect transistors (MOSFETs) result in increasing drain currents even at low drain and gate voltages. Because a maximum increase of the current is obtained if a single dislocation is present in the channel, arrays of MOSFETs each containing only one dislocation could be realized on the nanometer scale. The distance of the dislocations can be well controlled by wafer bonding techniques.

  1. Dislocation-related trap levels in nitride-based light emitting diodes

    SciTech Connect

    Venturi, Giulia; Castaldini, Antonio; Cavallini, Anna

    2014-05-26

    Deep level transient spectroscopy was performed on InGaN/GaN multiple quantum well light emitting diodes (LEDs) in order to determine the effect of the dislocation density on the deep intragap electronic levels. The LEDs were grown by metalorganic vapor phase epitaxy on GaN templates with a high dislocation density of 8 × 10{sup 9} cm{sup −2} and a low dislocation density of 3 × 10{sup 8} cm{sup −2}. Three trapping levels for electrons were revealed, named A, A1, and B, with energies E{sub A} ≈ 0.04 eV, E{sub A1} ≈ 0.13 eV, and E{sub B} ≈ 0.54 eV, respectively. The trapping level A has a much higher concentration in the LEDs grown on the template with a high density of dislocations. The logarithmic dependence of the peak amplitude on the bias pulse width for traps A and A1 identifies the defects responsible for these traps as associated with linearly arranged defects. We conclude that traps A and A1 are dislocation-related intragap energy levels.

  2. Reduction of threading dislocation density for AlN epilayer via a highly compressive-stressed buffer layer

    NASA Astrophysics Data System (ADS)

    Huang, Jun; Niu, Mu Tong; Zhang, Ji Cai; Wang, Wei; wang, Jian Feng; Xu, Ke

    2017-02-01

    Crystalline qualities of three AlN films grown by cold-wall high temperature hydride vapor phase epitaxy (CW-HT-HVPE) on c-plane sapphire substrates, with different AlN buffer layers (BLs) deposited either by CW-HT-HVPE or by hot-wall low temperature hydride vapor phase epitaxy (HW-LT-HVPE), have been studied. The best film quality was obtained on a 500-nm-thick AlN BL grown by HW-LT-HVPE at 1000 ℃. In this case,the AlN epilayer has the lowest full-width at half-maximum (FWHM) values of the (0002) and (10-12) x-ray rocking curve peaks of 295 and 306 arcsec, respectively, corresponding to the screw and edge threading dislocation (TD) densities of 1.9×108 cm-2 and 5.2×108 cm-2. This improvement in crystal quality of the AlN film can be attributed to the high compressive-stress of BL grown by HW-LT-HVPE,which facilitate the inclination and annihilation of TDs.

  3. Luminescence properties of defects in GaN

    NASA Astrophysics Data System (ADS)

    Reshchikov, Michael A.; Morkoç, Hadis

    2005-03-01

    Gallium nitride (GaN) and its allied binaries InN and AIN as well as their ternary compounds have gained an unprecedented attention due to their wide-ranging applications encompassing green, blue, violet, and ultraviolet (UV) emitters and detectors (in photon ranges inaccessible by other semiconductors) and high-power amplifiers. However, even the best of the three binaries, GaN, contains many structural and point defects caused to a large extent by lattice and stacking mismatch with substrates. These defects notably affect the electrical and optical properties of the host material and can seriously degrade the performance and reliability of devices made based on these nitride semiconductors. Even though GaN broke the long-standing paradigm that high density of dislocations precludes acceptable device performance, point defects have taken the center stage as they exacerbate efforts to increase the efficiency of emitters, increase laser operation lifetime, and lead to anomalies in electronic devices. The point defects include native isolated defects (vacancies, interstitial, and antisites), intentional or unintentional impurities, as well as complexes involving different combinations of the isolated defects. Further improvements in device performance and longevity hinge on an in-depth understanding of point defects and their reduction. In this review a comprehensive and critical analysis of point defects in GaN, particularly their manifestation in luminescence, is presented. In addition to a comprehensive analysis of native point defects, the signatures of intentionally and unintentionally introduced impurities are addressed. The review discusses in detail the characteristics and the origin of the major luminescence bands including the ultraviolet, blue, green, yellow, and red bands in undoped GaN. The effects of important group-II impurities, such as Zn and Mg on the photoluminescence of GaN, are treated in detail. Similarly, but to a lesser extent, the effects of

  4. Supersonic Dislocation Bursts in Silicon

    DOE PAGES

    Hahn, E. N.; Zhao, S.; Bringa, E. M.; ...

    2016-06-06

    Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolutionmore » we successfully predict a dislocation density of 1.5 x 10(12) cm(-2) within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.« less

  5. Supersonic Dislocation Bursts in Silicon

    SciTech Connect

    Hahn, E. N.; Zhao, S.; Bringa, E. M.; Meyers, M. A.

    2016-06-06

    Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolution we successfully predict a dislocation density of 1.5 x 10(12) cm(-2) within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.

  6. Nondestructive Characterization of Residual Threading Dislocation Density in HgCdTe Layers Grown on CdZnTe by Liquid-Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Fourreau, Y.; Pantzas, K.; Patriarche, G.; Destefanis, V.

    2016-09-01

    The performance of mercury cadmium telluride (MCT)-based infrared (IR) focal-plane arrays is closely related to the crystalline perfection of the HgCdTe thin film. In this work, Te-rich, (111)B-oriented HgCdTe epilayers grown by liquid-phase epitaxy on CdZnTe substrates have been studied. Surface atomic steps are shown on as-grown MCT materials using atomic force microscopy (AFM) and white-light interferometry (WLI), suggesting step-flow growth. Locally, quasiperfect surface spirals are also evidenced. A demonstration is given that these spirals are related to the emergence of almost pure screw threading dislocations. A nondestructive and quantitative technique to measure the threading dislocation density is proposed. The technique consists of counting the surface spirals on the as-grown MCT surface from images obtained by either AFM or WLI measurements. The benefits and drawbacks of both destructive—chemical etching of HgCdTe dislocations—and nondestructive surface imaging techniques are compared. The nature of defects is also discussed. Finally, state-of-the-art threading dislocation densities in the low 104 cm-2 range are evidenced by both etch pit density (EPD) and surface imaging measurements.

  7. Optical and structural properties of microcrystalline GaN on an amorphous substrate prepared by a combination of molecular beam epitaxy and metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Min, Jung-Wook; Hwang, Hyeong-Yong; Kang, Eun-Kyu; Park, Kwangwook; Kim, Ci-Hyun; Lee, Dong-Seon; Jho, Young-Dahl; Bae, Si-Young; Lee, Yong-Tak

    2016-05-01

    Microscale platelet-shaped GaN grains were grown on amorphous substrates by a combined epitaxial growth method of molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD). First, MBE GaN was grown on an amorphous substrate as a pre-orienting layer and its structural properties were investigated. Second, MOCVD grown GaN samples using the different growth techniques of planar and selective area growth (SAG) were comparatively investigated by transmission electron microscopy (TEM), cathodoluminescence (CL), and photoluminescence (PL). In MOCVD planar GaN, strong bound exciton peaks dominated despite the high density of the threading dislocations (TDs). In MOCVD SAG GaN, on the other hand, TDs were clearly reduced with bending, but basal stacking fault (BSF) PL peaks were observed at 3.42 eV. The combined epitaxial method not only provides a deep understanding of the growth behavior but also suggests an alternative approach for the growth of GaN on amorphous substances.

  8. Low-temperature growth of AlN and GaN by metal organic vapor phase epitaxy for polarization engineered water splitting photocathode

    NASA Astrophysics Data System (ADS)

    Nakamura, Akihiro; Suzuki, Michihiro; Fujii, Katsushi; Nakano, Yoshiaki; Sugiyama, Masakazu

    2017-04-01

    Crystal properties of low-temperature grown AlN (LT-AlN) combined with low temperature GaN (LT-GaN) grown by metal organic vapor phase epitaxy (MOVPE) were investigated to obtain a high quality GaN/AlN/GaN structure with a few-nm-thick AlN layer. LT-AlN suppresses unintentional Ga incorporation and can be pseudomorphically grown on GaN with a relatively smooth surface morphology. The lattice of LT-AlN coherent to GaN, however, was found to relax after reactor conditions were changed to grow the subsequent GaN layer at higher temperature. The top GaN layer grown on the relaxed LT-AlN, thus, exhibited a rough surface morphology and a threading dislocation density (TDD) higher than 109 cm-2 estimated from an X-ray diffraction measurement. An LT-GaN capping layer was found to be highly effective for avoiding such lattice relaxation of LT-AlN. The combination of LT-AlN and LT-GaN enables us to obtain a GaN/AlN/GaN junction with high Al content, a low TDD, and abrupt interfaces. As a result, introducing an LT-GaN layer improved the photoelectrochemical (PEC) property of a polarization engineered un-doped GaN/AlN/n-type GaN (u-GaN/AlN/n-GaN) photocathode for water splitting.

  9. Optical and Structural Properties of Microcrystalline GaN on an Amorphous Substrate Prepared by a Combination of Molecular Beam Epitaxy and Metal-Organic Chemical Vapor Deposition

    SciTech Connect

    Min, Jung-Wook; Hwang, Hyeong-Yong; Kang, Eun-Kyu; Park, Kwangwook; Kim, Ci-Hyun; Lee, Dong-Seon; Jho, Young-Dahl; Bae, Si-Young; Lee, Yong-Tak

    2016-05-01

    Microscale platelet-shaped GaN grains were grown on amorphous substrates by a combined epitaxial growth method of molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD). First, MBE GaN was grown on an amorphous substrate as a pre-orienting layer and its structural properties were investigated. Second, MOCVD grown GaN samples using the different growth techniques of planar and selective area growth (SAG) were comparatively investigated by transmission electron microscopy (TEM), cathodoluminescence (CL), and photoluminescence (PL). In MOCVD planar GaN, strong bound exciton peaks dominated despite the high density of the threading dislocations (TDs). In MOCVD SAG GaN, on the other hand, TDs were clearly reduced with bending, but basal stacking fault (BSF) PL peaks were observed at 3.42 eV. The combined epitaxial method not only provides a deep understanding of the growth behavior but also suggests an alternative approach for the growth of GaN on amorphous substances.

  10. Dependence of adhesion strength between GaN LEDs and sapphire substrate on power density of UV laser irradiation

    NASA Astrophysics Data System (ADS)

    Park, Junsu; Sin, Young-Gwan; Kim, Jae-Hyun; Kim, Jaegu

    2016-10-01

    Selective laser lift-off (SLLO) is an innovative technology used to manufacture and repair micro-light-emitting diode (LED) displays. In SLLO, laser is irradiated to selectively separate micro-LED devices from a transparent sapphire substrate. The light source used is an ultraviolet (UV) laser with a wavelength of 266 nm, pulse duration of 20 ns, and repetition rate of 30 kHz. Controlled adhesion between a LED and the substrate is key for a SLLO process with high yield and reliability. This study examined the fundamental relationship between adhesion and laser irradiation. Two competing mechanisms affect adhesion at the irradiated interface between the GaN LED and sapphire substrate: Ga precipitation caused by the thermal decomposition of GaN and roughened interface caused by thermal damage on the sapphire. The competition between these two mechanisms leads to a non-trivial SLLO condition that needs optimization. This study helps understand the SLLO process, and accelerate the development of a process for manufacturing micro-LED displays via SLLO for future applications.

  11. Structural anisotropic properties of a-plane GaN epilayers grown on r-plane sapphire by molecular beam epitaxy

    SciTech Connect

    Lotsari, A.; Kehagias, Th.; Katsikini, M.; Arvanitidis, J.; Ves, S.; Komninou, Ph.; Dimitrakopulos, G. P.; Tsiakatouras, G.; Tsagaraki, K.; Georgakilas, A.; Christofilos, D.

    2014-06-07

    Heteroepitaxial non-polar III-Nitride layers may exhibit extensive anisotropy in the surface morphology and the epilayer microstructure along distinct in-plane directions. The structural anisotropy, evidenced by the “M”-shape dependence of the (112{sup ¯}0) x-ray rocking curve widths on the beam azimuth angle, was studied by combining transmission electron microscopy observations, Raman spectroscopy, high resolution x-ray diffraction, and atomic force microscopy in a-plane GaN epilayers grown on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy (PAMBE). The structural anisotropic behavior was attributed quantitatively to the high dislocation densities, particularly the Frank-Shockley partial dislocations that delimit the I{sub 1} intrinsic basal stacking faults, and to the concomitant plastic strain relaxation. On the other hand, isotropic samples exhibited lower dislocation densities and a biaxial residual stress state. For PAMBE growth, the anisotropy was correlated to N-rich (or Ga-poor) conditions on the surface during growth, that result in formation of asymmetric a-plane GaN grains elongated along the c-axis. Such conditions enhance the anisotropy of gallium diffusion on the surface and reduce the GaN nucleation rate.

  12. Coupling the Phase Field Method for diffusive transformations with dislocation density-based crystal plasticity: Application to Ni-based superalloys

    NASA Astrophysics Data System (ADS)

    Cottura, M.; Appolaire, B.; Finel, A.; Le Bouar, Y.

    2016-09-01

    A phase field model is coupled to strain gradient crystal plasticity based on dislocation densities. The resulting model includes anisotropic plasticity and the size-dependence of plastic activity, required when plasticity is confined in region below few microns in size. These two features are important for handling microstructure evolutions during diffusive phase transformations that involve plastic deformation occurring in confined areas such as Ni-based superalloys undergoing rafting. The model also uses a storage-recovery law for the evolution of the dislocation density of each glide system and a hardening matrix to account for the short-range interactions between dislocations. First, it is shown that the unstable modes during the morphological destabilization of a growing misfitting circular precipitate are selected by the anisotropy of plasticity. Then, the rafting of γ‧ precipitates in a Ni-based superalloy is investigated during [100] creep loadings. Our model includes most of the important physical phenomena accounted for during the microstructure evolution, such as the presence of different crystallographic γ‧ variants, their misfit with the γ matrix, the elastic inhomogeneity and anisotropy, the hardening, anisotropy and viscosity of plasticity. In agreement with experiments, the model predicts that rafting proceeds perpendicularly to the tensile loading axis and it is shown that plasticity slows down significantly the evolution of the rafts.

  13. Growth and structure of GaN layers on silicon carbide synthesized on a Si substrate by the substitution of atoms: A model of the formation of V-defects during the growth of GaN

    NASA Astrophysics Data System (ADS)

    Kukushkin, S. A.; Osipov, A. V.; Rozhavskaya, M. M.; Myasoedov, A. V.; Troshkov, S. I.; Lundin, V. V.; Sorokin, L. M.; Tsatsul'nikov, A. F.

    2015-09-01

    This paper presents the results of the electron microscopic study of GaN/AlGaN/AlN/SiC/Si(111) structures grown by the metal-organic vapor phase epitaxy. A SiC epitaxial buffer nanolayer has been grown by a new method of substitution of atoms on the Si(111) substrate. It has been found that there is a strong dependence of the density of dislocations and V-defects on the synthesis conditions of SiC and the thickness of the AlN layer. It has been proved experimentally that the creation of a low-temperature AlN insert with a simultaneous decrease in the thickness of the AlN layer to values of no more than 50 nm makes it possible to almost completely prevent the formation of V-defects in the GaN layer. The density of screw and mixed dislocations in the GaN layer of the studied samples lies in the range from 5 × 109 to 1 × 1010 cm-2. A theoretical model of the formation of V-defects during the growth of GaN has been developed.

  14. Quantum efficiency affected by localized carrier distribution near the V-defect in GaN based quantum well

    SciTech Connect

    Cho, Yong-Hee Shim, Mun-Bo; Hwang, Sangheum; Kim, Sungjin; Kim, Jun-Youn; Kim, Jaekyun; Park, Young-Soo; Park, Seoung-Hwan

    2013-12-23

    It is known that due to the formation of in-plane local energy barrier, V-defects can screen the carriers which non-radiatively recombine in threading dislocations (TDs) and hence, enhance the internal quantum efficiency in GaN based light-emitting diodes. By a theoretical modeling capable of describing the inhomogeneous carrier distribution near the V-defect in GaN based quantum wells, we show that the efficient suppression of non-radiative (NR) recombination via TD requires the local energy barrier height of V-defect larger than ∼80 meV. The NR process in TD combined with V-defect influences the quantum efficiency mainly in the low injection current density regime suitably described by the linear dependence of carrier density. We provide a simple phenomenological expression for the NR recombination rate based on the model result.

  15. NpN-GaN/InxGa1-xN/GaN heterojunction bipolar transistor on free-standing GaN substrate

    NASA Astrophysics Data System (ADS)

    Lochner, Zachary; Jin Kim, Hee; Lee, Yi-Che; Zhang, Yun; Choi, Suk; Shen, Shyh-Chiang; Doug Yoder, P.; Ryou, Jae-Hyun; Dupuis, Russell D.

    2011-11-01

    Data and analysis are presented for NpN-GaN/InGaN/GaN double-heterojunction bipolar transistors (HBTs) grown and fabricated on a free-standing GaN (FS-GaN) substrate in comparison to that on a sapphire substrate to investigate the effect of dislocations in III-nitride HBT epitaxial structures. The performance characteristics of HBTs on FS-GaN exhibit a maximum collector current density of ˜12.3 kA/cm2, dc current gain of ˜90, and maximum differential gain of ˜120 without surface passivation, representing a substantial improvement over similar devices grown on sapphire. This is attributed to the reduction in threading dislocation density afforded by using a homoepitaxial growth on a high-crystalline-quality substrate. The minority carrier diffusion length increases significantly owing to not only a mitigated carrier trap effect via fewer dislocations, but also possibly reduced microscopic localized states.

  16. Threading dislocation reduction in III-V films: Theoretical modeling and experimental methods

    NASA Astrophysics Data System (ADS)

    Mathis, Sheila Kathleen

    Heteroepitaxy remains the most efficient and successful way to integrate materials with the same crystal structure but different lattice constants and optoelectronic properties. The purpose of this work is to understand the processes of strain relaxation and subsequent threading dislocation (TD) reduction through modeling and experiment. The interpretation of these data is made according to a previously published model that is based on dislocation reactions. 1,2 These reactions are the sole mechanism for threading dislocation reduction in III--V epitaxial films.3 Gallium nitride, with no available substrate even close to the lattice-matched condition, has a unique microstructure that develops as a result of initial island growth. Dislocation densities on the order of 109--10 10/cm2 are routinely measured in GaN grown on sapphire. Dislocation reduction in these hexagonal films is extremely slow, and it is shown in Chapter II that film thicknesses on the order of a substrate thickness are required to reduce threading dislocation densities to a low (10 6/cm2) level. A model is developed to treat the reduction of TDs in (0001)-oriented films that explains the non-saturating TD density in GaN. Screw dislocation behavior is shown to strongly affect the dislocation density falloff with thickness. Threading dislocation reduction in low-temperature-grown GaAs (250--350°C) and InGaAs was known to be more efficient than in high-temperature-grown GaAs (580°C). Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to study the microstructure of GaAs grown on InP substrates at temperatures between 250 and 580°C to determine the mechanism by which TD reduction was enhanced. While a high level of arsenic antisite defects [ASGa] may affect the TD density at temperatures below 300°C, they do not account for the improved dislocation reduction. When dislocations are generated at high temperature, the TD density on the (111)A and (111)B planes is asymmetric

  17. Microstructure investigation of semi-polar (11-22) GaN overgrown on differently designed micro-rod array templates

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Bai, J.; Hou, Y.; Yu, X.; Gong, Y.; Smith, R. M.; Wang, T.

    2016-12-01

    In order to realize semi-polar (11-22) GaN based laser diodes grown on sapphire, it is necessary to further improve the crystal quality of the (11-22) GaN obtained by using our overgrowth approach developed on regularly arrayed micro-rod templates [T. Wang, Semicond. Sci. Technol. 31, 093003 (2016)]. This can be achieved by carefully designing micro-rod templates. Based on transmission electron microscopy and photoluminescence measurements, it has been found that the micro-rod diameter plays a vital role in effectively reducing both the dislocation density and the basal staking fault (BSF) density of the overgrown (11-22) GaN, but in different manners. The BSF density reduces monotonically with increasing the micro-rod diameter from 2 to 5 μm, and then starts to be saturated when the micro-rod diameter further increases. In contrast, the dislocation density reduces significantly when the micro-rod diameter increases from 2 to 4 μm, and then starts to increase when the diameter further increases to 5 μm. Furthermore, employing shorter micro-rods is useful for removing additional BSFs, leading to further improvement in crystal quality. The results presented provide a very promising approach to eventually achieving (11-22) semi-polar III-nitride laser diodes.

  18. Electron spin dynamics in cubic GaN

    NASA Astrophysics Data System (ADS)

    Buß, J. H.; Schupp, T.; As, D. J.; Brandt, O.; Hägele, D.; Rudolph, J.

    2016-12-01

    The electron spin dynamics in cubic GaN is comprehensively investigated by time-resolved magneto-optical Kerr-rotation spectroscopy over a wide range of temperatures, magnetic fields, and doping densities. The spin dynamics is found to be governed by the interplay of spin relaxation of localized electrons and Dyakonov-Perel relaxation of delocalized electrons. Localized electrons significantly contribute to spin relaxation up to room temperature at moderate doping levels, while Dyakonov-Perel relaxation dominates for high temperatures or degenerate doping levels. Quantitative agreement to Dyakonov-Perel theory requires a larger value of the spin-splitting constant than theoretically predicted. Possible reasons for this discrepancy are discussed, including the role of charged dislocations.

  19. Electron beam induced current study of minority carrier diffusion length in homoepitaxial GaN (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Talin, A. Alec; Collins, Kimberlee C.; Armstrong, Andrew M.; Allerman, Andrew A.; Léonard, François

    2016-09-01

    GaN is a promising material for a range of high power, high frequency, and high temperature device applications. The wide bandgap of GaN leads to high breakdown voltages and low switching losses. Recently, large HVPE grown GaN substrates have become available for homoepitaxial growth leading to 103 reduction in dislocation density compared to similarly grown heteroepitaxial films. Device performance, however, is ultimately limited by the transport properties of minority carriers. Measured values for minority carrier diffusion lengths and lifetimes in GaN vary widely1-3, and a recent report suggests flaws in the commonly adopted electron beam induced current (EBIC) method in the planar-collection geometry.1 Here we report on EBIC measurements performed on 8 micrometer thick GaN grown by MOCVD on 2 inch GaN substrates with a n-type dopant density of 5×1016 cm-3. We determine the carrier diffusion length using both the conventional EBIC method by varying the electron beam-to-contact lateral distance as well as by varying the electron beam penetration depth and find the extracted values differ by 10×, with the latter technique yielding the lower diffusion length. We rationalize these results in light of other materials characteristics including Raman and photoluminescence. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. Growth and characteristics of self-assembly defect-free GaN surface islands by molecular beam epitaxy.

    PubMed

    Hsu, Kuang-Yuan; Wang, Cheng-Yu; Liu, Chuan-Pu

    2011-04-01

    GaN surface nano-islands of high crystal quality, without any dislocations or other extended defects, are grown on a c-plane sapphire substrate by plasma-assisted molecular beam epitaxy. Nano-island growth requires special conditions in terms of V/III ratio and substrate temperature, distinct from either film or nanocolumn growth. The insertion of a nitrided Ga layer can effectively improve the uniformity of the nano-islands in both shape and size. The islands are well faced truncated pyramids with island size ranged from 30 to 110 nm, and height ranged from 30 to 55 nm. On, the other hand, the density and facet of the GaN surface islands would be affected by the growth conditions. An increase of the V/III ratio from 30 to 40 led to an increase in density from 1.4 x 10(9) to 4.3 x 10(9) cm(-2) and an evolution from {1-21-1} facets to {1-21-2} facets. The GaN layers containing the surface islands can moderate the compressive strain due to the lattice and thermal mismatch between GaN and c-sapphire. Conductive atomic force microscopy shows that the off-axis sidewall facets are more electrically active than those at the island center. The formation of the GaN surface islands is strongly induced by the Ehrlich-Schwoebel barrier effect of preexisting islands grown in the early growth stage. GaN surface islands are ideal templates for growing nano-devices.

  1. Defect reduction in (112_O) a-plane GaN by two-stage epitaxiallateral overgrowth

    SciTech Connect

    Ni, X.; Ozgur, U.; Fu, Y.; Biyikli, N.; Xie, J.; Baski, A.A.; Morkoc, H.; Liliental-Weber, Z.

    2006-10-20

    In the epitaxial lateral overgrowth (ELO) of (11{bar 2}0) a-plane GaN, the uneven growth rates of two opposing wings, Ga- and N-wings, makes the coalescence of two neighboring wings more difficult than that in c-plane GaN. We report a two-stage growth method to get uniformly coalesced epitaxial lateral overgrown a-plane GaN using metalorganic chemical vapor deposition (MOCVD) by employing relatively lower growth temperature in the first step followed by enhanced lateral growth in the second. Using this method, the height differences between Ga-polar and N-polar wings at the coalescence front could be reduced, thereby making the coalescence of two wings much easier. Transmission electron microscopy (TEM) showed that the threading dislocation density in the wing areas was 1.0x10{sup 8}cm{sup -2}, more than two orders of magnitude lower than that in the window areas (4.2x10{sup 10}cm{sup -2}). However, high density of basal stacking faults of 1.2x104 cm-1 was still observed in the wing areas as compared to c-plane GaN. Atomic force microscopy and photoluminescence measurements on the coalesced ELO a-GaN sample also indicated improved material quality.

  2. Influence of Oxygen Partial Pressure on Opto-Electrical Properties, Crystallite Size and Dislocation Density of Sn Doped In_2O_3 Nanostructures

    NASA Astrophysics Data System (ADS)

    Soleimanian, Vishtasb; Ghasemi Varnamkhasti, Mohsen

    2016-10-01

    In this research, high-quality Sn doped indium oxide (ITO) thin films were grown on glass slide substrates using an electron beam evaporation method. Vacuum chamber partial pressure was changed and the electro-optical as well as the microstructure parameters were investigated. The microstructure of prepared films was evaluated by x-ray diffraction analysis in terms of crystallite size and dislocation density. It was found that the best results [high transparency (88%) over the visible wavelength region, low sheet resistance of 12.8 Ω /square, the optical band gap of 3.76 eV, crystallite size of 49.5 nm and dislocation density of 1.42 × 10^{14} m^{-2}] were achieved for the sample produced at a partial pressure of 1 × 10^{-4} mbar. Therefore, one can successfully control the physical properties of ITO films by varying the oxygen content of the evaporation system. The correlation between the band gap and carrier concentration in addition to the average crystallite size of films was also established.

  3. Low defect large area semi-polar (112) GaN grown on patterned (113) silicon

    PubMed Central

    Pristovsek, Markus; Han, Yisong; Zhu, Tongtong; Frentrup, Martin; Kappers, Menno J; Humphreys, Colin J; Kozlowski, Grzegorz; Maaskant, Pleun; Corbett, Brian

    2015-01-01

    We report on the growth of semi-polar GaN (112) templates on patterned Si (113) substrates. Trenches were etched in Si (113) using KOH to expose Si {111} sidewalls. Subsequently an AlN layer to prevent meltback etching, an AlGaN layer for stress management, and finally two GaN layers were deposited. Total thicknesses up to 5 m were realised without cracks in the layer. Transmission electron microscopy showed that most dislocations propagate along [0001] direction and hence can be covered by overgrowth from the next trench. The defect densities were below and stacking fault densities less than 100 cm . These numbers are similar to reports on patterned r-plane sapphire. Typical X-ray full width at half maximum (FHWM) were 500” for the asymmetric (00.6) and 450” for the (11.2) reflection. These FHWMs were 50 % broader than reported for patterned r-plane sapphire which is attributed to different defect structures and total thicknesses. The surface roughness shows strong variation on templates. For the final surface roughness the roughness of the sidewalls of the GaN ridges at the time of coalescence are critical. PMID:26212392

  4. Contactless Mobility, Carrier Density, and Sheet Resistance Measurements on Si, GaN, and AlGaN/GaN High Electron Mobility Transistor (HEMT) Wafers

    DTIC Science & Technology

    2015-02-01

    structures grown on SiC substrates; and an unintentionally doped (UID) GaN on sapphire template. 15. SUBJECT TERMS Hall effect, high electron mobility...2. Experiment 2 3. Results 4 3.1 Standard n-type Si Sample 4 3.2 AlGaN/GaN HEMTs on SiC Sample Series 5 3.3 Si and UID GaN on Sapphire Pieces 12...AlGaN/GaN high electron mobility transistors (HEMTs) grown on SiC substrates, an unintentionally doped (UID) GaN epi layer on a sapphire substrate

  5. Defect reduction in overgrown semi-polar (11-22) GaN on a regularly arrayed micro-rod array template

    SciTech Connect

    Zhang, Y.; Bai, J.; Hou, Y.; Smith, R. M.; Yu, X.; Gong, Y.; Wang, T.

    2016-02-15

    We demonstrate a great improvement in the crystal quality of our semi-polar (11-22) GaN overgrown on regularly arrayed micro-rod templates fabricated using a combination of industry-matched photolithography and dry-etching techniques. As a result of our micro-rod configuration specially designed, an intrinsic issue on the anisotropic growth rate which is a great challenge in conventional overgrowth technique for semi-polar GaN has been resolved. Transmission electron microscopy measurements show a different mechanism of defect reduction from conventional overgrowth techniques and also demonstrate major advantages of our approach. The dislocations existing in the GaN micro-rods are effectively blocked by both a SiO{sub 2} mask on the top of each GaN micro-rod and lateral growth along the c-direction, where the growth rate along the c-direction is faster than that along any other direction. Basal stacking faults (BSFs) are also effectively impeded, leading to a distribution of BSF-free regions periodically spaced by BSF regions along the [-1-123] direction, in which high and low BSF density areas further show a periodic distribution along the [1-100] direction. Furthermore, a defect reduction model is proposed for further improvement in the crystalline quality of overgrown (11-22) GaN on sapphire.

  6. Efficient reduction of defects in (1120) non-polar and (1122) semi-polar GaN grown on nanorod templates

    SciTech Connect

    Bai, J.; Gong, Y.; Xing, K.; Yu, X.; Wang, T.

    2013-03-11

    (1120) non-polar and (1122) semi-polar GaNs with a low defect density have been achieved by means of an overgrowth on nanorod templates, where a quick coalescence with a thickness even below 1 {mu}m occurs. On-axis and off-axis X-ray rocking curve measurements have shown a massive reduction in the linewidth for our overgrown GaN in comparison with standard GaN films grown on sapphire substrates. Transmission electron microscope observation demonstrates that the overgrowth on the nanorod templates takes advantage of an omni-directional growth around the sidewalls of the nanostructures. The dislocations redirect in basal planes during the overgrowth, leading to their annihilation and termination at voids formed due to a large lateral growth rate. In the non-polar GaN, the priority <0001> lateral growth from vertical sidewalls of nanorods allows basal plane stacking faults (BSFs) to be blocked in the nanorod gaps; while for semi-polar GaN, the propagation of BSFs starts to be impeded when the growth front is changed to be along inclined <0001> direction above the nanorods.

  7. Comprehensive study on initial thermal oxidation of GaN(0001) surface and subsequent oxide growth in dry oxygen ambient

    NASA Astrophysics Data System (ADS)

    Yamada, Takahiro; Ito, Joyo; Asahara, Ryohei; Watanabe, Kenta; Nozaki, Mikito; Nakazawa, Satoshi; Anda, Yoshiharu; Ishida, Masahiro; Ueda, Tetsuzo; Yoshigoe, Akitaka; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2017-01-01

    Initial oxidation of gallium nitride (GaN) (0001) epilayers and subsequent growth of thermal oxides in dry oxygen ambient were investigated by means of x-ray photoelectron spectroscopy, spectroscopic ellipsometry, atomic force microscopy, and x-ray diffraction measurements. It was found that initial oxide formation tends to saturate at temperatures below 800 °C, whereas the selective growth of small oxide grains proceeds at dislocations in the epilayers, followed by noticeable grain growth, leading to a rough surface morphology at higher oxidation temperatures. This indicates that oxide growth and its morphology are crucially dependent on the defect density in the GaN epilayers. Structural characterizations also reveal that polycrystalline α- and β-phase Ga2O3 grains in an epitaxial relation with the GaN substrate are formed from the initial stage of the oxide growth. We propose a comprehensive model for GaN oxidation mediated by nitrogen removal and mass transport and discuss the model on the basis of experimental findings.

  8. Improvement of Crystalline Quality in GaN Films by Air-Bridged Lateral Epitaxial Growth

    NASA Astrophysics Data System (ADS)

    Kidoguchi, Isao; Ishibashi, Akihiko; Sugahara, Gaku; Tsujimura, Ayumu; Ban, Yuzaburoh

    2000-05-01

    Air-bridged lateral epitaxial growth (ABLEG), a new technique of lateral growth of GaN films, has been developed using low-pressure metalorganic vapor phase epitaxy. A previously grown 1-μm-thick GaN film is grooved along the < 1{\\bar 1}00 >\\textrm{GaN} direction, and the bottoms of the trenches and the sidewalls are covered with a silicon nitride mask. A free-standing GaN material is regrown from the exposed (0001) surface of the ridged GaN seed structure. Cross-sectional transmission electron microscopy analysis reveals that the dislocations originating from the underlying seed GaN extend straight in the < 0001 > direction and dislocations do not propagate into the wing region. The wing region also exhibits a smooth surface and the root mean square roughness is found to be 0.088 nm by atomic force microscopy measurement of the (0001) face of the wing region.

  9. Knee Dislocations

    PubMed Central

    Schenck, Robert C.; Richter, Dustin L.; Wascher, Daniel C.

    2014-01-01

    Background: Traumatic knee dislocation is becoming more prevalent because of improved recognition and increased exposure to high-energy trauma, but long-term results are lacking. Purpose: To present 2 cases with minimum 20-year follow-up and a review of the literature to illustrate some of the fundamental principles in the management of the dislocated knee. Study Design: Review and case reports. Methods: Two patients with knee dislocations who underwent multiligamentous knee reconstruction were reviewed, with a minimum 20-year follow-up. These patients were brought back for a clinical evaluation using both subjective and objective measures. Subjective measures include the following scales: Lysholm, Tegner activity, visual analog scale (VAS), Short Form–36 (SF-36), International Knee Documentation Committee (IKDC), and a psychosocial questionnaire. Objective measures included ligamentous examination, radiographic evaluation (including Telos stress radiographs), and physical therapy assessment of function and stability. Results: The mean follow-up was 22 years. One patient had a vascular injury requiring repair prior to ligament reconstruction. The average assessment scores were as follows: SF-36 physical health, 52; SF-36 mental health, 59; Lysholm, 92; IKDC, 86.5; VAS involved, 10.5 mm; and VAS uninvolved, 2.5 mm. Both patients had excellent stability and were functioning at high levels of activity for their age (eg, hiking, skydiving). Both patients had radiographic signs of arthritis, which lowered 1 subject’s IKDC score to “C.” Conclusion: Knee dislocations have rare long-term excellent results, and most intermediate-term studies show fair to good functional results. By following fundamental principles in the management of a dislocated knee, patients can be given the opportunity to function at high levels. Hopefully, continued advances in the evaluation and treatment of knee dislocations will improve the long-term outcomes for these patients in the

  10. Vertical GaN power diodes with a bilayer edge termination

    DOE PAGES

    Dickerson, Jeramy R.; Allerman, Andrew A.; Bryant, Benjamin N.; ...

    2015-12-07

    Vertical GaN power diodes with a bilayer edge termination (ET) are demonstrated. The GaN p-n junction is formed on a low threading dislocation defect density (104 - 105 cm-2) GaN substrate, and has a 15-μm-thick n-type drift layer with a free carrier concentration of 5 × 1015 cm-3. The ET structure is formed by N implantation into the p+-GaN epilayer just outside the p-type contact to create compensating defects. The implant defect profile may be approximated by a bilayer structure consisting of a fully compensated layer near the surface, followed by a 90% compensated (p) layer near the n-type driftmore » region. These devices exhibit avalanche breakdown as high as 2.6 kV at room temperature. In addition simulations show that the ET created by implantation is an effective way to laterally distribute the electric field over a large area. This increases the voltage at which impact ionization occurs and leads to the observed higher breakdown voltages.« less

  11. Vertical GaN power diodes with a bilayer edge termination

    SciTech Connect

    Dickerson, Jeramy R.; Allerman, Andrew A.; Bryant, Benjamin N.; Fischer, Arthur J.; King, Michael P.; Moseley, Michael W.; Armstrong, Andrew M.; Kaplar, Robert J.; Kizilyalli, Isik C.; Aktas, Ozgur; Wierer, Jr., Jonathan J.

    2015-12-07

    Vertical GaN power diodes with a bilayer edge termination (ET) are demonstrated. The GaN p-n junction is formed on a low threading dislocation defect density (104 - 105 cm-2) GaN substrate, and has a 15-μm-thick n-type drift layer with a free carrier concentration of 5 × 1015 cm-3. The ET structure is formed by N implantation into the p+-GaN epilayer just outside the p-type contact to create compensating defects. The implant defect profile may be approximated by a bilayer structure consisting of a fully compensated layer near the surface, followed by a 90% compensated (p) layer near the n-type drift region. These devices exhibit avalanche breakdown as high as 2.6 kV at room temperature. In addition simulations show that the ET created by implantation is an effective way to laterally distribute the electric field over a large area. This increases the voltage at which impact ionization occurs and leads to the observed higher breakdown voltages.

  12. Habit control during growth on GaN point seed crystals by Na-flux method

    NASA Astrophysics Data System (ADS)

    Honjo, Masatomo; Imanishi, Masayuki; Imabayashi, Hiroki; Nakamura, Kosuke; Murakami, Kosuke; Matsuo, Daisuke; Maruyama, Mihoko; Imade, Mamoru; Yoshimura, Masashi; Mori, Yusuke

    2017-01-01

    The formation of the pyramidal habit is one of the requirements for the dramatic reduction of dislocations during growth on a tiny GaN seed called a “point seed”. In this study, we focus on controlling the growth habit to form a pyramidal shape in order to reduce the number of dislocations in the c-growth sector during growth on GaN point seeds. High temperature growth was found to change the growth habit from the truncated pyramidal shape to the pyramidal shape. As a result, the number of dislocations in the c-growth sector tended to decrease with increasing growth temperature.

  13. Compositionally graded relaxed AlGaN buffers on semipolar GaN for mid-ultraviolet emission

    SciTech Connect

    Young, Erin C.; Wu Feng; Haeger, Daniel A.; Nakamura, Shuji; Denbaars, Steven P.; Cohen, Daniel A.; Speck, James S.; Romanov, Alexey E.

    2012-10-01

    In this Letter, we report on the growth and properties of relaxed, compositionally graded Al{sub x}Ga{sub 1-x}N buffer layers on freestanding semipolar (2021) GaN substrates. Continuous and step compositional grades with Al concentrations up to x = 0.61 have been achieved, with emission wavelengths in the mid-ultraviolet region as low as 265 nm. Coherency stresses were relaxed progressively throughout the grades by misfit dislocation generation via primary (basal) slip and secondary (non-basal) slip systems. Threading dislocation densities in the final layers of the grades were less than 10{sup 6}/cm{sup 2} as confirmed by plan-view transmission electron microscopy and cathodoluminescence studies.

  14. Alignment control and atomically-scaled heteroepitaxial interface study of GaN nanowires.

    PubMed

    Liu, Qingyun; Liu, Baodan; Yang, Wenjin; Yang, Bing; Zhang, Xinglai; Labbé, Christophe; Portier, Xavier; An, Vladimir; Jiang, Xin

    2017-04-11

    Well-aligned GaN nanowires are promising candidates for building high-performance optoelectronic nanodevices. In this work, we demonstrate the epitaxial growth of well-aligned GaN nanowires on a [0001]-oriented sapphire substrate in a simple catalyst-assisted chemical vapor deposition process and their alignment control. It is found that the ammonia flux plays a key role in dominating the initial nucleation of GaN nanocrystals and their orientation. Typically, significant improvement of the GaN nanowire alignment can be realized at a low NH3 flow rate. X-ray diffraction and cross-sectional scanning electron microscopy studies further verified the preferential orientation of GaN nanowires along the [0001] direction. The growth mechanism of GaN nanowire arrays is also well studied based on cross-sectional high-resolution transmission electron microscopy (HRTEM) characterization and it is observed that GaN nanowires have good epitaxial growth on the sapphire substrate following the crystallographic relationship between (0001)GaN∥(0001)sapphire and (101[combining macron]0)GaN∥(112[combining macron]0)sapphire. Most importantly, periodic misfit dislocations are also experimentally observed in the interface region due to the large lattice mismatch between the GaN nanowire and the sapphire substrate, and the formation of such dislocations will favor the release of structural strain in GaN nanowires. HRTEM analysis also finds the existence of "type I" stacking faults and voids inside the GaN nanowires. Optical investigation suggests that the GaN nanowire arrays have strong emission in the UV range, suggesting their crystalline nature and chemical purity. The achievement of aligned GaN nanowires will further promote the wide applications of GaN nanostructures toward diverse high-performance optoelectronic nanodevices including nano-LEDs, photovoltaic cells, photodetectors etc.

  15. Relaxation of compressively-strained AlGaN by inclined threading dislocations

    NASA Astrophysics Data System (ADS)

    Follstaedt, D. M.; Lee, S. R.; Provencio, P. P.; Allerman, A. A.; Floro, J. A.; Crawford, M. H.

    2005-09-01

    Transmission electron microscopy and x-ray diffraction were used to assess the microstructure and strain of AlxGa1-xN(x=0.61-0.64) layers grown on AlN. The compressively-strained AlGaN is partially relaxed by inclined threading dislocations, similar to observations on Si-doped AlGaN by P. Cantu, F. Wu, P. Waltereit, S. Keller, A. E. Romanov, U. K. Mishra, S. P. DenBaars, and J. S. Speck [Appl. Phys. Lett. 83, 674 (2003)]; however, in our material, the dislocations bend before the introduction of any Si. The bending may be initiated by the greater lattice mismatch or the lower dislocation density of our material, but the presence of Si is not necessarily required. The relaxation by inclined dislocations is quantitatively accounted for with the model of A. E. Romanov and J. S. Speck [Appl. Phys. Lett. 83, 2569 (2003)], and we demonstrate the predicted linear dependence of relaxation on layer thickness. Notably, such relaxation was not found in tensile strained AlGaN grown on GaN [J. A. Floro, D. M. Follstaedt, P. Provencio, S. J. Hearne, and S. R. Lee, J. Appl. Phys. 96, 7087 (2004)], even though the same mechanism appears applicable.

  16. Relaxation of compressively strained AlGaN by inclined threading dislocations.

    SciTech Connect

    Follstaedt, David Martin; Lee, Stephen Roger; Crawford, Mary Hagerott; Provencio, Paula Polyak; Allerman, Andrew Alan; Floro, Jerrold Anthony

    2005-06-01

    Transmission electron microscopy and x-ray diffraction were used to assess the microstructure and strain of Al{sub x}Ga{sub 1?x}N(x = 0.61-0.64) layers grown on AlN. The compressively-strained AlGaN is partially relaxed by inclined threading dislocations, similar to observations on Si-doped AlGaN by P. Cantu, F. Wu, P. Waltereit, S. Keller, A. E. Romanov, U. K. Mishra, S. P. DenBaars, and J. S. Speck [Appl. Phys. Lett. 83, 674 (2003) ]; however, in our material, the dislocations bend before the introduction of any Si. The bending may be initiated by the greater lattice mismatch or the lower dislocation density of our material, but the presence of Si is not necessarily required. The relaxation by inclined dislocations is quantitatively accounted for with the model of A. E. Romanov and J. S. Speck [Appl. Phys. Lett. 83, 2569 (2003)], and we demonstrate the predicted linear dependence of relaxation on layer thickness. Notably, such relaxation was not found in tensile strained AlGaN grown on GaN [J. A. Floro, D. M. Follstaedt, P. Provencio, S. J. Hearne, and S. R. Lee, J. Appl. Phys. 96, 7087 (2004)], even though the same mechanism appears applicable.

