Sample records for dislocation dynamics ddd

  1. The Role of Twinning Deformation on the Hardening Response of Polycrystalline Magnesium from Discrete Dislocation Dynamics Simulations

    DTIC Science & Technology

    2015-01-01

    polycrystalline magnesium (Mg) was studied using three-dimensional discrete dislocation dynamics ( DDD ). A systematic interaction model between dislocations...and f1012g tension twin boundaries (TBs) was proposed and introduced into the DDD framework. In addition, a nominal grain boundary (GB) model based...dynamics ( DDD ). A systematic interaction model between dislocations and f10 12g tension twin boundaries (TBs) was proposed and introduced into the DDD

  2. Parallel Performance of Linear Solvers and Preconditioners

    DTIC Science & Technology

    2014-01-01

    are produced by a discrete dislocation dynamics ( DDD ) simulation and change with each timestep of the DDD simulation as the dislocation structure...evolves. However, the coefficient—or stiffness matrix— remains constant during the DDD simulation and some expensive matrix factorizations only occur once...discrete dislocation dynamics ( DDD ) simulations. This can be achieved by coupling a DDD simulator for bulk material (Arsenlis et al., 2007) to a

  3. Advances in Discrete Dislocation Dynamics Modeling of Size-Affected Plasticity

    NASA Astrophysics Data System (ADS)

    El-Awady, Jaafar A.; Fan, Haidong; Hussein, Ahmed M.

    In dislocation-mediated plasticity of crystalline materials, discrete dislocation dynamics (DDD) methods have been widely used to predict the plastic deformation in a number of technologically important problems. These simulations have led to significant improvement in the understanding of the different mechanism that controls the mechanical properties of crystalline materials, which can greatly accelerate the future development of materials with superior properties. This chapter provides an overview of different practical applications of both two-dimensional and three-dimensional DDD simulations in the field of size-affected dislocation-mediated plasticity. The chapter is divided into two major tracks. First, DDD simulations focusing on aspects of modeling size-dependent plasticity in single crystals in uniaxial micro-compression/tension, microtorsion, microbending, and nanoindentation are discussed. Special attention is directed towards the role of cross-slip and dislocation nucleation on the overall response. Second, DDD simulations focusing on the role of interfaces, including grain and twin boundaries, on dislocation-mediated plasticity are discussed. Finally, a number of challenges that are withholding DDD simulations from reaching their full potential are discussed.

  4. Discrete Dislocation Dynamics Simulations of Twin Size-Effects in Magnesium

    DTIC Science & Technology

    2015-01-01

    deformation induced softening. Over the past two decades, discrete dislocation dynamics ( DDD ) has been one of the most efficient methods to capture...14] and intermittent behavior [15] of the FCC and BCC materials. More recently, DDD simulations of Mg investigated a number of important effects...plays an important and sometimes dominant role in the mechanical behavior of both single crystals and polycrystals. As a result, such DDD simulations

  5. A hierarchical dislocation-grain boundary interaction model based on 3D discrete dislocation dynamics and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Gao, Yuan; Zhuang, Zhuo; You, XiaoChuan

    2011-04-01

    We develop a new hierarchical dislocation-grain boundary (GB) interaction model to predict the mechanical behavior of polycrystalline metals at micro and submicro scales by coupling 3D Discrete Dislocation Dynamics (DDD) simulation with the Molecular Dynamics (MD) simulation. At the microscales, the DDD simulations are responsible for capturing the evolution of dislocation structures; at the nanoscales, the MD simulations are responsible for obtaining the GB energy and ISF energy which are then transferred hierarchically to the DDD level. In the present model, four kinds of dislocation-GB interactions, i.e. transmission, absorption, re-emission and reflection, are all considered. By this methodology, the compression of a Cu micro-sized bi-crystal pillar is studied. We investigate the characteristic mechanical behavior of the bi-crystal compared with that of the single-crystal. Moreover, the comparison between the present penetrable model of GB and the conventional impenetrable model also shows the accuracy and efficiency of the present model.

  6. A FFT-based formulation for efficient mechanical fields computation in isotropic and anisotropic periodic discrete dislocation dynamics

    NASA Astrophysics Data System (ADS)

    Bertin, N.; Upadhyay, M. V.; Pradalier, C.; Capolungo, L.

    2015-09-01

    In this paper, we propose a novel full-field approach based on the fast Fourier transform (FFT) technique to compute mechanical fields in periodic discrete dislocation dynamics (DDD) simulations for anisotropic materials: the DDD-FFT approach. By coupling the FFT-based approach to the discrete continuous model, the present approach benefits from the high computational efficiency of the FFT algorithm, while allowing for a discrete representation of dislocation lines. It is demonstrated that the computational time associated with the new DDD-FFT approach is significantly lower than that of current DDD approaches when large number of dislocation segments are involved for isotropic and anisotropic elasticity, respectively. Furthermore, for fine Fourier grids, the treatment of anisotropic elasticity comes at a similar computational cost to that of isotropic simulation. Thus, the proposed approach paves the way towards achieving scale transition from DDD to mesoscale plasticity, especially due to the method’s ability to incorporate inhomogeneous elasticity.

  7. Cross Slip of Dislocation Loops in GaN Under Shear

    DTIC Science & Technology

    2014-03-01

    methodology 2.1 Discrete dislocation dynamic ( DDD ) simula- tions In this work, we employ a modified version of the ParaDiS code [15, 16]. First a...plane. 4 Conclusions The cross slip mechanisms of different dislocation loops have been studied via DDD simulations using the type <a> active

  8. Mathematical and Computational Aspects of Multiscale Materials Modeling, Mathematics-Numerical analysis, Section II.A.a.3.4, Conference and symposia organization II.A.2.a

    DTIC Science & Technology

    2015-02-04

    dislocation dynamics models ( DDD ), continuum representations). Coupling of these models is difficult. Coupling of atomistics and DDD models has been...explored to some extent, but the coupling between DDD and continuum models of the evolution of large populations of dislocations is essentially unexplored

  9. Microstructural comparison of the kinematics of discrete and continuum dislocations models

    NASA Astrophysics Data System (ADS)

    Sandfeld, Stefan; Po, Giacomo

    2015-12-01

    The Continuum Dislocation Dynamics (CDD) theory and the Discrete Dislocation Dynamics (DDD) method are compared based on concise mathematical formulations of the coarse graining of discrete data. A numerical tool for converting from a discrete to a continuum representation of a given dislocation configuration is developed, which allows to directly compare both simulation approaches based on continuum quantities (e.g. scalar density, geometrically necessary densities, mean curvature). Investigating the evolution of selected dislocation configurations within analytically given velocity fields for both DDD and CDD reveals that CDD contains a surprising number of important microstructural details.

  10. Recent Progress in Discrete Dislocation Dynamics and Its Applications to Micro Plasticity

    NASA Astrophysics Data System (ADS)

    Po, Giacomo; Mohamed, Mamdouh S.; Crosby, Tamer; Erel, Can; El-Azab, Anter; Ghoniem, Nasr

    2014-10-01

    We present a self-contained review of the discrete dislocation dynamics (DDD) method for the numerical investigation of plasticity in crystals, focusing on recent development and implementation progress. The review covers the theoretical foundations of DDD within the framework of incompatible elasticity, its numerical implementation via the nodal method, the extension of the method to finite domains and several implementation details. Applications of the method to current topics in micro-plasticity are presented, including the size effects in nano-indentation, the evolution of the dislocation microstructure in persistent slip bands, and the phenomenon of dislocation avalanches in micro-pillar compression.

  11. Microstructurally Based Cross-slip Mechanisms and Their Effects on Dislocation Microstructure Evolution in fcc Crystals

    DTIC Science & Technology

    2015-01-01

    still necessary. One such model that could bridge this gap is discrete dis- location dynamics ( DDD ) simulations, in which both the time- and length-scale...limitations from atomic simulations are greatly reduced. Over the past two decades, two-dimen- sional (2D) and three-dimensional (3D) DDD methods have...dislocation ensem- bles according to physics-based rules [27–34]. The physics that can be incorporated in DDD simulations can range http://dx.doi.org

  12. Dislocation Dissociation Strongly Influences on Frank—Read Source Nucleation and Microplasticy of Materials with Low Stacking Fault Energy

    NASA Astrophysics Data System (ADS)

    Huang, Min-Sheng; Zhu, Ya-Xin; Li, Zhen-Huan

    2014-04-01

    The influence of dislocation dissociation on the evolution of Frank—Read (F-R) sources is studied using a three-dimensional discrete dislocation dynamics simulation (3D-DDD). The classical Orowan nucleation stress and recently proposed Benzerga nucleation time models for F-R sources are improved. This work shows that it is necessary to introduce the dislocation dissociation scheme into 3D-DDD simulation, especially for simulations on micro-plasticity of small sized materials with low stacking fault energy.

  13. Orientation influence on grain size-effects in ultrafine-grained magnesium

    DOE PAGES

    Fan, Haidong; Aubry, Sylvie; Arsenlis, A.; ...

    2014-11-08

    The mechanical behavior of ultrafine-grained magnesium was studied by discrete dislocation dynamics (DDD) simulations. Our results show basal slip yields a strong size effect, while prismatic and pyramidal slips produce a weak one. We developed a new size-strength model that considers dislocation transmission across grain boundaries. Good agreement between this model, current DDD simulations and previous experiments is observed. These results reveal that the grain size effect depends on 3 factors: Peierls stress, dislocation source strength and grain boundary strength.

  14. Coupled DDD-FEM modeling on the mechanical behavior of microlayered metallic multilayer film at elevated temperature

    NASA Astrophysics Data System (ADS)

    Huang, Minsheng; Li, Zhenhuan

    2015-12-01

    To investigate the mechanical behavior of the microlayered metallic thin films (MMMFs) at elevated temperature, an enhanced discrete-continuous model (DCM), which couples rather than superposes the two-dimensional climb/glide-enabled discrete dislocation dynamics (2D-DDD) with the linearly elastic finite element method (FEM), is developed in this study. In the present coupling scheme, two especial treatments are made. One is to solve how the plastic strain captured by the DDD module is transferred properly to the FEM module as an eigen-strain; the other is to answer how the stress field computationally obtained by the FEM module is transferred accurately to the DDD module to drive those discrete dislocations moving correctly. With these two especial treatments, the interactions between adjacent dislocations and between dislocation pile-ups and inter-phase boundaries (IBs), which are crucial to the strengthening effect in MMMFs, are carefully taken into account. After verified by comparing the computationally predicted results with the theoretical solutions for a dislocation residing in a homogeneous material and nearby a bi-material interface, this 2D-DDD/FEM coupling scheme is used to model the tensile mechanical behaviors of MMMFs at elevated temperature. The strengthening mechanism of MMMFs and the layer thickness effect are studied in detail, with special attentions to the influence of dislocation climb on them.

  15. Three-dimensional formulation of dislocation climb

    NASA Astrophysics Data System (ADS)

    Gu, Yejun; Xiang, Yang; Quek, Siu Sin; Srolovitz, David J.

    2015-10-01

    We derive a Green's function formulation for the climb of curved dislocations and multiple dislocations in three-dimensions. In this new dislocation climb formulation, the dislocation climb velocity is determined from the Peach-Koehler force on dislocations through vacancy diffusion in a non-local manner. The long-range contribution to the dislocation climb velocity is associated with vacancy diffusion rather than from the climb component of the well-known, long-range elastic effects captured in the Peach-Koehler force. Both long-range effects are important in determining the climb velocity of dislocations. Analytical and numerical examples show that the widely used local climb formula, based on straight infinite dislocations, is not generally applicable, except for a small set of special cases. We also present a numerical discretization method of this Green's function formulation appropriate for implementation in discrete dislocation dynamics (DDD) simulations. In DDD implementations, the long-range Peach-Koehler force is calculated as is commonly done, then a linear system is solved for the climb velocity using these forces. This is also done within the same order of computational cost as existing discrete dislocation dynamics methods.

  16. Cross-scale MD simulations of dynamic strength of tantalum

    NASA Astrophysics Data System (ADS)

    Bulatov, Vasily

    2017-06-01

    Dislocations are ubiquitous in metals where their motion presents the dominant and often the only mode of plastic response to straining. Over the last 25 years computational prediction of plastic response in metals has relied on Discrete Dislocation Dynamics (DDD) as the most fundamental method to account for collective dynamics of moving dislocations. Here we present first direct atomistic MD simulations of dislocation-mediated plasticity that are sufficiently large and long to compute plasticity response of single crystal tantalum while tracing the underlying dynamics of dislocations in all atomistic details. Where feasible, direct MD simulations sidestep DDD altogether thus reducing uncertainties of strength predictions to those of the interatomic potential. In the specific context of shock-induced material dynamics, the same MD models predict when, under what conditions and how dislocations interact and compete with other fundamental mechanisms of dynamic response, e.g. twinning, phase-transformations, fracture. In collaboration with: Luis Zepeda-Ruiz, Lawrence Livermore National Laboratory; Alexander Stukowski, Technische Universitat Darmstadt; Tomas Oppelstrup, Lawrence Livermore National Laboratory. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Modeling and 2-D discrete simulation of dislocation dynamics for plastic deformation of metal

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Cui, Zhenshan; Ou, Hengan; Ruan, Liqun

    2013-05-01

    Two methods are employed in this paper to investigate the dislocation evolution during plastic deformation of metal. One method is dislocation dynamic simulation of two-dimensional discrete dislocation dynamics (2D-DDD), and the other is dislocation dynamics modeling by means of nonlinear analysis. As screw dislocation is prone to disappear by cross-slip, only edge dislocation is taken into account in simulation. First, an approach of 2D-DDD is used to graphically simulate and exhibit the collective motion of a large number of discrete dislocations. In the beginning, initial grains are generated in the simulation cells according to the mechanism of grain growth and the initial dislocation is randomly distributed in grains and relaxed under the internal stress. During the simulation process, the externally imposed stress, the long range stress contribution of all dislocations and the short range stress caused by the grain boundaries are calculated. Under the action of these forces, dislocations begin to glide, climb, multiply, annihilate and react with each other. Besides, thermal activation process is included. Through the simulation, the distribution of dislocation and the stress-strain curves can be obtained. On the other hand, based on the classic dislocation theory, the variation of the dislocation density with time is described by nonlinear differential equations. Finite difference method (FDM) is used to solve the built differential equations. The dislocation evolution at a constant strain rate is taken as an example to verify the rationality of the model.

  18. Modeling of abnormal mechanical properties of nickel-based single crystal superalloy by three-dimensional discrete dislocation dynamics

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Li, Zhenhuan; Huang, Minsheng

    2014-12-01

    Unlike common single crystals, the nickel-based single crystal superalloy shows surprisingly anomalous flow strength (i.e. with the increase of temperature, the yield strength first increases to a peak value and then decreases) and tension-compression (TC) asymmetry. A comprehensive three-dimensional discrete dislocation dynamics (3D-DDD) procedure was developed to model these abnormal mechanical properties. For this purpose, a series of complicated dynamic evolution details of Kear-Wilsdorf (KW) locks, which are closely related to the flow strength anomaly and TC asymmetry, were incorporated into this 3D-DDD framework. Moreover, the activation of the cubic slip system, which is the origin of the decrease in yield strength with increasing temperature at relatively high temperatures, was especially taken into account by introducing a competition criterion between the unlocking of the KW locks and the activation of the cubic slip system. To test our framework, a series of 3D-DDD simulations were performed on a representative volume cell model with a cuboidal Ni3Al precipitate phase embedded in a nickel matrix. Results show that the present 3D-DDD procedure can successfully capture the dynamic evolution of KW locks, the flow strength anomaly and TC asymmetry. Then, the underlying dislocation mechanisms leading to these abnormal mechanical responses were investigated and discussed in detail. Finally, a cyclic deformation of the nickel-based single crystal superalloy was modeled by using the present DDD model, with a special focus on the influence of KW locks on the Bauschinger effect and cyclic softening.

  19. 3D DDD modelling of dislocation-precipitate interaction in a nickel-based single crystal superalloy under cyclic deformation

    NASA Astrophysics Data System (ADS)

    Lin, Bing; Huang, Minsheng; Zhao, Liguo; Roy, Anish; Silberschmidt, Vadim; Barnard, Nick; Whittaker, Mark; McColvin, Gordon

    2018-06-01

    Strain-controlled cyclic deformation of a nickel-based single crystal superalloy has been modelled using three-dimensional (3D) discrete dislocation dynamics (DDD) for both [0 0 1] and [1 1 1] orientations. The work focused on the interaction between dislocations and precipitates during cyclic plastic deformation at elevated temperature, which has not been well studied yet. A representative volume element with cubic γ‧-precipitates was chosen to represent the material, with enforced periodical boundary conditions. In particular, cutting of superdislocations into precipitates was simulated by a back-force method. The global cyclic stress-strain responses were captured well by the DDD model when compared to experimental data, particularly the effects of crystallographic orientation. Dislocation evolution showed that considerably high density of dislocations was produced for [1 1 1] orientation when compared to [0 0 1] orientation. Cutting of dislocations into the precipitates had a significant effect on the plastic deformation, leading to material softening. Contour plots of in-plane shear strain proved the development of heterogeneous strain field, resulting in the formation of shear-band embryos.

  20. The key role of dislocation dissociation in the plastic behaviour of single crystal nickel-based superalloy with low stacking fault energy: Three-dimensional discrete dislocation dynamics modelling

    NASA Astrophysics Data System (ADS)

    Huang, Minsheng; Li, Zhenhuan

    2013-12-01

    To model the deformation of single crystal nickel based superalloys (SCNBS) with low stacking fault energy (SFE), three-dimensional discrete dislocation dynamics (3D-DDD) is extended by incorporating dislocation dissociation mechanism. The present 3D-DDD simulations show that, consistent with the existing TEM observation, the leading partial can enter the matrix channel efficiently while the trailing partial can hardly glide into it when the dislocation dissociation is taken into account. To determine whether the dislocation dissociation can occur or not, a critical percolation stress (CPS) based criterion is suggested. According to this CPS criterion, for SCNBS there exists a critical matrix channel width. When the channel width is lower than this critical value, the dislocation tends to dissociate into an extended configuration and vice versa. To clarify the influence of dislocation dissociation on CPS, the classical Orowan formula is improved by incorporating the SFE. Moreover, the present 3D-DDD simulations also show that the yielding stress of SCNBSs with low SFE may be overestimated up to 30% if the dislocation dissociation is ignored. With dislocation dissociation being considered, the size effect due to the width of γ matrix channel and the length of γ‧ precipitates on the stress-strain responses of SCNBS can be enhanced remarkably. In addition, due to the strong constraint effect by the two-phase microstructure in SCNBS, the configuration of formed junctions is quite different from that in single phase crystals such as Cu. The present results not only provide clear understanding of the two-phase microstructure levelled microplastic mechanisms in SCNBSs with low SFE, but also help to develop new continuum-levelled constitutive laws for SCNBSs.

  1. The strength and dislocation microstructure evolution in superalloy microcrystals

    NASA Astrophysics Data System (ADS)

    Hussein, Ahmed M.; Rao, Satish I.; Uchic, Michael D.; Parthasarathay, Triplicane A.; El-Awady, Jaafar A.

    2017-02-01

    In this work, the evolution of the dislocations microstructure in single crystal two-phase superalloy microcrystals under monotonic loading has been studied using the three-dimensional discrete dislocation dynamics (DDD) method. The DDD framework has been extended to properly handle the collective behavior of dislocations and their interactions with large collections of arbitrary shaped precipitates. Few constraints are imposed on the initial distribution of the dislocations or the precipitates, and the extended DDD framework can support experimentally-obtained precipitate geometries. Full tracking of the creation and destruction of anti-phase boundaries (APB) is accounted for. The effects of the precipitate volume fraction, APB energy, precipitate size, and crystal size on the deformation of superalloy microcrystals have been quantified. Correlations between the precipitate microstructure and the dominant deformation features, such as dislocation looping versus precipitate shearing, are also discussed. It is shown that the mechanical strength is independent of the crystal size, increases linearly with increasing the volume fraction, follows a near square-root relationship with the APB energy and an inverse square-root relationship with the precipitate size. Finally, the flow strength in simulations having initial dislocation pair sources show a flow strength that is about one half of that predicted from simulations starting with single dislocation sources. The method developed can be used, with minimal extensions, to simulate dislocation microstructure evolution in general multiphase materials.

  2. Dislocation mechanisms in stressed crystals with surface effects

    NASA Astrophysics Data System (ADS)

    Wu, Chi-Chin; Crone, Joshua; Munday, Lynn; Discrete Dislocation Dynamics Team

    2014-03-01

    Understanding dislocation properties in stressed crystals is the key for important processes in materials science, including the strengthening of metals and the stress relaxation during the growth of hetero-epitaxial structures. Despite existing experimental approaches and theories, many dislocation mechanisms with surface effects still remain elusive in experiments. Even though discrete dislocation dynamics (DDD) simulations are commonly employed to study dislocations, few demonstrate sufficient computational capabilities for massive dislocations with the combined effects of surfaces and stresses. Utilizing the Army's newly developed FED3 code, a DDD computation code coupled with finite elements, this work presents several dislocation mechanisms near different types of surfaces in finite domains. Our simulation models include dislocations in a bended metallic cantilever beam, near voids in stressed metals, as well as threading and misfit dislocations in as-grown semiconductor epitaxial layers and their quantitative inter-correlations to stress relaxation and surface instability. Our studies provide not only detailed physics of individual dislocation mechanisms, but also important collective dislocation properties such as dislocation densities and strain-stress profiles and their interactions with surfaces.

  3. An extended 3D discrete-continuous model and its application on single- and bi-crystal micropillars

    NASA Astrophysics Data System (ADS)

    Huang, Minsheng; Liang, Shuang; Li, Zhenhuan

    2017-04-01

    A 3D discrete-continuous model (3D DCM), which couples the 3D discrete dislocation dynamics (3D DDD) and finite element method (FEM), is extended in this study. New schemes for two key information transfers between DDD and FEM, i.e. plastic-strain distribution from DDD to FEM and stress transfer from FEM to DDD, are suggested. The plastic strain induced by moving dislocation segments is distributed to an elementary spheroid (ellipsoid or sphere) via a specific new distribution function. The influence of various interfaces (such as free surfaces and grain boundaries (GBs)) on the plastic-strain distribution is specially considered. By these treatments, the deformation fields can be solved accurately even for dislocations on slip planes severely inclined to the FE mesh, with no spurious stress concentration points produced. In addition, a stress correction by singular and non-singular theoretical solutions within a cut-off sphere is introduced to calculate the stress on the dislocations accurately. By these schemes, the present DCM becomes less sensitive to the FE mesh and more numerically efficient, which can also consider the interaction between neighboring dislocations appropriately even though they reside in the same FE mesh. Furthermore, the present DCM has been employed to model the compression of single-crystal and bi-crystal micropillars with rigid and dislocation-absorbed GBs. The influence of internal GB on the jerky stress-strain response and deformation mode is studied in detail to shed more light on these important micro-plastic problems.

  4. The role of twinning deformation on the hardening response of polycrystalline magnesium from discrete dislocation dynamics simulations

    DOE PAGES

    Fan, Haidong; Aubry, Sylvie; Arsenlis, Athanasios; ...

    2015-04-13

    The mechanical response of micro-twinned polycrystalline magnesium was studied through three-dimensional discrete dislocation dynamics (DDD). A systematic interaction model between dislocations and (1012) tension twin boundaries (TBs) was proposed and introduced into the DDD framework. In addition, a nominal grain boundary (GB) model agreeing with experimental results was also introduced to mimic the GB’s barrier effect. The current simulation results show that TBs act as a strong obstacle to gliding dislocations, which contributes significantly to the hardening behavior of magnesium. On the other hand, the deformation accommodated by twinning plays a softening role. Therefore, the concave shape of the Mgmore » stress-strain curve results from the competition between dislocation-TB induced hardening and twinning deformation induced softening. At low strain levels, twinning deformation induced softening dominates and a decreasing hardening rate is observed in Stage-I. In Stage-II, both the hardening and softening effects decline, but twinning deformation induced softening declines faster, which leads to an increasing hardening rate.« less

  5. Primary combination of phase-field and discrete dislocation dynamics methods for investigating athermal plastic deformation in various realistic Ni-base single crystal superalloy microstructures

    NASA Astrophysics Data System (ADS)

    Gao, Siwen; Rajendran, Mohan Kumar; Fivel, Marc; Ma, Anxin; Shchyglo, Oleg; Hartmaier, Alexander; Steinbach, Ingo

    2015-10-01

    Three-dimensional discrete dislocation dynamics (DDD) simulations in combination with the phase-field method are performed to investigate the influence of different realistic Ni-base single crystal superalloy microstructures with the same volume fraction of {γ\\prime} precipitates on plastic deformation at room temperature. The phase-field method is used to generate realistic microstructures as the boundary conditions for DDD simulations in which a constant high uniaxial tensile load is applied along different crystallographic directions. In addition, the lattice mismatch between the γ and {γ\\prime} phases is taken into account as a source of internal stresses. Due to the high antiphase boundary energy and the rare formation of superdislocations, precipitate cutting is not observed in the present simulations. Therefore, the plastic deformation is mainly caused by dislocation motion in γ matrix channels. From a comparison of the macroscopic mechanical response and the dislocation evolution for different microstructures in each loading direction, we found that, for a given {γ\\prime} phase volume fraction, the optimal microstructure should possess narrow and homogeneous γ matrix channels.

  6. A FFT-based formulation for discrete dislocation dynamics in heterogeneous media

    NASA Astrophysics Data System (ADS)

    Bertin, N.; Capolungo, L.

    2018-02-01

    In this paper, an extension of the DDD-FFT approach presented in [1] is developed for heterogeneous elasticity. For such a purpose, an iterative spectral formulation in which convolutions are calculated in the Fourier space is developed to solve for the mechanical state associated with the discrete eigenstrain-based microstructural representation. With this, the heterogeneous DDD-FFT approach is capable of treating anisotropic and heterogeneous elasticity in a computationally efficient manner. In addition, a GPU implementation is presented to allow for further acceleration. As a first example, the approach is used to investigate the interaction between dislocations and second-phase particles, thereby demonstrating its ability to inherently incorporate image forces arising from elastic inhomogeneities.

  7. Scale-free avalanche dynamics in crystal plasticity

    NASA Astrophysics Data System (ADS)

    Ispanovity, Pater Dusan; Laurson, Lasse; Zaiser, Michael; Zapperi, Stefano; Groma, Istvan; Alava, Mikko

    2015-03-01

    We investigate the properties of strain bursts (dislocation avalanches) occurring during plastic deformation of crystalline matter using two dimensional discrete dislocation dynamics (DDD). We perform quasistatic stress-controlled simulations with three DDD models differing in the spatiotemporal discretization and the mobility law assumed for individual dislocations. We find that each model exhibits identical avalanche dynamics with the following properties: (i) strain burst sizes follow a power law distribution characterized by an exponent τ ~ 1 . 0 and (ii) the distribution in truncated at a cutoff that diverges with increasing system size at any applied stress level. It has been proposed earlier that plastic yielding can be described in terms of a continuous phase transition of depinning type and its critical point is at the yield stress. We will demonstrate, however, that our results are inconsistent with cutoff scaling in depinning systems (like magnetic domain walls or earthquakes) and that the system behaves as critical at every stress level. We, therefore, conclude that in the models studied plastic yielding cannot be associated with a continuous phase transition. Financial supports of the Hungarian Scientific Research Fund (OTKA) under Contract Numbers PD-105256 and K-105335 and of the European Commission under Grant Agreement No. CIG-321842 are acknowledged.

  8. Modelling Thin Film Microbending: A Comparative Study of Three Different Approaches

    NASA Astrophysics Data System (ADS)

    Aifantis, Katerina E.; Nikitas, Nikos; Zaiser, Michael

    2011-09-01

    Constitutive models which describe crystal microplasticity in a continuum framework can be envisaged as average representations of the dynamics of dislocation systems. Thus, their performance needs to be assessed not only by their ability to correctly represent stress-strain characteristics on the specimen scale but also by their ability to correctly represent the evolution of internal stress and strain patterns. In the present comparative study we consider the bending of a free-standing thin film. We compare the results of 3D DDD simulations with those obtained from a simple 1D gradient plasticity model and a more complex dislocation-based continuum model. Both models correctly reproduce the nontrivial strain patterns predicted by DDD for the microbending problem.

  9. Dislocation Multiplication by Single Cross Slip for FCC at Submicron Scales

    NASA Astrophysics Data System (ADS)

    Cui, Yi-Nan; Liu, Zhan-Li; Zhuang, Zhuo

    2013-04-01

    The operation mechanism of single cross slip multiplication (SCSM) is investigated by studying the response of one dislocation loop expanding in face-centered-cubic (FCC) single crystal using three-dimensional discrete dislocation dynamic (3D-DDD) simulation. The results show that SCSM can trigger highly correlated dislocation generation in a short time, which may shed some light on understanding the large strain burst observed experimentally. Furthermore, we find that there is a critical stress and material size for the operation of SCSM, which agrees with that required to trigger large strain burst in the compression tests of FCC micropillars.

  10. Influence of misfit stresses on dislocation glide in single crystal superalloys: A three-dimensional discrete dislocation dynamics study

    NASA Astrophysics Data System (ADS)

    Gao, Siwen; Fivel, Marc; Ma, Anxin; Hartmaier, Alexander

    2015-03-01

    In the characteristic γ / γ ‧ microstructure of single crystal superalloys, misfit stresses occur due to a significant lattice mismatch of those two phases. The magnitude of this lattice mismatch depends on the chemical composition of both phases as well as on temperature. Furthermore, the lattice mismatch of γ and γ ‧ phases can be either positive or negative in sign. The internal stresses caused by such lattice mismatch play a decisive role for the micromechanical processes that lead to the observed macroscopic athermal deformation behavior of these high-temperature alloys. Three-dimensional discrete dislocation dynamics (DDD) simulations are applied to investigate dislocation glide in γ matrix channels and shearing of γ ‧ precipitates by superdislocations under externally applied uniaxial stresses, by fully taking into account internal misfit stresses. Misfit stress fields are calculated by the fast Fourier transformation (FFT) method and hybridized with DDD simulations. For external loading along the crystallographic [001] direction of the single crystal, it was found that the different internal stress states for negative and positive lattice mismatch result in non-uniform dislocation movement and different dislocation patterns in horizontal and vertical γ matrix channels. Furthermore, positive lattice mismatch produces a lower deformation rate than negative lattice mismatch under the same tensile loading, but for an increasing magnitude of lattice mismatch, the deformation resistance always diminishes. Hence, the best deformation performance is expected to result from alloys with either small positive, or even better, vanishing lattice mismatch between γ and γ ‧ phase.

  11. Strength and Dislocation Structure Evolution of Small Metals under Vibrations

    NASA Astrophysics Data System (ADS)

    Ngan, Alfonso

    2015-03-01

    It is well-known that ultrasonic vibration can soften metals, and this phenomenon has been widely exploited in industrial applications concerning metal forming and bonding. In this work, we explore the effects of a superimposed small oscillatory load on metal plasticity, from the nano- to macro-size range, and from audible to ultrasonic frequency ranges. Macroscopic and nano-indentation were performed on aluminum, copper and molybdenum, and the results show that the simultaneous application of oscillatory stresses can lower the hardness of these samples. More interestingly, EBSD and TEM observations show that subgrain formation and reduction in dislocation density generally occurred when stress oscillations were applied. These findings point to an important knowledge gap in metal plasticity - the existing understanding of ultrasound softening in terms of the vibrations either imposing additional stress waves to augment the quasi-static applied load, or heating up the metal, whereas the metal's intrinsic deformation resistance or dislocation interactive processes are assumed unaltered by the ultrasound, is proven wrong by the present results. Furthermore, in the case of nanoindentation, the Continuous Stiffness Measurement technique for contact stiffness measurement assumes that the imposed signal-carrier oscillations do not intrinsically alter the material properties of the specimen, and again, the present results prove that this can be wrong. To understand the enhanced subgrain formation and dislocation annihilation, Discrete Dislocation Dynamics (DDD) simulations were carried out and these show that when an oscillatory stress is superimposed on a quasi-static applied stress, reversals of motion of dislocations may occur, and these allow the dislocations to revisit repeatedly suitable configurations for annihilation. DDD, however, was unable to predict the observed subgrain formation presumably because the number of dislocations that can be handled is not large enough. Subgrain formation was directly predicted by a new simulation method of dislocation plasticity based on the dynamics of dislocation density functions.

  12. Size-Tuned Plastic Flow Localization in Irradiated Materials at the Submicron Scale

    NASA Astrophysics Data System (ADS)

    Cui, Yinan; Po, Giacomo; Ghoniem, Nasr

    2018-05-01

    Three-dimensional discrete dislocation dynamics (3D-DDD) simulations reveal that, with reduction of sample size in the submicron regime, the mechanism of plastic flow localization in irradiated materials transitions from irradiation-controlled to an intrinsic dislocation source controlled. Furthermore, the spatial correlation of plastic deformation decreases due to weaker dislocation interactions and less frequent cross slip as the system size decreases, thus manifesting itself in thinner dislocation channels. A simple model of discrete dislocation source activation coupled with cross slip channel widening is developed to reproduce and physically explain this transition. In order to quantify the phenomenon of plastic flow localization, we introduce a "deformation localization index," with implications to the design of radiation-resistant materials.

  13. Quantifying the effect of hydrogen on dislocation dynamics: A three-dimensional discrete dislocation dynamics framework

    NASA Astrophysics Data System (ADS)

    Gu, Yejun; El-Awady, Jaafar A.

    2018-03-01

    We present a new framework to quantify the effect of hydrogen on dislocations using large scale three-dimensional (3D) discrete dislocation dynamics (DDD) simulations. In this model, the first order elastic interaction energy associated with the hydrogen-induced volume change is accounted for. The three-dimensional stress tensor induced by hydrogen concentration, which is in equilibrium with respect to the dislocation stress field, is derived using the Eshelby inclusion model, while the hydrogen bulk diffusion is treated as a continuum process. This newly developed framework is utilized to quantify the effect of different hydrogen concentrations on the dynamics of a glide dislocation in the absence of an applied stress field as well as on the spacing between dislocations in an array of parallel edge dislocations. A shielding effect is observed for materials having a large hydrogen diffusion coefficient, with the shield effect leading to the homogenization of the shrinkage process leading to the glide loop maintaining its circular shape, as well as resulting in a decrease in dislocation separation distances in the array of parallel edge dislocations. On the other hand, for materials having a small hydrogen diffusion coefficient, the high hydrogen concentrations around the edge characters of the dislocations act to pin them. Higher stresses are required to be able to unpin the dislocations from the hydrogen clouds surrounding them. Finally, this new framework can open the door for further large scale studies on the effect of hydrogen on the different aspects of dislocation-mediated plasticity in metals. With minor modifications of the current formulations, the framework can also be extended to account for general inclusion-induced stress field in discrete dislocation dynamics simulations.

  14. Unravelling the physics of size-dependent dislocation-mediated plasticity

    NASA Astrophysics Data System (ADS)

    El-Awady, Jaafar A.

    2015-01-01

    Size-affected dislocation-mediated plasticity is important in a wide range of materials and technologies. Here we develop a generalized size-dependent dislocation-based model that predicts strength as a function of crystal/grain size and the dislocation density. Three-dimensional (3D) discrete dislocation dynamics (DDD) simulations reveal the existence of a well-defined relationship between strength and dislocation microstructure at all length scales for both single crystals and polycrystalline materials. The results predict a transition from dislocation-source strengthening to forest-dominated strengthening at a size-dependent critical dislocation density. It is also shown that the Hall-Petch relationship can be physically interpreted by coupling with an appropriate kinetic equation of the evolution of the dislocation density in polycrystals. The model is shown to be in remarkable agreement with experiments. This work presents a micro-mechanistic framework to predict and interpret strength size-scale effects, and provides an avenue towards performing multiscale simulations without ad hoc assumptions.

  15. 3D discrete dislocation dynamics study of creep behavior in Ni-base single crystal superalloys by a combined dislocation climb and vacancy diffusion model

    NASA Astrophysics Data System (ADS)

    Gao, Siwen; Fivel, Marc; Ma, Anxin; Hartmaier, Alexander

    2017-05-01

    A three-dimensional (3D) discrete dislocation dynamics (DDD) creep model is developed to investigate creep behavior under uniaxial tensile stress along the crystallographic [001] direction in Ni-base single crystal superalloys, which takes explicitly account of dislocation glide, climb and vacancy diffusion, but neglects phase transformation like rafting of γ‧ precipitates. The vacancy diffusion model takes internal stresses by dislocations and mismatch strains into account and it is coupled to the dislocation dynamics model in a numerically efficient way. This model is helpful for understanding the fundamental creep mechanisms in superalloys and clarifying the effects of dislocation glide and climb on creep deformation. In cases where the precipitate cutting rarely occurs, e.g. due to the high anti-phase boundary energy and the lack of superdislocations, the dislocation glide in the γ matrix and the dislocation climb along the γ/γ‧ interface dominate plastic deformation. The simulation results show that a high temperature or a high stress both promote dislocation motion and multiplication, so as to cause a large creep strain. Dislocation climb accelerated by high temperature only produces a small plastic strain, but relaxes the hardening caused by the filling γ channels and lets dislocations further glide and multiply. The strongest variation of vacancy concentration occurs in the horizontal channels, where more mixed dislocations exit and tend to climb. The increasing internal stresses due to the increasing dislocation density are easily overcome by dislocations under a high external stress that leads to a long-term dislocation glide accompanied by multiplication.

  16. The inverse hall-petch relation in nanocrystalline metals: A discrete dislocation dynamics analysis

    NASA Astrophysics Data System (ADS)

    Quek, Siu Sin; Chooi, Zheng Hoe; Wu, Zhaoxuan; Zhang, Yong Wei; Srolovitz, David J.

    2016-03-01

    When the grain size in polycrystalline materials is reduced to the nanometer length scale (nanocrystallinity), observations from experiments and atomistic simulations suggest that the yield strength decreases (softening) as the grain size is decreased. This is in contrast to the Hall-Petch relation observed in larger sized grains. We incorporated grain boundary (GB) sliding and dislocation emission from GB junctions into the classical DDD framework, and recovered the smaller is weaker relationship observed in nanocrystalline materials. This current model shows that the inverse Hall-Petch behavior can be obtained through a relief of stress buildup at GB junctions from GB sliding by emitting dislocations from the junctions. The yield stress is shown to vary with grain size, d, by a d 1 / 2 relationship when grain sizes are very small. However, pure GB sliding alone without further plastic accomodation by dislocation emission is grain size independent.

  17. Mechanical annealing under low-amplitude cyclic loading in micropillars

    NASA Astrophysics Data System (ADS)

    Cui, Yi-nan; Liu, Zhan-li; Wang, Zhang-jie; Zhuang, Zhuo

    2016-04-01

    Mechanical annealing has been demonstrated to be an effective method for decreasing the overall dislocation density in submicron single crystal. However, simultaneously significant shape change always unexpectedly happens under extremely high monotonic loading to drive the pre-existing dislocations out of the free surfaces. In the present work, through in situ TEM experiments it is found that cyclic loading with low stress amplitude can drive most dislocations out of the submicron sample with virtually little change of the shape. The underlying dislocation mechanism is revealed by carrying out discrete dislocation dynamic (DDD) simulations. The simulation results indicate that the dislocation density decreases within cycles, while the accumulated plastic strain is small. By comparing the evolution of dislocation junction under monotonic, cyclic and relaxation deformation, the cumulative irreversible slip is found to be the key factor of promoting junction destruction and dislocation annihilation at free surface under low-amplitude cyclic loading condition. By introducing this mechanics into dislocation density evolution equations, the critical conditions for mechanical annealing under cyclic and monotonic loadings are discussed. Low-amplitude cyclic loading which strengthens the single crystal without seriously disturbing the structure has the potential applications in the manufacture of defect-free nano-devices.

  18. Collective behaviour of dislocations in a finite medium

    NASA Astrophysics Data System (ADS)

    Kooiman, M.; Hütter, M.; Geers, M. G. D.

    2014-04-01

    We derive the grand-canonical partition function of straight and parallel dislocation lines without making a priori assumptions on the temperature regime. Such a systematic derivation for dislocations has, to the best of our knowledge, not been carried out before, and several conflicting assumptions on the free energy of dislocations have been made in the literature. Dislocations have gained interest as they are the carriers of plastic deformation in crystalline materials and solid polymers, and they constitute a prototype system for two-dimensional Coulomb particles. Our microscopic starting level is the description of dislocations as used in the discrete dislocation dynamics (DDD) framework. The macroscopic level of interest is characterized by the temperature, the boundary deformation and the dislocation density profile. By integrating over state space, we obtain a field theoretic partition function, which is a functional integral of the Boltzmann weight over an auxiliary field. The Hamiltonian consists of a term quadratic in the field and an exponential of this field. The partition function is strongly non-local, and reduces in special cases to the sine-Gordon model. Moreover, we determine implicit expressions for the response functions and the dominant scaling regime for metals, namely the low-temperature regime.

  19. Modeling plastic deformation of post-irradiated copper micro-pillars

    NASA Astrophysics Data System (ADS)

    Crosby, Tamer; Po, Giacomo; Ghoniem, Nasr M.

    2014-12-01

    We present here an application of a fundamentally new theoretical framework for description of the simultaneous evolution of radiation damage and plasticity that can describe both in situ and ex situ deformation of structural materials [1]. The theory is based on the variational principle of maximum entropy production rate; with constraints on dislocation climb motion that are imposed by point defect fluxes as a result of irradiation. The developed theory is implemented in a new computational code that facilitates the simulation of irradiated and unirradiated materials alike in a consistent fashion [2]. Discrete Dislocation Dynamics (DDD) computer simulations are presented here for irradiated fcc metals that address the phenomenon of dislocation channel formation in post-irradiated copper. The focus of the simulations is on the role of micro-pillar boundaries and the statistics of dislocation pinning by stacking-fault tetrahedra (SFTs) on the onset of dislocation channel and incipient surface crack formation. The simulations show that the spatial heterogeneity in the distribution of SFTs naturally leads to localized plastic deformation and incipient surface fracture of micro-pillars.

  20. Scale effects in crystal plasticity

    NASA Astrophysics Data System (ADS)

    Padubidri Janardhanachar, Guruprasad

    The goal of this research work is to further the understanding of crystal plasticity, particularly at reduced structural and material length scales. Fundamental understanding of plasticity is central to various challenges facing design and manufacturing of materials for structural and electronic device applications. The development of microstructurally tailored advanced metallic materials with enhanced mechanical properties that can withstand extremes in stress, strain, and temperature, will aid in increasing the efficiency of power generating systems by allowing them to work at higher temperatures and pressures. High specific strength materials can lead to low fuel consumption in transport vehicles. Experiments have shown that enhanced mechanical properties can be obtained in materials by constraining their size, microstructure (e.g. grain size), or both for various applications. For the successful design of these materials, it is necessary to have a thorough understanding of the influence of different length scales and evolving microstructure on the overall behavior. In this study, distinction is made between the effect of structural and material length scale on the mechanical behavior of materials. A length scale associated with an underlying physical mechanism influencing the mechanical behavior can overlap with either structural length scales or material length scales. If it overlaps with structural length scales, then the material is said to be dimensionally constrained. On the other hand, if it overlaps with material length scales, for example grain size, then the material is said to be microstructurally constrained. The objectives of this research work are: (1) to investigate scale and size effects due to dimensional constraints; (2) to investigate size effects due to microstructural constraints; and (3) to develop a size dependent hardening model through coarse graining of dislocation dynamics. A discrete dislocation dynamics (DDD) framework where the scale of analysis is intermediate between a fully discretized (e.g. atomistic) and fully continuum is used for this study. This mesoscale tool allows to address all the stated objectives of this study within a single framework. Within this framework, the effect of structural and the material length scales are naturally accounted for in the simulations and need not be specified in an ad hoc manner, as in some continuum models. It holds the promise of connecting the evolution of the defect microstructure to the effective response of the crystal. Further, it provides useful information to develop physically motivated continuum models to model size effects in materials. The contributions of this study are: (a) provides a new interpretation of mechanical size effect due to only dimensional constraint using DDD; (b) a development of an experimentally validated DDD simulation methodology to model Cu micropillars; (c) a coarse graining technique using DDD to develop a phenomenological model to capture size effect on strain hardening; and (d) a development of a DDD framework for polycrystals to investigate grain size effect on yield strength and strain hardening.

  1. High ventricular lead impedance of a DDD pacemaker after cranial magnetic resonance imaging.

    PubMed

    Baser, Kazim; Guray, Umit; Durukan, Mine; Demirkan, Burcu

    2012-09-01

    Management of electromagnetic interference in the form of magnetic resonance imaging (MRI) in patients with pacemakers (PMs) may be challenging. Serious consequences, especially in PM-dependent patients, may be encountered. Changes in device programming, asynchronous pacing, heating of the lead tip(s), and increased thresholds or even device dislocation may be experienced. We report of a patient with a DDD PM who underwent an emergent MRI, after which there was an increase in ventricular impedance as well as increased cardiac biomarkers. ©2011, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.

  2. Multi-scale modeling of irradiation effects in spallation neutron source materials

    NASA Astrophysics Data System (ADS)

    Yoshiie, T.; Ito, T.; Iwase, H.; Kaneko, Y.; Kawai, M.; Kishida, I.; Kunieda, S.; Sato, K.; Shimakawa, S.; Shimizu, F.; Hashimoto, S.; Hashimoto, N.; Fukahori, T.; Watanabe, Y.; Xu, Q.; Ishino, S.

    2011-07-01

    Changes in mechanical property of Ni under irradiation by 3 GeV protons were estimated by multi-scale modeling. The code consisted of four parts. The first part was based on the Particle and Heavy-Ion Transport code System (PHITS) code for nuclear reactions, and modeled the interactions between high energy protons and nuclei in the target. The second part covered atomic collisions by particles without nuclear reactions. Because the energy of the particles was high, subcascade analysis was employed. The direct formation of clusters and the number of mobile defects were estimated using molecular dynamics (MD) and kinetic Monte-Carlo (kMC) methods in each subcascade. The third part considered damage structural evolutions estimated by reaction kinetic analysis. The fourth part involved the estimation of mechanical property change using three-dimensional discrete dislocation dynamics (DDD). Using the above four part code, stress-strain curves for high energy proton irradiated Ni were obtained.

  3. Maritime Operations in Disconnected, Intermittent, and Low-Bandwidth Environments

    DTIC Science & Technology

    2013-06-01

    of a Dynamic Distributed Database ( DDD ) is a core element enabling the distributed operation of networks and applications, as described in this...document. The DDD is a database containing all the relevant information required to reconfigure the applications, routing, and other network services...optimize application configuration. Figure 5 gives a snapshot of entries in the DDD . In current testing, the DDD is replicated using Domino

  4. Computational study of dislocation based mechanisms in FCC materials

    NASA Astrophysics Data System (ADS)

    Yellakara, Ranga Nikhil

    Understanding the relationships between microstructures and properties of materials is a key to developing new materials with more suitable qualities or employing the appropriate materials in special uses. In the present world of material research, the main focus is on microstructural control to cost-effectively enhance properties and meet performance specifications. This present work is directed towards improving the fundamental understanding of the microscale deformation mechanisms and mechanical behavior of metallic alloys, particularly focusing on face centered cubic (FCC) structured metals through a unique computational methodology called three-dimensional dislocation dynamics (3D-DD). In these simulations, the equations of motion for dislocations are mathematically solved to determine the evolution and interaction of dislocations. Microstructure details and stress-strain curves are a direct observation in the simulation and can be used to validate experimental results. The effect of initial dislocation microstructure on the yield strength has been studied. It has been shown that dislocation density based crystal plasticity formulations only work when dislocation densities/numbers are sufficiently large so that a statistically accurate description of the microstructure can be obtainable. The evolution of the flow stress for grain sizes ranging from 0.5 to 10 mum under uniaxial tension was simulated using an improvised model by integrating dislocation pile-up mechanism at grain boundaries has been performed. This study showed that for a same initial dislocation density, the Hall--Petch relationship holds well at small grain sizes (0.5--2 mum), beyond which the yield strength remains constant as the grain size increases. Various dislocation-particle interaction mechanisms have been introduced and investigations were made on their effect on the uniaxial tensile properties. These studies suggested that increase in particle volume fraction and decrease in particle size has contributed to the strength of these alloys. This work has been successful of capturing complex dislocation mechanisms that involves interactions with particles during the deformation of particle hardened FCC alloys. Finally, the DD model has been extended into studying the cyclic behavior of FCC metallic alloys. This study showed that the strength as well as the cyclic hardening increases due to grain refinement and increase in particle volume fraction. It also showed that the cyclic deformation of ultra-fine grained (UFG) material have undergone cyclic softening at all plastic strain amplitudes. The results provided very useful quantitative information for developing future fatigue models.

  5. Flood forecasting with DDD-application of a parsimonious hydrological model in operational flood forecasting in Norway

    NASA Astrophysics Data System (ADS)

    Skaugen, Thomas; Haddeland, Ingjerd

    2014-05-01

    A new parameter-parsimonious rainfall-runoff model, DDD (Distance Distribution Dynamics) has been run operationally at the Norwegian Flood Forecasting Service for approximately a year. DDD has been calibrated for, altogether, 104 catchments throughout Norway, and provide runoff forecasts 8 days ahead on a daily temporal resolution driven by precipitation and temperature from the meteorological forecast models AROME (48 hrs) and EC (192 hrs). The current version of DDD differs from the standard model used for flood forecasting in Norway, the HBV model, in its description of the subsurface and runoff dynamics. In DDD, the capacity of the subsurface water reservoir M, is the only parameter to be calibrated whereas the runoff dynamics is completely parameterised from observed characteristics derived from GIS and runoff recession analysis. Water is conveyed through the soils to the river network by waves with celerities determined by the level of saturation in the catchment. The distributions of distances between points in the catchment to the nearest river reach and of the river network give, together with the celerities, distributions of travel times, and, consequently unit hydrographs. DDD has 6 parameters less to calibrate in the runoff module than the HBV model. Experiences using DDD show that especially the timing of flood peaks has improved considerably and in a comparison between DDD and HBV, when assessing timeseries of 64 years for 75 catchments, DDD had a higher hit rate and a lower false alarm rate than HBV. For flood peaks higher than the mean annual flood the median hit rate is 0.45 and 0.41 for the DDD and HBV models respectively. Corresponding number for the false alarm rate is 0.62 and 0.75 For floods over the five year return interval, the median hit rate is 0.29 and 0.28 for the DDD and HBV models, respectively with false alarm rates equal to 0.67 and 0.80. During 2014 the Norwegian flood forecasting service will run DDD operationally at a 3h temporal resolution. Running DDD at a 3h resolution will give a better prediction of flood peaks in small catchments, where the averaging over 24 hrs will lead to a underestimation of high events, and we can better describe the progress floods in larger catchments. Also, at a 3h temporal resolution we make better use of the meteorological forecasts that for long have been provided at a very detailed temporal resolution.

  6. The effect of size, orientation and alloying on the deformation of AZ31 nanopillars

    NASA Astrophysics Data System (ADS)

    Aitken, Zachary H.; Fan, Haidong; El-Awady, Jaafar A.; Greer, Julia R.

    2015-03-01

    We conducted uniaxial compression of single crystalline Mg alloy, AZ31 (Al 3 wt% and Zn 1 wt%) nanopillars with diameters between 300 and 5000 nm with two distinct crystallographic orientations: (1) along the [0001] c-axis and (2) at an acute angle away from the c-axis, nominally oriented for basal slip. We observe single slip deformation for sub-micron samples nominally oriented for basal slip with the deformation commencing via a single set of parallel shear offsets. Samples compressed along the c-axis display an increase in yield strength compared to basal samples as well as significant hardening with the deformation being mostly homogeneous. We find that the "smaller is stronger" size effect in single crystals dominates any improvement in strength that may have arisen from solid solution strengthening. We employ 3D-discrete dislocation dynamics (DDD) to simulate compression along the [0001] and [ 11 2 bar 2 ] directions to elucidate the mechanisms of slip and evolution of dislocation microstructure. These simulations show qualitatively similar stress-strain signatures to the experimentally obtained stress-strain data. Simulations of compression parallel to the [ 11 2 bar 2 ] direction reveal the activation and motion of only -type dislocations and virtually no dislocation junction formation. Computations of compression along [0001] show the activation and motion of both and dislocations along with a significant increase in the formation of junctions corresponding to the interaction of intersecting pyramidal planes. Both experiments and simulation show a size effect, with a differing exponent for basal and pyramidal slip. We postulate that this anisotropy in size effect is a result of the underlying anisotropic material properties only. We discuss these findings in the context of the effective resolved shear stress relative to the unit Burgers vector for each type of slip, which reveal that the mechanism that governs size effect in this Mg-alloy is equivalent in both orientations.

  7. Modeling (Mg,Fe)O creep at Lowermost Mantle conditions

    NASA Astrophysics Data System (ADS)

    Reali, R.; Jackson, J. M.; Van Orman, J. A.; Carrez, P.; Cordier, P.

    2017-12-01

    The viscosity of the lower mantle results from the rheological behavior of its two main constituent minerals, aluminous (Mg,Fe)SiO3 bridgmanite and (Mg,Fe)O ferropericlase. Understanding the rheology of lower mantle aggregates is of primary importance in geophysics and it is a challenging task, due to the extreme time-varying conditions to which such aggregates are subjected.Here we focus on the creep behavior of (Mg,Fe)O at the bottom of the lower mantle, where the presence of thermo-chemical anomalies such as ultralow-velocity zones (ULVZ) can significantly alter the composition and therefore the properties of this region. Two different iron concentrations of (Mg1-xFex)O are considered: one mirroring the average composition of ferropericlase throughout most of the lower mantle (x = 0.20) and another representing a candidate component of ULVZs near the base of the mantle (x = 0.84) [1]. The investigated pressure-temperature conditions span from 120 GPa and 2800 K, corresponding to the geotherm at this depth, to core-mantle conditions of 135 GPa and 3800 K.In this study, dislocation creep of (Mg,Fe)O is investigated by Dislocation Dynamics (DD) simulations, a modeling tool which considers the collective motion and interactions of dislocations. To model their behavior, a 2.5 Dimensional Dislocation Dynamics approach (2.5D-DD) is employed. Within this method, both glide and climb mechanisms can be taken into account, and the interplay of these features results in a steady-state condition. This allows the retrieval of the creep strain rates at different temperatures, pressures, applied stresses and iron concentrations across the (Mg,Fe)O solid solution, providing information on the viscosity for these materials. This numerical approach has been validated at ambient conditions, where it was benchmarked with respect to experimental data on MgO [2]. [1] J.K. Wicks, J.M. Jackson, W. Sturhahn and D. Zhang, GRL, 44, 2017.[2] R. Reali, F. Boioli, K. Gouriet, P. Carrez, B. Devincre and P. Cordier, MSEA, 690, 2017.

  8. Multiscale modeling of dislocation-precipitate interactions in Fe: From molecular dynamics to discrete dislocations.

    PubMed

    Lehtinen, Arttu; Granberg, Fredric; Laurson, Lasse; Nordlund, Kai; Alava, Mikko J

    2016-01-01

    The stress-driven motion of dislocations in crystalline solids, and thus the ensuing plastic deformation process, is greatly influenced by the presence or absence of various pointlike defects such as precipitates or solute atoms. These defects act as obstacles for dislocation motion and hence affect the mechanical properties of the material. Here we combine molecular dynamics studies with three-dimensional discrete dislocation dynamics simulations in order to model the interaction between different kinds of precipitates and a 1/2〈111〉{110} edge dislocation in BCC iron. We have implemented immobile spherical precipitates into the ParaDis discrete dislocation dynamics code, with the dislocations interacting with the precipitates via a Gaussian potential, generating a normal force acting on the dislocation segments. The parameters used in the discrete dislocation dynamics simulations for the precipitate potential, the dislocation mobility, shear modulus, and dislocation core energy are obtained from molecular dynamics simulations. We compare the critical stresses needed to unpin the dislocation from the precipitate in molecular dynamics and discrete dislocation dynamics simulations in order to fit the two methods together and discuss the variety of the relevant pinning and depinning mechanisms.

  9. Reducing calibration parameters to increase insight in catchment organization and similarity

    NASA Astrophysics Data System (ADS)

    Skaugen, Thomas; Onof, Christian

    2013-04-01

    Ideally, hydrological models should be built from equations parameterised from observed catchment characteristics and data. This state of affairs may never be reached, but a governing principle in hydrological modelling should be to keep the number of calibration parameters to a minimum. A reduced number of parameters to be calibrated, while maintaining the accuracy and detail required by modern hydrological models, will reduce parameter and model structure uncertainty and improve model diagnostics. The dynamics of runoff for small catchments are derived from the distribution of distances from points in the catchments to the nearest stream in a catchment. This distribution is unique for each catchment and can be determined from a geographical information system (GIS). The distribution of distances, will, when a celerity of (subsurface) flow is introduced, provide a distribution of travel times, or a unit hydrograph (UH). For spatially varying levels of saturation deficit we have different celerities and, hence, different UHs. Runoff is derived from the super-positioning of the different UHs. This study shows how celerities can be estimated if we assume that recession events represent the superpositioned UH for different levels of saturation deficit. The performance of the DDD (Distance Distribution Dynamics) model is compared to that of the Swedish HBV model and is found to perform equally well for eight Norwegian catchments although the number of parameters to be calibrated in the module concerning soil moisture and runoff dynamics is reduced from 7 in the HBV model to 1 in the DDD model. It is also shown that the DDD model has a more realistic representation of the subsurface hydrology. The transparency of the DDD model makes model diagnostics more easy and experience with DDD shows that differences in model performance may be related to differences in catchment characteristics. More specifically, it appears that the hydrological dynamics of bogs have to be taken especially into account when modelling Norwegian catchments.

  10. Dissipative Particle Dynamics at Isoenergetic Conditions Using Shardlow-Like Splitting Algorithms

    DTIC Science & Technology

    2013-09-01

    i.e., as cond i mech ii uuu ddd  . The dynamics of the system is then governed by the following equations- of-motion (EOMs):   q ij Rq ij Dq jiij...ij ij ijD ij i-j ij i W r t rr pp rr v r p dd ddd            , (8a) jimech i jimech j j i-ji-j i i-ji-j jimech i uu mm u jjii

  11. Surface Wave Dynamics in the Coastal Zone

    DTIC Science & Technology

    2013-09-30

    summarized in Figure 1. Scatter index # DDD 󈨙 0.73 Mad󈨐 Ting󈧅+ T&M󈧆 S&Hol󈨙 S&How󈨝 Lipp󈨤+ vdW󈧍 FA󈧐 R&S󈧇/07 Slopes J&B󈧋...Battjes & Janssen [1978] TG󈨗 = Thornton & Guza [1983] Bald󈨦 = Baldock et al. [1998] DDD 󈨙 = Dally et al. [1985] J&B󈧋 = Janssen & Battjes

  12. Physics-Based Crystal Plasticity Modeling of Single Crystal Niobium

    NASA Astrophysics Data System (ADS)

    Maiti, Tias

    Crystal plasticity models based on thermally activated dislocation kinetics has been successful in predicting the deformation behavior of crystalline materials, particularly in face-centered cubic (fcc) metals. In body-centered cubic (bcc) metals success has been limited owing to ill-defined slip planes. The flow stress of a bcc metal is strongly dependent on temperature and orientation due to the non-planar splitting of a/2 screw dislocations. As a consequence of this, bcc metals show two unique deformation characteristics: (a) thermally-activated glide of screw dislocations--the motion of screw components with their non-planar core structure at the atomistic level occurs even at low stress through the nucleation (assisted by thermal activation) and lateral propagation of dislocation kink pairs; (b) break-down of the Schmid Law, where dislocation slip is driven only by the resolved shear stress. Since the split dislocation core has to constrict for a kink pair formation (and propagation), the non-planarity of bcc screw dislocation cores entails an influence of (shear) stress components acting on planes other than the primary glide plane on their mobility. Another consequence of the asymmetric core splitting on the glide plane is a direction-sensitive slip resistance, which is termed twinning/atwinning sense of shear and should be taken into account when developing constitutive models. Modeling thermally-activated flow including the above-mentioned non-Schmid effects in bcc metals has been the subject of much work, starting in the 1980s and gaining increased interest in recent times. The majority of these works focus on single crystal deformation of commonly used metals such as Iron (Fe), Molybdenum (Mo), and Tungsten (W), while very few published studies address deformation behavior in Niobium (Nb). Most of the work on Nb revolves around fitting parameters of phenomenological descriptions, which do not capture adequately the macroscopic multi-stage hardening behavior and evolution of crystallographic texture from a physical point of view. Therefore, we aim to develop a physics-based crystal plasticity model that can capture these effects as a function of grain orientations, microstructure parameters, and temperature. To achieve this goal, first, a new dilatational constitutive model is developed for simulating the deformation of non-compact geometries (foams or geometries with free surfaces) using the spectral method. The model has been used to mimic the void-growth behavior of a biaxially loaded plate with a circular inclusion. The results show that the proposed formulation provides a much better description of void-like behavior compared to the pure elastic behavior of voids. Using the developed dilatational framework, periodic boundary conditions arising from the spectral solver has been relaxed to study the tensile deformation behavior of dogbone-shaped Nb single crystals. Second, a dislocation density-based constitutive model with storage and recovery laws derived from Discrete Dislocation Dynamics (DDD) is implemented to model multi-stage strain hardening. The influence of pre-deformed dislocation content, dislocation interaction strengths and mean free path on stage II hardening is then simulated and compared with in-situ tensile experiments.

  13. Targeted drug discovery and development, from molecular signaling to the global market: an educational program at New York University, 5-year metrics

    PubMed Central

    Lee, Gloria; Plaksin, Joseph; Ramasamy, Ravichandran; Gold-von Simson, Gabrielle

    2018-01-01

    Drug discovery and development (DDD) is a collaborative, dynamic process of great interest to researchers, but an area where there is a lack of formal training. The Drug Development Educational Program (DDEP) at New York University was created in 2012 to stimulate an improved, multidisciplinary DDD workforce by educating early stage scientists as well as a variety of other like-minded students. The first course of the program emphasizes post-compounding aspects of DDD; the second course focuses on molecular signaling pathways. In five years, 196 students (candidates for PhD, MD, Master’s degree, and post-doctoral MD/PhD) from different schools (Medicine, Biomedical Sciences, Dentistry, Engineering, Business, and Education) completed the course(s). Pre/post surveys demonstrate knowledge gain across all course topics. 26 students were granted career development awards (73% women, 23% underrepresented minorities). Some graduates of their respective degree-granting/post-doctoral programs embarked on DDD related careers. This program serves as a framework for other academic institutions to develop compatible programs designed to train a more informed DDD workforce. PMID:29657854

  14. Column-by-column observation of dislocation motion in CdTe: Dynamic scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Li, Chen; Zhang, Yu-Yang; Pennycook, Timothy J.; Wu, Yelong; Lupini, Andrew R.; Paudel, Naba; Pantelides, Sokrates T.; Yan, Yanfa; Pennycook, Stephen J.

    2016-10-01

    The dynamics of partial dislocations in CdTe have been observed at the atomic scale using aberration-corrected scanning transmission electron microscopy (STEM), allowing the mobility of different dislocations to be directly compared: Cd-core Shockley partial dislocations are more mobile than Te-core partials, and dislocation cores with unpaired columns have higher mobility than those without unpaired columns. The dynamic imaging also provides insight into the process by which the dislocations glide. Dislocations with dangling bonds on unpaired columns are found to be more mobile because the dangling bonds mediate the bond exchanges required for the dislocations to move. Furthermore, a screw dislocation has been resolved to dissociate into a Shockley partial-dislocation pair along two different directions, revealing a way for the screw dislocation to glide in the material. The results show that dynamic STEM imaging has the potential to uncover the details of dislocation motion not easily accessible by other means.

  15. Interaction of 〈1 0 0〉 dislocation loops with dislocations studied by dislocation dynamics in α-iron

    NASA Astrophysics Data System (ADS)

    Shi, X. J.; Dupuy, L.; Devincre, B.; Terentyev, D.; Vincent, L.

    2015-05-01

    Interstitial dislocation loops with Burgers vector of 〈1 0 0〉 type are formed in α-iron under neutron or heavy ion irradiation. As the density and size of these loops increase with radiation dose and temperature, these defects are thought to play a key role in hardening and subsequent embrittlement of iron-based steels. The aim of the present work is to study the pinning strength of the loops on mobile dislocations. Prior to run massive Dislocation Dynamics (DD) simulations involving experimentally representative array of radiation defects and dislocations, the DD code and its parameterization are validated by comparing the individual loop-dislocation reactions with those obtained from direct atomistic Molecular Dynamics (MD) simulations. Several loop-dislocation reaction mechanisms are successfully reproduced as well as the values of the unpinning stress to detach mobile dislocations from the defects.

  16. Fast Fourier transform discrete dislocation dynamics

    NASA Astrophysics Data System (ADS)

    Graham, J. T.; Rollett, A. D.; LeSar, R.

    2016-12-01

    Discrete dislocation dynamics simulations have been generally limited to modeling systems described by isotropic elasticity. Effects of anisotropy on dislocation interactions, which can be quite large, have generally been ignored because of the computational expense involved when including anisotropic elasticity. We present a different formalism of dislocation dynamics in which the dislocations are represented by the deformation tensor, which is a direct measure of the slip in the lattice caused by the dislocations and can be considered as an eigenstrain. The stresses arising from the dislocations are calculated with a fast Fourier transform (FFT) method, from which the forces are determined and the equations of motion are solved. Use of the FFTs means that the stress field is only available at the grid points, which requires some adjustments/regularizations to be made to the representation of the dislocations and the calculation of the force on individual segments, as is discussed hereinafter. A notable advantage of this approach is that there is no computational penalty for including anisotropic elasticity. We review the method and apply it in a simple dislocation dynamics calculation.

  17. Predicting in ungauged basins using a parsimonious rainfall-runoff model

    NASA Astrophysics Data System (ADS)

    Skaugen, Thomas; Olav Peerebom, Ivar; Nilsson, Anna

    2015-04-01

    Prediction in ungauged basins is a demanding, but necessary test for hydrological model structures. Ideally, the relationship between model parameters and catchment characteristics (CC) should be hydrologically justifiable. Many studies, however, report on failure to obtain significant correlations between model parameters and CCs. Under the hypothesis that the lack of correlations stems from non-identifiability of model parameters caused by overparameterization, the relatively new parameter parsimonious DDD (Distance Distribution Dynamics) model was tested for predictions in ungauged basins in Norway. In DDD, the capacity of the subsurface water reservoir M is the only parameter to be calibrated whereas the runoff dynamics is completely parameterised from observed characteristics derived from GIS and runoff recession analysis. Water is conveyed through the soils to the river network by waves with celerities determined by the level of saturation in the catchment. The distributions of distances between points in the catchment to the nearest river reach and of the river network give, together with the celerities, distributions of travel times, and, consequently unit hydrographs. DDD has 6 parameters less to calibrate in the runoff module than, for example, the well-known Swedish HBV model. In this study, multiple regression equations relating CCs and model parameters were trained from 84 calibrated catchments located all over Norway and all model parameters showed significant correlations with catchment characteristics. The significant correlation coefficients (with p- value < 0.05) ranged from 0.22-0.55. The suitability of DDD for predictions in ungauged basins was tested for 17 catchments not used to estimate the multiple regression equations. For 10 of the 17 catchments, deviations in Nash-Suthcliffe Efficiency (NSE) criteria between the calibrated and regionalised model were less than 0.1. The median NSE for the regionalised DDD for the 17 catchments, for two different time series was 0.66 and 0.72. Deviations in NSE between calibrated and regionalised models are well explained by the deviations between calibrated and regressed parameters describing spatial snow distribution and snowmelt, respectively. This latter result indicates the topic for further improvements in the model structure of DDD.

  18. A dislocation-based crystal plasticity framework for dynamic ductile failure of single crystals

    DOE PAGES

    Nguyen, Thao; Luscher, D. J.; Wilkerson, J. W.

    2017-08-02

    We developed a framework for dislocation-based viscoplasticity and dynamic ductile failure to model high strain rate deformation and damage in single crystals. The rate-dependence of the crystal plasticity formulation is based on the physics of relativistic dislocation kinetics suited for extremely high strain rates. The damage evolution is based on the dynamics of void growth, which are governed by both micro-inertia as well as dislocation kinetics and dislocation substructure evolution. Furthermore, an averaging scheme is proposed in order to approximate the evolution of the dislocation substructure in both the macroscale as well as its spatial distribution at the microscale. Inmore » addition, a concept of a single equivalent dislocation density that effectively captures the collective influence of dislocation density on all active slip systems is proposed here. Together, these concepts and approximations enable the use of semi-analytic solutions for void growth dynamics developed in [J. Wilkerson and K. Ramesh. A dynamic void growth model governed by dislocation kinetics. J. Mech. Phys. Solids, 70:262–280, 2014.], which greatly reduce the computational overhead that would otherwise be required. The resulting homogenized framework has been implemented into a commercially available finite element package, and a validation study against a suite of direct numerical simulations was carried out.« less

  19. Dislocation pinning effects induced by nano-precipitates during warm laser shock peening: Dislocation dynamic simulation and experiments

    NASA Astrophysics Data System (ADS)

    Liao, Yiliang; Ye, Chang; Gao, Huang; Kim, Bong-Joong; Suslov, Sergey; Stach, Eric A.; Cheng, Gary J.

    2011-07-01

    Warm laser shock peening (WLSP) is a new high strain rate surface strengthening process that has been demonstrated to significantly improve the fatigue performance of metallic components. This improvement is mainly due to the interaction of dislocations with highly dense nanoscale precipitates, which are generated by dynamic precipitation during the WLSP process. In this paper, the dislocation pinning effects induced by the nanoscale precipitates during WLSP are systematically studied. Aluminum alloy 6061 and AISI 4140 steel are selected as the materials with which to conduct WLSP experiments. Multiscale discrete dislocation dynamics (MDDD) simulation is conducted in order to investigate the interaction of dislocations and precipitates during the shock wave propagation. The evolution of dislocation structures during the shock wave propagation is studied. The dislocation structures after WLSP are characterized via transmission electron microscopy and are compared with the results of the MDDD simulation. The results show that nano-precipitates facilitate the generation of highly dense and uniformly distributed dislocation structures. The dislocation pinning effect is strongly affected by the density, size, and space distribution of nano-precipitates.

  20. Groundwater modelling in conceptual hydrological models - introducing space

    NASA Astrophysics Data System (ADS)

    Boje, Søren; Skaugen, Thomas; Møen, Knut; Myrabø, Steinar

    2017-04-01

    The tiny Sæternbekken Minifelt (Muren) catchment (7500 m2) in Bærumsmarka, Norway, was during the 1990s, densely instrumented with more than a 100 observation points for measuring groundwater levels. The aim was to investigate the link between shallow groundwater dynamics and runoff. The DDD (Distance Distribution Dynamics) model is a newly developed rainfall-runoff model used operationally by the Norwegian Flood-Forecasting service at NVE. The model estimates the capacity of the subsurface reservoir at different levels of saturation and predicts overland flow. The subsurface in the DDD model has a 2-D representation that calculates the saturated and unsaturated soil moisture along a hillslope representing the entire catchment in question. The groundwater observations from more than two decades ago are used to verify assumptions of the subsurface reservoir in the DDD model and to validate its spatial representation of the subsurface reservoir. The Muren catchment will, during 2017, be re-instrumented in order to continue the work to bridge the gap between conceptual hydrological models, with typically single value or 0-dimension representation of the subsurface, and models with more realistic 2- or 3-dimension representation of the subsurface.

  1. Molecular insight into bacterial cleavage of oceanic dimethylsulfoniopropionate into dimethyl sulfide

    PubMed Central

    Li, Chun-Yang; Wei, Tian-Di; Zhang, Sheng-Hui; Chen, Xiu-Lan; Gao, Xiang; Wang, Peng; Xie, Bin-Bin; Su, Hai-Nan; Qin, Qi-Long; Zhang, Xi-Ying; Yu, Juan; Zhang, Hong-Hai; Zhou, Bai-Cheng; Yang, Gui-Peng; Zhang, Yu-Zhong

    2014-01-01

    The microbial cleavage of dimethylsulfoniopropionate (DMSP) generates volatile DMS through the action of DMSP lyases and is important in the global sulfur and carbon cycles. When released into the atmosphere from the oceans, DMS is oxidized, forming cloud condensation nuclei that may influence weather and climate. Six different DMSP lyase genes are found in taxonomically diverse microorganisms, and dddQ is among the most abundant in marine metagenomes. Here, we examine the molecular mechanism of DMSP cleavage by the DMSP lyase, DddQ, from Ruegeria lacuscaerulensis ITI_1157. The structures of DddQ bound to an inhibitory molecule 2-(N-morpholino)ethanesulfonic acid and of DddQ inactivated by a Tyr131Ala mutation and bound to DMSP were solved. DddQ adopts a β-barrel fold structure and contains a Zn2+ ion and six highly conserved hydrophilic residues (Tyr120, His123, His125, Glu129, Tyr131, and His163) in the active site. Mutational and biochemical analyses indicate that these hydrophilic residues are essential to catalysis. In particular, Tyr131 undergoes a conformational change during catalysis, acting as a base to initiate the β-elimination reaction in DMSP lysis. Moreover, structural analyses and molecular dynamics simulations indicate that two loops over the substrate-binding pocket of DddQ can alternate between “open” and “closed” states, serving as a gate for DMSP entry. We also propose a molecular mechanism for DMS production through DMSP cleavage. Our study provides important insight into the mechanism involved in the conversion of DMSP into DMS, which should lead to a better understanding of this globally important biogeochemical reaction. PMID:24395783

  2. Dissipative Particle Dynamics at Isoenthalpic Conditions Using Shardlow-Like Splitting Algorithms

    DTIC Science & Technology

    2013-09-01

    dd 11 d d ,...,1d 11 2 d 2 1 d dd dlnd ,...,1d1 dddd ddd ij 2 2 2...t W p t m ij i f C iji i i i i dd dlnd d1dd ddd                      pFp r p r  Ni ,...,1 , (10) while the fluctuation...pp rr v r p dd ddd             (11a) 6 j ji i i- j i- ji- j i- j mech,i j i i j mech,i j mech,i j j i 1 u 2 2m 2m u u d d d

  3. Ultrasonic Study of Dislocation Dynamics in Lithium -

    NASA Astrophysics Data System (ADS)

    Han, Myeong-Deok

    1987-09-01

    Experimental studies of dislocation dynamics in LiF single crystals, using ultrasonic techniques combined with dynamic loading, were performed to investigate the time evolution of the plastic deformation process under a short stress pulse at room temperature, and the temperature dependence of the dislocation damping mechanism in the temperature range 25 - 300(DEGREES)K. From the former, the time dependence of the ultrasonic attenuation was understood as resulting from dislocation multiplication followed by the evolution of mobile dislocations to immobile ones under large stress. From the latter, the temperature dependence of the ultrasonic attenuation was interpreted as due to the motion of the dislocation loops overcoming the periodic Peierls potential barrier in a manner analogous to the motion of a thermalized sine-Gordon chain under a small stress. The Peierls stress obtained from the experimental results by application of Seeger's relaxation model with exponential dislocation length distribution was 4.26MPa, which is consistent with the lowest stress for the linear relation between the dislocation velocity and stress observed by Flinn and Tinder.

  4. Initial dislocation structure and dynamic dislocation multiplication in Mo single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsiung, L M; Lassila, D H

    Initial dislocation structure in annealed high-purity Mo single crystals and deformation substructure in a crystal subjected to 1% compression have been examined and studied in order to investigate dislocation multiplication mechanisms in the early stages of plastic deformation. The initial dislocation density is in a range of 10{sup 6} {approx} 10{sup 7} cm{sup -2}, and the dislocation structure is found to contain many grown-in superjogs along dislocation lines. The dislocation density increases to a range of 10{sup 8} {approx} 10{sup 9} cm{sup -2}, and the average jog height is also found to increase after compressing for a total strain ofmore » 1%. It is proposed that the preexisting jogged screw dislocations can act as (multiple) dislocation multiplication sources when deformed under quasi-static conditions. Both the jog height and length of link segment (between jogs) can increase by stress-induced jog coalescence, which takes place via the lateral migration (drift) of superjogs driven by unbalanced line-tension partials acting on link segments of unequal lengths. Applied shear stress begins to push each link segment to precede dislocation multiplication when link length and jog height are greater than critical lengths. This dynamic dislocation multiplication source is subsequently verified by direct simulations of dislocation dynamics under stress to be crucial in the early stages of plastic deformation in Mo single crystals.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Thao; Luscher, D. J.; Wilkerson, J. W.

    We developed a framework for dislocation-based viscoplasticity and dynamic ductile failure to model high strain rate deformation and damage in single crystals. The rate-dependence of the crystal plasticity formulation is based on the physics of relativistic dislocation kinetics suited for extremely high strain rates. The damage evolution is based on the dynamics of void growth, which are governed by both micro-inertia as well as dislocation kinetics and dislocation substructure evolution. Furthermore, an averaging scheme is proposed in order to approximate the evolution of the dislocation substructure in both the macroscale as well as its spatial distribution at the microscale. Inmore » addition, a concept of a single equivalent dislocation density that effectively captures the collective influence of dislocation density on all active slip systems is proposed here. Together, these concepts and approximations enable the use of semi-analytic solutions for void growth dynamics developed in [J. Wilkerson and K. Ramesh. A dynamic void growth model governed by dislocation kinetics. J. Mech. Phys. Solids, 70:262–280, 2014.], which greatly reduce the computational overhead that would otherwise be required. The resulting homogenized framework has been implemented into a commercially available finite element package, and a validation study against a suite of direct numerical simulations was carried out.« less

  6. A dislocation-based crystal plasticity framework for dynamic ductile failure of single crystals

    NASA Astrophysics Data System (ADS)

    Nguyen, Thao; Luscher, D. J.; Wilkerson, J. W.

    2017-11-01

    A framework for dislocation-based viscoplasticity and dynamic ductile failure has been developed to model high strain rate deformation and damage in single crystals. The rate-dependence of the crystal plasticity formulation is based on the physics of relativistic dislocation kinetics suited for extremely high strain rates. The damage evolution is based on the dynamics of void growth, which are governed by both micro-inertia as well as dislocation kinetics and dislocation substructure evolution. An averaging scheme is proposed in order to approximate the evolution of the dislocation substructure in both the macroscale as well as its spatial distribution at the microscale. Additionally, a concept of a single equivalent dislocation density that effectively captures the collective influence of dislocation density on all active slip systems is proposed here. Together, these concepts and approximations enable the use of semi-analytic solutions for void growth dynamics developed in (Wilkerson and Ramesh, 2014), which greatly reduce the computational overhead that would otherwise be required. The resulting homogenized framework has been implemented into a commercially available finite element package, and a validation study against a suite of direct numerical simulations was carried out.

  7. [Relation between defined daily doses (DDD) and prescribed daily doses: a 3-month analysis of outpatient data from a statutory health insurance company].

    PubMed

    Grimmsmann, T; Himmel, W

    2010-07-01

    Defined daily doses (DDD) are used to analyse drug utilisation. For frequently prescribed drug groups, we studied to what extent the DDD correspond to the average prescribed daily doses (PDD). We analysed all drugs prescribed for more than three months to insured of a large health insurance fund in Mecklenburg-Vorpommern, one federal state in Germany. PDD for plain ACE inhibitors, selective beta-antagonists and some antidiabetics (sulfonylurea compounds) were calculated and compared with their DDD. During the study period, about 38 500 patients received continuous prescriptions of each ACE inhibitors or selective beta-antagonists, and about 9 000 of sulfonylurea compounds. PDD differed from DDD in varying degrees. For ACE inhibitors, PDD ranged between 1.5 DDD (for captopril) and 3.5 (for ramipril). The PDD for beta antagonists were on average 0.9 DDD, similar for bisoprolol (0.8 DDD) and metoprolol (0.9 DDD). As for oral antidiabetics, doctors prescribed 1.0 DDD glibenclamid per day and patient and 2.0 DDD glimepirid. Depending on differences between DDD and PDD, real daily costs for drug therapy differed from the theoretical costs per DDD, for example in the case of ramipril they were 0.24 euros compared to 0.07 euros. The PDD were much higher than the DDD for several frequently prescribed drugs. Consequently, the daily drug costs exceeded the drug costs based on DDD. Evaluations of drug costs on the basis for DDD require careful interpretation. Moreover, the number of DDD alone is not a valid measurement for the appropriateness of drug therapy and can only give a rough estimate of the number of patients treated, at least for the drug groups in this study. Copyright Georg Thieme Verlag KG Stuttgart . New York

  8. “Conjugate Channeling” Effect in Dislocation Core Diffusion: Carbon Transport in Dislocated BCC Iron

    PubMed Central

    Ishii, Akio; Li, Ju; Ogata, Shigenobu

    2013-01-01

    Dislocation pipe diffusion seems to be a well-established phenomenon. Here we demonstrate an unexpected effect, that the migration of interstitials such as carbon in iron may be accelerated not in the dislocation line direction , but in a conjugate diffusion direction. This accelerated random walk arises from a simple crystallographic channeling effect. is a function of the Burgers vector b, but not , thus a dislocation loop possesses the same everywhere. Using molecular dynamics and accelerated dynamics simulations, we further show that such dislocation-core-coupled carbon diffusion in iron has temperature-dependent activation enthalpy like a fragile glass. The 71° mixed dislocation is the only case in which we see straightforward pipe diffusion that does not depend on dislocation mobility. PMID:23593255

  9. "Conjugate channeling" effect in dislocation core diffusion: carbon transport in dislocated BCC iron.

    PubMed

    Ishii, Akio; Li, Ju; Ogata, Shigenobu

    2013-01-01

    Dislocation pipe diffusion seems to be a well-established phenomenon. Here we demonstrate an unexpected effect, that the migration of interstitials such as carbon in iron may be accelerated not in the dislocation line direction ξ, but in a conjugate diffusion direction. This accelerated random walk arises from a simple crystallographic channeling effect. c is a function of the Burgers vector b, but not ξ, thus a dislocation loop possesses the same everywhere. Using molecular dynamics and accelerated dynamics simulations, we further show that such dislocation-core-coupled carbon diffusion in iron has temperature-dependent activation enthalpy like a fragile glass. The 71° mixed dislocation is the only case in which we see straightforward pipe diffusion that does not depend on dislocation mobility.

  10. Dynamics of threading dislocations in porous heteroepitaxial GaN films

    NASA Astrophysics Data System (ADS)

    Gutkin, M. Yu.; Rzhavtsev, E. A.

    2017-12-01

    Behavior of threading dislocations in porous heteroepitaxial gallium nitride (GaN) films has been studied using computer simulation by the two-dimensional discrete dislocation dynamics approach. A computational scheme, where pores are modeled as cross sections of cylindrical cavities, elastically interacting with unidirectional parallel edge dislocations, which imitate threading dislocations, is used. Time dependences of coordinates and velocities of each dislocation from dislocation ensembles under investigation are obtained. Visualization of current structure of dislocation ensemble is performed in the form of a location map of dislocations at any time. It has been shown that the density of appearing dislocation structures significantly depends on the ratio of area of a pore cross section to area of the simulation region. In particular, increasing the portion of pores surface on the layer surface up to 2% should lead to about a 1.5-times decrease of the final density of threading dislocations, and increase of this portion up to 15% should lead to approximately a 4.5-times decrease of it.

  11. 40 CFR Table 1 to Subpart Ddd of... - Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart DDD of Part 63

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (40 CFR Part 63, Subpart A) to Subpart DDD of Part 63 1 Table 1 to Subpart DDD of Part 63 Protection... Hazardous Air Pollutants for Mineral Wool Production Pt. 63, Subpt. DDD, Table 1 Table 1 to Subpart DDD of Part 63—Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart DDD of Part 63...

  12. 40 CFR Table 1 to Subpart Ddd of... - Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart DDD of Part 63

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (40 CFR Part 63, Subpart A) to Subpart DDD of Part 63 1 Table 1 to Subpart DDD of Part 63 Protection... Hazardous Air Pollutants for Mineral Wool Production Pt. 63, Subpt. DDD, Table 1 Table 1 to Subpart DDD of Part 63—Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart DDD of Part 63...

  13. Dynamic phases, pinning, and pattern formation for driven dislocation assemblies

    DOE PAGES

    Zhou, Caizhi; Reichhardt, Charles; Olson Reichhardt, Cynthia J.; ...

    2015-01-23

    We examine driven dislocation assemblies and show that they can exhibit a set of dynamical phases remarkably similar to those of driven systems with quenched disorder such as vortices in superconductors, magnetic domain walls, and charge density wave materials. These phases include pinned-jammed, fluctuating, and dynamically ordered states, and each produces distinct dislocation patterns as well as specific features in the noise fluctuations and transport properties. Lastly, our work suggests that many of the results established for systems with quenched disorder undergoing plastic depinning transitions can be applied to dislocation systems, providing a new approach for understanding pattern formation andmore » dynamics in these systems.« less

  14. Further characterization of diabetes mellitus and body weight loss in males of the congenic mouse strain DDD.Cg-A(y.).

    PubMed

    Suto, Jun-ichi; Satou, Kunio

    2015-02-01

    The A(y) allele at the agouti locus causes obesity and promotes linear growth in mice. However, body weight gain stops between 16 and 17 weeks after birth, and then, body weight decreases gradually in DDD.Cg-A(y) male mice. Body weight loss is a consequence of diabetes mellitus, which is genetically controlled mainly by a quantitative trait locus (QTL) on chromosome 4. This study aimed to further characterize diabetes mellitus and body weight loss in DDD.Cg-A(y) males. The number of β-cells was markedly reduced, and plasma insulin levels were very low in the DDD.Cg-A(y) males. Using a backcross progeny of DDD × (B6 × DDD.Cg-A(y)) F1-A(y), we identified one significant QTL for plasma insulin levels on distal chromosome 4, which was coincidental with QTL for hyperglycemia and lower body weight. The DDD allele was associated with decreased plasma insulin levels. When the DDD.Cg-A(y) males were housed under three different housing conditions [group housing (4 or 5 DDD.Cg-A(y) and DDD males), individual housing (single DDD.Cg-A(y) male) and single male housing with females (single DDD.Cg-A(y) male with DDD.Cg-A(y) or DDD females)], diabetes mellitus and body weight loss were most severely expressed in individually housed mice. Thus, the severity of diabetes and body weight loss in the DDD.Cg-A(y) males was strongly influenced by the housing conditions. These results demonstrate that both genetic and nongenetic environmental factors are involved in the development of diabetes mellitus and body weight loss in the DDD.Cg-A(y) males.

  15. Further characterization of diabetes mellitus and body weight loss in males of the congenic mouse strain DDD.Cg-Ay

    PubMed Central

    SUTO, Jun-ichi; SATOU, Kunio

    2014-01-01

    The Ay allele at the agouti locus causes obesity and promotes linear growth in mice. However, body weight gain stops between 16 and 17 weeks after birth, and then, body weight decreases gradually in DDD.Cg-Ay male mice. Body weight loss is a consequence of diabetes mellitus, which is genetically controlled mainly by a quantitative trait locus (QTL) on chromosome 4. This study aimed to further characterize diabetes mellitus and body weight loss in DDD.Cg-Ay males. The number of β-cells was markedly reduced, and plasma insulin levels were very low in the DDD.Cg-Ay males. Using a backcross progeny of DDD × (B6 × DDD.Cg-Ay) F1-Ay, we identified one significant QTL for plasma insulin levels on distal chromosome 4, which was coincidental with QTL for hyperglycemia and lower body weight. The DDD allele was associated with decreased plasma insulin levels. When the DDD.Cg-Ay males were housed under three different housing conditions [group housing (4 or 5 DDD.Cg-Ay and DDD males), individual housing (single DDD.Cg-Ay male) and single male housing with females (single DDD.Cg-Ay male with DDD.Cg-Ay or DDD females)], diabetes mellitus and body weight loss were most severely expressed in individually housed mice. Thus, the severity of diabetes and body weight loss in the DDD.Cg-Ay males was strongly influenced by the housing conditions. These results demonstrate that both genetic and nongenetic environmental factors are involved in the development of diabetes mellitus and body weight loss in the DDD.Cg-Ay males. PMID:25373882

  16. Dislocation dynamics in hexagonal close-packed crystals

    DOE PAGES

    Aubry, S.; Rhee, M.; Hommes, G.; ...

    2016-04-14

    Extensions of the dislocation dynamics methodology necessary to enable accurate simulations of crystal plasticity in hexagonal close-packed (HCP) metals are presented. They concern the introduction of dislocation motion in HCP crystals through linear and non-linear mobility laws, as well as the treatment of composite dislocation physics. Formation, stability and dissociation of and other dislocations with large Burgers vectors defined as composite dislocations are examined and a new topological operation is proposed to enable their dissociation. Furthermore, the results of our simulations suggest that composite dislocations are omnipresent and may play important roles both in specific dislocation mechanisms and in bulkmore » crystal plasticity in HCP materials. While fully microscopic, our bulk DD simulations provide wealth of data that can be used to develop and parameterize constitutive models of crystal plasticity at the mesoscale.« less

  17. Dislocation dynamics simulations of interactions between gliding dislocations and radiation induced prismatic loops in zirconium

    NASA Astrophysics Data System (ADS)

    Drouet, Julie; Dupuy, Laurent; Onimus, Fabien; Mompiou, Frédéric; Perusin, Simon; Ambard, Antoine

    2014-06-01

    The mechanical behavior of Pressurized Water Reactor fuel cladding tubes made of zirconium alloys is strongly affected by neutron irradiation due to the high density of radiation induced dislocation loops. In order to investigate the interaction mechanisms between gliding dislocations and loops in zirconium, a new nodal dislocation dynamics code, adapted to Hexagonal Close Packed metals, has been used. Various configurations have been systematically computed considering different glide planes, basal or prismatic, and different characters, edge or screw, for gliding dislocations with -type Burgers vectors. Simulations show various interaction mechanisms such as (i) absorption of a loop on an edge dislocation leading to the formation of a double super-jog, (ii) creation of a helical turn, on a screw dislocation, that acts as a strong pinning point or (iii) sweeping of a loop by a gliding dislocation. It is shown that the clearing of loops is more favorable when the dislocation glides in the basal plane than in the prismatic plane explaining the easy dislocation channeling in the basal plane observed after neutron irradiation by transmission electron microscopy.

  18. Size dependence of yield strength simulated by a dislocation-density function dynamics approach

    NASA Astrophysics Data System (ADS)

    Leung, P. S. S.; Leung, H. S.; Cheng, B.; Ngan, A. H. W.

    2015-04-01

    The size dependence of the strength of nano- and micron-sized crystals is studied using a new simulation approach in which the dynamics of the density functions of dislocations are modeled. Since any quantity of dislocations can be represented by a density, this approach can handle large systems containing large quantities of dislocations, which may handicap discrete dislocation dynamics schemes due to the excessive computation time involved. For this reason, pillar sizes spanning a large range, from the sub-micron to micron regimes, can be simulated. The simulation results reveal the power-law relationship between strength and specimen size up to a certain size, beyond which the strength varies much more slowly with size. For specimens smaller than ∼4000b, their strength is found to be controlled by the dislocation depletion condition, in which the total dislocation density remains almost constant throughout the loading process. In specimens larger than ∼4000b, the initial dislocation distribution is of critical importance since the presence of dislocation entanglements is found to obstruct deformation in the neighboring regions within a distance of ∼2000b. This length scale suggests that the effects of dense dislocation clusters are greater in intermediate-sized specimens (e.g. 4000b and 8000b) than in larger specimens (e.g. 16 000b), according to the weakest-link concept.

  19. Comparison of dislocation density tensor fields derived from discrete dislocation dynamics and crystal plasticity simulations of torsion

    DOE PAGES

    Jones, Reese E.; Zimmerman, Jonathan A.; Po, Giacomo; ...

    2016-02-01

    Accurate simulation of the plastic deformation of ductile metals is important to the design of structures and components to performance and failure criteria. Many techniques exist that address the length scales relevant to deformation processes, including dislocation dynamics (DD), which models the interaction and evolution of discrete dislocation line segments, and crystal plasticity (CP), which incorporates the crystalline nature and restricted motion of dislocations into a higher scale continuous field framework. While these two methods are conceptually related, there have been only nominal efforts focused at the global material response that use DD-generated information to enhance the fidelity of CPmore » models. To ascertain to what degree the predictions of CP are consistent with those of DD, we compare their global and microstructural response in a number of deformation modes. After using nominally homogeneous compression and shear deformation dislocation dynamics simulations to calibrate crystal plasticity ow rule parameters, we compare not only the system-level stress-strain response of prismatic wires in torsion but also the resulting geometrically necessary dislocation density fields. To establish a connection between explicit description of dislocations and the continuum assumed with crystal plasticity simulations we ascertain the minimum length-scale at which meaningful dislocation density fields appear. Furthermore, our results show that, for the case of torsion, that the two material models can produce comparable spatial dislocation density distributions.« less

  20. Quasicontinuum analysis of dislocation-coherent twin boundary interaction to provide local rules to discrete dislocation dynamics

    NASA Astrophysics Data System (ADS)

    Tran, H.-S.; Tummala, H.; Duchene, L.; Pardoen, T.; Fivel, M.; Habraken, A. M.