  17. Tuning the polarization-induced free hole density in nanowires graded from GaN to AlN

    SciTech Connect

    Golam Sarwar, A. T. M.; Carnevale, Santino D.; Kent, Thomas F.; Yang, Fan; McComb, David W.; Myers, Roberto C.

    2015-01-19

    We report a systematic study of p-type polarization-induced doping in graded AlGaN nanowire light emitting diodes grown on silicon wafers by plasma-assisted molecular beam epitaxy. The composition gradient in the p-type base is varied in a set of samples from 0.7%Al/nm to 4.95%Al/nm corresponding to negative bound polarization charge densities of 2.2 × 10{sup 18 }cm{sup −3} to 1.6 × 10{sup 19 }cm{sup −3}. Capacitance measurements and energy band modeling reveal that for gradients greater than or equal to 1.30%Al/nm, the deep donor concentration is negligible and free hole concentrations roughly equal to the bound polarization charge density are achieved up to 1.6 × 10{sup 19 }cm{sup −3} at a gradient of 4.95%Al/nm. Accurate grading lengths in the p- and n-side of the pn-junction are extracted from scanning transmission electron microscopy images and are used to support energy band calculation and capacitance modeling. These results demonstrate the robust nature of p-type polarization doping in nanowires and put an upper bound on the magnitude of deep donor compensation.

  18. Simple Elbow Dislocation.

    PubMed

    Armstrong, April

    2015-11-01

    Simple elbow dislocation refers to those elbow dislocations that do not involve an osseous injury. A complex elbow dislocation refers to an elbow that has dislocated with an osseous injury. Most simple elbow dislocations are treated nonoperatively. Understanding the importance of the soft tissue injury following a simple elbow dislocation is a key to being successful with treatment.

  19. Orthodox etching of HVPE-grown GaN

    SciTech Connect

    Weyher, J.L.; Lazar, S.; Macht, L.; Liliental-Weber, Z.; Molnar,R.J.; Muller, S.; Nowak, G.; Grzegory, I.

    2006-08-10

    Orthodox etching of HVPE-grown GaN in molten eutectic of KOH + NaOH (E etch) and in hot sulfuric and phosphoric acids (HH etch) is discussed in detail. Three size grades of pits are formed by the preferential E etching at the outcrops of threading dislocations on the Ga-polar surface of GaN. Using transmission electron microscopy (TEM) as the calibration tool it is shown that the largest pits are formed on screw, intermediate on mixed and the smallest on edge dislocations. This sequence of size does not follow the sequence of the Burgers values (and thus the magnitude of the elastic energy) of corresponding dislocations. This discrepancy is explained taking into account the effect of decoration of dislocations, the degree of which is expected to be different depending on the lattice deformation around the dislocations, i.e. on the edge component of the Burgers vector. It is argued that the large scatter of optimal etching temperatures required for revealing all three types of dislocations in HVPE-grown samples from different sources also depends upon the energetic status of dislocations. The role of kinetics for reliability of etching in both etches is discussed and the way of optimization of the etching parameters is shown.

  20. Comparison between structural properties of bulk GaN grown under high N pressure and GaN grown by other methods

    SciTech Connect

    Liliental-Weber, Z.; Jasinski, J.; Washburn, J.

    2002-07-31

    In this paper defects formed in GaN grown by different methods are reviewed. Formation of particular defects are often related to the crystallographic direction in which the crystals grow. For bulk crystals the highest growth rates are observed for directions perpendicular to the c-axis. Threading dislocations and nanopipes along the c-axis are not formed in these crystals, but polarity of the growth direction plays a role concerning defects that are formed and surface roughness. For growth of homoepitaxial layers, where growth is forced to take place in the c-direction threading dislocations are formed and their density is related to the purity of constituents used for growth and to substrate surface inhomogeneities. In heteroepitaxial layers two other factors: lattice mismatch and thermal expansion mismatch are related to the formation of dislocations. Doping of crystals can also lead to formation of defects characteristic for a specific dopant. This type of defects tends to be growth method independent but can depend on growth polarity.

  1. Impact of defects on the electrical transport, optical properties and failure mechanisms of GaN nanowires.

    SciTech Connect

    Armstrong, Andrew M.; Aubry, Sylvie; Shaner, Eric Arthur; Siegal, Michael P.; Li, Qiming; Jones, Reese E.; Westover, Tyler; Wang, George T.; Zhou, Xiao Wang; Talin, Albert Alec; Bogart, Katherine Huderle Andersen; Harris, C. Thomas; Huang, Jian Yu

    2010-09-01

    We present the results of a three year LDRD project that focused on understanding the impact of defects on the electrical, optical and thermal properties of GaN-based nanowires (NWs). We describe the development and application of a host of experimental techniques to quantify and understand the physics of defects and thermal transport in GaN NWs. We also present the development of analytical models and computational studies of thermal conductivity in GaN NWs. Finally, we present an atomistic model for GaN NW electrical breakdown supported with experimental evidence. GaN-based nanowires are attractive for applications requiring compact, high-current density devices such as ultraviolet laser arrays. Understanding GaN nanowire failure at high-current density is crucial to developing nanowire (NW) devices. Nanowire device failure is likely more complex than thin film due to the prominence of surface effects and enhanced interaction among point defects. Understanding the impact of surfaces and point defects on nanowire thermal and electrical transport is the first step toward rational control and mitigation of device failure mechanisms. However, investigating defects in GaN NWs is extremely challenging because conventional defect spectroscopy techniques are unsuitable for wide-bandgap nanostructures. To understand NW breakdown, the influence of pre-existing and emergent defects during high current stress on NW properties will be investigated. Acute sensitivity of NW thermal conductivity to point-defect density is expected due to the lack of threading dislocation (TD) gettering sites, and enhanced phonon-surface scattering further inhibits thermal transport. Excess defect creation during Joule heating could further degrade thermal conductivity, producing a viscous cycle culminating in catastrophic breakdown. To investigate these issues, a unique combination of electron microscopy, scanning luminescence and photoconductivity implemented at the nanoscale will be used in

  2. Chemical exfoliation and optical characterization of threading-dislocation-free gallium-nitride ultrathin nanomembranes

    NASA Astrophysics Data System (ADS)

    ElAfandy, Rami T.; Majid, Mohammed A.; Ng, Tien Khee; Zhao, Lan; Cha, Dongkyu; Ooi, Boon S.

    2014-11-01

    Semiconductor nanostructures have generated tremendous scientific interests as well as practical applications stemming from the engineering of low dimensional physics phenomena. Unlike 0D and 1D nanostructures, such as quantum dots and nanowires, respectively, 2D structures, such as nanomembranes, are unrivalled in their scalability for high yield manufacture and are less challenging in handling with the current transfer techniques. Furthermore, due to their planar geometry, nanomembranes are compatible with the current complementary metal oxide semiconductor (CMOS) technology. Due to these superior characteristics, there are currently different techniques in exfoliating nanomembranes with different crystallinities, thicknesses and compositions. In this work we demonstrate a new facile technique of exfoliating gallium nitride (GaN) nanomembranes with novel features, namely with the non-radiative cores of their threading-dislocations (TDs) being etched away. The exfoliation process is based on engineering the gallium vacancy (VGa) density during the GaN epitaxial growth with subsequent preferential etching. Based on scanning and transmission electron microscopies, as well as micro-photoluminescence measurements, a model is proposed to uncover the physical processes underlying the formation of the nanomembranes. Raman measurements are also performed to reveal the internal strain within the nanomembranes. After transferring these freely suspended 25 nm thin GaN nanomembranes to other substrates, we demonstrate the temperature dependence of their bandgap by photoluminescence technique, in order to shed light on the internal carrier dynamics.

  3. Impact of dislocation densities on n+/p and p+/n junction GaAs diodes and solar cells on SiGe virtual substrates

    NASA Astrophysics Data System (ADS)

    Andre, C. L.; Wilt, D. M.; Pitera, A. J.; Lee, M. L.; Fitzgerald, E. A.; Ringel, S. A.

    2005-07-01

    Recent experimental measurements have shown that in GaAs with elevated threading dislocation densities (TDDs) the electron lifetime is much lower than the hole lifetime [C. L. Andre, J. J. Boeckl, D. M. Wilt, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, B. M. Keyes, and S. A. Ringel, Appl. Phys. Lett. 84, 3884 (2004)]. This lower electron lifetime suggests an increase in depletion region recombination and thus in the reverse saturation current (J0 for an n+/p diode compared with a p+/n diode at a given TDD. To confirm this, GaAs diodes of both polarities were grown on compositionally graded Ge /Si1-xGex/Si (SiGe) substrates with a TDD of 1×106cm-2. It is shown that the ratio of measured J0 values is consistent with the inverse ratio of the expected lifetimes. Using a TDD-dependent lifetime in solar cell current-voltage models we found that the Voc, for a given short-circuit current, also exhibits a poorer TDD tolerance for GaAs n+/p solar cells compared with GaAs p+/n solar cells. Experimentally, the open-circuit voltage (Voc) for the n+/p GaAs solar cell grown on a SiGe substrate with a TDD of ˜1×106cm-2 was ˜880mV which was significantly lower than the ˜980mV measured for a p+/n GaAs solar cell grown on SiGe at the same TDD and was consistent with the solar cell modeling results reported in this paper. We conclude that p+/n polarity GaAs junctions demonstrate superior dislocation tolerance than n+/p configured GaAs junctions, which is important for optimization of lattice-mismatched III-V devices.

  4. Effect of Threading Dislocations on the Quality Factor of InGaN/GaN Microdisk Cavities

    PubMed Central

    2014-01-01

    In spite of the theoretical advantages associated with nitride microcavities, the quality factors of devices with embedded indium gallium nitride (InGaN) or gallium nitride (GaN) optical emitters still remain low. In this work we identify threading dislocations (TDs) as a major limitation to the fabrication of high quality factor devices in the nitrides. We report on the use of cathodoluminescence (CL) to identify individual TD positions within microdisk lasers containing either InGaN quantum wells or quantum dots. Using CL to accurately count the number, and map the position, of dislocations within several individual cavities, we have found a clear correlation between the density of defects in the high-field region of a microdisk and its corresponding quality factor (Q). We discuss possible mechanisms associated with defects, photon scattering, and absorption, which could be responsible for degraded device performance. PMID:25839048

  5. Quenched dislocation enhanced supersolid ordering.

    PubMed

    Toner, John

    2008-01-25

    I show using Landau theory that quenched dislocations can facilitate the supersolid to normal solid transition, making it possible for the transition to occur even if it does not in a dislocation-free crystal. I make detailed predictions for the dependence of the supersolid to normal solid transition temperature T_{c}(L), superfluid density rho_{S}(T,L), and specific heat C(T,L) on temperature T and dislocation spacing L, all of which can be tested against experiments. The results should also be applicable to an enormous variety of other systems, including, e.g., ferromagnets.

  6. Deep-level defects related to the emissive pits in thick InGaN films on GaN template and bulk substrates

    NASA Astrophysics Data System (ADS)

    Sumiya, Masatomo; Toyomitsu, Naoki; Nakano, Yoshitaka; Wang, Jianyu; Harada, Yoshitomo; Sang, Liwen; Sekiguchi, Takashi; Yamaguchi, Tomohiro; Honda, Tohru

    2017-01-01

    We studied the emissive pits in InGaN films grown on compressive and strain-free GaN underlying layers. Pit density decreased with the full width at half maximum of ω(0002) of InGaN. The films grew on compressive and strain-free GaN underlying layers with spiral and step-flow modes, respectively. Carbon impurities accumulated inside the pits. Comparison of cathodoluminescence inside the pits and steady-state photocapacitance spectra showed that the energy level of the carbon impurities appeared at ˜2.8 eV below the conduction band (Ec) for both types of pits. Deep-level defects at Ec -2.4 eV resulting in green fluorescence emission were considered to originate from pits related to screw dislocations.

  7. Structural properties of free-standing 50 mm diameter GaN waferswith (101_0) orientation grown on LiAlO2

    SciTech Connect

    Jasinski, Jacek; Liliental-Weber, Zuzanna; Maruska, Herbert-Paul; Chai, Bruce H.; Hill, David W.; Chou, Mitch M.C.; Gallagher, John J.; Brown, Stephen

    2005-09-27

    (10{und 1}0) GaN wafers grown on (100) face of {gamma}-LiAlO{sub 2} were studied using transmission electron microscopy. Despite good lattice matching in this heteroepitaxial system, high densities of planar structural defects in the form of stacking faults on the basal plane and networks of boundaries located on prism planes inclined to the layer/substrate interface were present in these GaN layers. In addition, significant numbers of threading dislocations were observed. High-resolution electron microscopy indicates that stacking faults present on the basal plane in these layers are of low-energy intrinsic I1type. This is consistent with diffraction contrast experiments.

  8. Low-Angle-Incidence Microchannel Epitaxy of a-Plane GaN Grown by Ammonia-Based Metal-Organic Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hung; Uchiyama, Shota; Maruyama, Takahiro; Naritsuka, Shigeya

    2012-04-01

    Low-angle-incidence microchannel epitaxy (LAIMCE) of a-plane GaN was performed using ammonia-based metal-organic molecular beam epitaxy to obtain wide and thin lateral overgrowth over a SiO2 mask. Trimethylgallium (TMG) was supplied perpendicular to the openings cut in the mask with a low incident angle of 5° relative to the substrate plane. The [NH3]/[TMG] ratio (R) dependence of GaN LAIMCE was optimized by varying R from 5 to 30. A wide lateral overgrowth of 3.7 µm with a dislocation density below the transmission electron microscope detection limit was obtained at R=15 for a thickness of 520 nm.

  9. Investigation of the Dynamics of a Screw Dislocation in Copper

    NASA Astrophysics Data System (ADS)

    Kolupaeva, S. N.; Petelina, Yu. P.; Polosukhin, K. A.; Petelin, A. E.

    2015-08-01

    A modification of the mathematical model of forming the crystallographic shear band is proposed in which the strength of elastic interaction between all dislocations of the forming dislocation pileups is taken into account in addition to the Peach-Keller force; lattice, impurity, and dislocation friction; linear tension; viscous braking; and intensity of generation of point defects behind kinks. The model is used to investigate the influence of the dislocation density on the time characteristics of the formation of dislocation loops in copper.

  10. InGaN/GaN quantum well structures with greatly enhanced performance on a-plane GaN grown using self-organized nano-masks

    NASA Astrophysics Data System (ADS)

    Xing, K.; Gong, Y.; Bai, J.; Wang, T.

    2011-10-01

    Great improvement in crystal quality of a-plane (non-polar) GaN has been achieved using a simple but effective overgrowth technique based on self-organized nano-masks. This has been confirmed by a massive reduction in full width at half maximum of x-ray diffraction rocking curves measured along both symmetrical and asymmetrical directions. Taking the advantage of utilising the nano-masks, a quick coalescence with a thickness of less than 1 μm has been obtained, which is much less than that using any conventional overgrowth techniques. The dislocation density has been significantly reduced by more than one order magnitude compared with a standard a-plane GaN layer on sapphire. An InGaN/GaN multiple quantum well (MQW) structure grown on the high quality a-plane GaN has demonstrated an enhancement with a factor of 7 in optical efficiency, compared with a similar MQW structure grown on a standard c-plane GaN layer. The excitation-power dependent photoluminescence measurements have confirmed that the a-plane InGaN/GaN MQW structure does not suffer from quantum-confined Stark effect any more.

  11. Theoretical study of gallium nitride molecules, GaN2 and GaN4.

    PubMed

    Tzeli, Demeter; Theodorakopoulos, Giannoula; Petsalakis, Ioannis D

    2008-09-18

    The electronic and geometric structures of gallium dinitride GaN 2, and gallium tetranitride molecules, GaN 4, were systematically studied by employing density functional theory and perturbation theory (MP2, MP4) in conjunction with the aug-cc-pVTZ basis set. In addition, for the ground-state of GaN 4( (2)B 1) a density functional theory study was carried out combining different functionals with different basis sets. A total of 7 minima have been identified for GaN 2, while 37 structures were identified for GaN 4 corresponding to minima, transition states, and saddle points. We report geometries and dissociation energies for all the above structures as well as potential energy profiles, potential energy surfaces and bonding mechanisms for some low-lying electronic states of GaN 4. The dissociation energy of the ground-state GaN 2 ( X (2)Pi) is 1.1 kcal/mol with respect to Ga( (2)P) + N 2( X (1)Sigma g (+)). The ground-state and the first two excited minima of GaN 4 are of (2)B 1( C 2 v ), (2)A 1( C 2 v , five member ring), and (4)Sigma g (-)( D infinityh ) symmetry, respectively. The dissociation energy ( D e) of the ground-state of GaN 4, X (2)B 1, with respect to Ga( (2)P) + 2 N 2( X (1)Sigma g (+)), is 2.4 kcal/mol, whereas the D e of (4)Sigma g (-) with respect to Ga( (4)P) + 2 N 2( X (1)Sigma g (+)) is 17.6 kcal/mol.

  12. Characterization of Geometrically Necessary Dislocation Content with EBSD-Based Continuum Dislocation Microscopy

    NASA Astrophysics Data System (ADS)

    Ruggles, Timothy J.

    Modeling of plasticity is often hampered by the difficulty in accurately characterizing dislocation density on the microscale for real samples. It is particularly difficult to resolve measured dislocation content onto individual dislocation systems at the length scales most commonly of interest in plasticity studies. Traditionally, dislocation content is analyzed at the continuum level using the Nye tensor and the fundamental relation of continuum dislocation theory to interpret information measured by diffraction techniques, typically EBSD or High Resolution EBSD. In this work the established Nye-Kroner method for resolving measured geometrically necessary dislocation content onto individual slip systems is assessed and extended. Two new methods are also presented to relieve the ambiguity of the Nye-Kroner method. One of these methods uses modified classical dislocation equations to bypass the Nye-Kroner relation, and the other estimates the bulk dislocation density via the entry-wise one-norm of the Nye tensor. These methods are validated via a novel simulation of distortion fields around continuum fields of dislocation density based on classical lattice mechanics and then applied to actual HR-EBSD scans of a micro-indented single crystals of nickel and tantalum. Finally, a detailed analysis of the effect of the spacing between points in an EBSD scan (which is related to the step size of the numerical derivatives used in EBSD dislocation microscopy) on geometrically necessary dislocation measurements is conducted.

  13. Identification of the primary compensating defect level responsible for determining blocking voltage of vertical GaN power diodes

    DOE PAGES

    King, M. P.; Kaplar, R. J.; Dickerson, J. R.; ...

    2016-10-31

    Electrical performance and characterization of deep levels in vertical GaN P-i-N diodes grown on low threading dislocation density (~104 –106 cm–2) bulk GaN substrates are investigated. The lightly doped n drift region of these devices is observed to be highly compensated by several prominent deep levels detected using deep level optical spectroscopy at Ec-2.13, 2.92, and 3.2 eV. A combination of steady-state photocapacitance and lighted capacitance-voltage profiling indicates the concentrations of these deep levels to be Nt = 3 × 1012, 2 × 1015, and 5 × 1014 cm–3, respectively. The Ec-2.92 eV level is observed to be the primarymore » compensating defect in as-grown n-type metal-organic chemical vapor deposition GaN, indicating this level acts as a limiting factor for achieving controllably low doping. The device blocking voltage should increase if compensating defects reduce the free carrier concentration of the n drift region. Understanding the incorporation of as-grown and native defects in thick n-GaN is essential for enabling large VBD in the next-generation wide-bandgap power semiconductor devices. Furthermore, controlling the as-grown defects induced by epitaxial growth conditions is critical to achieve blocking voltage capability above 5 kV.« less

  14. Development of GaN wafers for solid-state lighting via the ammonothermal method

    NASA Astrophysics Data System (ADS)

    Letts, Edward; Hashimoto, Tadao; Ikari, Masanori; Nojima, Yoshihiro

    2012-07-01

    In order for solid-state lighting to replace existing light bulbs, high power LEDs will be required to handle more current than conventional LEDs. When current densities in high power LEDs become comparable to that of Laser Diodes (LDs), GaN substrates will be critically useful for device reliability. Due to its significant scalability, the ammonothermal growth of bulk GaN could provide cost competitive wafers for high power LEDs. Our team has focused on developing the basic ammonothermal growth method in small 1” internal diameter prototype autoclaves capable of accommodating multiple crystals simultaneously. We have made considerable improvements in the crystal quality particularly in transparency and structural parameters. By optimizing the growth process we have improved the coloration and transparency of the crystals from a black/brown to semi-transparent yellow. We have improved the absorption coefficient at 450 nm from 30.5 cm-1 to 8 cm-1 yielding semi-transparent crystals. Currently, we can reliably achieve a full width half maximum (FWHM) of X-ray 002 reflection between 100 and 300 arcs. The crystals have a low dislocation density less than 10-6 cm-2 and are n-type with a resistivity of approximately ρ∼10-2 Ω cm. In this presentation we will discuss improvements that we have made to provide a more suitable substrate for future high power LEDs.

  15. Low-temperature preparation of GaN-SiO2 interfaces with low defect density. II. Remote plasma-assisted oxidation of GaN and nitrogen incorporation

    NASA Astrophysics Data System (ADS)

    Bae, Choelhwyi; Lucovsky, Gerald

    2004-11-01

    Low-temperature remote plasma-assisted oxidation and nitridation processes for interface formation and passivation have been extended from Si and SiC to GaN. The initial oxidation kinetics and chemical composition of thin interfacial oxide were determined from analysis of on-line Auger electron spectroscopy features associated with Ga, N, and O. The plasma-assisted oxidation process is self-limiting with power-law kinetics similar to those for the plasma-assisted oxidation of Si and SiC. Oxidation using O2/He plasma forms nearly pure GaOx, and oxidation using 1% N2O in N2 forms GaOxNy with small nitrogen content, ~4-7 at. %. The interface and dielectric layer quality was investigated using fabricated GaN metal-oxide-semiconductor capacitors. The lowest density of interface states was achieved with a two-step plasma-assisted oxidation and nitridation process before SiO2 deposition.

  16. Long wavelength GaN blue laser (400-490nm) development

    SciTech Connect

    DenBaars, S P; Abare, A; Sink, K; Kozodoy, P; Hansen, M; Bowers, J; Mishra, U; Coldren, L; Meyer, G

    2000-10-26

    Room temperature (RT) pulsed operation of blue nitride based multi-quantum well (MQW) laser diodes grown on c-plane sapphire substrates was achieved. Atmospheric pressure MOCVD was used to grow the active region of the device which consisted of a 10 pair In{sub 0.21}Ga{sub 0.79}N (2.5nm)/In{sub 0.07}Ga{sub 0.93}N (5nm) InGaN MQW. The threshold current density was reduced by a factor of 2 from 10 kA/cm{sup 2} for laser diodes grown on sapphire substrates to 4.8 kA/cm{sub 2} for laser diodes grown on lateral epitaxial overgrowth (LEO) GaN on sapphire. Lasing wavelengths as long as 425nm were obtained. LEDs with emission wavelengths as long as 500nm were obtained by increasing the Indium content. These results show that a reduction in nonradiative recombination from a reduced dislocation density leads to a higher internal quantum efficiency. Further research on GaN based laser diodes is needed to extend the wavelength to 490nm which is required for numerous bio-detection applications. The GaN blue lasers will be used to stimulate fluorescence in special dye molecules when the dyes are attached to specific molecules or microorganisms. Fluorescein is one commonly used dye molecule for chemical and biological warfare agent detection, and its optimal excitation wavelength is 490 nm. InGaN alloys can be used to reach this wavelength.

  17. Conductivity based on selective etch for GaN devices and applications thereof

    DOEpatents

    Zhang, Yu; Sun, Qian; Han, Jung

    2015-12-08

    This invention relates to methods of generating NP gallium nitride (GaN) across large areas (>1 cm.sup.2) with controlled pore diameters, pore density, and porosity. Also disclosed are methods of generating novel optoelectronic devices based on porous GaN. Additionally a layer transfer scheme to separate and create free-standing crystalline GaN thin layers is disclosed that enables a new device manufacturing paradigm involving substrate recycling. Other disclosed embodiments of this invention relate to fabrication of GaN based nanocrystals and the use of NP GaN electrodes for electrolysis, water splitting, or photosynthetic process applications.

  18. Point defects as a test ground for the local density approximation +U theory: Mn, Fe, and V{sub Ga} in GaN

    SciTech Connect

    Volnianska, O.; Zakrzewski, T.; Boguslawski, P.

    2014-09-21

    Electronic structure of the Mn and Fe ions and of the gallium vacancy V{sub Ga} in GaN was analysed within the GGA + U approach. First, the +U term was treated as a free parameter, and applied to p(N), d(Mn), and d(Fe). The band gap of GaN is reproduced for U(N) ≈ 4 eV. The electronic structure of defect states was found to be more sensitive to the value of U than that of the bulk states. Both the magnitude and the sign of the U-induced energy shifts of levels depend on occupancies, and thus on the defect charge state. The energy shifts also depend on the hybridization between defect and host states, and thus are different for different level symmetries. In the case of V{sub Ga}, these effects lead to stabilization of spin polarization and the “negative-U{sub eff}” behavior. The values of Us were also calculated using the linear response approach, which gives U(Fe) ≈ U(Mn) ≈ 4 eV. This reproduces well the results of previous hybrid functionals calculations. However, the best agreement with the experimental data is obtained for vanishing or even negative U(Fe) and U(Mn)

  19. Limiting factors of room-temperature nonradiative photoluminescence lifetime in polar and nonpolar GaN studied by time-resolved photoluminescence and slow positron annihilation techniques

    NASA Astrophysics Data System (ADS)

    Chichibu, S. F.; Uedono, A.; Onuma, T.; Sota, T.; Haskell, B. A.; DenBaars, S. P.; Speck, J. S.; Nakamura, S.

    2005-01-01

    Room-temperature nonradiative lifetime (τnr) of the near-band-edge excitonic photoluminescence (PL) peak in {0001} polar, (112¯0), (11¯00), and (001) nonpolar GaN was shown to increase with the decrease in density or size of Ga vacancies (VGa) and with the decrease in gross density of point defects including complexes, leading to the increase in the PL intensity. As the edge threading dislocation density decreased, density or size of VGa tended to decrease and τnr tended to increase. However, there existed remarkable exceptions. The results indicate that nonradiative recombination process is governed not by single point defects, but by certain defects introduced with the incorporation of VGa, such as VGa-defect complexes.

  20. Studies of electrically and recombination active centers in undoped GaN grown by OMVPE

    SciTech Connect

    Polyakov, A.Y.; Shin, M.; Skowronski, M.; Greve, D.W.; Govorkov, A.V.; Smirnov, N.B.

    1997-12-31

    Deep centers were studied in GaN samples grown by organometallic vapor phase epitaxy (OMVPE). Electron traps 0.2 eV and 0.5 eV below conduction band edge and 0.25 eV and 0.5-0.85 eV above the valence band edge were detected by means of deep levels transient spectroscopy (DLTS), photoelectron relaxation spectroscopy (PERS) and thermally simulated current spectroscopy (TSC). The photoconductivity at low temperature is shown to be persistent and the magnitude of photosensitivity is dependent on the way the samples are grown. Microcathodoluminescence (MCL) and electron beam induced current (EBIC) measurements indicate that the density of deep recombination centers near the dislocation walls between the misoriented GaN domains is lower than inside the domains. Spatially resolved PERS measurements show that the concentration of the 0.85 eV level is higher in the low angle grain boundary regions that produce bright contrast in EBIC and MCL.

  1. Comparison of ultraviolet APDs grown on free-standing GaN and sapphire substrates

    NASA Astrophysics Data System (ADS)

    Cicek, Erdem; Vashaei, Zahra; Bayram, Can; McClintock, Ryan; Razeghi, Manijeh; Ulmer, Melville P.

    2010-08-01

    There is a need for semiconductor-based ultraviolet photodetectors to support avalanche gain in order to realize better performance andmore effective compete with existing technologies. Wide bandgap III-Nitride semiconductors are the promising material system for the development of avalanche photodiodes (APDs) that could be a viable alternative to current bulky UV detectors such as photomultiplier tubes. In this paper, we review the current state-of-the-art in IIINitride visible-blind APDs, and present our latest results on GaN APDs grown on both conventional sapphire and low dislocation density free-standing c- and m-plane GaN substrates. Leakage current, gain, and single photon detection efficiency (SPDE) of these APDs were compared. The spectral response and Geiger-mode photon counting performance of UV APDs are studied under low photon fluxes, with single photon detection capabilities as much as 30% being demonstrated in smaller devices. Geiger-mode operation conditions are optimized for enhanced SPDE.

  2. High-quality Ga-rich AlGaN grown on trapezoidal patterned GaN template using super-short period AlN/GaN superlattices for rapid coalescence

    NASA Astrophysics Data System (ADS)

    Xiao, Ming; Zhang, Jincheng; Hao, Yue

    2017-04-01

    High quality crack-free Ga-rich Al26.1Ga73.9N film was grown on trapezoidal patterned GaN template (TPGT) by low-pressure metalorganic chemical vapor deposition. The super-short period AlN/GaN superlattices structure was used to grow AlGaN material instead of the direct growth method. We obtained large lateral to vertical growth rate ratio larger than 4.79. The growth rate of GaN layer was proved to be the decisive factor of the lateral to vertical growth rate ratio. Moreover, for AlGaN growth, we found that that the TPGT is more beneficial to suppression of crack and relaxation of biaxial tensile strain than planar GaN template. The obtained results demonstrate that, comparing with AlGaN grown on planar GaN template, the threading dislocation density in AlGaN grown on TPGT was reduced from 2×109 cm-2 to 2×108 cm-2.

  3. High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer

    PubMed Central

    Muhammed, M. M.; Roldan, M. A.; Yamashita, Y.; Sahonta, S.-L.; Ajia, I. A.; Iizuka, K.; Kuramata, A.; Humphreys, C. J.; Roqan, I. S.

    2016-01-01

    We demonstrate the high structural and optical properties of InxGa1−xN epilayers (0 ≤ x ≤ 23) grown on conductive and transparent (01)-oriented β-Ga2O3 substrates using a low-temperature GaN buffer layer rather than AlN buffer layer, which enhances the quality and stability of the crystals compared to those grown on (100)-oriented β-Ga2O3. Raman maps show that the 2″ wafer is relaxed and uniform. Transmission electron microscopy (TEM) reveals that the dislocation density reduces considerably (~4.8 × 107 cm−2) at the grain centers. High-resolution TEM analysis demonstrates that most dislocations emerge at an angle with respect to the c-axis, whereas dislocations of the opposite phase form a loop and annihilate each other. The dislocation behavior is due to irregular (01) β-Ga2O3 surface at the interface and distorted buffer layer, followed by relaxed GaN epilayer. Photoluminescence results confirm high optical quality and time-resolved spectroscopy shows that the recombination is governed by bound excitons. We find that a low root-mean-square average (≤1.5 nm) of InxGa1−xN epilayers can be achieved with high optical quality of InxGa1−xN epilayers. We reveal that (01)-oriented β-Ga2O3 substrate has a strong potential for use in large-scale high-quality vertical light emitting device design. PMID:27412372

  4. High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer

    NASA Astrophysics Data System (ADS)

    Muhammed, M. M.; Roldan, M. A.; Yamashita, Y.; Sahonta, S.-L.; Ajia, I. A.; Iizuka, K.; Kuramata, A.; Humphreys, C. J.; Roqan, I. S.

    2016-07-01

    We demonstrate the high structural and optical properties of InxGa1‑xN epilayers (0 ≤ x ≤ 23) grown on conductive and transparent (01)-oriented β-Ga2O3 substrates using a low-temperature GaN buffer layer rather than AlN buffer layer, which enhances the quality and stability of the crystals compared to those grown on (100)-oriented β-Ga2O3. Raman maps show that the 2″ wafer is relaxed and uniform. Transmission electron microscopy (TEM) reveals that the dislocation density reduces considerably (~4.8 × 107 cm‑2) at the grain centers. High-resolution TEM analysis demonstrates that most dislocations emerge at an angle with respect to the c-axis, whereas dislocations of the opposite phase form a loop and annihilate each other. The dislocation behavior is due to irregular (01) β-Ga2O3 surface at the interface and distorted buffer layer, followed by relaxed GaN epilayer. Photoluminescence results confirm high optical quality and time-resolved spectroscopy shows that the recombination is governed by bound excitons. We find that a low root-mean-square average (≤1.5 nm) of InxGa1‑xN epilayers can be achieved with high optical quality of InxGa1‑xN epilayers. We reveal that (01)-oriented β-Ga2O3 substrate has a strong potential for use in large-scale high-quality vertical light emitting device design.

  5. High drain current density and reduced gate leakage current in channel-doped AlGaN /GaN heterostructure field-effect transistors with Al2O3/Si3N4 gate insulator

    NASA Astrophysics Data System (ADS)

    Maeda, Narihiko; Wang, Chengxin; Enoki, Takatomo; Makimoto, Toshiki; Tawara, Takehiko

    2005-08-01

    Channel-doped AlGaN /GaN heterostructure field-effect transistors (HFETs) with metal-insulator-semiconductor (MIS) structures have been fabricated to obtain the high drain current density and reduced gate leakage current. A thin bilayer dielectric of Al2O3(4nm)/Si3N4(1nm) was used as the gate insulator, to simultaneously take advantage of the high-quality interface between Si3N4 and AlGaN, and high resistivity and a high dielectric constant of Al2O3. A MIS HFET with a gate length of 1.5μm has exhibited a record high drain current density of 1.87A/mm at a gate voltage (Vg) of +3V, which is ascribed to a high applicable Vg and a very high two-dimensional electron gas (2DEG) density of 2.6×1013cm-2 in the doped channel. The gate leakage current was reduced by two or three orders of magnitude, compared with that in normal HFETs without a gate insulator. The transconductance (gm) was 168mS/mm, which is high in the category of the MIS structure. Channel-doped MIS HFETs fabricated have thus been proved to exhibit the high current density, reduced gate leakage current, and relatively high transconductance, hence, promising for high-power applications.

  6. Thermal effects in dislocation theory

    NASA Astrophysics Data System (ADS)

    Langer, J. S.

    2016-12-01

    The mechanical behaviors of polycrystalline solids are determined by the interplay between phenomena governed by two different thermodynamic temperatures: the configurational effective temperature that controls the density of dislocations, and the ordinary kinetic-vibrational temperature that controls activated depinning mechanisms and thus deformation rates. This paper contains a review of the effective-temperature theory and its relation to conventional dislocation theories. It includes a simple illustration of how these two thermal effects can combine to produce a predictive theory of spatial heterogeneities such as shear-banding instabilities. Its main message is a plea that conventional dislocation theories be reformulated in a thermodynamically consistent way so that the vast array of observed behaviors can be understood systematically.

  7. Dislocation motion and instability

    NASA Astrophysics Data System (ADS)

    Zhu, Yichao; Chapman, Stephen Jonathan; Acharya, Amit

    2013-08-01

    The Peach-Koehler expression for the stress generated by a single (non-planar) curvilinear dislocation is evaluated to calculate the dislocation self stress. This is combined with a law of motion to give the self-induced motion of a general dislocation curve. A stability analysis of a rectilinear, uniformly translating dislocation is then performed. The dislocation is found to be susceptible to a helical instability, with the maximum growth rate occurring when the dislocation is almost, but not exactly, pure screw. The non-linear evolution of the instability is determined numerically, and implications for slip band formation and non-Schmid behavior in yielding are discussed.

  8. Crystallographically tilted and partially strain relaxed GaN grown on inclined {111} facets etched on Si(100) substrate

    NASA Astrophysics Data System (ADS)

    Ansah Antwi, K. K.; Soh, C. B.; Wee, Q.; Tan, Rayson J. N.; Yang, P.; Tan, H. R.; Sun, L. F.; Shen, Z. X.; Chua, S. J.

    2013-12-01

    High resolution X-ray diffractometry (HR-XRD), Photoluminescence, Raman spectroscopy, and Transmission electron microscope measurements are reported for GaN deposited on a conventional Si(111) substrate and on the {111} facets etched on a Si(100) substrate. HR-XRD reciprocal space mappings showed that the GaN(0002) plane is tilted by about 0.63° ± 0.02° away from the exposed Si{111} growth surface for GaN deposited on the patterned Si(100) substrate, while no observable tilt existed between the GaN(0002) and Si(111) planes for GaN deposited on the conventional Si(111) substrate. The ratio of integrated intensities of the yellow to near band edge (NBE) luminescence (IYL/INBE) was determined to be about one order of magnitude lower in the case of GaN deposited on the patterned Si(100) substrate compared with GaN deposited on the conventional Si(111) substrate. The Raman E2(high) optical phonon mode at 565.224 ± 0.001 cm-1 with a narrow full width at half maximum of 1.526 ± 0.002 cm-1 was measured, for GaN deposited on the patterned Si(100) indicating high material quality. GaN deposition within the trench etched on the Si(100) substrate occurred via diffusion and mass-transport limited mechanism. This resulted in a differential GaN layer thickness from the top (i.e., 1.8 μm) of the trench to the bottom (i.e., 0.3 μm) of the trench. Mixed-type dislocation constituted about 80% of the total dislocations in the GaN grown on the inclined Si{111} surface etched on Si(100).

  9. Crystallographically tilted and partially strain relaxed GaN grown on inclined (111) facets etched on Si(100) substrate

    SciTech Connect

    Ansah Antwi, K. K.; Soh, C. B.; Wee, Q.; Tan, Rayson J. N.; Tan, H. R.; Yang, P.; Sun, L. F.; Shen, Z. X.; Chua, S. J.

    2013-12-28

    High resolution X-ray diffractometry (HR-XRD), Photoluminescence, Raman spectroscopy, and Transmission electron microscope measurements are reported for GaN deposited on a conventional Si(111) substrate and on the (111) facets etched on a Si(100) substrate. HR-XRD reciprocal space mappings showed that the GaN(0002) plane is tilted by about 0.63° ± 0.02° away from the exposed Si(111) growth surface for GaN deposited on the patterned Si(100) substrate, while no observable tilt existed between the GaN(0002) and Si(111) planes for GaN deposited on the conventional Si(111) substrate. The ratio of integrated intensities of the yellow to near band edge (NBE) luminescence (I{sub YL}/I{sub NBE}) was determined to be about one order of magnitude lower in the case of GaN deposited on the patterned Si(100) substrate compared with GaN deposited on the conventional Si(111) substrate. The Raman E{sub 2}(high) optical phonon mode at 565.224 ± 0.001 cm{sup −1} with a narrow full width at half maximum of 1.526 ± 0.002 cm{sup −1} was measured, for GaN deposited on the patterned Si(100) indicating high material quality. GaN deposition within the trench etched on the Si(100) substrate occurred via diffusion and mass-transport limited mechanism. This resulted in a differential GaN layer thickness from the top (i.e., 1.8 μm) of the trench to the bottom (i.e., 0.3 μm) of the trench. Mixed-type dislocation constituted about 80% of the total dislocations in the GaN grown on the inclined Si(111) surface etched on Si(100)

  10. Effect of dislocations on helium retention in deformed pure iron

    NASA Astrophysics Data System (ADS)

    Gong, Y. H.; Cao, X. Z.; Jin, S. X.; Lu, E. Y.; Hu, Y. C.; Zhu, T.; Kuang, P.; Xu, Q.; Wang, B. Y.

    2016-12-01

    The effects of dislocations created by deformation on helium retention in pure iron, including the helium atoms diffusion along the dislocation line and desorption from dislocation trapping sites, were investigated. The dislocation defect was introduced in specimens by cold-rolling, and then 5 keV helium ions were implanted into the deformed specimens. Slow positron beam technology and thermal desorption spectroscopy were used to investigate the evolution of dislocation defects and the desorption behavior of helium atoms under influence of dislocation. The behaviors of S-E, W-E and S-W plots indicate clearly that lots of helium atoms remain in the deformed specimen and helium atoms combining with dislocation change the distribution of electron density. The helium desorption plot indicates that dislocation accelerates helium desorption at 293 K-600 K and facilitates helium dissociation from HenVm (n/m = 1.8) cluster.

  11. Dislocation core radii near elastic stability limits

    NASA Astrophysics Data System (ADS)

    Sawyer, C. A.; Morris, J. W., Jr.; Chrzan, D. C.

    2013-04-01

    Recent studies of transition metal alloys with compositions that place them near their limits of elastic stability [e.g., near the body-centered-cubic (BCC) to hexagonal-close-packed (HCP) transition] suggest interesting behavior for the dislocation cores. Specifically, the dislocation core size is predicted to diverge as the stability limit is approached. Here a simple analysis rooted in elasticity theory and the computation of ideal strength is used to analyze this divergence. This analysis indicates that dislocation core radii should diverge as the elastic limits of stability are approached in the BCC, HCP, and face-centered-cubic (FCC) structures. Moreover, external stresses and dislocation-induced stresses also increase the core radii. Density functional theory based total-energy calculations are combined with anisotropic elasticity theory to compute numerical estimates of dislocation core radii.

  12. Effect of a Cooling Step Treatment on a High-Voltage GaN LED During ICP Dry Etching

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Sheng; Hsiao, Sheng-Yu; Tseng, Chun-Lung; Shen, Ching-Hsing; Chiang, Jung-Sheng

    2017-02-01

    In this study, a lower dislocation density for a GaN surface and a reduced current path are observed at the interface of a SiO2 isolation sidewall, using high-resolution transmission electron microscopy. This is grown using a 3-min cooling step treatment during inductivity coupled plasma dry etching. The lower forward voltage is measured, the leakage current decreases from 53nA to 32nA, and the maximum output power increases from 354.8 W to 357.2 W for an input current of 30 mA. The microstructure and the optoelectronic properties of high-voltage light-emitting-diodes is proven to be affected by the cooling step treatment, which allows enough time to release the thermal energy of the SiO2 isolation well.

  13. Effect of pressure on the semipolar GaN (10-11) growth mode on patterned Si substrates

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Ming; Zhang, Jie; Lin, Wen-Yu; Ye, Meng-Xin; Feng, Xiang-Xu; Zhang, Dong-Yan; Steve, Ding; Xu, Chen-Ke; Liu, Bao-Lin

    2015-05-01

    In this paper, we investigate the effect of pressure on the growth mode of high quality (10-11) GaN using an epitaxial lateral over growth (ELO) technique by metal organic chemical vapor deposition (MOCVD). Two pressure growth conditions, high pressure (HP) 1013 mbar and low pressure growth (LP) 500 mbar, are employed during growth. In the high pressure growth conditions, the crystal quality is improved by decreasing the dislocation and stack fault density in the strip connection locations. The room temperature photoluminescence measurement also shows that the light emission intensity increases three times using the HP growth condition compared with that using the LP growth conditions. In the low temperature (77 K) photoluminescence, the defects-related peaks are very obvious in the low pressure growth samples. This result also indicates that the crystal quality is improved using the high pressure growth conditions. Project support by the National High Technology Research and Development Program of China (Green Laser).

  14. Statistics of dislocation pinning at localized obstacles

    SciTech Connect

    Dutta, A.; Bhattacharya, M. Barat, P.

    2014-10-14

    Pinning of dislocations at nanosized obstacles like precipitates, voids, and bubbles is a crucial mechanism in the context of phenomena like hardening and creep. The interaction between such an obstacle and a dislocation is often studied at fundamental level by means of analytical tools, atomistic simulations, and finite element methods. Nevertheless, the information extracted from such studies cannot be utilized to its maximum extent on account of insufficient information about the underlying statistics of this process comprising a large number of dislocations and obstacles in a system. Here, we propose a new statistical approach, where the statistics of pinning of dislocations by idealized spherical obstacles is explored by taking into account the generalized size-distribution of the obstacles along with the dislocation density within a three-dimensional framework. Starting with a minimal set of material parameters, the framework employs the method of geometrical statistics with a few simple assumptions compatible with the real physical scenario. The application of this approach, in combination with the knowledge of fundamental dislocation-obstacle interactions, has successfully been demonstrated for dislocation pinning at nanovoids in neutron irradiated type 316-stainless steel in regard to the non-conservative motion of dislocations. An interesting phenomenon of transition from rare pinning to multiple pinning regimes with increasing irradiation temperature is revealed.

  15. High-resistivity GaN buffer templates and their optimization for GaN-based HFETs

    NASA Astrophysics Data System (ADS)

    Hubbard, S. M.; Zhao, G.; Pavlidis, D.; Sutton, W.; Cho, E.

    2005-11-01

    High-resistance (HR) GaN templates for AlGaN/GaN heterojunction field effect transistor (HFET) applications were grown using organometallic vapor phase epitaxy. The GaN sheet resistance was tuned using final nucleation layer (NL) annealing temperature and NL thickness. Using an annealing temperature of 1033 °C and NL thickness of 26 nm, GaN with sheet resistance of 10 10 Ω/sq was achieved, comparable to that of Fe-doped GaN. Material characterization results show that the high-resistance GaN is achieved due to compensating acceptor levels that may be introduced through edge-type threading dislocations. Optimization of annealing temperature and NL thickness provided a means to maximize GaN sheet resistance without significantly degrading material quality. In situ laser reflectance was used to correlate the NL properties to sheet resistance and material quality, providing a figure of merit for expected sheet resistance. AlGaN/GaN HFET layers grown using HR GaN templates with R of 10 10 Ω/sq gave surface and interface roughness of 14 and 7 Å, respectively. The 2DEG Hall mobility and sheet charge of HFETs grown using HR GaN templates was comparable to similar layers grown using unintentionally doped (UID) GaN templates.

  16. The influence of the dislocation distribution heterogeneity degree on the formation of a non-misoriented dislocation cell substructures in f.c.c. metals

    NASA Astrophysics Data System (ADS)

    Cherepanov, D. N.; Selivanikova, O. V.; Matveev, M. V.

    2016-06-01

    Dislocation loops emitted by Frank-Reed source during crossing dislocations of the non-coplanar slip systems are accumulates jogs on the own dislocation line, resulting in the deceleration of the segments of dislocation loops with high jog density. As a result, bending around of the slowed segments the formation of dynamic dipoles in the shear zone occurs. In the present paper we consider formation mechanism of non-misoriented dislocation cell substructure during plastic deformation of f.c.c. metals and conclude that the increase in the degree heterogeneity of dislocation distribution leads to an increase in the jog density and reduce the mean value of arm dynamic dipoles.

  17. Hydrogen diffusion in the elastic fields of dislocations in iron

    NASA Astrophysics Data System (ADS)

    Sivak, A. B.; Sivak, P. A.; Romanov, V. A.; Chernov, V. M.

    2016-12-01

    The effect of dislocation stress fields on the sink efficiency thereof is studied for hydrogen interstitial atoms at temperatures of 293 and 600 K and at a dislocation density of 3 × 1014 m-2 in bcc iron crystal. Rectilinear full screw and edge dislocations in basic slip systems <111>{110}, <111>{112}, <100>{100}, and <100>{110} are considered. Diffusion of defects is simulated by means of the object kinetic Monte Carlo method. The energy of interaction between defects and dislocations is calculated using the anisotropic theory of elasticity. The elastic fields of dislocations result in a less than 25% change of the sink efficiency as compared to the noninteracting linear sink efficiency at a room temperature. The elastic fields of edge dislocations increase the dislocation sink efficiency, whereas the elastic fields of screw dislocations either decrease this parameter (in the case of dislocations with the Burgers vector being 1/2<111>) or do not affect it (in the case of dislocations with the Burgers vector being <100>). At temperatures above 600 K, the dislocations affect the behavior of hydrogen in bcc iron mainly owing to a high binding energy between the hydrogen atom and dislocation cores.

  18. High temperature stable WSi{sub x} ohmic contacts on GaN

    SciTech Connect

    Pearton, S.J.; Donovan, S.M.; Abernathy, C.R.; Ren, F.; Zolper, J.C.; Cole, M.W.; Zeitouny, A.; Eizenberg, M.; Shul, R.J.

    1998-06-01

    The authors have sputter-deposited 500--1200{angstrom} thick WSi{sub 0.45} metallization onto n{sup +} GaN (n{ge}10{sup 19}cm{sup {minus}3}) doped either during MOCVD growth or by direct Si{sup +} ion implantation (5{times}10{sup 15}cm{sup {minus}2}, 100 keV) activated by RTA at 1,100 C for 30 secs. In the epi samples R{sub C} values of {approximately}10{sup {minus}14}{Omega}cm{sup 2} were obtained, and were stable to {approximately}1000 C. The annealing treatments up to 600 C had little effect on the WSi{sub x}/GaN interface, but the {beta}-W{sub 2}N phase formed between 700--800 C, concomitant with a strong reduction in near-surface crystalline defects in the GaN. Spiking of the metallization down the threading and misfit dislocations was observed at 800 C, extending >5,000{angstrom} in some cases. This can create junction shorting in bipolar or thyristor devices, R{sub C} values of <10{sup {minus}6}{Omega}cm{sup 2} were obtained on the implanted samples for 950 C annealing, with values of after 1050 C anneals. The lower R{sub C} values compared to epi samples appear to be a result of the higher peak doping achieved. The authors observed wide spreads in R{sub C} values over a wafer surface, with the values on 950 C annealed material ranging from 10{sup {minus}7} to 10{sup {minus}4}{Omega}cm{sup 2}. There appear to be highly nonuniform doping regions in the GaN, perhaps associated with the high defect density in heteroepitaxial material, and this may contribute to the variations observed. They believe that near-surface stoichiometry is variable in much of the GaN currently produced due to the relative ease of preferential N{sub 2} loss and the common use of H{sub 2}-containing growth (and cool-down) ambients. Finally, the ohmic contact behavior of WSi{sub x} on abrupt and graded composition In{sub x}Al{sub 1{minus}x}N layers has been studied as a function of growth temperature, InN mole fraction (x = 0.5--1) and post WSi{sub x} deposition annealing treatment.

  19. Defect reduction in (11-20) a-plane GaN by two step epitaxiallateral overgrowth

    SciTech Connect

    Ni, X.; Ozgur, U.; Fu, Y.; Biyikii, N.; Morkoc, H.; Liliental-Weber, Z.

    2006-11-25

    We report a two-step growth method to obtain uniformly coalesced epitaxial lateral overgrown a-plane GaN by metal-organic chemical vapor deposition (MOCVD). By obtaining a large wing height to width aspect ratio in the first step followed by enhanced lateral growth in the second step via controlling the growth temperature, we reduced the tilt angle between the advancing Ga-polar and N-polar wings for improved properties. Transmission electron microscopy (TEM) showed that the threading dislocation density in the wing area was 1.0 x 10{sup 8}cm{sup -2}, more than two orders of magnitude lower than that in the window area (4.2 x 10{sup 10} cm{sup -2}). However, a high density of basal stacking faults, 1.2 x 10{sup 4} cm{sup -1}, was still observed in the wing area. Near field scanning optical microscopy (NSOM) at room temperature revealed that the luminescence was mainly from the wing regions with very little contribution from the windows and meeting fronts. These observations suggest that due to significant reduction of threading dislocations radiative recombination is enhanced in the wings.

  20. Spin and phase relaxation dynamics in GaN and GaN/AlGaN quantum wells (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Gallart, Mathieu; Ziegler, Marc; Hönerlage, Bernd H.; Gilliot, Pierre; Feltin, Eric; Carlin, Jean-François; Butté, Raphaël.; Grandjean, Nicolas

    2015-09-01

    By performing time-resolved optical non-degenerate pump-probe experiments, we study the relaxation dynamics of spin-polarized excitons in wurtzite epitaxial GaN and in nitride nanostructures. Those materials are indeed promising candidates for spintronic applications because of their weak spin-orbit coupling and large exciton binding energy (~ 17 meV and ~ 26meV in bulk GaN, respectively). In epilayers, we show that the high density of dislocations increases dramatically the spin relaxation of electrons and holes through the defect assisted Elliott-Yafet mechanism. That makes the exciton dephasing time very short. In high quality GaN/AlGaN quantum wells, both the exciton-spin lifetime S and the exciton dephasing-time T2 were determined via pump-probe spectroscopy using polarized laser pulses and time-resolved four wave-mixing experiments. The evolution of both quantities with temperature shows that spin relaxation occurs in the motional narrowing regime up to 80 K. Above this threshold, the thermal energy becomes large enough for excitons to escape from the QW. Such measurements demonstrate that GaN-based heterostructures can reach a very high degree of control that was previously mostly restricted to conventional III-V semiconductors and more specifically to the arsenide family.

  1. Analogies between continuum dislocation theory, continuum mechanics and fluid mechanics

    NASA Astrophysics Data System (ADS)

    Silbermann, C. B.; Ihlemann, J.

    2017-03-01

    Continuum Dislocation Theory (CDT) relates gradients of plastic deformation in crystals with the presence of geometrically necessary dislocations. Interestingly, CDT shows striking analogies to other branches of continuum mechanics. The present contribution demonstrates this on two essential kinematical quantities which reflect tensorial dislocation properties: the (resultant) Burgers vector and the dislocation density tensor. First, the limiting process for the (resultant) Burgers vector from an integral to a local quantity is performed analogously to the limiting process from the force vector to the traction vector. By evaluating the balance of forces on a tetrahedral volume element, Cauchy found his famous formula relating traction vector and stress tensor. It is shown how this procedure may be adopted to a continuously dislocated tetrahedron. Here, the conservation of Burger’s vector implicates the introduction of the dislocation density tensor. Second, analogies between the plastic flow of a continuously dislocated solid and the liquid flow of a fluid are highlighted: the resultant Burgers vector of a dislocation ensemble plays a similar role as the (resultant) circulation of a vortex tube. Moreover, both vortices within flowing fluids and dislocations within deforming solids induce discontinuities in the velocity field and the plastic distortion field, respectively. Beyond the analogies, some peculiar properties of the dislocation density tensor are presented as well.

  2. The length change of a dislocation junction in FCC-single crystals under stress

    NASA Astrophysics Data System (ADS)

    Kurinnaya, Raisa; Zgolich, Marina; Starenchenko, Vladimir; Sadritdinova, Gulnora

    2016-01-01

    The product of dislocation reactions among dislocations of non-coplanar slip systems are dislocation junctions. The paper presents the study on the length change of dislocation junctions under stress. It is revealed that dislocation junctions can be destructed by merging of triple dislocation nodes at certain inclination angles of the glide dislocation and the forest dislocation to the junction line and the corresponding lengths of free segments of intersecting dislocations. Dislocation junctions formed at an arbitrary intersection of segments of the reacting dislocation are investigated. The geometry of the intersection of segments of reacting dislocations, at which dislocation junctions are not completely destructed under stress but cease to be an obstacle for further motion of the glide dislocation, is determined. Such junctions remain in the shear zone, presenting an obstacle to other glide dislocations. Conditions under which the length of the dislocation junction increases with an increase in the stress exceeding the original length are found. The formed extended barrier becomes too strong for the acting stress. Higher stresses are required in order to destruct it. The probability of completely destructible junctions under stress, the probability of non-destructible junctions that remain in the shear zone and replenish the density of dislocation debris, as well as the probability of formation of long strong junctions, which are barriers capable of limiting the shear zone, are determined.

  3. Thermodynamic forces in single crystals with dislocations

    NASA Astrophysics Data System (ADS)

    Van Goethem, Nicolas

    2014-06-01

    A simple model for the evolution of macroscopic dislocation regions in a single crystal is presented. This model relies on maximal dissipation principle within Kröner's geometric description of the dislocated crystal. Mathematical methods and tools from shape optimization theory provide equilibrium relations at the dislocation front, similarly to previous work achieved on damage modelling (J Comput Phys 33(16):5010-5044, 2011). The deformation state variable is the incompatible strain as related to the dislocation density tensor by a relation involving the Ricci curvature of the crystal underlying elastic metric. The time evolution of the model variables follows from a novel interpretation of the Einstein-Hilbert flow in terms of dislocation microstructure energy. This flow is interpreted as the dissipation of non-conservative dislocations, due to the climb mechanism, modelled by an average effect of mesoscopic dislocations moving normal to their glide planes by adding or removing points defects. The model equations are a fourth-order tensor parabolic equation involving the operator "incompatibility," here appearing as a tensorial counterpart of the scalar Laplacian. This work encompasses and generalizes results previously announced (C R Acad Sci Paris Ser I 349:923-927, 2011), with in addition a series of physical interpretations to give a meaning to the newly introduced concepts.

  4. Irreducible posterolateral elbow dislocation.

    PubMed

    Atkinson, Cameron T; Pappas, Nick D; Lee, Donald H

    2014-02-01

    Elbow dislocations are a high-energy traumatic event resulting in loss of congruence of a stable joint. The majority of elbow dislocations can be reduced by closed means and treated conservatively. We present a case of an irreducible elbow dislocation with reduction blocked by the radial head buttonholed through the lateral ligamentous complex. We performed open reduction with release followed by repair of the lateral ligamentous complex. Clinicians need to understand this unique variant of an elbow dislocation to appropriately treat this operative injury.

  5. Discrete dislocations in graphene

    NASA Astrophysics Data System (ADS)

    Ariza, M. P.; Ortiz, M.

    2010-05-01

    In this work, we present an application of the theory of discrete dislocations of Ariza and Ortiz (2005) to the analysis of dislocations in graphene. Specifically, we discuss the specialization of the theory to graphene and its further specialization to the force-constant model of Aizawa et al. (1990). The ability of the discrete-dislocation theory to predict dislocation core structures and energies is critically assessed for periodic arrangements of dislocation dipoles and quadrupoles. We show that, with the aid of the discrete Fourier transform, those problems are amenable to exact solution within the discrete-dislocation theory, which confers the theory a distinct advantage over conventional atomistic models. The discrete dislocations exhibit 5-7 ring core structures that are consistent with observation and result in dislocation energies that fall within the range of prediction of other models. The asymptotic behavior of dilute distributions of dislocations is characterized analytically in terms of a discrete prelogarithmic energy tensor. Explicit expressions for this discrete prelogarithmic energy tensor are provided up to quadratures.

  6. Dislocated shoulder - aftercare

    MedlinePlus

    ... aftercare; Shoulder subluxation - aftercare; Shoulder reduction - aftercare; Glenohumeral joint dislocation ... that connect bone to bone) of the shoulder joint. All of these tissues help keep your arm ...

  7. Identification of the primary compensating defect level responsible for determining blocking voltage of vertical GaN power diodes

    SciTech Connect

    King, M. P.; Kaplar, R. J.; Dickerson, J. R.; Lee, S. R.; Allerman, A. A.; Crawford, M. H.; Fischer, A. J.; Marinella, M. J.; Flicker, J. D.; Fleming, R. M.; Kizilyalli, I. C.; Aktas, O.; Armstrong, A. M.

    2016-10-31

    Electrical performance and characterization of deep levels in vertical GaN P-i-N diodes grown on low threading dislocation density (~104 –106 cm–2) bulk GaN substrates are investigated. The lightly doped n drift region of these devices is observed to be highly compensated by several prominent deep levels detected using deep level optical spectroscopy at Ec-2.13, 2.92, and 3.2 eV. A combination of steady-state photocapacitance and lighted capacitance-voltage profiling indicates the concentrations of these deep levels to be Nt = 3 × 1012, 2 × 1015, and 5 × 1014 cm–3, respectively. The Ec-2.92 eV level is observed to be the primary compensating defect in as-grown n-type metal-organic chemical vapor deposition GaN, indicating this level acts as a limiting factor for achieving controllably low doping. The device blocking voltage should increase if compensating defects reduce the free carrier concentration of the n drift region. Understanding the incorporation of as-grown and native defects in thick n-GaN is essential for enabling large VBD in the next-generation wide-bandgap power semiconductor devices. Furthermore, controlling the as-grown defects induced by epitaxial growth conditions is critical to achieve blocking voltage capability above 5 kV.

  8. Dislocation analysis of InGaN/GaN quantum dots grown by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yang, Di; Wang, Lai; Hao, Zhi-Biao; Luo, Yi; Sun, Changzheng; Han, Yanjun; Xiong, Bing; Wang, Jian; Li, Hongtao

    2016-11-01

    The dislocations in InGaN/GaN quantum dots grown by metal organic chemical vapor deposition were studied by high-resolution transmission electron microscopy combining the Fourier filtering process. The misfit dislocations were observed in uncapped InGaN/GaN quantum dots. However, for the capped InGaN/GaN quantum dots, the GaN capping layer was found to suppress the generation of misfit dislocations and hence hindered the strain relaxation. Therefore, an overgrowth InGaN layer was used to relieve the strain in InGaN quantum dots and misfit dislocations were correspondingly found in these samples. In addition, defects were observed in low temperature GaN layers which suggested the existence of stacking faults.

  9. Dislocation mechanisms in stressed crystals with surface effects

    NASA Astrophysics Data System (ADS)

    Wu, Chi-Chin; Crone, Joshua; Munday, Lynn; Discrete Dislocation Dynamics Team

    2014-03-01

    Understanding dislocation properties in stressed crystals is the key for important processes in materials science, including the strengthening of metals and the stress relaxation during the growth of hetero-epitaxial structures. Despite existing experimental approaches and theories, many dislocation mechanisms with surface effects still remain elusive in experiments. Even though discrete dislocation dynamics (DDD) simulations are commonly employed to study dislocations, few demonstrate sufficient computational capabilities for massive dislocations with the combined effects of surfaces and stresses. Utilizing the Army's newly developed FED3 code, a DDD computation code coupled with finite elements, this work presents several dislocation mechanisms near different types of surfaces in finite domains. Our simulation models include dislocations in a bended metallic cantilever beam, near voids in stressed metals, as well as threading and misfit dislocations in as-grown semiconductor epitaxial layers and their quantitative inter-correlations to stress relaxation and surface instability. Our studies provide not only detailed physics of individual dislocation mechanisms, but also important collective dislocation properties such as dislocation densities and strain-stress profiles and their interactions with surfaces.

  10. Site controlled red-yellow-green light emitting InGaN quantum discs on nano-tipped GaN rods

    NASA Astrophysics Data System (ADS)

    Conroy, M.; Li, H.; Kusch, G.; Zhao, C.; Ooi, B.; Edwards, P. R.; Martin, R. W.; Holmes, J. D.; Parbrook, P. J.

    2016-05-01

    We report a method of growing site controlled InGaN multiple quantum discs (QDs) at uniform wafer scale on coalescence free ultra-high density (>80%) nanorod templates by metal organic chemical vapour deposition (MOCVD). The dislocation and coalescence free nature of the GaN space filling nanorod arrays eliminates the well-known emission problems seen in InGaN based visible light sources that these types of crystallographic defects cause. Correlative scanning transmission electron microscopy (STEM), energy-dispersive X-ray (EDX) mapping and cathodoluminescence (CL) hyperspectral imaging illustrates the controlled site selection of the red, yellow and green (RYG) emission at these nano tips. This article reveals that the nanorod tips' broad emission in the RYG visible range is in fact achieved by manipulating the InGaN QD's confinement dimensions, rather than significantly increasing the In%. This article details the easily controlled method of manipulating the QDs dimensions producing high crystal quality InGaN without complicated growth conditions needed for strain relaxation and alloy compositional changes seen for bulk planar GaN templates.We report a method of growing site controlled InGaN multiple quantum discs (QDs) at uniform wafer scale on coalescence free ultra-high density (>80%) nanorod templates by metal organic chemical vapour deposition (MOCVD). The dislocation and coalescence free nature of the GaN space filling nanorod arrays eliminates the well-known emission problems seen in InGaN based visible light sources that these types of crystallographic defects cause. Correlative scanning transmission electron microscopy (STEM), energy-dispersive X-ray (EDX) mapping and cathodoluminescence (CL) hyperspectral imaging illustrates the controlled site selection of the red, yellow and green (RYG) emission at these nano tips. This article reveals that the nanorod tips' broad emission in the RYG visible range is in fact achieved by manipulating the InGaN QD

  11. Metallurgy: Starting and stopping dislocations

    NASA Astrophysics Data System (ADS)

    Minor, Andrew M.

    2015-09-01

    A comparison of dislocation dynamics in two hexagonal close-packed metals has revealed that dislocation movement can vary substantially in materials with the same crystal structure, associated with how the dislocations relax when stationary.

  12. Initial stages of misfit stress relaxation through the formation of prismatic dislocation loops in GaN-Ga2O3 composite nanostructures

    NASA Astrophysics Data System (ADS)

    Gutkin, M. Yu.; Smirnov, A. M.

    2016-08-01

    The initial stages of misfit stress relaxation through the formation of rectangular prismatic dislocation loops in model composite nanostructures have been considered. The nanostructures are either spherical or cylindrical GaN shells grown on solid or hollow β-Ga2O3 cores or planar thin GaN films on β-Ga2O3 substrates. Three characteristic configurations of prismatic dislocation loops, namely, square loops, loops elongated along the GaN/Ga2O3 interface, and loops elongated along the normal to the GaN/Ga2O3 interface, have been analyzed. The generation of prismatic dislocation loops from the interface into the bulk of the GaN shell (film), from the free surface into the GaN shell (film), and from the interface into the β-Ga2O3 core (substrate) has been investigated. It has been shown that, for the minimum known estimate of the lattice misfit (2.6%) in some of the considered nanostructures, no any prismatic dislocation loops can be generated. If the generation of prismatic dislocation loops is possible, then in all the considered nanostructures, the energetically more favorable case corresponds to prismatic dislocation loops elongated along the GaN/Ga2O3 interfaces, and the more preferred generation of prismatic dislocation loops occurs from the GaN free surface. The GaN/Ga2O3 nanostructures that are the most and least resistant to the formation of prismatic dislocation loops have been determined. It has been found that, among the considered nanostructures, the planar two-layer GaN/Ga2O3 plate is the most resistant to the generation of prismatic dislocation loops, which is explained by the action of an alternative mechanism for the relaxation of misfit stresses due to the bending of the plate. The least resistant nanostructure is the planar three-layer GaN/Ga2O3/GaN plate, in which GaN films have an identical thickness and which itself as a whole does not undergo bending. The critical thicknesses of the GaN shells (films), which must be exceeded to ensure the

  13. Parallel Dislocation Simulator

    SciTech Connect

    2006-10-30

    ParaDiS is software capable of simulating the motion, evolution, and interaction of dislocation networks in single crystals using massively parallel computer architectures. The software is capable of outputting the stress-strain response of a single crystal whose plastic deformation is controlled by the dislocation processes.

  14. Traumatic proximal tibiofibular dislocation.

    PubMed

    Burgos, J; Alvarez-Montero, R; Gonzalez-Herranz, P; Rapariz, J M

    1997-01-01

    Proximal tibiofibular dislocation is an exceptional lesion. Rarer still is its presentation in childhood. We describe the clinical case of a 6-year-old boy, the victim of a road accident. He had a tibiofibular dislocation associated with a metaphyseal fracture of the tibia.

  15. The equivalence between dislocation pile-ups and cracks

    NASA Technical Reports Server (NTRS)

    Liu, H. W.; Gao, Q.

    1990-01-01

    Cracks and dislocation pile-ups are equivalent to each other. In this paper, the physical equivalence between cracks and pile-ups is delineated, and the relationshps between crack-extension force, force on the leading dislocation, stress-intensity factor, and dislocation density are reviewed and summarized. These relations make it possible to extend quantitatively the recent advances in the concepts and practices of fracture mechanics to the studies of microfractures and microplastic deformations.

  16. Electromechanical simulations of dislocations

    NASA Astrophysics Data System (ADS)

    Skiba, Oxana; Gracie, Robert; Potapenko, Stanislav

    2013-04-01

    Improving the reliability of micro-electronic devices depends in part on developing a more in-depth understanding of dislocations because dislocations are barriers to charge carriers. To this end, the quasi-static simulation of discrete dislocations dynamics in materials under mechanical and electrical loads is presented. The simulations are based on the extended finite element method, where dislocations are modelled as internal discontinuities. The strong and weak forms of the boundary value problem for the coupled system are presented. The computation of the Peach-Koehler force using the J-integral is discussed. Examples to illustrate the accuracy of the simulations are presented. The motion of the network of the dislocations under different electrical and mechanical loads is simulated. It was shown that even in weak piezoelectric materials the effect of the electric field on plastic behaviour is significant.

  17. TEM study of defect structure of GaN epitaxial films grown on GaN/Al2O3 substrates with buried column pattern

    NASA Astrophysics Data System (ADS)

    Mynbaeva, M. G.; Kremleva, A. V.; Kirilenko, D. A.; Sitnikova, A. A.; Pechnikov, A. I.; Mynbaev, K. D.; Nikolaev, V. I.; Bougrov, V. E.; Lipsanen, H.; Romanov, A. E.

    2016-07-01

    A TEM study of defect structure of GaN films grown by chloride vapor-phase epitaxy (HVPE) on GaN/Al2O3 substrates was performed. The substrates were fabricated by metal-organic chemical vapor deposition overgrowth of templates with buried column pattern. The results of TEM study showed that the character of the defect structure of HVPE-grown films was determined by the configuration of the column pattern in the substrate. By choosing the proper pattern, the reduction in the density of threading dislocations in the films by two orders of magnitude (in respect to the substrate material), down to the value of 107 cm-2, was achieved.

  18. The Peculiarities of Strain Relaxation in GaN/AlN Superlattices Grown on Vicinal GaN (0001) Substrate: Comparative XRD and AFM Study

    NASA Astrophysics Data System (ADS)

    Kuchuk, Andrian V.; Kryvyi, Serhii; Lytvyn, Petro M.; Li, Shibin; Kladko, Vasyl P.; Ware, Morgan E.; Mazur, Yuriy I.; Safryuk, Nadiia V.; Stanchu, Hryhorii V.; Belyaev, Alexander E.; Salamo, Gregory J.

    2016-05-01

    Superlattices (SLs) consisting of symmetric layers of GaN and AlN have been investigated. Detailed X-ray diffraction and reflectivity measurements demonstrate that the relaxation of built-up strain in the films generally increases with an increasing number of repetitions; however, an apparent relaxation for subcritical thickness SLs is explained through the accumulation of Nagai tilt at each interface of the SL. Additional atomic force microscopy measurements reveal surface pit densities which appear to correlate with the amount of residual strain in the films along with the appearance of cracks for SLs which have exceeded the critical thickness for plastic relaxation. These results indicate a total SL thickness beyond which growth may be limited for the formation of high-quality coherent crystal structures; however, they may indicate a growth window for the reduction of threading dislocations by controlled relaxation of the epilayers.

  19. Electron density window for best frequency performance, lowest phase noise and slowest degradation of GaN heterostructure field-effect transistors

    NASA Astrophysics Data System (ADS)

    Matulionis, Arvydas

    2013-07-01

    The problems in the realm of nitride heterostructure field-effect transistors (HFETs) are discussed in terms of a novel fluctuation-dissipation-based approach impelled by a recent demonstration of strong correlation of hot-electron fluctuations with frequency performance and degradation of the devices. The correlation has its genesis in the dissipation of the LO-mode heat accumulated by the non-equilibrium longitudinal optical phonons (hot phonons) confined in the channel that hosts the high-density hot-electron gas subjected to a high electric field. The LO-mode heat causes additional scattering of hot electrons and facilitates defect formation in a different manner than the conventional heat contained mainly in the acoustic phonon mode. We treat the heat dissipation problem in terms of the hot-phonon lifetime responsible for the conversion of the non-migrant hot phonons into migrant acoustic modes and other vibrations. The lifetime is measured over a wide range of electron density and supplied electric power. The optimal conditions for the dissipation of the LO-mode heat are associated with the plasmon-assisted disintegration of hot phonons. Signatures of plasmons are experimentally resolved in fluctuations, dissipation, hot-electron transport, transistor frequency performance, transistor phase noise and transistor reliability. In particular, a slower degradation and a faster operation of GaN-based HFETs take place inside the electron density window where the resonant plasmon-assisted ultrafast dissipation of the LO-mode heat comes into play. A novel heterostructure design for the possible improvement of HFET performance is proposed, implemented and tested.

  20. Strain Relief Analysis of InN Quantum Dots Grown on GaN

    PubMed Central

    2007-01-01

    We present a study by transmission electron microscopy (TEM) of the strain state of individual InN quantum dots (QDs) grown on GaN substrates. Moiré fringe and high resolution TEM analyses showed that the QDs are almost fully relaxed due to the generation of a 60° misfit dislocation network at the InN/GaN interface. By applying the Geometric Phase Algorithm to plan-view high-resolution micrographs, we show that this network consists of three essentially non-interacting sets of misfit dislocations lying along the directions. Close to the edge of the QD, the dislocations curve to meet the surface and form a network of threading dislocations surrounding the system. PMID:21794190

  1. Terahertz study of m-plane GaN thin fims

    NASA Astrophysics Data System (ADS)

    Quadir, Shaham; Jang, Der-Jun; Lin, Ching-Liang; Lo, Ikai

    2014-03-01

    We investigate the optical properties of m-plane GaN thin films using the terahertz time domain spectroscopy. The m-plane GaN thin films were grown on γ-LiAlO2 substrates with buffer layers of low temperature grown GaN. The thin films were illuminated with terahertz radiation generated by a LT-GaAs antenna and the transmitted signal was detected by a ZnTe crystal. The polarization of the terahertz wave was chosen to be either parallel or perpendicular to the GaN [0001] direction. We compared the transmitted signals of the m-plane GaN thin films to that of the LAO substrate. The samples as well as the LAO substrate exhibited polarization dependence of absorption in terahertz spectrum. The carrier densities and the mobilities were derived from the transmittance of the THz wave using extended Drude model. We found, in all samples, both the carrier densities and mobilities along the GaN [0001] direction were smaller than those along the GaN [1120] direction due to the stripe formation along the GaN [1120].

  2. Dislocation conduction in Bi-Sb topological insulators

    NASA Astrophysics Data System (ADS)

    Hamasaki, Hiromu; Tokumoto, Yuki; Edagawa, Keiichi

    2017-02-01

    Previous theoretical works have predicted that when a specific condition is satisfied, dislocations in three-dimensional topological insulators form one-dimensional gapless states, which are topologically protected against disorder scattering. Here, the predicted dislocation conduction is experimentally investigated in Bi-Sb topological insulators. High-density dislocations with the Burgers vector satisfying the conductivity condition are introduced into Bi-Sb single crystals by plastic deformation. Conductivity measurements for deformed and undeformed samples and those for the deformed samples in different orientations show excess conductivity due to dislocation conduction.

  3. Probing the character of ultra-fast dislocations

    SciTech Connect

    Rudd, R. E.; Ruestes, C. J.; Bringa, E. M.; Remington, B. A.; Remington, T. P.; Meyers, M. A.

    2015-11-23

    Plasticity is often controlled by dislocation motion, which was first measured for low pressure, low strain rate conditions decades ago. However, many applications require knowledge of dislocation motion at high stress conditions where the data are sparse, and come from indirect measurements dominated by the effect of dislocation density rather than velocity. Here we make predictions based on atomistic simulations that form the basis for a new approach to measure dislocation velocities directly at extreme conditions using three steps: create prismatic dislocation loops in a near-surface region using nanoindentation, drive the dislocations with a shockwave, and use electron microscopy to determine how far the dislocations moved and thus their velocity at extreme stress and strain rate conditions. We report on atomistic simulations of tantalum that make detailed predictions of dislocation flow, and find that the approach is feasible and can uncover an exciting range of phenomena, such as transonic dislocations and a novel form of loop stretching. Furthermore, the simulated configuration enables a new class of experiments to probe average dislocation velocity at very high applied shear stress.

  4. Probing the character of ultra-fast dislocations

    DOE PAGES

    Rudd, R. E.; Ruestes, C. J.; Bringa, E. M.; ...

    2015-11-23

    Plasticity is often controlled by dislocation motion, which was first measured for low pressure, low strain rate conditions decades ago. However, many applications require knowledge of dislocation motion at high stress conditions where the data are sparse, and come from indirect measurements dominated by the effect of dislocation density rather than velocity. Here we make predictions based on atomistic simulations that form the basis for a new approach to measure dislocation velocities directly at extreme conditions using three steps: create prismatic dislocation loops in a near-surface region using nanoindentation, drive the dislocations with a shockwave, and use electron microscopy tomore » determine how far the dislocations moved and thus their velocity at extreme stress and strain rate conditions. We report on atomistic simulations of tantalum that make detailed predictions of dislocation flow, and find that the approach is feasible and can uncover an exciting range of phenomena, such as transonic dislocations and a novel form of loop stretching. Furthermore, the simulated configuration enables a new class of experiments to probe average dislocation velocity at very high applied shear stress.« less

  5. Probing the character of ultra-fast dislocations

    PubMed Central

    Ruestes, C. J.; Bringa, E. M.; Rudd, R. E.; Remington, B. A.; Remington, T. P.; Meyers, M. A.

    2015-01-01

    Plasticity is often controlled by dislocation motion, which was first measured for low pressure, low strain rate conditions decades ago. However, many applications require knowledge of dislocation motion at high stress conditions where the data are sparse, and come from indirect measurements dominated by the effect of dislocation density rather than velocity. Here we make predictions based on atomistic simulations that form the basis for a new approach to measure dislocation velocities directly at extreme conditions using three steps: create prismatic dislocation loops in a near-surface region using nanoindentation, drive the dislocations with a shockwave, and use electron microscopy to determine how far the dislocations moved and thus their velocity at extreme stress and strain rate conditions. We report on atomistic simulations of tantalum that make detailed predictions of dislocation flow, and find that the approach is feasible and can uncover an exciting range of phenomena, such as transonic dislocations and a novel form of loop stretching. The simulated configuration enables a new class of experiments to probe average dislocation velocity at very high applied shear stress. PMID:26592764

  6. Continuum dynamics of the formation, migration and dissociation of self-locked dislocation structures on parallel slip planes

    NASA Astrophysics Data System (ADS)

    Zhu, Yichao; Niu, Xiaohua; Xiang, Yang

    2016-11-01

    In continuum models of dislocations, proper formulations of short-range elastic interactions of dislocations are crucial for capturing various types of dislocation patterns formed in crystalline materials. In this article, the continuum dynamics of straight dislocations distributed on two parallel slip planes is modelled through upscaling the underlying discrete dislocation dynamics. Two continuum velocity field quantities are introduced to facilitate the discrete-to-continuum transition. The first one is the local migration velocity of dislocation ensembles which is found fully independent of the short-range dislocation correlations. The second one is the decoupling velocity of dislocation pairs controlled by a threshold stress value, which is proposed to be the effective flow stress for single slip systems. Compared to the almost ubiquitously adopted Taylor relationship, the derived flow stress formula exhibits two features that are more consistent with the underlying discrete dislocation dynamics: (i) the flow stress increases with the in-plane component of the dislocation density only up to a certain value, hence the derived formula admits a minimum inter-dislocation distance within slip planes; (ii) the flow stress smoothly transits to zero when all dislocations become geometrically necessary dislocations. A regime under which inhomogeneities in dislocation density grow is identified, and is further validated through comparison with discrete dislocation dynamical simulation results. Based on the findings in this article and in our previous works, a general strategy for incorporating short-range dislocation correlations into continuum models of dislocations is proposed.

  7. High purity, low dislocation GaAs single crystals

    NASA Technical Reports Server (NTRS)

    Chen, R. T.; Holmes, D. E.; Kirkpatrick, C. G.

    1983-01-01

    Liquid encapsulated Czochralski crystal growth techniques for producing undoped, high resistivity, low dislocation material suitable for device applications is described. Technique development resulted in reduction of dislocation densities in 3 inch GaAs crystals. Control over the melt stoichiometry was determined to be of critical importance for the reduction of twinning and polycrystallinity during growth.

  8. Investigation of AlN films grown by molecular beam epitaxy on vicinal Si(111) as templates for GaN quantum dots

    SciTech Connect

    Benaissa, M.; Vennegues, P.; Tottereau, O.; Nguyen, L.; Semond, F.

    2006-12-04

    The use of AlN epitaxial films deposited on vicinal Si(111) as templates for the growth of GaN quantum dots is investigated by transmission electron microscopy and atomic force microscopy. It is found that the substrate vicinality induces both a slight tilt of the AlN (0001) direction with respect to the [111] direction and a step bunching mechanism. As a consequence, a dislocation dragging behavior is observed giving rise to dislocation-free areas well suited for the nucleation of GaN quantum dots.

  9. Dislocation-related plasticity of ceria-stabilized zirconia polycrystals

    SciTech Connect

    Zhe, X.; Hendry, A.; Wang, C.

    1996-06-01

    Much higher plastic strain of 4% in Ce-TZP ceramics was produced by a novel thermal-mechanical process below 450 C. Observation by TEM showed that there were abundant dislocation pile-ups associated with a few martensitic laths in the deformed samples. The density of dislocations increased with thermal-mechanical cycles. These suggested that dislocation multiplication was caused by the high local stress concentration in front of a martensitic lath during the thermal-mechanical deformation. The generation and movement of dislocations introduced extra plasticity beside the transformation plasticity caused by martensite. Meanwhile, movement of dislocations relaxes the interface stress at martensitic laths to prevent reverse martensitic transformation and early cracking of the specimens. The results are discussed in terms of thermal-mechanical action and dislocation multiplication.

  10. Bilateral traumatic hip dislocation associated with sacro-iliac dislocation.

    PubMed

    Galois, L; Meuley, E; Pfeffer, F; Mainard, D; Delagoutte, J P

    We report a rare injury in an 18-year-old woman who sustained posterior bilateral hip dislocation with sacro-iliac dislocation after a high energy motor vehicle accident. She was treated by closed reduction and skeletal traction. Bilateral traumatic hip dislocation is an uncommon occurrence. Rarer still is bilateral traumatic hip dislocation associated with sacro-iliac dislocation because it combines two different mechanisms of trauma. (Hip International 2002; 1: 47-9).

  11. Continuum Theory of Dislocations: Cell Structure Formation

    NASA Astrophysics Data System (ADS)

    Limkumnerd, Surachate; Sethna, James P.

    2005-03-01

    Line-like topological defects inside metals are called dislocations. These dislocations in late stages of hardening form patterns called cell structures. We are developing a mesoscale theory for the formation of cell structures that systematically derives the order parameter fields and evolution laws from the conserved topological Burgers vector density or the Nye dislocation tensor. (In classical plasticity theories, describing scales large compared to these cells, one normally bypasses the complicated motions of the dislocations by supplying yield surface and plastic hardening function in order to determine the evolution of state variables.) Using Landau approach and a closure approximation, an evolution equation for the dislocation density tensor is obtained by employing simple symmetry arguments and the constraint that the elastic energy must decrease with time at fixed stress. The evolution laws lead to singularity formation at finite times, which we expect will be related to the formation of cell walls. Implementation of finite difference simulations using the upwind scheme and the results in one and higher dimensions will be discussed.

  12. Change in equilibrium position of misfit dislocations at the GaN/sapphire interface by Si-ion implantation into sapphire. II. Electron energy loss spectroscopic study

    SciTech Connect

    Lee, Sung Bo Han, Heung Nam; Kim, Young-Min

    2015-07-15

    In Part I, we have shown that the addition of Si into sapphire by ion implantationmakes the sapphire substrate elastically softer than for the undoped sapphire. The more compliant layer of the Si-implanted sapphire substrate can absorb the misfit stress at the GaN/sapphire interface, which produces a lower threading-dislocation density in the GaN overlayer. Here in Part II, based on experimental results by electron energy loss spectroscopy and a first-principle molecular orbital calculation in the literature, we suggest that the softening effect of Si results from a reduction of ionic bonding strength in sapphire (α-Al{sub 2}O{sub 3}) with the substitution of Si for Al.

  13. Multiscale calculations of dislocation bias in fcc Ni and bcc Fe model lattices

    NASA Astrophysics Data System (ADS)

    Chang, Z.; Olsson, P.; Terentyev, D.; Sandberg, N.

    2015-06-01

    In order to gain more insights on void swelling, dislocation bias is studied in this work. Molecular static simulations with empirical potentials are applied to map the dislocation-point defects interaction energies in both fcc Ni and bcc Fe model lattices. The interaction energies are then used to numerically solve the diffusion equation and obtain the dislocation bias. The importance of the dislocation core region is studied under a the temperature range 573-1173 K and the dislocation densities 1012-1015m-2 . The results show that larger dislocation bias is found in the fcc Ni than in the bcc Fe under different temperatures and dislocation densities. The anisotropic interaction energy model is used to obtain the dislocation bias and the result is compared to that obtained using the atomistic interaction model, the contribution from the core structure is then shown in both the Ni lattice and the Fe lattice.

  14. GaN surface states investigated by electrochemical studies

    NASA Astrophysics Data System (ADS)

    Winnerl, Andrea; Garrido, Jose A.; Stutzmann, Martin

    2017-03-01

    We present a systematic study of electrochemically active surface states on MOCVD-grown n-type GaN in aqueous electrolytes using cyclic voltammetry and impedance spectroscopy over a wide range of potentials and frequencies. In order to alter the surface states, the GaN samples are either etched or oxidized, and the influence of the surface treatment on the defect-mediated charge transfer to the electrolyte is investigated. Etching in HCl removes substoichiometric GaO x , and leads to a pronounced density of electrochemically active surface states. Oxidation effectively removes these surface states.

  15. Wafer-scale crack-free AlGaN on GaN through two-step selective-area growth for optically pumped stimulated emission

    NASA Astrophysics Data System (ADS)

    Ko, Young-Ho; Bae, Sung-Bum; Kim, Sung-Bock; Kim, Dong Churl; Leem, Young Ahn; Cho, Yong-Hoon; Nam, Eun-Soo

    2016-07-01

    Crack-free AlGaN template has been successfully grown over entire 2-in. wafer by using 2-step selective-area growth (SAG). The GaN truncated structure was obtained by vertical growth mode with low growth temperature. AlGaN of second step was grown under lateral growth mode. Low pressure enhanced the relative ratio of lateral to vertical growth rate as well as absolute overall growth rate. High V/III ratio was favorable for lateral growth mode. Crack-free planar AlGaN was obtained under low pressure of 30 Torr and high V/III ratio of 4400. The AlGaN was crack-free over entire 2-in. wafer and had quite uniform Al-mole fraction. The dislocation density of the AlGaN with 20% Al-composition was as low as ~7.6×108 /cm2, measured by cathodoluminescence. GaN/AlGaN multi-quantum well (MQW) with cladding and waveguide layers were grown on the crack-free AlGaN template with low dislocation density. It was confirmed that the MQW on the AlGaN template emitted the stimulated emission at 355.5 nm through optical pumping experiment. The AlGaN obtained by 2-step SAG would provide high crystal quality for highly-efficient optoelectronic devices as well as the ultraviolet laser diode.

  16. Native defects in GaN: a hybrid functional study

    NASA Astrophysics Data System (ADS)

    Diallo, Ibrahima Castillo; Demchenko, Denis

    Intrinsic defects play an important role in the performance of GaN-based devices. We present hybrid density functional calculations of the electronic and possible optical properties of interstitial N (Ni-Ni) , N antisite (NGa) , interstitial Ga (Gai) , Ga antisite (GaN) , Ga vacancy (VGa) , N vacancy (VN) and Ga-N divacancies (VGaVN) in GaN. Our results show that the vacancies display relatively low formation energies in certain samples, whereas antisites and interstitials are energetically less favorable. However, interstitials can be created by electron irradiation. For instance, in 2.5 MeV electron-irradiated GaN samples, a strong correlation between the frequently observed photoluminescence (PL) band centered around 0.85 eV accompanied with a rich phonon sideband of ~0.88 eV and the theoretical optical behavior of interstitial Ga is discussed. N vacancies are found to likely contribute to the experimentally obtained green luminescence band (GL2) peaking at 2.24 eV in high-resistivity undoped and Mg-doped GaN. National Science Foundation (DMR-1410125) and the Thomas F. and Kate Miller Jeffress Memorial Trust.