    2017-10-01

    The interaction of a pure screw dislocation with a Coherent Twin Boundary Σ3 in copper was studied using the Quasicontinuum method. Coherent Twin Boundary behaves as a strong barrier to dislocation glide and prohibits slip transmission across the boundary. Dislocation pileup modifies the stress field at its intersection with the Grain Boundary (GB). A methodology to estimate the strength of the barrier for a dislocation to slip across CTB is proposed. A screw dislocation approaching the boundary from one side either propagates into the adjacent twin grain by cutting through the twin boundary or is stopped and increases the dislocation pileup amplitude at the GB. Quantitative estimation of the critical stress for transmission was performed using the virial stress computed by Quasicontinuum method. The transmission mechanism and critical stress are in line with the literature. Such information can be used as input for dislocation dynamic simulations for a better modeling of grain boundaries.

  1. Near elimination of ventricular pacing in SafeR mode compared to DDD modes: a randomized study of 422 patients.

    PubMed

    Davy, Jean-Marc; Hoffmann, Ellen; Frey, Axel; Jocham, Kurt; Rossi, Stefano; Dupuis, Jean-Marc; Frabetti, Lorenzo; Ducloux, Pascale; Prades, Emmanuel; Jauvert, Gaël

    2012-04-01

    SafeR performance versus DDD/automatic mode conversion (DDD/AMC) and DDD with a 250-ms atrioventricular (AV) delay (DDD/LD) modes was assessed toward ventricular pacing (Vp) reduction. After a 1-month run-in phase, recipients of dual-chamber pacemakers without persistent AV block and persistent atrial fibrillation (AF) were randomly assigned to SafeR, DDD/AMC, or DDD/LD in a 1:1:1 design. The main endpoint was the percentage of Vp (%Vp) at 2 months and 1 year after randomization, ascertained from device memories. Secondary endpoints include %Vp at 1 year according to pacing indication and 1-year AF incidence based on automatic mode switch device stored episodes. Among 422 randomized patients (73.2±10.6 years, 50% men, sinus node dysfunction 47.4%, paroxysmal AV block 30.3%, bradycardia-tachycardia syndrome 21.8%), 141 were assigned to SafeR versus 146 to DDD/AMC and 135 to DDD/LD modes. Mean %Vp at 2 months was 3.4±12.6% in SafeR versus 33.6±34.7% and 14.0±26.0% in DDD/AMC and DDD/LD modes, respectively (P<0.0001 for both). At 1 year, mean %Vp in SafeR was 4.5±15.3% versus 37.9±34.4% and 16.7±28.0% in DDD/AMC and DDD/LD modes, respectively (P<0.0001 for both). The proportion of patients in whom Vp was completely eliminated was significantly higher in SafeR (69%) versus DDD/AMC (15%) and DDD/LD (45%) modes (P<0.0001 for both), regardless of pacing indication. The absolute risk of developing permanent AF or of remaining in AF for >30% of the time was 5.4% lower in SafeR than in the DDD pacing group (ns). In this selected patient population, SafeR markedly suppressed unnecessary Vp compared with DDD modes. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.

  2. How to identify dislocations in molecular dynamics simulations?

    NASA Astrophysics Data System (ADS)

    Li, Duo; Wang, FengChao; Yang, ZhenYu; Zhao, YaPu

    2014-12-01

    Dislocations are of great importance in revealing the underlying mechanisms of deformed solid crystals. With the development of computational facilities and technologies, the observations of dislocations at atomic level through numerical simulations are permitted. Molecular dynamics (MD) simulation suggests itself as a powerful tool for understanding and visualizing the creation of dislocations as well as the evolution of crystal defects. However, the numerical results from the large-scale MD simulations are not very illuminating by themselves and there exist various techniques for analyzing dislocations and the deformed crystal structures. Thus, it is a big challenge for the beginners in this community to choose a proper method to start their investigations. In this review, we summarized and discussed up to twelve existing structure characterization methods in MD simulations of deformed crystal solids. A comprehensive comparison was made between the advantages and disadvantages of these typical techniques. We also examined some of the recent advances in the dynamics of dislocations related to the hydraulic fracturing. It was found that the dislocation emission has a significant effect on the propagation and bifurcation of the crack tip in the hydraulic fracturing.

  3. Chiral effects in adrenocorticolytic action of o,p'-DDD (mitotane) in human adrenal cells.

    PubMed

    Asp, V; Cantillana, T; Bergman, A; Brandt, I

    2010-03-01

    Adrenocortical carcinoma (ACC) is a rare malignant disease with poor prognosis. The main pharmacological choice, o,p'-DDD (mitotane), produces severe adverse effects. Since o,p'-DDD is a chiral molecule and stereoisomers frequently possess different pharmacokinetic and/or pharmacodynamic properties, we isolated the two o,p'-DDD enantiomers, (R)-(+)-o,p'-DDD and (S)-(-)-o,p'-DDD, and determined their absolute structures. The effects of each enantiomer on cell viability and on cortisol and dehydroepiandrosterone (DHEA) secretion in the human adrenocortical cell line H295R were assessed. We also assayed the o,p'-DDD racemate and the m,p'- and p,p'-isomers. The results show small but statistically significant differences in activity of the o,p'-DDD enantiomers for all parameters tested. The three DDD isomers were equally potent in decreasing cell viability, but p,p'-DDD affected hormone secretion slightly less than the o,p'- and m,p'-isomers. The small chiral differences in direct effects on target cells alone do not warrant single enantiomer administration, but might reach importance in conjunction with possible stereochemical effects on pharmacokinetic processes in vivo.

  4. Structural and Molecular Basis for the Novel Catalytic Mechanism and Evolution of DddP, an Abundant Peptidase-Like Bacterial Dimethylsulfoniopropionate Lyase: A New Enzyme from an Old Fold

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Z.; Wang, P.; Chen, X. L.; Li, C. Y.; Gao, X.; Zhu, D.; Xie, B. B.; Qin, Q. L.; Zhang, X. Y.; Su, H. N.; Zhou, B. C.; Xun, L.

    2015-12-01

    The microbial cleavage of dimethylsulfoniopropionate (DMSP) generates volatile dimethyl sulfide (DMS) and is an important step in global sulfur and carbon cycles. DddP is a DMSP lyase in marine bacteria and the deduced dddP gene product is abundant in marine metagenomic data sets. However, DddP belongs to the M24 peptidase family according to sequence alignment. Peptidases hydrolyze C-N bonds but DddP is deduced to cleave C-S bonds. Mechanisms responsible for this striking functional shift are currently unknown. We determined the structures of DMSP lyase RlDddP (the DddP from Ruegeria lacuscaerulensis ITI_1157) bound to inhibitory 2-(N-morpholino) ethanesulfonic acid or PO43- and of two mutants of RlDddP bound to acrylate. Based on structural, mutational and biochemical analyses, we characterized a new ion-shift catalytic mechanism of RlDddP for DMSP cleavage. Further, we suggested the structural mechanism leading to the loss of peptidase activity and the subsequent development of DMSP lyase activity in DddP. This study sheds light on the catalytic mechanism and the divergent evolution of DddP, leading to a better understanding of marine bacterial DMSP catabolism and global DMS production.

  5. Modelling crystal plasticity by 3D dislocation dynamics and the finite element method: The Discrete-Continuous Model revisited

    NASA Astrophysics Data System (ADS)

    Vattré, A.; Devincre, B.; Feyel, F.; Gatti, R.; Groh, S.; Jamond, O.; Roos, A.

    2014-02-01

    A unified model coupling 3D dislocation dynamics (DD) simulations with the finite element (FE) method is revisited. The so-called Discrete-Continuous Model (DCM) aims to predict plastic flow at the (sub-)micron length scale of materials with complex boundary conditions. The evolution of the dislocation microstructure and the short-range dislocation-dislocation interactions are calculated with a DD code. The long-range mechanical fields due to the dislocations are calculated by a FE code, taking into account the boundary conditions. The coupling procedure is based on eigenstrain theory, and the precise manner in which the plastic slip, i.e. the dislocation glide as calculated by the DD code, is transferred to the integration points of the FE mesh is described in full detail. Several test cases are presented, and the DCM is applied to plastic flow in a single-crystal Nickel-based superalloy.

  6. Modeling of dislocation dynamics in germanium Czochralski growth

    NASA Astrophysics Data System (ADS)

    Artemyev, V. V.; Smirnov, A. D.; Kalaev, V. V.; Mamedov, V. M.; Sidko, A. P.; Podkopaev, O. I.; Kravtsova, E. D.; Shimansky, A. F.

    2017-06-01

    Obtaining very high-purity germanium crystals with low dislocation density is a practically difficult problem, which requires knowledge and experience in growth processes. Dislocation density is one of the most important parameters defining the quality of germanium crystal. In this paper, we have performed experimental study of dislocation density during 4-in. germanium crystal growth using the Czochralski method and comprehensive unsteady modeling of the same crystal growth processes, taking into account global heat transfer, melt flow and melt/crystal interface shape evolution. Thermal stresses in the crystal and their relaxation with generation of dislocations within the Alexander-Haasen model have been calculated simultaneously with crystallization dynamics. Comparison to experimental data showed reasonable agreement for the temperature, interface shape and dislocation density in the crystal between calculation and experiment.

  7. Atomic-scale dynamics of edge dislocations in Ni and concentrated solid solution NiFe alloys

    DOE PAGES

    Zhao, Shijun; Osetsky, Yuri N.; Zhang, Yanwen; ...

    2017-01-19

    Single-phase concentrated solid solution alloys (CSAs), including high entropy alloys, exhibit excellent mechanical properties compared to conventional dilute alloys. However, the origin of this observation is not clear yet because the dislocation properties in CSAs are poorly understood. In this work, the mobility of a <110>{111} edge dislocation in pure Ni and equiatomic solid solution Ni 0.5Fe 0.5 (NiFe) is studied using molecular dynamics simulations with different empirical potentials. The threshold stress to initiate dislocation movement in NiFe is found to be much higher compared to pure Ni. The drag coefficient of the dislocation motion calculated from the linear regimemore » of dislocation velocities versus applied stress suggests that the movement of dislocations in NiFe is strongly damped compared to that in Ni. The present results indicate that the mobility of edge dislocations in fcc CSAs are controlled by the fluctuations in local stacking fault energy caused by the local variation of alloy composition.« less

  8. Exciton dynamics at a single dislocation in GaN probed by picosecond time-resolved cathodoluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W., E-mail: we.liu@epfl.ch, E-mail: gwenole.jacopin@epfl.ch; Carlin, J.-F.; Grandjean, N.

    2016-07-25

    We investigate the dynamics of donor bound excitons (D°X{sub A}) at T = 10 K around an isolated single edge dislocation in homoepitaxial GaN, using a picosecond time-resolved cathodoluminescence (TR-CL) setup with high temporal and spatial resolutions. An ∼ 1.3 meV dipole-like energy shift of D°X{sub A} is observed around the dislocation, induced by the local strain fields. By simultaneously recording the variations of both the exciton lifetime and the CL intensity across the dislocation, we directly assess the dynamics of excitons around the defect. Our observations are well reproduced by a diffusion model. It allows us to deduce an exciton diffusion length ofmore » ∼24 nm as well as an effective area of the dislocation with a radius of ∼95 nm, where the recombination can be regarded as entirely non-radiative.« less

  9. Atomistic simulations of dislocation dynamics in δ-Pu-Ga alloys

    NASA Astrophysics Data System (ADS)

    Karavaev, A. V.; Dremov, V. V.; Ionov, G. V.

    2017-12-01

    Molecular dynamics with the modified embedded atom model (MEAM) for interatomic interaction is applied to direct simulations of dislocation dynamics in fcc δ-phase Pu-Ga alloys. First, parameters of the MEAM potential are fitted to accurately reproduce experimental phonon dispersion curves and phonon density of states at ambient conditions. Then the stress-velocity dependence for edge dislocations as well as Pierls stress are obtained in direct MD modeling of dislocation motion using the shear stress relaxation technique. The simulations are performed for different gallium concentrations and the dependence of static yield stress on Ga concentration derived demonstrates good agreement with experimental data. Finally, the influence of radiation defects (primary radiation defects, nano-pores, and radiogenic helium bubbles) on dislocation dynamics is investigated. It is demonstrated that uniformly distributed vacancies and nano-pores have little effect on dislocation dynamics in comparison with that of helium bubbles. The results of the MD simulations evidence that the accumulation of the radiogenic helium in the form of nanometer-sized bubbles is the main factor affecting strength properties during long-term storage. The calculated dependence of static yield stress on helium bubbles concentration for fcc Pu 1 wt .% Ga is in good agreement with that obtained in experiments on accelerated aging. The developed technique of static yield stress evaluation is applicable to δ-phase Pu-Ga alloys with arbitrary Ga concentrations.

  10. Parallel algorithm for multiscale atomistic/continuum simulations using LAMMPS

    NASA Astrophysics Data System (ADS)

    Pavia, F.; Curtin, W. A.

    2015-07-01

    Deformation and fracture processes in engineering materials often require simultaneous descriptions over a range of length and time scales, with each scale using a different computational technique. Here we present a high-performance parallel 3D computing framework for executing large multiscale studies that couple an atomic domain, modeled using molecular dynamics and a continuum domain, modeled using explicit finite elements. We use the robust Coupled Atomistic/Discrete-Dislocation (CADD) displacement-coupling method, but without the transfer of dislocations between atoms and continuum. The main purpose of the work is to provide a multiscale implementation within an existing large-scale parallel molecular dynamics code (LAMMPS) that enables use of all the tools associated with this popular open-source code, while extending CADD-type coupling to 3D. Validation of the implementation includes the demonstration of (i) stability in finite-temperature dynamics using Langevin dynamics, (ii) elimination of wave reflections due to large dynamic events occurring in the MD region and (iii) the absence of spurious forces acting on dislocations due to the MD/FE coupling, for dislocations further than 10 Å from the coupling boundary. A first non-trivial example application of dislocation glide and bowing around obstacles is shown, for dislocation lengths of ∼50 nm using fewer than 1 000 000 atoms but reproducing results of extremely large atomistic simulations at much lower computational cost.

  11. Genetic background (DDD/Sgn versus C57BL/6J) strongly influences postnatal growth of male mice carrying the A(y) allele at the agouti locus: identification of quantitative trait loci associated with diabetes and body weight loss.

    PubMed

    Suto, Jun-ichi; Satou, Kunio

    2013-05-04

    Mice carrying the A(y) allele at the agouti locus become obese and are heavier than their non-A(y) littermates. However, this does not hold true for the genetic background of the DDD mouse strain. At 22 weeks of age, DDD.Cg-A(y) females are heavier than DDD females, whereas DDD.Cg-A(y) males are lighter than DDD males. This study aimed to determine the possible cause and identify the genes responsible for the lower body weight of DDD.Cg-A(y) males. Growth curves of DDD.Cg-A(y) mice were analyzed and compared with those of B6.Cg-A(y) mice from 5 to 25 weeks. In DDD.Cg-A(y) males, body weight gain stopped between 16 and 17 weeks and the body weight gradually decreased; thus, the lower body weight was a consequence of body weight loss. Quantitative trait locus (QTL) mapping was performed in backcrossed (BC) males of DDD × (B6 × DDD.Cg-A(y)) F(1)-A(y) mice. For the body weight at 25 weeks, significant QTLs were identified on chromosomes 1 and 4. The DDD allele was associated with a lower body weight at both loci. In particular, the QTL on chromosome 4 interacted with the A(y) allele. Furthermore, suggestive QTLs for plasma glucose and high molecular weight adiponectin levels were coincidentally mapped to chromosome 4. The DDD allele was associated with increased glucose and decreased adiponectin levels. When the body weight at 25 weeks and plasma glucose levels were considered as dependent and independent variables, respectively, BC A(y) males were classified into two groups according to statistical analysis using the partition method. Mice of one group had significantly higher glucose and lower adiponectin levels than those of the other group and exhibited body weight loss as observed with DDD-A(y) males. The lower body weight of DDD.Cg-A(y) male mice was a consequence of body weight loss. Diabetes mellitus has been suggested to be a possible contributory factor causing body weight loss. The QTL on distal chromosome 4 contained the major responsible genes. This QTL interacted with the Ay allele, implying the reason why body weight loss occurs in DDD.Cg-Ay but not in DDD males.

  12. Dynamics and Removal Pathway of Edge Dislocations in Imperfectly Attached PbTe Nanocrystal Pairs: Toward Design Rules for Oriented Attachment.

    PubMed

    Ondry, Justin C; Hauwiller, Matthew R; Alivisatos, A Paul

    2018-04-24

    Using in situ high-resolution TEM, we study the structure and dynamics of well-defined edge dislocations in imperfectly attached PbTe nanocrystals. We identify that attachment of PbTe nanocrystals on both {100} and {110} facets gives rise to b = a/2⟨110⟩ edge dislocations. Based on the Burgers vector of individual dislocations, we can identify the glide plane of the dislocations. We observe that defects in particles attached on {100} facets have glide planes that quickly intersect the surface, and HRTEM movies show that the defects follow the glide plane to the surface. For {110} attached particles, the glide plane is collinear with the attachment direction, which does not provide an easy path for the dislocation to reach the surface. Indeed, HRTEM movies of dislocations for {110} attached particles show that defect removal is much slower. Further, we observe conversion from pure edge dislocations in imperfectly attached particles to dislocations with mixed edge and screw character, which has important implications for crystal growth. Finally, we observe that dislocations initially closer to the surface have a higher speed of removal, consistent with the strong dislocation free surface attractive force. Our results provide important design rules for defect-free attachment of preformed nanocrystals into epitaxial assemblies.

  13. The organochlorine o,p'-DDD disrupts the adrenal steroidogenic signaling pathway in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Lacroix, Martin; Hontela, Alice

    2003-08-01

    The mechanisms of action of o,p'-DDD on adrenal steroidogenesis were investigated in vitro in rainbow trout (Oncorhynchus mykiss). Acute exposures to o,p'-DDD inhibited ACTH-stimulated cortisol secretion while cell viability decreased significantly only at the highest concentration tested (200 microM o,p'-DDD). Stimulation of cortisol secretion with a cAMP analogue (dibutyryl-cAMP) was inhibited at a higher concentration than that needed to inhibit ACTH-stimulated cortisol synthesis in cells exposed to o,p'-DDD. Forskolin-stimulated cortisol secretion and cAMP production, and NaF-stimulated cAMP production were inhibited in a concentration-dependent manner by o,p'-DDD. In contrast, basal cortisol secretion was stimulated while basal cAMP production was unaffected by o,p'-DDD. Pregnenolone-stimulated cortisol secretion was enhanced by o,p'-DDD at a physiologically relevant pregnenolone concentration, while o,p'-DDD inhibited cortisol secretion when a pharmacological concentration of pregnenolone was used. Our results suggest that the cAMP generation step is a target in o,p'-DDD-mediated disruption of ACTH-stimulated adrenal steroidogenesis in rainbow trout but that other downstream targets such as steroidogenic enzymes responsible for cortisol synthesis might also be affected.

  14. Attenuation of the dynamic yield point of shocked aluminum using elastodynamic simulations of dislocation dynamics.

    PubMed

    Gurrutxaga-Lerma, Beñat; Balint, Daniel S; Dini, Daniele; Eakins, Daniel E; Sutton, Adrian P

    2015-05-01

    When a metal is subjected to extremely rapid compression, a shock wave is launched that generates dislocations as it propagates. The shock wave evolves into a characteristic two-wave structure, with an elastic wave preceding a plastic front. It has been known for more than six decades that the amplitude of the elastic wave decays the farther it travels into the metal: this is known as "the decay of the elastic precursor." The amplitude of the elastic precursor is a dynamic yield point because it marks the transition from elastic to plastic behavior. In this Letter we provide a full explanation of this attenuation using the first method of dislocation dynamics to treat the time dependence of the elastic fields of dislocations explicitly. We show that the decay of the elastic precursor is a result of the interference of the elastic shock wave with elastic waves emanating from dislocations nucleated in the shock front. Our simulations reproduce quantitatively recent experiments on the decay of the elastic precursor in aluminum and its dependence on strain rate.

  15. Impact of screw and edge dislocations on the thermal conductivity of individual nanowires and bulk GaN: a molecular dynamics study.

    PubMed

    Termentzidis, Konstantinos; Isaiev, Mykola; Salnikova, Anastasiia; Belabbas, Imad; Lacroix, David; Kioseoglou, Joseph

    2018-02-14

    We report the thermal transport properties of wurtzite GaN in the presence of dislocations using molecular dynamics simulations. A variety of isolated dislocations in a nanowire configuration are analyzed and found to considerably reduce the thermal conductivity while impacting its temperature dependence in a different manner. Isolated screw dislocations reduce the thermal conductivity by a factor of two, while the influence of edge dislocations is less pronounced. The relative reduction of thermal conductivity is correlated with the strain energy of each of the five studied types of dislocations and the nature of the bonds around the dislocation core. The temperature dependence of the thermal conductivity follows a physical law described by a T -1 variation in combination with an exponent factor that depends on the material's nature, type and the structural characteristics of the dislocation core. Furthermore, the impact of the dislocation density on the thermal conductivity of bulk GaN is examined. The variation and absolute values of the total thermal conductivity as a function of the dislocation density are similar for defected systems with both screw and edge dislocations. Nevertheless, we reveal that the thermal conductivity tensors along the parallel and perpendicular directions to the dislocation lines are different. The discrepancy of the anisotropy of the thermal conductivity grows with increasing density of dislocations and it is more pronounced for the systems with edge dislocations. Besides the fundamental insights of the presented results, these could also be used for the identification of the type of dislocations when one experimentally obtains the evolution of thermal conductivity with temperature since each type of dislocation has a different signature, or one could extract the density of dislocations with a simple measurement of thermal anisotropy.

  16. Implementation of the nudged elastic band method in a dislocation dynamics formalism: Application to dislocation nucleation

    NASA Astrophysics Data System (ADS)

    Geslin, Pierre-Antoine; Gatti, Riccardo; Devincre, Benoit; Rodney, David

    2017-11-01

    We propose a framework to study thermally-activated processes in dislocation glide. This approach is based on an implementation of the nudged elastic band method in a nodal mesoscale dislocation dynamics formalism. Special care is paid to develop a variational formulation to ensure convergence to well-defined minimum energy paths. We also propose a methodology to rigorously parametrize the model on atomistic data, including elastic, core and stacking fault contributions. To assess the validity of the model, we investigate the homogeneous nucleation of partial dislocation loops in aluminum, recovering the activation energies and loop shapes obtained with atomistic calculations and extending these calculations to lower applied stresses. The present method is also applied to heterogeneous nucleation on spherical inclusions.

  17. Estimating catchment-scale groundwater dynamics from recession analysis - enhanced constraining of hydrological models

    NASA Astrophysics Data System (ADS)

    Skaugen, Thomas; Mengistu, Zelalem

    2016-12-01

    In this study, we propose a new formulation of subsurface water storage dynamics for use in rainfall-runoff models. Under the assumption of a strong relationship between storage and runoff, the temporal distribution of catchment-scale storage is considered to have the same shape as the distribution of observed recessions (measured as the difference between the log of runoff values). The mean subsurface storage is estimated as the storage at steady state, where moisture input equals the mean annual runoff. An important contribution of the new formulation is that its parameters are derived directly from observed recession data and the mean annual runoff. The parameters are hence estimated prior to model calibration against runoff. The new storage routine is implemented in the parameter parsimonious distance distribution dynamics (DDD) model and has been tested for 73 catchments in Norway of varying size, mean elevation and landscape type. Runoff simulations for the 73 catchments from two model structures (DDD with calibrated subsurface storage and DDD with the new estimated subsurface storage) were compared. Little loss in precision of runoff simulations was found using the new estimated storage routine. For the 73 catchments, an average of the Nash-Sutcliffe efficiency criterion of 0.73 was obtained using the new estimated storage routine compared with 0.75 using calibrated storage routine. The average Kling-Gupta efficiency criterion was 0.80 and 0.81 for the new and old storage routine, respectively. Runoff recessions are more realistically modelled using the new approach since the root mean square error between the mean of observed and simulated recession characteristics was reduced by almost 50 % using the new storage routine. The parameters of the proposed storage routine are found to be significantly correlated to catchment characteristics, which is potentially useful for predictions in ungauged basins.

  18. Solute effects on edge dislocation pinning in complex alpha-Fe alloys

    NASA Astrophysics Data System (ADS)

    Pascuet, M. I.; Martínez, E.; Monnet, G.; Malerba, L.

    2017-10-01

    Reactor pressure vessel steels are well-known to harden and embrittle under neutron irradiation, mainly because of the formation of obstacles to the motion of dislocations, in particular, precipitates and clusters composed of Cu, Ni, Mn, Si and P. In this paper, we employ two complementary atomistic modelling techniques to study the heterogeneous precipitation and segregation of these elements and their effects on the edge dislocations in BCC iron. We use a special and highly computationally efficient Monte Carlo algorithm in a constrained semi-grand canonical ensemble to compute the equilibrium configurations for solute clusters around the dislocation core. Next, we use standard molecular dynamics to predict and analyze the effect of this segregation on the dislocation mobility. Consistently with expectations our results confirm that the required stress for dislocation unpinning from the precipitates formed on top of it is quite large. The identification of the precipitate resistance allows a quantitative treatment of atomistic results, enabling scale transition towards larger scale simulations, such as dislocation dynamics or phase field.

  19. Genetic background (DDD/Sgn versus C57BL/6J) strongly influences postnatal growth of male mice carrying the Ay allele at the agouti locus: identification of quantitative trait loci associated with diabetes and body weight loss

    PubMed Central

    2013-01-01

    Background Mice carrying the Ay allele at the agouti locus become obese and are heavier than their non-Ay littermates. However, this does not hold true for the genetic background of the DDD mouse strain. At 22 weeks of age, DDD.Cg-Ay females are heavier than DDD females, whereas DDD.Cg-Ay males are lighter than DDD males. This study aimed to determine the possible cause and identify the genes responsible for the lower body weight of DDD.Cg-Ay males. Results Growth curves of DDD.Cg-Ay mice were analyzed and compared with those of B6.Cg-Ay mice from 5 to 25 weeks. In DDD.Cg-Ay males, body weight gain stopped between 16 and 17 weeks and the body weight gradually decreased; thus, the lower body weight was a consequence of body weight loss. Quantitative trait locus (QTL) mapping was performed in backcrossed (BC) males of DDD × (B6 × DDD.Cg-Ay) F1-Ay mice. For the body weight at 25 weeks, significant QTLs were identified on chromosomes 1 and 4. The DDD allele was associated with a lower body weight at both loci. In particular, the QTL on chromosome 4 interacted with the Ay allele. Furthermore, suggestive QTLs for plasma glucose and high molecular weight adiponectin levels were coincidentally mapped to chromosome 4. The DDD allele was associated with increased glucose and decreased adiponectin levels. When the body weight at 25 weeks and plasma glucose levels were considered as dependent and independent variables, respectively, BC Ay males were classified into two groups according to statistical analysis using the partition method. Mice of one group had significantly higher glucose and lower adiponectin levels than those of the other group and exhibited body weight loss as observed with DDD-Ay males. Conclusions The lower body weight of DDD.Cg-Ay male mice was a consequence of body weight loss. Diabetes mellitus has been suggested to be a possible contributory factor causing body weight loss. The QTL on distal chromosome 4 contained the major responsible genes. This QTL interacted with the Ay allele, implying the reason why body weight loss occurs in DDD.Cg-Ay but not in DDD males. PMID:23641944

  20. A discrete dislocation dynamics model of creeping single crystals

    NASA Astrophysics Data System (ADS)

    Rajaguru, M.; Keralavarma, S. M.

    2018-04-01

    Failure by creep is a design limiting issue for metallic materials used in several high temperature applications. Current theoretical models of creep are phenomenological with little connection to the underlying microscopic mechanisms. In this paper, a bottom-up simulation framework based on the discrete dislocation dynamics method is presented for dislocation creep aided by the diffusion of vacancies, known to be the rate controlling mechanism at high temperature and stress levels. The time evolution of the creep strain and the dislocation microstructure in a periodic unit cell of a nominally infinite single crystal is simulated using the kinetic Monte Carlo method, together with approximate constitutive laws formulated for the rates of thermal activation of dislocations over local pinning obstacles. The deformation of the crystal due to dislocation glide between individual thermal activation events is simulated using a standard dislocation dynamics algorithm, extended to account for constant stress periodic boundary conditions. Steady state creep conditions are obtained in the simulations with the predicted creep rates as a function of stress and temperature in good agreement with experimentally reported values. Arrhenius scaling of the creep rates as a function of temperature and power-law scaling with the applied stress are also reproduced, with the values of the power-law exponents in the high stress regime in good agreement with experiments.

  1. Molecularly Defined Nanostructures Based on a Novel AAA-DDD Triple Hydrogen-Bonding Motif.

    PubMed

    Papmeyer, Marcus; Vuilleumier, Clément A; Pavan, Giovanni M; Zhurov, Konstantin O; Severin, Kay

    2016-01-26

    A facile and flexible method for the synthesis of a new AAA-DDD triple hydrogen-bonding motif is described. Polytopic supramolecular building blocks with precisely oriented AAA and DDD groups are thus accessible in few steps. These building blocks were used for the assembly of large macrocycles featuring four AAA-DDD interactions and a macrobicyclic complex with a total of six AAA-DDD interactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. On damping of screw dislocation bending vibrations in dissipative crystal: limiting cases

    NASA Astrophysics Data System (ADS)

    Dezhin, V. V.

    2018-03-01

    The expression for the generalized susceptibility of the dislocation obtained earlier was used. The electronic drag mechanism of dislocations is considered. The study of small dislocation oscillations was limited. The contribution of the attenuation of low-frequency bending screw dislocation vibrations to the overall coefficient of dynamic dislocation drag in the long-wave and short-wave limits is calculated. The damping of short-wave bending screw dislocation vibrations caused by an external action of an arbitrary frequency has been investigated. The contribution of long-wave bending screw dislocation vibrations damping in the total drag coefficient at an arbitrary frequency is found.

  3. DDD-028: a potent potential non-opioid, non-cannabinoid analgesic for neuropathic and inflammatory pain.

    PubMed

    Rajagopalan, Parthasarathi; Tracey, Heather; Chen, Zhoumou; Bandyopadhyaya, Acintya; Veeraraghavan, Sridhar; Rajagopalan, Desikan R; Salvemini, Daniela; McPhee, Ian; Viswanadha, Srikant; Rajagopalan, Raghavan

    2014-07-15

    DDD-028 (4), a novel pentacyclic pyridoindolobenzazepine derivative was evaluated in vitro for receptor binding affinity and in vivo for analgesic activity using rodent models of neuropathic and inflammatory pain. DDD-028 does not bind to opioid, cannabinoid, dopamine, or histamine receptors. DDD-028 is very active even at the low oral dose of 1-5 mg/kg in both neuropathic, (spinal nerve ligation and chronic constriction injury) and inflammatory (Complete Freund's Adjuvant Induced) models of pain. DDD-028 appears to be about 6-fold more potent than pregabalin and indomethacin. Visual observation of all the animals used in these studies indicated that DDD-028 is well tolerated without any sedation. Thus, DDD-028 seems to be a promising candidate for the treatment of neuropathic and inflammatory pain without the possible side effects or abuse potential associated with opioid or cannabinoid activities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation

    DOE PAGES

    Ulvestad, A.; Welland, M. J.; Cha, W.; ...

    2017-01-16

    Crystallographic imperfections can significantly alter material properties and responses to external stimuli, including solute induced phase transformations and crystal growth and dissolution . Despite recent progress in imaging defects using both electron and x-ray techniques, in situ three-dimensional imaging studies of defect dynamics, necessary to understand and engineer nanoscale processes, remains challenging. Here, we report in situ three-dimensional imaging of defect dynamics during the hydriding phase transformation of individual palladium nanocrystals by Bragg Coherent Diffractive Imaging (BCDI) . During constant pressure experiments, we observed that the phase transformation begins after the nucleation of dislocations in large (300 nm) particles. Themore » 3D dislocation network shows that dislocations are close to the phase boundary. The 3D phase morphology resolved by BCDI suggests that the hydrogen-rich phase is more similar to a spherical cap on the hydrogen-poor phase than the core-shell model commonly assumed. We substantiate this conclusion using 3D phase field modeling and demonstrate how phase morphology affects the critical size for dislocation nucleation. We determine the size dependence of the transformation pressure for large (150-300 nm) palladium nanocrystals using variable pressure experiments. Our results reveal a pathway for solute induced structural phase transformations in nanocrystals and demonstrate BCDI as a novel method for understanding dislocation dynamics in phase transforming systems at the nanoscale.« less

  5. Interindividual differences in o,p'-DDD enantiomer kinetics examined in Göttingen minipigs.

    PubMed

    Cantillana, T; Lindström, V; Eriksson, L; Brandt, I; Bergman, A

    2009-06-01

    Five minipigs were given a single oral dose of a racemic mixture of o,p'-DDD (30 mg kg(-1)b.w., EF=0.49). Blood plasma and subcutaneous adipose tissue were collected for analysis, at different time-points over 180 d. At the end of the experiment also liver, kidney and brain tissue were collected. Low concentrations of o,p'-DDD still remained after 180 d in plasma (mean 0.5+/-0.3 ng g(-1)f.w.) and in adipose tissue (mean 40+/-40 ng g(-1)f.w.). The mean concentrations in liver and kidney were 500+/-300 pg g(-1)f.w. and 90+/-50 pg g(-1)f.w., respectively. The enantiomers of o,p'-DDD were isolated by HPLC and the absolute configuration of the enantiomers were determined by X-ray crystallography and polarimetry as R-(+)-o,p'-DDD and S-(-)-o,p'-DDD. The enantiomer fractions (EFs) of o,p'-DDD were determined in plasma, adipose tissue and kidney using GC/ECD equipped with a chiral column. The EFs of o,p'-DDD in the individual minipigs showed large variability, ranging from 0.2 to 0.6 after 24h in plasma and from 0.2 to 0.7 after 90 d in adipose tissue. Hence in two of the minipigs, the S-(-)-o,p'-DDD enantiomer was dominating while the other enantiomer, R-(+)-o,p'-DDD was dominating in three minipigs. We propose that a yet not identified factor related to polymorphism, regulating the metabolism and/or elimination of the enantiomeric o,p'-DDD, is responsible for the differences in enantiomeric retention of the compound in the minipigs.

  6. Effects of closed-loop stimulation vs. DDD pacing on haemodynamic variations and occurrence of syncope induced by head-up tilt test in older patients with refractory cardioinhibitory vasovagal syncope: the Tilt test-Induced REsponse in Closed-loop Stimulation multicentre, prospective, single blind, randomized study.

    PubMed

    Palmisano, Pietro; Dell'Era, Gabriele; Russo, Vincenzo; Zaccaria, Maria; Mangia, Rolando; Bortnik, Miriam; De Vecchi, Federica; Giubertoni, Ailia; Patti, Fabiana; Magnani, Andrea; Nigro, Gerardo; Rago, Anna; Occhetta, Eraldo; Accogli, Michele

    2018-05-01

    Closed-loop stimulation (CLS) seemed promising in preventing the recurrence of vasovagal syncope (VVS) in patients with a cardioinhibitory response to head-up tilt test (HUTT) compared with conventional pacing. We hypothesized that the better results of this algorithm are due to its quick reaction in high-rate pacing delivered in the early phase of vasovagal reflex, which increase the cardiac output and the blood pressure preventing loss of consciousness. This prospective, randomized, single-blind, multicentre study was designed as an intra-patient comparison and enrolled 30 patients (age 62.2 ± 13.5 years, males 60.0%) with cardioinhibitory VVS, carrying a dual-chamber pacemaker incorporating CLS algorithm. Two HUTTs were performed one week apart: one during DDD-CLS 60-130/min pacing and the other during DDD 60/min pacing; patients were randomly and blindly assigned to two groups: in one the first HUTT was performed in DDD-CLS (n = 15), in the other in DDD (n = 15). Occurrence of syncope and haemodynamic variations induced by HUTT was recorded during the tests. Compared with DDD, DDD-CLS significantly reduced the occurrence of syncope induced by HUTT (30.0% vs. 76.7%; P < 0.001). In the patients who had syncope in both DDD and DDD-CLS mode, DDD-CLS significantly delayed the onset of syncope during HUTT (from 20.8 ± 3.9 to 24.8 ± 0.9 min; P = 0.032). The maximum fall in systolic blood pressure recorded during HUTT was significantly lower in DDD-CLS compared with DDD (43.2 ± 30.3 vs. 65.1 ± 25.8 mmHg; P = 0.004). In patients with cardioinhibitory VVS, CLS reduces the occurrence of syncope induced by HUTT, compared with DDD pacing. When CLS is not able to abort the vasovagal reflex, it seems to delay the onset of syncope.

  7. Grain size effects on dislocation and twinning mediated plasticity in magnesium

    DOE PAGES

    Fan, Haidong; Aubry, Sylvie; Arsenlis, Athanasios; ...

    2015-09-20

    Grain size effects on the competition between dislocation slip and {101¯2} -twinning in magnesium are investigated using discrete dislocation dynamics simulations. These simulations account for dislocation–twin boundary interactions and twin boundary migration through the glide of twinning dislocations. It is shown that twinning deformation exhibits a strong grain size effect; while dislocation mediated slip in untwinned polycrystals displays a weak one. In conclusion, this leads to a critical grain size at 2.7 μm, above which twinning dominates, and below which dislocation slip dominates.

  8. Transition of dislocation glide to shear transformation in shocked tantalum

    DOE PAGES

    Hsiung, Luke L.; Campbell, Geoffrey H.

    2017-02-28

    A TEM study of pure tantalum and tantalum-tungsten alloys explosively shocked at a peak pressure of 30 GPa (strain rate: ~1 x 10 4 sec -1) is presented. While no ω (hexagonal) phase was found in shock-recovered pure Ta and Ta-5W that contain mainly a low-energy cellular dislocation structure, shock-induced ω phase was found to form in Ta-10W that contains evenly distributed dislocations with a stored dislocation density higher than 1 x 10 12 cm -2. The TEM results clearly reveal that shock-induced α (bcc) → ω (hexagonal) shear transformation occurs when dynamic recovery reactions which lead the formation low-energymore » cellular dislocation structure become largely suppressed in Ta-10W shocked under dynamic (i.e., high strain-rate and high-pressure) conditions. A novel dislocation-based mechanism is proposed to rationalize the transition of dislocation glide to twinning and/or shear transformation in shock-deformed tantalum. Lastly, twinning and/or shear transformation take place as an alternative deformation mechanism to accommodate high-strain-rate straining when the shear stress required for dislocation multiplication exceeds the threshold shear stresses for twinning and/or shear transformation.« less

  9. Revisiting the Al/Al₂O₃ interface: coherent interfaces and misfit accommodation.

    PubMed

    Pilania, Ghanshyam; Thijsse, Barend J; Hoagland, Richard G; Lazić, Ivan; Valone, Steven M; Liu, Xiang-Yang

    2014-03-27

    We study the coherent and semi-coherent Al/α-Al2O3 interfaces using molecular dynamics simulations with a mixed, metallic-ionic atomistic model. For the coherent interfaces, both Al-terminated and O-terminated nonstoichiometric interfaces have been studied and their relative stability has been established. To understand the misfit accommodation at the semi-coherent interface, a 1-dimensional (1D) misfit dislocation model and a 2-dimensional (2D) dislocation network model have been studied. For the latter case, our analysis reveals an interface dislocation structure with a network of three sets of parallel dislocations, each with pure-edge character, giving rise to a pattern of coherent and stacking-fault-like regions at the interface. Structural relaxation at elevated temperatures leads to a further change of the dislocation pattern, which can be understood in terms of a competition between the stacking fault energy and the dislocation interaction energy at the interface. Our results are expected to serve as an input for the subsequent dislocation dynamics models to understand and predict the macroscopic mechanical behavior of Al/α-Al2O3 composite heterostructures.

  10. Molecular dynamics study on the evolution of interfacial dislocation network and mechanical properties of Ni-based single crystal superalloys

    NASA Astrophysics Data System (ADS)

    Li, Nan-Lin; Wu, Wen-Ping; Nie, Kai

    2018-05-01

    The evolution of misfit dislocation network at γ /γ‧ phase interface and tensile mechanical properties of Ni-based single crystal superalloys at various temperatures and strain rates are studied by using molecular dynamics (MD) simulations. From the simulations, it is found that with the increase of loading, the dislocation network effectively inhibits dislocations emitted in the γ matrix cutting into the γ‧ phase and absorbs the matrix dislocations to strengthen itself which increases the stability of structure. Under the influence of the temperature, the initial mosaic structure of dislocation network gradually becomes irregular, and the initial misfit stress and the elastic modulus slowly decline as temperature increasing. On the other hand, with the increase of the strain rate, it almost has no effect on the elastic modulus and the way of evolution of dislocation network, but contributes to the increases of the yield stress and tensile strength. Moreover, tension-compression asymmetry of Ni-based single crystal superalloys is also presented based on MD simulations.

  11. Dislocation dynamics and crystal plasticity in the phase-field crystal model

    NASA Astrophysics Data System (ADS)

    Skaugen, Audun; Angheluta, Luiza; Viñals, Jorge

    2018-02-01

    A phase-field model of a crystalline material is introduced to develop the necessary theoretical framework to study plastic flow due to dislocation motion. We first obtain the elastic stress from the phase-field crystal free energy under weak distortion and show that it obeys the stress-strain relation of linear elasticity. We focus next on dislocations in a two-dimensional hexagonal lattice. They are composite topological defects in the weakly nonlinear amplitude equation expansion of the phase field, with topological charges given by the standard Burgers vector. This allows us to introduce a formal relation between the dislocation velocity and the evolution of the slowly varying amplitudes of the phase field. Standard dissipative dynamics of the phase-field crystal model is shown to determine the velocity of the dislocations. When the amplitude expansion is valid and under additional simplifications, we find that the dislocation velocity is determined by the Peach-Koehler force. As an application, we compute the defect velocity for a dislocation dipole in two setups, pure glide and pure climb, and compare it with the analytical predictions.

  12. A 3D dislocation dynamics analysis of the size effect on the strength of [1 1 1] LiF micropillars at 300K and 600K

    NASA Astrophysics Data System (ADS)

    Chang, Hyung-Jun; Segurado, Javier; Molina-Aldareguía, Jon M.; Soler, Rafael; LLorca, Javier

    2016-03-01

    The mechanical behavior in compression of [1 1 1] LiF micropillars with diameters in the range 0.5 μm to 2.0 μm was analyzed by means of discrete dislocation dynamics at ambient and elevated temperature. The dislocation velocity was obtained from the Peach-Koehler force acting on the dislocation segments from a thermally-activated model that accounted for the influence of temperature on the lattice resistance. A size effect of the type ‘smaller is stronger’ was predicted by the simulations, which was in quantitative agreement with previous experimental results by the authors [1]. The contribution of the different physical deformation mechanisms to the size effect (namely, nucleation of dislocations, dislocation exhaustion and forest hardening) could be ascertained from the simulations and the dominant deformation mode could be assessed as a function of the specimen size and temperature. These results shed light into the complex interaction among size, lattice resistance and dislocation mobility in the mechanical behavior of μm-sized single crystals.

  13. Molecular dynamic simulations of the high-speed copper nanoparticles collision with the aluminum surface

    NASA Astrophysics Data System (ADS)

    Pogorelko, V. V.; Mayer, A. E.

    2016-11-01

    With the use of the molecular dynamic simulations, we investigated the effect of the high-speed (500 m/s, 1000 m/s) copper nanoparticle impact on the mechanical properties of an aluminum surface. Dislocation analysis shows that a large number of dislocations are formed in the impact area; the total length of dislocations is determined not only by the speed and size of the incoming copper nanoparticle (kinetic energy of the nanoparticle), but by a temperature of the system as well. The dislocations occupy the whole area of the aluminum single crystal at high kinetic energy of the nanoparticle. With the decrease of the nanoparticle kinetic energy, the dislocation structures are formed in the near-surface layer; formation of the dislocation loops takes place. Temperature rise of the system (aluminum substrate + nanoparticle) reduces the total dislocation length in the single crystal of aluminum; there is deeper penetration of the copper atoms in the aluminum at high temperatures. Average energy of the nanoparticles and room temperature of the system are optimal for production of high-quality layers of copper on the aluminum surface.

  14. Mobile application MDDCS for modeling the expansion dynamics of a dislocation loop in FCC metals

    NASA Astrophysics Data System (ADS)

    Kirilyuk, Vasiliy; Petelin, Alexander; Eliseev, Andrey

    2017-11-01

    A mobile version of the software package Dynamic Dislocation of Crystallographic Slip (MDDCS) designed for modeling the expansion dynamics of dislocation loops and formation of a crystallographic slip zone in FCC-metals is examined. The paper describes the possibilities for using MDDCS, the application interface, and the database scheme. The software has a simple and intuitive interface and does not require special training. The user can set the initial parameters of the experiment, carry out computational experiments, export parameters and results of the experiment into separate text files, and display the experiment results on the device screen.

  15. Vertebral degenerative disc disease severity evaluation using random forest classification

    NASA Astrophysics Data System (ADS)

    Munoz, Hector E.; Yao, Jianhua; Burns, Joseph E.; Pham, Yasuyuki; Stieger, James; Summers, Ronald M.

    2014-03-01

    Degenerative disc disease (DDD) develops in the spine as vertebral discs degenerate and osseous excrescences or outgrowths naturally form to restabilize unstable segments of the spine. These osseous excrescences, or osteophytes, may progress or stabilize in size as the spine reaches a new equilibrium point. We have previously created a CAD system that detects DDD. This paper presents a new system to determine the severity of DDD of individual vertebral levels. This will be useful to monitor the progress of developing DDD, as rapid growth may indicate that there is a greater stabilization problem that should be addressed. The existing DDD CAD system extracts the spine from CT images and segments the cortical shell of individual levels with a dual-surface model. The cortical shell is unwrapped, and is analyzed to detect the hyperdense regions of DDD. Three radiologists scored the severity of DDD of each disc space of 46 CT scans. Radiologists' scores and features generated from CAD detections were used to train a random forest classifier. The classifier then assessed the severity of DDD at each vertebral disc level. The agreement between the computer severity score and the average radiologist's score had a quadratic weighted Cohen's kappa of 0.64.