  17. Gate stack engineering for GaN lateral power transistors

    NASA Astrophysics Data System (ADS)

    Yang, Shu; Liu, Shenghou; Liu, Cheng; Hua, Mengyuan; Chen, Kevin J.

    2016-02-01

    Developing optimal gate-stack technology is a key to enhancing the reliability and performance of GaN insulated-gate devices for high-voltage power switching applications. In this paper, we discuss current challenges and review our recent progresses in gate-stack technology development toward high-performance and high-reliability GaN power devices, including (1) interface engineering that creates a high-quality dielectric/III-nitride interface with low trap density; (2) barrier-layer engineering that enables optimal trade-off between performance and stability; (3) bulk quality and reliability enhancement of the gate dielectric. These gate-stack techniques in terms of new process development and device structure design are valuable to realize highly reliable and competitive GaN power devices.

  18. Yellow Luminescence Centers of GaN

    NASA Astrophysics Data System (ADS)

    Zhao, Guangyuan; Hubbard, Seth; Pavlidis, Dimitris

    2004-05-01

    The method for measuring Shockley-Read-Hall (SRH) lifetime of yellow centers of GaN was developed. The capture-section ratio (150) of hole to electron is extracted by comparing the experimental and theoretical results. A marked increase in the SRH lifetime (from 0.75 to 7.0 ns) with the increasing in Si doping density (from 1.5× 1017 to 8.8× 1018 cm-3) was observed, and it is attributed to some Si dopant substituting for the Ga vacancy. In addition, it is also found that the YL centers are an important factor limiting the performance of GaN-based devices.

  19. Phosphor-free white-light emitters using in-situ GaN nanostructures grown by metal organic chemical vapor deposition

    PubMed Central

    Min, Daehong; Park, Donghwy; Jang, Jongjin; Lee, Kyuseung; Nam, Okhyun

    2015-01-01

    Realization of phosphor-free white-light emitters is becoming an important milestone on the road to achieve high quality and reliability in high-power white-light-emitting diodes (LEDs). However, most of reported methods have not been applied to practical use because of their difficulties and complexity. In this study we demonstrated a novel and practical growth method for phosphor-free white-light emitters without any external processing, using only in-situ high-density GaN nanostructures that were formed by overgrowth on a silicon nitride (SiNx) interlayer deposited by metal organic chemical vapor deposition. The nano-sized facets produced variations in the InGaN thickness and the indium concentration when an InGaN/GaN double heterostructure was monolithically grown on them, leading to white-color light emission. It is important to note that the in-situ SiNx interlayer not only facilitated the GaN nano-facet structure, but also blocked the propagation of dislocations. PMID:26626890

  20. Geometry of dislocated de Broglie waves

    SciTech Connect

    Holland, P.R.

    1987-04-01

    The geometrical structures implicit in the de Broglie waves associated with a relativistic charged scalar quantum mechanical particle in an external field are analyzed by employing the ray concept of the causal interpretation. It is shown how an osculating Finslerian metric tensor, a torsion tensor, and a tetrad field define respectively the strain, the dislocation density, and the Burgers vector in the natural state of the wave, which is a non-Riemannian space of distant parallelism. A quantum torque determined by the quantum potential is introduced and the example of a screw dislocated wave is discussed.

  1. Mesoscale modeling of dislocations in molecular crystals

    NASA Astrophysics Data System (ADS)

    Lei, Lei; Koslowski, Marisol

    2011-02-01

    Understanding the inelastic deformation of molecular crystals is of fundamental importance to the modeling of the processing of drugs in the pharmaceutical industry as well as to the initiation of detonation in high energy density materials. In this work, we present dislocation dynamics simulations of the deformation of two molecular crystals of interest in the pharmaceutical industry, sucrose and paracetamol. The simulations calculate the yield stress of sucrose and paracetamol in good agreement with experimental observation and predict the anisotropy in the mechanical response observed in these materials. Our results show that dislocation dynamics is an effective tool to study plastic deformation in molecular crystals.

  2. Modeling and 2-D discrete simulation of dislocation dynamics for plastic deformation of metal

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Cui, Zhenshan; Ou, Hengan; Ruan, Liqun

    2013-05-01

    Two methods are employed in this paper to investigate the dislocation evolution during plastic deformation of metal. One method is dislocation dynamic simulation of two-dimensional discrete dislocation dynamics (2D-DDD), and the other is dislocation dynamics modeling by means of nonlinear analysis. As screw dislocation is prone to disappear by cross-slip, only edge dislocation is taken into account in simulation. First, an approach of 2D-DDD is used to graphically simulate and exhibit the collective motion of a large number of discrete dislocations. In the beginning, initial grains are generated in the simulation cells according to the mechanism of grain growth and the initial dislocation is randomly distributed in grains and relaxed under the internal stress. During the simulation process, the externally imposed stress, the long range stress contribution of all dislocations and the short range stress caused by the grain boundaries are calculated. Under the action of these forces, dislocations begin to glide, climb, multiply, annihilate and react with each other. Besides, thermal activation process is included. Through the simulation, the distribution of dislocation and the stress-strain curves can be obtained. On the other hand, based on the classic dislocation theory, the variation of the dislocation density with time is described by nonlinear differential equations. Finite difference method (FDM) is used to solve the built differential equations. The dislocation evolution at a constant strain rate is taken as an example to verify the rationality of the model.

  3. A partly-contacted epitaxial lateral overgrowth method applied to GaN material

    PubMed Central

    Xiao, Ming; Zhang, Jincheng; Duan, Xiaoling; Shan, Hengsheng; Yu, Ting; Ning, Jing; Hao, Yue

    2016-01-01

    We have discussed a new crystal epitaxial lateral overgrowth (ELO) method, partly-contacted ELO (PC-ELO) method, of which the overgrowth layer partly-contacts with underlying seed layer. The passage also illustrates special mask structures with and without lithography and provides three essential conditions to achieve the PC-ELO method. What is remarkable in PC-ELO method is that the tilt angle of overgrowth stripes could be eliminated by contacting with seed layer. Moreover, we report an improved monolayer microsphere mask method without lithography of PC-ELO method, which was used to grow GaN. From the results of scanning electron microscopy, cathodoluminescence, x-ray diffraction (XRD), transmission electron microscopy, and atomic force microscope (AFM), overgrowth layer shows no tilt angle relative to the seed layer and high quality coalescence front (with average linear dislocation density <6.4 × 103 cm−1). Wing stripes peak splitting of the XRD rocking curve due to tilt is no longer detectable. After coalescence, surface steps of AFM show rare discontinuities due to the low misorientation of the overgrowth regions. PMID:27033154

  4. Effective mobility of dislocations from systematic coarse-graining

    NASA Astrophysics Data System (ADS)

    Kooiman, M.; Hütter, M.; Geers, MGD

    2015-06-01

    The dynamics of large amounts of dislocations governs the plastic response of crystalline materials. In this contribution we discuss the relation between the mobility of discrete dislocations and the resulting flow rule for coarse-grained dislocation densities. The mobilities used in literature on these levels are quite different, for example in terms of their intrinsic the stress dependence. To establish the relation across the scales, we have derived the macroscopic evolution equations of dislocation densities from the equations of motion of individual dislocations by means of systematic coarse-graining. From this, we can identify a memory kernel relating the driving force and the flux of dislocations. This kernel can be considered as an effective macroscopic mobility with two contributions; a direct contribution related to the overdamped motion of individual dislocations, and an emergent contribution that arises from time correlations of fluctuations in the Peach-Koehler force. Scaling analysis shows that the latter contribution is dominant for dislocations in metals at room temperature. We also discuss several concerns related to the separation of timescales.

  5. Structural and morphological properties of GaN buffer layers grown by ammonia molecular beam epitaxy on SiC substrates for AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Corrion, A. L.; Poblenz, C.; Wu, F.; Speck, J. S.

    2008-05-01

    The impact of growth conditions on the surface morphology and structural properties of ammonia molecular beam epitaxy GaN buffers layers on SiC substrates was investigated. The threading dislocation (TD) density was found to decrease with decreasing NH{sub 3}:Ga flux ratio, which corresponded to an increase in surface roughness and reduction in residual compressive lattice mismatch stress. Furthermore, the dislocation density and compressive stress decreased for increasing buffer thickness. TD inclination was proposed to account for these observations. Optimized surface morphologies were realized at high NH{sub 3}:Ga flux ratios and were characterized by monolayer-high steps, spiral hillocks, and pyramidal mounds, with rms roughness of {approx}1.0 nm over 2x2 {mu}m{sup 2} atomic force microscopy images. Smooth surface morphologies were realized over a large range of growth temperatures and fluxes, and growth rates of up to 1 {mu}m/h were achieved. TD densities in the buffers as low as 3x10{sup 9} cm{sup -2} were demonstrated. These buffers were highly insulating and were used in recently reported AlGaN/GaN HEMTs with power densities of >11 W/mm at 4 and 10 GHz.

  6. Effect of residual stress on the microstructure of GaN epitaxial films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Wang, Wenliang; Yang, Weijia; Zhu, Yunnong; Lin, Zhiting; Li, Guoqiang

    2016-04-01

    The stress-free GaN epitaxial films have been directly grown by pulsed laser deposition (PLD) at 850 °C, and the effect of different stress on the microstructure of as-grown GaN epitaxial films has been explored in detail. The as-grown stress-free GaN epitaxial films exhibit very smooth surface without any particles and grains, which is confirmed by the smallest surface root-mean-square roughness of 2.3 nm measured by atomic force microscopy. In addition, they also have relatively high crystalline quality, which is proved by the small full-width at half maximum values of GaN(0002) and GaN (10 1 bar 2) X-ray rocking curves as 0.27° and 0.68°, respectively. However, when the growth temperature is lower or higher than 850 °C, internal or thermal stress would be increased in as-grown GaN epitaxial films. To release the larger stress, a great number of dislocations are generated. Many irregular particulates, hexagonal GaN gains and pits are therefore produced on the films surface, and the crystalline quality is greatly reduced consequently. This work has demonstrated the direct growth of stress-free GaN epitaxial films with excellent surface morphology and high crystalline quality by PLD, and presented a comprehensive study on the origins and the effect of stress in GaN layer. It is instructional to achieve high-quality nitride films by PLD, and shows great potential and broad prospect for the further development of high-performance GaN-based devices.

  7. Dislocation climb models from atomistic scheme to dislocation dynamics

    NASA Astrophysics Data System (ADS)

    Niu, Xiaohua; Luo, Tao; Lu, Jianfeng; Xiang, Yang

    2017-02-01

    We develop a mesoscopic dislocation dynamics model for vacancy-assisted dislocation climb by upscalings from a stochastic model on the atomistic scale. Our models incorporate microscopic mechanisms of (i) bulk diffusion of vacancies, (ii) vacancy exchange dynamics between bulk and dislocation core, (iii) vacancy pipe diffusion along the dislocation core, and (iv) vacancy attachment-detachment kinetics at jogs leading to the motion of jogs. Our mesoscopic model consists of the vacancy bulk diffusion equation and a dislocation climb velocity formula. The effects of these microscopic mechanisms are incorporated by a Robin boundary condition near the dislocations for the bulk diffusion equation and a new contribution in the dislocation climb velocity due to vacancy pipe diffusion driven by the stress variation along the dislocation. Our climb formulation is able to quantitatively describe the translation of prismatic loops at low temperatures when the bulk diffusion is negligible. Using this new formulation, we derive analytical formulas for the climb velocity of a straight edge dislocation and a prismatic circular loop. Our dislocation climb formulation can be implemented in dislocation dynamics simulations to incorporate all the above four microscopic mechanisms of dislocation climb.

  8. Electrical spin injection and detection of spin precession in room temperature bulk GaN lateral spin valves

    SciTech Connect

    Bhattacharya, Aniruddha; Baten, Md Zunaid; Bhattacharya, Pallab

    2016-01-25

    We report the measurement of diffusive electronic spin transport characteristics in an epitaxial wurtzite GaN lateral spin valve at room temperature. Hanle spin precession and non-local spin accumulation measurements have been performed with the spin valves fabricated with FeCo/MgO spin contacts. Electron spin relaxation length and spin-flip lifetime of 176 nm and 37 ps, respectively, are derived from analysis of results obtained from four-terminal Hanle spin precession measurements at 300 K. The role of dislocations and defects in bulk GaN has also been examined in the context of electronic spin relaxation dynamics.

  9. The relationship between strain geometry and geometrically necessary dislocations

    NASA Astrophysics Data System (ADS)

    Hansen, Lars; Wallis, David

    2016-04-01

    single crystals and aggregates of olivine for which the strain geometry is known. Tested geometries include constrictional strain, flattening strain, and plane strain. We use measured lattice curvatures to calculate the densities and spatial distributions of geometrically necessary dislocations. Dislocation densities are calculated for each of the major dislocation types in olivine. These densities are then used to estimate the plastic strain geometry under the assumption that the population of geometrically necessary dislocations accurately represents the relative activity of different dislocations during deformation. Our initial results demonstrate compelling relationships between the imposed strain geometry and the calculated plastic strain geometry. In addition, the calculated plastic strain geometry is linked to the distribution of crystallographic orientations, giving insight into the nature of plastic anisotropy in textured olivine aggregates. We present this technique as a new microstructural tool for assessing the kinematic history of deformed rocks.

  10. Interfacial Structure and Chemistry of GaN on Ge(111)

    NASA Astrophysics Data System (ADS)

    Zhang, Siyuan; Zhang, Yucheng; Cui, Ying; Freysoldt, Christoph; Neugebauer, Jörg; Lieten, Ruben R.; Barnard, Jonathan S.; Humphreys, Colin J.

    2013-12-01

    The interface of GaN grown on Ge(111) by plasma-assisted molecular beam epitaxy is resolved by aberration corrected scanning transmission electron microscopy. A novel interfacial structure with a 5∶4 closely spaced atomic bilayer is observed that explains why the interface is flat, crystalline, and free of GeNx. Density functional theory based total energy calculations show that the interface bilayer contains Ge and Ga atoms, with no N atoms. The 5∶4 bilayer at the interface has a lower energy than a direct stacking of GaN on Ge(111) and enables the 5∶4 lattice-matching growth of GaN.

  11. Electrical properties of dislocations in III-Nitrides

    SciTech Connect

    Cavalcoli, D.; Minj, A.; Pandey, S.; Cavallini, A.

    2014-02-21

    Research on GaN, AlN, InN (III-N) and their alloys is achieving new heights due their high potential applications in photonics and electronics. III-N semiconductors are mostly grown epitaxially on sapphire, and due to the large lattice mismatch and the differences in the thermal expansion coefficients, the structures usually contain many threading dislocations (TDs). While their structural properties have been widely investigated, their electrical characteristics and their role in the transport properties of the devices are still debated. In the present contribution we will show conductive AFM studies of TDs in GaN and Al/In GaN ternary alloys to evidence the role of strain, different surface polarity and composition on their electrical properties. Local I-V curves measured at TDs allowed us to clarify their role in the macroscopic electrical properties (leakage current, mobilities) of III-N based devices. Samples obtained by different growers (AIXTRON, III-V Lab) were studied. The comparison between the results obtained in the different alloys allowed us to understand the role of In and Al on the TDs electrical properties.

  12. Elbow Dislocations in Contact Sports.

    PubMed

    Morris, Mark S; Ozer, Kagan

    2017-02-01

    Elbow dislocations are more common in athletes than in the general population. Simple elbow dislocations should be managed with early range of motion and early return to sport, even with high-level contact athletes. Patients with instability on examination or with complex elbow dislocations may require surgical intervention. Overall, the outcomes after simple elbow dislocations are excellent and athletes should be able to return to play without significant limitations.

  13. Dislocation core reconstruction induced by carbon segregation in bcc iron

    NASA Astrophysics Data System (ADS)

    Ventelon, Lisa; Lüthi, B.; Clouet, E.; Proville, L.; Legrand, B.; Rodney, D.; Willaime, F.

    2015-06-01

    The relative stability of dislocation core configurations in body-centered-cubic metals is profoundly modified by the presence of solutes. Considering the Fe(C) system, we demonstrate by using density functional theory that carbon atoms destabilize the usual easy core to the benefit of the hard core configuration of the screw dislocation, which is unstable in pure metals. The carbon atom is at the center of a regular prism in a cementitelike local environment. The same dislocation core reconstruction is also found with other solutes (B, N, O) and in W(C). This unexpected low-energy configuration induces a strong solute-dislocation attraction, leading to dislocation core saturation by solute atoms, even for very low bulk solute concentrations. This core reconstruction will constitute an essential factor to account for in solute-segregation related phenomena, such as strain aging.

  14. Dislocation Substructure in the Cold-Rolled Ni-20 Mass Pct Cr Alloy Analyzed by X-ray Diffraction, Positron Annihilation Lifetime, and Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Yonemura, Mitsuharu; Inoue, Koji

    2016-12-01

    The systematic change in the dislocation density and characteristics that develop under cold rolling as a simulated deformation was studied in order to examine the fundamental behavior of dislocations in terms of the dislocation substructure formation. In particular, the dislocation density was quantified by X-ray line profile analysis (XLPA), which is effective for quantifying the dislocation density and character; positron annihilation lifetime (PAL), which is sensitive to vacancy-type lattice defects; the Bailey-Hirsch equation from the hardness (Hv); and transmission electron microscopy (TEM). The strain dependency of the dislocation density analyzed by XLPA, PAL, TEM, and Hv showed a similar tendency with an increase in the dislocation. In particular, the dislocation density by XLPA had good agreement with the results of TEM at low strain levels and with PAL at high strain levels. As a result, a combination of these techniques successfully showed the behavior of the dislocation substructure.

  15. Dislocated Worker Project.

    ERIC Educational Resources Information Center

    1988

    Due to the severe economic decline in the automobile manufacturing industry in southeastern Michigan, a Dislocated Workers Program has been developed through the partnership of the Flint Area Chamber of Commerce, three community colleges, the National Center for Research in Vocational Education, the Michigan State Department of Education, the…

  16. Elbow fractures and dislocations.

    PubMed

    Little, Kevin J

    2014-07-01

    Elbow fractures are common in pediatric patients. Most injuries to the pediatric elbow are stable and require simple immobilization; however, more severe fractures can occur, often requiring operative stabilization and/or close monitoring. This article highlights the common fractures and dislocations about the pediatric elbow and discusses the history, evaluation, and treatment options for specific injuries.

  17. Behavior of dislocations in silicon

    SciTech Connect

    Sumino, Koji

    1995-08-01

    A review is given of dynamic behavior of dislocations in silicon on the basis of works of the author`s group. Topics taken up are generation, motion and multiplication of dislocations as affected by oxygen impurities and immobilization of dislocations due to impurity reaction.

  18. Dislocation core properties of β-tin: a first-principles study

    NASA Astrophysics Data System (ADS)

    Bhatia, M. A.; Azarnoush, M.; Adlakha, I.; Lu, G.; Solanki, K. N.

    2017-02-01

    Dislocation core properties of tin (β-Sn) were investigated using the semi-discrete variational Peierls–Nabarro (SVPN) model. The SVPN model, which connects the continuum elasticity treatment of the long-range strain field around a dislocation with an approximate treatment of the dislocation core, was employed to calculate various core properties, including the core energetics, widths, and Peierls stresses for different dislocation structures. The role of core energetics and properties on dislocation character and subsequent slip behavior in β-Sn was investigated. For instance, this work shows that a widely spread dislocation core on the {110} plane as compared to dislocations on the {100} and {101} planes. Physically, the narrowing or widening of the core will significantly affect the mobility of dislocations as the Peierls stress is exponentially related to the dislocation core width in β-Sn. In general, the Peierls stress for the screw dislocation was found to be orders of magnitude higher than the edge dislocation, i.e., the more the edge component of a mixed dislocation, the greater the dislocation mobility (lower the Peierls stress). The largest Peierls stress observed was 365 MPa for the dislocation on the {101} plane. Furthermore, from the density plot, we see a double peak for the 0° (screw) and 30° dislocations which suggests the dissociation of dislocations along these planes. Thus, for the {101} < \\bar{1}01> slip system, we observed dislocation dissociation into three partials with metastable states. Overall, this work provides qualitative insights that aid in understanding the plastic deformation in β-Sn.

  19. Multiscale characterization of dislocation processes in Al 5754

    NASA Astrophysics Data System (ADS)

    Kacher, Josh; Mishra, Raja K.; Minor, Andrew M.

    2015-07-01

    Multiscale characterization was performed on an Al-Mg alloy, Al 5754 O-temper, including in situ mechanical deformation in both the scanning electron microscope and the transmission electron microscope. Scanning electron microscopy characterization showed corresponding inhomogeneity in the dislocation and Mg distribution, with higher levels of Mg correlating with elevated levels of dislocation density. At the nanoscale, in situ transmission electron microscopy straining experiments showed that dislocation propagation through the Al matrix is characterized by frequent interactions with obstacles smaller than the imaging resolution that resulted in the formation of dislocation debris in the form of dislocation loops. Post-mortem chemical characterization and comparison to dislocation loop behaviour in an Al-Cr alloy suggests that these obstacles are small Mg clusters. Previous theoretical work and indirect experimental evidence have suggested that these Mg nanoclusters are important factors contributing to strain instabilities in Al-Mg alloys. This study provides direct experimental characterization of the interaction of glissile dislocations with these nanoclusters and the stress needed for dislocations to overcome them.

  20. Photoelectrochemical water splitting on nanoporous GaN thin films for energy conversion under visible light

    NASA Astrophysics Data System (ADS)

    Cao, Dezhong; Xiao, Hongdi; Fang, Jiacheng; Liu, Jianqiang; Gao, Qingxue; Liu, Xiangdong; Ma, Jin

    2017-01-01

    Nanoporous (NP) GaN thin films, which were fabricated by an electrochemical etching method at different voltages, were used as photoelectrodes during photoelectrochemical (PEC) water splitting in 1 M oxalic acid solution. Upon illumination at a power density of 100 mW cm‑2 (AM 1.5), water splitting is observed in NP GaN thin films, presumably resulting from the valence band edge which is more positive than the redox potential of the oxidizing species. In comparison with NP GaN film fabricated at 8 V, NP GaN obtained at 18 V shows nearly twofold enhancement in photocurrent with the maximum photo-to-hydrogen conversion efficiency of 1.05% at ~0 V (versus Ag/AgCl). This enhancement could be explained with (i) the increase of surface area and surface states, and (ii) the decrease of resistances and carrier concentration in the NP GaN thin films. High stability of the NP GaN thin films during the PEC water splitting further confirms that the NP GaN thin film could be applied to the design of efficient solar cells and solar fuel devices.

  1. Theoretical study for heterojunction surface of NEA GaN photocathode dispensed with Cs activation

    NASA Astrophysics Data System (ADS)

    Xia, Sihao; Liu, Lei; Wang, Honggang; Wang, Meishan; Kong, Yike

    2016-09-01

    For the disadvantages of conventional negative electron affinity (NEA) GaN photocathodes activated by Cs or Cs/O, new-type NEA GaN photocathodes with heterojunction surface dispensed with Cs activation are investigated based on first-principle study with density functional theory. Through the growth of an ultrathin n-type GaN cap layer on p-type GaN emission layer, a p-n heterojunction is formed on the surface. According to the calculation results, it is found that Si atoms tend to replace Ga atoms to result in an n-type doped cap layer which contributes to the decreasing of work function. After the growth of n-type GaN cap layer, the atom structure near the p-type emission layer is changed while that away from the surface has no obvious variations. By analyzing the E-Mulliken charge distribution of emission surface with and without cap layer, it is found that the positive charge of Ga and Mg atoms in the emission layer decrease caused by the cap layer, while the negative charge of N atom increases. The conduction band moves downwards after the growth of cap layer. Si atom produces donor levels around the valence band maximum. The absorption coefficient of GaN emission layer decreases and the reflectivity increases caused by n-type GaN cap layer.

  2. Spatial organization of plastic deformation in single crystals with different structure of slip dislocation

    SciTech Connect

    Kunitsyna, T. S.; Teplyakova, L. A. Koneva, N. A.; Poltaranin, M. A.

    2015-10-27

    It is established that different structure of slip dislocation at the end of the linear hardening stage results in different distribution of dislocation charges in the volume of a single crystal. In the alloy with a near atomic order the slip of single dislocations leads to formation of planar structures—layers with the excess density of dislocations. In the alloy with long-range atomic order the slip of superdislocations brings the formation of the system of parallel rod-like charged dislocation linking.

  3. Dynamic phases, pinning, and pattern formation for driven dislocation assemblies

    DOE PAGES

    Zhou, Caizhi; Reichhardt, Charles; Olson Reichhardt, Cynthia J.; ...

    2015-01-23

    We examine driven dislocation assemblies and show that they can exhibit a set of dynamical phases remarkably similar to those of driven systems with quenched disorder such as vortices in superconductors, magnetic domain walls, and charge density wave materials. These phases include pinned-jammed, fluctuating, and dynamically ordered states, and each produces distinct dislocation patterns as well as specific features in the noise fluctuations and transport properties. Lastly, our work suggests that many of the results established for systems with quenched disorder undergoing plastic depinning transitions can be applied to dislocation systems, providing a new approach for understanding pattern formation andmore » dynamics in these systems.« less

  4. Dynamic phases, pinning, and pattern formation for driven dislocation assemblies

    SciTech Connect

    Zhou, Caizhi; Reichhardt, Charles; Olson Reichhardt, Cynthia J.; Beyerlein, Irene J.

    2015-01-23

    We examine driven dislocation assemblies and show that they can exhibit a set of dynamical phases remarkably similar to those of driven systems with quenched disorder such as vortices in superconductors, magnetic domain walls, and charge density wave materials. These phases include pinned-jammed, fluctuating, and dynamically ordered states, and each produces distinct dislocation patterns as well as specific features in the noise fluctuations and transport properties. Lastly, our work suggests that many of the results established for systems with quenched disorder undergoing plastic depinning transitions can be applied to dislocation systems, providing a new approach for understanding pattern formation and dynamics in these systems.

  5. Dislocation-induced superfluidity in a model supersolid

    NASA Astrophysics Data System (ADS)

    Dasbiswas, Kinjal; Goswami, Debajit; Yoo, Chi-Deuk; Dorsey, Alan

    2010-03-01

    The effect of an edge dislocation in inducing superfluidity is explored by coupling the elastic strain field of the dislocation to the superfluid density, and solving the corresponding Ginzburg-Landau theory. It is shown that superfluid density is induced along a single dislocation below a critical temperature determined by the ground state solution of a 2D Schr"odinger equation with a dipolar potential. This superfluid behavior can be described by a 1D Ginzburg-Landau equation obtained through a weakly nonlinear analysis. We then extend our analysis to a network of dislocation lines considered before by Shevchenko and Toner, which could serve as a model for superflow through solid ^4He. The effect of fluctuations and dynamics are included through a full time dependent Ginzburg-Landau theory.

  6. Neglected isolated scaphoid dislocation

    PubMed Central

    Baek, Jong-Ryoon; Cho, Seung Hyun; Lee, Yong Seuk; Roh, Young Hak

    2016-01-01

    The authors present a case of isolated scaphoid dislocation in a 40-year-old male that was undiagnosed for 2 months. The patient was treated by open reduction, Kirschner wire fixation, interosseous ligament repair using a suture anchor and Blatt's dorsal capsulodesis. At 6 years followup, his radiographs of wrist showed a normal carpal alignment with a scapholunate gap of 3 mm and no evidence of avascular necrosis (AVN) of the scaphoid. PMID:27904228

  7. Ga vacancy induced ferromagnetism enhancement and electronic structures of RE-doped GaN

    NASA Astrophysics Data System (ADS)

    Zhong, Guohua; Zhang, Kang; He, Fan; Ma, Xuhang; Lu, Lanlan; Liu, Zhuang; Yang, Chunlei

    2012-09-01

    Because of their possible applications in spintronic and optoelectronic devices, GaN dilute magnetic semiconductors (DMSs) doped by rare-earth (RE) elements have attracted much attention since the high Curie temperature was obtained in RE-doped GaN DMSs and a colossal magnetic moment was observed in the Gd-doped GaN thin film. We have systemically studied the GaN DMSs doped by RE elements (La, Ce-Yb) using the full-potential linearized augmented plane wave method within the framework of density functional theory and adding the considerations of the electronic correlation and the spin-orbital coupling effects. We have studied the electronic structures of DMSs, especially for the contribution from f electrons. The origin of magnetism, magnetic interaction and the possible mechanism of the colossal magnetic moment were explored. We found that, for materials containing f electrons, electronic correlation was usually strong and the spin-orbital coupling was sometimes crucial in determining the magnetic ground state. It was found that GaN doped by La was non-magnetic. GaN doped by Ce, Nd, Pm, Eu, Gd, Tb and Tm are stabilized at antiferromagnetic phase, while GaN doped by other RE elements show strong ferromagnetism which is suitable materials for spintronic devices. Moreover, we have identified that the observed large enhancement of magnetic moment in GaN is mainly caused by Ga vacancies (3.0μB per Ga vacancy), instead of the spin polarization by magnetic ions or originating from N vacancies. Various defects, such as substitutional Mg for Ga, O for N under the RE doping were found to bring a reduction of ferromagnetism. In addition, intermediate bands were observed in some systems of GaN:RE and GaN with intrinsic defects, which possibly opens the potential application of RE-doped semiconductors in the third generation high efficiency photovoltaic devices.

  8. Annealing effects on polycrystalline GaN using nitrogen and ammonia ambients

    NASA Astrophysics Data System (ADS)

    Ariff, A.; Zainal, N.; Hassan, Z.

    2016-09-01

    This paper describes effects of using post-annealing treatment in different conditions on the properties of polycrystalline GaN layer grown on m-plane sapphire substrate by electron beam (e-beam) evaporator. Without annealing, GaN surface was found to have a low RMS roughness with agglomeration of GaN grains in a specific direction and the sample consisted of gallium oxide (Ga2O3) material. When the post-annealing treatment was carried out in N2 ambient at 650 °C, initial re-crystallization of the GaN grains was observed while the evidence of Ga2O3 almost disappeared. As the NH3 annealing was conducted at 950 °C, more effect of re-crystallization occurred but with less grains coalescence. Three dominant XRD peaks of GaN in (10 1 bar 0) , (0002) and (10 1 bar 1) orientations were evident. Near band edge (NBE) related emission in GaN was also observed. The significant improvement was attributed to simultaneous recrystallization and effective reduction of N deficiency density. The post-annealing in a mixture of N2 and NH3 ambient at 950 °C was also conducted, but has limited the effectiveness of the N atoms to incorporate on the GaN layer due to 'clouding' effect by the inert N2 gas. Further increase in the annealing temperature at 980 °C and 1100 °C, respectively caused severe deteriorations of the structural and optical properties of the GaN layer. Overall, this work demonstrated initial potential in improving polycrystalline GaN material in simple and inexpensive manner.

  9. GaN nanowires with pentagon shape cross-section by ammonia-source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lin, Yong; Leung, Benjamin; Li, Qiming; Figiel, Jeffrey. J.; Wang, George T.

    2015-10-01

    Ammonia-based molecular beam epitaxy (NH3-MBE) was used to grow catalyst-assisted GaN nanowires on (1 1 bar 02) r-plane sapphire substrates. Dislocation free [ 11 2 bar 0 ] oriented nanowires are formed with pentagon shape cross-section, instead of the usual triangular shape facet configuration. Specifically, the cross-section is the result of the additional two nonpolar { 10 1 bar 0 } side facets, which appear due to a decrease in relative growth rate of the { 10 1 bar 0 } facets to the { 10 1 bar 1 } and { 10 1 bar 1 } facets under the growth regime in NH3-MBE. Compared to GaN nanowires grown by Ni-catalyzed metal-organic chemical vapor deposition, the NH3-MBE grown GaN nanowires show more than an order of magnitude increase in band-edge to yellow luminescence intensity ratio, as measured by cathodoluminescence, indicating improved microstructural and optical properties.

  10. Propagation of misfit dislocations from buffer/Si interface into Si

    DOEpatents

    Liliental-Weber, Zuzanna; Maltez, Rogerio Luis; Morkoc, Hadis; Xie, Jinqiao

    2011-08-30

    Misfit dislocations are redirected from the buffer/Si interface and propagated to the Si substrate due to the formation of bubbles in the substrate. The buffer layer growth process is generally a thermal process that also accomplishes annealing of the Si substrate so that bubbles of the implanted ion species are formed in the Si at an appropriate distance from the buffer/Si interface so that the bubbles will not migrate to the Si surface during annealing, but are close enough to the interface so that a strain field around the bubbles will be sensed by dislocations at the buffer/Si interface and dislocations are attracted by the strain field caused by the bubbles and move into the Si substrate instead of into the buffer epi-layer. Fabrication of improved integrated devices based on GaN and Si, such as continuous wave (CW) lasers and light emitting diodes, at reduced cost is thereby enabled.

  11. Current mapping of nonpolar a-plane and polar c-plane GaN films by conductive atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Shengrui; Jiang, Teng; Lin, Zhiyu; Zhao, Ying; Yang, Linan; Zhang, Jincheng; Li, Peixian; Hao, Yue

    2016-10-01

    Nonpolar (11-20) a-plane GaN and polar (0001) c-plane GaN films have been grown by metal organic chemical vapor deposition on r-plane (1-102) and c-plane (0001) sapphire substrates, respectively. Conductive atomic force microscopy (C-AFM) has been used to investigate the local conductivity of the films. C-AFM shows enhanced current conduction within the etch pits of c-plane GaN and triangular pits of a-plane GaN. The results indicate that the off-axis planes are more electrically active than c-plane and a-plane. Surprisingly, the C-AFM values in triangular pit of the a-plane GaN are much smaller than that in etch pits of the c-plane GaN. The dislocations type related current leakage mechanism is revealed for polar c-plane and nonpolar a-plane GaN films.

  12. Dislocation Starvation and Exhaustion Hardening in Mo-alloy Nanofibers

    SciTech Connect

    Chisholm, Claire; Bei, Hongbin; Lowry, M. B.; Oh, Jason; Asif, S.A. Syed; Warren, O.; Shan, Zhiwei; George, Easo P; Minor, Andrew

    2012-01-01

    The evolution of defects in Mo alloy nanofibers with initial dislocation densities ranging from 0 to 1.6 1014 m2 were studied using an in situ push-to-pull device in conjunction with a nanoindenter in a transmission electron microscope. Digital image correlation was used to determine stress and strain in local areas of deformation. When they had no initial dislocations the Mo alloy nanofibers suffered sudden catastrophic elongation following elastic deformation to ultrahigh stresses. At the other extreme fibers with a high dislocation density underwent sustained homogeneous deformation after yielding at much lower stresses. Between these two extremes nanofibers with intermediate dislocation densities demonstrated a clear exhaustion hardening behavior, where the progressive exhaustion of dislocations and dislocation sources increases the stress required to drive plasticity. This is consistent with the idea that mechanical size effects ( smaller is stronger ) are due to the fact that nanostructures usually have fewer defects that can operate at lower stresses. By monitoring the evolution of stress locally we find that exhaustion hardening causes the stress in the nanofibers to surpass the critical stress predicted for self-multiplication, supporting a plasticity mechanism that has been hypothesized to account for the rapid strain softening observed in nanoscale bcc materials at high stresses.

  13. One-step fabrication of porous GaN crystal membrane and its application in energy storage

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wang, Shouzhi; Shao, Yongliang; Wu, Yongzhong; Sun, Changlong; Huo, Qin; Zhang, Baoguo; Hu, Haixiao; Hao, Xiaopeng

    2017-03-01

    Single-crystal gallium nitride (GaN) membranes have great potential for a variety of applications. However, fabrication of single-crystalline GaN membranes remains a challenge owing to its chemical inertness and mechanical hardness. This study prepares large-area, free-standing, and single-crystalline porous GaN membranes using a one-step high-temperature annealing technique for the first time. A promising separation model is proposed through a comprehensive study that combines thermodynamic theories analysis and experiments. Porous GaN crystal membrane is processed into supercapacitors, which exhibit stable cycling life, high-rate capability, and ultrahigh power density, to complete proof-of-concept demonstration of new energy storage application. Our results contribute to the study of GaN crystal membranes into a new stage related to the elelctrochemical energy storage application.

  14. One-step fabrication of porous GaN crystal membrane and its application in energy storage

    PubMed Central

    Zhang, Lei; Wang, Shouzhi; Shao, Yongliang; Wu, Yongzhong; Sun, Changlong; Huo, Qin; Zhang, Baoguo; Hu, Haixiao; Hao, Xiaopeng

    2017-01-01

    Single-crystal gallium nitride (GaN) membranes have great potential for a variety of applications. However, fabrication of single-crystalline GaN membranes remains a challenge owing to its chemical inertness and mechanical hardness. This study prepares large-area, free-standing, and single-crystalline porous GaN membranes using a one-step high-temperature annealing technique for the first time. A promising separation model is proposed through a comprehensive study that combines thermodynamic theories analysis and experiments. Porous GaN crystal membrane is processed into supercapacitors, which exhibit stable cycling life, high-rate capability, and ultrahigh power density, to complete proof-of-concept demonstration of new energy storage application. Our results contribute to the study of GaN crystal membranes into a new stage related to the elelctrochemical energy storage application. PMID:28281562

  15. One-step fabrication of porous GaN crystal membrane and its application in energy storage.

    PubMed

    Zhang, Lei; Wang, Shouzhi; Shao, Yongliang; Wu, Yongzhong; Sun, Changlong; Huo, Qin; Zhang, Baoguo; Hu, Haixiao; Hao, Xiaopeng

    2017-03-10

    Single-crystal gallium nitride (GaN) membranes have great potential for a variety of applications. However, fabrication of single-crystalline GaN membranes remains a challenge owing to its chemical inertness and mechanical hardness. This study prepares large-area, free-standing, and single-crystalline porous GaN membranes using a one-step high-temperature annealing technique for the first time. A promising separation model is proposed through a comprehensive study that combines thermodynamic theories analysis and experiments. Porous GaN crystal membrane is processed into supercapacitors, which exhibit stable cycling life, high-rate capability, and ultrahigh power density, to complete proof-of-concept demonstration of new energy storage application. Our results contribute to the study of GaN crystal membranes into a new stage related to the elelctrochemical energy storage application.

  16. Correlation between macroscopic transport parameters and microscopic electrical properties in GaN

    NASA Astrophysics Data System (ADS)

    Witte, H.; Krtschil, A.; Schrenk, E.; Fluegge, K.; Dadgar, A.; Krost, A.

    2005-02-01

    In GaN layers grown by metal-organic vapor phase epitaxy on sapphire substrates the temperature-dependent Hall (TDH) and photo-Hall-effect (PHE) measurements show essential differences between undoped and Si-doped GaN. In undoped GaN the maximum of the Hall mobility occurs at temperatures near 300K with a low value. In PHE, an illumination introduces an enhancement of the mobility and a decrease of the electron density. In contrast, in Si-doped GaN the maximum Hall mobility is higher by a factor of 10 and is observed at temperatures between 100 and 180K. The photoinduced changes in the mobility and electron density are only marginal. Intensity dependent PHE measurements suggest the existence of internal potential barriers caused by inhomogeneities in the undoped samples. These results are combined with the surface-potential roughness on a microscale, as determined by scanning surface-potential microscopy (SSPM). In SSPM the undoped layers show strong potential fluctuations while they are lower for the Si-doped GaN samples. A correlation among the rms roughness of the surface potential, the maximum Hall mobility in TDH, and the maximum changes of the photo-Hall mobility is observed. In undoped GaN the mobility seems to be determined by the scattering at inner potential barriers stemming from structural inhomogeneities.

  17. Dislocation tomography made easy: a reconstruction from ADF STEM images obtained using automated image shift correction

    NASA Astrophysics Data System (ADS)

    Sharp, J. H.; Barnard, J. S.; Kaneko, K.; Higashida, K.; Midgley, P. A.

    2008-08-01

    After previous work producing a successful 3D tomographic reconstruction of dislocations in GaN from conventional weak-beam dark-field (WBDF) images, we have reconstructed a cascade of dislocations in deformed and annealed silicon to a comparable standard using the more experimentally straightforward technique of STEM annular dark-field imaging (STEM ADF). In this mode, image contrast was much more consistent over the specimen tilt range than in conventional weak-beam dark-field imaging. Automatic acquisition software could thus restore the correct dislocation array to the field of view at each tilt angle, though manual focusing was still required. Reconstruction was carried out by sequential iterative reconstruction technique using FEI's Inspect3D software. Dislocations were distributed non-uniformly along cascades, with sparse areas between denser clumps in which individual dislocations of in-plane image width 24 nm could be distinguished in images and reconstruction. Denser areas showed more complicated stacking-fault contrast, hampering tomographic reconstruction. The general three-dimensional form of the denser areas was reproduced well, showing the dislocation array to be planar and not parallel to the foil surfaces.

  18. [Congenital knee dislocation: case report].

    PubMed

    Arvinius, C; Luque, R; Díaz-Ceacero, C; Marco, F

    2016-01-01

    Congenital knee dislocation is an infrequent condition with unknown etiology. In some cases it occurs as an isolated condition, while in others it coexists with associated conditions or syndromes. The treatment of congenital knee dislocation is driven by the severity and flexibility of the deformity. The literature includes from serial casting or the Pavlik harness to quadriceps tendon plasty or femoral osteotomies. We report herein the case of a congenital dislocation treated with serial casting with a good outcome.

  19. Dislocation Diffusion in Metallic Materials

    DTIC Science & Technology

    2011-09-08

    DATES COVERED (From - To) April 1,2007-March 31, 2010 4. TITLE AND SUBTITLE Dislocation Diffusion in Metallic Materials 5a. CONTRACT NUMBER...SUPPLEMENTARY NOTES 14. ABSTRACT The goals of this project were: (1) perform a fundamental study of atomic diffusion along dislocation cores in metals and...alloys, (2) develop new methods for the calculation of dislocation diffusion coefficients as functions of temperature and chemical composition and (3

  20. Transition of dislocation glide to shear transformation in shocked tantalum

    DOE PAGES

    Hsiung, Luke L.; Campbell, Geoffrey H.

    2017-02-28

    A TEM study of pure tantalum and tantalum-tungsten alloys explosively shocked at a peak pressure of 30 GPa (strain rate: ~1 x 104 sec-1) is presented. While no ω (hexagonal) phase was found in shock-recovered pure Ta and Ta-5W that contain mainly a low-energy cellular dislocation structure, shock-induced ω phase was found to form in Ta-10W that contains evenly distributed dislocations with a stored dislocation density higher than 1 x 1012 cm-2. The TEM results clearly reveal that shock-induced α (bcc) → ω (hexagonal) shear transformation occurs when dynamic recovery reactions which lead the formation low-energy cellular dislocation structure becomemore » largely suppressed in Ta-10W shocked under dynamic (i.e., high strain-rate and high-pressure) conditions. A novel dislocation-based mechanism is proposed to rationalize the transition of dislocation glide to twinning and/or shear transformation in shock-deformed tantalum. Lastly, twinning and/or shear transformation take place as an alternative deformation mechanism to accommodate high-strain-rate straining when the shear stress required for dislocation multiplication exceeds the threshold shear stresses for twinning and/or shear transformation.« less

  1. Period-doubling reconstructions of semiconductor partial dislocations

    DOE PAGES

    Park, Ji -Sang; Huang, Bing; Wei, Su -Huai; ...

    2015-09-18

    Atomic-scale understanding and control of dislocation cores is of great technological importance, because they act as recombination centers for charge carriers in optoelectronic devices. Using hybrid density-functional calculations, we present period-doubling reconstructions of a 90° partial dislocation in GaAs, for which the periodicity of like-atom dimers along the dislocation line varies from one to two, to four dimers. The electronic properties of a dislocation change drastically with each period doubling. The dimers in the single-period dislocation are able to interact, to form a dispersive one-dimensional band with deep-gap states. However, the inter-dimer interaction for the double-period dislocation becomes significantly reduced;more » hence, it is free of mid-gap states. The Ga core undergoes a further period-doubling transition to a quadruple-period reconstruction induced by the formation of small hole polarons. Lastly, the competition between these dislocation phases suggests a new passivation strategy via population manipulation of the detrimental single-period phase.« less

  2. Period-doubling reconstructions of semiconductor partial dislocations

    SciTech Connect

    Park, Ji -Sang; Huang, Bing; Wei, Su -Huai; Kang, Joongoo; McMahon, William E.

    2015-09-18

    Atomic-scale understanding and control of dislocation cores is of great technological importance, because they act as recombination centers for charge carriers in optoelectronic devices. Using hybrid density-functional calculations, we present period-doubling reconstructions of a 90° partial dislocation in GaAs, for which the periodicity of like-atom dimers along the dislocation line varies from one to two, to four dimers. The electronic properties of a dislocation change drastically with each period doubling. The dimers in the single-period dislocation are able to interact, to form a dispersive one-dimensional band with deep-gap states. However, the inter-dimer interaction for the double-period dislocation becomes significantly reduced; hence, it is free of mid-gap states. The Ga core undergoes a further period-doubling transition to a quadruple-period reconstruction induced by the formation of small hole polarons. Lastly, the competition between these dislocation phases suggests a new passivation strategy via population manipulation of the detrimental single-period phase.

  3. Origin of sample size effect: Stochastic dislocation formation in crystalline metals at small scales

    PubMed Central

    Huang, Guan-Rong; Huang, J. C.; Tsai, W. Y.

    2016-01-01

    In crystalline metals at small scales, the dislocation density will be increased by stochastic events of dislocation network, leading to a universal power law for various material structures. In this work, we develop a model obeyed by a probability distribution of dislocation density to describe the dislocation formation in terms of a chain reaction. The leading order terms of steady-state of probability distribution gives physical and quantitative insight to the scaling exponent n values in the power law of sample size effect. This approach is found to be consistent with experimental n values in a wide range. PMID:27976740

  4. Origin of sample size effect: Stochastic dislocation formation in crystalline metals at small scales

    NASA Astrophysics Data System (ADS)

    Huang, Guan-Rong; Huang, J. C.; Tsai, W. Y.

    2016-12-01

    In crystalline metals at small scales, the dislocation density will be increased by stochastic events of dislocation network, leading to a universal power law for various material structures. In this work, we develop a model obeyed by a probability distribution of dislocation density to describe the dislocation formation in terms of a chain reaction. The leading order terms of steady-state of probability distribution gives physical and quantitative insight to the scaling exponent n values in the power law of sample size effect. This approach is found to be consistent with experimental n values in a wide range.

  5. Substitutional and interstitial oxygen in wurtzite GaN

    NASA Astrophysics Data System (ADS)

    Wright, A. F.

    2005-11-01

    Density-functional theory was used to compute energy-minimum configurations and formation energies of substitutional and interstitial oxygen (O) in wurtzite GaN. The results indicate that O substituted at a N site (ON) acts as a single donor with the ionized state (ON+1) being the most stable O state in p-type GaN. In n-type GaN, interstitial O (OI) is predicted to be a double acceptor and O substituted at a Ga site (OGa) is predicted to be a triple acceptor. The formation energies of these two species are comparable to that of ON in n-type GaN and, as such, they should form and compensate the ON donors. The extent of compensation was estimated for both Ga-rich and N-rich conditions with a total O concentration of 1017cm-3. Ga-rich conditions yielded negligible compensation and an ON concentration in excess of 9.9×1016cm-3. N-rich conditions yielded a 25% lower ON concentration, due to the increased stability of OI and OGa relative to ON, and moderate compensation. These findings are consistent with experimental results indicating that O acts as a donor in GaN(O). Complexes of ON with the Mg acceptor and OI with the Si donor were examined. Binding energies for charge-conserving reactions were ⩾0.5eV, indicating that these complexes can exist in equilibrium at room temperature. Complexes of ON with the Ga vacancy in n-type GaN were also examined and their binding energies were 1.2 and 1.4eV, indicating that appreciable concentrations can exist in equilibrium even at elevated temperatures.

  6. Dislocation Processes and Frictional Stability of Faults

    NASA Astrophysics Data System (ADS)

    Toy, V. G.; Mitchell, T. M.; Druiventak, A.

    2011-12-01

    surfaces, at least at the slightly sub-seismic deformation rates of these experiments. Furthermore, once sliding initiated on the saw cut surface, an amorphous material was generated. We hypothesise that this could have been due to a breakdown of the crystal structure by a combination of cataclasis and generation of excessive dislocation densities. There would also have been a slight increase in temperature around the sliding surface during and after fault slip, which may have aided the focussing of dislocation processes around the sliding surface.

  7. Threading and misfit-dislocation motion in molecular-beam epitaxy-grown HgCdTe epilayers

    NASA Astrophysics Data System (ADS)

    Carmody, M.; Lee, D.; Zandian, M.; Phillips, J.; Arias, J.

    2003-07-01

    Lattice mismatch between the substrate and the absorber layer in single-color HgCdTe infrared (IR) detectors and between band 1 and band 2 in two-color detectors results in the formation of crosshatch lines on the surface and an array of misfit dislocations at the epi-interfaces. Threading dislocations originating in the substrate can also bend into the interface plane and result in misfit dislocations because of the lattice mismatch. The existence of dislocations threading through the junction region of HgCdTe IR-photovoltaic detectors can greatly affect device performance. High-quality CdZnTe substrates and controlled molecular-beam epitaxy (MBE) growth of HgCdTe can result in very low threading-dislocation densities as measured by the etch-pit density (EPD ˜ 104cm-2). However, dislocation gettering to regions of high stress (such as etched holes, voids, and implanted-junction regions) at elevated-processing temperatures can result in a high density of dislocations in the junction region that can greatly reduce detector performance. We have performed experiments to determine if the dislocations that getter to these regions of high stress are misfit dislocations at the substrate/absorber interface that have a threading component extending to the upper surface of the epilayer, or if the dislocations originate at the cap/absorber interface as misfit dislocations. The preceding mechanisms for dislocation motion are discussed in detail, and the possible diode-performance consequences are explored.

  8. Theory of magnetoresistance due to lattice dislocations in face-centred cubic metals

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Niewczas, M.

    2016-06-01

    A theoretical model to describe the low temperature magneto-resistivity of high purity copper single and polycrystals containing different density and distribution of dislocations has been developed. In the model, magnetoresistivity tensor is evaluated numerically using the effective medium approximation. The anisotropy of dislocation-induced relaxation time is considered by incorporating two independent energy bands with different relaxation times and the spherical and cylindrical Fermi surfaces representing open, extended and closed electron orbits. The effect of dislocation microstructure is introduced by means of two adjustable parameters corresponding to the length and direction of electron orbits in the momentum space, which permits prediction of magnetoresistance of FCC metals containing different density and distribution of dislocations. The results reveal that dislocation microstructure influences the character of the field-dependent magnetoresistivity. In the orientation of the open orbits, the quadratic variation in magnetoresistivity changes to quasi-linear as the density of dislocations increases. In the closed orbit orientation, dislocations delay the onset of magnetoresistivity saturation. The results indicate that in the open orbit orientations of the crystals, the anisotropic relaxation time due to small-angle dislocation scattering induces the upward deviation from Kohler's rule. In the closed orbit orientations Kohler's rule holds, independent of the density of dislocations. The results obtained with the model show good agreement with the experimental measurements of transverse magnetoresistivity in deformed single and polycrystal samples of copper at 2 K.

  9. Growth regimes during homoepitaxial growth of GaN by ammonia molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Corrion, A. L.; Wu, F.; Speck, J. S.

    2012-09-01

    c-plane GaN films were grown by ammonia molecular beam epitaxy on metal-organic chemical vapor deposition templates for a wide range of NH3:Ga flux ratios and growth temperatures, and the resulting films were characterized using atomic force microscopy, reflection high-energy electron diffraction, and transmission electron microscopy. Three distinct nitrogen-rich growth regimes—unstable layer-by-layer, quasi-stable step flow, and dislocation-mediated pitting—were identified based on the growth mode and film properties. In addition, step flow growth was observed under conditions of gallium droplet accumulation. The results indicate the existence of two regimes for step-flow growth of GaN by ammonia MBE—both gallium-rich and nitrogen-rich. Growth mode instabilities and mound formation were observed and are discussed in the context of a step-edge energy barrier to adatom diffusion over a terrace.

  10. Dislocation Damping and Anisotropic Attenuation in the Earth's Upper Mantle

    NASA Astrophysics Data System (ADS)

    Jackson, I.; Farla, R. J.; Fitz Gerald, J. D.; Faul, U.; Zimmerman, M. E.

    2011-12-01

    Seismic anisotropy, attributed to olivine lattice preferred orientation, suggests that tectonic deformation in the Earth's shallow upper mantle involves dislocation creep. Reversible glide of dislocations, generated by the prevailing/fossil tectonic stress, may result in anelastic relaxation that contributes to the reduction of seismic wave speeds and associated attenuation. To test this hypothesis, polycrystalline olivine specimens were synthesised from synthetic (sol-gel) precursors and hot-pressed at high temperature. The hot-pressed material is fully dense, fine-grained and essentially dry and melt-free olivine. Other, coarser-grained material was synthesised from San Carlos olivine powders. These contrasting materials provided the opportunity to distinguish between the influences of grain size and dislocation density. Selected specimens were deformed by dislocation creep either in compression or torsion and characterised for dislocation density via oxidation and backscattered electron imaging. Additionally, the dislocation recovery rate was determined for both olivines at different temperatures and time durations. The results established that a maximum temperature of 1100C should allow a relatively stable dislocation density to be maintained during prolonged mechanical testing (> 50 hours). The shear modulus and associated strain-energy dissipation in both hot-pressed and pre-deformed specimens were subsequently measured at seismic frequencies under conditions of simultaneous high pressure and temperature with torsional forced-oscillation methods. These experiments were carried out with strain amplitudes < 10-5 to permit direct comparison with seismological models. The high-temperature dissipation background, attributed in undeformed fine-grained materials to grain-boundary sliding, and the associated partial relaxation of the shear modulus, are systematically enhanced in the pre-deformed materials - suggesting a role for the dislocations introduced during the

  11. Misfit dislocations in epitaxy

    NASA Astrophysics Data System (ADS)

    van der Merwe, Jan H.

    2002-08-01

    This article on epitaxy highlights the following: the definition and some historical milestones; the introduction by Frenkel and Kontorowa (FK) of a truncated Fourier series to model the periodic interaction at crystalline interfaces; the invention by Frank and van der Merwe (FvdM)—using the FK model—of (interfacial) misfit dislocations as an important mechanism in accommodating misfit at epilayer-substrate interfaces; the generalization of the FvdM theory to multilayers; the application of the parabolic model by Jesser and van der Merwe to describe, for growing multilayers and superlattices, the impact of Fourier coefficients in the realization of epitaxial orientations and the stability of modes of misfit accommodation; the involvement of intralayer interaction in the latter—all features that impact on the attainment of perfection in crystallinity of thin films, a property that is so vital in the fabrication of useful uniformly thick epilayers (uniformity being another technological requirement), which also depends on misfit accommodation through the interfacial energy that function strongly in the criterion for growth modes, proposed by Bauer; and the ingenious application of the Volterra model by Matthews and others to describe misfit accommodation by dislocations in growing epilayers.

  12. High purity low dislocation GaAs single crystals

    NASA Technical Reports Server (NTRS)

    Chen, R. T.; Holmes, D. E.; Kirkpatrick, C. G.

    1982-01-01

    Recent advances in GaAs bulk crystal growth using the LEC (liquid encapsulated Czochralski) technique are described. The dependence of the background impurity concentration and the dislocation density distribution on the materials synthesis and growth conditions were investigated. Background impurity concentrations as low as 4 x 10 to the 15th power were observed in undoped LEC GaAs. The dislocation density in selected regions of individual ingots was very low, below the 3000 cm .3000/sq cm threshold. The average dislocation density over a large annular ring on the wafers fell below the 10000/sq cm level for 3 inch diameter ingots. The diameter control during the program advanced to a diameter variation along a 3 inch ingot less than 2 mm.

  13. Statistical description of the motion of dislocation kinks in a random field of impurities adsorbed by a dislocation

    SciTech Connect

    Petukhov, B. V.

    2010-01-15

    A model has been proposed for describing the influence of impurities adsorbed by dislocation cores on the mobility of dislocation kinks in materials with a high crystalline relief (Peierls barriers). The delay time spectrum of kinks at statistical fluctuations of the impurity density has been calculated for a sufficiently high energy of interaction between impurities and dislocations when the migration potential is not reduced to a random Gaussian potential. It has been shown that fluctuations in the impurity distribution substantially change the character of the migration of dislocation kinks due to the slow decrease in the probability of long delay times. The dependences of the position of the boundary of the dynamic phase transition to a sublinear drift of kinks x {proportional_to} t{sup {delta}} ({delta} {sigma} 1) and the characteristics of the anomalous mobility on the physical parameters (stress, impurity concentration, experimental temperature, etc.) have been calculated.

  14. Theoretical investigation of GaN carbon doped

    NASA Astrophysics Data System (ADS)

    Espitia Rico, M. J.; Moreno Armenta, M. G.; Rodríguez, J. A.; Takeuchi, N.

    2016-02-01

    In this work we used first principles calculations in the frame of density functional theory (DFT) in order to study the structural and electronic properties of GaN doped with carbon. The computational calculations were carried out by a method based on plane waves pseudopotentials, as implemented in the Quantum Espresso code. In the wurtzite type GaN supercell the nitrogen atoms were replaced by carbon atoms (C by N) and then also the gallium atoms by carbon atoms (C by Ga). The carbon concentrations in the GaN volume was set as x=25, 50 y 75%. For each concentration x of carbon the formation energy was calculated for the substitutions C by N and CxGa. We found that it is more energetically favourable that the carbon atoms occupy the positions of the nitrogen atoms (C by N), because in all the x concentrations of carbon the formation energies were lower than that in the substitutions (C by Ga). It was found that the new compounds CxGaN1-x have higher bulk moduli. So they are very rigid. This property makes them good candidates for applications in hard coatings or devices for high power and temperatures. Analysis of the density of states show that the new CxGaN1-x ternary compound have metallic behaviour that comes essentially from the hybridization states N-p and C-p cross the Fermi level.

  15. Investigation of dislocation migration in substrate-grade CdZnTe crystals during post-annealing

    NASA Astrophysics Data System (ADS)

    Jia, Ningbo; Xu, Yadong; Guo, Rongrong; Gu, Yaxu; Fu, Xu; Wang, Yuhan; Jie, Wanqi

    2017-01-01

    The migration of dislocations in substrate-grade CdZnTe (CZT) single crystals during temperature gradient annealing under Cd/Zn vapor has been investigated. The etch pit density (EPD) and configuration of dislocations have been evaluated before and after annealing in CZT crystals with and without Cd-rich second phase (Cd-SP) particles, respectively. After Cd/Zn overpressure annealing, dislocation reduction in CZT crystals was observed. However, dislocation walls with 120° intervals along <211> crystalline direction were observed in the both types of CZT crystals. The formation of these dislocation walls can be attributed to the reaction of <110> dislocations. Moreover, it is considered that the release of the restored stress during annealing act as the domain driving force for dislocation migration, by comparing the variation of dislocation configuration in CZT crystals with and without Cd-SP particles.

  16. Improved photoelectrochemical performance of GaN nanopillar photoanodes.

    PubMed

    Narangari, Parvathala Reddy; Karuturi, Siva Krishna; Lysevych, Mykhaylo; Hoe Tan, Hark; Jagadish, Chennupati

    2017-04-18

    In this work, we report on the photoelectrochemical (PEC) investigation of n-GaN nanopillar (NP) photoanodes fabricated using metal organic chemical vapour deposition and the top-down approach. Substantial improvement in photocurrents is observed for GaN NP photoanodes compared to their planar counterparts. The role of carrier concentration and NP dimensions on the PEC performance of NP photoanodes is further elucidated. Photocurrent density is almost doubled for doped NP photoanodes whereas no improvement is noticed for undoped NP photoanodes. While the diameter of GaN NP is found to influence the onset potential, carrier concentration is found to affect both the onset and overpotential of the electrodes. Optical and electrochemical impedance spectroscopy characterisations are utilised to further explain the PEC results of NP photoanodes. Finally, improvement in the photostability of NP photoanodes with the addition of NiO as a co-catalyst is investigated.

  17. Improved photoelectrochemical performance of GaN nanopillar photoanodes

    NASA Astrophysics Data System (ADS)

    Reddy Narangari, Parvathala; Krishna Karuturi, Siva; Lysevych, Mykhaylo; Tan, Hark Hoe; Jagadish, Chennupati

    2017-04-01

    In this work, we report on the photoelectrochemical (PEC) investigation of n-GaN nanopillar (NP) photoanodes fabricated using metal organic chemical vapour deposition and the top-down approach. Substantial improvement in photocurrents is observed for GaN NP photoanodes compared to their planar counterparts. The role of carrier concentration and NP dimensions on the PEC performance of NP photoanodes is further elucidated. Photocurrent density is almost doubled for doped NP photoanodes whereas no improvement is noticed for undoped NP photoanodes. While the diameter of GaN NP is found to influence the onset potential, carrier concentration is found to affect both the onset and overpotential of the electrodes. Optical and electrochemical impedance spectroscopy characterisations are utilised to further explain the PEC results of NP photoanodes. Finally, improvement in the photostability of NP photoanodes with the addition of NiO as a co-catalyst is investigated.

  18. Origin of the c-Axis Tilt Occurring During the Lateral Epitaxial Overgrowth of GaN

    NASA Astrophysics Data System (ADS)

    Kuan, T. S.; Inoki, C. K.; Zhang, R.; Gu, S.; Kuech, T. F.

    2001-03-01

    A large angle c-axis tilt has often been observed in GaN layers grown by lateral epitaxial overgrowth (LEO) through narrow windows defined on a seed layer. The c-axis tilt generates vertical tilt boundaries at the coalescence of growth facets. To investigate the defect mechanisms responsible for the onset of c-axis tilt, a series of GaN LEO samples was grown using the hydride vapor phase epitaxy (HVPE) technique and examined by transmission electron microscopy (TEM). Cross sectional TEM images indicate that as LEO proceeds from triangular-shaped ridges originally grown over the windows, all edge-type threading dislocations propagated from the seed layer bend into screw type and glide on the c plane. Plan-view TEM observations reveal further that to relax the twist/shear strain in the LEO regions, these screw dislocations collectively make another 90^o bend again, forming arrays of edge dislocations parallel to the mask edge. The number of dislocations in the arrays can account for the amount of crystal tilt observed. The c-axis tilt is thus a stress-driven phenomenon dictated by the growth window geometry, and is much less influenced by the growth parameters.

  19. Study on the usage of a commercial software (Comsol-Multiphysics®) for dislocation multiplication model

    NASA Astrophysics Data System (ADS)

    Gallien, B.; Albaric, M.; Duffar, T.; Kakimoto, K.; M'Hamdi, M.

    2017-01-01

    Elaboration of silicon ingots for photovoltaic application in Directional Solidification furnace leads to formation of dislocations mainly due to thermoelastic stresses, which impact photovoltaic conversion rate. Several research teams have created numerical simulation models using home-made software in order to study dislocation multiplication and predict the dislocation density and residual stresses inside ingots after elaboration. In this study, the commercial software Comsol-Multiphysics® is used to calculate the evolution of dislocation density during the ingot solidification and cooling. Thermo-elastic stress, due to temperature field inside the ingot during elaboration, is linked to the evolution of the dislocation density by the Alexander and Haasen model (A&H model). The purpose of this study is to show relevance of commercial software to predict dislocation density in ingots. In a first approach, A&H physical model is introduced for a 2D axisymmetric geometry. After a short introduction, modification of Comsol® software is presented in order to include A&H equations. This numerical model calculates dislocation density and plastic stress continuously during ingot solidification and cooling. Results of this model are then compared to home-made simulation created by the teams at Kyushu university and NTNU. Results are also compared to characterization of a silicon ingot elaborated in a gradient freeze furnace. Both of these comparisons shows the relevance of using a commercial code, as Comsol®, to predict dislocations multiplication in a silicon ingot during elaboration.

  20. Impact of extended defects on optical properties of (1-101)GaN grown on patterned Si

    NASA Astrophysics Data System (ADS)

    Okur, S.; Izyumskaya, N.; Zhang, F.; Avrutin, V.; Metzner, S.; Karbaum, C.; Bertram, F.; Christen, J.; Morkoç, H.; Özgür, Ü.

    2014-03-01

    The optical quality of semipolar (1 101)GaN layers was explored by time- and polarization-resolved photoluminescence spectroscopy. High intensity bandedge emission was observed in +c-wing regions of the stripes as a result of better structural quality, while -c-wing regions were found to be of poorer optical quality due to basal plane and prismatic stacking faults (BSFs and PSFs) in addition to a high density of TDs. The high optical quality region formed on the +cwings was evidenced also from the much slower biexponential PL decays (0.22 ns and 1.70 ns) and an order of magnitude smaller amplitude ratio of the fast decay (nonradiative origin) to the slow decay component (radiative origin) compared to the -c-wing regions. In regard to defect-related emission, decay times for the BSF and PSF emission lines at 25 K (~ 0.80 ns and ~ 3.5 ns, respectively) were independent of the excitation density within the range employed (5 - 420 W/cm2), and much longer than that for the donor bound excitons (0.13 ns at 5 W/cm2 and 0.22 ns at 420 W/cm2). It was also found that the emission from BSFs had lower polarization degree (0.22) than that from donor bound excitons (0.35). The diminution of the polarization degree when photogenerated carriers recombine within the BSFs is another indication of the negative effects of stacking faults on the optical quality of the semipolar (1101)GaN. In addition, spatial distribution of defects in semipolar (1101)-oriented InGaN active region layers grown on stripe patterned Si substrates was investigated using near-field scanning optical microscopy. The optical quality of -c- wing regions was found to be worse compared to +c-wing regions due to the presence of higher density of stacking faults and threading dislocations. The emission from the +c-wings was very bright and relatively uniform across the sample, which is indicative of a homogeneous In distribution.

  1. Ultraviolet InGaN and GaN Single-Quantum-Well-Structure Light-Emitting Diodes Grown on Epitaxially Laterally Overgrown GaN Substrates

    NASA Astrophysics Data System (ADS)

    Mukai, Takashi; Nakamura, Shuji

    1999-10-01

    Ultraviolet (UV) InGaN and GaN single-quantum-well-structure light-emitting diodes (LEDs) were grown on epitaxially laterally overgrown GaN (ELOG) and sapphire substrates. When the emission wavelength of UV InGaN LEDs was shorter than 380 nm, the external quantum efficiency (EQE) of the LED on ELOG was much higher than that on sapphire only under high-current operation. At low-current operation, both LEDs had the same EQE. When the active layer was GaN, EQE of the LED on sapphire was much lower than that on ELOG even under low-and high-current operations, due to the lack of localized energy states formed by alloy composition fluctuations. When the emission wavelengths were in the blue and green regions, EQE was almost the same between LEDs on both ELOG and sapphire due to a large number of deep localized energy states formed by large alloy composition fluctuations. The localized energy states are responsible for the high efficiency of InGaN-based LEDs in spite of a large number of dislocations.

  2. CONDENSED MATTER: STRUCTURE, THERMAL AND MECHANICAL PROPERTIES: The effect of single AlGaN interlayer on the structural properties of GaN epilayers grown on Si (111) substrates

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Xin; Zhu, Jian-Jun; Zhao, De-Gang; Liu, Zong-Shun; Jiang, De-Sheng; Zhang, Shu-Ming; Wang, Yu-Tian; Wang, Hui; Chen, Gui-Feng; Yang, Hui

    2009-10-01

    High-quality and nearly crack-free GaN epitaxial layer was obtained by inserting a single AlGaN interlayer between GaN epilayer and high-temperature AlN buffer layer on Si (111) substrate by metalorganic chemical vapor deposition. This paper investigates the effect of AlGaN interlayer on the structural properties of the resulting GaN epilayer. It confirms from the optical microscopy and Raman scattering spectroscopy that the AlGaN interlayer has a remarkable effect on introducing relative compressive strain to the top GaN layer and preventing the formation of cracks. X-ray diffraction and transmission electron microscopy analysis reveal that a significant reduction in both screw and edge threading dislocations is achieved in GaN epilayer by the insertion of AlGaN interlayer. The process of threading dislocation reduction in both AlGaN interlayer and GaN epilayer is demonstrated.

  3. Characterization of vacancy-type defects in heteroepitaxial GaN grown by low-energy plasma-enhanced vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Calloni, A.; Ferragut, R.; Dupasquier, A.; von Känel, H.; Guiller, A.; Rutz, A.; Ravelli, L.; Egger, W.

    2012-07-01

    The defect concentration in thin GaN layers was estimated by means of positron annihilation spectroscopy. Positron lifetime and Doppler broadening of the annihilation radiation were used. A comparative study of GaN films grown with different techniques was performed. Specific attention has been given to the new low energy plasma enhanced vapor phase epitaxy (LEPEVPE) growth technique. A very high Ga vacancy density (1019 cm-3) was found in a thin GaN layer directly grown by LEPEVPE on a sapphire substrate. However, when a GaN substrate (commercial sample grown by Metal Organic Vapor Phase Epitaxy) is used as a template for LEPEVPE deposition, the vacancy density of the film is low (about 1016 cm-3). This fact provides evidences that the LEPEVPE technique is able to produce high quality GaN layers.

  4. Phonon-plasmon coupled modes in GaN

    NASA Astrophysics Data System (ADS)

    Dyson, A.

    2009-04-01

    The phonon lifetime in GaN is known to exhibit a dependence on electron density. Recent noise measurements have also shown the lifetime to be temperature dependent. The source of these dependences is the coupling of the phonon and plasmon populations through the dielectric function. The effect of this anharmonicity is illustrated by comparing the frequency and wavevector dependent coupled-mode momentum relaxation rate with the phonon momentum relaxation rate obtained by Callen. A simple model that includes the anharmonic interaction and phonon migration yields phonon lifetimes depending on both electron density and temperature.

  5. Terahertz electromodulation spectroscopy of electron transport in GaN

    NASA Astrophysics Data System (ADS)

    Engelbrecht, S. G.; Arend, T. R.; Zhu, T.; Kappers, M. J.; Kersting, R.

    2015-03-01

    Time-resolved terahertz (THz) electromodulation spectroscopy is applied to investigate the high-frequency transport of electrons in gallium nitride at different doping concentrations and densities of threading dislocations. At THz frequencies, all structures reveal Drude transport. The analysis of the spectral response provides the fundamental transport properties, such as the electron scattering time and the electrons' conductivity effective mass. We observe the expected impact of ionized-impurity scattering and that scattering at threading dislocations only marginally affects the high-frequency mobility.

  6. Terahertz electromodulation spectroscopy of electron transport in GaN

    SciTech Connect

    Engelbrecht, S. G.; Arend, T. R.; Kersting, R.; Zhu, T.; Kappers, M. J.

    2015-03-02

    Time-resolved terahertz (THz) electromodulation spectroscopy is applied to investigate the high-frequency transport of electrons in gallium nitride at different doping concentrations and densities of threading dislocations. At THz frequencies, all structures reveal Drude transport. The analysis of the spectral response provides the fundamental transport properties, such as the electron scattering time and the electrons' conductivity effective mass. We observe the expected impact of ionized-impurity scattering and that scattering at threading dislocations only marginally affects the high-frequency mobility.

  7. Effect of the Ammonia Flow on the Formation of Microstructure Defects in GaN Layers Grown by High-Temperature Vapor Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Barchuk, M.; Lukin, G.; Zimmermann, F.; Röder, C.; Motylenko, M.; Pätzold, O.; Heitmann, J.; Kortus, J.; Rafaja, D.

    2017-03-01

    High-temperature vapor phase epitaxy (HTVPE) is a physical vapor transport technology for a deposition of gallium nitride (GaN) layers. However, little is known about the influence of the deposition parameters on the microstructure of the layers. In order to fill this gap, the influence of the ammonia (NH3) flow applied during the HTVPE growth on the microstructure of the deposited GaN layers is investigated in this work. Although the HTVPE technology is intended to grow GaN layers on foreign substrates, the GaN layers under study were grown on GaN templates produced by metal organic vapor phase epitaxy in order to be able to separate the growth defects from the defects induced by the lattice misfit between the foreign substrate and the GaN layer. The microstructure of the layers is characterized by means of high-resolution x-ray diffraction (XRD), transmission electron microscopy and photoluminescence. In samples deposited at low ammonia flow, planar defects were detected, along which the nitrogen atoms are found to be substituted by impurity atoms. The interplay between these planar defects and the threading dislocations is discussed. A combination of XRD and micro-Raman spectroscopy reveals the presence of compressive residual stress in the samples.

  8. Effect of the Ammonia Flow on the Formation of Microstructure Defects in GaN Layers Grown by High-Temperature Vapor Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Barchuk, M.; Lukin, G.; Zimmermann, F.; Röder, C.; Motylenko, M.; Pätzold, O.; Heitmann, J.; Kortus, J.; Rafaja, D.

    2016-12-01

    High-temperature vapor phase epitaxy (HTVPE) is a physical vapor transport technology for a deposition of gallium nitride (GaN) layers. However, little is known about the influence of the deposition parameters on the microstructure of the layers. In order to fill this gap, the influence of the ammonia (NH3) flow applied during the HTVPE growth on the microstructure of the deposited GaN layers is investigated in this work. Although the HTVPE technology is intended to grow GaN layers on foreign substrates, the GaN layers under study were grown on GaN templates produced by metal organic vapor phase epitaxy in order to be able to separate the growth defects from the defects induced by the lattice misfit between the foreign substrate and the GaN layer. The microstructure of the layers is characterized by means of high-resolution x-ray diffraction (XRD), transmission electron microscopy and photoluminescence. In samples deposited at low ammonia flow, planar defects were detected, along which the nitrogen atoms are found to be substituted by impurity atoms. The interplay between these planar defects and the threading dislocations is discussed. A combination of XRD and micro-Raman spectroscopy reveals the presence of compressive residual stress in the samples.

  9. Probing deep level centers in GaN epilayers with variable-frequency capacitance-voltage characteristics of Au /GaN Schottky contacts

    NASA Astrophysics Data System (ADS)

    Wang, R. X.; Xu, S. J.; Shi, S. L.; Beling, C. D.; Fung, S.; Zhao, D. G.; Yang, H.; Tao, X. M.

    2006-10-01

    Under identical preparation conditions, Au /GaN Schottky contacts were prepared on two kinds of GaN epilayers with significantly different background electron concentrations and mobility as well as yellow emission intensities. Current-voltage (I-V) and variable-frequency capacitance-voltage (C-V) characteristics show that the Schottky contacts on the GaN epilayer with a higher background carrier concentration and strong yellow emission exhibit anomalous reverse-bias I-V and C-V characteristics. This is attributed to the presence of deep level centers. Theoretical simulation of the low-frequency C-V curves leads to a determination of the density and energy level position of the deep centers.

  10. Irradiation swelling behavior and its dependence on temperature, dose rate and dislocation structure evolution

    SciTech Connect

    Surh, M P; Sturgeon, J B; Wolfer, W G

    2004-01-16

    The microstructural evolution of high purity steel under irradiation is modeled including a dislocation density that evolves simultaneously with void nucleation and growth. The predicted void swelling trends versus temperature, flux, and time are compared to experiment and to earlier calculations with a fixed dislocation density. The behavior is further analyzed within a simplified picture of segregation of irradiation defects to microstructural sinks. Agreement with experimental swelling behavior improves when dislocations co-evolve with the void content versus simulations with a fixed dislocation density. The time-dependent dislocation content dictates the rate of void nucleation and shapes the overall void size distribution so as to give steady swelling behavior over long times.

  11. Analysis of Modified Williamson-Hall Plots on GaN Layers

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Qi; Qiu, Yong-Xin; Wang, Jian-Feng; Xu, Ke; Yang, Hui

    2011-01-01

    Williamson—Hall (W-H) analysis is often used to separate the lateral coherence length (LCL) broadening and dislocation broadening on the ω-scan with a Lorentzian distribution. However, besides the LCL broadening and dislocation broadening, curvature also can broaden the ω-scan peak. Usually, the ω-scan can be described by a Pseudo-Voigt (P-V) function more precisely than a Lorentzian function. Based on the P-V fit peak profile, we modify the W-H plots. Both LCL broadening and curvature broadening can be eliminated from (001) ω-scans plots simultaneously, and a reliable tilt can be obtained. This method is a good complementary for the existing method, but is more convenient. Although we focuse on GaN layers, the results are applicable to a wide range of other materials having mosaic structures.

  12. Patellar Dislocations and Reduction Procedure.

    PubMed

    Ramponi, Denise

    2016-01-01

    Acute patellar dislocations are a common injury occurring in adolescents involved in sports and dancing activities. This injury usually occurs when the knee is in full extension and sustains a valgus stress on the knee. The medial patellofemoral ligament is the medial restraint that assists in stabilizing the patella from lateral dislocations. The patella usually dislocates laterally and is usually not difficult to reduce after patient evaluation and prereduction radiographs. After postreduction radiographs confirm proper position of the patella postreduction and the absence of fractures, the patient is usually treated conservatively with initial immobilization, orthopedic referral, and physical therapy.

  13. Buckling of dislocation in graphene

    NASA Astrophysics Data System (ADS)

    Yao, Yin; Wang, Shaofeng; Bai, Jianhui; Wang, Rui

    2016-10-01

    The buckling of dislocation in graphene is discussed through the lattice theory of dislocation and elastic theory. The approximate solution of the buckling is obtained based on the inner stress distribution caused by different structure of dislocations and is proved to be suitable by the simulation. The position of the highest buckling is predicted to be at the vertex of the pentagon far away from the heptagon. The buckling is strongly influenced by the internal stress and the distance between the extrusive area and stretching area, as well as the critical stress σc. The SW defect is proved to be unbuckled due to its strong interaction between extrusion and stretching.

  14. Ion irradiation induced disappearance of dislocations in a nickel-based alloy

    NASA Astrophysics Data System (ADS)

    Chen, H. C.; Li, D. H.; Lui, R. D.; Huang, H. F.; Li, J. J.; Lei, G. H.; Huang, Q.; Bao, L. M.; Yan, L.; Zhou, X. T.; Zhu, Z. Y.

    2016-06-01

    Under Xe ion irradiation, the microstructural evolution of a nickel based alloy, Hastelloy N (US N10003), was studied. The intrinsic dislocations are decorated with irradiation induced interstitial loops and/or clusters. Moreover, the intrinsic dislocations density reduces as the irradiation damage increases. The disappearance of the intrinsic dislocations is ascribed to the dislocations climb to the free surface by the absorption of interstitials under the ion irradiation. Moreover, the in situ annealing experiment reveals that the small interstitial loops and/or clusters induced by the ion irradiation are stable below 600 °C.

  15. Molecular beam epitaxy of single crystalline GaN nanowires on a flexible Ti foil

    NASA Astrophysics Data System (ADS)

    Calabrese, Gabriele; Corfdir, Pierre; Gao, Guanhui; Pfüller, Carsten; Trampert, Achim; Brandt, Oliver; Geelhaar, Lutz; Fernández-Garrido, Sergio

    2016-05-01

    We demonstrate the self-assembled growth of vertically aligned GaN nanowire ensembles on a flexible Ti foil by plasma-assisted molecular beam epitaxy. The analysis of single nanowires by transmission electron microscopy reveals that they are single crystalline. Low-temperature photoluminescence spectroscopy demonstrates that in comparison to standard GaN nanowires grown on Si, the nanowires prepared on the Ti foil exhibit an equivalent crystalline perfection, a higher density of basal-plane stacking faults, but a reduced density of inversion domain boundaries. The room-temperature photoluminescence spectrum of the nanowire ensemble is not influenced or degraded by the bending of the substrate. The present results pave the way for the fabrication of flexible optoelectronic devices based on GaN nanowires on metal foils.

  16. Reducing dislocations in semiconductors utilizing repeated thermal cycling during multistage epitaxial growth

    DOEpatents

    Fan, John C. C.; Tsaur, Bor-Yeu; Gale, Ronald P.; Davis, Frances M.

    1986-12-30

    Dislocation densities are reduced in growing semiconductors from the vapor phase by employing a technique of interrupting growth, cooling the layer so far deposited, and then repeating the process until a high quality active top layer is achieved. The method of interrupted growth, coupled with thermal cycling, permits dislocations to be trapped in the initial stages of epitaxial growth.

  17. Reducing dislocations in semiconductors utilizing repeated thermal cycling during multistage epitaxial growth

    DOEpatents

    Fan, John C. C.; Tsaur, Bor-Yeu; Gale, Ronald P.; Davis, Frances M.

    1992-02-25

    Dislocation densities are reduced in growing semiconductors from the vapor phase by employing a technique of interrupting growth, cooling the layer so far deposited, and then repeating the process until a high quality active top layer is achieved. The method of interrupted growth, coupled with thermal cycling, permits dislocations to be trapped in the initial stages of epitaxial growth.

  18. GaN High Power Devices

    SciTech Connect

    PEARTON,S.J.; REN,F.; ZHANG,A.P.; DANG,G.; CAO,X.A.; LEE,K.P.; CHO,H.; GILA,B.P.; JOHNSON,J.W.; MONIER,C.; ABERNATHY,C.R.; HAN,JUNG; BACA,ALBERT G.; CHYI,J.-I.; LEE,C.-M.; NEE,T.-E.; CHUO,C.-C.; CHI,G.C.; CHU,S.N.G.

    2000-07-17

    A brief review is given of recent progress in fabrication of high voltage GaN and AlGaN rectifiers, GaN/AlGaN heterojunction bipolar transistors, GaN heterostructure and metal-oxide semiconductor field effect transistors. Improvements in epitaxial layer quality and in fabrication techniques have led to significant advances in device performance.

  19. Modeling of ultrasonic nonlinearities for dislocation evolution in plastically deformed materials: Simulation and experimental validation.

    PubMed

    Zhu, Wujun; Deng, Mingxi; Xiang, Yanxun; Xuan, Fu-Zhen; Liu, Changjun; Wang, Yi-Ning

    2016-05-01

    A nonlinear constitutive relationship was established to investigate nonlinear behaviors of ultrasonic wave propagation in plastically damaged media based on analyses of mixed dislocation evolution. Finite element simulations of longitudinal wave propagation in plastically deformed martensite stainless steel were performed based on the proposed nonlinear constitutive relationship, in which the contribution of mixed dislocation to acoustic nonlinearity was considered. The simulated results were validated by experimental measurements of plastically deformed 30Cr2Ni4MoV martensite stainless steels. Simulated and experimental results both reveal a monotonically increasing tendency of the normalized acoustic nonlinearity parameter as a function of plastic strain. Microscopic studies revealed that the changes of the acoustic nonlinearity are mainly attributed to dislocation evolutions, such as dislocation density, dislocation length, and the type and fraction of dislocations during plastic loading.

  20. Dislocation structure in AlN films induced by in situ transmission electron microscope nanoindentation

    NASA Astrophysics Data System (ADS)

    Tokumoto, Yuki; Kutsukake, Kentaro; Ohno, Yutaka; Yonenaga, Ichiro

    2012-11-01

    To elucidate dislocation generation and propagation processes in AlN films containing a high density of grown-in threading dislocations (TDs), in situ nanoindentation (NI) was performed in a transmission electron microscope at room temperature. Dislocations with the Burgers vector b = 1/3<12¯10> were introduced not only on the primary slip plane, i.e., the (0001) basal planes, but also on the {101¯1} and {101¯2} pyramidal planes. The results are explained by considering the distribution of the resolved shear stress. It was found that the dislocations induced by NI interact with grown-in TDs: (1) for the NI-induced dislocations on pyramidal planes, edge grown-in TDs induce cross slip to basal planes, and (2) for the NI-induced dislocations on basal planes, screw grown-in TDs prevent their propagation, while edge grown-in TDs do not.

  1. Orbitally driven low thermal conductivity of monolayer gallium nitride (GaN) with planar honeycomb structure: a comparative study.

    PubMed

    Qin, Zhenzhen; Qin, Guangzhao; Zuo, Xu; Xiong, Zhihua; Hu, Ming

    2017-03-23

    Two-dimensional (2D) materials with graphene as a representative have been intensively studied for a long time. Recently, monolayer gallium nitride (ML GaN) with honeycomb structure was successfully fabricated in experiments, generating enormous research interest for its promising applications in nano- and opto-electronics. Considering all these applications are inevitably involved with thermal transport, systematic investigation of the phonon transport properties of 2D GaN is in demand. In this paper, by solving the Boltzmann transport equation (BTE) based on first-principles calculations, we performed a comprehensive study of the phonon transport properties of ML GaN, with detailed comparison to bulk GaN, 2D graphene, silicene and ML BN with similar honeycomb structure. Considering the similar planar structure of ML GaN to graphene, it is quite intriguing to find that the thermal conductivity (κ) of ML GaN (14.93 W mK(-1)) is more than two orders of magnitude lower than that of graphene and is even lower than that of silicene with a buckled structure. Systematic analysis is performed based on the study of the contribution from phonon branches, comparison among the mode level phonon group velocity and lifetime, the detailed process and channels of phonon-phonon scattering, and phonon anharmonicity with potential energy well. We found that, different from graphene and ML BN, the phonon-phonon scattering selection rule in 2D GaN is slightly broken by the lowered symmetry due to the large difference in the atomic radius and mass between Ga and N atoms. Further deep insight is gained from the electronic structure. Resulting from the special sp orbital hybridization mediated by the Ga-d orbital in ML GaN, the strongly polarized Ga-N bond, localized charge density, and its inhomogeneous distribution induce large phonon anharmonicity and lead to the intrinsic low κ of ML GaN. The orbitally driven low κ of ML GaN unraveled in this work would make 2D GaN prospective for

  2. Pediatric complex divergent elbow dislocation.

    PubMed

    van Wagenberg, Jan-Maarten F; van Huijstee, Pieter J; Verhofstad, Michiel H J

    2011-01-01

    A divergent dislocation of the elbow is a very rare injury, and only a few cases have been described in the literature. It is characterized as a dorsal dislocation of the ulnohumeral joint combined with a lateral dislocation of the proximal radius. All three articulations of the elbow joint are involved. Like in our case, it can be accompanied by an avulsion fracture of the coronoid and a distal radius fracture. For correct understanding of the injury, proper radiographic studies are imperative. In contrast to some earlier reports that advise a conservative approach, we performed a very aggressive operative treatment. To ensure anatomic reconstruction of the elbow, surgical exposure of the various injuries was performed first. After gross reduction of the joint dislocation, definitive osteosynthesis of the distal radius fracture was performed. Subsequently, the coronoid process and lateral collateral ligament could be repaired anatomically, improving the stability of the elbow. An uneventful recovery with excellent elbow motion and stability was achieved.

  3. Direct observation of depth-dependent atomic displacements associated with dislocations in gallium nitride.

    PubMed

    Lozano, J G; Yang, H; Guerrero-Lebrero, M P; D'Alfonso, A J; Yasuhara, A; Okunishi, E; Zhang, S; Humphreys, C J; Allen, L J; Galindo, P L; Hirsch, P B; Nellist, P D

    2014-09-26

    We demonstrate that the aberration-corrected scanning transmission electron microscope has a sufficiently small depth of field to observe depth-dependent atomic displacements in a crystal. The depth-dependent displacements associated with the Eshelby twist of dislocations in GaN normal to the foil with a screw component of the Burgers vector are directly imaged. We show that these displacements are observed as a rotation of the lattice between images taken in a focal series. From the sense of the rotation, the sign of the screw component can be determined.