  16. Allelic Variants of Complement Genes Associated with Dense Deposit Disease

    PubMed Central

    Abrera-Abeleda, Maria Asuncion; Nishimura, Carla; Frees, Kathy; Jones, Michael; Maga, Tara; Katz, Louis M.; Zhang, Yuzhou

    2011-01-01

    The alternative pathway of the complement cascade plays a role in the pathogenesis of dense deposit disease (DDD). Deficiency of complement factor H and mutations in CFH associate with the development of DDD, but it is unknown whether allelic variants in other complement genes also associate with this disease. We studied patients with DDD and identified previously unreported sequence alterations in several genes in addition to allelic variants and haplotypes common to patients with DDD. We found that the likelihood of developing DDD increases with the presence of two or more risk alleles in CFH and C3. To determine the functional consequence of this finding, we measured the activity of the alternative pathway in serum samples from phenotypically normal controls genotyped for variants in CFH and C3. Alternative pathway activity was higher in the presence of variants associated with DDD. Taken together, these data confirm that DDD is a complex genetic disease and may provide targets for the development of disease-specific therapies. PMID:21784901

  17. An AAA-DDD triply hydrogen-bonded complex easily accessible for supramolecular polymers.

    PubMed

    Han, Yi-Fei; Chen, Wen-Qiang; Wang, Hong-Bo; Yuan, Ying-Xue; Wu, Na-Na; Song, Xiang-Zhi; Yang, Lan

    2014-12-15

    For a complementary hydrogen-bonded complex, when every hydrogen-bond acceptor is on one side and every hydrogen-bond donor is on the other, all secondary interactions are attractive and the complex is highly stable. AAA-DDD (A=acceptor, D=donor) is considered to be the most stable among triply hydrogen-bonded sequences. The easily synthesized and further derivatized AAA-DDD system is very desirable for hydrogen-bonded functional materials. In this case, AAA and DDD, starting from 4-methoxybenzaldehyde, were synthesized with the Hantzsch pyridine synthesis and Friedländer annulation reaction. The association constant determined by fluorescence titration in chloroform at room temperature is 2.09×10(7)  M(-1) . The AAA and DDD components are not coplanar, but form a V shape in the solid state. Supramolecular polymers based on AAA-DDD triply hydrogen bonded have also been developed. This work may make AAA-DDD triply hydrogen-bonded sequences easily accessible for stimuli-responsive materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Growth rate effects on the formation of dislocation loops around deep helium bubbles in Tungsten

    DOE PAGES

    Sandoval, Luis; Perez, Danny; Uberuaga, Blas P.; ...

    2016-11-15

    Here, the growth process of spherical helium bubbles located 6 nm below a (100) surface is studied using molecular dynamics and parallel replica dynamics simulations, over growth rates from 10 6 to 10 12 helium atoms per second. Slower growth rates lead to a release of pressure and lower helium content as compared with fast growth cases. In addition, at slower growth rates, helium bubbles are not decorated by multiple dislocation loops, as these tend to merge or emit given sufficient time. At faster rates, dislocation loops nucleate faster than they can emit, leading to a more complicated dislocation structuremore » around the bubble.« less

  19. Long-term follow-up of DDD and VDD pacing: a prospective non-randomized single-centre comparison of patients with symptomatic atrioventricular block.

    PubMed

    Marchandise, Sébastien; Scavée, Christophe; le Polain de Waroux, Jean-Benoit; de Meester, Christophe; Vanoverschelde, Jean-Louis; Debbas, Nadia

    2012-04-01

    This prospective non-randomized single-centre registry compared clinical outcome, pacing parameters, and long-term survival in patients receiving VDD or DDD pacemaker (PMs) for symptomatic atrioventricular (AV) block. Single-lead VDD (n= 166) and DDD (n= 254) PMs were implanted in 420 successive patients with isolated AV block between January 2001 and December 2009. At the end of the follow-up period [median 25 (1-141) months], there was no difference in the incidence of atrial fibrillation [11.2% in the VDD group; 11.4% in the DDD group (P= 0.95)], myocardial infarction [31.1% in the VDD group; 25.2% in the DDD group (P= 0.20)], or dilated cardiomyopathy [9.9% in the VDD group; 8.9% in the DDD group (P= 0.74)]. At last follow-up, 65.9% of the VDD PMs and 89.3% of the DDD PMs were still programmed in their original mode with good atrial sensing. Due to permanent atrial fibrillation, 7.9% patients out of the VDD group had been switched to VVIR mode and 8.7% patients out of the DDD group to VVIR or DDIR mode. The P-wave amplitude was poor (sensed P-wave <0.5 mV) in 19.1% of the VDD PM and 1.6% of the DDD PM (P< 0.001) and 7.1% of the VDD patients and 0.4% of the DDD patients had been switched to VVIR pacing mode due to P-wave undersensing and AV dissociation (P= 0.003). Symptomatic atrial undersensing requiring upgrading was similar in both groups. The overall survival, adjusted for age, was not significantly different in the VDD and the DDD group (log rank: 0.26). Moreover, Cox survival analysis excluded the pacing mode as a significant predictor of mortality [hazard ratio (HR) = 0.79, confidence interval (CI) (0.46-1.35), P= 0.39]. Comparing VDD and DDD pacing, a significantly larger number of VDD-paced patients developed poor atrial signal detection without clinical impact. However, atrial under sensing did not influence the incidence of atrial fibrillation, myocardial infarction, dilated cardiomyopathy, or mortality.

  20. Surgical and Functional Outcomes After Multilevel Cervical Fusion for Degenerative Disc Disease Compared With Fusion for Radiculopathy: A Study of Workers' Compensation Population.

    PubMed

    Faour, Mhamad; Anderson, Joshua T; Haas, Arnold R; Percy, Rick; Woods, Stephen T; Ahn, Uri M; Ahn, Nicholas U

    2017-05-01

    Retrospective cohort comparative study. To evaluate presurgical and surgical factors that affect return to work (RTW) status after multilevel cervical fusion, and to compare outcomes after multilevel cervical fusion for degenerative disc disease (DDD) versus radiculopathy. Cervical fusion provides more than 90% of symptomatic relief for radiculopathy and myelopathy. However, cervical fusion for DDD without radiculopathy is considered controversial. In addition, multilevel fusion is associated with poorer surgical outcomes with increased levels fused. Data of cervical comorbidities was collected from Ohio Bureau of Workers' Compensation for subjects with work-related injuries. The study population included subjects who underwent multilevel cervical fusion. Patients with radiculopathy or DDD were identified. Multivariate logistic regression was performed to identify factors that affect RTW status. Surgical and functional outcomes were compared between groups. Stable RTW status within 3 years after multilevel cervical fusion was negatively affected by: fusion for DDD, age > 55 years, preoperative opioid use, initial psychological evaluation before surgery, injury-to-surgery > 2 years and instrumentation.DDD group had lower rate of achieving stable RTW status (P= 0.0001) and RTW within 1 year of surgery (P= 0.0003) compared with radiculopathy group. DDD patients were less likely to have a stable RTW status [odds ratio, OR = 0.63 (0.50-0.79)] or RTW within 1 year after surgery [OR = 0.65 (0.52-0.82)].DDD group had higher rate of opioid use (P= 0.001), and higher rate of disability after surgery (P= 0.002). Multiple detriments affect stable RTW status after multilevel cervical fusion including DDD. DDD without radiculopathy was associated with lower RTW rates, less likelihood to return to work, higher disability, and higher opioid use after surgery. Multilevel cervical fusion for DDD may be counterproductive. Future studies should investigate further treatment options of DDD, and optimize patient selection criteria for surgical intervention. 3.

  1. Continuum dislocation-density based models for the dynamic shock response of single-crystal and polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Luscher, Darby

    2017-06-01

    The dynamic thermomechanical responses of polycrystalline materials under shock loading are often dominated by the interaction of defects and interfaces. For example, polymer-bonded explosives (PBX) can initiate under weak shock impacts whose energy, if distributed homogeneously throughout the material, translates to temperature increases that are insufficient to drive the rapid chemistry observed. In such cases, heterogeneous thermomechanical interactions at the mesoscale (i.e. between single-crystal and macroscale) lead to the formation of localized hot spots. Within metals, a prescribed deformation associated with a shock wave may be accommodated by crystallographic slip, provided a sufficient population of mobile dislocations is available. However, if the deformation rate is large enough, there may be an insufficient number of freely mobile dislocations. In these cases, additional dislocations may be nucleated, or alternate mechanisms (e.g. twinning, damage) activated in order to accommodate the deformation. Direct numerical simulation at the mesoscale offers insight into these physical processes that can be invaluable to the development of macroscale constitutive theories, if the mesoscale models adequately represent the anisotropic nonlinear thermomechanical response of individual crystals and their interfaces. This talk will briefly outline a continuum mesoscale modeling framework founded upon local and nonlocal variations of dislocation-density based crystal plasticity theory. The nonlocal theory couples continuum dislocation transport with the local theory. In the latter, dislocation transport is modeled by enforcing dislocation conservation at a slip-system level through the solution of advection-diffusion equations. The configuration of geometrically necessary dislocation density gives rise to a back-stress that inhibits or accentuates the flow of dislocations. Development of the local theory and application to modeling the explosive molecular crystal RDX and polycrystalline PBX will be discussed. The talk will also emphasize recent implementation of the coupled nonlocal model into a 3D shock hydrocode and simulation results for the dynamic response of polycrystalline copper in two and three dimensions.

  2. Biochemical, Kinetic, and Spectroscopic Characterization of Ruegeria pomeroyi DddW—A Mononuclear Iron-Dependent DMSP Lyase

    PubMed Central

    Brummett, Adam E.; Schnicker, Nicholas J.; Crider, Alexander; Todd, Jonathan D.; Dey, Mishtu

    2015-01-01

    The osmolyte dimethylsulfoniopropionate (DMSP) is a key nutrient in marine environments and its catabolism by bacteria through enzymes known as DMSP lyases generates dimethylsulfide (DMS), a gas of importance in climate regulation, the sulfur cycle, and signaling to higher organisms. Despite the environmental significance of DMSP lyases, little is known about how they function at the mechanistic level. In this study we biochemically characterize DddW, a DMSP lyase from the model roseobacter Ruegeria pomeroyi DSS-3. DddW is a 16.9 kDa enzyme that contains a C-terminal cupin domain and liberates acrylate, a proton, and DMS from the DMSP substrate. Our studies show that as-purified DddW is a metalloenzyme, like the DddQ and DddP DMSP lyases, but contains an iron cofactor. The metal cofactor is essential for DddW DMSP lyase activity since addition of the metal chelator EDTA abolishes its enzymatic activity, as do substitution mutations of key metal-binding residues in the cupin motif (His81, His83, Glu87, and His121). Measurements of metal binding affinity and catalytic activity indicate that Fe(II) is most likely the preferred catalytic metal ion with a nanomolar binding affinity. Stoichiometry studies suggest DddW requires one Fe(II) per monomer. Electronic absorption and electron paramagnetic resonance (EPR) studies show an interaction between NO and Fe(II)-DddW, with NO binding to the EPR silent Fe(II) site giving rise to an EPR active species (g = 4.29, 3.95, 2.00). The change in the rhombicity of the EPR signal is observed in the presence of DMSP, indicating that substrate binds to the iron site without displacing bound NO. This work provides insight into the mechanism of DMSP cleavage catalyzed by DddW. PMID:25993446

  3. Correlation between prescribed daily dose, seizure freedom and defined daily dose in antiepileptic drug treatment.

    PubMed

    Horváth, László; Fekete, Klára; Márton, Sándor; Fekete, István

    2017-04-01

    Background Although defined daily doses (DDD) for antiepileptic drugs (AED) have been assigned only in combination therapy, based on the literature, most patients take them in monotherapy. Furthermore, discrepancies between DDD and prescribed daily dose (PDD) were observed. Objective First, to determine PDDs of AEDs and to reveal PDD/DDD ratio among seizure free versus not seizure free patients in everyday clinical practice. Second, to test the applicability of 75% cut-off of DDD to achieve seizure freedom. Furthermore, to find out what factors might influence PDD. Setting Outpatient data files at a Hungarian university hospital were studied. Methods A retrospective, 20-year cross-sectional database was compiled from 1282 epileptic outpatients' files. Main outcome measure Seizure freedom and PDD were used as outcome measures. Results The mean DDD% of all prescribed AEDs increased steadily from monotherapy, through bitherapy towards polytherapy (p < 0.0001). Most seizure free patients took AEDs in doses in the range of ≤75% of DDDs in monotherapy and bitherapy. Older AEDs (carbamazepine and valproate) were given in a significantly higher mean dose in bitherapy in the seizure free group. Among the newer types, only levetiracetam and lamotrigine had a significantly higher DDD% in mono-, bi-, and polytherapy. Confirmed by logistic regression analysis, gender, age, type of epilepsy, and number of AEDs had a significant impact on the value of 75% DDD. Conclusion No significant unfavourable impact of the lower ratio of PDD/DDD on the outcome of achieving seizure freedom has been confirmed. As a measure of seizure freedom, 75% of DDD may be used, although individual therapy must be emphasised. Precisely quantified DDD would provide a more accurate calculation of other derived values.

  4. DDD versus VVIR versus VVI mode in patients with indication to dual-chamber stimulation: a prospective, randomized, controlled, single-blind study.

    PubMed

    Moro, Eugenio; Caprioglio, Francesco; Berton, Giuseppe; Marcon, Carlo; Riva, Umberto; Corbucci, Giorgio; Delise, Pietro

    2005-09-01

    The aim of this study was to compare VVI, VVIR and DDD modes in patients with indication to dual-chamber stimulation, depending on left ventricular function. Two groups of patients were implanted with a DDD pacemaker: Group I with ejection fraction > 40% and Group II with ejection fraction < 40%. Patients with a history of atrial arrhythmia or retrograde conduction were excluded. At follow-up (1 month each) quality of life (QoL), patient preference and echo parameters were collected. At hospital discharge all patients were programmed in DDD for 1 month and then randomized to VVI or VVIR mode. At the end of the period in VVI or VVIR mode each patient underwent a control period in DDD and then was programmed in VVIR or VVI mode. Seventeen patients out of 23 preferred DDD mode and 6 did not perceive any subjective difference among DDD, VVI and VVIR modes (4/9 in Group I and 2/14 in Group II, p = 0.0017). QoL was significantly different between the two groups and at each follow-up showed the best values in DDD. The correlation between QoL and Tei index was 0.62 in Group I (p < 0.001) and 0.35 in Group II (p = 0.001). Neither ejection fraction nor fractional shortening showed any significant difference during the three phases of the study. Most patients preferred the DDD mode. The Tei index showed a good correlation with QoL and both QoL and Tei index significantly improved with DDD mode as compared to VVI and VVIR.

  5. Quantitative trait loci that control body weight and obesity in an F2 intercross between C57BL/6J and DDD.Cg-Ay mice.

    PubMed

    Suto, Jun-ichi

    2011-07-01

    I have developed a congenic mouse strain for the A(y) allele at the agouti locus in an inbred DDD/Sgn strain, DDD.Cg-A(y). DDD.Cg-A(y) females are extremely obese and significantly heavier than B6.Cg-A(y) females. The objectives of this study were to determine the genetic basis of obesity in DDD.Cg-A(y) mice, and to determine whether or not their high body weight was due to the presence of DDD background-specific modifiers. I performed quantitative trait locus (QTL) analyses for body weight and body mass index in two types of F(2) mice [F2 A(y) (F(2) mice carrying the A(y) allele) and F(2) non-A(y) (F2 mice without the A(y) allele)] produced by crossing C57BL/6J females and DDD.Cg-A(y) males. The results of the QTL analysis of F(2) A(y) mice were very similar to those obtained for F(2) non-A(y) mice. It was unlikely that the high body weight of DDD.Cg-A(y) mice was due to the presence of specific modifiers. When both F(2) datasets were merged and analyzed, four significant body weight QTLs were identified on chromosomes 6, 9, and 17 (2 loci) and four significant obesity QTLs were identified on chromosomes 1, 6, 9, and 17. Although the presence of DDD background-specific modifiers was not confirmed, a multifactorial basis of obesity in DDD.Cg-A(y) females was thus revealed.

  6. Impact of pacemaker mode in patients with atrioventricular conduction disturbance after trans-catheter aortic valve implantation.

    PubMed

    Takahashi, Masao; Badenco, Nicolas; Monteau, Jacques; Gandjbakhch, Estelle; Extramiana, Fabrice; Urena, Marina; Karam, Nicole; Marijon, Eloi; Algalarrondo, Vincent; Teiger, Emmanuel; Lellouche, Nicolas

    2018-03-14

    This study aimed to assess the impact of pacemaker mode programming on clinical outcomes in patients with high-degree atrioventricular conduction disturbance (AVCD) after transcatheter aortic valve implantation (TAVI). Although high-degree AVCD after TAVI can receive pacemaker, recovery of the AVCD is often observed. Specific pacemaker algorithms (AAI-DDD mode switch) are available which favor spontaneous atrioventricular conduction. Of 1,621 consecutive multi-center TAVI patients, 269 (16.4%) received pacemaker. We retrospectively included 91 patients with persistent high-degree AVCD at hospital discharge. Pacemaker dependency was defined as absence, inadequate intrinsic ventricular rhythm, or ventricular pacing time > 95% on pacemaker interrogation during follow-up. Comparison of heart failure hospitalization and death between conventional DDD (cDDD) and other modes was examined (AAI-DDD and VVI). During a mean follow-up duration of 13 months, the pacemaker dependency rate was 52.8%. Patients with cDDD mode (N = 36: 40.0%) had significantly more pacemaker dependency. Multivariate analysis showed that cDDD mode was independently associated with pacemaker dependency (odds ratio = 3.63, P = 0.03). Moreover, cDDD patients had a significant higher incidence of heart failure hospitalization (Hospitalization: cDDD vs. others = 45.4% vs. 18.2%, P = 0.03) and had a higher incidence of mortality (Death: cDDD vs. the others = 27.0% vs. 4.4%, P = 0.06). Up to half of patients implanted for high-degree AVCD after TAVI had conduction recovery. Patients with cDDD programming at hospital discharge had more pacemaker dependency and a worse cardiac prognosis. Thus, pacemaker mode should be systematically set to promote spontaneous atrioventricular conduction in patients with pacemaker implantation after TAVI. © 2018 Wiley Periodicals, Inc.

  7. Comparative Study of Electrical Stimulation of the Heart with VDD and DDD Pacemakers as to the Evolution to Atrial Fibrillation

    PubMed Central

    de Campos, Nelson Leonardo Kerdahi Leite; de Andrade, Rubens Ramos; Fellicio, Marcello Laneza; Martins, Antônio Sergio; Garzesi, André Monti; Garcia, Leonardo Rufino; Takeda, Tassya Bueno

    2017-01-01

    Introduction The pacemaker implantation VDD is considered simpler, faster, less expensive and causes fewer complications compared to DDD. However, the VDD pacemaker has not been widely used in many centers, perhaps for fear of dysfunction of the sinus node and the reduction of atrial sensitivity by the pacemaker during follow-up after implantation. Objective To compare patients with DDD and VDD pacemakers regarding the evolution of chronic atrial fibrillation (AF) and length of stay outside this postoperative arrhythmia. Methods It was included 158 patients with dual chamber pacemakers, 48 DDD and 110 VDD. Follow-up period: between January 1, 1999 and December 31, 2015. The mean follow-up of patients with DDD was 5.35 years and the VDD, 4.74 years. The percentage of each group (DDD and VDD) which evolved to AF during follow-up was assessed. Also, it was made an actuarial study with the respective curves indicating the time free from AF for each group. Patients were classified according to the diagnosis that led to pacemaker implantation and the degree of heart failure. Results The percentage of patients who developed AF was higher in DDD group (10.42%) than in VDD group (6.36%), but without statistical significance. Patients with DDD and VDD remained free of AF for similar period. Conclusion Considering the results, the VDD pacemaker continues to be a good option to the DDD for routine use in cases properly indicated. PMID:29211212

  8. Comparative Study of Electrical Stimulation of the Heart with VDD and DDD Pacemakers as to the Evolution to Atrial Fibrillation.

    PubMed

    Campos, Nelson Leonardo Kerdahi Leite de; Andrade, Rubens Ramos de; Fellicio, Marcello Laneza; Martins, Antônio Sergio; Garzesi, André Monti; Garcia, Leonardo Rufino; Takeda, Tassya Bueno

    2017-01-01

    The pacemaker implantation VDD is considered simpler, faster, less expensive and causes fewer complications compared to DDD. However, the VDD pacemaker has not been widely used in many centers, perhaps for fear of dysfunction of the sinus node and the reduction of atrial sensitivity by the pacemaker during follow-up after implantation. To compare patients with DDD and VDD pacemakers regarding the evolution of chronic atrial fibrillation (AF) and length of stay outside this postoperative arrhythmia. It was included 158 patients with dual chamber pacemakers, 48 DDD and 110 VDD. Follow-up period: between January 1, 1999 and December 31, 2015. The mean follow-up of patients with DDD was 5.35 years and the VDD, 4.74 years. The percentage of each group (DDD and VDD) which evolved to AF during follow-up was assessed. Also, it was made an actuarial study with the respective curves indicating the time free from AF for each group. Patients were classified according to the diagnosis that led to pacemaker implantation and the degree of heart failure. The percentage of patients who developed AF was higher in DDD group (10.42%) than in VDD group (6.36%), but without statistical significance. Patients with DDD and VDD remained free of AF for similar period. Considering the results, the VDD pacemaker continues to be a good option to the DDD for routine use in cases properly indicated.

  9. Understanding dislocation mechanics at the mesoscale using phase field dislocation dynamics

    PubMed Central

    Hunter, A.

    2016-01-01

    In this paper, we discuss the formulation, recent developments and findings obtained from a mesoscale mechanics technique called phase field dislocation dynamics (PFDD). We begin by presenting recent advancements made in modelling face-centred cubic materials, such as integration with atomic-scale simulations to account for partial dislocations. We discuss calculations that help in understanding grain size effects on transitions from full to partial dislocation-mediated slip behaviour and deformation twinning. Finally, we present recent extensions of the PFDD framework to alternative crystal structures, such as body-centred cubic metals, and two-phase materials, including free surfaces, voids and bi-metallic crystals. With several examples we demonstrate that the PFDD model is a powerful and versatile method that can bridge the length and time scales between atomistic and continuum-scale methods, providing a much needed understanding of deformation mechanisms in the mesoscale regime. PMID:27002063

  10. Irradiation defect dispersions and effective dislocation mobility in strained ferritic grains: A statistical analysis based on 3D dislocation dynamics simulations

    NASA Astrophysics Data System (ADS)

    Li, Y.; Robertson, C.

    2018-06-01

    The influence of irradiation defect dispersions on plastic strain spreading is investigated by means of three-dimensional dislocation dynamics (DD) simulations, accounting for thermally activated slip and cross-slip mechanisms in Fe-2.5%Cr grains. The defect-induced evolutions of the effective screw dislocation mobility are evaluated by means of statistical comparisons, for various defect number density and defect size cases. Each comparison is systematically associated with a quantitative Defect-Induced Apparent Straining Temperature shift (or «ΔDIAT»), calculated without any adjustable parameters. In the investigated cases, the ΔDIAT level associated with a given defect dispersion closely replicates the measured ductile to brittle transition temperature shift (ΔDBTT) due to the same, actual defect dispersion. The results are further analyzed in terms of dislocation-based plasticity mechanisms and their possible relations with the dose-dependent changes of the ductile to brittle transition temperature.

  11. Structure, Energetics, and Dynamics of Screw Dislocations in Even n-Alkane Crystals.

    PubMed

    Olson, Isabel A; Shtukenberg, Alexander G; Hakobyan, Gagik; Rohl, Andrew L; Raiteri, Paolo; Ward, Michael D; Kahr, Bart

    2016-08-18

    Spiral hillocks on n-alkane crystal surfaces were observed immediately after Frank recognized the importance of screw dislocations for crystal growth, yet their structures and energies in molecular crystals remain ill-defined. To illustrate the structural chemistry of screw dislocations that are responsible for plasticity in organic crystals and upon which the organic electronics and pharmaceutical industries depend, molecular dynamics was used to examine heterochiral dislocation pairs with Burgers vectors along [001] in n-hexane, n-octane, and n-decane crystals. The cores were anisotropic and elongated in the (110) slip plane, with significant local changes in molecular position, orientation, conformation, and energy. This detailed atomic level picture produced a distribution of strain consistent with linear elastic theory, giving confidence in the simulations. Dislocations with doubled Burgers vectors split into pairs with elementary displacements. These results suggest a pathway to understanding the mechanical properties and failure associated with elastic and plastic deformation in soft crystals.

  12. Dislocation dynamics in non-convex domains using finite elements with embedded discontinuities

    NASA Astrophysics Data System (ADS)

    Romero, Ignacio; Segurado, Javier; LLorca, Javier

    2008-04-01

    The standard strategy developed by Van der Giessen and Needleman (1995 Modelling Simul. Mater. Sci. Eng. 3 689) to simulate dislocation dynamics in two-dimensional finite domains was modified to account for the effect of dislocations leaving the crystal through a free surface in the case of arbitrary non-convex domains. The new approach incorporates the displacement jumps across the slip segments of the dislocations that have exited the crystal within the finite element analysis carried out to compute the image stresses on the dislocations due to the finite boundaries. This is done in a simple computationally efficient way by embedding the discontinuities in the finite element solution, a strategy often used in the numerical simulation of crack propagation in solids. Two academic examples are presented to validate and demonstrate the extended model and its implementation within a finite element program is detailed in the appendix.

  13. Stress and temperature dependence of screw dislocation mobility in {alpha}-Fe by molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, M. R.; Queyreau, S.; Marian, J.

    2011-11-01

    The low-temperature plastic yield of {alpha}-Fe single crystals is known to display a strong temperature dependence and to be controlled by the thermally activated motion of screw dislocations. In this paper, we present molecular dynamics simulations of (1/2)<111>{l_brace}112{r_brace} screw dislocation motion as a function of temperature and stress in order to extract mobility relations that describe the general dynamic behavior of screw dislocations in pure {alpha}-Fe. We find two dynamic regimes in the stress-velocity space governed by different mechanisms of motion. Consistent with experimental evidence, at low stresses and temperatures, the dislocations move by thermally activated nucleation and propagation ofmore » kink pairs. Then, at a critical stress, a temperature-dependent transition to a viscous linear regime is observed. Critical output from the simulations, such as threshold stresses and the stress dependence of the kink activation energy, are compared to experimental data and other atomistic works with generally very good agreement. Contrary to some experimental interpretations, we find that glide on {l_brace}112{r_brace} planes is only apparent, as slip always occurs by elementary kink-pair nucleation/propagation events on {l_brace}110{r_brace} planes. Additionally, a dislocation core transformation from compact to dissociated has been identified above room temperature, although its impact on the general mobility is seen to be limited. This and other observations expose the limitations of inferring or presuming dynamic behavior on the basis of only static calculations. We discuss the relevance and applicability of our results and provide a closed-form functional mobility law suitable for mesoscale computational techniques.« less

  14. Intradiscal thermal annuloplasty for the treatment of lumbar discogenic pain in patients with multilevel degenerative disc disease.

    PubMed

    Kapural, Leonardo; Mekhail, Nagy; Korunda, Zdenko; Basali, Ayman

    2004-08-01

    Symptomatic degenerative disc disease (DDD) may lead to significant deterioration of quality of life and increased disability. Intradiscal thermal annuloplasty (IDTA) is a minimally invasive treatment for painful DDD. We hypothesized that there may be an improvement in pain scores and the pain disability index (PDI) of patients who have multilevel DDD after IDTA. Patients 24-66 yr old, male and female with multilevel DDD (MDDD) and matched 1 or 2 level DDD (1,2-DDD) patients were enrolled in the study. Visual analog pain scale (VAS) score and PDI were observed for 12 mo. The 1,2-DDD patient group had a 2.5 +/- 2.4 VAS score at 12 mo after annuloplasty compared to 7.7 +/- 2 before the procedure. The MDDD VAS score was 4.9 +/- 2.9 at 12 mo compared to 7.4 +/- 1.8 before the procedure. Similar improvements in PDI were found. The pain relief and PDI were significantly better in patients with 1,2-DDD than in the MDDD group (P = 0.0037 and P = 0.041, respectively). We concluded that IDTA is an effective treatment of discogenic pain and that the number of discs affected by degeneration is an important determinant of the procedure outcome.

  15. Early Intervention of Didang Decoction on MLCK Signaling Pathways in Vascular Endothelial Cells of Type 2 Diabetic Rats

    PubMed Central

    Song, Zhenqiang; Li, Jing; Li, Chunshen

    2016-01-01

    In the study, type 2 diabetic rat model was established using streptozotocin (STZ) combined with a high-fat diet, and the rats were divided into control and diabetic groups. Diabetic groups were further divided into nonintervening, simvastatin, Didang Decoction (DDD) early-phase intervening, DDD mid-phase intervening, and DDD late-phase intervening groups. The expression level of MLCK was detected using Western Blot analysis, and the levels of cyclic adenosine monophosphate (cAMP), protein kinase C (PKC), and protein kinase A (PKA) were examined using Real Time PCR. Under the electron microscope, the cells in the early-DDD-intervention group and the simvastatin group were significantly more continuous and compact than those in the diabetic group. Compared with the control group, the expression of cAMP-1 and PKA was decreased in all diabetic groups, whereas the expression of MLCK and PKC was increased in early- and mid-phase DDD-intervening groups (P < 0.05); compared with the late-phase DDD-intervening group, the expression of cAMP-1 and PKA was higher, but the level of MLCK and PKC was lower in early-phase DDD-intervening group (P < 0.05). In conclusion, the early use of DDD improves the permeability of vascular endothelial cells by regulating the MLCK signaling pathway. PMID:27703477

  16. Computational issues in the simulation of two-dimensional discrete dislocation mechanics

    NASA Astrophysics Data System (ADS)

    Segurado, J.; LLorca, J.; Romero, I.

    2007-06-01

    The effect of the integration time step and the introduction of a cut-off velocity for the dislocation motion was analysed in discrete dislocation dynamics (DD) simulations of a single crystal microbeam. Two loading modes, bending and uniaxial tension, were examined. It was found that a longer integration time step led to a progressive increment of the oscillations in the numerical solution, which would eventually diverge. This problem could be corrected in the simulations carried out in bending by introducing a cut-off velocity for the dislocation motion. This strategy (long integration times and a cut-off velocity for the dislocation motion) did not recover, however, the solution computed with very short time steps in uniaxial tension: the dislocation density was overestimated and the dislocation patterns modified. The different response to the same numerical algorithm was explained in terms of the nature of the dislocations generated in each case: geometrically necessary in bending and statistically stored in tension. The evolution of the dislocation density in the former was controlled by the plastic curvature of the beam and was independent of the details of the simulations. On the contrary, the steady-state dislocation density in tension was determined by the balance between nucleation of dislocations and those which are annihilated or which exit the beam. Changes in the DD imposed by the cut-off velocity altered this equilibrium and the solution. These results point to the need for detailed analyses of the accuracy and stability of the dislocation dynamic simulations to ensure that the results obtained are not fundamentally affected by the numerical strategies used to solve this complex problem.

  17. Dislocation dynamics: simulation of plastic flow of bcc metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lassila, D H

    This is the final report for the LDRD strategic initiative entitled ''Dislocation Dynamic: Simulation of Plastic Flow of bcc Metals'' (tracking code: 00-SI-011). This report is comprised of 6 individual sections. The first is an executive summary of the project and describes the overall project goal, which is to establish an experimentally validated 3D dislocation dynamics simulation. This first section also gives some information of LLNL's multi-scale modeling efforts associated with the plasticity of bcc metals, and the role of this LDRD project in the multiscale modeling program. The last five sections of this report are journal articles that weremore » produced during the course of the FY-2000 efforts.« less

  18. Diversity of bacterial dimethylsulfoniopropionate degradation genes in surface seawater of Arctic Kongsfjorden.

    PubMed

    Zeng, Yin-Xin; Qiao, Zong-Yun; Yu, Yong; Li, Hui-Rong; Luo, Wei

    2016-09-08

    Dimethylsulfoniopropionate (DMSP), which is the major source of organic sulfur in the world's oceans, plays a significant role in the global sulfur cycle. This compound is rapidly degraded by marine bacteria either by cleavage to dimethylsulfide (DMS) or demethylation to 3-methylmercaptopropionate (MMPA). The diversity of genes encoding bacterial demethylation (dmdA) and DMS production (dddL and dddP) were measured in Arctic Kongsfjorden. Both dmdA and dddL genes were detected in all stations along a transect from the outer to the inner fjord, while dddP gene was only found in the outer and middle parts of the fjord. The dmdA gene was completely confined to the Roseobacter clade, while the dddL gene was confined to the genus Sulfitobacter. Although the dddP gene pool was also dominated by homologs from the Roseobacter clade, there were a few dddP genes showing close relationships to both Alphaproteobacter and Gammaproteobacter. The results of this study suggest that the Roseobacter clade may play an important role in DMSP catabolism via both demethylation and cleavage pathways in surface waters of Kongsfjorden during summer.

  19. Diversity of bacterial dimethylsulfoniopropionate degradation genes in surface seawater of Arctic Kongsfjorden

    NASA Astrophysics Data System (ADS)

    Zeng, Yin-Xin; Qiao, Zong-Yun; Yu, Yong; Li, Hui-Rong; Luo, Wei

    2016-09-01

    Dimethylsulfoniopropionate (DMSP), which is the major source of organic sulfur in the world’s oceans, plays a significant role in the global sulfur cycle. This compound is rapidly degraded by marine bacteria either by cleavage to dimethylsulfide (DMS) or demethylation to 3-methylmercaptopropionate (MMPA). The diversity of genes encoding bacterial demethylation (dmdA) and DMS production (dddL and dddP) were measured in Arctic Kongsfjorden. Both dmdA and dddL genes were detected in all stations along a transect from the outer to the inner fjord, while dddP gene was only found in the outer and middle parts of the fjord. The dmdA gene was completely confined to the Roseobacter clade, while the dddL gene was confined to the genus Sulfitobacter. Although the dddP gene pool was also dominated by homologs from the Roseobacter clade, there were a few dddP genes showing close relationships to both Alphaproteobacter and Gammaproteobacter. The results of this study suggest that the Roseobacter clade may play an important role in DMSP catabolism via both demethylation and cleavage pathways in surface waters of Kongsfjorden during summer.

  20. [Measurement of antimicrobial consumption using DDD per 100 bed-days versus DDD per 100 discharges after the implementation of an antimicrobial stewardship program].

    PubMed

    Collado, Roberto; Losa, Juan Emilio; Álvaro, Elena Alba; Toro, Piedad; Moreno, Leonor; Pérez, Montserrat

    2015-12-01

    Monitoring antimicrobial consumption in hospitals is a necessary measure. The indicators commonly employed do not clearly reflect the antibiotic selection pressure. The objective of this study is to evaluate two different methods that analyze antimicrobial consumption based on DDD, per stay and per discharge, before and after the implementation an antimicrobial stewardship program. Comparative pre-post study of antimicrobial consumption with the implementation of an antimicrobial stewardship program using DDD per 100 bed-days and DDD per 100 discharges as indicators. Hospital bed days remained stable and discharges increased slightly along the period of study Antibiotic consumption in DDD per 100 bed-days decreased by 2.5% versus 3.8% when expressed as DDD per 100 discharges. Antifungal consumption decreased by more than 50%. When average hospital stay decreases, reductions in the consumption of antimicrobials with an antimicrobial stewardship program system occur at the expense of reducing the number of patients receiving treatment, while increases occur due to longer durations of treatment.

  1. Supersonic Dislocation Bursts in Silicon

    DOE PAGES

    Hahn, E. N.; Zhao, S.; Bringa, E. M.; ...

    2016-06-06

    Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolutionmore » we successfully predict a dislocation density of 1.5 x 10(12) cm(-2) within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.« less

  2. Supersonic Dislocation Bursts in Silicon

    PubMed Central

    Hahn, E. N.; Zhao, S.; Bringa, E. M.; Meyers, M. A.

    2016-01-01

    Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolution we successfully predict a dislocation density of 1.5 × 1012 cm−2 within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon. PMID:27264746

  3. Supersonic Dislocation Bursts in Silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, E. N.; Zhao, S.; Bringa, E. M.

    Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolutionmore » we successfully predict a dislocation density of 1.5 x 10(12) cm(-2) within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.« less

  4. Revisiting the Al/Al 2O 3 Interface: Coherent Interfaces and Misfit Accommodation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilania, Ghanshyam; Thijsse, Barend J.; Hoagland, Richard G.

    We report the coherent and semi-coherent Al/α-Al 2O 3 interfaces using molecular dynamics simulations with a mixed, metallic-ionic atomistic model. For the coherent interfaces, both Al-terminated and O-terminated nonstoichiometric interfaces have been studied and their relative stability has been established. To understand the misfit accommodation at the semi-coherent interface, a 1-dimensional (1D) misfit dislocation model and a 2-dimensional (2D) dislocation network model have been studied. For the latter case, our analysis reveals an interface dislocation structure with a network of three sets of parallel dislocations, each with pure-edge character, giving rise to a pattern of coherent and stacking-fault-like regions atmore » the interface. Structural relaxation at elevated temperatures leads to a further change of the dislocation pattern, which can be understood in terms of a competition between the stacking fault energy and the dislocation interaction energy at the interface. In conclusion, our results are expected to serve as an input for the subsequent dislocation dynamics models to understand and predict the macroscopic mechanical behavior of Al/α-Al 2O 3 composite heterostructures.« less

  5. Revisiting the Al/Al 2O 3 Interface: Coherent Interfaces and Misfit Accommodation

    DOE PAGES

    Pilania, Ghanshyam; Thijsse, Barend J.; Hoagland, Richard G.; ...

    2014-03-27

    We report the coherent and semi-coherent Al/α-Al 2O 3 interfaces using molecular dynamics simulations with a mixed, metallic-ionic atomistic model. For the coherent interfaces, both Al-terminated and O-terminated nonstoichiometric interfaces have been studied and their relative stability has been established. To understand the misfit accommodation at the semi-coherent interface, a 1-dimensional (1D) misfit dislocation model and a 2-dimensional (2D) dislocation network model have been studied. For the latter case, our analysis reveals an interface dislocation structure with a network of three sets of parallel dislocations, each with pure-edge character, giving rise to a pattern of coherent and stacking-fault-like regions atmore » the interface. Structural relaxation at elevated temperatures leads to a further change of the dislocation pattern, which can be understood in terms of a competition between the stacking fault energy and the dislocation interaction energy at the interface. In conclusion, our results are expected to serve as an input for the subsequent dislocation dynamics models to understand and predict the macroscopic mechanical behavior of Al/α-Al 2O 3 composite heterostructures.« less

  6. High-speed collision of copper nanoparticle with aluminum surface: Molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Pogorelko, Victor V.; Mayer, Alexander E.; Krasnikov, Vasiliy S.

    2016-12-01

    We investigate the effect of the high-speed collision of copper nanoparticles with aluminum surface by means of molecular dynamic simulations. Studied diameter of nanoparticles is varied within the range 7.2-22 nm and the velocity of impact is equal to 500 or 1000 m/s. Dislocation analysis shows that a large quantity of dislocations is formed within the impact area. Overall length of dislocations is determined, first of all, by the impact velocity and by the size of incident copper nanoparticle, in other words, by the kinetic energy of the nanoparticle. Dislocations occupy the total volume of the impacted aluminum single crystal layer (40.5 nm in thickness) in the form of intertwined structure in the case of large kinetic energy of the incident nanoparticle. Decrease in the initial kinetic energy or increase in the layer thickness lead to restriction of the penetration depth of the dislocation net; formation of separate dislocation loops is observed in this case. Increase in the initial system temperature slightly raises the dislocation density inside the bombarded layer and considerably decreases the dislocation density inside the nanoparticle. The temperature increase also leads to a deeper penetration of the copper atoms inside the aluminum. Additional molecular dynamic simulations show that the deposited particles demonstrate a very good adhesion even in the case of the considered relatively large nanoparticles. Medium energy of the nanoparticles corresponding to velocity of about 500 m/s and elevated temperature of the system about 700-900 K are optimal parameters for production of high-quality layers of copper on the aluminum surface. These conditions provide both a good adhesion and a less degree of the plastic deformation. At the same time, higher impact velocities can be used for combined treatment consisting of both the plastic deformation and the coating.

  7. Probing the limits of metal plasticity with molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Zepeda-Ruiz, Luis A.; Stukowski, Alexander; Oppelstrup, Tomas; Bulatov, Vasily V.

    2017-10-01

    Ordinarily, the strength and plasticity properties of a metal are defined by dislocations--line defects in the crystal lattice whose motion results in material slippage along lattice planes. Dislocation dynamics models are usually used as mesoscale proxies for true atomistic dynamics, which are computationally expensive to perform routinely. However, atomistic simulations accurately capture every possible mechanism of material response, resolving every ``jiggle and wiggle'' of atomic motion, whereas dislocation dynamics models do not. Here we present fully dynamic atomistic simulations of bulk single-crystal plasticity in the body-centred-cubic metal tantalum. Our goal is to quantify the conditions under which the limits of dislocation-mediated plasticity are reached and to understand what happens to the metal beyond any such limit. In our simulations, the metal is compressed at ultrahigh strain rates along its [001] crystal axis under conditions of constant pressure, temperature and strain rate. To address the complexity of crystal plasticity processes on the length scales (85-340 nm) and timescales (1 ns-1μs) that we examine, we use recently developed methods of in situ computational microscopy to recast the enormous amount of transient trajectory data generated in our simulations into a form that can be analysed by a human. Our simulations predict that, on reaching certain limiting conditions of strain, dislocations alone can no longer relieve mechanical loads; instead, another mechanism, known as deformation twinning (the sudden re-orientation of the crystal lattice), takes over as the dominant mode of dynamic response. Below this limit, the metal assumes a strain-path-independent steady state of plastic flow in which the flow stress and the dislocation density remain constant as long as the conditions of straining thereafter remain unchanged. In this distinct state, tantalum flows like a viscous fluid while retaining its crystal lattice and remaining a strong and stiff metal.

  8. [Antibiotic consumption in active French soldiers in 2007].

    PubMed

    Desjeux, G; Balaire, C; Thevenin-Garron, V

    2009-07-01

    Analysis of antibiotic consumption among active duty soldiers can contribute to the development of actions designed to avoid unsuitable population exposure to antibiotics. This survey was conducted among active soldiers to establish a reference year for refund data on antibiotic prescriptions by gender and age. Another aim was to use the refund data among soldiers to learn more about the pattern of antibiotic prescriptions by general practitioners. A standardized dose of antibiotics prescribed by general practitioners in 2007 for the active duty military population in France was determined from an analysis of the Health fund database. The defined daily dose (DDD), as well as the DDD/1000 contributors to the national healthcare insurance fund, was then used as a technical unit of measurement. For the military population under study, the DDD was 15.76 per 1000 people. It was higher for women than for men (25.1 DDD for 1000 women vs 14.2 DDD for 1000 men). The DDD increased regularly with age: from 11.4 DDD for 1000 people aged less than 20 to 19.3 DDD for 1000 people aged over 50. Military physicians accounted for only 4% of the prescribing practitioners. Careful analysis of antibiotic consumption together with closer cooperation between the military healthcare center and the National healthcare fund will enable the development of a prevention policy concerning health and better control of infectious risk.

  9. Atomistic simulations of dislocation pileup: Grain boundaries interaction

    DOE PAGES

    Wang, Jian

    2015-05-27

    Here, using molecular dynamics (MD) simulations, we studied the dislocation pileup–grain boundary (GB) interactions. Two Σ11 asymmetrical tilt grain boundaries in Al are studied to explore the influence of orientation relationship and interface structure on dislocation activities at grain boundaries. To mimic the reality of a dislocation pileup in a coarse-grained polycrystalline, we optimized the dislocation population in MD simulations and developed a predict-correct method to create a dislocation pileup in MD simulations. MD simulations explored several kinetic processes of dislocations–GB reactions: grain boundary sliding, grain boundary migration, slip transmission, dislocation reflection, reconstruction of grain boundary, and the correlation ofmore » these kinetic processes with the available slip systems across the GB and atomic structures of the GB.« less

  10. Estimating catchment scale groundwater dynamics from recession analysis - enhanced constraining of hydrological models

    NASA Astrophysics Data System (ADS)

    Skaugen, T.; Mengistu, Z.

    2015-10-01

    In this study we propose a new formulation of subsurface water storage dynamics for use in rainfall-runoff models. Under the assumption of a strong relationship between storage and runoff, the temporal distribution of storage is considered to have the same shape as the distribution of observed recessions (measured as the difference between the log of runoff values). The mean subsurface storage is estimated as the storage at steady-state, where moisture input equals the mean annual runoff. An important contribution of the new formulation is that its parameters are derived directly from observed recession data and the mean annual runoff and hence estimated prior to calibration. Key principles guiding the evaluation of the new subsurface storage routine have been (a) to minimize the number of parameters to be estimated through the, often arbitrary fitting to optimize runoff predictions (calibration) and (b) maximize the range of testing conditions (i.e. large-sample hydrology). The new storage routine has been implemented in the already parameter parsimonious Distance Distribution Dynamics (DDD) model and tested for 73 catchments in Norway of varying size, mean elevations and landscape types. Runoff simulations for the 73 catchments from two model structures; DDD with calibrated subsurface storage and DDD with the new estimated subsurface storage were compared. No loss in precision of runoff simulations was found using the new estimated storage routine. For the 73 catchments, an average of the Nash-Sutcliffe Efficiency criterion of 0.68 was found using the new estimated storage routine compared with 0.66 using calibrated storage routine. The average Kling-Gupta Efficiency criterion was 0.69 and 0.70 for the new and old storage routine, respectively. Runoff recessions are more realistically modelled using the new approach since the root mean square error between the mean of observed and simulated recessions was reduced by almost 50 % using the new storage routine.

  11. Treatment practices and quantification of antimicrobial drug usage in conventional and organic dairy farms in Wisconsin.

    PubMed

    Pol, M; Ruegg, P L

    2007-01-01

    The objective of this study was to develop a method to quantify antimicrobial drug usage and treatment practices on conventional and organic dairy farms that had been recruited to represent a broad spectrum of potential exposure to antimicrobial drugs. Data on disease prevalence and treatment practices of organic (n = 20) and conventional (n = 20) farms were obtained during a farm visit using a survey instrument. A standardized estimate of antimicrobial drug usage was developed using a defined daily dose (DDD) of selected compounds. Density of antimicrobial drug usage was expressed as the number of DDD per adult cow per year. Differences in prevalence and management of selected diseases between conventional and organic farms were identified. The overall estimated prevalence of selected diseases was greater for conventional farms compared with organic farms. Organic farmers reported use of a variety of nonantimicrobial compounds for treatment and prevention of disease. Conventional farmers reported that penicillin was the compound most commonly used for dry cow therapy and cephapirin was most commonly used for treatment of clinical mastitis. On conventional farms, the estimated overall exposure to antimicrobial drugs was 5.43 DDD per cow per year composed of 3.58 and 1.85 DDD of intramammary and parenteral antimicrobial drugs, respectively. Of total intramammary antimicrobial drug usage, treatment of clinical mastitis contributed 2.02 DDD compared with 1.56 DDD attributed to the use of dry cow therapy. Of total parenteral treatments, the distribution of exposure was 0.52 (dry cow therapy), 1.43 (clinical mastitis treatment), 0.39 (treatment of foot disease), 0.14 (treatment of respiratory disease), and 0.32 (treatment of metritis) DDD. For treatments of foot infections (0.33 DDD), respiratory infections (0.07 DDD), and metritis (0.19 DDD), the mean density of ceftiofur usage was significantly greater compared with other compounds.