  4. Dislocation sources in ordered intermetallics

    SciTech Connect

    Yoo, M.H.; Appel, F.; Wagner, R.; Mecking, H.

    1996-09-01

    An overview on the current understanding of dislocation sources and multiplication mechanisms is made for ordered intermetallic alloys of the L1{sub 2}, B2, and D0{sub 19} structures. In L1{sub 2} alloys, a large disparity of edge/screw segments in their relative mobility reduces the efficiency of a Frank-Read Type multiplication mechanism. In Fe-40%Al of the B2 structure, a variety of dislocation sources are available for <111> slip, including ones resulting from condensation of thermal vacancies. In NiAl with the relatively high APB energy, <100> dislocations may result from the dislocation decomposition reactions, the prismatic punching out from inclusion particles, and/or steps and coated layers of the surface. Internal interfaces often provide sites for dislocation multiplication, e.g., grain boundaries, sub-boundaries in Ni{sub 3}Ga, NiAl and Ti{sub 3}Al, and antiphase domain boundaries in Ti{sub 3}Al. As for the crack tip as a dislocation source, extended SISFs trailed by super-Shockley partials emanating form the cracks in Ni{sub 3}Al and Co{sub 3}Ti are discussed in view of a possible toughening mechanism.

  5. Finite element modeling for dislocation generation in semiconductor crystals grown from the melt

    NASA Astrophysics Data System (ADS)

    Zhu, Xinai

    Dislocations in Gallium Arsenide (GaAs) and Indium Phosphide (InP) single crystals are generated by excessive stresses that are induced during the crystal growth process, and the fabrication and packaging of microelectronic devices/circuits. The presence of dislocations has adverse effects on the performance, lifetime and reliability of the GaAs and InP-based devices/circuits. It is well known that dislocation density can be significantly reduced by doping impurity atoms into the GaAs and InP crystal and/or decreasing the thermal stresses in these crystals during their growth process. In order to reduce the dislocation density generated in the GaAs and InP crystals, the influence of crystal growth parameters and doping impurity atoms on the dislocations reduction in GaAs and InP crystals has to be understood. Therefore, a transient finite element model was developed to simulate the dislocation generation in GaAs and InP crystals grown from the melt. A viscoplastic constitutive equation that couples a microscopic dislocation density with a macroscopic plastic deformation is employed to formulate this transient finite element model, where the dislocation density is considered as an internal state variable and the doping impurity is represented by a drag-stress in this constitutive model. GaAs and InP single crystals grown by the vertical gradient freeze (VGF) process were adopted as examples to study the influences of doping impurity and growth parameters on dislocations generated in these grown crystal. The calculated results show that doping impurity can significantly reduce dislocation generation and produces low-dislocation-density or dislocation free GaAs and InP single crystals. It also shows that the dislocations generated in GaAs and InP crystals increase as the crystal diameter and imposed temperature gradient increase, but do not change or increase slightly as the crystal growth rate increases. Therefore, this finite element model can be effectively used by

  6. On the hierarchy of interfacial dislocation structure

    NASA Astrophysics Data System (ADS)

    Balluffi, R. W.; Olson, G. B.

    1985-04-01

    Many different types of dislocations have been defined in dislocation models for grain boundaries and interphase boundaries. It is emphasized that there is no unique dislocation model for a boundary, and that the formal dislocation content depends upon the choice of the lattice correspondence relating the adjoining lattices. However, it is concluded that no problems of real physical significance arise from this lack of uniqueness. “Best≓, or most useful, descriptions often exist, and these are discussed. A hierarchy consisting of four different types of interfacial dislocations may be distinguished, which is useful in describing the dislocation content of interfaces. These entities are termed: (1) primary interfacial dislocations; (2) secondary interfacial dislocations; (3) coherency interfacial dislocations; and (4) translational interfacial dislocations. While there may be a lack of agreement on terminology in the literature, it is believed that these dislocation types are distinguishable and play unique roles in useful dislocation models for interfaces. Detailed descriptions of these dislocation types are given, and actual examples in real interfaces are presented. It is concluded that dislocation descriptions of interface structures become of purely formal significance in the limit of fully incoherent interfaces since the cores are then delocalized. The utility of various dislocation descriptions therefore depends on the degree to which various types of local coherency exist.

  7. Piezo-generator integrating a vertical array of GaN nanowires

    NASA Astrophysics Data System (ADS)

    Jamond, N.; Chrétien, P.; Houzé, F.; Lu, L.; Largeau, L.; Maugain, O.; Travers, L.; Harmand, J. C.; Glas, F.; Lefeuvre, E.; Tchernycheva, M.; Gogneau, N.

    2016-08-01

    We demonstrate the first piezo-generator integrating a vertical array of GaN nanowires (NWs). We perform a systematic multi-scale analysis, going from single wire properties to macroscopic device fabrication and characterization, which allows us to establish for GaN NWs the relationship between the material properties and the piezo-generation, and to propose an efficient piezo-generator design. The piezo-conversion of individual MBE-grown p-doped GaN NWs in a dense array is assessed by atomic force microscopy (AFM) equipped with a Resiscope module yielding an average output voltage of 228 ± 120 mV and a maximum value of 350 mV generated per NW. In the case of p-doped GaN NWs, the piezo-generation is achieved when a positive piezo-potential is created inside the nanostructures, i.e. when the NWs are submitted to compressive deformation. The understanding of the piezo-generation mechanism in our GaN NWs, gained from AFM analyses, is applied to design a piezo-generator operated under compressive strain. The device consists of NW arrays of several square millimeters in size embedded into spin-on glass with a Schottky contact for rectification and collection of piezo-generated carriers. The generator delivers a maximum power density of ˜12.7 mW cm-3. This value sets the new state of the art for piezo-generators based on GaN NWs and more generally on nitride NWs, and offers promising prospects for the use of GaN NWs as high-efficiency ultra-compact energy harvesters.

  8. Piezo-generator integrating a vertical array of GaN nanowires.

    PubMed

    Jamond, N; Chrétien, P; Houzé, F; Lu, L; Largeau, L; Maugain, O; Travers, L; Harmand, J C; Glas, F; Lefeuvre, E; Tchernycheva, M; Gogneau, N

    2016-08-12

    We demonstrate the first piezo-generator integrating a vertical array of GaN nanowires (NWs). We perform a systematic multi-scale analysis, going from single wire properties to macroscopic device fabrication and characterization, which allows us to establish for GaN NWs the relationship between the material properties and the piezo-generation, and to propose an efficient piezo-generator design. The piezo-conversion of individual MBE-grown p-doped GaN NWs in a dense array is assessed by atomic force microscopy (AFM) equipped with a Resiscope module yielding an average output voltage of 228 ± 120 mV and a maximum value of 350 mV generated per NW. In the case of p-doped GaN NWs, the piezo-generation is achieved when a positive piezo-potential is created inside the nanostructures, i.e. when the NWs are submitted to compressive deformation. The understanding of the piezo-generation mechanism in our GaN NWs, gained from AFM analyses, is applied to design a piezo-generator operated under compressive strain. The device consists of NW arrays of several square millimeters in size embedded into spin-on glass with a Schottky contact for rectification and collection of piezo-generated carriers. The generator delivers a maximum power density of ∼12.7 mW cm(-3). This value sets the new state of the art for piezo-generators based on GaN NWs and more generally on nitride NWs, and offers promising prospects for the use of GaN NWs as high-efficiency ultra-compact energy harvesters.

  9. Dislocation development and void formation during electron irradiation in inconel X-750 with γ' precipitates

    NASA Astrophysics Data System (ADS)

    Kato, Takahiko; Nakata, Kiyotomo; Takahashi, Heishichiro; Ohnuki, Soumei; Masaoka, Isao; Takeyama, Taro

    1985-08-01

    Swelling behaviour and dislocation development in aged Inconel X-750 containing γ' precipitates during electron irradiation at temperatures of 673 to 823 K were continuously observed with a high voltage electron microscope. In the specimens with large γ', aged above 1073 K for 24 h, the void formation is drastically suppressed at temperatures of 710 to 760 K. The dislocation density in the matrix away from the large γ' is fairly low, although the dislocations tangle around the γ'. In the specimens with fine γ', aged for about 24 h at temperatures below 1023 K, fairly large swelling of 1-1.5% occurs after 20 dpa irradiation at 735 K. The dislocations climb through the fine γ ' and the dislocation density in the matrix increases rapidly with irradiation dose.

  10. Dislocation related droop in InGaN/GaN light emitting diodes investigated via cathodoluminescence

    SciTech Connect

    Pozina, Galia; Ciechonski, Rafal; Bi, Zhaoxia; Samuelson, Lars; Monemar, Bo

    2015-12-21

    Today's energy saving solutions for general illumination rely on efficient white light emitting diodes (LEDs). However, the output efficiency droop experienced in InGaN based LEDs with increasing current injection is a serious limitation factor for future development of bright white LEDs. We show using cathodoluminescence (CL) spatial mapping at different electron beam currents that threading dislocations are active as nonradiative recombination centers only at high injection conditions. At low current, the dislocations are inactive in carrier recombination due to local potentials, but these potentials are screened by carriers at higher injection levels. In CL images, this corresponds to the increase of the dark contrast around dislocations with the injection (excitation) density and can be linked with droop related to the threading dislocations. Our data indicate that reduction of droop in the future efficient white LED can be achieved via a drastic reduction of the dislocation density by using, for example, bulk native substrates.

  11. Dislocation related droop in InGaN/GaN light emitting diodes investigated via cathodoluminescence

    NASA Astrophysics Data System (ADS)

    Pozina, Galia; Ciechonski, Rafal; Bi, Zhaoxia; Samuelson, Lars; Monemar, Bo

    2015-12-01

    Today's energy saving solutions for general illumination rely on efficient white light emitting diodes (LEDs). However, the output efficiency droop experienced in InGaN based LEDs with increasing current injection is a serious limitation factor for future development of bright white LEDs. We show using cathodoluminescence (CL) spatial mapping at different electron beam currents that threading dislocations are active as nonradiative recombination centers only at high injection conditions. At low current, the dislocations are inactive in carrier recombination due to local potentials, but these potentials are screened by carriers at higher injection levels. In CL images, this corresponds to the increase of the dark contrast around dislocations with the injection (excitation) density and can be linked with droop related to the threading dislocations. Our data indicate that reduction of droop in the future efficient white LED can be achieved via a drastic reduction of the dislocation density by using, for example, bulk native substrates.

  12. Transport, Growth Mechanisms, and Material Quality in GaN Epitaxial Lateral Overgrowth

    SciTech Connect

    Baca, Albert G.; Bartram, M.E.; Coltrin, M.E.; Crawford, M.H.; Han, J.; Missert, N.; Willan, C.C.

    1999-01-11

    Growth kinetics, mechanisms, and material quality in GaN epitaxial lateral over-growth (ELO) were examined using a single mask of systematically varied patterns. A 2-D gas phase reaction/diffusion model describes how transport of the Ga precursor to the growth surface enhances the lateral rate in the early stages of growth. In agreement with SEM studies of truncated growth runs, the model also predicts the dramatic decrease in the lateral rate that occurs as GaN over-growth reduces the exposed area of the mask. At the point of convergence, a step-flow coalescence mechanism is observed to fill in the area between lateral growth-fronts. This alternative growth mode in which a secondary growth of GaN is nucleated along a single convergence line, may be responsible for producing smooth films observed to have uniform cathodoluminescence (CL) when using 1{micro}m nucleation zones. Although emission is comprised of both UV ({approximately}365nm) and yellow ({approximately}550nm) components, the spectra suggest these films have reduced concentrations of threading dislocations normally associated with non-radiative recombination centers and defects known to accompany growth-front convergence lines.

  13. Characterization of dislocation structures in silicon carbide single crystals

    NASA Astrophysics Data System (ADS)

    Vetter, William M.

    1999-07-01

    associated with screw dislocations in x-ray topographs of SiC crystals taken with the g = 112¯0 reflection, an apparent violation of the g·b = 0 invisibility criterion. This was rationalized as a population of basal plane dislocations with Burgers vectors of the set b = 13 <112¯0> that occur in a high density within a few microns of the micropipes, below the resolution of x-ray topography.

  14. Doping induced structural stability and electronic properties of GaN nanotubes.

    PubMed

    Srivastava, Anurag; Khan, Mohammad Irfan; Tyagi, Neha; Swaroop Khare, Purnima

    2014-01-01

    The present paper discusses the effect of manganese doping on the structural stability and electronic band gap of chiral (2, 1), armchair (3, 3), and zigzag ((6, 0) and (10, 0)) single walled GaN nanotube by using density functional theory based Atomistix Toolkit (ATK) Virtual NanoLab (VNL). The structural stability has been analyzed in terms of minimum ground state total energy, binding, and formation energy. As an effect of Mn doping (1-4 atoms), all the GaN nanotubes taken into consideration show semiconducting to metallic transition first and after certain level of Mn doping changes its trend.

  15. Doping Induced Structural Stability and Electronic Properties of GaN Nanotubes

    PubMed Central

    Khan, Mohammad Irfan; Tyagi, Neha; Swaroop Khare, Purnima

    2014-01-01

    The present paper discusses the effect of manganese doping on the structural stability and electronic band gap of chiral (2, 1), armchair (3, 3), and zigzag ((6, 0) and (10, 0)) single walled GaN nanotube by using density functional theory based Atomistix Toolkit (ATK) Virtual NanoLab (VNL). The structural stability has been analyzed in terms of minimum ground state total energy, binding, and formation energy. As an effect of Mn doping (1–4 atoms), all the GaN nanotubes taken into consideration show semiconducting to metallic transition first and after certain level of Mn doping changes its trend. PMID:24707225

  16. Nucleation and Growth of GaN on GaAs (001) Substrates

    SciTech Connect

    Drummond, Timothy J.; Hafich, Michael J.; Heller, Edwin J.; Lee, Stephen R.; Liliental-Weber, Zuzanna; Ruvimov, Sergei; Sullivan, John P.

    1999-05-03

    The nucleation of GaN thin films on GaAs is investigated for growth at 620 "C. An rf plasma cell is used to generate chemically active nitrogen from N2. An arsenic flux is used in the first eight monolayer of nitride growth to enhance nucleation of the cubic phase. Subsequent growth does not require an As flux to preserve the cubic phase. The nucleation of smooth interfaces and GaN films with low stacking fault densities is dependent upon relative concentrations of active nitrogen species in the plasma and on the nitrogen to gallium flux ratio.

  17. Electronic selection rules controlling dislocation glide in bcc metals.

    PubMed

    Jones, Travis E; Eberhart, Mark E; Clougherty, Dennis P; Woodward, Chris

    2008-08-22

    The validity of the structure-property relationships governing the low-temperature deformation behavior of many bcc metals was brought into question with recent ab initio density functional studies of isolated screw dislocations in Mo and Ta. These relationships were semiclassical in nature, having grown from atomistic investigations of the deformation properties of the group V and VI transition metals. We find that the correct form for these structure-property relationships is fully quantum mechanical, involving the coupling of electronic states with the strain field at the core of long a/<2111> screw dislocations.

  18. Dislocation Multi-junctions and Strain Hardening

    SciTech Connect

    Bulatov, V; Hsiung, L; Tang, M; Arsenlis, A; Bartelt, M; Cai, W; Florando, J; Hiratani, M; Rhee, M; Hommes, G; Pierce, T; Diaz de la Rubia, T

    2006-06-20

    At the microscopic scale, the strength of a crystal derives from the motion, multiplication and interaction of distinctive line defects--dislocations. First theorized in 1934 to explain low magnitudes of crystal strength observed experimentally, the existence of dislocations was confirmed only two decades later. Much of the research in dislocation physics has since focused on dislocation interactions and their role in strain hardening: a common phenomenon in which continued deformation increases a crystal's strength. The existing theory relates strain hardening to pair-wise dislocation reactions in which two intersecting dislocations form junctions tying dislocations together. Here we report that interactions among three dislocations result in the formation of unusual elements of dislocation network topology, termed hereafter multi-junctions. The existence of multi-junctions is first predicted by Dislocation Dynamics (DD) and atomistic simulations and then confirmed by the transmission electron microscopy (TEM) experiments in single crystal molybdenum. In large-scale Dislocation Dynamics simulations, multi-junctions present very strong, nearly indestructible, obstacles to dislocation motion and furnish new sources for dislocation multiplication thereby playing an essential role in the evolution of dislocation microstructure and strength of deforming crystals. Simulation analyses conclude that multi-junctions are responsible for the strong orientation dependence of strain hardening in BCC crystals.

  19. Dislocation multi-junctions and strain hardening.

    PubMed

    Bulatov, Vasily V; Hsiung, Luke L; Tang, Meijie; Arsenlis, Athanasios; Bartelt, Maria C; Cai, Wei; Florando, Jeff N; Hiratani, Masato; Rhee, Moon; Hommes, Gregg; Pierce, Tim G; de la Rubia, Tomas Diaz

    2006-04-27

    At the microscopic scale, the strength of a crystal derives from the motion, multiplication and interaction of distinctive line defects called dislocations. First proposed theoretically in 1934 (refs 1-3) to explain low magnitudes of crystal strength observed experimentally, the existence of dislocations was confirmed two decades later. Much of the research in dislocation physics has since focused on dislocation interactions and their role in strain hardening, a common phenomenon in which continued deformation increases a crystal's strength. The existing theory relates strain hardening to pair-wise dislocation reactions in which two intersecting dislocations form junctions that tie the dislocations together. Here we report that interactions among three dislocations result in the formation of unusual elements of dislocation network topology, termed 'multi-junctions'. We first predict the existence of multi-junctions using dislocation dynamics and atomistic simulations and then confirm their existence by transmission electron microscopy experiments in single-crystal molybdenum. In large-scale dislocation dynamics simulations, multi-junctions present very strong, nearly indestructible, obstacles to dislocation motion and furnish new sources for dislocation multiplication, thereby playing an essential role in the evolution of dislocation microstructure and strength of deforming crystals. Simulation analyses conclude that multi-junctions are responsible for the strong orientation dependence of strain hardening in body-centred cubic crystals.

  20. Electron spin relaxation in two polymorphic structures of GaN

    NASA Astrophysics Data System (ADS)

    Kang, Nam Lyong

    2015-03-01

    The relaxation process of electron spin in systems of electrons interacting with piezoelectric deformation phonons that are mediated through spin-orbit interactions was interpreted from a microscopic point of view using the formula for the electron spin relaxation times derived by a projection-reduction method. The electron spin relaxation times in two polymorphic structures of GaN were calculated. The piezoelectric material constant for the wurtzite structure obtained by a comparison with a previously reported experimental result was {{P}pe}=1.5 × {{10}29} eV {{m}-1}. The temperature and magnetic field dependence of the relaxation times for both wurtzite and zinc-blende structures were similar, but the relaxation times in zinc-blende GaN were smaller and decreased more rapidly with increasing temperature and magnetic field than that in wurtzite GaN. This study also showed that the electron spin relaxation for wurtzite GaN at low density could be explained by the Elliot-Yafet process but not for zinc-blende GaN in the metallic regime.

  1. In-situ TEM observation of dislocation evolution in Kr-irradiated UO2 single crystal

    SciTech Connect

    Lingfeng He; Mahima Gupta; Clarissa A. Yablinsky; Jian Gan; Marquis A. Kirk; Xian-Ming Bai; Janne Pakarinen; Todd R. Allen

    2013-11-01

    In-situ transmission electron microscopy (TEM) observation of UO2 single crystal irradiated with Kr ions at high temperatures was conducted to understand the dislocation evolution due to high-energy radiation. The dislocation evolution in UO2 single crystal is shown to occur as nucleation and growth of dislocation loops at low-irradiation doses, followed by transformation to extended dislocation segments and networks at high doses, as well as shrinkage and annihilation of some loops and dislocations due to high temperature annealing. Generally the trends of dislocation evolution in UO2 are similar under Kr irradiation at different ion energies and temperatures (150 keV at 600 degrees C and 1 MeV at 800 degrees C) used in this work, although the specific dislocation loop size and density are quite different. Interstitial-type dislocation loops with Burgers vector along <110> were observed in the Kr-irradiated UO2.The irradiated specimens were denuded of dislocation loops near the surface.

  2. Nonresonant tunneling phonon depopulated GaN based terahertz quantum cascade structures

    NASA Astrophysics Data System (ADS)

    Freeman, Will; Karunasiri, Gamani

    2013-04-01

    GaN based terahertz quantum cascade structures are theoretically studied. Since the Fröhlich interaction is ˜15 times higher in GaN than in GaAs, level broadening makes obtaining appreciable optical gain difficult even with a large population inversion. A density matrix Monte Carlo method is used to calculate the broadening of the optical gain spectra as a function of lattice temperature. We find by using a proposed method of nonresonant tunneling and electron-longitudinal-optical phonon scattering for depopulation of the lower lasing state, that it is possible to sufficiently isolate the upper lasing state and control the lower lasing state lifetime to obtain high optical gain in GaN. The results predict lasing out to 300 K which is significantly higher than for GaAs based structures.

  3. Development of semipolar (11-22) LEDs on GaN templates

    NASA Astrophysics Data System (ADS)

    Corbett, B.; Quan, Z.; Dinh, D. V.; Kozlowski, G.; O'Mahony, D.; Akhter, M.; Schulz, S.; Parbrook, P.; Maaskant, P.; Caliebe, M.; Hocker, M.; Thonke, K.; Scholz, F.; Pristovsek, M.; Han, Y.; Humphreys, C. J.; Brunner, F.; Weyers, M.; Meyer, T. M.; Lymperakis, L.

    2016-03-01

    We report on blue and green light-emitting-diodes (LEDs) grown on (11-22)-GaN templates. The templates were created by overgrowth on structured r-plane sapphire substrates. Low defect density, 100 mm diameter GaN templates were obtained by metal organic vapour phase epitaxy (VPE) and hydride VPE techniques. Chemical-mechanical polishing was used to obtain smooth surfaces for the subsequent growth of LED structures. Ohmic contacts to the p-type GaN were obtained despite the lower activated acceptor levels. The LEDs show excellent output power and fast carrier dynamics. Freestanding LEDs have been obtained by use of laser-lift-off. The work is the result of collaboration under the European Union funded ALIGHT project.

  4. H enhancement of N vacancy migration in GaN.

    SciTech Connect

    Wixom, Ryan R.; Wright, Alan Francis

    2005-06-01

    We have used density functional theory to investigate diffusion of V{sub N}{sup +} in the presence of H{sup +}. Optimal migration pathways were determined using the climbing image nudged elastic band and directed dimer methods. Our calculations indicate that the rate-limiting barrier for VN{sub N}{sup +} migration will be reduced by 0.58 eV by interplay with H{sup +}, which will enhance migration by more than an order of magnitude at typical GaN growth temperatures.

  5. Modelling of GaN quantum dot terahertz cascade laser

    NASA Astrophysics Data System (ADS)

    Asgari, A.; Khorrami, A. A.

    2013-03-01

    In this paper GaN based spherical quantum dot cascade lasers has been modelled, where the generation of the terahertz waves are obtained. The Schrödinger, Poisson, and the laser rate equations have been solved self-consistently including all dominant physical effects such as piezoelectric and spontaneous polarization in nitride-based QDs and the effects of the temperature. The exact value of the energy levels, the wavefunctions, the lifetimes of electron levels, and the lasing frequency are calculated. Also the laser parameters such as the optical gain, the output power and the threshold current density have been calculated at different temperatures and applied electric fields.

  6. Dislocations and other topological oddities

    NASA Astrophysics Data System (ADS)

    Pieranski, Pawel

    2016-03-01

    We will show that the book Dislocations by Jacques Friedel, published half a century ago, can still be recommended, in agreement with the author's intention, as a textbook ;for research students at University and for students at engineering schools as well as for research engineers;. Indeed, today dislocations are known to occur not only in solid crystals but also in many other systems discovered more recently such as colloidal crystals or liquid crystals having periodic structures. Moreover, the concept of dislocations is an excellent starting point for lectures on topological defects occurring in systems equipped with order parameters resulting from broken symmetries: disclinations in nematic or hexatic liquid crystals, dispirations in chiral smectics or disorientations in lyotropic liquid crystals. The discussion of dislocations in Blue Phases will give us an opportunity to call on mind Sir Charles Frank, friend of Jacques Friedel since his Bristol years, who called these ephemeral mesophases ;topological oddities;. Being made of networks of disclinations, Blue Phases are similar to Twist Grain Boundary (TGB) smectic phases, which are made of networks of screw dislocations and whose existence was predicted by de Gennes in 1972 on the basis of the analogy between smectics and superconductors. We will stress that the book by Jacques Friedel contains seeds of this analogy.

  7. Growth arrest lines and recurrent patellar dislocation: a new sign.

    PubMed

    Abraham, A; Macnicol, M F

    2001-06-01

    The phenomenon of growth arrest lines has been widely described in the medical literature. They are usually found at the metaphysis of growing long bones and are the result of short periods of partial growth arrest. Recurrent dislocation of the patella is a well-recognised problem, particularly in adolescents. Several radiological features have been reported in association with patellar dislocation or instability. We have reported a hitherto undescribed radiological sign of patellar growth arrest lines on the skyline radiographs of two patients with this condition. The shape of the patella when symptoms were at their worst corresponded remarkably closely to the outline of the subsequent growth arrest line. We postulated that repeated dislocations adversely affect the process of normal maturation of the patella. With the resolution of symptoms, patella ossification resumes, leaving the telltale sign of previous injury in the form of a growth arrest line and an improvement in bone density once the patella has been stabilised and tracks normally.

  8. High internal quantum efficiency ultraviolet to green luminescence peaks from pseudomorphic m-plane Al{sub 1−x}In{sub x}N epilayers grown on a low defect density m-plane freestanding GaN substrate

    SciTech Connect

    Chichibu, S. F. Hazu, K.; Furusawa, K.; Ishikawa, Y.; Onuma, T.; Ohtomo, T.; Ikeda, H.; Fujito, K.

    2014-12-07

    Structural and optical qualities of half-a-μm-thick m-plane Al{sub 1−x}In{sub x}N epilayers grown by metalorganic vapor phase epitaxy were remarkably improved via coherent growth on a low defect density m-plane freestanding GaN substrate prepared by hydride vapor phase epitaxy. All the epilayers unexceptionally suffer from uniaxial or biaxial anisotropic in-plane stress. However, full-width at half-maximum values of the x-ray ω-rocking curves were nearly unchanged as the underlayer values being 80 ∼ 150 arc sec for (101{sup ¯}0) and (101{sup ¯}2) diffractions with both 〈0001〉 and 〈112{sup ¯}0〉 azimuths, as long as pseudomorphic structure was maintained. Such Al{sub 1−x}In{sub x}N epilayers commonly exhibited a broad but predominant luminescence peak in ultraviolet (x ≤ 0.14) to green (x = 0.30) wavelengths. Its equivalent value of the internal quantum efficiency at room temperature was as high as 67% for x = 0.14 and 44% for x = 0.30. Because its high-energy cutoff commonly converged with the bandgap energy, the emission peak is assigned to originate from the extended near-band-edge states with strong carrier localization.

  9. Understanding of surface pit formation mechanism of GaN grown in MOCVD based on local thermodynamic equilibrium assumption

    NASA Astrophysics Data System (ADS)

    Zhi-Yuan, Gao; Xiao-Wei, Xue; Jiang-Jiang, Li; Xun, Wang; Yan-Hui, Xing; Bi-Feng, Cui; De-Shu, Zou

    2016-06-01

    Frank’s theory describes that a screw dislocation will produce a pit on the surface, and has been evidenced in many material systems including GaN. However, the size of the pit calculated from the theory deviates significantly from experimental result. Through a careful observation of the variations of surface pits and local surface morphology with growing temperature and V/III ratio for c-plane GaN, we believe that Frank’s model is valid only in a small local surface area where thermodynamic equilibrium state can be assumed to stay the same. If the kinetic process is too vigorous or too slow to reach a balance, the local equilibrium range will be too small for the center and edge of the screw dislocation spiral to be kept in the same equilibrium state. When the curvature at the center of the dislocation core reaches the critical value 1/r 0, at the edge of the spiral, the accelerating rate of the curvature may not fall to zero, so the pit cannot reach a stationary shape and will keep enlarging under the control of minimization of surface energy to result in a large-sized surface pit. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204009 and 61204011) and the Beijing Municipal Natural Science Foundation, China (Grant No. 4142005).

  10. Nucleation mechanisms of epitaxial GaN nanowires: Origin of their self-induced formation and initial radius

    NASA Astrophysics Data System (ADS)

    Consonni, V.; Knelangen, M.; Geelhaar, L.; Trampert, A.; Riechert, H.

    2010-02-01

    The formation mechanisms of epitaxial GaN nanowires grown within a self-induced approach by molecular-beam epitaxy have been investigated at the onset of the nucleation process by combining in situ reflection high-energy electron-diffraction measurements and ex situ high-resolution transmission electron microscopy imaging. It is shown that the self-induced growth of GaN nanowires on the AlN buffer layer is initially governed by the nucleation of dislocation-free coherent islands. These coherent islands develop through a series of shape transitions from spherical caps through truncated to full pyramids in order to elastically relieve the lattice-mismatch-induced strain. A strong correlation between the subsequent process of plastic relaxation and the final shape transition from full pyramids toward the very first nanowires is found. The experimental critical radius at which the misfit dislocation nucleates is in very good agreement with the theoretical critical radius for the formation of the misfit dislocation in full pyramids, showing that the plastic relaxation process does take place within full pyramids: this critical size corresponds to the initial radius of the very first nanowires. We associate the plastic relaxation of the lattice-mismatch-induced strain occurring within full pyramids with a drastic change in their total free energy: this gives rise to a driving force for the shape transition toward the very first nanowires, which is mainly due to the anisotropy of surface energy.

  11. Investigation of dislocation cluster evolution during directional solidification of multicrystalline silicon

    NASA Astrophysics Data System (ADS)

    Oriwol, Daniel; Trempa, Matthias; Sylla, Lamine; Leipner, Hartmut S.

    2017-04-01

    Dislocation clusters are the main crystal defects in multicrystalline silicon and are detrimental for solar cell efficiency. They were formed during the silicon ingot casting due to the relaxation of strain energy. The evolution of the dislocation clusters was studied by means of automated analysing tools of the standard wafer and cell production giving information about the cluster development as a function of the ingot height. Due to the observation of the whole wafer surface the point of view is of macroscopic nature. It was found that the dislocations tend to build clusters of high density which usually expand in diameter as a function of ingot height. According to their structure the dislocation clusters can be divided into light and dense clusters. The appearance of both types shows a clear dependence on the orientation of the grain growth direction. Additionally, a process of annihilation of dislocation clusters during the crystallization has been observed. To complement the macroscopic description, the dislocation clusters were also investigates by TEM. It is shown that the dislocations within the subgrain boundaries are closely arranged. Distances of 40-30 nm were found. These results lead to the conclusion that the dislocation density within the cluster structure is impossible to quantify by means of etch pit counting.

  12. A survey on GaN- based devices for terahertz photonics

    NASA Astrophysics Data System (ADS)

    Ahi, Kiarash; Anwar, Mehdi

    2016-09-01

    With fast growing of the photonics and power electronic systems, the need for high power- high frequency semiconductor devices is sensed tremendously. GaN provides the highest electron saturation velocity, breakdown voltage and operation temperature, and thus combined frequency-power performance among commonly used semiconductors. With achieving the first THz image in just two decades ago, generation and detection of terahertz (THz) radiation is one of the most emerging photonic areas. The industrial needs for compact, economical, high resolution and high power THz imaging and spectroscopy systems are fueling the utilization of GaN for the realizing of the next generation of THz systems. As it is reviewed in this paper, the mentioned characteristics of GaN together with its capabilities of providing high 2-dimentional election densities and large longitudinal-optical phonon of 90 meV, make it one of the most promising semiconductor materials for the future of the THz generation, detection, mixing, and frequency multiplication. GaN- based devices have shown capabilities of operating in the upper THz frequency band of 5- 12 THz with relatively high photon densities and in room temperature. As a result, THz imaging and spectroscopy systems with high resolutions and depths of penetrations can be realized via utilizing GaN- based devices. In this paper, a comprehensive review on the history and state of the art of the GaN- based electronic devices, including plasma HFETs, NDRs, HDSDs, IMPATTs, QCLs, HEMTs, Gunn diodes and TeraFETs together with their impact on the future of THz imaging and spectroscopy systems is provided.

  13. Blue-violet InGaN laser diodes grown on bulk GaN substrates by plasma-assisted molecular-beam epitaxy

    SciTech Connect

    Skierbiszewski, C.; Wasilewski, Z.R.; Siekacz, M.; Feduniewicz, A.; Perlin, P.; Wisniewski, P.; Borysiuk, J.; Grzegory, I.; Leszczynski, M.; Suski, T.; Porowski, S.

    2005-01-03

    We report on the InGaN multiquantum laser diodes (LDs) made by rf plasma-assisted molecular beam epitaxy (PAMBE). The laser operation at 408 nm is demonstrated at room temperature with pulsed current injections using 50 ns pulses at 0.25% duty cycle. The threshold current density and voltage for the LDs with cleaved uncoated mirrors are 12 kA/cm{sup 2} (900 mA) and 9 V, respectively. High output power of 0.83 W is obtained during pulse operation at 3.6 A and 9.6 V bias with the slope efficiency of 0.35 W/A. The laser structures are deposited on the high-pressure-grown low dislocation bulk GaN substrates taking full advantage of the adlayer enhanced lateral diffusion channel for adatoms below the dynamic metallic cover. Our devices compare very favorably to the early laser diodes fabricated using the metalorganic vapor phase epitaxy technique, providing evidence that the relatively low growth temperatures used in this process pose no intrinsic limitations on the quality of the blue optoelectronic components that can be fabricated using PAMBE.

  14. Multiscale Theory of Dislocation Climb.

    PubMed

    Geslin, Pierre-Antoine; Appolaire, Benoît; Finel, Alphonse

    2015-12-31

    Dislocation climb is a ubiquitous mechanism playing a major role in the plastic deformation of crystals at high temperature. We propose a multiscale approach to model quantitatively this mechanism at mesoscopic length and time scales. First, we analyze climb at a nanoscopic scale and derive an analytical expression of the climb rate of a jogged dislocation. Next, we deduce from this expression the activation energy of the process, bringing valuable insights to experimental studies. Finally, we show how to rigorously upscale the climb rate to a mesoscopic phase-field model of dislocation climb. This upscaling procedure opens the way to large scale simulations where climb processes are quantitatively reproduced even though the mesoscopic length scale of the simulation is orders of magnitude larger than the atomic one.

  15. ''The Incubation Period for Void Swelling and its Dependence on Temperature, Dose Rate, and Dislocation Structure Evolution''

    SciTech Connect

    Surh, M P; Sturgeon, J B; Wolfer, W G

    2002-06-13

    Void swelling in structural materials used for nuclear reactors is characterized by an incubation period whose duration largely determines the usefulness of the material for core components. Significant evolution of the dislocation and void microstructures that control radiation-induced swelling can occur during this period. Thus, a theory of incubation must treat time-dependent void nucleation in combination with dislocation evolution, in which the sink strengths of voids and dislocations change in concert. We present theoretical results for void nucleation and growth including the time-dependent, self-consistent coupling of point defect concentrations to the evolution of both void populations and dislocation density. Simulations show that the incubation radiation dose is a strong function of the starting dislocation density and of the dislocation bias factors for vacancy and interstitial absorption. Irradiation dose rate and temperature also affect the duration of incubation. The results are in general agreement with experiment for high purity metals.

  16. Bulk GaN Ion Cleaving

    NASA Astrophysics Data System (ADS)

    Moutanabbir, O.; Gösele, U.

    2010-05-01

    Bulk or freestanding GaN is a key material in various devices other than the blue laser diodes. However, the high cost of bulk GaN wafers severely limits the large scale exploitation of these potential technologies. In this paper, we discuss some engineering issues involved in the application of the ion-cut process to split a thin layer from 2-inch freestanding GaN. This process combines the implantation of light ions and wafer bonding and can possibly be used to reduce the cost of the fabrication of GaN-based devices by allowing the transfer of several bulk quality thin layers from the same donor wafer. To achieve this multi-layer transfer several conditions must be fulfilled. Here issues related to bulk GaN surface irregularities and wafer bowing are discussed. We also describe a method to circumvent most of these problems and achieve high quality bonding.

  17. Facet growth of self-separated GaN layers through HVPE on large square-patterned template

    NASA Astrophysics Data System (ADS)

    Sui, Yanping; Wang, Bin; Zhao, Zhide; Xu, Wei; Li, Xiaoliang; Wang, Xinzhong; Yu, Guanghui

    2014-05-01

    A self-separated GaN layer was prepared by hydride vapor phase epitaxy (HVPE) on a square-patterned template with large periodicity. Self-separation was completed by breakage of the fragile layer because of the thermal stresses generated during the cooling process after HVPE growth. The GaN layer exhibited graphical surface comprising the terrace and the concave, the shapes of which were corresponding with the mask pattern. The terrace came from the growth on window openings, and had Ga-polarity by wet etching and micro-Raman measurement. The concave over the mask was composed of large inclined facets, and was demonstrated to have N-polarity. The growth on large square-patterned template was considered to be facet growth. The polarity inversion was related to dislocation accumulation. The strain distribution regularly varied, which was interpreted based on the facet growth mode.

  18. Origins of electrostatic potential wells at dislocations in polycrystalline Cu(In,Ga)Se{sub 2} thin films

    SciTech Connect

    Dietrich, J.; Abou-Ras, D. Schmidt, S. S.; Rissom, T.; Unold, T.; Cojocaru-Mirédin, O.; Niermann, T.; Lehmann, M.; Koch, C. T.; Boit, C.

    2014-03-14

    Thin-film solar cells based on Cu(In,Ga)Se{sub 2} (CIGSe) reach high power-conversion efficiencies in spite of large dislocation densities of up to 10{sup 10}–10{sup 11} cm{sup −2}. The present work gives insight into the structural and compositional properties of dislocations in CIGSe thin films, which are embedded in a complete solar cell stack. These properties are related to the average electrical potential distributions obtained by means of inline electron holography. At a part of the dislocations studied, the average electrostatic potential shows local minima, all with depths of about −1.4 V. The measured average electrostatic potential distributions were modeled in order to reveal possible influences from strain fields, excess charge, and also compositional changes at the dislocation core. Cu depletion around the dislocation core, as evidenced by atom-probe tomography, explains best the measured potential wells. Their influences of the strain field around the dislocation core and of excess charge at the dislocation core are small. A structural model of dislocations in CIGSe thin films is provided which includes a Cu-depleted region around the dislocation core and gives a possible explanation for why decent photovoltaic performances are possible in the presence of rather large dislocation densities.

  19. Origins of electrostatic potential wells at dislocations in polycrystalline Cu(In,Ga)Se2 thin films

    NASA Astrophysics Data System (ADS)

    Dietrich, J.; Abou-Ras, D.; Schmidt, S. S.; Rissom, T.; Unold, T.; Cojocaru-Mirédin, O.; Niermann, T.; Lehmann, M.; Koch, C. T.; Boit, C.

    2014-03-01

    Thin-film solar cells based on Cu(In,Ga)Se2 (CIGSe) reach high power-conversion efficiencies in spite of large dislocation densities of up to 1010-1011 cm-2. The present work gives insight into the structural and compositional properties of dislocations in CIGSe thin films, which are embedded in a complete solar cell stack. These properties are related to the average electrical potential distributions obtained by means of inline electron holography. At a part of the dislocations studied, the average electrostatic potential shows local minima, all with depths of about -1.4 V. The measured average electrostatic potential distributions were modeled in order to reveal possible influences from strain fields, excess charge, and also compositional changes at the dislocation core. Cu depletion around the dislocation core, as evidenced by atom-probe tomography, explains best the measured potential wells. Their influences of the strain field around the dislocation core and of excess charge at the dislocation core are small. A structural model of dislocations in CIGSe thin films is provided which includes a Cu-depleted region around the dislocation core and gives a possible explanation for why decent photovoltaic performances are possible in the presence of rather large dislocation densities.

  20. Dislocation substructure of mantle-derived olivine as revealed by selective chemical etching and transmission electron microscopy

    USGS Publications Warehouse

    Kirby, S.H.; Wegner, M.W.

    1978-01-01

    Cleaved and mechanically polished surfaces of olivine from peridotite xenoliths from San Carlos, Arizona, were chemically etched using the techniques of Wegner and Christie (1974). Dislocation etch pits are produced on all surface orientations and they tend to be preferentially aligned along the traces of subgrain boundaries, which are approximately parallel to (100), (010), and (001). Shallow channels were also produced on (010) surfaces and represent dislocations near the surface that are etched out along their lengths. The dislocation etch channel loops are often concentric, and emanate from (100) subgrain boundaries, which suggests that dislocation sources are in the boundaries. Data on subgrain misorientation and dislocation line orientation and arguments based on subgrain boundary energy minimization are used to characterize the dislocation structures of the subgrain boundaries. (010) subgrain boundaries are of the twist type, composed of networks of [100] and [001] screw dislocations. Both (100) and (001) subgrain boundaries are tilt walls composed of arrays of edge dislocation with Burgers vectors b=[100] and [001], respectively. The inferred slip systems are {001} ???100???, {100} ???001???, and {010} ???100??? in order of diminishing importance. Exploratory transmission electron microscopy is in accord with these identifications. The flow stresses associated with the development of the subgrain structure are estimated from the densities of free dislocations and from the subgrain dimensions. Inferred stresses range from 35 to 75 bars using the free dislocation densities and 20 to 100 bars using the subgrain sizes. ?? 1978 Springer-Verlag.

  1. Ab initio study of screw dislocations in Mo and ta: A new picture of plasticity in bcc transition metals

    PubMed

    Ismail-Beigi; Arias

    2000-02-14

    We report the first ab initio density-functional study of <111> screw dislocation cores in the bcc transition metals Mo and Ta. Our results suggest a new picture of bcc plasticity with symmetric and compact dislocation cores, contrary to the presently accepted picture based on continuum and interatomic potentials. Core energy scales in this new picture are in much better agreement with the Peierls energy barriers to dislocation motion suggested by experiments.

  2. Materials physics and device development for improved efficiency of GaN HEMT high power amplifiers.

    SciTech Connect

    Kurtz, Steven Ross; Follstaedt, David Martin; Wright, Alan Francis; Baca, Albert G.; Briggs, Ronald D.; Provencio, Paula Polyak; Missert, Nancy A.; Allerman, Andrew Alan; Marsh, Phil F.; Koleske, Daniel David; Lee, Stephen Roger; Shul, Randy John; Seager, Carleton Hoover; Tigges, Christopher P.

    2005-12-01

    GaN-based microwave power amplifiers have been identified as critical components in Sandia's next generation micro-Synthetic-Aperture-Radar (SAR) operating at X-band and Ku-band (10-18 GHz). To miniaturize SAR, GaN-based amplifiers are necessary to replace bulky traveling wave tubes. Specifically, for micro-SAR development, highly reliable GaN high electron mobility transistors (HEMTs), which have delivered a factor of 10 times improvement in power performance compared to GaAs, need to be developed. Despite the great promise of GaN HEMTs, problems associated with nitride materials growth currently limit gain, linearity, power-added-efficiency, reproducibility, and reliability. These material quality issues are primarily due to heteroepitaxial growth of GaN on lattice mismatched substrates. Because SiC provides the best lattice match and thermal conductivity, SiC is currently the substrate of choice for GaN-based microwave amplifiers. Obviously for GaN-based HEMTs to fully realize their tremendous promise, several challenges related to GaN heteroepitaxy on SiC must be solved. For this LDRD, we conducted a concerted effort to resolve materials issues through in-depth research on GaN/AlGaN growth on SiC. Repeatable growth processes were developed which enabled basic studies of these device layers as well as full fabrication of microwave amplifiers. Detailed studies of the GaN and AlGaN growth of SiC were conducted and techniques to measure the structural and electrical properties of the layers were developed. Problems that limit device performance were investigated, including electron traps, dislocations, the quality of semi-insulating GaN, the GaN/AlGaN interface roughness, and surface pinning of the AlGaN gate. Surface charge was reduced by developing silicon nitride passivation. Constant feedback between material properties, physical understanding, and device performance enabled rapid progress which eventually led to the successful fabrication of state of the art

  3. Optical properties of GaN pyramids

    SciTech Connect

    Zeng, K.C.; Lin, J.Y.; Jiang, H.X.; Yang, W.