  12. Study of Bulk and Elementary Screw Dislocation Assisted Reverse Breakdown in Low-Voltage (< 250 V) 4H-SiC p(sup +)n Junction Diodes--Part II: Dynamic Breakdown Properties. Part 2; Dynamic Breakdown Properties

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Fazi, Christian

    1999-01-01

    This paper outlines the dynamic reverse-breakdown characteristics of low-voltage (<250 V) small-area <5 x 10(exp -4) sq cm 4H-SiC p(sup +)n diodes subjected to nonadiabatic breakdown-bias pulsewidths ranging from 0.1 to 20 microseconds. 4H-SiC diodes with and without elementary screw dislocations exhibited positive temperature coefficient of breakdown voltage and high junction failure power densities approximately five times larger than the average failure power density of reliable silicon pn rectifiers. This result indicates that highly reliable low-voltage SiC rectifiers may be attainable despite the presence of elementary screw dislocations. However, the impact of elementary screw dislocations on other more useful 4H-SiC power device structures, such as high-voltage (>1 kV) pn junction and Schottky rectifiers, and bipolar gain devices (thyristors, IGBT's, etc.) remains to be investigated.

  13. Isolation of Brazilian marine fungi capable of growing on DDD pesticide.

    PubMed

    Ortega, Scarlet Nere; Nitschke, Marcia; Mouad, Ana Maria; Landgraf, Maria Diva; Rezende, Maria Olímpia Oliveira; Seleghim, Mirna Helena Regali; Sette, Lara Durães; Porto, André Luiz Meleiro

    2011-02-01

    The fungi Aspergillus sydowii Ce15, Aspergillus sydowii Ce19, Aspergillus sydowii Gc12, Bionectria sp. Ce5, Penicillium miczynskii Gc5, Penicillium raistrickii Ce16 and Trichoderma sp. Gc1, isolated from marine sponges Geodia corticostylifera and Chelonaplysylla erecta, were evaluated for their ability to grow in the presence of DDD pesticide. Increasing concentrations of DDD pesticide, i.e., 5.0 mg (1.56 × 10⁻¹² mmol), 10.0 mg (3.12 × 10⁻²) mmol) and 15.0 mg (4.68 × 10⁻² mmol) in solid and liquid culture media were tested. The fungi Trichoderma sp. Gc1 and Penicillium miczynskii Gc5 were able to grow in the presence of up to 15.0 mg of DDD, suggesting their potential for biodegradation. A 100% degradation of DDD was attained in liquid culture medium when Trichoderma sp. Gc1 was previously cultivated for 5 days and supplemented with 5.0 mg of DDD in the presence of hydrogen peroxide. However, the quantitative analysis showed that DDD was accumulated on mycelium and biodegradation level reached a maximum value of 58% after 14 days.

  14. Atomistic calculations of dislocation core energy in aluminium

    DOE PAGES

    Zhou, X. W.; Sills, R. B.; Ward, D. K.; ...

    2017-02-16

    A robust molecular dynamics simulation method for calculating dislocation core energies has been developed. This method has unique advantages: it does not require artificial boundary conditions, is applicable for mixed dislocations, and can yield highly converged results regardless of the atomistic system size. Utilizing a high-fidelity bond order potential, we have applied this method in aluminium to calculate the dislocation core energy as a function of the angle β between the dislocation line and Burgers vector. These calculations show that, for the face-centred-cubic aluminium explored, the dislocation core energy follows the same functional dependence on β as the dislocation elasticmore » energy: Ec = A·sin 2β + B·cos 2β, and this dependence is independent of temperature between 100 and 300 K. By further analysing the energetics of an extended dislocation core, we elucidate the relationship between the core energy and radius of a perfect versus extended dislocation. With our methodology, the dislocation core energy can be accurately accounted for in models of plastic deformation.« less

  15. Atomistic calculations of dislocation core energy in aluminium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, X. W.; Sills, R. B.; Ward, D. K.

    A robust molecular dynamics simulation method for calculating dislocation core energies has been developed. This method has unique advantages: it does not require artificial boundary conditions, is applicable for mixed dislocations, and can yield highly converged results regardless of the atomistic system size. Utilizing a high-fidelity bond order potential, we have applied this method in aluminium to calculate the dislocation core energy as a function of the angle β between the dislocation line and Burgers vector. These calculations show that, for the face-centred-cubic aluminium explored, the dislocation core energy follows the same functional dependence on β as the dislocation elasticmore » energy: Ec = A·sin 2β + B·cos 2β, and this dependence is independent of temperature between 100 and 300 K. By further analysing the energetics of an extended dislocation core, we elucidate the relationship between the core energy and radius of a perfect versus extended dislocation. With our methodology, the dislocation core energy can be accurately accounted for in models of plastic deformation.« less

  16. A discrete mechanics approach to dislocation dynamics in BCC crystals

    NASA Astrophysics Data System (ADS)

    Ramasubramaniam, A.; Ariza, M. P.; Ortiz, M.

    2007-03-01

    A discrete mechanics approach to modeling the dynamics of dislocations in BCC single crystals is presented. Ideas are borrowed from discrete differential calculus and algebraic topology and suitably adapted to crystal lattices. In particular, the extension of a crystal lattice to a CW complex allows for convenient manipulation of forms and fields defined over the crystal. Dislocations are treated within the theory as energy-minimizing structures that lead to locally lattice-invariant but globally incompatible eigendeformations. The discrete nature of the theory eliminates the need for regularization of the core singularity and inherently allows for dislocation reactions and complicated topological transitions. The quantization of slip to integer multiples of the Burgers' vector leads to a large integer optimization problem. A novel approach to solving this NP-hard problem based on considerations of metastability is proposed. A numerical example that applies the method to study the emanation of dislocation loops from a point source of dilatation in a large BCC crystal is presented. The structure and energetics of BCC screw dislocation cores, as obtained via the present formulation, are also considered and shown to be in good agreement with available atomistic studies. The method thus provides a realistic avenue for mesoscale simulations of dislocation based crystal plasticity with fully atomistic resolution.

  17. Visualization and quantification of deformation processes controlling the mechanical response of alloys in aggressive environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Ian M.

    The overall objective of this program was to develop the technique of electron tomography for studies of defects and to couple it with real time dynamic experiments such that four-dimensional (time and three spatial dimensions) characterization of dislocation interactions with defects is feasible and apply it to discovery of the fundamental unit processes of dislocation-defect interactions in metallic systems. Strategies to overcome the restrictions normally associated with electron tomography and to make it practical within the constraints of conducting a dynamic experiment in the transmission electron microscope were developed. These methods were used to determine the mechanism controlling the transfermore » of slip across grain boundaries in FCC and HCP metals, dislocation precipitate interactions in Al alloys, and dislocation-dislocation interactions in HCP Ti. In addition, preliminary investigations of slip transfer across cube-on-cube and incoherent twin interfaces in a multi-layered system, thermal stability of grains in nanongrained Ni and Fe, and on corrosion of Fe films were conducted.« less

  18. Re-use of explanted DDD pacemakers as VDD- clinical utility and cost effectiveness.

    PubMed

    Namboodiri, K K N; Sharma, Y P; Bali, H K; Grover, A

    2004-01-01

    Re-use of DDD pulse generators explanted from patients died of unrelated causes is associated with an additional cost of two transvenous leads if implanted as DDD itself, and high rate of infection according to some studies. We studied the clinical and economical aspects of reutilization of explanted DDD pacemakers programmed to VDD mode. Out of 28 patients who received VDD pacemaker during the period, October 2000- September 2001 in the Department of Cardiology, PGIMER, Chandigarh, 5 poor patients were implanted with explanted DDD pulse generators programmed to VDD mode. Each implantation was planned and carried out according to a standard protocol. The age ranged from 45 to 75 (mean-61) years. The indications for pacing were complete heart block (4) and second degree AV block (1). The clinical profile, costs and complications, if any were noted and followed up at regular intervals. The results were compared with patients who received new DDD pulse generators during this period. The additional cost for the atrial lead was not required in these patients. None of these patients had any local site infection. Compared to the two-lead system, the single lead system provided more rapid implantation and minimized complications associated with placement of an atrial lead. The explanted DDD pacemaker can be safely reused as VDD mode with same efficacy in selected patient population. This is associated with lower cost and complications compared to reimplantation as DDD itself.

  19. Prediction of dislocation generation during Bridgman growth of GaAs crystals

    NASA Technical Reports Server (NTRS)

    Tsai, C. T.; Yao, M. W.; Chait, Arnon

    1992-01-01

    Dislocation densities are generated in GaAs single crystals due to the excessive thermal stresses induced by temperature variations during growth. A viscoplastic material model for GaAs, which takes into account the movement and multiplication of dislocations in the plastic deformation, is developed according to Haasen's theory. The dislocation density is expressed as an internal state variable in this dynamic viscoplastic model. The deformation process is a nonlinear function of stress, strain rate, dislocation density and temperature. The dislocation density in the GaAs crystal during vertical Bridgman growth is calculated using a nonlinear finite element model. The dislocation multiplication in GaAs crystals for several temperature fields obtained from thermal modeling of both the GTE GaAs experimental data and artificially designed data are investigated.

  20. Prediction of dislocation generation during Bridgman growth of GaAs crystals

    NASA Astrophysics Data System (ADS)

    Tsai, C. T.; Yao, M. W.; Chait, Arnon

    1992-11-01

    Dislocation densities are generated in GaAs single crystals due to the excessive thermal stresses induced by temperature variations during growth. A viscoplastic material model for GaAs, which takes into account the movement and multiplication of dislocations in the plastic deformation, is developed according to Haasen's theory. The dislocation density is expressed as an internal state variable in this dynamic viscoplastic model. The deformation process is a nonlinear function of stress, strain rate, dislocation density and temperature. The dislocation density in the GaAs crystal during vertical Bridgman growth is calculated using a nonlinear finite element model. The dislocation multiplication in GaAs crystals for several temperature fields obtained from thermal modeling of both the GTE GaAs experimental data and artificially designed data are investigated.

  1. 40 CFR 129.101 - DDT, DDD and DDE.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false DDT, DDD and DDE. 129.101 Section 129.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS TOXIC POLLUTANT EFFLUENT STANDARDS Toxic Pollutant Effluent Standards and Prohibitions § 129.101 DDT, DDD and DDE...

  2. Lumbar Facet Joint Motion in Patients with Degenerative Disc Disease at Affected and Adjacent Levels

    PubMed Central

    Li, Weishi; Wang, Shaobai; Xia, Qun; Passias, Peter; Kozanek, Michal; Wood, Kirkham; Li, Guoan

    2013-01-01

    Study Design Controlled laboratory study. Objective To evaluate the effect of lumbar degenerative disc diseases (DDDs) on motion of the facet joints during functional weight-bearing activities. Summary of Background Data It has been suggested that DDD adversely affects the biomechanical behavior of the facet joints. Altered facet joint motion, in turn, has been thought to associate with various types of lumbar spine pathology including facet degeneration, neural impingement, and DDD progression. However, to date, no data have been reported on the motion patterns of the lumbar facet joint in DDD patients. Methods Ten symptomatic patients of DDD at L4–S1 were studied. Each participant underwent magnetic resonance images to obtain three-dimensional models of the lumbar vertebrae (L2–S1) and dual fluoroscopic imaging during three characteristic trunk motions: left-right torsion, left-right bending, and flexion-extension. In vivo positions of the vertebrae were reproduced by matching the three-dimensional models of the vertebrae to their outlines on the fluoroscopic images. The kinematics of the facet joints and the ranges of motion (ROMs) were compared with a group of healthy participants reported in a previous study. Results In facet joints of the DDD patients, there was no predominant axis of rotation and no difference in ROMs was found between the different levels. During left-right torsion, the ROMs were similar between the DDD patients and the healthy participants. During left-right bending, the rotation around mediolateral axis at L4–L5, in the DDD patients, was significantly larger than that of the healthy participants. During flexion-extension, the rotations around anterioposterior axis at L4–L5 and around craniocaudal axis at the adjacent level (L3–L4), in the DDD patients, were also significantly larger, whereas the rotation around mediolateral axis at both L2–L3 and L3–L4 levels in the DDD patients were significantly smaller than those of the healthy participants. Conclusion DDD alters the ROMs of the facet joints. The rotations can increase significantly not only at the DDD levels but also at their adjacent levels when compared to those of the healthy participants. The increase in rotations did not occur around the primary rotation axis of the torso motion but around the coupled axes. This hypermobility in coupled rotations might imply a biomechanical mechanism related to DDD. PMID:21270686

  3. Atomistic modeling and HAADF investigations of misfit and threading dislocations in GaSb/GaAs hetero-structures for applications in high electron mobility transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruterana, Pierre, E-mail: pierre.ruterana@ensicaen.fr; Wang, Yi, E-mail: pierre.ruterana@ensicaen.fr; Chen, Jun, E-mail: pierre.ruterana@ensicaen.fr

    A detailed investigation on the misfit and threading dislocations at GaSb/GaAs interface has been carried out using molecular dynamics simulation and quantitative electron microscopy techniques. The sources and propagation of misfit dislocations have been elucidated. The nature and formation mechanisms of the misfit dislocations as well as the role of Sb on the stability of the Lomer configuration have been explained.

  4. Reductive dechlorination of DDT to DDD by yeast

    USGS Publications Warehouse

    Kallman, Burton J.; Andrews, Austin K.

    1963-01-01

    Labeled DDD [ 1,1-dichlor-o-2,2-bis(p-chlorophenyl)-ethane] was formed from C14-labeled DDT in the presence of yeast. The formation of DDD from DDE [1,1-dichloro-2,2-bis (p-chlorophenyl)-ethylene] was not observed, indicating that a reductive dechlorination of DDT occurs.

  5. Translating Benzodiazepine Utilization Data into Meaningful Population Exposure: Integration of Two Metrics for Improved Reporting.

    PubMed

    Brandt, Jaden; Alkabanni, Wajd; Alessi-Severini, Silvia; Leong, Christine

    2018-04-04

    Drug utilization research on benzodiazepines remains important for measuring trends in consumption within and across borders over time for the sake of monitoring prescribing patterns and identifying potential population safety concerns. The defined daily dose (DDD) system by the World Health Organization (WHO) remains the internationally accepted standard for measuring drug consumption; however, beyond consumption, DDD-based results are difficult to interpret when individual agents are compared with one another or are pooled into a total class-based estimate. The diazepam milligram equivalent (DME) system provides approximate conversions between benzodiazepines and Z-drugs (i.e. zopiclone, zolpidem, zaleplon) based on their pharmacologic potency. Despite this, conversion of total dispensed benzodiazepine quantities into DME values retains diazepam milligrams as the total unit of measurement, which is also impractical for population-level interpretation. In this paper, we propose the use of an integrated DME-DDD metric to obviate the limitations encountered when the component metrics are used in isolation. Through a case example, we demonstrate significant change in results between the DDD and DME-DDD method. Unlike the DDD method, the integrated DME-DDD metric offers estimation of population pharmacologic exposure, and enables superior interpretation of drug utilization results, especially for drug class summary reporting.

  6. The Structure of RdDddP from Roseobacter denitrificans Reveals That DMSP Lyases in the DddP-Family Are Metalloenzymes

    PubMed Central

    Hehemann, Jan-Hendrik; Law, Adrienne; Redecke, Lars; Boraston, Alisdair B.

    2014-01-01

    Marine microbes degrade dimethylsulfoniopropionate (DMSP), which is produced in large quantities by marine algae and plants, with DMSP lyases into acrylate and the gas dimethyl sulfide (DMS). Approximately 10% of the DMS vents from the sea into the atmosphere and this emission returns sulfur, which arrives in the sea through rivers and runoff, back to terrestrial systems via clouds and rain. Despite their key role in this sulfur cycle DMSP lyases are poorly understood at the molecular level. Here we report the first X-ray crystal structure of the putative DMSP lyase RdDddP from Roseobacter denitrificans, which belongs to the abundant DddP family. This structure, determined to 2.15 Å resolution, shows that RdDddP is a homodimeric metalloprotein with a binuclear center of two metal ions located 2.7 Å apart in the active site of the enzyme. Consistent with the crystallographic data, inductively coupled plasma mass spectrometry (ICP-MS) and total reflection X-ray fluorescence (TRXF) revealed the bound metal species to be primarily iron. A 3D structure guided analysis of environmental DddP lyase sequences elucidated the critical residues for metal binding are invariant, suggesting all proteins in the DddP family are metalloenzymes. PMID:25054772

  7. Simulation of interface dislocations effect on polarization distribution of ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Zheng, Yue; Wang, Biao; Woo, C. H.

    2006-02-01

    Effects of interfacial dislocations on the properties of ferroelectric thin films are investigated, using the dynamic Ginzburg-Landau equation. Our results confirm the existence of a dead layer near the film/substrate interface. Due to the combined effects of the dislocations and the near-surface eigenstrain relaxation, the ferroelectric properties of about one-third of the film volume suffers.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulvestad, A.; Welland, M. J.; Cha, W.

    Crystallographic imperfections can significantly alter material properties and responses to external stimuli, including solute induced phase transformations and crystal growth and dissolution . Despite recent progress in imaging defects using both electron and x-ray techniques, in situ three-dimensional imaging studies of defect dynamics, necessary to understand and engineer nanoscale processes, remains challenging. Here, we report in situ three-dimensional imaging of defect dynamics during the hydriding phase transformation of individual palladium nanocrystals by Bragg Coherent Diffractive Imaging (BCDI) . During constant pressure experiments, we observed that the phase transformation begins after the nucleation of dislocations in large (300 nm) particles. Themore » 3D dislocation network shows that dislocations are close to the phase boundary. The 3D phase morphology resolved by BCDI suggests that the hydrogen-rich phase is more similar to a spherical cap on the hydrogen-poor phase than the core-shell model commonly assumed. We substantiate this conclusion using 3D phase field modeling and demonstrate how phase morphology affects the critical size for dislocation nucleation. We determine the size dependence of the transformation pressure for large (150-300 nm) palladium nanocrystals using variable pressure experiments. Our results reveal a pathway for solute induced structural phase transformations in nanocrystals and demonstrate BCDI as a novel method for understanding dislocation dynamics in phase transforming systems at the nanoscale.« less

  9. Trends in the Outpatient Utilization of Antipsychotic Drugs in the City of Zagreb in the Ten-Year Period as a Tool to Assess Drug Prescribing Rationality.

    PubMed

    Polić-Vižintin, Marina; Tripković, Ingrid; Štimac, Danijela; Šostar, Zvonimir; Orban, Mirjana

    2016-12-01

    The aim was to determine distribution and trends in the outpatient utilization of antipsychotics to evaluate the rationality of antipsychotic drug prescribing during the ten year period. The epidemiological method of descriptive and analytical observation was used. Data on drug utilization from Zagreb Municipal Pharmacy were used to calculate the number of defined daily doses (DDD) and DDD per 1000 inhabitants per day (DDD/TID) using the World Health Organization Anatomical-Therapeutic-Chemical methodology. The ratio of typical versus atypical antipsychotics served as an indicator on assessing the rationality of the utilization. Data on the use of anticholinergics in the treatment of neuroleptic side effects were also included. Outpatient utilization of antipsychotics showed a declining pattern from 14.17 in 2001 to 8.42 DDD/TID in 2010. The utilization of atypical antipsychotics increased by 60% (from 3.68 to 5.89 DDD/TID), while the utilization of typical antipsychotics decreased by 76% (from 10.49 to 2.53 DDD/TID). The drugs showing the largest increase were olanzapine (from 1.21 to 2.78 DDD/TID) and quetiapine (from 0 to 0.68 DDD/TID). The typical/atypical antipsychotic ratio changed from 1:0.4 in 2001 to 1:2.3 in 2010. A 2.3-fold decrease was recorded in the utilization of anticholinergics (from 2.05 to 0.91 DDD/TID). Total consumption of neuroleptics significantly decreased. A decrease was also recorded in the utilization of anticholinergics. Study results pointed to two favorable features, i.e. low use of typical antipsychotics and the ratio of typical and atypical antipsychotics. Implementation of the new clinical guidelines for nervous system disorders and updating of the list of reimbursable drugs with the addition of new ones contributed to the observed improvement in the prescribing patterns during the study period. Using the WHO ATC/DDD methodology and rationality indicators in the assessment of trends in the outpatient utilization of psychopharmaceuticals over a ten-year period proved efficient in the evaluation of prescribing rationality.

  10. A phase field dislocation dynamics model for a bicrystal interface system: An investigation into dislocation slip transmission across cube-on-cube interfaces

    DOE PAGES

    Zeng, Y.; Hunter, A.; Beyerlein, I. J.; ...

    2015-09-14

    In this study, we present a phase field dislocation dynamics formulation designed to treat a system comprised of two materials differing in moduli and lattice parameters that meet at a common interface. We apply the model to calculate the critical stress τ crit required to transmit a perfect dislocation across the bimaterial interface with a cube-on-cube orientation relationship. The calculation of τ crit accounts for the effects of: 1) the lattice mismatch (misfit or coherency stresses), 2) the elastic moduli mismatch (Koehler forces or image stresses), and 3) the formation of the residual dislocation in the interface. Our results showmore » that the value of τ crit associated with the transmission of a dislocation from material 1 to material 2 is not the same as that from material 2 to material 1. Dislocation transmission from the material with the lower shear modulus and larger lattice parameter tends to be easier than the reverse and this apparent asymmetry in τ crit generally increases with increases in either lattice or moduli mismatch or both. In efforts to clarify the roles of lattice and moduli mismatch, we construct an analytical model for τcrit based on the formation energy of the residual dislocation. We show that path dependence in this energetic barrier can explain the asymmetry seen in the calculated τ crit values.« less

  11. Elucidating Turnover Pathways of Bioactive Small Molecules by Isotopomer Analysis: The Persistent Organic Pollutant DDT

    PubMed Central

    Ehlers, Ina; Betson, Tatiana R.; Vetter, Walter; Schleucher, Jürgen

    2014-01-01

    The persistent organic pollutant DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane) is still indispensable in the fight against malaria, although DDT and related compounds pose toxicological hazards. Technical DDT contains the dichloro congener DDD (1-chloro-4-[2,2-dichloro-1-(4-chlorophenyl)ethyl]benzene) as by-product, but DDD is also formed by reductive degradation of DDT in the environment. To differentiate between DDD formation pathways, we applied deuterium NMR spectroscopy to measure intramolecular deuterium distributions (2H isotopomer abundances) of DDT and DDD. DDD formed in the technical DDT synthesis was strongly deuterium-enriched at one intramolecular position, which we traced back to 2H/1H fractionation of a chlorination step in the technical synthesis. In contrast, DDD formed by reductive degradation was strongly depleted at the same position, which was due to the incorporation of 2H-depleted hydride equivalents during reductive degradation. Thus, intramolecular isotope distributions give mechanistic information on reaction pathways, and explain a puzzling difference in the whole-molecule 2H/1H ratio between DDT and DDD. In general, our results highlight that intramolecular isotope distributions are essential to interpret whole-molecule isotope ratios. Intramolecular isotope information allows distinguishing pathways of DDD formation, which is important to identify polluters or to assess DDT turnover in the environment. Because intramolecular isotope data directly reflect isotope fractionation of individual chemical reactions, they are broadly applicable to elucidate transformation pathways of small bioactive molecules in chemistry, physiology and environmental science. PMID:25350380

  12. Right atrial pacing impairs cardiac function during resynchronization therapy: acute effects of DDD pacing compared to VDD pacing.

    PubMed

    Bernheim, Alain; Ammann, Peter; Sticherling, Christian; Burger, Peter; Schaer, Beat; Brunner-La Rocca, Hans Peter; Eckstein, Jens; Kiencke, Stephanie; Kaiser, Christoph; Linka, Andre; Buser, Peter; Pfisterer, Matthias; Osswald, Stefan

    2005-05-03

    We aimed to compare the hemodynamic effects of right-atrial-paced (DDD) and right-atrial-sensed (VDD) biventricular paced rhythm on cardiac resynchronization therapy (CRT). Cardiac resynchronization therapy improves hemodynamics in patients with severe heart failure and left ventricular (LV) dyssynchrony. However, the impact of active right atrial pacing on resynchronization therapy is unknown. Seventeen CRT patients were studied 10 months (range: 1 to 46 months) after implantation. At baseline, the programmed atrioventricular delay was optimized by timing LV contraction properly at the end of atrial contraction. In both modes the acute hemodynamic effects were assessed by multiple Doppler echocardiographic parameters. Compared to DDD pacing, VDD pacing resulted in much better improvement of intraventricular dyssynchrony assessed by the septal-to-posterior wall motion delay (VDD 106 +/- 83 ms vs. DDD 145 +/- 95 ms; p = 0.001), whereas the interventricular mechanical delay (difference between onset of pulmonary and aortic outflow) did not differ (VDD 20 +/- 21 ms vs. DDD 18 +/- 17 ms; p = NS). Furthermore, VDD pacing significantly prolonged the rate-corrected LV filling period (VDD 458 +/- 123 ms vs. DDD 371 +/- 94 ms; p = 0.0001) and improved the myocardial performance index (VDD 0.60 +/- 0.18 vs. DDD 0.71 +/- 0.23; p < 0.01). Our findings suggest that avoidance of right atrial pacing results in a higher degree of LV resynchronization, in a substantial prolongation of the LV filling period, and in an improved myocardial performance. Thus, the VDD mode seems to be superior to the DDD mode in CRT patients.

  13. [Quality prescription indicators in defined daily doses. Are we getting it right?].

    PubMed

    Caamaño-Isorna, Francisco; Alvarez-Gil, Rosa

    2008-01-01

    Quality prescription indicators of use potential level (UPLI) are defined as the proportion that represents consumption of specific active principles as opposed to the total consumption of the anatomical therapeutic category. The UPLIs that have gradually been defined in Spain employ the defined daily dose (DDD) as the unit of measurement. Although the DDD is not necessarily the same as the therapeutic equivalent dose (TED), some authors have argued that the DDD is a standard unit of measurement and is therefore valid. However, this view may not be correct, given that the relationships between the TED and the DDD differ, depending on the drug, even within the same anatomical therapeutic category. Therefore, the use of DDDs in UPLI s may lead to prescription of a medicine being encouraged or discouraged depending on its TED/DDD ratio.

  14. A field assessment of long-term laboratory sediment toxicity tests with the amphipod Hyalella azteca

    USGS Publications Warehouse

    Ingersoll, Christopher G.; Wang, Ning; Hayward, Jeannie M. R.; Jones, John R.; Jones, Susan B.; Ireland, D. Scott

    2005-01-01

    Response of the amphipod Hyalella azteca exposed to contaminated sediments for 10 to 42 d in laboratory toxicity tests was compared to responses observed in controlled three-month invertebrate colonization exposures conducted in a pond. Sediments evaluated included a sediment spiked with dichlorodiphenyldichloroethane (DDD) or dilutions of a field sediment collected from the Grand Calumet River (GCR) in Indiana (USA) (contaminated with organic compounds and metals). Consistent effects were observed at the highest exposure concentrations (400 ??g DDD/goc [DDD concentrations normalized to grams of organic carbon (goc) in sedimentl or 4% GCR sediment) on survival, length, and reproduction of amphipods in the laboratory and on abundance of invertebrates colonizing sediments in the field. Effect concentrations for DDD observed for 10-d length and 42-d reproduction of amphipods (e.g., chronic value [ChV] of 66 ??g DDD/goc and 25% inhibition concentration [IC25] of 68 ??g DDD/goc for reproduction) were similar to the lowest effect concentrations for DDD measured on invertebrates colonizing sediment the field. Effect concentrations for GCR sediment on 28-d survival and length and 42-d reproduction and length of amphipods (i.e., ChVs of 0.20-0.66% GCR sediment) provided more conservative effect concentrations compared to 10-d survival or length of amphipods in the laboratory or the response of invertebrates colonizing sediment in the field (e.g., ChVs of 2.2% GCR sediment). Results of this study indicate that use of chronic laboratory toxicity tests with H. azteca and benthic colonization studies should be used to provide conservative estimates of impacts on benthic communities exposed to contaminated sediments. Bioaccumulation of DDD by oligochaetes colonizing the DDD-spiked sediment was similar to results of laboratory sediment tests previously conducted with the oligochaete Lumbriculus variegates, confirming that laboratory exposures can be used to estimate bioaccumulation by oligochaetes exposed in the field. ?? 2005 SETAC.

  15. Arthroplasty for cervical spondylotic myelopathy: similar results to patients with only radiculopathy at 3 years' follow-up.

    PubMed

    Fay, Li-Yu; Huang, Wen-Cheng; Wu, Jau-Ching; Chang, Hsuan-Kan; Tsai, Tzu-Yun; Ko, Chin-Chu; Tu, Tsung-Hsi; Wu, Ching-Lan; Cheng, Henrich

    2014-09-01

    Cervical arthroplasty has been accepted as a viable option for surgical management of cervical spondylosis or degenerative disc disease (DDD). The best candidates for cervical arthroplasty are young patients who have radiculopathy caused by herniated disc with competent facet joints. However, it remains uncertain whether arthroplasty is equally effective for patients who have cervical myelopathy caused by DDD. The aim of this study was to compare the outcomes of arthroplasty for patients with cervical spondylotic myelopathy (CSM) and patients with radiculopathy without CSM. A total of 151 consecutive cases involving patients with CSM or radiculopathy caused by DDD and who underwent one- or two-level cervical arthroplasty were included in this study. Clinical outcome evaluations and radiographic studies were reviewed. Clinical outcome measurements included the Visual Analog Scale (VAS) of neck and arm pain, Japanese Orthopaedic Association (JOA) scores, and the Neck Disability Index (NDI) in every patient. For patients with CSM, Nurick scores were recorded for evaluation of cervical myelopathy. Radiographic studies included lateral dynamic radiographs and CT for detection of the formation of heterotopic ossification . Of the 151 consecutive patients with cervical DDD, 125 (82.8%; 72 patients in the myelopathy group and 53 in the radiculopathy group) had at least 24 months of clinical and radiographic follow-up. The mean duration of follow-up in these patients was 36.4 months (range 24-56 months). There was no difference in sex distribution between the 2 groups. However, the mean age of the patients in the myelopathy group was approximately 6 years greater than that of the radiculopathy group (53.1 vs 47.2 years, p < 0.001). The mean operation time, mean estimated blood loss, and the percentage of patients prescribed perioperative analgesic agents were similar in both groups (p = 0.754, 0.652, and 0.113, respectively). There were significant improvements in VAS neck and arm pain, JOA scores, and NDI in both groups. Nurick scores in the myelopathy group also improved significantly after surgery. In radiographic evaluations, 92.5% of patients in the radiculopathy group and 95.8% of those in the radiculopathy group retained spinal motion (no significant difference). Evaluation of CT scans showed heterotopic ossification in 34 patients (47.2%) in the myelopathy group and 25 patients (47.1%) in the radiculopathy group (p = 0.995). At a mean of over 3 years postoperatively, no secondary surgery was reported in either group. The severity of myelopathy improves after cervical arthroplasty in patients with CSM caused by DDD. At 3-year follow-up, the clinical and radiographic outcomes of cervical arthroplasty in DDD patients with CSM are similar to those patients who have only cervical radiculopathy. Therefore, cervical arthroplasty is a viable option for patients with CSM caused by DDD who require anterior surgery. However, comparison with the standard surgical treatment of anterior cervical discectomy and fusion is necessary to corroborate the outcomes of arthroplasty for CSM.

  16. Singularity-free dislocation dynamics with strain gradient elasticity

    NASA Astrophysics Data System (ADS)

    Po, Giacomo; Lazar, Markus; Seif, Dariush; Ghoniem, Nasr

    2014-08-01

    The singular nature of the elastic fields produced by dislocations presents conceptual challenges and computational difficulties in the implementation of discrete dislocation-based models of plasticity. In the context of classical elasticity, attempts to regularize the elastic fields of discrete dislocations encounter intrinsic difficulties. On the other hand, in gradient elasticity, the issue of singularity can be removed at the outset and smooth elastic fields of dislocations are available. In this work we consider theoretical and numerical aspects of the non-singular theory of discrete dislocation loops in gradient elasticity of Helmholtz type, with interest in its applications to three dimensional dislocation dynamics (DD) simulations. The gradient solution is developed and compared to its singular and non-singular counterparts in classical elasticity using the unified framework of eigenstrain theory. The fundamental equations of curved dislocation theory are given as non-singular line integrals suitable for numerical implementation using fast one-dimensional quadrature. These include expressions for the interaction energy between two dislocation loops and the line integral form of the generalized solid angle associated with dislocations having a spread core. The single characteristic length scale of Helmholtz elasticity is determined from independent molecular statics (MS) calculations. The gradient solution is implemented numerically within our variational formulation of DD, with several examples illustrating the viability of the non-singular solution. The displacement field around a dislocation loop is shown to be smooth, and the loop self-energy non-divergent, as expected from atomic configurations of crystalline materials. The loop nucleation energy barrier and its dependence on the applied shear stress are computed and shown to be in good agreement with atomistic calculations. DD simulations of Lome-Cottrell junctions in Al show that the strength of the junction and its configuration are easily obtained, without ad-hoc regularization of the singular fields. Numerical convergence studies related to the implementation of the non-singular theory in DD are presented.

  17. Agent-based Decision Support System for the Third Generation Distributed Dynamic Decision-making (DDD-III) Simulator

    DTIC Science & Technology

    2004-06-01

    suitable form of organizational adaptation is effective organizational diagnosis and analysis. The organizational diagnosis and analysis involve...related to the mission environment, organizational structure, and strategy is imperative for an effective and efficient organizational diagnosis . The...not easily articulated nor expressed otherwise. These displays are crucial to facilitate effective organizational diagnosis and analysis, and

  18. Mechanical properties of nano and bulk Fe pillars using molecular dynamics and dislocation dynamics simulation

    NASA Astrophysics Data System (ADS)

    Nath, S. K. Deb

    2017-10-01

    Using molecular dynamics simulation, tension and bending tests of a Fe nanopillar are carried out to obtain its Young's modulus and yield strength. Then the comparative study of Young's modulus and yield strength of a Fe nanopillar under bending and tension are carried out varying its diameter in the range of diameter 1-15nm. We find out the reasons why bending Young's modulus and yield strength of a Fe nanopillar are higher than those of tension Young's modulus and yield strength of a Fe nanopillar. Using the mobility parameters of bulk Fe from the experimental study [N. Urabe and J. Weertman, Materials Science and Engineering 18, 41 (1975)], its temperature dependent stress-strain relationship, yield strength and strain hardening modulus are obtained from the dislocation dynamics simulations. Strain rate dependent yield strength and strain hardening modulus of bulk Fe pillars under tension are studied. Temperature dependent creep behaviors of bulk Fe pillars under tension are also studied. To verify the soundness of the present dislocation dynamics studies of the mechanical properties of bulk Fe pillars under tension, the stress vs. strain relationship and dislocation density vs. strain of bulk Fe pillars obtained by us are compared with the published results obtained by S. Queyreau, G. Monnet, and B. Devincre, International Journal of Plasticity 25, 361 (2009).

  19. Developmentally Disabled Persons in Family Settings: Report No. 2.

    ERIC Educational Resources Information Center

    Cox, Wendy M.; Wilson, Wendell L.

    The second in a series of three reports, this document presents findings of clients of Washington's Division of Developmental Disabilities (DDD), ages 22-29, who were living with their families at age 18 but now live elsewhere (group B). Findings are based on telephone interviews with families of 224 DDD clients and analysis of DDD records. The…

  20. Developmentally Disabled Persons in Family Settings: Report No. 3.

    ERIC Educational Resources Information Center

    Cox, Wendy M.; Wilson, Wendell L.

    The final part of a three part study of developmentally disabled persons in Washington State, this document focuses on clients of the Division of Developmental Disabilities (DDD), ages 19 through 26, who appeared to be eligible for DDD services but were not enrolled with the DDD (group C). Telephone interviews were conducted with parents of 55…

  1. DDD(R)-pacing, but not AAI(R)-pacing induces left ventricular desynchronization in patients with sick sinus syndrome: tissue-Doppler and 3D echocardiographic evaluation in a randomized controlled comparison.

    PubMed

    Albertsen, Andi Eie; Nielsen, Jens Cosedis; Poulsen, Steen Hvitfeldt; Mortensen, Peter Thomas; Pedersen, Anders Kirstein; Hansen, Peter Steen; Jensen, Henrik Kjaerulf; Egeblad, Henrik

    2008-02-01

    Increasing evidence from randomized trials and experimental studies indicates that right ventricular (RV) pacing may induce congestive heart failure. We studied regional left ventricular (LV) dyssynchrony and global LV function in 50 consecutive patients with sick sinus syndrome (SSS) randomized to either atrial pacing [AAI(R)] or dual chamber RV-pacing [DDD(R)]. Fifty consecutive patients were randomized to AAI(R) or DDD(R)-pacing. Tissue-Doppler imaging was used to quantify LV dyssynchrony in terms of number of segments with delayed longitudinal contraction (DLC). Left ventricular ejection fraction (LVEF) was measured using three-dimensional echocardiography. Dyssynchrony was more pronounced in the DDD(R)-group than in the AAI(R)-group at the 12 months follow-up (P < 0.05). This reflected a significant increase of dyssynchrony in the DDD(R)-group from baseline to the 12 months follow-up (1.3 +/- 1 to 2.1 +/- 1 segments displaying DLC per patient), P < 0.05. No change was observed in the AAI(R)-group (1.6 +/- 2 to 1.3 +/- 2 segments displaying DLC per patient, NS). No difference in LVEF, NYHA or NT-proBNP was observed between AAI(R)- and DDD(R)-mode after 12 months of pacing although LVEF decreased significantly in the DDD(R)-group from baseline (63.1 +/- 8%) to the 12 months follow-up (59.3 +/- 8%, P < 0.05), while LVEF remained unchanged in the AAI(R)-group (61.5 +/- 11% at baseline vs. 62.3 +/- 7% after 12 months, NS. In patients with SSS, DDD(R)-pacing but not AAI(R)-pacing induces significant LV desynchronization and reduction of LVEF.

  2. Long-term outcome in patients receiving permanent pacemaker implantation for atrioventricular block: Comparison of VDD and DDD pacing.

    PubMed

    Liao, Jo-Nan; Chao, Tze-Fan; Tuan, Ta-Chuan; Kong, Chi-Woon; Chen, Shih-Ann

    2016-08-01

    A permanent pacemaker (PPM) with dual chamber pacing (DDD) offers atrioventricular synchronization for patients with atrioventricular block (AVB). Single lead atrial synchronous ventricular pacing mode (VDD) is an alternative, but there are concerns about its efficacy and risk of atrial undersensing. Whether VDD can be a good alternative in patients with AVB remains unknown. The aim of the present study was to compare the long-term risk of mortality of VDD with DDD pacing.A total of 207 patients undergoing PPM implantations for AVB with VDD mode were enrolled from 2000 to 2013. Another 828 age- and sex-matched patients undergoing DDD implantations during the same period of time were selected as the control group in a 1 to 4 ratio. The study endpoint was mortality.A total of 1035 patients (64.3% male) were followed up for 46.5 ± 43.2 months. The mean ages were 75.0 years for VDD, and 74.9 years for DDD. The Kaplan-Meier survival analysis showed no significant difference in long-term survival between the VDD and DDD groups (log-rank P = 0.313). After adjustment for baseline characteristics, the VDD and DDD groups had a similar long-term prognosis with an adjusted hazard ratio of 0.875 (P = 0.445). Further analyses for the risk of cardiovascular and noncardiovascular deaths also showed no significant differences between the 2 groups.The long-term prognosis of VDD mode is comparable to that of DDD mode. Single lead VDD can be considered as an alternative choice in patients with AVB without sinus nodal dysfunction.

  3. Upgrading from VVI to DDD pacing Mode during elective replacement of pulse generator: a comparative clinical-functional analysis.

    PubMed

    Teno, Luiz Antonio Castilho; Costa, Roberto; Martinelli Filho, Martino; Castilho, Fabian Cecchi Teno; Ruiz, Ivan

    2007-02-01

    Evaluate the clinical and functional behavior of the ventricular and atrioventricular stimulation modes in the elective replacement of pulse generator in patients with chagasic cardiopathy and atrioventricular block. Twenty-seven patients under ventricular and atrioventricular stimulation were comparatively evaluated at the beginning of the study, and alternately in ventricular and atrioventricular modes in two 90-day phases, with regard to: the clinical behavior evaluated according to quality of life and functional class, and the functional behavior evaluated by transthoracic echocardiography and the six-minute walk test. The statistical analysis was performed with patients at baseline, and under ventricular and atrioventricular modes, using the chi-square test and the repeated measures analysis of variance, and taking into consideration a 0.05 level of significance. The mean quality-of-life scores were: functional capacity (VVI 71.3+/-18.2 , DDD 69.3+/-20.4); overall health status (VVI 68.1+/-21.8, DDD 69.4+/-19.4) and vitality (VVI 64.8+/-24.6 , DDD 67.6+/-25.5); on echocardiography: LVEF (VVI 52.5+/-12.8 , DDD 51.8+/-14.9), LVDD (VVI 53.0+/-7.7 , DDD 42.4+/-7.8), LA (VVI 38.6+/-5.4 DDD 38.5+/-5.1), and in the six-minute walk test: distance walked (VVI 463.4+/-84.7, DDD 462.6+/-63.4). There were four cases of complications, three of them associated with the change in stimulation mode. This study showed no differences between the two stimulation modes in the clinical behavior assessed by quality of life and functional class, and in the functional behavior, evaluated according to the ecochardiographic findings and the six-minute walk test.

  4. Formal development of a clock synchronization circuit

    NASA Technical Reports Server (NTRS)

    Miner, Paul S.

    1995-01-01

    This talk presents the latest stage in formal development of a fault-tolerant clock synchronization circuit. The development spans from a high level specification of the required properties to a circuit realizing the core function of the system. An abstract description of an algorithm has been verified to satisfy the high-level properties using the mechanical verification system EHDM. This abstract description is recast as a behavioral specification input to the Digital Design Derivation system (DDD) developed at Indiana University. DDD provides a formal design algebra for developing correct digital hardware. Using DDD as the principle design environment, a core circuit implementing the clock synchronization algorithm was developed. The design process consisted of standard DDD transformations augmented with an ad hoc refinement justified using the Prototype Verification System (PVS) from SRI International. Subsequent to the above development, Wilfredo Torres-Pomales discovered an area-efficient realization of the same function. Establishing correctness of this optimization requires reasoning in arithmetic, so a general verification is outside the domain of both DDD transformations and model-checking techniques. DDD represents digital hardware by systems of mutually recursive stream equations. A collection of PVS theories was developed to aid in reasoning about DDD-style streams. These theories include a combinator for defining streams that satisfy stream equations, and a means for proving stream equivalence by exhibiting a stream bisimulation. DDD was used to isolate the sub-system involved in Torres-Pomales' optimization. The equivalence between the original design and the optimized verified was verified in PVS by exhibiting a suitable bisimulation. The verification depended upon type constraints on the input streams and made extensive use of the PVS type system. The dependent types in PVS provided a useful mechanism for defining an appropriate bisimulation.

  5. Molecular dynamics simulations of thermally activated edge dislocation unpinning from voids in α -Fe

    NASA Astrophysics Data System (ADS)

    Byggmästar, J.; Granberg, F.; Nordlund, K.

    2017-10-01

    In this study, thermal unpinning of edge dislocations from voids in α -Fe is investigated by means of molecular dynamics simulations. The activation energy as a function of shear stress and temperature is systematically determined. Simulations with a constant applied stress are compared with dynamic simulations with a constant strain rate. We found that a constant applied stress results in a temperature-dependent activation energy. The temperature dependence is attributed to the elastic softening of iron. If the stress is normalized with the softening of the specific shear modulus, the activation energy is shown to be temperature-independent. From the dynamic simulations, the activation energy as a function of critical shear stress was determined using previously developed methods. The results from the dynamic simulations are in good agreement with the constant stress simulations, after the normalization. This indicates that the computationally more efficient dynamic method can be used to obtain the activation energy as a function of stress and temperature. The obtained relation between stress, temperature, and activation energy can be used to introduce a stochastic unpinning event in larger-scale simulation methods, such as discrete dislocation dynamics.

  6. Degradation of chlorinated pesticide DDT by litter-decomposing basidiomycetes.

    PubMed

    Suhara, Hiroto; Adachi, Ai; Kamei, Ichiro; Maekawa, Nitaro

    2011-11-01

    One hundred and two basidiomycete strains (93 species in 41 genera) that prefer a soil environment were examined for screening of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) biodegradation. Three strains within two litter-decomposing genera, Agrocybe and Marasmiellus, were selected for their DDT biotransformation capacity. Eight metabolites; 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane (DDD), two monohydroxy-DDTs, monohydroxy-DDD, 2,2-dichloro-1,1-bis(4-chlorophenyl)ethanol, putative 2,2-bis(4-chlorophenyl)ethanol and two unidentified compounds were detected from the culture with Marasmiellus sp. TUFC10101. A P450 inhibitor, 1-ABT, inhibited the formation of monohydroxy-DDTs and monohydroxy-DDD from DDT and DDD, respectively. These results indicated that oxidative pathway which was catalyzed by P450 monooxygenase exist beside reductive dechlorination of DDT. Monohydroxylation of the aromatic rings of DDT (and DDD) by fungal P450 is reported here for the first time.

  7. Dechlorination of DDT, DDD and DDE in soil (slurry) phase using magnesium/palladium system.

    PubMed

    Gautam, Sumit Kumar; Suresh, Sumathi

    2006-12-01

    Mg0/Pd4+ was able to dechlorinate >99% of extractable DDT (initial concentration of 10 mg DDT kg(-1) of soil) and >90% of extractable DDT (initial concentration of 50 mg DDT kg(-1) of soil) in soil slurry. Mg0/Pd4+ was also found to be effective in dechlorinating of 50 mg kg(-1) DDD and DDE, in soil aged for varying time periods. GC-MS analyses revealed the formation of 1,1-diphenylethane as an end product from DDT, DDE and DDD. To the best of our knowledge this is the first report describing the application Mg0/Pd4+ system for remediation of DDT, DDD and DDE contaminated soil. We conclude that reductive dechlorination reaction catalyzed by Mg0/Pd4+ may be a promising system to remediate soil contaminated with DDT and its dechlorinated products such as DDD and DDE.

  8. Metallic single-walled carbon nanotube for ionized radiation detection

    NASA Astrophysics Data System (ADS)

    Banadaki, Yaser M.; Srivastava, Ashok; Sharifi, Safura

    2016-04-01

    In this paper, we have explored the feasibility of a metallic single-walled carbon nanotube (SWCNT) as a radiation detector. The effect of SWCNTs' exposure to different ion irradiations is considered with the displacement damage dose (DDD) methodology. The analytical model of the irradiated resistance of metallic SWCNT has been developed and verified by the experimental data for increasing DDD from 1012 MeV/g to 1017 MeV/g. It has been found that the resistance variation of SWCNT by increasing DDD can be significant depending on the length and diameter of SWCNT, such that the DDD as low as 1012 (MeV/g) can be detected using the SWCNT with 1cm length and 5nm diameter. Increasing the length and diameter of SWCNT can result in both the higher radiation sensitivity of resistance and the extension of detection range to lower DDD.

  9. Computational modelling of mesoscale dislocation patterning and plastic deformation of single crystals

    NASA Astrophysics Data System (ADS)

    Xia, Shengxu; El-Azab, Anter

    2015-07-01

    We present a continuum dislocation dynamics model that predicts the formation of dislocation cell structure in single crystals at low strains. The model features a set of kinetic equations of the curl type that govern the space and time evolution of the dislocation density in the crystal. These kinetic equations are coupled to stress equilibrium and deformation kinematics using the eigenstrain approach. A custom finite element method has been developed to solve the coupled system of equations of dislocation kinetics and crystal mechanics. The results show that, in general, dislocations self-organize in patterns under their mutual interactions. However, the famous dislocation cell structure has been found to form only when cross slip is implemented in the model. Cross slip is also found to lower the yield point, increase the hardening rate, and sustain an increase in the dislocation density over the hardening regime. Analysis of the cell structure evolution reveals that the average cell size decreases with the applied stress, which is consistent with the similitude principle.

  10. Pipe and grain boundary diffusion of He in UO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galvin, C. O.T.; Cooper, M. W. D.; Fossati, P. C. M.

    Molecular dynamics simulations have been conducted to study the effects of dislocations and grain boundaries on He diffusion inmore » $$\\text{U}{{\\text{O}}_{2}}$$ . Calculations were carried out for the {100}, {110} and {111} $$\\langle 1\\,1\\,0\\rangle $$ edge dislocations, the screw $$\\langle 1\\,1\\,0\\rangle $$ dislocation and Σ5, Σ13, Σ19 and Σ25 tilt grain boundaries. He diffusivity as a function of distance from the dislocation core and grain boundaries was investigated for the temperature range 2300–3000 K. An enhancement in diffusivity was predicted within 20 Å of the dislocations or grain boundaries. Further investigation showed that He diffusion in the edge dislocations follows anisotropic behaviour along the dislocation core, suggesting that pipe diffusion occurs. Here, an Arrhenius plot of He diffusivity against the inverse of temperature was also presented and the activation energy calculated for each structure, as a function of distance from the dislocation or grain boundary.« less

  11. Pipe and grain boundary diffusion of He in UO 2

    DOE PAGES

    Galvin, C. O.T.; Cooper, M. W. D.; Fossati, P. C. M.; ...

    2016-10-12

    Molecular dynamics simulations have been conducted to study the effects of dislocations and grain boundaries on He diffusion inmore » $$\\text{U}{{\\text{O}}_{2}}$$ . Calculations were carried out for the {100}, {110} and {111} $$\\langle 1\\,1\\,0\\rangle $$ edge dislocations, the screw $$\\langle 1\\,1\\,0\\rangle $$ dislocation and Σ5, Σ13, Σ19 and Σ25 tilt grain boundaries. He diffusivity as a function of distance from the dislocation core and grain boundaries was investigated for the temperature range 2300–3000 K. An enhancement in diffusivity was predicted within 20 Å of the dislocations or grain boundaries. Further investigation showed that He diffusion in the edge dislocations follows anisotropic behaviour along the dislocation core, suggesting that pipe diffusion occurs. Here, an Arrhenius plot of He diffusivity against the inverse of temperature was also presented and the activation energy calculated for each structure, as a function of distance from the dislocation or grain boundary.« less

  12. Hardening Mechanisms of Silicon Nanospheres: A Molecular Dynamics Study

    DTIC Science & Technology

    2011-05-01

    in single oxide system 111 Figure 5.9 Dislocation motion in double oxide systems 112 x Figure 5.10 Dislocation response to incremental...addressed as no single dislocation loops were ever separated and no diffraction peaks indicative of the -Sn phase were observed. The load vs. displacement...as the diamond cubic structure has angle dependent covalent bonds. Therefore, other potentials have been 20 developed that model the

  13. Documentation Driven Development for Complex Real-Time Systems

    DTIC Science & Technology

    2004-12-01

    This paper presents a novel approach for development of complex real - time systems , called the documentation-driven development (DDD) approach. This... time systems . DDD will also support automated software generation based on a computational model and some relevant techniques. DDD includes two main...stakeholders to be easily involved in development processes and, therefore, significantly improve the agility of software development for complex real

  14. --No Title--

    Science.gov Websites

    ;background-color:#ddd;border-bottom:3px solid #aaa;padding:8px;margin-top:12px;height:auto;overflow:hidden }#how_use_car{clear:both;background-color:#ddd;border-bottom:3px solid #aaa;padding:8px;margin-top:20px ;height:auto;overflow:hidden}#results{clear:both;background-color:#ddd;border-bottom:3px solid #aaa;padding:8px

  15. Does football cause an increase in degenerative disease of the lumbar spine?

    PubMed

    Gerbino, Peter G; d'Hemecourt, Pierre A

    2002-02-01

    Degenerative disease of the lumbar spine is exceedingly common. Whether any specific activity increases the likelihood of developing degenerative disc disease (DDD) or facet degeneration (FD) has enormous implications. Within the field of occupational medicine there are specific activities, occupations, and morphologic characteristics that have been related to low back pain. Several specific risk factors have been conclusively linked to low back pain, and in particular DDD and FD. Within the sport of American football, there has long been the feeling that many athletes have or will develop low back pain, DDD, and FD. Proving that certain risk factors present in football will predictably lead to an increase in LBP, DDD, and FD is more difficult. At this time, it can be said that football players, in general, increase their risk of developing low back pain, DDD, and FD as their years of involvement with their sport increase. Because specific spine injuries like fracture, disc herniation, and spondylolysis are more frequent in football players, the resulting DDD and FD are greater than that of the general population. The weightlifting and violent hyperextension that are part of American football are independent risk factors for degenerative spine disease.

  16. A Precise Drunk Driving Detection Using Weighted Kernel Based on Electrocardiogram.

    PubMed

    Wu, Chung Kit; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei

    2016-05-09

    Globally, 1.2 million people die and 50 million people are injured annually due to traffic accidents. These traffic accidents cost $500 billion dollars. Drunk drivers are found in 40% of the traffic crashes. Existing drunk driving detection (DDD) systems do not provide accurate detection and pre-warning concurrently. Electrocardiogram (ECG) is a proven biosignal that accurately and simultaneously reflects human's biological status. In this letter, a classifier for DDD based on ECG is investigated in an attempt to reduce traffic accidents caused by drunk drivers. At this point, it appears that there is no known research or literature found on ECG classifier for DDD. To identify drunk syndromes, the ECG signals from drunk drivers are studied and analyzed. As such, a precise ECG-based DDD (ECG-DDD) using a weighted kernel is developed. From the measurements, 10 key features of ECG signals were identified. To incorporate the important features, the feature vectors are weighted in the customization of kernel functions. Four commonly adopted kernel functions are studied. Results reveal that weighted feature vectors improve the accuracy by 11% compared to the computation using the prime kernel. Evaluation shows that ECG-DDD improved the accuracy by 8% to 18% compared to prevailing methods.

  17. Use of and barriers to access to opioid analgesics: a worldwide, regional, and national study.

    PubMed

    Berterame, Stefano; Erthal, Juliana; Thomas, Johny; Fellner, Sarah; Vosse, Benjamin; Clare, Philip; Hao, Wei; Johnson, David T; Mohar, Alejandro; Pavadia, Jagjit; Samak, Ahmed Kamal Eldin; Sipp, Werner; Sumyai, Viroj; Suryawati, Sri; Toufiq, Jallal; Yans, Raymond; Mattick, Richard P

    2016-04-16

    Despite opioid analgesics being essential for pain relief, use has been inadequate in many countries. We aim to provide up-to-date worldwide, regional, and national data for changes in opioid analgesic use, and to analyse the relation of impediments to use of these medicines. We calculated defined daily doses for statistical purposes (S-DDD) per million inhabitants per day of opioid analgesics worldwide and for regions and countries from 2001 to 2013, and we used generalised estimating equation analysis to assess longitudinal change in use. We compared use data against the prevalence of some health disorders needing opioid use. We surveyed 214 countries or territories about impediments to availability of these medicines, and used regression analyses to establish the strength of associations between impediments and use. The S-DDD of opioid analgesic use more than doubled worldwide between 2001-03 and 2011-13, from 1417 S-DDD (95% CI -732 to 3565; totalling about 3.01 billion defined daily doses per annum) to 3027 S-DDD (-1162 to 7215; totalling about 7.35 billion defined daily doses per annum). Substantial increases occurred in North America (16,046 S-DDD [95% CI 4032-28,061] to 31,453 S-DDD [8121-54,785]), western and central Europe (3079 S-DDD [1274-4883] to 9320 S-DDD [3969-14,672]), and Oceania (2275 S-DDD [763-3787] to 9136 S-DDD [2508-15,765]). Countries in other regions have shown no substantial increase in use. Impediments to use included an absence of training and awareness in medical professionals, fear of dependence, restricted financial resources, issues in sourcing, cultural attitudes, fear of diversion, international trade controls, and onerous regulation. Higher number of impediments reported was significantly associated with lower use (unadjusted incidence rate ratio 0.39 [95% CI 0.29-0.52]; p<0.0001), but not when adjusted for gross domestic product and human development index (0.91 [0.73-1.14]; p=0.4271). Use of opioid analgesics has increased, but remains low in Africa, Asia, Central America, the Caribbean, South America, and eastern and southeastern Europe. Identified impediments to use urgently need to be addressed by governments and international agencies. International Narcotics Control Board, UN. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A comparison of three methods of setting prescribing budgets, using data derived from defined daily dose analyses of historic patterns of use.

    PubMed Central

    Maxwell, M; Howie, J G; Pryde, C J

    1998-01-01

    BACKGROUND: Prescribing matters (particularly budget setting and research into prescribing variation between doctors) have been handicapped by the absence of credible measures of the volume of drugs prescribed. AIM: To use the defined daily dose (DDD) method to study variation in the volume and cost of drugs prescribed across the seven main British National Formulary (BNF) chapters with a view to comparing different methods of setting prescribing budgets. METHOD: Study of one year of prescribing statistics from all 129 general practices in Lothian, covering 808,059 patients: analyses of prescribing statistics for 1995 to define volume and cost/volume of prescribing for one year for 10 groups of practices defined by the age and deprivation status of their patients, for seven BNF chapters; creation of prescribing budgets for 1996 for each individual practice based on the use of target volume and cost statistics; comparison of 1996 DDD-based budgets with those set using the conventional historical approach; and comparison of DDD-based budgets with budgets set using a capitation-based formula derived from local cost/patient information. RESULTS: The volume of drugs prescribed was affected by the age structure of the practices in BNF Chapters 1 (gastrointestinal), 2 (cardiovascular), and 6 (endocrine), and by deprivation structure for BNF Chapters 3 (respiratory) and 4 (central nervous system). Costs per DDD in the major BNF chapters were largely independent of age, deprivation structure, or fundholding status. Capitation and DDD-based budgets were similar to each other, but both differed substantially from historic budgets. One practice in seven gained or lost more than 100,000 Pounds per annum using DDD or capitation budgets compared with historic budgets. The DDD-based budget, but not the capitation-based budget, can be used to set volume-specific prescribing targets. CONCLUSIONS: DDD-based and capitation-based prescribing budgets can be set using a simple explanatory model and generalizable methods. In this study, both differed substantially from historic budgets. DDD budgets could be created to accommodate new prescribing strategies and raised or lowered to reflect local intentions to alter overall prescribing volume or cost targets. We recommend that future work on setting budgets and researching prescribing variations should be based on DDD statistics. PMID:10024703

  19. Impact of the introduction of mandatory generic substitution in South Africa: private sector sales of generic and originator medicines for chronic diseases.

    PubMed

    Gray, Andrew Lofts; Santa-Ana-Tellez, Yared; J Wirtz, Veronika

    2016-12-01

    To assess the impact of mandatory offer of generic substitution, introduced in South Africa in May 2003, on private sector sales of generic and originator medicines for chronic diseases. Private sector sales data (June 2001 to May 2005) were obtained from IMS Health for proton pump inhibitors (PPIs; ATC code A02BC), HMG-CoA reductase inhibitors (statins; C10AA), dihydropyridine calcium antagonists (C08CA), angiotensin-converting enzyme inhibitors (ACE-I; C09AA) and selective serotonin reuptake inhibitors (SSRIs; N06AB). Monthly sales were expressed as defined daily doses per 1000 insured population per month (DDD/TIM). Interrupted time-series models were used to estimate the changes in slope and level of medicines use after the policy change. ARIMA models were used to correct for autocorrelation and stationarity. Only the SSRIs saw a significant rise in level of generic utilisation (0.2 DDD/TIM; P < 0.001) and a fall in originator usage (-0.1 DDD/TIM; P < 0.001) after the policy change. Utilisation of generic PPIs fell (level 0.06 DDD/TIM, P = 0.048; slope 0.01 DDD/TIM, P = 0.043), but utilisation of originator products also grew (level 0.05 DDD/TIM, P < 0.001; slope 0.003, P = 0.001). Generic calcium antagonists and ACE-I showed an increase in slope (0.01 DDD/TIM, P = 0.016; 0.02 DDD/TIM, P < 0.001), while the originators showed a decrease in slope (-0.003 DDD/TIM, P = 0.046; -0.01 DDD/TIM, P < 0.001). There were insufficient data on generic statin use before the policy change to allow for analysis. The mandatory offer of generic substitution appeared to have had a quantifiable effect on utilisation patterns in the 2 years after May 2003. Managed care interventions that were already in place before the intervention may have blunted the extent of the changes seen in this period. Generic policies are an important enabling provision for cost-containment efforts. However, decisions taken outside of official policy may anticipate or differ from that policy, with important consequences. © 2016 John Wiley & Sons Ltd.

  20. Long-term follow-up of DDD pacing mode.

    PubMed

    Ulman, Mateusz; Dębski, Maciej; Ząbek, Andrzej; Haberka, Kazimierz; Lelakowski, Jacek; Małecka, Barbara

    2014-01-01

    The aim of this study was to determine the long-term survival of DDD pacing and identify the main reasons for its loss. The study group consisted of 496 patients in whom a DDD pacing system was implanted between October 1984 and March 2002 and who were followed up until July 2010. The follow-up period was 152.1 ± 35.5 months. The patients' mean age at the time of implantation was 59.5 ± 12.5 years, and 53.5% were male; 58% had sick sinus syndrome (SSS), 26% had atrioventricular block (AVB), 15% had both of these indications simultaneously, and 1% had other indications. The incidence of lead malfunction, progression to chronic atrial fibrillation (AF), and the rate of infective complications was analysed. During the follow-up, 369 patients remained in DDD mode stimulation. DDD mode survival rate at one, five, ten and 15 years was, respectively, 96%, 86%, 77% and 72%. The most common reason for reprogramming out of DDD mode was the development of permanent AF in 65 (13.1%) patients. The occurrence of chronic AF was associated with a prior history of paroxysmal AF (p = 0.0001), SSS (p = 0.0215), and older age at time of implantation (p = 0.0068) compared to patients who remained in sinus rhythm. Lead malfunction caused loss of DDD mode pacing in 56 (11.3%) patients. Atrial leads were damaged in 37 patients, ventricular in 12 patients, and both leads in seven patients. The subclavian vein puncture was correlated with the mechanical damage of the atrial lead (p = 0.02935) compared to cephalic vein access. At the moment of complication, the patients with a dysfunctional lead were significantly younger than those who progressed to chronic AF(p = 0.0019). Infective complications which caused temporary loss of DDD pacing were observed in six patients: five had pocket infection and one had lead-dependent infective endocarditis. 1. Effective DDD pacing from the originally implanted system was noted in a high percentage (72%) of patients in long-term observation (15 years). 2. Progression to permanent AF is the most common reason for loss of DDD pacing;a history of paroxysmal AF and old age are the risk factors. 3. Subclavian vein puncture is associated with a higher rate of atrial lead damage.

  1. Seventeen-Year Nationwide Trends in Antihypertensive Drug Use in Denmark.

    PubMed

    Sundbøll, Jens; Adelborg, Kasper; Mansfield, Kathryn E; Tomlinson, Laurie A; Schmidt, Morten

    2017-12-15

    Recent trends in use of antihypertensive drugs are unknown. From Danish nationwide prescription data, we obtained information on primary care use of angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, beta blockers, diuretics, aldosterone receptor antagonists, and calcium channel blockers. During 1999 to 2015, the use of antihypertensive drugs per 1,000 inhabitants/day increased from 184 to 379 defined daily doses (DDD), corresponding to a rise in the prevalence proportion of users from ≈20% to ≈35%. From 1999 to 2015, a notable increase was observed for angiotensin-converting enzyme inhibitors (from 29 to 105 DDD per 1,000 inhabitants/day ≈260%) and angiotensin II receptor blockers (from 13 to 73 DDD per 1,000 inhabitants/day ≈520%). For diuretics the use remained stable, with a slight decrease (from 89 to 81 DDD per 1,000 inhabitants/day ≈-10%). The use of aldosterone receptor antagonists increased until 2007 and remained unchanged at around 3.5 DDD per 1,000 inhabitants/day thereafter (average change ≈65%). The use of beta blockers doubled during the study period (from 17 to 34 DDD per 1,000 inhabitants/day ≈100%), entirely driven by increasing use of metoprolol. Similar trends were observed for calcium channel blockers (from 34 to 82 DDD per 1,000 inhabitants/day ≈140%), where amlodipine drove the overall increase. In conclusion, antihypertensive drug use has increased remarkably during the past 2 decades. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Defined daily doses (DDD) do not accurately reflect opioid doses used in contemporary chronic pain treatment.

    PubMed

    Nielsen, Suzanne; Gisev, Natasa; Bruno, Raimondo; Hall, Wayne; Cohen, Milton; Larance, Briony; Campbell, Gabrielle; Shanahan, Marian; Blyth, Fiona; Lintzeris, Nicholas; Pearson, Sallie; Mattick, Richard; Degenhardt, Louisa

    2017-05-01

    To assess how well the defined daily dose (DDD) metric reflects opioid utilisation among chronic non-cancer pain patients. Descriptive, cross-sectional study, utilising a 7-day medication diary. Community-based treatment settings, Australia. A sample of 1101 people prescribed opioids for chronic non-cancer pain. Opioid dose data was collected via a self-completed 7-day medication diary capturing names, strengths and doses of each medication taken in the past week. Median daily dose was calculated for each opioid. Comparisons were made to the World Health Organization's (WHO) DDD metric. WHO DDDs ranged from 0.6 to 7.1 times the median opioid doses used by the sample. For transdermal fentanyl and oral hydromorphone, the median dose was comparable with the DDD. The DDD for methadone was 0.6 times lower than the median doses used by this sample of chronic pain patients. In contrast, the DDD for oxycodone and transdermal buprenorphine, the most commonly used strong opioids for chronic pain in Australia, was two to seven times higher than actual doses used. For many opioids, there are key differences between the actual doses used in clinical practice and the WHO's DDDs. The interpretation of opioid utilisation studies using population-level DDDs may be limited, and a recalibration of the DDD for many opioids or the reporting of opioid utilisation in oral morphine equivalent doses is recommended. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  3. A molecular dynamics study of tilt grain boundary resistance to slip and heat transfer in nanocrystalline silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiang; Chen, Youping; Xiong, Liming

    2014-12-28

    We present a molecular dynamics study of grain boundary (GB) resistance to dislocation-mediated slip transfer and phonon-mediated heat transfer in nanocrystalline silicon bicrystal. Three most stable 〈110〉 tilt GBs in silicon are investigated. Under mechanical loading, the nucleation and growth of hexagonal-shaped shuffle dislocation loops are reproduced. The resistances of different GBs to slip transfer are quantified through their constitutive responses. Results show that the Σ3 coherent twin boundary (CTB) in silicon exhibits significantly higher resistance to dislocation motion than the Σ9 GB in glide symmetry and the Σ19 GB in mirror symmetry. The distinct GB strengths are explained bymore » the atomistic details of the dislocation-GB interaction. Under thermal loading, based on a thermostat-induced heat pulse model, the resistances of the GBs to transient heat conduction in ballistic-diffusive regime are characterized. In contrast to the trend found in the dislocation-GB interaction in bicrystal models with different GBs, the resistances of the same three GBs to heat transfer are strikingly different. The strongest dislocation barrier Σ3 CTB is almost transparent to heat conduction, while the dislocation-permeable Σ9 and Σ19 GBs exhibit larger resistance to heat transfer. In addition, simulation results suggest that the GB thermal resistance not only depends on the GB energy but also on the detailed atomic structure along the GBs.« less

  4. Improvement, Verification, and Refinement of Spatially-Explicit Exposure Models in Risk Assessment - FishRand Spatially-Explicit Bioaccumulation Model Demonstration

    DTIC Science & Technology

    2015-08-01

    21  Figure 4. Data-based proportion of DDD , DDE and DDT in total DDx in fish and sediment by... DDD dichlorodiphenyldichloroethane DDE dichlorodiphenyldichloroethylene DDT dichlorodiphenyltrichloroethane DoD Department of Defense ERM... DDD ) at the other site. The spatially-explicit model consistently predicts tissue concentrations that closely match both the average and the

  5. Atomistic-Dislocation Dynamics Modelling of Fatigue Microstructure and Crack Initiation

    DTIC Science & Technology

    2013-01-01

    experimental) Brown 󈧊 (Upper Limit’) DD Results Mughrabi & Pschenitzka 󈧉 (Lower Limit) y = 50 nm d, = 1.2 |lm M I 4 Simulations of... Mughrabi . Introduction to the viewpoint set on: Surface effects in cyclic deformation and fatigue. Scr. Metall. Mater., 26(10): 1499-1504, 1992. [3] E...associated with dislocation cores. Acta Materialia, 53:13131321, 2005. [13] H. Mughrabi . The long-range internal stress field in the dislocation wall

  6. Patterns of lumbar disc degeneration are different in degenerative disc disease and disc prolapse magnetic resonance imaging analysis of 224 patients.

    PubMed

    Kanna, Rishi M; Shetty, Ajoy Prasad; Rajasekaran, S

    2014-02-01

    Existing research on lumbar disc degeneration has remained inconclusive regarding its etiology, pathogenesis, symptomatology, prevention, and management. Degenerative disc disease (DDD) and disc prolapse (DP) are common diseases affecting the lumbar discs. Although they manifest clinically differently, existing studies on disc degeneration have included patients with both these features, leading to wide variations in observations. The possible relationship or disaffect between DDD and DP is not fully evaluated. To analyze the patterns of lumbar disc degeneration in patients with chronic back pain and DDD and those with acute DP. Prospective, magnetic resonance imaging-based radiological study. Two groups of patients (aged 20-50 years) were prospectively studied. Group 1 included patients requiring a single level microdiscectomy for acute DP. Group 2 included patients with chronic low back pain and DDD. Discs were assessed by magnetic resonance imaging through Pfirmann grading, Schmorl nodes, Modic changes, and the total end-plate damage score for all the five lumbar discs. Group 1 (DP) had 91 patients and group 2 (DDD) had 133 patients. DP and DDD patients differed significantly in the number, extent, and severity of degeneration. DDD patients had a significantly higher number of degenerated discs than DP patients (p<.000). The incidence of multilevel and pan-lumbar degeneration was also significantly higher in DDD group. The pattern of degeneration also differed in both the groups. DDD patients had predominant upper lumbar involvement, whereas DP patients had mainly lower lumbar degeneration. Modic changes were more common in DP patients, especially at the prolapsed level. Modic changes were present in 37% of prolapsed levels compared with 9.9% of normal discs (p<.00). The total end-plate damage score had a positive correlation with disc degeneration in both the groups. Further the mean total end-plate damage score at prolapsed level was also significantly higher. The results suggest that patients with disc prolapse, and those with back pain with DDD are clinically and radiologically different groups of patients with varying patterns, severity, and extent of disc degeneration. This is the first study in literature to compare and identify significant differences in these two commonly encountered patient groups. In patients with single-level DP, the majority of the other discs are nondegenerate, the lower lumbar spine is predominantly involved and the end-plate damage is higher. Patients with back pain and DDD have larger number of degenerate discs, early multilevel degeneration, and predominant upper lumbar degeneration. The knowledge that these two groups of patients are different clinically and radiologically is critical for our improved understanding of the disease and for future studies on disc degeneration and disc prolapse. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Quantitative trait loci that control body weight in DDD/Sgn and C57BL/6J inbred mice.

    PubMed

    Suto, Jun-Ichi; Kojima, Misaki

    2017-02-01

    Inbred DDD/Sgn mice are heavier than inbred C57BL/6J mice. In the present study, we performed quantitative trait loci (QTL) mapping for body weight using R/qtl in reciprocal F 2 male populations between the two strains. We identified four significant QTL on Chrs 1, 2, 5, and 17 (proximal region). The DDD/Sgn allele was associated with increased body weight at QTL on Chrs 1 and 5, and the DDD/Sgn allele was associated with decreased body weight at QTL on Chrs 2 and 17. A multiple regression analysis indicated that the detected QTL explain 30.94 % of the body weight variation. Because DDD/Sgn male mice have extremely high levels of circulating testosterone relative to other inbred mouse strains, we performed QTL mapping for plasma testosterone level to examine the effect of testosterone levels on body weight. We identified one suggestive QTL on Chr 5, which overlapped with body weight QTL. The DDD/Sgn allele was associated with increased testosterone level. Thus, we confirmed that there was a genetic basis for the changes in body weight and testosterone levels in male mice. These findings provide insights into the genetic mechanism by which body weight is controlled in male mice.

  8. A clinical comparison between a new dual-chamber pacing mode-AAIsafeR and DDD mode.

    PubMed

    Xue-Jun, Ren; Zhihong, Han; Ye, Wang; Huifeng, Du; Jinrong, Zhang; Fang, Chen; Jihong, Guo

    2010-02-01

    The aim of this study was to compare the cross-follow-up results in DDD or AAISafeR mode and to describe the safety and effectiveness of this pacing mode. The Symphony 2450/2550 cardiac pacemakers were implanted in 30 patients with sick sinus syndrome between February 2006 and September 2006. They were randomized to the DDD mode or AAISafeR mode for 3 months and then crossed over to the alternate pacing modality for an additional 3 months. No AAISafeR-related adverse event was observed. All documented episodes of paroxysmal atrial ventricular block caused the immediate switch of the pacing mode from AAI to DDD. The cumulative percent ventricular pacing was significantly reduced in the AAISafeR mode compared with the DDD mode (0.9% [0%-3%] versus 51.3% [2%-91%] P = 0.001; 2.94% [0%-18%] versus 41.18% [0%-65%] P = 0.0001). After 3 months in DDD mode, left atrial diameter, left ventricular enddiastolic diameter, and left ventricular end-systolic diameter increased significantly and left ventricular ejection fraction decreased. However, no obvious changes appeared in 3 months of AAISafeR mode. Switches to DDD occurred during follow-up in 21 patients due to different-degree atrial ventricular block. The AAISafeR mode substantially reduces the amount of unnecessary right ventricular pacing in the bradycardia population and effectively prevents the deleterious effects on cardiac performance. An international randomized study will further ascertain the efficacy of this new pacing mode specifically in the prevention of heart failure hospitalization and atrial fibrillation.

  9. DDD versus VVIR pacing in patients, ages 70 and over, with complete heart block.

    PubMed

    Ouali, Sana; Neffeti, Elyes; Ghoul, Karima; Hammas, Sami; Kacem, Slim; Gribaa, Rim; Remedi, Fahmi; Boughzela, Essia

    2010-05-01

    Dual-chamber pacing is believed to have an advantage over single-chamber ventricular pacing. The aim of the study was to determine whether elderly patients with implanted pacemaker for complete atrioventricular block gain significant benefit from dual-chamber (DDD) compared with single-chamber ventricular demand (VVIR). The study was designed as a double-blind randomized two-period crossover study-each pacing mode was maintained for 3 months. Thirty patients (eight men, mean age 76.5 +/- 4.3 years) with implanted PM were submitted to a standard protocol, which included an interview, functional class assessment, quality of life (QoL) questionnaires, 6-minute walk test, and transthoracic echocardiographic examinations. QoL was measured by the SF-36. All these parameters were obtained on DDD mode pacing and VVIR mode pacing. Paired data were compared. QoL was significantly different between the two groups and showed the best values in DDD. Overall, no patient preferred VVIR mode, 18 preferred DDD mode, and 12 expressed no preference. No differences in mean walking distances were observed between patients with single-chamber and dual-chamber pacing. VVI pacing elicited marked decrease in left ventricle ejection fraction and significant enlargement of the left atrium. DDD pacing resulted in significant increase of the peak systolic velocities in lateral mitral annulus and septal mitral annulus. Early diastolic velocities on both sides of mitral annulus did not change. In active elderly patients with complete heart block, DDD pacing is associated with improved quality of life and systolic ventricular function compared with VVI pacing.

  10. Long-Term Outcome of Single-Chamber Atrial Pacing Compared with Dual-Chamber Pacing in Patients with Sinus-Node Dysfunction and Intact Atrioventricular Node Conduction

    PubMed Central

    Kim, Won Ho; Joung, Boyoung; Shim, Jaemin; Park, Jong Sung; Hwang, Eui-Seock; Pak, Hui-Nam; Kim, Sungsoon

    2010-01-01

    Purpose The optimal pacing mode with either single chamber atrial pacemaker (AAI or AAIR) or dual chamber pacemaker (DDD or DDDR) is still not clear in sinus-node dysfunction (SND) and intact atrioventricular (AV) conduction. Materials and Methods Patients who were implanted with permanent pacemaker using AAI(R) (n = 73) or DDD(R) (n = 113) were compared. Results The baseline characteristics were comparable between the two groups, with a mean follow-up duration of 69 months. The incidence of death did not show statistical difference. However, the incidence of hospitalization for congestive heart failure (CHF) was significantly lower in the AAI(R) group (0%) than the DDD(R) group (8.8%, p = 0.03). Also, atrial fibrillation (AF) was found in 2.8% in the AAI(R) group, which was statistically different from 15.2% of patients in the DDD(R) group (p = 0.01). Four patients (5.5%) with AAI(R) developed AV block, and subsequently switched to DDD(R) pacing. The risk of AF was lower in the patients implanted with AAI(R) than those with DDD(R) [hazard ratio (HR), 0.84; 95% confidence interval, 0.72 to 0.97, p = 0.02]. Conclusion In patients with SND and intact AV conduction, AAI(R) pacing can achieve a better clinical outcome in terms of occurrence of CHF and AF than DDD(R) pacing. These findings support AAI(R) pacing as the preferred pacing mode in patients with SND and intact AV conduction. PMID:20879047

  11. A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals

    DOE PAGES

    Mohamed, Mamdouh S.; Larson, Bennett C.; Tischler, Jonathan Z.; ...

    2015-05-18

    The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoreticalmore » analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kr ner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.« less

  12. The coupling technique: A two-wave acoustic method for the study of dislocation dynamics

    NASA Astrophysics Data System (ADS)

    Gremaud, G.; Bujard, M.; Benoit, W.

    1987-03-01

    Progress in the study of dislocation dynamics has been achieved using a two-wave acoustic method, which has been called the coupling technique. In this method, the attenuation α and the velocity v of ultrasonic waves are measured in a sample submitted simultaneously to a harmonic stress σ of low frequency. Closed curves Δα(σ) and Δv/v(σ) are drawn during each cycle of the applied stress. The shapes of these curves and their evolution are characteristic of each dislocation motion mechanism which is activated by the low-frequency applied stress. For this reason, the closed curves Δα(σ) and Δv/v(σ) can be considered as signatures of the interaction mechanism which controls the low-frequency dislocation motion. In this paper, the concept of signature is presented and explained with some experimental examples. It will also be shown that theoretical models can be developed which explain very well the experimental results.

  13. A novel Death Defying Domain in Met entraps the active site of Caspase-3 and blocks apoptosis in hepatocytes

    PubMed Central

    Ma, Jihong; Zou, Chunbin; Guo, Lida; Seneviratne, Danushka S.; Tan, Xinping; Kwon, Yong-Kook; An, Jiyan; Bowser, Robert; DeFrances, Marie C.; Zarnegar, Reza

    2013-01-01

    Met, the transmembrane tyrosine kinase receptor for hepatocyte growth factor (HGF) is known to function as a potent anti-apoptotic mediator in normal and neoplastic cells. Herein we report that intracellular cytoplasmic tail of Met has evolved to harbor a tandem pair of Caspase-3 cleavage sites, which bait, trap and disable the active site of Caspase-3, thereby blocking the execution of apoptosis. We call this Caspase-3 cleavage motif the ‘Death Defying Domain’ (DDD). This site consists of the following sequence: DNAD-DEVD-T (where the hyphens denote caspase cleavage sites). Through functional and mechanistic studies, we show that upon DDD cleavage by Caspase-3, the resulting DEVD-T peptide acts as a competitive inhibitor and entraps the active site of Caspase-3 akin to DEVD-CHO, which is a potent, synthetic inhibitor of Caspase-3 activity. By gain and loss-of-function studies using restoration of DDD expression in DDD deficient hepatocytic cells, we found that both Caspase-3 sites in DDD are necessary for inhibition of Caspase-3 and promotion of cell survival. Employing mutagenesis studies, we show that DDD could operate independently of Met’s enzymatic activity as determined by using kinase-dead human Met mutant constructs. Studies of both human liver cancer tissues and cell lines uncovered that DDD cleavage and entrapment of Caspase-3 by DDD occur in vivo, further proving that this site has physiological and pathophysiological relevance. Conclusion Our findings show that Met can directly inhibit Caspase-3 via a novel mechanism and promote hepato-cyte survival. Results presented here will further our understanding of the mechanisms that control not only normal tissue homeostasis but also abnormal tissue growth such as cancer and degenerative diseases in which apoptotic caspases are at play. PMID:24122846

  14. Efficacy of Management for Rational Use of Antibiotics in Surgical Departments at a Multi-Disciplinary Hospital: Results of a 7-year Pharmacoepidemiological Research.

    PubMed

    Korableva, A A; Yudina, E V; Ziganshina, L E

    Irrational medicine use including excessive use and abuse of antibiotics remains a crucial problem for the healthcare systems. In this regard, studies examining approaches to improving the clinical use of medicines are highly important. to assess the efficacy rate of management for the rational use of antibiotics in surgical departments of a multi-disciplinary hospital. The intervention complex combined the research, educational, and methodological activities: local protocols for perioperative antibiotic prophylaxis (PABP) for various surgical departments were developed; local PABP protocols were discussed with the physicians of specialized surgical departments; official order on implementation of PABP was issued; the list of drug prescriptions for registration of the first pre-operative antibiotic dose was changed; audit and feedback processes were introduced as well as consultations of a clinical pharmacologist were implemented. We assessed the efficacy rate of the interventions basing on the changes in consumption of antibiotics (both quantitatively and qualitatively) at surgical departments of a hospital using ATC/DDD methodology. Comparison of the studied outcomes was performed before and after the intervention implementation and between the departments (vascular and abdominal surgery). The consumption of antibacterial agents (ATCJ01) was measured as a number of defined daily doses (DDD) per 100 bed-days (DDD/100 bed-days, indicator recommended by the World Health Organization, WHO) and DDD per 100 treated patients (DDD/100 treated patients). From 2006 to 2012, a decrease in antibacterial consumption in surgical departments by 188 DDD/100 treated patients was observed. We obtained the opposite results when using an indicator of DDD/100 bed-days (increase by 2.5 DDD/100 bed-days) which could be explained by the dependence on indices of overall hospital work and its changes during the examined period. Observed changes in antibacterial consumption varied in different surgical departments. The most pronounced positive changes were noted in the department of vascular surgery: decrease in total antibacterial consumption by 298 DDD/100 treated patients, decrease in the use of cephalosporins of the III generation from 141 to 38 DDD/100 treated patients. These positive changes were accompanied by the same (low) level of consumption/use of reserve antibiotics. In the department of abdominal surgery, there was no decrease in total antibiotic consumption, as well as in consumption of broad-spectrum cephalosporins of the III generation and fluoroquinolones, and we observed an increase in the use of reserve antibiotics (carbapenems) during the study period. Positive changes in antibiotic consumption were associated with the positive attitude of the manager/head of the department towards interventions: we observed the most pronounced decrease in antibiotic consumption straight after the publication of the administrative order on perioperative antibacterial prophylaxis. The combination of scientific, educational, and methodological interventions is effective for improving antibiotic application. The study results provide the rationale for analyzing the drug consumption using the DDD/100 treated patients measure in addition to the WHO-recommended indicator of DDD/100 bed-days which depends on overall hospital performance.

  15. Misfit dislocation gettering by substrate pit-patterning in SiGe films on Si(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grydlik, Martyna; Groiss, Heiko; Brehm, Moritz

    2012-07-02

    We show that suitable pit-patterning of a Si(001) substrate can strongly influence the nucleation and the propagation of dislocations during epitaxial deposition of Si-rich Si{sub 1-x}Ge{sub x} alloys, preferentially gettering misfit segments along pit rows. In particular, for a 250 nm layer deposited by molecular beam epitaxy at x{sub Ge} = 15%, extended film regions appear free of dislocations, by atomic force microscopy, as confirmed by transmission electron microscopy sampling. This result is quite general, as explained by dislocation dynamics simulations, which reveal the key role of the inhomogeneous distribution in stress produced by the pit-patterning.

  16. Three-dimensional analysis of dislocation multiplication during thermal process of grown silicon with different orientations

    NASA Astrophysics Data System (ADS)

    Gao, B.; Nakano, S.; Harada, H.; Miyamura, Y.; Kakimoto, K.

    2017-09-01

    We used an advanced 3D model to study the effect of crystal orientation on the dislocation multiplication in single-crystal silicon under accurate control of the cooling history of temperature. The incorporation of the anisotropy effect of the crystal lattice into the model has been explained in detail, and an algorithm for accurate control of the temperature in the furnace has also been presented. This solver can dynamically track the history of dislocation generation for different orientations during thermal processing of single-crystal silicon. Four orientations, [001], [110], [111], and [112], have been examined, and the comparison of dislocation distributions has been provided.

  17. Rapid misfit dislocation characterization in heteroepitaxial III-V/Si thin films by electron channeling contrast imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carnevale, Santino D.; Deitz, Julia I.; Carlin, John A.

    Electron channeling contrast imaging (ECCI) is used to characterize misfit dislocations in heteroepitaxial layers of GaP grown on Si(100) substrates. Electron channeling patterns serve as a guide to tilt and rotate sample orientation so that imaging can occur under specific diffraction conditions. This leads to the selective contrast of misfit dislocations depending on imaging conditions, confirmed by dynamical simulations, similar to using standard invisibility criteria in transmission electron microscopy (TEM). The onset and evolution of misfit dislocations in GaP films with varying thicknesses (30 to 250 nm) are studied. This application simultaneously reveals interesting information about misfit dislocations in GaP/Si layersmore » and demonstrates a specific measurement for which ECCI is preferable versus traditional plan-view TEM.« less

  18. Quantifying the stress fields due to a delta-hydride precipitate in alpha-Zr matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tummala, Hareesh; Capolungo, Laurent; Tome, Carlos N.

    This report is a preliminary study on δ-hydride precipitate in zirconium alloy performed using 3D discrete dislocation dynamics simulations. The ability of dislocations in modifying the largely anisotropic stress fields developed by the hydride particle in a matrix phase is addressed for a specific dimension of the hydride. The influential role of probable dislocation nucleation at the hydride-matrix interface is reported. Dislocation nucleation around a hydride was found to decrease the shear stress (S 13) and also increase the normal stresses inside the hydride. We derive conclusions on the formation of stacks of hydrides in zirconium alloys. The contribution ofmore » mechanical fields due to dislocations was found to have a non-negligible effect on such process.« less

  19. Dislocation nucleation facilitated by atomic segregation

    NASA Astrophysics Data System (ADS)

    Zou, Lianfeng; Yang, Chaoming; Lei, Yinkai; Zakharov, Dmitri; Wiezorek, Jörg M. K.; Su, Dong; Yin, Qiyue; Li, Jonathan; Liu, Zhenyu; Stach, Eric A.; Yang, Judith C.; Qi, Liang; Wang, Guofeng; Zhou, Guangwen

    2018-01-01

    Surface segregation--the enrichment of one element at the surface, relative to the bulk--is ubiquitous to multi-component materials. Using the example of a Cu-Au solid solution, we demonstrate that compositional variations induced by surface segregation are accompanied by misfit strain and the formation of dislocations in the subsurface region via a surface diffusion and trapping process. The resulting chemically ordered surface regions acts as an effective barrier that inhibits subsequent dislocation annihilation at free surfaces. Using dynamic, atomic-scale resolution electron microscopy observations and theory modelling, we show that the dislocations are highly active, and we delineate the specific atomic-scale mechanisms associated with their nucleation, glide, climb, and annihilation at elevated temperatures. These observations provide mechanistic detail of how dislocations nucleate and migrate at heterointerfaces in dissimilar-material systems.

  20. Development of a Search and Rescue Simulation to Study the Effects of Prolonged Isolation on Team Decision Making

    NASA Technical Reports Server (NTRS)

    Entin, Elliot E.; Kerrigan, Caroline; Serfaty, Daniel; Young, Philip

    1998-01-01

    The goals of this project were to identify and investigate aspects of team and individual decision-making and risk-taking behaviors hypothesized to be most affected by prolonged isolation. A key premise driving our research approach is that effects of stressors that impact individual and team cognitive processes in an isolated, confined, and hazardous environment will be projected onto the performance of a simulation task. To elicit and investigate these team behaviors we developed a search and rescue task concept as a scenario domain that would be relevant for isolated crews. We modified the Distributed Dynamic Decision-making (DDD) simulator, a platform that has been extensively used for empirical research in team processes and taskwork performance, to portray the features of a search and rescue scenario and present the task components incorporated into that scenario. The resulting software is called DD-Search and Rescue (Version 1.0). To support the use of the DDD-Search and Rescue simulator in isolated experiment settings, we wrote a player's manual for teaching team members to operate the simulator and play the scenario. We then developed a research design and experiment plan that would allow quantitative measures of individual and team decision making skills using the DDD-Search and Rescue simulator as the experiment platform. A description of these activities and the associated materials that were produced under this contract are contained in this report.

  1. Molecular dynamics modeling and simulation of void growth in two dimensions

    NASA Astrophysics Data System (ADS)

    Chang, H.-J.; Segurado, J.; Rodríguez de la Fuente, O.; Pabón, B. M.; LLorca, J.

    2013-10-01

    The mechanisms of growth of a circular void by plastic deformation were studied by means of molecular dynamics in two dimensions (2D). While previous molecular dynamics (MD) simulations in three dimensions (3D) have been limited to small voids (up to ≈10 nm in radius), this strategy allows us to study the behavior of voids of up to 100 nm in radius. MD simulations showed that plastic deformation was triggered by the nucleation of dislocations at the atomic steps of the void surface in the whole range of void sizes studied. The yield stress, defined as stress necessary to nucleate stable dislocations, decreased with temperature, but the void growth rate was not very sensitive to this parameter. Simulations under uniaxial tension, uniaxial deformation and biaxial deformation showed that the void growth rate increased very rapidly with multiaxiality but it did not depend on the initial void radius. These results were compared with previous 3D MD and 2D dislocation dynamics simulations to establish a map of mechanisms and size effects for plastic void growth in crystalline solids.

  2. Nonperturbative Quantum Nature of the Dislocation–Phonon Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mingda; Ding, Zhiwei; Meng, Qingping

    Despite the long history of dislocation–phonon interaction studies, there are many problems that have not been fully resolved during this development. These include an incompatibility between a perturbative approach and the long-range nature of a dislocation, the relation between static and dynamic scattering, and their capability of dealing with thermal transport phenomena for bulk material only. Here in this paper, by utilizing a fully quantized dislocation field, which we called a “dislon”, a phonon interacting with a dislocation is renormalized as a quasi-phonon, with shifted quasi-phonon energy, and accompanied by a finite quasi-phonon lifetime, which are reducible to classical results.more » A series of outstanding legacy issues including those above can be directly explained within this unified phonon renormalization approach. For instance, a renormalized phonon naturally resolves the decade-long debate between dynamic and static dislocation–phonon scattering approaches, as two limiting cases. In particular, at nanoscale, both the dynamic and static approaches break down, while the present renormalization approach remains valid by capturing the size effect, showing good agreement with lattice dynamics simulations.« less

  3. Nonperturbative Quantum Nature of the Dislocation–Phonon Interaction

    DOE PAGES

    Li, Mingda; Ding, Zhiwei; Meng, Qingping; ...

    2017-01-31

    Despite the long history of dislocation–phonon interaction studies, there are many problems that have not been fully resolved during this development. These include an incompatibility between a perturbative approach and the long-range nature of a dislocation, the relation between static and dynamic scattering, and their capability of dealing with thermal transport phenomena for bulk material only. Here in this paper, by utilizing a fully quantized dislocation field, which we called a “dislon”, a phonon interacting with a dislocation is renormalized as a quasi-phonon, with shifted quasi-phonon energy, and accompanied by a finite quasi-phonon lifetime, which are reducible to classical results.more » A series of outstanding legacy issues including those above can be directly explained within this unified phonon renormalization approach. For instance, a renormalized phonon naturally resolves the decade-long debate between dynamic and static dislocation–phonon scattering approaches, as two limiting cases. In particular, at nanoscale, both the dynamic and static approaches break down, while the present renormalization approach remains valid by capturing the size effect, showing good agreement with lattice dynamics simulations.« less

  4. Microstructure refinement of cold-sprayed copper investigated by electron channeling contrast imaging.

    PubMed

    Zhang, Yinyin; Brodusch, Nicolas; Descartes, Sylvie; Chromik, Richard R; Gauvin, Raynald

    2014-10-01

    The electron channeling contrast imaging technique was used to investigate the microstructure of copper coatings fabricated by cold gas dynamic spray. The high velocity impact characteristics for cold spray led to the formation of many substructures, such as high density dislocation walls, dislocation cells, deformation twins, and ultrafine equiaxed subgrains/grains. A schematic model is proposed to explain structure refinement of Cu during cold spray, where an emphasis is placed on the role of dislocation configurations and twinning.

  5. [A microstructural approach to fatigue crack processes in poly crystalline BCC materials]. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerberich, W.W.