    1999-03-01

    Picosecond time-resolved photoluminescence (PL) spectroscopy has been used to investigate the optical properties of GaN pyramids overgrown on hexagonal-patterned GaN(0001) epilayers on sapphire and silicon substrates with AlN buffer layers. We found that: (i) the release of the biaxial compressive strain in GaN pyramids on GaN/AlN/sapphire substrate led to a 7 meV redshift of the spectral peak position with respect to the strained GaN epilayer grown under identical conditions; (ii) in the GaN pyramids on GaN/AlN/sapphire substrate, strong band edge transitions with much narrower linewidths than those in the GaN epilayer have been observed, indicating the improved crystalline quality of the overgrown pyramids; (iii) PL spectra taken from different parts of the pyramids revealed that the top of the pyramid had the highest crystalline quality; and (iv) the presence of strong band-to-impurity transitions in the pyramids were primarily due to the incorporation of the oxygen and silicon impurities from the SiO{sub 2} mask. {copyright} {ital 1999 American Institute of Physics.}

  4. Atomic-scale and pit-free flattening of GaN by combination of plasma pretreatment and time-controlled chemical mechanical polishing

    SciTech Connect

    Deng, Hui; Endo, Katsuyoshi; Yamamura, Kazuya

    2015-08-03

    Chemical mechanical polishing (CMP) combined with atmospheric-pressure plasma pretreatment was applied to a GaN (0001) substrate. The irradiation of a CF{sub 4}-containing plasma was proven to be very useful for modifying the surface of GaN. When CMP was conducted on a plasma-irradiated surface, a modified layer of GaF{sub 3} acted as a protective layer on GaN by preventing the formation of etch pits. Within a short duration (8 min) of CMP using a commercially available CeO{sub 2} slurry, an atomically flat surface with a root mean square (rms) roughness of 0.11 nm was obtained. Moreover, etch pits, which are inevitably introduced in conventional CMP, could not be observed at the dislocation sites on the polished GaN surface. It was revealed that CMP combined with the plasma pretreatment was very effective for obtaining a pit-free and atomically flat GaN surface.

  5. Growth kinetics of AlN and GaN films grown by molecular beam epitaxy on R-plane sapphire substrates

    SciTech Connect

    Chandrasekaran, R.; Moustakas, T. D.; Ozcan, A. S.; Ludwig, K. F.; Zhou, L.; Smith, David J.

    2010-08-15

    This paper reports the growth by molecular beam epitaxy of AlN and GaN thin films on R-plane sapphire substrates. Contrary to previous findings that GaN grows with its (1120) A-plane parallel to the (1102) R-plane of sapphire, our results indicate that the crystallographic orientation of the III-nitride films is strongly dependent on the kinetic conditions of growth for the GaN or AlN buffer layers. Thus, group III-rich conditions for growth of either GaN or AlN buffers result in nitride films having (1120) planes parallel to the sapphire surface, and basal-plane stacking faults parallel to the growth direction. The growth of these buffers under N-rich conditions instead leads to nitride films with (1126) planes parallel to the sapphire surface, with inclined c-plane stacking faults that often terminate threading dislocations. Moreover, electron microscope observations indicate that slight miscut ({approx}0.5 deg. ) of the R-plane sapphire substrate almost completely suppresses the formation of twinning defects in the (1126) GaN films.

  6. Nanoair-bridged lateral overgrowth of GaN on ordered nanoporous GaN template

    NASA Astrophysics Data System (ADS)

    Wang, Y. D.; Zang, K. Y.; Chua, S. J.; Tripathy, S.; Chen, P.; Fonstad, C. G.

    2005-12-01

    We report the growth of high-quality GaN epilayers on an ordered nanoporous GaN template by metalorganic chemical vapor deposition. The nanopores in GaN template were created by inductively coupled plasma etching using anodic aluminum oxide film as an etch mask. The average pore diameter and interpore distance is about 65 and 110nm, respectively. Subsequent overgrowth of GaN first begins at the GaN crystallite surface between the pores, and then air-bridge-mediated lateral overgrowth leads to the formation of the continuous layer. Microphotoluminescence and micro-Raman measurements show improved optical properties and significant strain relaxation in the overgrown layer when compared to GaN layer of same thickness simultaneously grown on sapphire without any template. Similar to conventional epitaxial lateral overgrown GaN, such overgrown GaN on a nanopatterned surface would also serve as a template for the growth of ultraviolet-visible light-emitting III-nitride devices.

  7. Defect-induced incompatability of elastic strains: dislocations within the Landau theory of martensitic phase transformations

    SciTech Connect

    Groger, Roman1; Lockman, Turab; Saxena, Avadh

    2008-01-01

    In dislocation-free martensites the components of the elastic strain tensor are constrained by the Saint-Venant compatibility condition which guarantees continuity of the body during external loading. However, in dislocated materials the plastic part of the distortion tensor introduces a displacement mismatch that is removed by elastic relaxation. The elastic strains are then no longer compatible in the sense of the Saint-Venant law and the ensuing incompatibility tensor is shown to be proportional to the gradients of the Nye dislocation density tensor. We demonstrate that the presence of this incompatibility gives rise to an additional long-range contribution in the inhomogeneous part of the Landau energy functional and to the corresponding stress fields. Competition among the local and long-range interactions results in frustration in the evolving order parameter (elastic) texture. We show how the Peach-Koehler forces and stress fields for any distribution of dislocations in arbitrarily anisotropic media can be calculated and employed in a Fokker-Planck dynamics for the dislocation density. This approach represents a self-consistent scheme that yields the evolutions of both the order parameter field and the continuous dislocation density. We illustrate our method by studying the effects of dislocations on microstructure, particularly twinned domain walls, in an Fe-Pd alloy undergoing a martensitic transformation.

  8. Defect-induced incompatibility of elastic strains: Dislocations within the Landau theory of martensitic phase transformations

    NASA Astrophysics Data System (ADS)

    Gröger, R.; Lookman, T.; Saxena, A.

    2008-11-01

    In dislocation-free martensites the components of the elastic strain tensor are constrained by the Saint-Venant compatibility condition which guarantees continuity of the body during external loading. However, in dislocated materials the plastic part of the distortion tensor introduces a displacement mismatch that is removed by elastic relaxation. The elastic strains are then no longer compatible in the sense of the Saint-Venant law and the ensuing incompatibility tensor is shown to be proportional to the gradients of the Nye dislocation density tensor. We demonstrate that the presence of this incompatibility gives rise to an additional long-range contribution in the inhomogeneous part of the Landau energy functional and to the corresponding stress fields. Competition among the local and long-range interactions results in frustration in the evolving order parameter (elastic) texture. We show how the Peach-Koehler forces and stress fields for any distribution of dislocations in arbitrarily anisotropic media can be calculated and employed in a Fokker-Planck dynamics for the dislocation density. This approach represents a self-consistent scheme that yields the evolutions of both the order parameter field and the continuous dislocation density. We illustrate our method by studying the effects of dislocations on microstructure, particularly twinned domain walls, in an Fe-Pd alloy undergoing a martensitic transformation.

  9. Gravitational effects of process-induced dislocations in silicon. [during thermal cycling

    NASA Technical Reports Server (NTRS)

    Porter, W. A.; Parker, D. L.

    1974-01-01

    Matters pertaining to semiconductor device fabrication were studied in terms of the influence of gravity on the production of dislocations in silicon wafers during thermal cycling in a controlled ambient where no impurities are present and oxidation is minimal. Both n-type and p-type silicon wafers having a diameter of 1.25 in to 1.5 in, with fixed orientation and resistivity values, were used. The surface dislocation densities were measured quantitatively by the Sirtl etch technique. The results show two significant features of the plastic flow phenomenon as it is related to gravitational stress: (1) the density of dislocations generated during a given thermal cycle is directly related to the duration of the cycle; and (2) the duration of the thermal cycle required to produce a given dislocation density is inversely related to the equilibrium temperature. Analysis of the results indicates that gravitational stress is instrumental in process-induced defect generation.

  10. Transition of dislocation nucleation induced by local stress concentration in nanotwinned copper.

    PubMed

    Lu, N; Du, K; Lu, L; Ye, H Q

    2015-07-16

    Metals with a high density of nanometre-scale twins have demonstrated simultaneous high strength and good ductility, attributed to the interaction between lattice dislocations and twin boundaries. Maximum strength was observed at a critical twin lamella spacing (∼15 nm) by mechanical testing; hence, an explanation of how twin lamella spacing influences dislocation behaviours is desired. Here, we report a transition of dislocation nucleation from steps on the twin boundaries to twin boundary/grain boundary junctions at a critical twin lamella spacing (12-37 nm), observed with in situ transmission electron microscopy. The local stress concentrations vary significantly with twin lamella spacing, thus resulting in a critical twin lamella spacing (∼18 nm) for the transition of dislocation nucleation. This agrees quantitatively with the mechanical test. These results demonstrate that by quantitatively analysing local stress concentrations, a direct relationship can be resolved between the microscopic dislocation activities and macroscopic mechanical properties of nanotwinned metals.

  11. Optical and confocal microscopy observations of screw dislocations in smectic-A liquid crystals.

    PubMed

    Lelidis, I; Blanc, C; Kléman, M

    2006-11-01

    We present experimental evidence of the presence of isolated screw dislocations in smectic-A liquid crystals observed by polarizing microscopy. In a wedge-shaped homeotropic cell, the edge and screw dislocations interaction gives rise to a strong-enough optical contrast and makes visible their mutual intersections at temperatures close to the smectic-A to smectic-C phase transition temperature. The nature of the defects is confirmed by confocal microscopy observations. At large scale we observe a forest of screw dislocations, perpendicular to the smectic layers, across the thickness of the cell (end-on configuration). Their density varies between 10(9) and 10(12) m-2. In situ observations of dislocations under stress, in the optical microscope, provide quantitative information about the screw-edge dislocation interactions. The latter interaction is calculated in the unharmonic approximation and it gives rise to an observed yield stress.

  12. Relaxation of interphase stresses on the later stages of the heterogeneous decomposition of solid solutions: III. Conditions for the infiltration of feeding dislocations

    NASA Astrophysics Data System (ADS)

    Ustyugov, Yu. M.; Kondrat'ev, V. V.

    2008-07-01

    In this paper, we have studied the relaxation processes that occur upon the decomposition of solid solutions at the stage of coalescence in the regime of dislocation-matrix diffusion using the precipitated-phase-particle-feeding-dislocations system as an example. The cases of linear and nonlinear interrelations between the controlling parameters of the system (the fraction of the relaxed regions of the interphase surface and the number of edge dislocations that supply the alloying component to the precipitated phase) have been analyzed. It has been established that in real cases it is advantageous for the system to reduce its total energy via the “infiltration” of feeding dislocations, i.e., the escape of segments of edge feeding dislocations localized in the precipitate outside the limits of the precipitate with the formation of structural dislocation loops at the interphase surface by the reaction of the following type: 1 feeding dislocation = 1 structural loop + 1 matrix dislocation. In the presence of an enhanced density of feeding dislocations, this reaction is blocked, and the relaxation of interphase stresses is accomplished as a result of sequential acts of the loss of coherence, which are accompanied by a partial “escape” of edge feeding dislocations. For the edge dislocations that remain unescaped, there is formulated a condition for the subsequent “leakage” of their segments localized in the precipitate outside the limits of the precipitate according to the following reaction: 2 feeding dislocations = 1 structural loop + 2 matrix dislocations.

  13. The Formation and Characterization of GaN Hexagonal Pyramids

    NASA Astrophysics Data System (ADS)

    Zhang, Shi-Ying; Xiu, Xiang-Qian; Lin, Zeng-Qin; Hua, Xue-Mei; Xie, Zi-Li; Zhang, Rong; Zheng, You-Dou

    2013-05-01

    GaN with hexagonal pyramids is fabricated using the photo-assisted electroless chemical etching method. Defective areas of the GaN substrate are selectively etched in a mixed solution of KOH and K2S2O8 under ultraviolet illumination, producing submicron-sized pyramids. Hexagonal pyramids on the etched GaN with well-defined {101¯1¯} facets and very sharp tips are formed. High-resolution x-ray diffraction shows that etched GaN with pyramids has a higher crystal quality, and micro-Raman spectra reveal a tensile stress relaxation in GaN with pyramids compared with normal GaN. The cathodoluminescence intensity of GaN after etching is significantly increased by three times, which is attributed to the reduction in the internal reflection, high-quality GaN with pyramids and the Bragg effect.

  14. GaN Haeckelite Single-Layered Nanostructures: Monolayer and Nanotubes

    PubMed Central

    Camacho-Mojica, Dulce C.; López-Urías, Florentino

    2015-01-01

    Nowadays, III-V semiconductors are interesting candidate materials for the tailoring of two dimensional (2D) graphene-like structures. These new 2D materials have attracted profound interest opening the possibility to find semiconductor materials with unexplored properties. First-principles density functional theory calculations are performed in order to investigate the electronic properties of GaN planar and nanotube morphologies based on Haeckelite structures (containing octagonal and square membered rings). Optimized geometries, band-structures, phonon dispersion, binding energies, transmission electron microscopy images simulations, x-ray diffraction patterns, charge densities, and electronic band gaps are calculated. We demonstrated that GaN Haeckelite structures are stable exhibiting a semiconducting behavior with an indirect band gap. Furthermore, it was found that GaN Haeckelite nanotubes are semiconductor with a band gap nature (direct or indirect) that depends of the nanotube´s chirality and diameter. In addition, it was demonstrated that surface passivation and the interaction with hydrazine, water, ammonia, and carbon monoxide molecules can change the band-gap nature. Our results are compared with the corresponding GaN hexagonal honeycomb structures. PMID:26658148

  15. Determining dislocation love numbers using GRACE satellite mission gravity data

    NASA Astrophysics Data System (ADS)

    Junyan, Yang; Zhou, Xin; Yi, Shuang; Sun, Wenke

    2015-10-01

    In this study, we propose a method to determine dislocation Love numbers using co-seismic gravity changes from GRACE measurements. First, we present an observation equation to model GRACE observations taking into account the effect of ocean water mass redistribution. The L-curve method was used to determine the regulation parameter in the inversion of the geopotential dislocation Love numbers constrained by an a priori preliminary reference Earth (PREM) model. Then, the GRACE data error was estimated in the study area to evaluate the uncertainty of our inversion, and our inverted Love numbers are significantly deviated from the PREM ones even the uncertainty is considered. Finally, GRACE data observed for the 2011 Tohoku-Oki earthquake (Mw = 9.0) were used to estimate the gravity dislocation Love numbers, considering three different fault-slip models. The results show that the inverted dislocation Love numbers deviate from PREM model, especially for k_{l1}^{32} and k_{l0}^{33} - k_{l0}^{22}, which indicates that the inverted dislocation Love numbers can reflect the local structure that is different from the global average. This inconsistency is possibly because that the cold denser oceanic slab dives from the Japanese Trench into the softer asthenosphere, and then changes the local density here higher than the global average. And with these sets of Love numbers, we can invert for more accurate fault model and analyse focal rupture mechanism when some other earthquake in this area occurs in the future. This study provides a new approach to invert for dislocation Love numbers linked with local geological information.

  16. Simulations of <1 0 0> edge and 1/2<1 1 1> screw dislocations in α-iron and tungsten and positron lifetime calculations

    NASA Astrophysics Data System (ADS)

    Staikov, P.; Djourelov, N.

    2013-03-01

    Dislocations in BCC metals are of crucial importance for understanding behavior of fusion materials. In this study model positron lifetime quantum-mechanical calculations have been carried out in the two-component density functional theory (DFT) in local density approximation (LDA) for perfect iron and tungsten lattices, lattices with <1 0 0> edge and 1/2<1 1 1> screw dislocations and several cases in which dislocations interact with a vacancy, bi-vacancy and vacancies containing hydrogen or helium atoms. The core structures of the dislocations have been obtained by MD-simulations using Mendelev and Ackland potentials for iron and Finnis-Sinclair potential for tungsten. The calculated values for iron are 153 ps for edge dislocation and 124 ps for screw dislocation, while for tungsten are 161 and 130 ps, respectively. We report new results for screw dislocation showing that minor dilation of the lattice volume associated with second-order elasticity theory influences the calculated positron lifetime.

  17. TEM studies of laterally overgrown GaN layers grown on non-polarsubstrates

    SciTech Connect

    Liliental-Weber, Z.; Ni, X.; Morkoc, H.

    2006-01-05

    Transmission electron microscopy (TEM) was used to study pendeo-epitaxial GaN layers grown on polar and non-polar 4H SiC substrates. The structural quality of the overgrown layers was evaluated using a number of TEM methods. Growth of pendeo-epitaxial layers on polar substrates leads to better structural quality of the overgrown areas, however edge-on dislocations are found at the meeting fronts of two wings. Some misorientation between the 'seed' area and wing area was detected by Convergent Beam Electron Diffraction. Growth of pendeo-epitaxial layers on non-polar substrates is more difficult. Two wings on the opposite site of the seed area grow in two different polar directions with different growth rates. Most dislocations in a wing grown with Ga polarity are 10 times wider than wings grown with N-polarity making coalescence of these layers difficult. Most dislocations in a wing grown with Ga polarity bend in a direction parallel to the substrate, but some of them also propagate to the sample surface. Stacking faults formed on the c-plane and prismatic plane occasionally were found. Some misorientation between the wings and seed was detected using Large Angle Convergent Beam Diffraction.

  18. Solute drag on perfect and extended dislocations

    NASA Astrophysics Data System (ADS)

    Sills, R. B.; Cai, W.

    2016-04-01

    The drag force exerted on a moving dislocation by a field of mobile solutes is studied in the steady state. The drag force is numerically calculated as a function of the dislocation velocity for both perfect and extended dislocations. The sensitivity of the non-dimensionalized force-velocity curve to the various controlling parameters is assessed, and an approximate analytical force-velocity expression is given. A non-dimensional parameter S characterizing the strength of the solute-dislocation interaction, the background solute fraction ?, and the dislocation character angle ?, are found to have the strongest influence on the force-velocity curve. Within the model considered here, a perfect screw dislocation experiences no solute drag, but an extended screw dislocation experiences a non-zero drag force that is about 10 to 30% of the drag on an extended edge dislocation. The solutes can change the spacing between the Shockley partials in both stationary and moving extended dislocations, even when the stacking fault energy remains unaltered. Under certain conditions, the solutes destabilize an extended dislocation by either collapsing it into a perfect dislocation or causing the partials to separate unboundedly. It is proposed that the latter instability may lead to the formation of large faulted areas and deformation twins in low stacking fault energy materials containing solutes, consistent with experimental observations of copper and stainless steel containing hydrogen.

  19. Theory of interacting dislocations on cylinders

    NASA Astrophysics Data System (ADS)

    Amir, Ariel; Paulose, Jayson; Nelson, David R.

    2013-04-01

    We study the mechanics and statistical physics of dislocations interacting on cylinders, motivated by the elongation of rod-shaped bacterial cell walls and cylindrical assemblies of colloidal particles subject to external stresses. The interaction energy and forces between dislocations are solved analytically, and analyzed asymptotically. The results of continuum elastic theory agree well with numerical simulations on finite lattices even for relatively small systems. Isolated dislocations on a cylinder act like grain boundaries. With colloidal crystals in mind, we show that saddle points are created by a Peach-Koehler force on the dislocations in the circumferential direction, causing dislocation pairs to unbind. The thermal nucleation rate of dislocation unbinding is calculated, for an arbitrary mobility tensor and external stress, including the case of a twist-induced Peach-Koehler force along the cylinder axis. Surprisingly rich phenomena arise for dislocations on cylinders, despite their vanishing Gaussian curvature.

  20. Ordered arrays of identical Nb4 clusters on the GaN(0001) surface studied with first-principles calculations

    NASA Astrophysics Data System (ADS)

    Wang, Xiaochun; Zhu, Zizhong

    2007-06-01

    Based on the first-principles total-energy calculations within the density-functional theory, the (2×2) and (3×3) arrays of tetrahedron- and quadrangle- Nb4 clusters on the GaN(0001) surface have been studied. We show that the periodically two-dimensional arrays of Nb4 clusters on the GaN(0001) surface are very stable at two of the surface adsorption sites. Once the Nb4 clusters locate at the stable sites, it is difficult for them to diffuse, since the potential barriers for the diffusions are relatively high. We also predict that on the GaN(0001) surface, the well-ordered (3×3) arrays of identical Nb4 clusters are the ones with maximum density for the tetrahedron- and quadrangle- Nb4 quantum dots.

  1. Basal plane misfit dislocations and stress relaxation in III-nitride semipolar heteroepitaxy

    NASA Astrophysics Data System (ADS)

    Romanov, Alexey E.; Young, Erin C.; Wu, Feng; Tyagi, Anurag; Gallinat, Chad S.; Nakamura, Shuji; DenBaars, Steve P.; Speck, James S.

    2011-05-01

    This article presents a theoretical analysis of dislocation behavior and stress relaxation in semipolar III-nitride heteroepitaxy, e.g., for AlxGa1-xN and InyGa1-yN layers grown on {hh2-h-m}- or {h0h-m}-type semipolar planes of GaN substrates. We demonstrate that the shear stresses on the unique inclined basal (0001) plane do not vanish for such growth geometries. This leads to the onset of relaxation processes in semipolar III-nitride heterostructures via dislocation glide in the basal slip systems <1-1-20>(0001) and to the formation of misfit dislocations (MDs) with Burgers vectors of (a /3)<1-1-20>-type at the semipolar heterointerface. Next we calculate the Matthews-Blakeslee critical thickness for MD formation in semipolar III-nitride layers together with the MD equilibrium spacings for complete misfit relaxation. The component of the MD Burgers vector normal to the film/substrate interface will cause a crystal lattice tilt in the epilayer with respect to the GaN substrate. The calculated magnitudes of the tilt angles are 0.62° and 0.67° for AlxGa1-xN and InyGa1-yN alloys with compositions of x = 0.20 and y = 0.07, respectively, grown in the (112-2) semipolar orientation. The modeling results are discussed in light of recent experimental observations [A. Tyagi et al., Appl Phys. Lett. 95, 251905 (2009); E. Young et al., Appl. Phys. Express 3, 011004 (2010); and F. Wu et al., J. Appl. Phys. 109, 033505 (2011)] of MDs and crystal lattice tilt in semipolar III-nitride heteroepitaxial layers.

  2. Flexible Ab initio boundary conditions: simulating isolated dislocations in bcc Mo and Ta.

    PubMed

    Woodward, C; Rao, S I

    2002-05-27

    We report the first ab initio density-functional study of the strain field and Peierls stress of isolated <111> screw dislocations in bcc Mo and Ta. The local dislocation strain field is self-consistently coupled to the long-range elastic field using a flexible boundary condition method. This reduces the mesoscopic atomistic calculation to one involving only degrees of freedom near the dislocation core. The predicted equilibrium core for Mo is significantly different from previous atomistic results and the Peierls stress shows significant non-Schmid behavior as expected for the bcc metals.

  3. Dislocation Reduction of HgCdTe/Si Through Ex Situ Annealing

    DTIC Science & Technology

    2016-06-07

    REPORT Dislocation Reduction of HgCdTe/Si Through Ex Situ Annealing 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Current growth methods of HgCdTe/Cd(Se...Z39.18 - Dislocation Reduction of HgCdTe/Si Through Ex Situ Annealing Report Title ABSTRACT Current growth methods of HgCdTe/Cd(Se)Te/Si by molecular... growth methods of HgCdTe/Cd(Se)Te/Si by molecular-beam epitaxy (MBE) result in a dislocation density of mid 106 cm2 to low 107 cm2. Although the exact

  4. Morphological and luminescent characteristics of GaN dots deposited on AlN by alternate supply of TMG and NH 3

    NASA Astrophysics Data System (ADS)

    Tsai, Yu-Li; Gong, Jyh-Rong; Lin, Tai-Yuan; Lin, Hsia-Yu; Chen, Yang-Fang; Lin, Kun-Ming

    2006-03-01

    GaN dots were deposited on AlN underlayers by alternate supply of trimethylgallium (TMG) and ammonia (NH 3) in an inductively heated quartz reactor operated at atmospheric pressure. Various growth parameters including deposition temperature, TMG admittance and pulse time between TMG and NH 3 exposures were proposed to investigate the influence of growth parameters on the size distribution of GaN dots. It appears that GaN dots with uniform size distribution can be achieved under certain growth conditions. Based on the study of atomic force microscopy (AFM), high deposition temperature was found to be in favor of forming large GaN dots with small dot density. Decrement of TMG flow rate or reduction in the number of growth cycle tends to enable the formation of GaN dots with small dot sizes. The results of room temperature (RT) cathodoluminescence (CL) measurements of the GaN dots exhibit an emission peak at 3.735 eV. A remarkable blue shift of GaN dot emission was observed by reduced temperature photoluminescence (PL) measurements.

  5. Ge doping of GaN beyond the Mott transition

    NASA Astrophysics Data System (ADS)

    Ajay, A.; Schörmann, J.; Jiménez-Rodriguez, M.; Lim, C. B.; Walther, F.; Rohnke, M.; Mouton, I.; Amichi, L.; Bougerol, C.; Den Hertog, M. I.; Eickhoff, M.; Monroy, E.

    2016-11-01

    We present a study of germanium as n-type dopant in wurtzite GaN films grown by plasma-assisted molecular-beam epitaxy, reaching carrier concentrations of up to 6.7  ×  1020 cm-3 at 300 K, well beyond the Mott density. The Ge concentration and free carrier density were found to scale linearly with the Ge flux in the studied range. All the GaN:Ge layers present smooth surface morphology with atomic terraces, without trace of pits or cracks, and the mosaicity of the samples has no noticeable dependence on the Ge concentration. The variation of the GaN:Ge band gap with the carrier concentration is consistent with theoretical calculations of the band gap renormalization due to electron-electron and electron-ion interaction, and Burstein-Moss effect.

  6. First-principle natural band alignment of GaN / dilute-As GaNAs alloy

    SciTech Connect

    Tan, Chee-Keong Tansu, Nelson

    2015-01-15

    Density functional theory (DFT) calculations with the local density approximation (LDA) functional are employed to investigate the band alignment of dilute-As GaNAs alloys with respect to the GaN alloy. Conduction and valence band positions of dilute-As GaNAs alloy with respect to the GaN alloy on an absolute energy scale are determined from the combination of bulk and surface DFT calculations. The resulting GaN / GaNAs conduction to valence band offset ratio is found as approximately 5:95. Our theoretical finding is in good agreement with experimental observation, indicating the upward movements of valence band at low-As content dilute-As GaNAs are mainly responsible for the drastic reduction of the GaN energy band gap. In addition, type-I band alignment of GaN / GaNAs is suggested as a reasonable approach for future device implementation with dilute-As GaNAs quantum well, and possible type-II quantum well active region can be formed by using InGaN / dilute-As GaNAs heterostructure.

  7. Effect of dislocations on properties of heteroepitaxial InP solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Curtis, H. B.; Brinker, D. J.; Jenkins, P.; Faur, M.

    1991-01-01

    The apparently unrelated phenomena of temperature dependency, carrier removal and photoluminescence are shown to be affected by the high dislocation densities present in heteroepitaxial InP solar cells. Using homoepitaxial InP cells as a baseline, it is found that the relatively high dislocation densities present in heteroepitaxial InP/GaAs cells lead to increased volumes of dVoc/dt and carrier removal rate and substantial decreases in photoluminescence spectral intensities. With respect to dVoc/dt, the observed effect is attributed to the tendency of dislocations to reduce Voc. Although the basic cause for the observed increase in carrier removal rate is unclear, it is speculated that the decreased photoluminescence intensity is attributable to defect levels introduced by dislocations in the heteroepitaxial cells.

  8. Simultaneous shoulder and elbow dislocation.

    PubMed

    Cobanoğlu, Mutlu; Yumrukcal, Feridun; Karataş, Cengiz; Duygun, Fatih

    2014-05-23

    Ipsilateral shoulder and elbow dislocation is very rare and only six articles are present in the literature mentioning this kind of a complex injury. With this presentation we aim to emphasise the importance of assessing the adjacent joints in patients with trauma in order not to miss any accompanying pathologies. We report a case of a 43-year-old female patient with ipsilateral right shoulder and elbow dislocation treated conservatively. The patient reported elbow pain when first admitted to emergency service but she was diagnosed with simultaneous ipsilateral shoulder and elbow injury and treated conservatively. As a more painful pathology may mask the additional ones, one should hasten to help before performing a complete evaluation. Any harm caused to the patient due to this reason would not be a complication but a malpractice.

  9. Simultaneous shoulder and elbow dislocation

    PubMed Central

    Çobanoğlu, Mutlu; Yumrukcal, Feridun; Karataş, Cengiz; Duygun, Fatih

    2014-01-01

    Ipsilateral shoulder and elbow dislocation is very rare and only six articles are present in the literature mentioning this kind of a complex injury. With this presentation we aim to emphasise the importance of assessing the adjacent joints in patients with trauma in order not to miss any accompanying pathologies. We report a case of a 43-year-old female patient with ipsilateral right shoulder and elbow dislocation treated conservatively. The patient reported elbow pain when first admitted to emergency service but she was diagnosed with simultaneous ipsilateral shoulder and elbow injury and treated conservatively. As a more painful pathology may mask the additional ones, one should hasten to help before performing a complete evaluation. Any harm caused to the patient due to this reason would not be a complication but a malpractice. PMID:24859563

  10. Molecular dynamics simulations of grain boundary migration during recrystallization employing tilt and twist dislocation boundaries to provide the driving pressure

    NASA Astrophysics Data System (ADS)

    Godiksen, R. B. N.; Schmidt, S.; Jensen, D. Juul

    2008-09-01

    Molecular dynamics simulations of grain boundary migration, where the driving pressure P is the excess stored energy due to dislocation structures, have been performed. This represents recrystallization in metals. Two types of dislocation structures have been simulated: (a) tilt dislocation boundaries, where edge dislocations are arranged as parallel arrays, (b) twist dislocation boundaries, where screw dislocations are arranged in interconnected dislocation networks. The velocity v and mobility M of the migrating grain boundaries have been calculated from the simulations. v and M are higher in twist-type simulations than in tilt-type simulations, although the activation energies are similar in the two cases. v ~ P is observed for tilt simulations where the driving pressure is changed by varying the density of dislocation boundaries and for twist simulations where the driving pressure is changed by varying the misorientation across dislocation boundaries. When the misorientations across edge dislocation boundaries are varied, however, the simulations show v ~ P2. It is suggested that this deviation from the usual v ~ P-relationship is due to local interactions between the grain boundary and nearby individual dislocations. Misorientation variations across grain boundaries have also been simulated, but the mobilities show little dependence on this. The present simulations result in mobilities and activation energies that are, respectively, significantly higher and somewhat lower than experimental values. A direct mimic of experimental observations is, however not the purpose of this study. Rather the present simulations are based on idealized dislocation structures and suggest that variations in the dislocation structures may play a dominant role in recrystallization dynamics and that local effects are very important phenomena, essential for the interpretation of recrystallization mechanisms.

  11. [Arthrography in congenital hip dislocation].

    PubMed

    Sipukhin, Ia M; Bazlova, E S; Cheberiak, N V

    1992-01-01

    The paper is concerned with the results of contrast arthrography in 73 children with hip joint dysplasia, among which true dislocations prevailed (70 patients). In addition to bone alterations, arthrography revealed various soft tissue changes like hypertrophy and deformity of limbus, soft tissue interposition, separation of the articular sac with the presence of an isthmus, disintegration of articular cartilages. These findings are used to define indications for surgical intervention as well as for planning the area of operation.

  12. Resonantly enhanced selective photochemical etching of GaN

    NASA Astrophysics Data System (ADS)

    Trichas, E.; Kayambaki, M.; Iliopoulos, E.; Pelekanos, N. T.; Savvidis, P. G.

    2009-04-01

    Wavelength dependent photochemical etching of GaN films reveals a strong resonant enhancement of the photocurrent at the GaN gap, in close agreement with the excitonic absorption profile of GaN. The corresponding etching rate of GaN strongly correlates with the measured photocurrent. No photocurrent, nor etching is observed for AlGaN films under same excitation conditions. The method could pave the way to the development of truly selective etching of GaN on AlGaN for the fabrication of nitride based optoelectronic devices.

  13. Growth of self-standing GaN substrates

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Jae; Fujii, Katsushi; Goto, Takenari; Kim, Chinkyo; Chang, Jiho; Hong, Soon-Ku; Cho, Meoungwhan; Yao, Takafumi

    2010-03-01

    Large-sized and high-quality free standing GaN are required with the development of GaN-based devices. We have developed new techniques to reduce the price of GaN substrates. In this paper, we introduce a simple fabrication way of freestanding GaN substrate using hydride vapor phase epitaxy (HVPE). An evaporable buffer layer was applied for the fabrication of 2inch freestanding GaN to separate from a sapphire substrate, in other words, a freestanding GaN was fabricated only by HVPE (one-stop process) without any process.

  14. Three-dimensional formulation of dislocation climb

    NASA Astrophysics Data System (ADS)

    Gu, Yejun; Xiang, Yang; Quek, Siu Sin; Srolovitz, David J.

    2015-10-01

    We derive a Green's function formulation for the climb of curved dislocations and multiple dislocations in three-dimensions. In this new dislocation climb formulation, the dislocation climb velocity is determined from the Peach-Koehler force on dislocations through vacancy diffusion in a non-local manner. The long-range contribution to the dislocation climb velocity is associated with vacancy diffusion rather than from the climb component of the well-known, long-range elastic effects captured in the Peach-Koehler force. Both long-range effects are important in determining the climb velocity of dislocations. Analytical and numerical examples show that the widely used local climb formula, based on straight infinite dislocations, is not generally applicable, except for a small set of special cases. We also present a numerical discretization method of this Green's function formulation appropriate for implementation in discrete dislocation dynamics (DDD) simulations. In DDD implementations, the long-range Peach-Koehler force is calculated as is commonly done, then a linear system is solved for the climb velocity using these forces. This is also done within the same order of computational cost as existing discrete dislocation dynamics methods.

  15. GaN nano-pyramid arrays as an efficient photoelectrode for solar water splitting

    NASA Astrophysics Data System (ADS)

    Hou, Y.; Yu, X.; Syed, Z. Ahmed; Shen, S.; Bai, J.; Wang, T.

    2016-11-01

    A prototype photoelectrode has been fabricated using a GaN nano-pyramid array structure grown on a cost-effective Si (111) substrate, demonstrating a significant improvement in performance of solar-powered water splitting compared with any planar GaN photoelectrode. Such a nano-pyramid structure leads to enhanced optical absorption as a result of a multi-scattering process which can effectively produce a reduction in reflectance. A simulation based on a finite-difference time-domain approach indicates that the nano-pyramid architecture enables incident light to be concentrated within the nano-pyramids as a result of micro-cavity effects, further enhancing optical absorption. Furthermore, the shape of the nano-pyramid further facilitates the photo-generated carrier transportation by enhancing a hole-transfer efficiency. All these features as a result of the nano-pyramid configuration lead to a large photocurrent of 1 mA cm-2 under an illumination density of 200 mW cm-2, with a peak incident photon-to-current conversion efficiency of 46.5% at ˜365 nm, around the band edge emission wavelength of GaN. The results presented are expected to pave the way for the fabrication of GaN based photoelectrodes with a high energy conversion efficiency of solar powered water splitting.

  16. Uniaxial strain effects on the optoelectronic properties of GaN nanowires

    NASA Astrophysics Data System (ADS)

    Xia, Sihao; Liu, Lei; Kong, Yike; Wang, Meishan

    2016-09-01

    Considering the importance of strain engineering on semiconductors, GaN nanowires under uniaxial compression deformation and stretch deformation are researched using first principle calculations with density functional theory. It is found that the deformation will destroy the stability of the nanowires except a weak stretch. The compression deformation is more difficult than the stretch deformation. Besides, the work function of the nanowires is reduced under increasing compression while that under increasing stretch is reversed. With increasing diameter, the band gaps of the nanowires gradually exhibit a linear decreasing relation as the elongation of uniaxial length of GaN nanowires. With increasing compression, the band gaps change from direct to indirect. The optical calculations exhibit a redshift for the imaginary part of dielectric function. This study demonstrates strain engineering can effectively adjust the optoelectronic characteristics of GaN nanowire. Moderate compression, which induces a lower work function with a direct band gap, can improve the photoemission performance of GaN nanowires.

  17. GaN nano-pyramid arrays as an efficient photoelectrode for solar water splitting.

    PubMed

    Hou, Y; Yu, X; Syed, Z Ahmed; Shen, S; Bai, J; Wang, T

    2016-11-11

    A prototype photoelectrode has been fabricated using a GaN nano-pyramid array structure grown on a cost-effective Si (111) substrate, demonstrating a significant improvement in performance of solar-powered water splitting compared with any planar GaN photoelectrode. Such a nano-pyramid structure leads to enhanced optical absorption as a result of a multi-scattering process which can effectively produce a reduction in reflectance. A simulation based on a finite-difference time-domain approach indicates that the nano-pyramid architecture enables incident light to be concentrated within the nano-pyramids as a result of micro-cavity effects, further enhancing optical absorption. Furthermore, the shape of the nano-pyramid further facilitates the photo-generated carrier transportation by enhancing a hole-transfer efficiency. All these features as a result of the nano-pyramid configuration lead to a large photocurrent of 1 mA cm(-2) under an illumination density of 200 mW cm(-2), with a peak incident photon-to-current conversion efficiency of 46.5% at ∼365 nm, around the band edge emission wavelength of GaN. The results presented are expected to pave the way for the fabrication of GaN based photoelectrodes with a high energy conversion efficiency of solar powered water splitting.

  18. Impact of varying buffer thickness generated strain and threading dislocations on the formation of plasma assisted MBE grown ultra-thin AlGaN/GaN heterostructure on silicon

    SciTech Connect

    Chowdhury, Subhra; Biswas, Dhrubes

    2015-05-15

    Plasma-assisted molecular beam epitaxy (PAMBE) growth of ultra-thin Al{sub 0.2}Ga{sub 0.8}N/GaN heterostructures on Si(111) substrate with three buffer thickness (600 nm/400 nm/200 nm) have been reported. An unique growth process has been developed that supports lower temperature epitaxy of GaN buffer which minimizes thermally generated tensile strain through appropriate nitridation and AlN initiated epitaxy for achieving high quality GaN buffer which supports such ultra-thin heterostructures in the range of 10-15Å. It is followed by investigations of role of buffer thickness on formation of ultra-thin Al{sub 0.2}Ga{sub 0.8}N/GaN heterostructure, in terms of stress-strain and threading dislocation (TD). Structural characterization were performed by High-Resolution X-Ray Diffraction (HRXRD), room-temperature Photoluminescence (RT-PL), High Resolution Transmission Electron Microscopy (HRTEM) and Atomic Force Microscopy (AFM). Analysis revealed increasing biaxial tensile stress of 0.6918 ± 0.04, 1.1084, 1.1814 GPa in heterostructures with decreasing buffer thickness of 600, 400, 200 nm respectively which are summed up with residual tensile strain causing red-shift in RT-PL peak. Also, increasing buffer thickness drastically reduced TD density from the order 10{sup 10} cm{sup −2} to 10{sup 8} cm{sup −2}. Surface morphology through AFM leads to decrease of pits and root mean square value with increasing buffer thickness which are resulted due to reduction of combined effect of strain and TDs.

  19. Nucleation, propagation, electronic levels and elimination of misfit dislocations in III-V semiconductor interfaces. Final report

    SciTech Connect

    Watson, G.P.; Matragrano, M.

    1995-03-01

    This report discusses the following topics: strained layer defects; the structural and electronic characteristics of misfit dislocations; requirements for the growth of high quality, low defect density InGaAs strained epitaxial layers; the isolation and nucleation of misfit dislocations in strained epitaxial layers grown on patterned, ion-damaged GaAs; the effect of pattern substrate trench depth on misfit dislocation density; the thermal stability of lattice mismatched InGaAs grown on patterned GaAs; misfit dislocations in ZnSe strained epitaxial layers grown on patterned GaAs; and the measurement of deep level states caused by misfit dislocations in InGaAs/GaAs grown on patterned GaAs substrates.

  20. Direct Growth of a-Plane GaN on r-Plane Sapphire Substrate by Metalorganic Vapor Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Araki, Masahiro; Mochimizo, Noriaki; Hoshino, Katsuyuki; Tadatomo, Kazuyuki

    2007-02-01

    We have investigated the direct growth of nonpolar a-plane GaN layers on an r-plane sapphire substrate by metalorganic vapor-phase epitaxy (MOVPE). A high-density nucleation of GaN islands was obtained on the r-plane sapphire substrate at the initial stage of the high-temperature growth without a buffer layer, which resulted in a two-dimensional (2D) growth mode. We studied the effects of V/III ratio growth conditions on the surface morphology and growth features of an a-plane GaN layer. The results showed that a high density of pits with an inverse-pyramidal shape were formed at a high V/III ratio, whereas a relatively low density of pits were formed at a low V/III ratio due to the increase in the rate of lateral growth along the c-axis direction. We successfully grew a-plane GaN layers with a flat and pit-free surface using the “two-step growth method”. The method consisted of growing a first layer at a high V/III ratio and growing a second layer at a low V/III ratio. We found that the first layer plays an important role in GaN layer growth. The formation of a void-free GaN layer with sidewall facets in the first step leads to a flat and pit-free layer grown at a high rate of lateral growth along the c-axis direction in the second step.

  1. Disclinations, dislocations, and continuous defects: A reappraisal

    NASA Astrophysics Data System (ADS)

    Kleman, M.; Friedel, J.

    2008-01-01

    Disclinations were first observed in mesomorphic phases. They were later found relevant to a number of ill-ordered condensed-matter media involving continuous symmetries or frustrated order. Disclinations also appear in polycrystals at the edges of grain boundaries; but they are of limited interest in solid single crystals, where they can move only by diffusion climb and, owing to their large elastic stresses, mostly appear in close pairs of opposite signs. The relaxation mechanisms associated with a disclination in its creation, motion, and change of shape involve an interplay with continuous or quantized dislocations and/or continuous disclinations. These are attached to the disclinations or are akin to Nye’s dislocation densities, which are particularly well suited for consideration here. The notion of an extended Volterra process is introduced, which takes these relaxation processes into account and covers different situations where this interplay takes place. These concepts are illustrated by a variety of applications in amorphous solids, mesomorphic phases, and frustrated media in their curved habit space. These often involve disclination networks with specific node conditions. The powerful topological theory of line defects considers only defects stable against any change of boundary conditions or relaxation processes compatible with the structure considered. It can be seen as a simplified case of the approach considered here, particularly suited for media of high plasticity or/and complex structures. It cannot analyze the dynamical properties of defects nor the elastic constants involved in their static properties; topological stability cannot guarantee energetic stability, and sometimes cannot distinguish finer details of the structure of defects.

  2. Factors predisposing to dislocation of the Thompson hemiarthroplasty: 22 dislocations in 338 patients.

    PubMed

    Pajarinen, Jarkko; Savolainen, Vesa; Tulikoura, Ilkka; Lindahl, Jan; Hirvensalo, Eero

    2003-02-01

    In a series of 338 patients, we have retrospectively analyzed technical and anatomical factors, which may predispose to a dislocation of the Thompson hemiprosthesis. 22 patients (7%) had at least 1 dislocation during the 6-month follow-up. The most significant independent factor predisposing to dislocation was the use of a posterior approach (dislocation rate 16%). We examined the radiographs and data on operations in the 22 patients, using 79 random patients without dislocation as controls. Factors correlating with an increase in the incidence of dislocation were the length of the residual femoral neck > 0.5 cm in short patients (< 165 cm), and considerable change in the postoperative offset of the hip. Acetabular measurements showed no correlation to the dislocation. Our findings suggest that the main factors predicting dislocation are technical and not related to anatomical measurements.

  3. Effect of the misorientation of the 4H-SiC substrate on the open volume defects in GaN grown by metal-organic chemical vapor deposition

    SciTech Connect

    Tengborn, E.; Rummukainen, M.; Tuomisto, F.; Saarinen, K.; Rudzinski, M.; Hageman, P. R.; Larsen, P. K.; Nordlund, A.

    2006-08-28

    Positron annihilation spectroscopy has been used to study GaN grown by metal-organic chemical vapor deposition on misoriented 4H-SiC substrates. Two kinds of vacancy defects are observed: Ga vacancies and larger vacancy clusters in all the studied layers. In addition to vacancies, positrons annihilate at shallow traps that are likely to be dislocations. The results show that the vacancy concentration increases and the shallow positron trap concentration decreases with the increasing substrate misorientation.

  4. Dislocation Strengthening without Ductility Trade-off in Metastable Austenitic Steels

    NASA Astrophysics Data System (ADS)

    Liu, Jiabin; Jin, Yongbin; Fang, Xiaoyang; Chen, Chenxu; Feng, Qiong; Liu, Xiaowei; Chen, Yuzeng; Suo, Tao; Zhao, Feng; Huang, Tianlin; Wang, Hongtao; Wang, Xi; Fang, Youtong; Wei, Yujie; Meng, Liang; Lu, Jian; Yang, Wei

    2016-10-01

    Strength and ductility are mutually exclusive if they are manifested as consequence of the coupling between strengthening and toughening mechanisms. One notable example is dislocation strengthening in metals, which invariably leads to reduced ductility. However, this trend is averted in metastable austenitic steels. A one-step thermal mechanical treatment (TMT), i.e. hot rolling, can effectively enhance the yielding strength of the metastable austenitic steel from 322 ± 18 MPa to 675 ± 15 MPa, while retaining both the formability and hardenability. It is noted that no boundaries are introduced in the optimized TMT process and all strengthening effect originates from dislocations with inherited thermal stability. The success of this method relies on the decoupled strengthening and toughening mechanisms in metastable austenitic steels, in which yield strength is controlled by initial dislocation density while ductility is retained by the capability to nucleate new dislocations to carry plastic deformation. Especially, the simplicity in processing enables scaling and industrial applications to meet the challenging requirements of emissions reduction. On the other hand, the complexity in the underlying mechanism of dislocation strengthening in this case may shed light on a different route of material strengthening by stimulating dislocation activities, rather than impeding motion of dislocations.

  5. Dislocation Strengthening without Ductility Trade-off in Metastable Austenitic Steels

    PubMed Central

    Liu, Jiabin; Jin, Yongbin; Fang, Xiaoyang; Chen, Chenxu; Feng, Qiong; Liu, Xiaowei; Chen, Yuzeng; Suo, Tao; Zhao, Feng; Huang, Tianlin; Wang, Hongtao; Wang, Xi; Fang, Youtong; Wei, Yujie; Meng, Liang; Lu, Jian; Yang, Wei

    2016-01-01

    Strength and ductility are mutually exclusive if they are manifested as consequence of the coupling between strengthening and toughening mechanisms. One notable example is dislocation strengthening in metals, which invariably leads to reduced ductility. However, this trend is averted in metastable austenitic steels. A one-step thermal mechanical treatment (TMT), i.e. hot rolling, can effectively enhance the yielding strength of the metastable austenitic steel from 322 ± 18 MPa to 675 ± 15 MPa, while retaining both the formability and hardenability. It is noted that no boundaries are introduced in the optimized TMT process and all strengthening effect originates from dislocations with inherited thermal stability. The success of this method relies on the decoupled strengthening and toughening mechanisms in metastable austenitic steels, in which yield strength is controlled by initial dislocation density while ductility is retained by the capability to nucleate new dislocations to carry plastic deformation. Especially, the simplicity in processing enables scaling and industrial applications to meet the challenging requirements of emissions reduction. On the other hand, the complexity in the underlying mechanism of dislocation strengthening in this case may shed light on a different route of material strengthening by stimulating dislocation activities, rather than impeding motion of dislocations. PMID:27739481

  6. Dislocation Strengthening without Ductility Trade-off in Metastable Austenitic Steels.

    PubMed

    Liu, Jiabin; Jin, Yongbin; Fang, Xiaoyang; Chen, Chenxu; Feng, Qiong; Liu, Xiaowei; Chen, Yuzeng; Suo, Tao; Zhao, Feng; Huang, Tianlin; Wang, Hongtao; Wang, Xi; Fang, Youtong; Wei, Yujie; Meng, Liang; Lu, Jian; Yang, Wei

    2016-10-14

    Strength and ductility are mutually exclusive if they are manifested as consequence of the coupling between strengthening and toughening mechanisms. One notable example is dislocation strengthening in metals, which invariably leads to reduced ductility. However, this trend is averted in metastable austenitic steels. A one-step thermal mechanical treatment (TMT), i.e. hot rolling, can effectively enhance the yielding strength of the metastable austenitic steel from 322 ± 18 MPa to 675 ± 15 MPa, while retaining both the formability and hardenability. It is noted that no boundaries are introduced in the optimized TMT process and all strengthening effect originates from dislocations with inherited thermal stability. The success of this method relies on the decoupled strengthening and toughening mechanisms in metastable austenitic steels, in which yield strength is controlled by initial dislocation density while ductility is retained by the capability to nucleate new dislocations to carry plastic deformation. Especially, the simplicity in processing enables scaling and industrial applications to meet the challenging requirements of emissions reduction. On the other hand, the complexity in the underlying mechanism of dislocation strengthening in this case may shed light on a different route of material strengthening by stimulating dislocation activities, rather than impeding motion of dislocations.

  7. GaN nanowires with pentagon shape cross-section by ammonia-source molecular beam epitaxy

    DOE PAGES

    Lin, Yong; Leung, Benjamin; Li, Qiming; ...

    2015-07-14

    In this study, ammonia-based molecular beam epitaxy (NH3-MBE) was used to grow catalyst-assisted GaN nanowires on (11¯02) r-plane sapphire substrates. Dislocation free [112¯0] oriented nanowires are formed with pentagon shape cross-section, instead of the usual triangular shape facet configuration. Specifically, the cross-section is the result of the additional two nonpolar {101¯0} side facets, which appear due to a decrease in relative growth rate of the {101¯0} facets to the {101¯1} and {101¯1} facets under the growth regime in NH3-MBE. Compared to GaN nanowires grown by Ni-catalyzed metal–organic chemical vapor deposition, the NH3-MBE grown GaN nanowires show more than an ordermore » of magnitude increase in band-edge to yellow luminescence intensity ratio, as measured by cathodoluminescence, indicating improved microstructural and optical properties.« less

  8. GaN nanowires with pentagon shape cross-section by ammonia-source molecular beam epitaxy

    SciTech Connect

    Lin, Yong; Leung, Benjamin; Li, Qiming; Figiel, Jeffrey J.; Wang, George T.

    2015-07-14

    In this study, ammonia-based molecular beam epitaxy (NH3-MBE) was used to grow catalyst-assisted GaN nanowires on (11¯02) r-plane sapphire substrates. Dislocation free [112¯0] oriented nanowires are formed with pentagon shape cross-section, instead of the usual triangular shape facet configuration. Specifically, the cross-section is the result of the additional two nonpolar {101¯0} side facets, which appear due to a decrease in relative growth rate of the {101¯0} facets to the {101¯1} and {101¯1} facets under the growth regime in NH3-MBE. Compared to GaN nanowires grown by Ni-catalyzed metal–organic chemical vapor deposition, the NH3-MBE grown GaN nanowires show more than an order of magnitude increase in band-edge to yellow luminescence intensity ratio, as measured by cathodoluminescence, indicating improved microstructural and optical properties.

  9. Selective area growth and characterization of GaN nanocolumns, with and without an InGaN insertion, on semi-polar (11–22) GaN templates

    SciTech Connect

    Bengoechea-Encabo, A.; Albert, S.; Barbagini, F.; Sanchez-Garcia, M. A.; Calleja, E.; Trampert, A.

    2013-12-09

    The aim of this work is the selective area growth (SAG) of GaN nanocolumns, with and without an InGaN insertion, by molecular beam epitaxyon semi-polar (11–22) GaN templates. The high density of stacking faults present in the template is strongly reduced after SAG. A dominant sharp photoluminescence emission at 3.473 eV points to high quality strain-free material. When embedding an InGaN insertion into the ordered GaN nanostructures, very homogeneous optical properties are observed, with two emissions originating from different regions of each nanostructure, most likely related to different In contents on different crystallographic planes.

  10. Selective area growth and characterization of GaN nanocolumns, with and without an InGaN insertion, on semi-polar (11-22) GaN templates

    NASA Astrophysics Data System (ADS)

    Bengoechea-Encabo, A.; Albert, S.; Zuñiga-Perez, J.; de Mierry, P.; Trampert, A.; Barbagini, F.; Sanchez-Garcia, M. A.; Calleja, E.

    2013-12-01

    The aim of this work is the selective area growth (SAG) of GaN nanocolumns, with and without an InGaN insertion, by molecular beam epitaxyon semi-polar (11-22) GaN templates. The high density of stacking faults present in the template is strongly reduced after SAG. A dominant sharp photoluminescence emission at 3.473 eV points to high quality strain-free material. When embedding an InGaN insertion into the ordered GaN nanostructures, very homogeneous optical properties are observed, with two emissions originating from different regions of each nanostructure, most likely related to different In contents on different crystallographic planes.

  11. Massively-Parallel Dislocation Dynamics Simulations

    SciTech Connect

    Cai, W; Bulatov, V V; Pierce, T G; Hiratani, M; Rhee, M; Bartelt, M; Tang, M

    2003-06-18

    Prediction of the plastic strength of single crystals based on the collective dynamics of dislocations has been a challenge for computational materials science for a number of years. The difficulty lies in the inability of the existing dislocation dynamics (DD) codes to handle a sufficiently large number of dislocation lines, in order to be statistically representative and to reproduce experimentally observed microstructures. A new massively-parallel DD code is developed that is capable of modeling million-dislocation systems by employing thousands of processors. We discuss the general aspects of this code that make such large scale simulations possible, as well as a few initial simulation results.

  12. Enabling Strain Hardening Simulations with Dislocation Dynamics

    SciTech Connect

    Arsenlis, A; Cai, W

    2006-12-20

    Numerical algorithms for discrete dislocation dynamics simulations are investigated for the purpose of enabling strain hardening simulations of single crystals on massively parallel computers. The algorithms investigated include the /(N) calculation of forces, the equations of motion, time integration, adaptive mesh refinement, the treatment of dislocation core reactions, and the dynamic distribution of work on parallel computers. A simulation integrating all of these algorithmic elements using the Parallel Dislocation Simulator (ParaDiS) code is performed to understand their behavior in concert, and evaluate the overall numerical performance of dislocation dynamics simulations and their ability to accumulate percents of plastic strain.

  13. Elbow dislocation with ipsilateral distal radius fracture

    PubMed Central

    Meena, Sanjay; Trikha, Vivek; Kumar, Rakesh; Saini, Pramod; Sambharia, Abhishek Kumar

    2013-01-01

    Elbow dislocation associated with ipsilateral distal radius fracture is a rare pattern of injury, although it is common for elbow dislocation and forearm fractures to occur separately. We report a rare case of a 20-year-old male who had a posterior elbow dislocation and ipsilateral distal radius fracture. Elbow dislocation was first reduced in extension and distal radius fracture was then reduced in flexion. Both the injuries were conservatively managed. At 6 months follow-up, the patient had no pain in his elbow and minimal pain in his wrist on heavy lifting and had resumed his work as a laborer. PMID:24082758

  14. Elbow dislocation with ipsilateral distal radius fracture.

    PubMed

    Meena, Sanjay; Trikha, Vivek; Kumar, Rakesh; Saini, Pramod; Sambharia, Abhishek Kumar

    2013-07-01

    Elbow dislocation associated with ipsilateral distal radius fracture is a rare pattern of injury, although it is common for elbow dislocation and forearm fractures to occur separately. We report a rare case of a 20-year-old male who had a posterior elbow dislocation and ipsilateral distal radius fracture. Elbow dislocation was first reduced in extension and distal radius fracture was then reduced in flexion. Both the injuries were conservatively managed. At 6 months follow-up, the patient had no pain in his elbow and minimal pain in his wrist on heavy lifting and had resumed his work as a laborer.

  15. Microdiffraction Analysis of Hierarchical Dislocation Organization

    SciTech Connect

    Barabash, R.I.; Ice, G.E.

    2007-12-19

    This article describes how x-ray microdiffraction is influenced by the number, kind, and organization of dislocations. Particular attention is placed on micro-Laue diffraction, where polychromatic x-rays are diffracted into characteristic Laue patterns that are sensitive to the dislocation content and arrangement. Diffraction is considered for various stages of plastic deformation. For early stages of plastic deformation with random dislocation spacing, the intensity in reciprocal space is redistributed about Laue spots with a length scale proportional to the number of dislocations within the sample volume and with a characteristic shape that depends on the kinds of dislocations and the momentum transfer vector. Unpaired dislocations that contribute to lattice rotations cause the largest redistribution of scattered intensity. In later stages of plastic deformation, strong interactions between individual dislocations cause them to organize into correlated arrangements. Here again, xray diffraction Laue spots are broadened in proportion to the number of excess (unpaired) dislocations inside the wall and to the total number of unpaired walls, but the broadening can be discontinuous. With microdiffraction it is possible to quantitatively test models of dislocation organization.

  16. Congenital dislocation of the patella - clinical case.

    PubMed

    Miguel Sá, Pedro; Raposo, Filipa; Santos Carvalho, Manuel; Alegrete, Nuno; Coutinho, Jorge; Costa, Gilberto

    2016-01-01

    Congenital patellar dislocation is a rare condition in which the patella is permanently dislocated and cannot be reduced manually. The patella develops normally as a sesamoid bone of the femur. This congenital dislocation results from failure of the internal rotation of the myotome that forms the femur, quadriceps muscle and extensor apparatus. It usually manifests immediately after birth, although in some rare cases, the diagnosis may be delayed until adolescence or adulthood. Early diagnosis is important, thereby allowing surgical correction and avoiding late sequelae, including early degenerative changes in the knee. A case of permanent dislocation of the patella is presented here, in a female child aged seven years.

  17. Robust Visible and Infrared Light Emitting Devices Using Rare-Earth-Doped GaN

    DTIC Science & Technology

    2006-05-31

    is encapsulated within thin barium titanate (BTO) dielectric layers for enhanced charge trapping at phosphor-dielectric interface. A high density...XRD). Fig. 3 illustrates the XRD spectra for the 4 15 min IGE and 60 min MBE GaN samples . The inserts of Fig. 3 show SEM microphotographs of both... samples grown using various 3 20 min IGE and 60 min MBE on Si substrates. Above bandgap PL was measured at room temperature under 325nm HeCd laser

  18. Evolution of impurity incorporation during ammonothermal growth of GaN

    NASA Astrophysics Data System (ADS)

    Sintonen, Sakari; Wahl, Stefanie; Richter, Susanne; Meyer, Sylke; Suihkonen, Sami; Schulz, Tobias; Irmscher, Klaus; Danilewsky, Andreas N.; Tuomi, Turkka O.; Stankiewicz, Romuald; Albrecht, Martin

    2016-12-01

    Ammonothermally grown GaN is a promising substrate for high-power optoelectronics and electronics thanks to its scalability and high structural perfection. Despite extensive research, ammonothermal GaN still suffers from significant concentrations of impurities. This article discusses the evolution of impurity incorporation during growth of basic ammonothermal GaN, in specific whether the impurity concentration changes temporally along the growth direction and how the autoclave influences the impurity concentration. The effect of the impurities on the structural, electrical and optical properties of the grown crystal is also discussed. The chemical analysis is carried out by time of flight secondary ion mass spectroscopy (ToF-SIMS) and laser-ablation inductively-coupled plasma mass spectroscopy (LA-ICP-MS). Strain and dislocation generation caused by impurity concentration gradients and steps are studied by synchrotron radiation x-ray topography (SR-XRT). Fourier transform infrared (FTIR) reflectivity is used to determine the effect of the impurities on the free carrier concentration, and the luminescent properties are studied by low temperature photoluminescence (PL). The influence of the autoclave is studied by growing a single boule in multiple steps in several autoclaves. LA-ICP-MS and ToF-SIMS ion intensities indicate that the impurity concentrations of several species vary between different autoclaves by over an order of magnitude. SR-XRT measurements reveal strain at the growth interfaces due to impurity concentration gradients and steps. Oxygen is determined to be the most abundant impurity species, resulting in a high free carrier concentration, as determined by FTIR. The large variation in Mn concentration dramatically affects PL intensity.

  19. Buffer transport mechanisms in intentionally carbon doped GaN heterojunction field effect transistors

    SciTech Connect

    Uren, Michael J.; Cäsar, Markus; Kuball, Martin; Gajda, Mark A.

    2014-06-30

    Temperature dependent pulsed and ramped substrate bias measurements are used to develop a detailed understanding of the vertical carrier transport in the buffer layers in a carbon doped GaN power heterojunction field effect transistor. Carbon doped GaN and multiple layers of AlGaN alloy are used in these devices to deliver an insulating and strain relieved buffer with high breakdown voltage capability. However, understanding of the detailed physical mechanism for its operation is still lacking. At the lowest electric fields (<10 MV/m), charge redistribution within the C doped layer is shown to occur by hole conduction in the valence band with activation energy 0.86 eV. At higher fields, leakage between the two-dimensional electron gas and the buffer dominates occurring by a Poole-Frenkel mechanism with activation energy ∼0.65 eV, presumably along threading dislocations. At higher fields still, the strain relief buffer starts to conduct by a field dependent process. Balancing the onset of these leakage mechanisms is essential to allow the build-up of positive rather than negative space charge, and thus minimize bulk-related current-collapse in these devices.

  20. Molecular simulations and lattice dynamics determination of Stillinger-Weber GaN thermal conductivity

    SciTech Connect

    Liang, Zhi; Jain, Ankit; McGaughey, Alan J. H.; Keblinski, Pawel

    2015-09-28

    The bulk thermal conductivity of Stillinger-Weber (SW) wurtzite GaN in the [0001] direction at a temperature of 300 K is calculated using equilibrium molecular dynamics (EMD), non-equilibrium MD (NEMD), and lattice dynamics (LD) methods. While the NEMD method predicts a thermal conductivity of 166 ± 11 W/m·K, both the EMD and LD methods predict thermal conductivities that are an order of magnitude greater. We attribute the discrepancy to significant contributions to thermal conductivity from long-mean free path phonons. We propose that the Grüneisen parameter for low-frequency phonons is a good predictor of the severity of the size effects in NEMD thermal conductivity prediction. For weakly anharmonic crystals characterized by small Grüneisen parameters, accurate determination of thermal conductivity by NEMD is computationally impractical. The simulation results also indicate the GaN SW potential, which was originally developed for studying the atomic-level structure of dislocations, is not suitable for prediction of its thermal conductivity.

  1. Nonlithographic nanopatterning through anodic aluminum oxide template and selective growth of highly ordered GaN nanostructures

    NASA Astrophysics Data System (ADS)

    Wang, Y. D.; Zang, K. Y.; Chua, S. J.

    2006-09-01

    Ordered GaN nanostructures, i.e., nanopore and nanodot arrays, have been demonstrated by combining a nonlithographic nanopatterning technique and nanoscale selective epitaxial growth. Hexagonal-close-packed nanopore arrays were fabricated in GaN surfaces and SiO2 surfaces on GaN films by inductively coupled plasma etching using anodic aluminum oxide templates as etching masks. Selective area growth through nanopores in SiO2 by metal organic chemical vapor deposition results in ordered GaN nanodot arrays with an average dot diameter and height of 60 and 100nm, respectively. The diameter and density of the GaN nanopore arrays and nanodot arrays are controlled by that of the anodic aluminum oxide template, which can be tuned in a wide range by controlling the anodization conditions. Applying anodic aluminum oxide as an etching mask provides an effective nonlithographic and free of foreign catalysts method to fabricate ordered and dense nitride nanostructures for either bottom-up or top-down technique in the application of high efficiency nitride light emitting diodes.

  2. Rode's iterative calculation of surface optical phonon scattering limited electron mobility in N-polar GaN devices

    SciTech Connect

    Ghosh, Krishnendu Singisetti, Uttam

    2015-02-14

    N-polar GaN channel mobility is important for high frequency device applications. Here, we report theoretical calculations on the surface optical (SO) phonon scattering rate of two-dimensional electron gas (2DEG) in N-polar GaN quantum well channels with high-k dielectrics. Rode's iterative calculation is used to predict the scattering rate and mobility. Coupling of the GaN plasmon modes with the SO modes is taken into account and dynamic screening is employed under linear polarization response. The effect of SO phonons on 2DEG mobility was found to be small at >5 nm channel thickness. However, the SO mobility in 3 nm N-polar GaN channels with HfO{sub 2} and ZrO{sub 2} high-k dielectrics is low and limits the total mobility. The SO scattering for SiN dielectric on GaN was found to be negligible due to its high SO phonon energy. Using Al{sub 2}O{sub 3}, the SO phonon scattering does not affect mobility significantly only except the case when the channel is too thin with a low 2DEG density.

  3. Direct Growth of a-Plane GaN on r-Plane Sapphire by Metal Organic Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Hsu, Hsiao-Chiu; Su, Yan-Kuin; Huang, Shyh-Jer; Wang, Yu-Jen; Wu, Chun-Ying; Chou, Ming-Chieh

    2010-04-01

    In this study, we had demonstrated the direct growth of nonpolar a-plane GaN on an r-plane sapphire by metal organic chemical vapor deposition (MOCVD) without any buffer layer. First, in this experiment, we had determined the optimum temperature for two-step growth, including obtaining three-dimensional (3D) GaN islands in the nucleation layer and coalescing with a further two-dimensional (2D) growth mode. The result shows that the nucleation layer grown under high temperature (1150 °C) leads to large islands with few grain boundaries. Under the same temperature, the effect of the V/III ratio on the growth of the overlaying GaN layer to obtain a flat and void free a-plane GaN layer is also studied. The result indicates one can directly grow a smooth epitaxial layer on an r-plane sapphire by changing the V/III ratio. The rms roughness decreases from 13.61 to 2.02 nm. The GaN crystal quality is verified using a mixed acid to etch the film surface. The etch pit density (EPD) is 3.16 ×107 cm-2.

  4. Multiscale modeling of dislocation-precipitate interactions in Fe: From molecular dynamics to discrete dislocations.

    PubMed

    Lehtinen, Arttu; Granberg, Fredric; Laurson, Lasse; Nordlund, Kai; Alava, Mikko J

    2016-01-01

    The stress-driven motion of dislocations in crystalline solids, and thus the ensuing plastic deformation process, is greatly influenced by the presence or absence of various pointlike defects such as precipitates or solute atoms. These defects act as obstacles for dislocation motion and hence affect the mechanical properties of the material. Here we combine molecular dynamics studies with three-dimensional discrete dislocation dynamics simulations in order to model the interaction between different kinds of precipitates and a 1/2〈111〉{110} edge dislocation in BCC iron. We have implemented immobile spherical precipitates into the ParaDis discrete dislocation dynamics code, with the dislocations interacting with the precipitates via a Gaussian potential, generating a normal force acting on the dislocation segments. The parameters used in the discrete dislocation dynamics simulations for the precipitate potential, the dislocation mobility, shear modulus, and dislocation core energy are obtained from molecular dynamics simulations. We compare the critical stresses needed to unpin the dislocation from the precipitate in molecular dynamics and discrete dislocation dynamics simulations in order to fit the two methods together and discuss the variety of the relevant pinning and depinning mechanisms.

  5. Improved performance of GaN based light emitting diodes with ex-situ sputtered AlN nucleation layers

    NASA Astrophysics Data System (ADS)

    Chen, Shuo-Wei; Li, Heng; Lu, Tien-Chang

    2016-04-01

    The crystal quality, electrical and optical properties of GaN based light emitting diodes (LEDs) with ex-situ sputtered physical vapor deposition (PVD) aluminum nitride (AlN) nucleation layers were investigated. It was found that the crystal quality in terms of defect density and x-ray diffraction linewidth was greatly improved in comparison to LEDs with in-situ low temperature GaN nucleation layer. The light output power was 3.7% increased and the reverse bias voltage of leakage current was twice on LEDs with ex-situ PVD AlN nucleation layers. However, larger compressive strain was discovered in LEDs with ex-situ PVD AlN nucleation layers. The study shows the potential and constrain in applying ex-situ PVD AlN nucleation layers to fabricate high quality GaN crystals in various optoelectronics.

  6. Spatial characterization of a 2 in GaN wafer by Raman spectroscopy and capacitance voltage measurements

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Chen, X. D.; Fung, S.; Beling, C. D.; Ling, C. C.

    2004-10-01

    Micro-Raman spectroscopy and capacitance-voltage (C-V) measurements have been used to investigate 2 in GaN epitaxial wafers grown by hydride vapour phase epitaxy on sapphire substrates. The position and line shape of the A1 longitudinal optical (LO) phonon mode were used to determine the carrier concentration at different locations across the wafer. The line-shape fitting of the Raman A1 (LO) coupled modes taken from horizontal lateral-different positions on the wafer yielded a rudimentary spatial map of the carrier concentration. These data compare well with a carrier density map of the wafer obtained by C-V measurements, confirming the non-uniform distribution of carrier concentration in the GaN epitaxial film and that Raman spectroscopy of the LO phonon-plasmon mode can be used as a reliable and production friendly wafer quality test for GaN wafer manufacturing processes.

  7. Highly resistive C-doped hydride vapor phase epitaxy-GaN grown on ammonothermally crystallized GaN seeds

    NASA Astrophysics Data System (ADS)

    Iwinska, Malgorzata; Piotrzkowski, Ryszard; Litwin-Staszewska, Elzbieta; Sochacki, Tomasz; Amilusik, Mikolaj; Fijalkowski, Michal; Lucznik, Boleslaw; Bockowski, Michal

    2017-01-01

    GaN crystals were grown by hydride vapor phase epitaxy (HVPE) and doped with C. The seeds were high-structural-quality ammonothermally crystallized GaN. The grown crystals were highly resistive at 296 K and of high structural quality. High-temperature Hall effect measurements revealed p-type conductivity and a deep acceptor level in the material with an activation energy of 1 eV. This is in good agreement with density functional theory calculations based on hybrid functionals as presented by the Van de Walle group. They obtained an ionization energy of 0.9 eV when C was substituted for N in GaN and acted as a deep acceptor.

  8. Modelling the transport of geometrically necessary dislocations on slip systems: application to single- and multi-crystals of ice

    NASA Astrophysics Data System (ADS)

    Richeton, T.; Le, LT; Chauve, T.; Bernacki, M.; Berbenni, S.; Montagnat, M.

    2017-02-01

    A model based on the elastic theory of continuously distributed dislocations, accounting for the transport of geometrically necessary dislocations (GND) on slip systems is developed. It allows keeping the crystallographic nature of glide by allocating velocities specific to slip systems to GND. At grain boundaries, the dislocation transport equation is resolved between a specific system in a grain and a specific system in the adjacent grain. It is used to simulate a compression creep test followed by unloading of a multiple slip deforming multi-crystal of ice during which kink band formation, grain boundary migration and localized grain nucleation are observed. The model predictions are compared to 2D strain fields obtained by digital image correlation and show a good agreement. Besides, the kink band position corresponds very well with an area of strong lattice misorientation predicted by the model and is also bounded by opposite densities of edge dislocations, in agreement with kink banding theory and characterization. Furthermore, the grain boundary migration is observed to happen from predicted low dislocation density area towards high dislocation ones—also in agreement with the theory. Lastly, the triple junctions where nucleation is observed are also characterized by high GND density and especially strong gradient of elastic energy density. These different features show the relevance of using a continuum theory of polarized dislocations per slip system to study the onset of relaxation mechanisms like kink banding, grain boundary migration and grain nucleation and possibly to propose nucleation and migration criteria.

  9. Direct growth of GaN layer on carbon nanotube-graphene hybrid structure and its application for light emitting diodes

    PubMed Central

    Seo, Tae Hoon; Park, Ah Hyun; Park, Sungchan; Kim, Yong Hwan; Lee, Gun Hee; Kim, Myung Jong; Jeong, Mun Seok; Lee, Young Hee; Hahn, Yoon-Bong; Suh, Eun-Kyung

    2015-01-01

    We report the growth of high-quality GaN layer on single-walled carbon nanotubes (SWCNTs) and graphene hybrid structure (CGH) as intermediate layer between GaN and sapphire substrate by metal-organic chemical vapor deposition (MOCVD) and fabrication of light emitting diodes (LEDs) using them. The SWCNTs on graphene act as nucleation seeds, resulting in the formation of kink bonds along SWCNTs with the basal plane of the substrate. In the x-ray diffraction, Raman and photoluminescence spectra, high crystalline quality of GaN layer grown on CGH/sapphire was observed due to the reduced threading dislocation and efficient relaxation of residual compressive strain caused by lateral overgrowth process. When applied to the LED structure, the current-voltage characteristics and electroluminescence (EL) performance exhibit that blue LEDs fabricated on CGH/sapphire well-operate at high injection currents and uniformly emit over the whole emission area. We expect that CGH can be applied for the epitaxial growth of GaN on various substrates such as Si and MgO, which can be a great advantage in electrical and thermal properties of optical devices fabricated on them. PMID:25597492

  10. Direct growth of GaN layer on carbon nanotube-graphene hybrid structure and its application for light emitting diodes

    NASA Astrophysics Data System (ADS)

    Seo, Tae Hoon; Park, Ah Hyun; Park, Sungchan; Kim, Yong Hwan; Lee, Gun Hee; Kim, Myung Jong; Jeong, Mun Seok; Lee, Young Hee; Hahn, Yoon-Bong; Suh, Eun-Kyung

    2015-01-01

    We report the growth of high-quality GaN layer on single-walled carbon nanotubes (SWCNTs) and graphene hybrid structure (CGH) as intermediate layer between GaN and sapphire substrate by metal-organic chemical vapor deposition (MOCVD) and fabrication of light emitting diodes (LEDs) using them. The SWCNTs on graphene act as nucleation seeds, resulting in the formation of kink bonds along SWCNTs with the basal plane of the substrate. In the x-ray diffraction, Raman and photoluminescence spectra, high crystalline quality of GaN layer grown on CGH/sapphire was observed due to the reduced threading dislocation and efficient relaxation of residual compressive strain caused by lateral overgrowth process. When applied to the LED structure, the current-voltage characteristics and electroluminescence (EL) performance exhibit that blue LEDs fabricated on CGH/sapphire well-operate at high injection currents and uniformly emit over the whole emission area. We expect that CGH can be applied for the epitaxial growth of GaN on various substrates such as Si and MgO, which can be a great advantage in electrical and thermal properties of optical devices fabricated on them.

  11. Enhanced functionality in GaN and SiC devices by using novel processing

    NASA Astrophysics Data System (ADS)

    Pearton, S. J.; Abernathy, C. R.; Gila, B. P.; Ren, F.; Zavada, J. M.; Park, Y. D.

    2004-11-01

    Some examples of recent advances in enhancing or adding functionality to GaN and SiC devices through the use of novel processing techniques are discussed. The first example is the use of ion implantation to incorporate transition metals such as Mn, Cr and Co at atomic percent levels in the wide bandgap semiconductors to produce room temperature ferromagnetism. A discussion is given of the phase space within which single-phase material can be obtained and the requirements for demonstrating the presence of a true dilute magnetic semiconductor. The ability to make GaN and SiC ferromagnetic leads to the possibility of magnetic devices with gain, spin FETs operating at low voltages and spin polarized light emitters. The second example is the use of novel oxides such as Sc 2O 3 and MgO as gate dielectrics or surface passivants on GaN. True inversion behavior has been demonstrated in gated MOS-GaN diodes with implanted n-regions supplying the minority carriers need for inversion. These oxide layers also effectively mitigate current collapse in AlGaN/GaN HEMTs through their passivation of surface states in the gate-drain region. The third example is the use of laser drilling to make through-wafer via holes in SiC, sapphire and GaN. The ablation rate is sufficiently high that this maskless, serial process appears capable of achieving similar throughput to the more conventional approach of plasma etching of vias. The fourth example is the use of either ungated AlGaN/GaN HEMTs or simple GaN and SiC Schottky diodes as sensors for chemicals, biogens, radiation, combustion gases or strain. The sensitivity of either the channel carrier density or the barrier height to changes in surface condition make these materials systems ideal for compact robust sensors capable of operating at elevated temperatures.

  12. New seed geometry for growth of low dislocation synthetic quartz.

    PubMed

    Shinohara, A H; Iano, M C; Suzuki, C K

    2000-01-01

    A method to grow low dislocation density synthetic quartz by using a special cutting seed geometry is reported. With this method, a relatively high dislocation density seed material is allowable. For such a purpose, a seed of new geometry was prepared and grown in a standard hydrothermal growth condition, long in Y-direction with multiple V-shaped notches made on Z-face. The characterization study was conducted by X-ray topography. The results showed new growth regions, equal to the numbers of V-shaped notches made in the seed and usually not found in the conventional Y- and Z-bar synthetic quartz crystals. Each new growth region is composed of two sectors of distinct textures. Soon they disappear due to their high growth velocity, and they are replaced by the so-called Z-region. However, the growth process of these new sectors grown perpendicular to the internal faces of the V-shaped notches played an important role in inhibiting the propagation of the dislocation originally present in the seed into the grown Z-region.

  13. GaN membrane MSM ultraviolet photodetectors

    NASA Astrophysics Data System (ADS)

    Muller, A.; Konstantinidis, G.; Kostopoulos, A.; Dragoman, M.; Neculoiu, D.; Androulidaki, M.; Kayambaki, M.; Vasilache, D.; Buiculescu, C.; Petrini, I.

    2006-12-01

    GaN exhibits unique physical properties, which make this material very attractive for wide range of applications and among them ultraviolet detection. For the first time a MSM type UV photodetector structure was manufactured on a 2.2 μm. thick GaN membrane obtained using micromachining techniques. The low unintentionally doped GaN layer structure was grown by MOCVD on high resistivity (ρ>10kΩcm) <111> oriented silicon wafers, 500μm thick. The epitaxially grown layers include a thin AlN layer in order to reduce the stress in the GaN layer and avoid cracking. Conventional contact lithography, e-gun Ni/Au (10nm /200nm) evaporation and lift-off techniques were used to define the interdigitated Schottky metalization on the top of the wafer. Ten digits with a width of 1μm and a length of 100μm were defined for each electrode. The distance between the digits was also 1μm. After the backside lapping of the wafer to a thickness of approximately 150μm, a 400nm thick Al layer was patterned and deposited on the backside, to be used as mask for the selective reactive ion etching of silicon. The backside mask, for the membrane formation, was patterned using double side alignment techniques and silicon was etched down to the 2.2μm thin GaN layer using SF 6 plasma. A very low dark current (30ρA at 3V) was obtained. Optical responsivity measurements were performed at 1.5V. A maximum responsivity of 18mA/W was obtained at a wavelength of 370nm. This value is very good and can be further improved using transparent contacts for the interdigitated structure.

  14. Quantum dislocations in solid Helium-4

    NASA Astrophysics Data System (ADS)

    Aleinikava, Darya

    In this thesis the following problems on properties of solid 4He are considered: (i) the role of long-range interactions in suppression of dislocation roughening at T = 0; (ii) the combined effect of 3He impurities and Peierls potential on shear modulus softening; (iii) the dislocation superclimb and its connection to the phenomenon of "giant isochoric compressibility"; (iv) non-linear dislocation response to the applied stress and stress-induces dislocation roughening as a I-order phase transition in 1D at finite temperature. First we investigate the effect of long-range interactions on the state of edge dislocation at T = 0. Such interactions are induced by elastic forces of the solid. We found that quantum roughening transition of a dislocation at T = 0 is completely suppressed by arbitrarily small long-range interactions between kinks. A heuristic argument is presented and the result has been verified by numerical Monte-Carlo simulations using Worm Algorithm in J-current model. It was shown that the Peierls potential plays a crucial role in explaining the elastic properties of dislocations, namely shear modulus softening phenomenon. The crossover from T = 0 to finite temperatures leads to intrinsic softening of the shear modulus and is solely controlled by kink typical energy. It was demonstrated that the mechanism, involving only the binding of 3He impurities to the dislocations, requires an unrealistically high concentrations of defects (or impurities) in order to explain the shear modulus phenomenon and therefore an inclusion of Peierls potential in consideration is required. Superclimbing dislocations, that is the edge dislocations with the superfluidity along the core, were investigated. The theoretical prediction that superclimb is responsible for the phenomenon of "giant isochoric compressibility" was confirmed by Monte-Carlo simulations. It was demonstrated that the isochoric compressibility is suppressed at low temperatures. The dependence of

  15. Dislocation mechanism for transformation between cubic ice Ic and hexagonal ice Ih

    NASA Astrophysics Data System (ADS)

    Hondoh, T.

    2015-11-01

    Cubic ice Ic is metastable, yet can form by the freezing of supercooled water, vapour deposition at low temperatures and by depressurizing high-pressure forms of ice. Its structure differs from that of common hexagonal ice Ih in the order its molecular layers are stacked. This stacking order, however, typically has considerable disorder; that is, not purely cubic, but alternating in hexagonal and cubic layers. In time, stacking-disordered ice gradually decreases in cubicity (fraction having cubic structure), transforming to hexagonal ice. But, how does this disorder originate and how does it transform to hexagonal ice? Here we use numerical data on dislocations in hexagonal ice Ih to show that (1) stacking-disordered ice (or Ic) can be viewed as fine-grained polycrystalline ice with a high density of extended dislocations, each a widely extended stacking fault bounded by partial dislocations, and (2) the transformation from ice Ic to Ih is caused by the reaction and motion of these partial dislocations. Moreover, the stacking disorder may be in either a higher stored energy state consisting of a sub-boundary network arrangement of partial dislocations bounding stacking faults, or a lower stored energy state consisting of a grain structure with a high density of stacking faults, but without bounding partial dislocations. Each state transforms to Ih differently, with a duration to fully transform that strongly depends on temperature and crystal grain size. The results are consistent with the observed transformation rates, transformation temperatures and wide range in heat of transformation.

  16. On the Connection Between the Discrete Dislocation Slip Model and the Orowan Equation

    SciTech Connect

    BRAGINSKY, MICHAEL V.; GLAZOV, MICHAEL V.; RICHMOND, OWEN

    1999-09-08

    Within the framework of thermodynamic theory of plasticity and specific structural-variables (associated with individual dislocations), a transition has been made to an expression containing one internal variable of the averaging type--the density of glissile dislocations, N{sub g}. This expression should be considered a tensorial generalization of the well-known Orowan's equation and relates it directly to the simplest possible case of normal flow in metallic materials. Since most metals display deviations from normality in the flow rule{sup 7} it also clearly indicates that more rigorous assessment of the relation between plastic strain rate and dislocation populations is required especially for materials displaying plastic instabilities in the form of dislocation patterning, strain-softening and strain-rate softening phenomena. The obtained result could be a useful starting point in establishing such rigorous macroscopic relations from microscopic considerations associated with individual dislocations and to find useful applications in dislocation density-related constitutive modeling of plastic deformation.

  17. Measurement of probability distributions for internal stresses in dislocated crystals

    SciTech Connect

    Wilkinson, Angus J.; Tarleton, Edmund; Vilalta-Clemente, Arantxa; Collins, David M.; Jiang, Jun; Britton, T. Benjamin

    2014-11-03

    Here, we analyse residual stress distributions obtained from various crystal systems using high resolution electron backscatter diffraction (EBSD) measurements. Histograms showing stress probability distributions exhibit tails extending to very high stress levels. We demonstrate that these extreme stress values are consistent with the functional form that should be expected for dislocated crystals. Analysis initially developed by Groma and co-workers for X-ray line profile analysis and based on the so-called “restricted second moment of the probability distribution” can be used to estimate the total dislocation density. The generality of the results are illustrated by application to three quite different systems, namely, face centred cubic Cu deformed in uniaxial tension, a body centred cubic steel deformed to larger strain by cold rolling, and hexagonal InAlN layers grown on misfitting sapphire and silicon carbide substrates.

  18. Dislocation Effects on the Diffraction Line Profiles from Nanocrystalline Domains

    NASA Astrophysics Data System (ADS)

    Leonardi, Alberto; Scardi, Paolo

    2016-12-01

    A Pd nano-polycrystalline microstructure was simulated by molecular dynamics, including edge or screw dislocations in one of the 50 grains, so as to produce a realistic model of nanocrystalline domain with line defect. The same crystalline domain was also studied, with or without line defects, as a free-standing, isolated nanocrystal. Atomic coordinates of the selected domain were used to generate powder patterns by means of the Debye scattering equation, and these patterns were used as "experimental" data to test existing methods of line profile analysis in controlled condition, i.e., with known type and density of defects. Results show that the Krivolgaz-Wilkens theory of dislocation line broadening qualitatively agrees with the MD model, but errors can be larger than 50 pct. A critical issue arises from the instability of the Krivolgaz-Wilkens model when all line profile parameters are simultaneously refined: reasonable results can be obtained by fixing or restricting some parameters.

  19. Towards an unconditionally stable numerical scheme for continuum dislocation transport

    NASA Astrophysics Data System (ADS)

    Hernández, H.; Massart, T. J.; Peerlings, R. H. J.; Geers, M. G. D.

    2015-12-01

    Recent developments in plasticity modeling for crystalline materials are based on dislocations transport models, formulated for computational efficiency in terms of their densities. This leads to sets of coupled partial differential equations in a continuum description involving diffusion and convection-like processes combined with non-linearity. The properties of these equations cause the most traditional numerical methods to fail when applied to solve them. Therefore, dedicated stabilization techniques must be developed in order to obtain physically meaningful and numerically stable approximations. The objective of this paper is to present a dedicated stabilization technique and to apply it to a system of dislocation transport equations in one dimension. This stabilization technique, based on coefficient perturbations, successfully provides unconditional stability with respect to the spatial discretization. Several of its favorable characteristics are discussed, providing evidence of its versatility and effectiveness through a thorough numerical assessment.

  20. Dislocation-pipe diffusion in nitride superlattices observed in direct atomic resolution

    PubMed Central

    Garbrecht, Magnus; Saha, Bivas; Schroeder, Jeremy L.; Hultman, Lars; Sands, Timothy D.

    2017-01-01

    Device failure from diffusion short circuits in microelectronic components occurs via thermally induced migration of atoms along high-diffusivity paths: dislocations, grain boundaries, and free surfaces. Even well-annealed single-grain metallic films contain dislocation densities of about 1014 m−2; hence dislocation-pipe diffusion (DPD) becomes a major contribution at working temperatures. While its theoretical concept was established already in the 1950s and its contribution is commonly measured using indirect tracer, spectroscopy, or electrical methods, no direct observation of DPD at the atomic level has been reported. We present atomically-resolved electron microscopy images of the onset and progression of diffusion along threading dislocations in sequentially annealed nitride metal/semiconductor superlattices, and show that this type of diffusion can be independent of concentration gradients in the system but governed by the reduction of strain fields in the lattice. PMID:28382949