    1992-12-31

    Objective was to study fatigue where a combination of low temperature and cyclic loading produced cyclic cleavage in bcc Fe-base systems. Both dislocation dynamics and quasi-statics of crack growth were probed. This document reviews progress over the past 6 years: hydrogen embrittlement and cleavage, computations (stress near crack tip), dislocation emission from grain boundaries, fracture process zones, and understanding brittle fracture at the atomistic/dislocation scales and at the microscopic/macroscopic scale.

  6. Dislocation Multiplication in the Early Stage of Deformation in Mo Single Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsiung, L.; Lassila, D.H.

    Initial dislocation structure in annealed high-purity Mo single crystals and deformation substructure in a crystal subjected to 1% compression have been examined and studied using transmission electron microscopy (TEM) techniques in order to investigate dislocation multiplication mechanisms in the early stage of plastic deformation. The initial dislocation density is in a range of 10{sup 6} {approx} 10{sup 7} cm{sup -2}, and the dislocation structure is found to contain many grown-in superjogs along dislocation lines. The dislocation density increases to a range of 10{sup 8} {approx} 10{sup 9} cm{sup -2}, and the average jog height is also found to increase aftermore » compressing for a total strain of 1%. It is proposed that the preexisting jogged screw dislocations can act as (multiple) dislocation multiplication sources when deformed under quasi-static conditions. The jog height can increase by stress-induced jog coalescence, which takes place via the lateral migration (drift) of superjogs driven by unbalanced line-tension partials acting on link segments of unequal lengths. The coalescence of superjogs results in an increase of both link length and jog height. Applied shear stress begins to push each link segment to precede dislocation multiplication when link length and jog height are greater than critical lengths. This ''dynamic'' dislocation multiplication source is suggested to be crucial for the dislocation multiplication in the early stage of plastic deformation in Mo.« less

  7. Void effect on mechanical properties of copper nanosheets under biaxial tension by molecular dynamics method

    NASA Astrophysics Data System (ADS)

    Yang, Zailin; Yang, Qinyou; Zhang, Guowei; Yang, Yong

    2018-03-01

    The relationship between void size/location and mechanical behavior under biaxial loading of copper nanosheets containing voids are investigated by molecular dynamics method. The void location and the void radius on the model are discussed in the paper. The main reason of break is discovered by the congruent relationship between the shear stress and its dislocations. Dislocations are nucleated at the corner of system and approached to the center of void with increased deformation. Here, a higher stress is required to fail the voided sheets when smaller voids are utilized. The void radius influences the time of destruction. The larger the void radius is, the lower the shear stress and the earlier the model breaks. The void location impacts the dislocation distribution.

  8. Pharmacokinetics of the adrenocorticolytic compounds 3-methylsulphonyl-DDE and o,p'-DDD (mitotane) in Minipigs.

    PubMed

    Hermansson, Veronica; Cantillana, Tatiana; Hovander, Lotta; Bergman, Ake; Ljungvall, Karl; Magnusson, Ulf; Törneke, Karolina; Brandt, Ingvar

    2008-02-01

    The pharmacokinetics of the adrenocorticolytic drug candidate 3-Methylsulphonyl-DDE (3-MeSO2-DDE) and the anticancer drug o,p'-DDD (mitotane) were studied in Göttingen minipigs. The animals were given 3-MeSO2-DDE or o,p'-DDD as single oral doses (30 mg/kg). Concentrations in plasma and subcutaneous fat were measured by gas chromatography at different time points during 180 days. Maximal plasma concentrations appeared within 24 h for both compounds, but were about 2 times higher for 3-MeSO2DDE. o,p'-DDD plasma concentrations declined rapidly to low levels during 4 days. 3-MeSO2-DDE also decreased rapidly, but remained at high concentrations throughout the study. In fat, 3-MeSO2-DDE reached about 25-fold higher levels than o,p'-DDD at 30 days, and both substances were eliminated slowly from this tissue. 3-MeSO2-DDE liver concentrations were about 18-fold higher than those in plasma at 180 days. In contrast, o,p'-DDD liver and plasma levels were about equal at 180 days. o,p'-DDD had roughly 45 times larger CL/F than 3-MeSO2-DDE, confirming that the elimination of this compound was more rapid. Both compounds were characterised by their localisation and retention in fat tissue, and the individual size of the fat stores clearly determined the plasma concentrations. It is concluded that although 3-MeSO2-DDE is an interesting candidate for therapeutic use due to its potential characteristics to specifically target adrenocortical tumour cells the slow elimination of the compound might make it challenging to design appropriate dosage regimes.

  9. Long-term outcome in patients receiving permanent pacemaker implantation for atrioventricular block

    PubMed Central

    Liao, Jo-Nan; Chao, Tze-Fan; Tuan, Ta-Chuan; Kong, Chi-Woon; Chen, Shih-Ann

    2016-01-01

    Abstract A permanent pacemaker (PPM) with dual chamber pacing (DDD) offers atrioventricular synchronization for patients with atrioventricular block (AVB). Single lead atrial synchronous ventricular pacing mode (VDD) is an alternative, but there are concerns about its efficacy and risk of atrial undersensing. Whether VDD can be a good alternative in patients with AVB remains unknown. The aim of the present study was to compare the long-term risk of mortality of VDD with DDD pacing. A total of 207 patients undergoing PPM implantations for AVB with VDD mode were enrolled from 2000 to 2013. Another 828 age- and sex-matched patients undergoing DDD implantations during the same period of time were selected as the control group in a 1 to 4 ratio. The study endpoint was mortality. A total of 1035 patients (64.3% male) were followed up for 46.5 ± 43.2 months. The mean ages were 75.0 years for VDD, and 74.9 years for DDD. The Kaplan–Meier survival analysis showed no significant difference in long-term survival between the VDD and DDD groups (log-rank P = 0.313). After adjustment for baseline characteristics, the VDD and DDD groups had a similar long-term prognosis with an adjusted hazard ratio of 0.875 (P = 0.445). Further analyses for the risk of cardiovascular and noncardiovascular deaths also showed no significant differences between the 2 groups. The long-term prognosis of VDD mode is comparable to that of DDD mode. Single lead VDD can be considered as an alternative choice in patients with AVB without sinus nodal dysfunction. PMID:27583889

  10. Biventricular pacing preserves left ventricular performance in patients with high-grade atrio-ventricular block: a randomized comparison with DDD(R) pacing in 50 consecutive patients.

    PubMed

    Albertsen, Andi E; Nielsen, Jens C; Poulsen, Steen H; Mortensen, Peter T; Pedersen, Anders K; Hansen, Peter S; Jensen, Henrik K; Egeblad, Henrik

    2008-03-01

    We aimed to investigate whether biventricular (BiV) pacing minimizes left ventricular (LV) dyssynchrony and preserves LV ejection fraction (LVEF) as compared with standard dual-chamber DDD(R) pacing in consecutive patients with high-grade atrio-ventricular (AV) block. Fifty patients were randomized to DDD(R) pacing or BiV pacing. LVEF was measured using three-dimensional echocardiography. Tissue-Doppler imaging was used to quantify LV dyssynchrony in terms of number of segments with delayed longitudinal contraction (DLC). LVEF was not different between groups after 12 months (P = 0.18). In the DDD(R) group LVEF decreased significantly from 59.7(57.4-61.4)% at baseline to 57.2(52.1-60.6)% at 12 months of follow-up (P = 0.03), whereas LVEF remained unchanged in the BiV group [58.9(47.1-61.7)% at baseline vs. 60.1(55.2-63.3)% after 12 months (P = 0.15)]. Dyssynchrony was more prominent in the DDD(R) group than in the BiV group at baseline (2.2 +/- 2.2 vs. 1.4 +/- 1.3 segments with DLC per patient, P = 0.10); and at 12 month follow-up (1.8 +/- 1.9 vs. 0.8 +/- 0.9 segments with DLC per patient, P = 0.02). NT-proBNP was unchanged in the DDD(R) group during follow-up (122 +/- 178 pmol/L vs. 91 +/- 166 pmol/L, NS) but decreased significantly in the BiV-group (from 198 +/- 505 pmol/L to 86 +/- 95 pmol/L after 12 months, P = 0.02). BiV pacing minimizes LV dyssynchrony, preserves LV function, and reduces NT-proBNP in contrast to DDD(R) pacing in patients with high-grade AV block.

  11. Bioavailability to grains of rice of aged and fresh DDD and DDE in soils.

    PubMed

    Yao, Fenxia; Yu, Guifen; Bian, Yongrong; Yang, Xinglun; Wang, Fang; Jiang, Xin

    2007-05-01

    DDT had been widely used around the world before 1980s and is still under production and use for non-agricultural purposes in China. Because of their special physicochemical properties, p,p'-DDT and its main metabolites, p,p'-DDD and p,p'-DDE, accumulated and persisted in the environment, presenting potential menace on biota. A green-house study was conducted to determine the bioavailability of p,p'-DDD and p,p'-DDE to grains of rice and the influences of traditional Chinese farming practices on their bioaccumulation. Paddy rice and dry rice were grown in submerged paddy soils and non-submerged upland soils, respectively. Two types of soil, Hydragric Anthrosols (An) and Hydragric Acrisols (Ac), were employed. Bioaccumulation factors (BAFs) of DDE ranged from 0.67 for rice grown in non-submerged An to 0.84 in submerged An in the control group, whilst BAFs were all below 0.04 in experimental groups. BAFs of DDD varied from 1.39 for submerged An to 2.26 for submerged Ac in original soils. In contrast, BAFs were between 0.05 for non-submerged Ac and 0.08 for submerged An in DDD-contaminated soils. Flooding seemed to have two contradictory effects on the DDE/DDD accumulation by rice: on one hand, it made the pollutants more mobile and bioavailable; while on the other hand, it enhanced the degradation and binding of POPs. Adding rice straw to the soils protected DDE from being taken up yet promoted DDD accumulation by rice. Furthermore, the distinct inorganic component of the soils might also play an important role in the environmental activities of POPs.

  12. Three-dimensional cell groups with disordered nuclei and cellular discohesion (3DDD) are associated with high sensitivity and specificity for cystoscopic urine cytopathological diagnosis of low-grade urothelial neoplasia.

    PubMed

    Mai, Kien T; Ball, Christopher G; Kos, Zuzana; Belanger, Eric C; Islam, Shahidul; Sekhon, Harman

    2014-07-01

    Cystoscopic urine obtained before the resection of low-grade urothelial carcinoma (LGUC), with adequate cytological sampling of the tumor, frequently revealed the presence of three-dimensional cell groups with disordered nuclei and cellular discohesion (3DDD). 936 cystoscopic urine specimens were categorized into five groups: Group 1 (80 specimens) with biopsy-proven LGUC within 6 months of cytologic examination, Group 2 (23 specimens) with biopsy proven LGUC within 6 to 36 months of cytologic examination, Group 3 (527 specimens) with a history of LGUC but no tumor for a period of greater than 3 years, Group 4 (300 specimens) with no association with LGUC, and Group 5 (6 specimens) with urinary lithiasis. Specimens with scant cellularity accounted for 20% of those in Group 1. For 3DDD in detecting LGUC in adequate cystoscopic urine, the sensitivity was 70%, specificity was 94%. Two- or three-dimensional cell groups with ordered nuclei and/or cellular non-discohesion were often seen in specimens from Groups 4 or 5. The 3DDD was present in a significant number of cases with concurrent negative cystoscopic findings but also positive LGUC in ensuing follow-up. In these cases, 3DDD with or without tumor identified at concurrent cystoscopy were found to be morphologically similar. Furthermore, the presence of 3DDD in 8% of Group 3 likely represents urothelial dysplasia that is not cystoscopically detectable. The high specificity and sensitivity of 3DDD is demonstrated. These findings are consistent with the decreased cell adhesion and disordered nuclear arrangement of low grade urothelial neoplasia. © 2013 Wiley Periodicals, Inc.

  13. Patterns of antibacterials use in intensive care units.

    PubMed

    Santos, Edilson Floriano Dos; Lauria-Pires, Liana

    2010-06-01

    To know and compare the patterns of antimicrobials use in intensive care units (ICUs) based on the Anatomical Therapeutic Chemical/Defined Daily Dose (ATC/DDD) system. a prospective cohort study was conducted in three medical-surgical intensive care units, two of them in public hospitals and one in a private hospital. Simple random, independent samples of patients admitted from 10/2004 to 09/2005 to the selected intensive care units were used. The antibiotics use was assessed using the ATC/DDD system. The amount of antibacterials used in each intensive care unit, in grams, was transformed in daily defined dose (DDD). The number of DDDs was divided by the number of patient-days, multiplied by one thousand, to obtain the average density of consumption (DC) per thousand patient-days (DDD1000). 1,728 patients-days and 2,918.6 DDDs were examined in the three intensive care units, corresponding to an average density of consumption of 1,689.0 DDD1000. The median number of DDDs of antibiotics use in the public hospitals’ intensive care units was significantly higher (p=0.002) versus the private hospital’s intensive care unit. The consumption of antibiotics in the private hospital’s intensive care unit (DC=2,191.7 DDD1000) was significantly higher (p<0.001) versus the intensive care units of public hospitals (1,499.5 DDD1000). The most used antibiotics groups in the three intensive care units were 3rd generation cephalosporins, penicillins/betalactamases inhibitors, carbapenems and fluorquinolones. The pattern of antibiotics use in the three examined intensive care units was not uniform. The private hospital’s intensive care unit used a significantly larger amount versus the public hospitals’ intensive care units. Nevertheless, the most used antibiotics groups were similar in the three intensive care units.

  14. Comparison of DDD versus VVIR pacing modes in elderly patients with atrioventricular block.

    PubMed

    Kılıçaslan, Barış; Vatansever Ağca, Fahriye; Kılıçaslan, Esin Evren; Kınay, Ozan; Tigen, Kürşat; Cakır, Cayan; Nazlı, Cem; Ergene, Oktay

    2012-06-01

    Dual-chamber pacing is believed to have an advantage over single-chamber ventricular pacing. The aim of this study was to determine whether elderly patients who have implanted pacemakers for complete atrioventricular block gain significant benefits from dual-chamber (DDD) pacemakers compared with single chamber ventricular (VVIR) pacemakers. This study was designed as a randomized, two-period crossover study-each pacing mode was maintained for 1 month. Thirty patients (16 men, mean age 68.87 ± 6.89 years) with implanted DDD pacemakers were submitted to a standard protocol, which included an interview, pacemaker syndrome assessment, health related quality of life (HRQoL) questionnaires assessed by an SF-36 test, 6-minute walk test (6MWT), and transthoracic echocardiographic examinations. All of these parameters were obtained on both DDD and VVIR mode pacing. Paired data were compared. HRQoL scores were similar, and 6MWT results did not differ between the two groups. VVIR pacing elicited significant enlargement of the left atrium and impaired left ventricular diastolic functions as compared with DDD pacing. Two patients reported subclinical pacemaker syndrome, but this was not statistically significant. Our study revealed that in active elderly patients with complete heart block, DDD pacing and VVIR pacing yielded similar improvements in QoL and exercise performance. However, after a short follow-up period, we noted that VVIR pacing caused significant left atrial enlargement and impaired left ventricular diastolic functions.

  15. Complete dechlorination of DDE/DDD using magnesium/palladium system.

    PubMed

    Gautam, Sumit Kumar; Suresh, Sumathi

    2007-04-01

    Kinetic studies on the dechlorination of 1,1-dichloro-2,2 bis (4,-chlorophenyl) ethane (DDD) and 1,1,dichloro-2,2 bis (4,-chlorophenyl) ethylene (DDE) in 0.05% biosurfactant revealed that the reaction follows second-order kinetics. The rate of reaction was dependent on the presence of acid, initial concentrations of the target compound, and zerovalent magnesium/tetravalent palladium. Gas chromatography-mass spectrometry analyses of DDE dechlorination revealed the formation of a completely dechlorinated hydrocarbon skeleton, with diphenylethane as the end product, thereby implying the removal of all four chlorine atoms of DDE. In the case of DDD, we identified two partially dechlorinated intermediates [namely, 1,1-dichloro-2, 2 bis (phenyl) ethane and 1, chloro-2, 2 bis (phenyl) ethane] and diphenylethane as the end product. On the basis of products formed from DDD dehalogenation, we propose the removal of aryl chlorine atoms as a first step. Our investigation reveals that biosurfactant may be an attractive solubilizing agent for DDT and its residues. The magnesium/palladium system is a promising option because of its high reactivity and ability to achieve complete dechlorination of DDE and DDD.

  16. Dynamic behavior of tripolar hip endoprostheses under physiological conditions and their effect on stability.

    PubMed

    Fabry, Christian; Kaehler, Michael; Herrmann, Sven; Woernle, Christoph; Bader, Rainer

    2014-01-01

    Tripolar systems have been implanted to reduce the risk of recurrent dislocation. However, there is little known about the dynamic behavior of tripolar hip endoprostheses under daily life conditions and achieved joint stability. Hence, the objective of this biomechanical study was to examine the in vivo dynamics and dislocation behavior of two types of tripolar systems compared to a standard total hip replacement (THR) with the same outer head diameter. Several load cases of daily life activities were applied to an eccentric and a concentric tripolar system by an industrial robot. During testing, the motion of the intermediate component was measured using a stereo camera system. Additionally, their behavior under different dislocation scenarios was investigated in comparison to a standard THR. For the eccentric tripolar system, the intermediate component demonstrated the shifting into moderate valgus-positions, regardless of the type of movement. This implant showed the highest resisting torque against dislocation in combination with a large range of motion. In contrast, the concentric tripolar system tended to remain in varus-positions and was primarily moved after stem contact. According to the results, eccentric tripolar systems can work well under in vivo conditions and increase hip joint stability in comparison to standard THRs. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. A spectral approach for discrete dislocation dynamics simulations of nanoindentation

    NASA Astrophysics Data System (ADS)

    Bertin, Nicolas; Glavas, Vedran; Datta, Dibakar; Cai, Wei

    2018-07-01

    We present a spectral approach to perform nanoindentation simulations using three-dimensional nodal discrete dislocation dynamics. The method relies on a two step approach. First, the contact problem between an indenter of arbitrary shape and an isotropic elastic half-space is solved using a spectral iterative algorithm, and the contact pressure is fully determined on the half-space surface. The contact pressure is then used as a boundary condition of the spectral solver to determine the resulting stress field produced in the simulation volume. In both stages, the mechanical fields are decomposed into Fourier modes and are efficiently computed using fast Fourier transforms. To further improve the computational efficiency, the method is coupled with a subcycling integrator and a special approach is devised to approximate the displacement field associated with surface steps. As a benchmark, the method is used to compute the response of an elastic half-space using different types of indenter. An example of a dislocation dynamics nanoindentation simulation with complex initial microstructure is presented.

  18. DDE and DDD residues correlated with mortality of experimental birds

    USGS Publications Warehouse

    Stickel, William H.; Stickel, Lucille F.; Coon, Francis B.; Deichmann, William B.; Peñalver, Rafael A.; Radomski, Jack L.

    1970-01-01

    Nearly everywhere in nature are found DDE and DDD, which are metabolites of DDT, and they often become concentrated through food chains. DDD is also a commercial insecticide. large amounts of both are frequently found in birds, but the significance of these amounts has puzzled many owrkers. Studies at Clear Lake, California1 gave some data on DDD danger levels, but less is known of DDE, the member of the DDT group that is most frequent and most abundant in nature. Although DDE is toxic, relatively alrge residues are found in apparently healthy animals. As one step in untanglig the problem, it seemed important to determine the residue levels that indicate danger to life. earlier work with DDR and dieldrin has shown the value of this approach.2-5, 1 2

  19. Size effects under homogeneous deformation of single crystals: A discrete dislocation analysis

    NASA Astrophysics Data System (ADS)

    Guruprasad, P. J.; Benzerga, A. A.

    Mechanism-based discrete dislocation plasticity is used to investigate the effect of size on micron scale crystal plasticity under conditions of macroscopically homogeneous deformation. Long-range interactions among dislocations are naturally incorporated through elasticity. Constitutive rules are used which account for key short-range dislocation interactions. These include junction formation and dynamic source and obstacle creation. Two-dimensional calculations are carried out which can handle high dislocation densities and large strains up to 0.1. The focus is laid on the effect of dimensional constraints on plastic flow and hardening processes. Specimen dimensions ranging from hundreds of nanometers to tens of microns are considered. Our findings show a strong size-dependence of flow strength and work-hardening rate at the micron scale. Taylor-like hardening is shown to be insufficient as a rationale for the flow stress scaling with specimen dimensions. The predicted size effect is associated with the emergence, at sufficient resolution, of a signed dislocation density. Heuristic correlations between macroscopic flow stress and macroscopic measures of dislocation density are sought. Most accurate among those is a correlation based on two state variables: the total dislocation density and an effective, scale-dependent measure of signed density.

  20. Thermal activation of dislocations in large scale obstacle bypass

    NASA Astrophysics Data System (ADS)

    Sobie, Cameron; Capolungo, Laurent; McDowell, David L.; Martinez, Enrique

    2017-08-01

    Dislocation dynamics simulations have been used extensively to predict hardening caused by dislocation-obstacle interactions, including irradiation defect hardening in the athermal case. Incorporating the role of thermal energy on these interactions is possible with a framework provided by harmonic transition state theory (HTST) enabling direct access to thermally activated reaction rates using the Arrhenius equation, including rates of dislocation-obstacle bypass processes. Moving beyond unit dislocation-defect reactions to a representative environment containing a large number of defects requires coarse-graining the activation energy barriers of a population of obstacles into an effective energy barrier that accurately represents the large scale collective process. The work presented here investigates the relationship between unit dislocation-defect bypass processes and the distribution of activation energy barriers calculated for ensemble bypass processes. A significant difference between these cases is observed, which is attributed to the inherent cooperative nature of dislocation bypass processes. In addition to the dislocation-defect interaction, the morphology of the dislocation segments pinned to the defects play an important role on the activation energies for bypass. A phenomenological model for activation energy stress dependence is shown to describe well the effect of a distribution of activation energies, and a probabilistic activation energy model incorporating the stress distribution in a material is presented.

  1. Coupling continuum dislocation transport with crystal plasticity for application to shock loading conditions

    DOE PAGES

    Luscher, Darby Jon; Mayeur, Jason Rhea; Mourad, Hashem Mohamed; ...

    2015-08-05

    Here, we have developed a multi-physics modeling approach that couples continuum dislocation transport, nonlinear thermoelasticity, crystal plasticity, and consistent internal stress and deformation fields to simulate the single-crystal response of materials under extreme dynamic conditions. Dislocation transport is modeled by enforcing dislocation conservation at a slip-system level through the solution of advection-diffusion equations. Nonlinear thermoelasticity provides a thermodynamically consistent equation of state to relate stress (including pressure), temperature, energy densities, and dissipation. Crystal plasticity is coupled to dislocation transport via Orowan's expression where the constitutive description makes use of recent advances in dislocation velocity theories applicable under extreme loading conditions.more » The configuration of geometrically necessary dislocation density gives rise to an internal stress field that can either inhibit or accentuate the flow of dislocations. An internal strain field associated with the internal stress field contributes to the kinematic decomposition of the overall deformation. The paper describes each theoretical component of the framework, key aspects of the constitutive theory, and some details of a one-dimensional implementation. Results from single-crystal copper plate impact simulations are discussed in order to highlight the role of dislocation transport and pile-up in shock loading regimes. The main conclusions of the paper reinforce the utility of the modeling approach to shock problems.« less

  2. Study on Dynamic Strain Aging and Low-Cycle Fatigue of Stainless Steel in Ultra-Supercritical Unit

    NASA Astrophysics Data System (ADS)

    Hongwei, Zhou; Yizhu, He; Jizu, Lv; Sixian, Rao

    Dynamic strain aging (DSA) and low-cycle fatigue (LCF) behavior of TP347H stainless steel in ultra-supercritical unit were investigated at 550-650 °C. All the LCF tests were carried out under a fully-reversed, total axial strain control mode at the total strain amplitude from ±0.2% to ±1.0%. The effects of DSA in cyclic stress response, microstructure evolution and fatigue fracture surfaces and fatigue life were investigated in detail. The results show that DSA occurs during tensile, which is manifested as serrated flow in tensile stress-strain curves. The apparent activation energy for appearing of serrations in tensile stress-strain curves was 270 kJ/mol. Pipe diffusion of substitutional solutes such as Cr and Nb along the dislocation core, and strong interactions between segregated solutes and dislocations are considered as the mechanism of DSA. DSA partly restricts dislocation cross-slip, and dislocation cross-slip and planar-slip happen simultaneously during LCF. A lot of planar structures form, which is due to dislocation gliding on the special plane. This localized deformation structures result in many crack initiation sites. Meanwhile, DSA hardening increases cyclic stress response, accelerating crack propagation, which reduces high temperature strain fatigue life of steel.

  3. Dislocation dynamics simulations of plasticity at small scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Caizhi

    2010-01-01

    As metallic structures and devices are being created on a dimension comparable to the length scales of the underlying dislocation microstructures, the mechanical properties of them change drastically. Since such small structures are increasingly common in modern technologies, there is an emergent need to understand the critical roles of elasticity, plasticity, and fracture in small structures. Dislocation dynamics (DD) simulations, in which the dislocations are the simulated entities, offer a way to extend length scales beyond those of atomistic simulations and the results from DD simulations can be directly compared with the micromechanical tests. The primary objective of this researchmore » is to use 3-D DD simulations to study the plastic deformation of nano- and micro-scale materials and understand the correlation between dislocation motion, interactions and the mechanical response. Specifically, to identify what critical events (i.e., dislocation multiplication, cross-slip, storage, nucleation, junction and dipole formation, pinning etc.) determine the deformation response and how these change from bulk behavior as the system decreases in size and correlate and improve our current knowledge of bulk plasticity with the knowledge gained from the direct observations of small-scale plasticity. Our simulation results on single crystal micropillars and polycrystalline thin films can march the experiment results well and capture the essential features in small-scale plasticity. Furthermore, several simple and accurate models have been developed following our simulation results and can reasonably predict the plastic behavior of small scale materials.« less

  4. Consideration of the oxide particle-dislocation interaction in 9Cr-ODS steel

    NASA Astrophysics Data System (ADS)

    Ijiri, Yuta; Oono, N.; Ukai, S.; Yu, Hao; Ohtsuka, S.; Abe, Y.; Matsukawa, Y.

    2017-05-01

    The interaction between oxide particles and dislocations in a 9Cr-ODS ferritic steel is investigated by both static and in situ TEM observation under dynamic straining conditions and room temperature. The measured obstacle strength (?) of the oxide particles was no greater than 0.80 and the average was 0.63. The dislocation loops around some coarsened particles were also observed. The calculated obstacle strength by a stress formula of the Orowan interaction is nearly equaled to the average experimental value. Not only cross-slip system but also the Orowan interaction should be considered as the main interaction mechanism between oxide particles and dislocation in 9CrODS ferritic steel.

  5. Simulation of uniaxial deformation of hexagonal crystals (Mg, Be)

    NASA Astrophysics Data System (ADS)

    Vlasova, A. M.; Kesarev, A. G.

    2017-12-01

    Molecular dynamics (MD) simulations were performed for the nanocompression loading of nanocrystalline magnesium and beryllium modeled by an interatomic potential of the embedded atom method (EAM). It is shown that the main deformation modes are prismatic slip and twinning for magnesium, and only prismatic slip for beryllium. The formation of stable configurations of dislocation grids in magnesium and beryllium was observed. Dislocation networks are formed in the habit plane of the twin in a magnesium nanocrystall. Some dislocation reactions are suggested to explain the appearance of such networks. Shockley partial dislocations in a beryllium nanocrystall form grids in the slip plane. A strong anisotropy between slip systems was observed, which is in agreement with experimental data.

  6. Crack Tip Dislocation Nucleation in FCC Solids

    NASA Astrophysics Data System (ADS)

    Knap, J.; Sieradzki, K.

    1999-02-01

    We present results of molecular dynamic simulations aimed at examining crack tip dislocation emission in fcc solids. The results are analyzed in terms of recent continuum formulations of this problem. In mode II, Au, Pd, and Pt displayed a new unanticipated mechanism of crack tip dislocation emission involving the creation of a pair of Shockley partials on a slip plane one plane below the crack plane. In mode I, for all the materials examined, Rice's continuum formulation [J. Mech. Phys. Solids 40, 239 (1992)] underestimated the stress intensity for dislocation emission by almost a factor of 2. Surface stress corrections to the emission criterion brought the agreement between continuum predictions and simulations to within 20%.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Meimei; Wang, Leyun; Almer, Jonathan D.

    Deformation processes in Grade 91 (Fe–9%Cr–1%Mo–V,Nb) and Grade 92 (Fe–9%Cr–0.5%Mo–2%W–V,Nb) ferritic–martensitic steels were investigated at temperatures between 20 and 650 °C using high-energy synchrotron X-ray diffraction with in situ thermal–mechanical loading. The change of the dislocation density with strain was quantified by X-ray diffraction line profile analysis complemented by transmission electron microscopy measurements. The relationship between dislocation density and strain during uniform deformation was described by a dislocation model, and two critical materials parameters, namely dislocation mean free path and dynamic recovery coefficient, were determined as a function of temperature. Effects of alloy chemistry, thermal–mechanical treatment and temperature on themore » tensile deformation process in Grade 91 and Grade 92 steels can be well understood by the dislocation evolution behavior.« less

  8. Impact of Over-the-Counter Restrictions on Antibiotic Consumption in Brazil and Mexico

    PubMed Central

    Santa-Ana-Tellez, Yared; Mantel-Teeuwisse, Aukje K.; Dreser, Anahi; Leufkens, Hubert G. M.; Wirtz, Veronika J.

    2013-01-01

    Background In Latin American countries over-the-counter (OTC) dispensing of antibiotics is common. In 2010, both Mexico and Brazil implemented policies to enforce existing laws of restricting consumption of antibiotics only to patients presenting a prescription. The objective of the present study is therefore to evaluate the impact of OTC restrictions (2010) on antibiotics consumption in Brazil and Mexico. Methods and Findings Retail quarterly sales data in kilograms of oral and injectable antibiotics between January 2007 and June 2012 for Brazil and Mexico were obtained from IMS Health. The unit of analysis for antibiotics consumption was the defined daily dose per 1,000 inhabitants per day (DDD/TID) according to the WHO ATC classification system. Interrupted time series analysis was conducted using antihypertensives as reference group to account for changes occurring independently of the OTC restrictions directed at antibiotics. To reduce the effect of (a) seasonality and (b) autocorrelation, dummy variables and Prais-Winsten regression were used respectively. Between 2007 and 2012 total antibiotic usage increased in Brazil (from 5.7 to 8.5 DDD/TID, +49.3%) and decreased in Mexico (10.5 to 7.5 DDD/TID, −29.2%). Interrupted time series analysis showed a change in level of consumption of −1.35 DDD/TID (p<0.01) for Brazil and −1.17 DDD/TID (p<0.00) for Mexico. In Brazil the penicillins, sulfonamides and macrolides consumption had a decrease in level after the intervention of 0.64 DDD/TID (p = 0.02), 0.41 (p = 0.02) and 0.47 (p = 0.01) respectively. While in Mexico it was found that only penicillins and sulfonamides had significant changes in level of −0.86 DDD/TID (p<0.00) and −0.17 DDD/TID (p = 0.07). Conclusions Despite different overall usage patterns of antibiotics in Brazil and Mexico, the effect of the OTC restrictions on antibiotics usage was similar. In Brazil the trend of increased usage of antibiotics was tempered after the OTC restrictions; in Mexico the trend of decreased usage was boosted. PMID:24146761

  9. Constitutive relations for determining the critical conditions for dynamic recrystallization behavior

    NASA Astrophysics Data System (ADS)

    Choe, J. I.

    2016-04-01

    A series mathematical model has been developed for the prediction of flow stress and microstructure evolution during the hot deformation of metals such as copper or austenitic steels with low stacking fault energies, involving features of both diffusional flow and dislocation motion. As the strain rate increases, multiple peaks on the stress-strain curve decrease. At a high strain rate, the stress rises to a single peak, while dynamic recrystallization causes an oscillatory behavior. At a low strain rate (when there is sufficient time for the recrystallizing grains to grow before they become saturated with high dislocation density with an increase in strain rate), the difference in stored stress between recrystallizing and old grains diminishes, resulting in reduced driving force for grain growth and rendering smaller grains in the alloy. The final average grain size at the steady stage (large strain) increases with a decrease in the strain rate. During large strain deformation, grain size reduction accompanying dislocation creep might be balanced by the grain growth at the border delimiting the ranges of realization (field boundary) of the dislocation-creep and diffusion-creep mechanisms.

  10. Three-dimensional imaging of dislocation propagation during crystal growth and dissolution

    PubMed Central

    Schenk, Anna S.; Kim, Yi-Yeoun; Kulak, Alexander N.; Campbell, James M.; Nisbet, Gareth; Meldrum, Fiona C.; Robinson, Ian K.

    2015-01-01

    Atomic level defects such as dislocations play key roles in determining the macroscopic properties of crystalline materials 1,2. Their effects range from increased chemical reactivity 3,4 to enhanced mechanical properties 5,6. Dislocations have been widely studied using traditional techniques such as X-ray diffraction and optical imaging. Recent advances have enabled atomic force microscopy to study single dislocations 7 in two-dimensions (2D), while transmission electron microscopy (TEM) can now visualise strain fields in three-dimensions (3D) with near atomic resolution 8–10. However, these techniques cannot offer 3D imaging of the formation or movement of dislocations during dynamic processes. Here, we describe how Bragg Coherent Diffraction Imaging (BCDI) 11,12 can be used to visualize in 3D, the entire network of dislocations present within an individual calcite crystal during repeated growth and dissolution cycles. These investigations demonstrate the potential of BCDI for studying the mechanisms underlying the response of crystalline materials to external stimuli. PMID:26030304

  11. Statistical description of the motion of dislocation kinks in a random field of impurities adsorbed by a dislocation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petukhov, B. V., E-mail: petukhov@ns.crys.ras.r

    2010-01-15

    A model has been proposed for describing the influence of impurities adsorbed by dislocation cores on the mobility of dislocation kinks in materials with a high crystalline relief (Peierls barriers). The delay time spectrum of kinks at statistical fluctuations of the impurity density has been calculated for a sufficiently high energy of interaction between impurities and dislocations when the migration potential is not reduced to a random Gaussian potential. It has been shown that fluctuations in the impurity distribution substantially change the character of the migration of dislocation kinks due to the slow decrease in the probability of long delaymore » times. The dependences of the position of the boundary of the dynamic phase transition to a sublinear drift of kinks x {proportional_to} t{sup {delta}} ({delta} {sigma} 1) and the characteristics of the anomalous mobility on the physical parameters (stress, impurity concentration, experimental temperature, etc.) have been calculated.« less

  12. Free energy change of a dislocation due to a Cottrell atmosphere

    NASA Astrophysics Data System (ADS)

    Sills, R. B.; Cai, W.

    2018-06-01

    The free energy reduction of a dislocation due to a Cottrell atmosphere of solutes is computed using a continuum model. We show that the free energy change is composed of near-core and far-field components. The far-field component can be computed analytically using the linearized theory of solid solutions. Near the core the linearized theory is inaccurate, and the near-core component must be computed numerically. The influence of interactions between solutes in neighbouring lattice sites is also examined using the continuum model. We show that this model is able to reproduce atomistic calculations of the nickel-hydrogen system, predicting hydride formation on dislocations. The formation of these hydrides leads to dramatic reductions in the free energy. Finally, the influence of the free energy change on a dislocation's line tension is examined by computing the equilibrium shape of a dislocation shear loop and the activation stress for a Frank-Read source using discrete dislocation dynamics.

  13. The shear response of copper bicrystals with Σ11 symmetric and asymmetric tilt grain boundaries by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Lu, Cheng; Tieu, Kiet; Zhao, Xing; Pei, Linqing

    2015-04-01

    Grain boundaries (GBs) are important microstructure features and can significantly affect the properties of nanocrystalline materials. Molecular dynamics simulation was carried out in this study to investigate the shear response and deformation mechanisms of symmetric and asymmetric Σ11<1 1 0> tilt GBs in copper bicrystals. Different deformation mechanisms were reported, depending on GB inclination angles and equilibrium GB structures, including GB migration coupled to shear deformation, GB sliding caused by local atomic shuffling, and dislocation nucleation from GB. The simulation showed that migrating Σ11(1 1 3) GB under shear can be regarded as sliding of GB dislocations and their combination along the boundary plane. A non-planar structure with dissociated intrinsic stacking faults was prevalent in Σ11 asymmetric GBs of Cu. This type of structure can significantly increase the ductility of bicrystal models under shear deformation. A grain boundary can be a source of dislocation and migrate itself at different stress levels. The intrinsic free volume involved in the grain boundary area was correlated with dislocation nucleation and GB sliding, while the dislocation nucleation mechanism can be different for a grain boundary due to its different equilibrium structures.Grain boundaries (GBs) are important microstructure features and can significantly affect the properties of nanocrystalline materials. Molecular dynamics simulation was carried out in this study to investigate the shear response and deformation mechanisms of symmetric and asymmetric Σ11<1 1 0> tilt GBs in copper bicrystals. Different deformation mechanisms were reported, depending on GB inclination angles and equilibrium GB structures, including GB migration coupled to shear deformation, GB sliding caused by local atomic shuffling, and dislocation nucleation from GB. The simulation showed that migrating Σ11(1 1 3) GB under shear can be regarded as sliding of GB dislocations and their combination along the boundary plane. A non-planar structure with dissociated intrinsic stacking faults was prevalent in Σ11 asymmetric GBs of Cu. This type of structure can significantly increase the ductility of bicrystal models under shear deformation. A grain boundary can be a source of dislocation and migrate itself at different stress levels. The intrinsic free volume involved in the grain boundary area was correlated with dislocation nucleation and GB sliding, while the dislocation nucleation mechanism can be different for a grain boundary due to its different equilibrium structures. Electronic supplementary information (ESI) available: Movies show the evolution of different grain boundaries under shear deformation: S-0, S-54.74, S-70.53-A, S-70.53-B, S-90. See DOI: 10.1039/c4nr07496c

  14. Oscillations of kinks on dislocation lines in crystals and low-temperature transport anomalies as a ``passport'' of newly-induced defects

    NASA Astrophysics Data System (ADS)

    Mezhov-Deglin, L. P.; Mukhin, S. I.

    2011-10-01

    The possible interpretation of experimental data on low-temperature anomalies in weakly deformed metallic crystals prepared form ultra-pure lead, copper, and silver, as well as in crystals of 4He is discussed within the previously proposed theoretical picture of dislocations with dynamical kinks. In the case of pure metals the theoretical predictions give a general picture of interaction of conduction electrons in a sample with newly-introduced dislocations, containing dynamic kinks in the Peierls potential relief. In the field of random stresses appearing due to plastic deformation of a sample, kinks on the dislocation line form a set of one-dimensional oscillators in potential wells of different shapes. In the low temperature region at low enough density of defects pinning kinks the inelastic scattering of electrons on kinks should lead to deviations from the Wiedemann-Franz law. In particular, the inelastic scattering on kinks should result in a quadratic temperature dependence of the thermal conductivity in a metallic sample along preferential directions of dislocation axes. In the plane normal to the dislocation axis the elastic large-angle scattering of electrons is prevalent. The kink pinning by a point defect or by additional dislocations as well as the sample annealing leading to the disappearance of kinks should induce suppression of transport anomalies. Thus, the energy interval for the spectrum of kink oscillations restricted by characteristic amplitude of the Peierls relief is a "passport of deformation history" for each specific sample. For instance, in copper the temperature/energy region of the order of 1 K corresponds to it. It is also planned to discuss in the other publication applicability of mechanism of phonon scattering on mobile dislocation kinks and pinning of kinks by impurities in order to explain anomalies of phonon thermal conductivity of 4He crystals and deformed crystals of pure lead in a superconducting state.

  15. Study on the dynamic recrystallization model and mechanism of nuclear grade 316LN austenitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shenglong; Zhang, Mingxian; Wu, Huanchun

    In this study, the dynamic recrystallization behaviors of a nuclear grade 316LN austenitic stainless steel were researched through hot compression experiment performed on a Gleeble-1500 simulator at temperatures of 900–1250 °C and strain rates of 0.01–1 s{sup −1}. By multiple linear regressions of the flow stress-strain data, the dynamic recrystallization mathematical models of this steel as functions of strain rate, strain and temperature were developed. Then these models were verified in a real experiment. Furthermore, the dynamic recrystallization mechanism of the steel was determined. The results indicated that the subgrains in this steel are formed through dislocations polygonization and thenmore » grow up through subgrain boundaries migration towards high density dislocation areas and subgrain coalescence mechanism. Dynamic recrystallization nucleation performs in grain boundary bulging mechanism and subgrain growth mechanism. The nuclei grow up through high angle grain boundaries migration. - Highlights: •Establish the DRX mathematical models of nuclear grade 316LN stainless steel •Determine the DRX mechanism of this steel •Subgrains are formed through dislocations polygonization. •Subgrains grow up through subgrain boundaries migration and coalescence mechanism. •DRX nucleation performs in grain boundary bulging mechanism and subgrain growth mechanism.« less

  16. Dense Deposit Disease

    PubMed Central

    Smith, Richard J.H; Harris, Claire L.; Pickering, Matthew C.

    2011-01-01

    Dense deposit disease (DDD) is an orphan disease that primarily affects children and young adults without sexual predilection. Studies of its pathophysiology have shown conclusively that it is caused by fluid-phase dysregulation of the alternative pathway of complement, however the role played by genetics and autoantibodies like C3 nephritic factors must be more thoroughly defined if we are to make an impact in the clinical management of this disease. There are currently no mechanism-directed therapies to offer affected patients, half of whom progress to end stage renal failure disease within 10 years of diagnosis. Transplant recipients face the dim prospect of disease recurrence in their allografts, half of which ultimately fail. More detailed genetic and complement studies of DDD patients may make it possible to identify protective factors prognostic for naïve kidney and transplant survival, or conversely risk factors associated with progression to renal failure and allograft loss. The pathophysiology of DDD suggests that a number of different treatments warrant consideration. As advances are made in these areas, there will be a need to increase healthcare provider awareness of DDD by making resources available to clinicians to optimize care for DDD patients. PMID:21601923

  17. DDT, DDD, and DDE in soil of Xiangfen County, China: Residues, sources, spatial distribution, and health risks.

    PubMed

    Ma, Jin; Pan, Li-Bo; Yang, Xiao-Yang; Liu, Xiao-Ling; Tao, Shi-Yang; Zhao, Long; Qin, Xiao-Peng; Sun, Zai-Jin; Hou, Hong; Zhou, Yong-Zhang

    2016-11-01

    We collected and analyzed 128 surface soil samples from Xiangfen County for dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethane (DDD), and dichlorodiphenyldichloroethylene (DDE). Total DDT concentrations (DDTs; sum of p,p'-DDD, p,p'-DDE, and p,p'-DDT) ranged from ND to 427.81 ng g(-1) (dry weight, dw), with a mean of 40.26 ng g(-1) (dw). Among the three compounds, p,p'-DDD was the most dominant. The DDTs in Xiangfen County soils mainly originated from historical DDT use, but there were also new inputs likely related to dicofol use. The DDTs in Xiangfen County soils were mainly degraded under anaerobic conditions, and direct degradation to DDD was the main degradation route. Regions with relatively high concentrations of DDTs were mainly located in North and South Xiangfen County. In these regions, many soil samples contained p,p'-DDT as the predominant pollutant, suggestive of extensive new inputs of DDT. A health risk assessment revealed that there are no serious long-term health impacts of exposure to DDTs in soil, for adults or children. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. 40 CFR 52.29 - Visibility long-term strategies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... listed where applicable in Subparts B through DDD of this part. The provisions of this section have been incorporated into the applicable implementation plan for various States, as provided in Subparts B through DDD...

  19. 40 CFR 52.29 - Visibility long-term strategies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... listed where applicable in Subparts B through DDD of this part. The provisions of this section have been incorporated into the applicable implementation plan for various States, as provided in Subparts B through DDD...

  20. A continuum theory of edge dislocations

    NASA Astrophysics Data System (ADS)

    Berdichevsky, V. L.

    2017-09-01

    Continuum theory of dislocation aims to describe the behavior of large ensembles of dislocations. This task is far from completion, and, most likely, does not have a "universal solution", which is applicable to any dislocation ensemble. In this regards it is important to have guiding lines set by benchmark cases, where the transition from a discrete set of dislocations to a continuum description is made rigorously. Two such cases have been considered recently: equilibrium of dislocation walls and screw dislocations in beams. In this paper one more case is studied, equilibrium of a large set of 2D edge dislocations placed randomly in a 2D bounded region. The major characteristic of interest is energy of dislocation ensemble, because it determines the structure of continuum equations. The homogenized energy functional is obtained for the periodic dislocation ensembles with a random contents of the periodic cell. Parameters of the periodic structure can change slowly on distances of order of the size of periodic cells. The energy functional is obtained by the variational-asymptotic method. Equilibrium positions are local minima of energy. It is confirmed the earlier assertion that energy density of the system is the sum of elastic energy of averaged elastic strains and microstructure energy, which is elastic energy of the neutralized dislocation system, i.e. the dislocation system placed in a constant dislocation density field making the averaged dislocation density zero. The computation of energy is reduced to solution of a variational cell problem. This problem is solved analytically. The solution is used to investigate stability of simple dislocation arrays, i.e. arrays with one dislocation in the periodic cell. The relations obtained yield two outcomes: First, there is a state parameter of the system, dislocation polarization; averaged stresses affect only dislocation polarization and cannot change other characteristics of the system. Second, the structure of dislocation phase space is strikingly simple. Dislocation phase space is split in a family of subspaces corresponding to constant values of dislocation polarizations; in each equipolarization subspace there are many local minima of energy; for zero external stresses the system is stuck in a local minimum of energy; for non-zero slowly changing external stress, dislocation polarization evolves, while the system moves over local energy minima of equipolarization subspaces. Such a simple picture of dislocation dynamics is due to the presence of two time scales, slow evolution of dislocation polarization and fast motion of the system over local minima of energy. The existence of two time scales is justified for a neutral system of edge dislocations.

  1. Materials properties and dislocation dynamics in InAsP compositionally graded buffers on InP substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jandl, Adam, E-mail: jandl@mit.edu; Bulsara, Mayank T.; Fitzgerald, Eugene A.

    The properties of InAs{sub x}P{sub 1−x} compositionally graded buffers grown by metal organic chemical vapor deposition are investigated. We report the effects of strain gradient (ε/thickness), growth temperature, and strain initiation sequence (gradual or abrupt strain introduction) on threading dislocation density, surface roughness, epi-layer relaxation, and tilt. We find that gradual introduction of strain causes increased dislocation densities (>10{sup 6}/cm{sup 2}) and tilt of the epi-layer (>0.1°). A method of abrupt strain initiation is proposed which can result in dislocation densities as low as 1.01 × 10{sup 5} cm{sup −2} for films graded from the InP lattice constant to InAs{sub 0.15}P{sub 0.85}.more » A model for a two-energy level dislocation nucleation system is proposed based on our results.« less

  2. Elastic precursor wave decay in shock-compressed aluminum over a wide range of temperature

    NASA Astrophysics Data System (ADS)

    Austin, Ryan A.

    2018-01-01

    The effect of temperature on the dynamic flow behavior of aluminum is considered in the context of precursor wave decay measurements and simulations. In this regard, a dislocation-based model of high-rate metal plasticity is brought into agreement with previous measurements of evolving wave profiles at 300 to 933 K, wherein the amplification of the precursor structure with temperature arises naturally from the dislocation mechanics treatment. The model suggests that the kinetics of inelastic flow and stress relaxation are governed primarily by phonon scattering and radiative damping (sound wave emission from dislocation cores), both of which intensify with temperature. The manifestation of these drag effects is linked to low dislocation density ahead of the precursor wave and the high mobility of dislocations in the face-centered cubic lattice. Simulations performed using other typical models of shock wave plasticity do not reproduce the observed temperature-dependence of elastic/plastic wave structure.

  3. Dislocation nucleation facilitated by atomic segregation

    DOE PAGES

    Zou, Lianfeng; Yang, Chaoming; Lei, Yinkai; ...

    2017-11-27

    Surface segregation—the enrichment of one element at the surface, relative to the bulk—is ubiquitous to multi-component materials. Using the example of a Cu–Au solid solution, we demonstrate that compositional variations induced by surface segregation are accompanied by misfit strain and the formation of dislocations in the subsurface region via a surface di˙usion and trapping process. The resulting chemically ordered surface regions acts as an e˙ective barrier that inhibits subsequent dislocation annihilation at free surfaces. Using dynamic, atomic-scale resolution electron microscopy observations and theory modelling, we show that the dislocations are highly active, and we delineate the specific atomic-scale mechanisms associatedmore » with their nucleation, glide, climb, and annihilation at elevated temperatures. As a result, these observations provide mechanistic detail of how dislocations nucleate and migrate at heterointerfaces in dissimilar-material systems.« less

  4. Traumatic anterior shoulder dislocation: a case study of nonoperative management in a mixed martial arts athlete.

    PubMed

    Sims, Kevin; Spina, Andreo

    2009-12-01

    To present an evidence-informed approach to the nonoperative management of a first-time, traumatic anterior shoulder dislocation. A 30-year-old mixed martial arts athlete, with no prior shoulder injuries, presented one day following a first-time, traumatic anterior shoulder dislocation. An eight-week, individualized, intensive, nonoperative rehabilitation program was immediately begun upon presentation. Management consisted of immobilization of the shoulder in external rotation and a progressive rehabilitation program aimed at restoring range of motion, strength of the dynamic stabilizers, and proprioception of the shoulder. Eight weeks post-dislocation the patient had regained full range of motion and strength compared to the unaffected limb and apprehension and relocation tests for instability were negative. This case illustrates successful management of a first-time, traumatic, anterior shoulder dislocation using immobilization in external rotation combined with an intensive rehabilitation program.

  5. Traumatic anterior shoulder dislocation: a case study of nonoperative management in a mixed martial arts athlete

    PubMed Central

    Sims, Kevin; Spina, Andreo

    2009-01-01

    Objective: To present an evidence-informed approach to the nonoperative management of a first-time, traumatic anterior shoulder dislocation. Clinical Features: A 30-year-old mixed martial arts athlete, with no prior shoulder injuries, presented one day following a first-time, traumatic anterior shoulder dislocation. An eight-week, individualized, intensive, nonoperative rehabilitation program was immediately begun upon presentation. Intervention and Outcome: Management consisted of immobilization of the shoulder in external rotation and a progressive rehabilitation program aimed at restoring range of motion, strength of the dynamic stabilizers, and proprioception of the shoulder. Eight weeks post-dislocation the patient had regained full range of motion and strength compared to the unaffected limb and apprehension and relocation tests for instability were negative. Conclusion: This case illustrates successful management of a first-time, traumatic, anterior shoulder dislocation using immobilization in external rotation combined with an intensive rehabilitation program. PMID:20037691

  6. Assessment of Diagnostic Value of Single View Dynamic Technique in Diagnosis of Developmental Dysplasia of Hip: A Comparison with Static and Dynamic Ultrasond Techniques

    PubMed Central

    Alamdaran, Seyed Ali; Kazemi, Sahar; Parsa, Ali; Moghadam, Mohammad Hallaj; Feyzi, Ali; Mardani, Reza

    2016-01-01

    Background: Developmental dysplasia of hip (DDH) is a common childhood disorder, and ultrasonography examination is routinely used for screening purposes. In this study, we aimed to evaluate a modified combined static and dynamic ultrasound technique for the detection of DDH and to compare with the results of static and dynamic ultrasound techniques. Methods: In this cross-sectional study, during 2013- 2015, 300 high-risk infants were evaluated by ultrasound for DDH. Both hips were examined with three techniques: static, dynamic and single view static and dynamic technique. Statistical analysis was performed using SPSS version 11.5. Results: Patients aged 9 days to 83 weeks. 75% of the patients were 1 to 3 months old. Among 600 hip joints, about 5% were immature in static sonography and almost all of them were unstable in dynamic techniques. 0.3% of morphologically normal hips were unstable in dynamic sonography and 9% of unstable hips had normal morphology. The mean β angle differences in coronal view before and after stress maneuver was 14.43±5.47° in unstable hips. Single view static and dynamic technique revealed that all cases with acetabular dysplasia, instability and dislocation, except two dislocations, were detected by dynamic transverse view. For two cases, Ortolani maneuver showed femoral head reversibility in dislocated hips. Using single view static and dynamic technique was indicative and applicable for detection of more than 99% of cases. Conclusion: Single view static and dynamic technique not only is a fast and easy technique, but also it is of high diagnostic value in assessment of DDH. PMID:27847852

  7. Characterization of Dislocations in Semiconductor Heterostructures Using X-ray Rocking Curve Pendellösung

    NASA Astrophysics Data System (ADS)

    Althowibi, Fahad A.; Ayers, John E.

    2018-02-01

    In this work we investigated the dislocation-dependent behavior of Pendellösung fringes from two types of semiconductor heterostructures: a uniform-composition InGaAs epitaxial layer grown on a GaAs (001) substrate with an intermediate step-graded InGaAs buffer, and an InGaAs/InAlAs high electron mobility transistor grown on an InP (001) substrate. Dynamical x-ray diffraction simulations were carried out in the 004, 115,135, and 117 geometry, assuming Cu kα1 incident radiation, for both structures. The dislocation density strongly affects the intensities and widths of Pendellösung fringes, and we have established quantitative relationships which will allow characterization of the dislocation density.

  8. High Strain Rate Tensile Testing of Silver Nanowires: Rate-Dependent Brittle-to-Ductile Transition.

    PubMed

    Ramachandramoorthy, Rajaprakash; Gao, Wei; Bernal, Rodrigo; Espinosa, Horacio

    2016-01-13

    The characterization of nanomaterials under high strain rates is critical to understand their suitability for dynamic applications such as nanoresonators and nanoswitches. It is also of great theoretical importance to explore nanomechanics with dynamic and rate effects. Here, we report in situ scanning electron microscope (SEM) tensile testing of bicrystalline silver nanowires at strain rates up to 2/s, which is 2 orders of magnitude higher than previously reported in the literature. The experiments are enabled by a microelectromechanical system (MEMS) with fast response time. It was identified that the nanowire plastic deformation has a small activation volume (<10b(3)), suggesting dislocation nucleation as the rate controlling mechanism. Also, a remarkable brittle-to-ductile failure mode transition was observed at a threshold strain rate of 0.2/s. Transmission electron microscopy (TEM) revealed that along the nanowire, dislocation density and spatial distribution of plastic regions increase with increasing strain rate. Furthermore, molecular dynamic (MD) simulations show that deformation mechanisms such as grain boundary migration and dislocation interactions are responsible for such ductility. Finally, the MD and experimental results were interpreted using dislocation nucleation theory. The predicted yield stress values are in agreement with the experimental results for strain rates above 0.2/s when ductility is pronounced. At low strain rates, random imperfections on the nanowire surface trigger localized plasticity, leading to a brittle-like failure.

  9. Rituximab fails where eculizumab restores renal function in C3nef-related DDD.

    PubMed

    Rousset-Rouvière, Caroline; Cailliez, Mathilde; Garaix, Florentine; Bruno, Daniele; Laurent, Daniel; Tsimaratos, Michel

    2014-06-01

    Dense deposit disease (DDD), a C3 glomerulopathy (C3G), is a rare disease with unfavorable progression towards end-stage kidney disease. The pathogenesis of DDD is due to cytotoxic effects related to acquired or genetic dysregulation of the complement alternative pathway, which is at times accompanied by the production of C3 nephritic factor (C3NeF), an auto-antibody directed against the alternative C3 convertase. Available treatments include plasma exchange, CD20-targeted antibodies, and a terminal complement blockade via the anti-C5 monoclonal antibody eculizumab. We report here the case of an 8-year-old child with C3NeF and refractory DDD who presented with a nephritic syndrome. She tested positive for C3NeF activity; C3 was undetectable. Genetic analyses of the alternative complement pathway were normal. Methylprednisolone pulses and mycophenolate mofetil treatment resulted in complete recovery of renal function and a reduction in proteinuria. Corticosteroids were tapered and then withdrawn. Four months after corticosteroid discontinuation, hematuria and proteinuria recurred, and a renal biopsy confirmed an active DDD with a majority of extracapillary crescents. Despite an increase in immunosuppressive drugs, including methylprednisolone pulses and rituximab therapy, the patient suffered acute renal failure within 3 weeks, requiring dialysis. Eculizumab treatment resulted in a quick and impressive response. Hematuria very quickly resolved, kidney function improved, and no further dialysis was required. The patient received bimonthly eculizumab injections of 600 mg, allowing for normalization of renal function and reduction of proteinuria to <0.5 g per day. Since then, she continues to receive eculizumab. Complement regulation pathway-targeted therapy may be a specific and useful treatment for rapidly progressing DDD prior to the development of glomerulosclerosis. Our data provide evidence supporting the pivotal role of complement alternative pathway abnormalities in C3G with DDD.

  10. 1. Historic American Buildings Survey Frank O. Branzetti, Photographer July ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey Frank O. Branzetti, Photographer July 9, 1940 (ddd) 6- MILE STONE, at 540 HANCOCK ST., QUINCY - Milestones H, I, CCC, DDD & EEE, Various Quincy locations, Quincy, Norfolk County, MA

  11. Processing of Cryo-EM Movie Data.

    PubMed

    Ripstein, Z A; Rubinstein, J L

    2016-01-01

    Direct detector device (DDD) cameras dramatically enhance the capabilities of electron cryomicroscopy (cryo-EM) due to their improved detective quantum efficiency (DQE) relative to other detectors. DDDs use semiconductor technology that allows micrographs to be recorded as movies rather than integrated individual exposures. Movies from DDDs improve cryo-EM in another, more surprising, way. DDD movies revealed beam-induced specimen movement as a major source of image degradation and provide a way to partially correct the problem by aligning frames or regions of frames to account for this specimen movement. In this chapter, we use a self-consistent mathematical notation to explain, compare, and contrast several of the most popular existing algorithms for computationally correcting specimen movement in DDD movies. We conclude by discussing future developments in algorithms for processing DDD movies that would extend the capabilities of cryo-EM even further. © 2016 Elsevier Inc. All rights reserved.

  12. Theory of electron–phonon–dislon interacting system—toward a quantized theory of dislocations

    DOE PAGES

    Li, Mingda; Tsurimaki, Yoichiro; Meng, Qingping; ...

    2018-02-05

    In this paper, we provide a comprehensive theoretical framework to study how crystal dislocations influence the functional properties of materials, based on the idea of a quantized dislocation, namely a 'dislon'. In contrast to previous work on dislons which focused on exotic phenomenology, here we focus on their theoretical structure and computational power. We first provide a pedagogical introduction that explains the necessity and benefits of taking the dislon approach and why the dislon Hamiltonian takes its current form. Then, we study the electron–dislocation and phonon–dislocation scattering problems using the dislon formalism. Both the effective electron and phonon theories aremore » derived, from which the role of dislocations on electronic and phononic transport properties is computed. Compared with traditional dislocation scattering studies, which are intrinsically single-particle, low-order perturbation and classical quenched defect in nature, the dislon theory not only allows easy incorporation of quantum many-body effects such as electron correlation, electron–phonon interaction, and higher-order scattering events, but also allows proper consideration of the dislocation's long-range strain field and dynamic aspects on equal footing for arbitrary types of straight-line dislocations. This means that instead of developing individual models for specific dislocation scattering problems, the dislon theory allows for the calculation of electronic structure and electrical transport, thermal transport, optical and superconducting properties, etc, under one unified theory. Furthermore, the dislon theory has another advantage over empirical models in that it requires no fitting parameters. The dislon theory could serve as a major computational tool to understand the role of dislocations on multiple materials' functional properties at an unprecedented level of clarity, and may have wide applications in dislocated energy materials.« less

  13. Theory of electron–phonon–dislon interacting system—toward a quantized theory of dislocations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mingda; Tsurimaki, Yoichiro; Meng, Qingping

    In this paper, we provide a comprehensive theoretical framework to study how crystal dislocations influence the functional properties of materials, based on the idea of a quantized dislocation, namely a 'dislon'. In contrast to previous work on dislons which focused on exotic phenomenology, here we focus on their theoretical structure and computational power. We first provide a pedagogical introduction that explains the necessity and benefits of taking the dislon approach and why the dislon Hamiltonian takes its current form. Then, we study the electron–dislocation and phonon–dislocation scattering problems using the dislon formalism. Both the effective electron and phonon theories aremore » derived, from which the role of dislocations on electronic and phononic transport properties is computed. Compared with traditional dislocation scattering studies, which are intrinsically single-particle, low-order perturbation and classical quenched defect in nature, the dislon theory not only allows easy incorporation of quantum many-body effects such as electron correlation, electron–phonon interaction, and higher-order scattering events, but also allows proper consideration of the dislocation's long-range strain field and dynamic aspects on equal footing for arbitrary types of straight-line dislocations. This means that instead of developing individual models for specific dislocation scattering problems, the dislon theory allows for the calculation of electronic structure and electrical transport, thermal transport, optical and superconducting properties, etc, under one unified theory. Furthermore, the dislon theory has another advantage over empirical models in that it requires no fitting parameters. The dislon theory could serve as a major computational tool to understand the role of dislocations on multiple materials' functional properties at an unprecedented level of clarity, and may have wide applications in dislocated energy materials.« less

  14. Differential stabilities and sequence-dependent base pair opening dynamics of Watson-Crick base pairs with 5-hydroxymethylcytosine, 5-formylcytosine, or 5-carboxylcytosine.

    PubMed

    Szulik, Marta W; Pallan, Pradeep S; Nocek, Boguslaw; Voehler, Markus; Banerjee, Surajit; Brooks, Sonja; Joachimiak, Andrzej; Egli, Martin; Eichman, Brandt F; Stone, Michael P

    2015-02-10

    5-Hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) form during active demethylation of 5-methylcytosine (5mC) and are implicated in epigenetic regulation of the genome. They are differentially processed by thymine DNA glycosylase (TDG), an enzyme involved in active demethylation of 5mC. Three modified Dickerson-Drew dodecamer (DDD) sequences, amenable to crystallographic and spectroscopic analyses and containing the 5'-CG-3' sequence associated with genomic cytosine methylation, containing 5hmC, 5fC, or 5caC placed site-specifically into the 5'-T(8)X(9)G(10)-3' sequence of the DDD, were compared. The presence of 5caC at the X(9) base increased the stability of the DDD, whereas 5hmC or 5fC did not. Both 5hmC and 5fC increased imino proton exchange rates and calculated rate constants for base pair opening at the neighboring base pair A(5):T(8), whereas 5caC did not. At the oxidized base pair G(4):X(9), 5fC exhibited an increase in the imino proton exchange rate and the calculated kop. In all cases, minimal effects to imino proton exchange rates occurred at the neighboring base pair C(3):G(10). No evidence was observed for imino tautomerization, accompanied by wobble base pairing, for 5hmC, 5fC, or 5caC when positioned at base pair G(4):X(9); each favored Watson-Crick base pairing. However, both 5fC and 5caC exhibited intranucleobase hydrogen bonding between their formyl or carboxyl oxygens, respectively, and the adjacent cytosine N(4) exocyclic amines. The lesion-specific differences observed in the DDD may be implicated in recognition of 5hmC, 5fC, or 5caC in DNA by TDG. However, they do not correlate with differential excision of 5hmC, 5fC, or 5caC by TDG, which may be mediated by differences in transition states of the enzyme-bound complexes.

  15. Differential stabilities and sequence-dependent base pair opening dynamics of Watson–Crick base pairs with 5-hydroxymethylcytosine, 5-formylcytosine, or 5-carboxylcytosine

    DOE PAGES

    Szulik, Marta W.; Pallan, Pradeep S.; Nocek, Boguslaw; ...

    2015-01-29

    5-Hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) form during active demethylation of 5-methylcytosine (5mC) and are implicated in epigenetic regulation of the genome. They are differentially processed by thymine DNA glycosylase (TDG), an enzyme involved in active demethylation of 5mC. Three modified Dickerson–Drew dodecamer (DDD) sequences, amenable to crystallographic and spectroscopic analyses and containing the 5'-CG-3' sequence associated with genomic cytosine methylation, containing 5hmC, 5fC, or 5caC placed site-specifically into the 5'-T 8X 9G 10-3' sequence of the DDD, were compared. The presence of 5caC at the X9 base increased the stability of the DDD, whereas 5hmC or 5fC didmore » not. Both 5hmC and 5fC increased imino proton exchange rates and calculated rate constants for base pair opening at the neighboring base pair A 5:T 8, whereas 5caC did not. At the oxidized base pair G 4:X 9, 5fC exhibited an increase in the imino proton exchange rate and the calculated k op. In all cases, minimal effects to imino proton exchange rates occurred at the neighboring base pair C 3:G 10. No evidence was observed for imino tautomerization, accompanied by wobble base pairing, for 5hmC, 5fC, or 5caC when positioned at base pair G 4:X 9; each favored Watson–Crick base pairing. However, both 5fC and 5caC exhibited intranucleobase hydrogen bonding between their formyl or carboxyl oxygens, respectively, and the adjacent cytosine N 4 exocyclic amines. The lesion-specific differences observed in the DDD may be implicated in recognition of 5hmC, 5fC, or 5caC in DNA by TDG. Furthermore, they do not correlate with differential excision of 5hmC, 5fC, or 5caC by TDG, which may be mediated by differences in transition states of the enzyme-bound complexes.« less

  16. Differential Stabilities and Sequence-Dependent Base Pair Opening Dynamics of Watson–Crick Base Pairs with 5-Hydroxymethylcytosine, 5-Formylcytosine, or 5-Carboxylcytosine

    PubMed Central

    2016-01-01

    5-Hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) form during active demethylation of 5-methylcytosine (5mC) and are implicated in epigenetic regulation of the genome. They are differentially processed by thymine DNA glycosylase (TDG), an enzyme involved in active demethylation of 5mC. Three modified Dickerson–Drew dodecamer (DDD) sequences, amenable to crystallographic and spectroscopic analyses and containing the 5′-CG-3′ sequence associated with genomic cytosine methylation, containing 5hmC, 5fC, or 5caC placed site-specifically into the 5′-T8X9G10-3′ sequence of the DDD, were compared. The presence of 5caC at the X9 base increased the stability of the DDD, whereas 5hmC or 5fC did not. Both 5hmC and 5fC increased imino proton exchange rates and calculated rate constants for base pair opening at the neighboring base pair A5:T8, whereas 5caC did not. At the oxidized base pair G4:X9, 5fC exhibited an increase in the imino proton exchange rate and the calculated kop. In all cases, minimal effects to imino proton exchange rates occurred at the neighboring base pair C3:G10. No evidence was observed for imino tautomerization, accompanied by wobble base pairing, for 5hmC, 5fC, or 5caC when positioned at base pair G4:X9; each favored Watson–Crick base pairing. However, both 5fC and 5caC exhibited intranucleobase hydrogen bonding between their formyl or carboxyl oxygens, respectively, and the adjacent cytosine N4 exocyclic amines. The lesion-specific differences observed in the DDD may be implicated in recognition of 5hmC, 5fC, or 5caC in DNA by TDG. However, they do not correlate with differential excision of 5hmC, 5fC, or 5caC by TDG, which may be mediated by differences in transition states of the enzyme-bound complexes. PMID:25632825

  17. Examination of factors dominating the sediment-water diffusion flux of DDT-related compounds measured by passive sampling in an urbanized estuarine bay.

    PubMed

    Feng, Yan; Wu, Chen-Chou; Bao, Lian-Jun; Shi, Lei; Song, Lin; Zeng, Eddy Y

    2016-12-01

    The fate of hydrophobic organic compounds in aquatic environment are largely determined by their exchange at sediment-water interface, which is highly dynamic and subject to rapidly evolving environmental conditions. In turn, environmental conditions may be governed by both physicochemical parameters and anthropogenic events. To examine the importance of various impact factors, passive sampling devices were deployed at the seafloor of Hailing Bay, an urbanized estuarine bay in Guangdong Province of South China to measure the sediment-water diffusion fluxes of several metabolites of dichlorodiphenyltrichloroethane (DDT), p,p'-DDE, p,p'-DDD and o,p'-DDD. The physicochemical properties of water (temperature, pH, salinity and dissolved oxygen) and surface sediment (sediment organic matter, physical composition, pH, water content, colony forming unit and catalase activity) were also measured. The results showed that the diffusion fluxes of o,p'-DDD, p,p'-DDD and p,p'-DDE at sites A1 and A2 near a fishing boat maintenance facility ranged from 0.42 to 4.73 ng m -2 d -1 (from sediment to overlying water), whereas those at offshore sites varied between -0.03 and -3.02 ng m -2 d -1 (from overlying water to sediment), implicating A1 and A2 as the sources of the target compounds. The distribution patterns of the diffusion fluxes of the target compounds were different from those of water and sediment parameters (water temperature, salinity, sediment texture, pH, colony forming unit and catalase activity) at six sampling sites. This finding suggested that none of these parameters were critical in dictating the sediment-water diffusion fluxes. Besides, decreases in the contents of kerogen and black carbon by 6.7% and 11% would enhance the diffusion fluxes of the target compounds by 11-14% and 12-23%, respectively, at site A1, indicating that kerogen and black carbon were the key factors in mediating the sediment-water diffusion fluxes of DDT-related compounds in field environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Shenyang; Setyawan, Wahyu; Joshi, Vineet V.

    Xe gas bubble superlattice formation is observed in irradiated uranium–10 wt% molybdenum (U10Mo) fuels. However, the thermodynamic properties of the bubbles (the relationship among bubble size, equilibrium Xe concentration, and bubble pressure) and the mechanisms of bubble growth and superlattice formation are not well known. In this work, molecular dynamics is used to study these properties and mechanisms. The results provide important inputs for quantitative mesoscale models of gas bubble evolution and fuel performance. In the molecular dynamics simulations, the embedded-atom method (EAM) potential of U10Mo-Xe (Smirnova et al. 2013) is employed. Initial gas bubbles with low Xe concentration aremore » generated in a U10Mo single crystal. Then Xe atom atoms are continuously added into the bubbles, and the evolution of pressure and dislocation emission around the bubbles is analyzed. The relationship between pressure, equilibrium Xe concentration, and radius of the bubbles is established. It was found that the gas bubble growth is accompanied by partial dislocation emission, which results in a star-shaped dislocation structure and an anisotropic stress field. The emitted partial dislocations have a Burgers vector along the <111> direction and a slip plane of (11-2). Dislocation loop punch-out was not observed. A tensile stress was found along <110> directions around the bubble, favoring the nucleation and formation of a face-centered cubic bubble superlattice in body-centered cubic U10Mo fuels.« less

  19. Binary dislocation junction formation and strength in hexagonal close-packed crystals

    DOE PAGES

    Wu, Chi -Chin; Aubry, Sylvie; Arsenlis, Athanasios; ...

    2015-12-17

    This work examines binary dislocation interactions, junction formation and junction strengths in hexagonal close-packed ( hcp ) crystals. Through a line-tension model and dislocation dynamics (DD) simulations, the interaction and dissociation of different sets of binary junctions are investigated involving one dislocation on the (011¯0) prismatic plane and a second dislocation on one of the following planes: (0001) basal, (11¯00) prismatic, (11¯01) primary pyramidal, or (2¯112) secondary pyramidal. Varying pairs of Burgers vectors are chosen from among the common types the basal type < a > 1/3 < 112¯0 >, prismatic type < c > <0001>, and pyramidal type 1/3 < 112¯3¯ >. For binary interaction due to dislocation intersection, both the analytical results and DD-simulations indicate a relationship between symmetry of interaction maps and the relative magnitude of the Burgers vectors that constitute the junction. Using analytical formulae, a simple regressive model is also developed to represent the junction yield surface. The equation is treated as a degenerated super elliptical equation to quantify the aspect ratio and tilting angle. Lastly, the results provide analytical insights on binary dislocation interactions that may occur in general hcp metals.« less

  20. Dislocation creation and void nucleation in FCC ductile metals under tensile loading: a general microscopic picture.

    PubMed

    Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng

    2014-11-10

    Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies.

  1. A constitutive model accounting for strain ageing effects on work-hardening. Application to a C-Mn steel

    NASA Astrophysics Data System (ADS)

    Ren, Sicong; Mazière, Matthieu; Forest, Samuel; Morgeneyer, Thilo F.; Rousselier, Gilles

    2017-12-01

    One of the most successful models for describing the Portevin-Le Chatelier effect in engineering applications is the Kubin-Estrin-McCormick model (KEMC). In the present work, the influence of dynamic strain ageing on dynamic recovery due to dislocation annihilation is introduced in order to improve the KEMC model. This modification accounts for additional strain hardening rate due to limited dislocation annihilation by the diffusion of solute atoms and dislocation pinning at low strain rate and/or high temperature. The parameters associated with this novel formulation are identified based on tensile tests for a C-Mn steel at seven temperatures ranging from 20 °C to 350 °C. The validity of the model and the improvement compared to existing models are tested using 2D and 3D finite element simulations of the Portevin-Le Chatelier effect in tension.

  2. Advanced time integration algorithms for dislocation dynamics simulations of work hardening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sills, Ryan B.; Aghaei, Amin; Cai, Wei

    Efficient time integration is a necessity for dislocation dynamics simulations of work hardening to achieve experimentally relevant strains. In this work, an efficient time integration scheme using a high order explicit method with time step subcycling and a newly-developed collision detection algorithm are evaluated. First, time integrator performance is examined for an annihilating Frank–Read source, showing the effects of dislocation line collision. The integrator with subcycling is found to significantly out-perform other integration schemes. The performance of the time integration and collision detection algorithms is then tested in a work hardening simulation. The new algorithms show a 100-fold speed-up relativemore » to traditional schemes. As a result, subcycling is shown to improve efficiency significantly while maintaining an accurate solution, and the new collision algorithm allows an arbitrarily large time step size without missing collisions.« less

  3. Dislocation-mediated growth of bacterial cell walls

    PubMed Central

    Amir, Ariel; Nelson, David R.

    2012-01-01

    Recent experiments have illuminated a remarkable growth mechanism of rod-shaped bacteria: proteins associated with cell wall extension move at constant velocity in circles oriented approximately along the cell circumference [Garner EC, et al., (2011) Science 333:222–225], [Domínguez-Escobar J, et al. (2011) Science 333:225–228], [van Teeffelen S, et al. (2011) PNAS 108:15822–15827]. We view these as dislocations in the partially ordered peptidoglycan structure, activated by glycan strand extension machinery, and study theoretically the dynamics of these interacting defects on the surface of a cylinder. Generation and motion of these interacting defects lead to surprising effects arising from the cylindrical geometry, with important implications for growth. We also discuss how long range elastic interactions and turgor pressure affect the dynamics of the fraction of actively moving dislocations in the bacterial cell wall. PMID:22660931

  4. Advanced time integration algorithms for dislocation dynamics simulations of work hardening

    DOE PAGES

    Sills, Ryan B.; Aghaei, Amin; Cai, Wei

    2016-04-25

    Efficient time integration is a necessity for dislocation dynamics simulations of work hardening to achieve experimentally relevant strains. In this work, an efficient time integration scheme using a high order explicit method with time step subcycling and a newly-developed collision detection algorithm are evaluated. First, time integrator performance is examined for an annihilating Frank–Read source, showing the effects of dislocation line collision. The integrator with subcycling is found to significantly out-perform other integration schemes. The performance of the time integration and collision detection algorithms is then tested in a work hardening simulation. The new algorithms show a 100-fold speed-up relativemore » to traditional schemes. As a result, subcycling is shown to improve efficiency significantly while maintaining an accurate solution, and the new collision algorithm allows an arbitrarily large time step size without missing collisions.« less

  5. Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation

    NASA Astrophysics Data System (ADS)

    Ulvestad, A.; Welland, M. J.; Cha, W.; Liu, Y.; Kim, J. W.; Harder, R.; Maxey, E.; Clark, J. N.; Highland, M. J.; You, H.; Zapol, P.; Hruszkewycz, S. O.; Stephenson, G. B.

    2017-05-01

    Crystallographic imperfections significantly alter material properties and their response to external stimuli, including solute-induced phase transformations. Despite recent progress in imaging defects using electron and X-ray techniques, in situ three-dimensional imaging of defect dynamics remains challenging. Here, we use Bragg coherent diffractive imaging to image defects during the hydriding phase transformation of palladium nanocrystals. During constant-pressure experiments we observe that the phase transformation begins after dislocation nucleation close to the phase boundary in particles larger than 300 nm. The three-dimensional phase morphology suggests that the hydrogen-rich phase is more similar to a spherical cap on the hydrogen-poor phase than to the core-shell model commonly assumed. We substantiate this using three-dimensional phase field modelling, demonstrating how phase morphology affects the critical size for dislocation nucleation. Our results reveal how particle size and phase morphology affects transformations in the PdH system.

  6. The generation and functional characterization of induced pluripotent stem cells from human intervertebral disc nucleus pulposus cells.

    PubMed

    Zhu, Yanxia; Liang, Yuhong; Zhu, Hongxia; Lian, Cuihong; Wang, Liang; Wang, Yiwei; Gu, Hongsheng; Zhou, Guangqian; Yu, Xiaoping

    2017-06-27

    Disc degenerative disease (DDD) is believed to originate in the nucleus pulposus (NP) region therefore, it is important to obtain a greater number of active NP cells for the study and therapy of DDD. Human induced pluripotent stem cells (iPSCs) are a powerful tool for modeling the development of DDD in humans, and have the potential to be applied in regenerative medicine. NP cells were isolated from DDD patients following our improved method, and then the primary NP cells were reprogramed into iPSCs with Sendai virus vectors encoding 4 factors. Successful reprogramming of iPSCs was verified by the expression of surface markers and presence of teratoma. Differentiation of iPSCs into NP-like cells was performed in a culture plate or in hydrogel, whereby skin fibroblast derived-iPSCs were used as a control. Results demonstrated that iPSCs derived from NP cells displayed a normal karyotype, expressed pluripotency markers, and formed teratoma in nude mice. NP induction of iPSCs resulted in the expression of NP cell specific matrix proteins and related genes. Non-induced NP derived-iPSCs also showed some NP-like phenotype. Furthermore, NP-derived iPSCs differentiate much better in hydrogel than that in a culture plate. This is a novel method for the generation of iPSCs from NP cells of DDD patients, and we have successfully differentiated these iPSCs into NP-like cells in hydrogel. This method provides a novel treatment of DDD by using patient-specific NP cells in a relatively simple and straightforward manner.

  7. Determination of the optimal atrioventricular interval in sick sinus syndrome during DDD pacing.

    PubMed

    Kato, Masaya; Dote, Keigo; Sasaki, Shota; Goto, Kenji; Takemoto, Hiroaki; Habara, Seiji; Hasegawa, Daiji; Matsuda, Osamu

    2005-09-01

    Although the AAI pacing mode has been shown to be electromechanically superior to the DDD pacing mode in sick sinus syndrome (SSS), there is evidence suggesting that during AAI pacing the presence of natural ventricular activation pattern is not enough for hemodynamic benefit to occur. Myocardial performance index (MPI) is a simply measurable Doppler-derived index of combined systolic and diastolic myocardial performance. The aim of this study was to investigate whether AAI pacing mode is electromechanically superior to the DDD mode in patients with SSS by using Doppler-derived MPI. Thirty-nine SSS patients with dual-chamber pacing devices were evaluated by using Doppler echocardiography in AAI mode and DDD mode. The optimal atrioventricular (AV) interval in DDD mode was determined and atrial stimulus-R interval was measured in AAI mode. The ratio of the atrial stimulus-R interval to the optimal AV interval was defined as relative AV interval (rAVI) and the ratio of MPI in AAI mode to that in DDD mode was defined as relative MPI (rMPI). The rMPI was significantly correlated with atrial stimulus-R interval and rAVI (r = 0.57, P = 0.0002, and r = 0.67, P < 0.0001, respectively). A cutoff point of 1.73 for rAVI provided optimum sensitivity and specificity for rMPI >1 based on the receiver operator curves. Even though the intrinsic AV conduction is moderately prolonged, some SSS patients with dual-chamber pacing devices benefit from the ventricular pacing with optimal AV interval. MPI is useful to determine the optimal pacing mode in acute experiment.

  8. Implicit integration methods for dislocation dynamics

    DOE PAGES

    Gardner, D. J.; Woodward, C. S.; Reynolds, D. R.; ...

    2015-01-20

    In dislocation dynamics simulations, strain hardening simulations require integrating stiff systems of ordinary differential equations in time with expensive force calculations, discontinuous topological events, and rapidly changing problem size. Current solvers in use often result in small time steps and long simulation times. Faster solvers may help dislocation dynamics simulations accumulate plastic strains at strain rates comparable to experimental observations. Here, this paper investigates the viability of high order implicit time integrators and robust nonlinear solvers to reduce simulation run times while maintaining the accuracy of the computed solution. In particular, implicit Runge-Kutta time integrators are explored as a waymore » of providing greater accuracy over a larger time step than is typically done with the standard second-order trapezoidal method. In addition, both accelerated fixed point and Newton's method are investigated to provide fast and effective solves for the nonlinear systems that must be resolved within each time step. Results show that integrators of third order are the most effective, while accelerated fixed point and Newton's method both improve solver performance over the standard fixed point method used for the solution of the nonlinear systems.« less

  9. Dislocation dynamics modelling of the ductile-brittle-transition

    NASA Astrophysics Data System (ADS)

    Hennecke, Thomas; Hähner, Peter

    2009-07-01

    Many materials like silicon, tungsten or ferritic steels show a transition between high temperature ductile fracture with stable crack grow and high deformation energy absorption and low temperature brittle fracture in an unstable and low deformation mode, the ductile-brittle-transition. Especially in steels, the temperature transition is accompanied by a strong increase of the measured fracture toughness over a certain temperature range and strong scatter in the toughness data in this transition regime. The change in fracture modes is affected by dynamic interactions between dislocations and the inhomogeneous stress fields of notches and small cracks. In the present work a dislocation dynamics model for the ductile-brittle-transition is proposed, which takes those interactions into account. The model can explain an increase with temperature of apparent toughness in the quasi-brittle regime and different levels of scatter in the different temperature regimes. Furthermore it can predict changing failure sites in materials with heterogeneous microstructure. Based on the model, the effects of crack tip blunting, stress state, external strain rate and irradiation-induced changes in the plastic flow properties can be discussed.

  10. Critical Issues on Materials for Gen-IV Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caro, M; Marian, J; Martinez, E

    2009-02-27

    Within the LDRD on 'Critical Issues on Materials for Gen-IV Reactors' basic thermodynamics of the Fe-Cr alloy and accurate atomistic modeling were used to help develop the capability to predict hardening, swelling and embrittlement using the paradigm of Multiscale Materials Modeling. Approaches at atomistic and mesoscale levels were linked to build-up the first steps in an integrated modeling platform that seeks to relate in a near-term effort dislocation dynamics to polycrystal plasticity. The requirements originated in the reactor systems under consideration today for future sources of nuclear energy. These requirements are beyond the present day performance of nuclear materials andmore » calls for the development of new, high temperature, radiation resistant materials. Fe-Cr alloys with 9-12% Cr content are the base matrix of advanced ferritic/martensitic (FM) steels envisaged as fuel cladding and structural components of Gen-IV reactors. Predictive tools are needed to calculate structural and mechanical properties of these steels. This project represents a contribution in that direction. The synergy between the continuous progress of parallel computing and the spectacular advances in the theoretical framework that describes materials have lead to a significant advance in our comprehension of materials properties and their mechanical behavior. We took this progress to our advantage and within this LDRD were able to provide a detailed physical understanding of iron-chromium alloys microstructural behavior. By combining ab-initio simulations, many-body interatomic potential development, and mesoscale dislocation dynamics we were able to describe their microstructure evolution. For the first time in the case of Fe-Cr alloys, atomistic and mesoscale were merged and the first steps taken towards incorporating ordering and precipitation effects into dislocation dynamics (DD) simulations. Molecular dynamics (MD) studies of the transport of self-interstitial, vacancy and point defect clusters in concentrated Fe-Cr alloys were performed for future diffusion data calculations. A recently developed parallel MC code with displacement allowed us to predict the evolution of the defect microstructures, local chemistry changes, grain boundary segregation and precipitation resulting from radiation enhanced diffusion. We showed that grain boundaries, dislocations and free surfaces are not preferential for alpha-prime precipitation, and explained experimental observations of short-range order (SRO) in Fe-rich FeCr alloys. Our atomistic studies of dislocation hardening allowed us to obtain dislocation mobility functions for BCC pure iron and Fe-Cr and determine for FCC metals the dislocation interaction with precipitates with a description to be used in Dislocation Dynamic (DD) codes. A Synchronous parallel Kinetic Monte Carlo code was developed and tested which promises to expand the range of applicability of kMC simulations. This LDRD furthered the limits of the available science on the thermodynamic and mechanic behavior of metallic alloys and extended the application of physically-based multiscale materials modeling to cases of severe temperature and neutron fluence conditions in advanced future nuclear reactors. The report is organized as follows: after a brief introduction, we present the research activities, and results obtained. We give recommendations on future LLNL activities that may contribute to the progress in this area, together with examples of possible research lines to be supported.« less

  11. Solute softening and defect generation during prismatic slip in magnesium alloys

    NASA Astrophysics Data System (ADS)

    Yi, Peng; Cammarata, Robert C.; Falk, Michael L.

    2017-12-01

    Temperature and solute effects on prismatic slip of 〈a〉 dislocations in Mg are studied using molecular dynamics simulation. Prismatic slip is controlled by the low mobility screw dislocation. The screw dislocation glides on the prismatic plane through alternating cross-slip between the basal plane and the prismatic plane. In doing so, it exhibits a locking-unlocking mechanism at low temperatures and a more continuous wavy propagation at high temperatures. The dislocation dissociates into partials on the basal plane and the constriction formation of the partials is identified to be the rate-limiting process for unlocking. In addition, the diffusion of partials on the basal plane enables the formation of jogs and superjogs for prismatic slip, which lead to the generation of vacancies and dislocation loops. Solute softening in Mg alloys was observed in the presence of both Al and Y solute. The softening in prismatic slip is found to be due to solute pinning on the basal plane, instead of the relative energy change of the screw dislocation on the basal and prismatic planes, as has been hypothesized.

  12. Evolution of dislocation loops in austenitic stainless steels implanted with high concentration of hydrogen

    NASA Astrophysics Data System (ADS)

    Zheng, Zhongcheng; Gao, Ning; Tang, Rui; Yu, Yanxia; Zhang, Weiping; Shen, Zhenyu; Long, Yunxiang; Wei, Yaxia; Guo, Liping

    2017-10-01

    It has been found that under certain conditions, hydrogen retention would be strongly enhanced in irradiated austenitic stainless steels. To investigate the effect of the retained hydrogen on the defect microstructure, AL-6XN stainless steel specimens were irradiated with low energy (100 keV) H2+ so that high concentration of hydrogen was injected into the specimens while considerable displacement damage dose (up to 7 dpa) was also achieved. Irradiation induced dislocation loops and voids were characterised by transmission electron microscopy. For specimens irradiated to 7 dpa at 290 °C, dislocation loops with high number density were found and the void swelling was observed. At 380 °C, most of dislocation loops were unfaulted and tangled at 7 dpa, and the void swellings were observed at 5 dpa and above. Combining the data from low dose in previous work to high dose, four stages of dislocation loops evolution with hydrogen retention were suggested. Finally, molecular dynamics simulation was made to elucidate the division of large dislocation loops under irradiation.

  13. Hall-petch law revisited in terms of collective dislocation dynamics.

    PubMed

    Louchet, François; Weiss, Jérôme; Richeton, Thiebaud

    2006-08-18

    The Hall-Petch (HP) law, that accounts for the effect of grain size on the plastic yield stress of polycrystals, is revisited in terms of the collective motion of interacting dislocations. Sudden relaxation of incompatibility stresses in a grain triggers aftershocks in the neighboring ones. The HP law results from a scaling argument based on the conservation of the elastic energy during such transfers. The Hall-Petch law breakdown for nanometric sized grains is shown to stem from the loss of such a collective behavior as grains start deforming by successive motion of individual dislocations.

  14. 45. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION DDD), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION DDD), VIEW LOOKING EAST. LEAD ENCLOSED PIPING IS DRAIN FROM BOILER CHAMBER No. 1 - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  15. p,p\\'-Dichlorodiphenyl dichloroethane (DDD)

    Integrated Risk Information System (IRIS)

    p , p ' - Dichlorodiphenyl dichloroethane ( DDD ) ; CASRN 72 - 54 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard

  16. Dense Deposit Disease in Korean Children: A Multicenter Clinicopathologic Study

    PubMed Central

    Park, Se Jin; Kim, Yong-Jin; Ha, Tae-Sun; Lim, Beom Jin; Jeong, Hyeon Joo; Park, Yong Hoon; Lee, Dae Yeol; Kim, Pyung Kil; Kim, Kyo Sun; Chung, Woo Yeong

    2012-01-01

    The purpose of this study was to investigate the clinical, laboratory, and pathologic characteristics of dense deposit disease (DDD) in Korean children and to determine whether these characteristics differ between Korean and American children with DDD. In 2010, we sent a structured protocol about DDD to pediatric nephrologists throughout Korea. The data collected were compared with previously published data on 14 American children with DDD. Korean children had lower 24-hr urine protein excretion and higher serum albumin levels than American children. The light microscopic findings revealed that a higher percentage of Korean children had membranoproliferative glomerulonephritis patterns (Korean, 77.8%; American, 28.6%, P = 0.036), whereas a higher percentage of American children had crescents (Korean, 0%; American, 78.6%, P < 0.001). The findings from the electron microscopy revealed that Korean children were more likely to have segmental electron dense deposits in the lamina densa of the glomerular basement membrane (Korean, 100%; American, 28.6%, P = 0.002); mesangial deposit was more frequent in American children (Korean, 66.7%; American, 100%, P = 0.047). The histological findings revealed that Korean children with DDD were more likely to show membranoproliferative glomerulonephritis patterns than American children. The degree of proteinuria and hypoalbuminemia was milder in Korean children than American children. PMID:23091320

  17. Comparison of semipermeable membrane device (SPMD) and large-volume solid-phase extraction techniques to measure water concentrations of 4,4'-DDT, 4,4'-DDE, and 4,4'-DDD in Lake Chelan, Washington.

    PubMed

    Ellis, Steven G; Booij, Kees; Kaputa, Mike

    2008-07-01

    Semipermeable membrane devices (SPMDs) spiked with the performance reference compound PCB29 were deployed 6.1 m above the sediments of Lake Chelan, Washington, for a period of 27 d, to estimate the dissolved concentrations of 4,4'-DDT, 4,4'-DDE, and 4,4'-DDD. Water concentrations were estimated using methods proposed in 2002 and newer equations published in 2006 to determine how the application of the newer equations affects historical SPMD data that used the older method. The estimated concentrations of DDD, DDE, and DDD calculated using the older method were 1.5-2.9 times higher than the newer method. SPMD estimates from both methods were also compared to dissolved and particulate DDT concentrations measured directly by processing large volumes of water through a large-volume solid-phase extraction device (Infiltrex 300). SPMD estimates of DDD+DDE+DDT (SigmaDDT) using the older and newer methods were lower than Infiltrex concentrations by factors of 1.1 and 2.3, respectively. All measurements of DDT were below the Washington State water quality standards for the protection of human health (0.59 ng l(-1)) and aquatic life (1.0 ng l(-1)).

  18. Metal viscoplasticity with two-temperature thermodynamics and two dislocation densities

    NASA Astrophysics Data System (ADS)

    Roy Chowdhury, Shubhankar; Kar, Gurudas; Roy, Debasish; Reddy, J. N.

    2018-03-01

    Posed within the two-temperature theory of non-equilibrium thermodynamics, we propose a model for thermoviscoplastic deformation in metals. We incorporate the dynamics of dislocation densities-mobile and forest—that play the role of internal state variables in the formulation. The description based on two temperatures appears naturally when one recognizes that the thermodynamic system undergoing viscoplastic deformation is composed of two weakly interacting subsystems, viz. a kinetic-vibrational subsystem of the vibrating atomic lattices and a configurational subsystem of the slower degrees of freedom relating to defect motion, each with its own temperature. Starting with a basic model that involves only homogeneous deformation, a three-dimensional model for inhomogeneous viscoplasticity applicable to finite deformation is charted out in an overstress driven viscoplastic deformation framework. The model shows how the coupled evolutions of mobile and forest dislocation densities, which are critically influenced by the dynamics of configurational temperature, govern the strength and ductility of the metal. Unlike most contemporary models, the current proposal also affords a prediction of certain finer details as observed in the experimental data on stress-strain behaviour of metals and this in turn enhances the understanding of the evolving and interacting dislocation densities.

  19. Velocity statistics for interacting edge dislocations in one dimension from Dyson's Coulomb gas model.

    PubMed

    Jafarpour, Farshid; Angheluta, Luiza; Goldenfeld, Nigel

    2013-10-01

    The dynamics of edge dislocations with parallel Burgers vectors, moving in the same slip plane, is mapped onto Dyson's model of a two-dimensional Coulomb gas confined in one dimension. We show that the tail distribution of the velocity of dislocations is power law in form, as a consequence of the pair interaction of nearest neighbors in one dimension. In two dimensions, we show the presence of a pairing phase transition in a system of interacting dislocations with parallel Burgers vectors. The scaling exponent of the velocity distribution at effective temperatures well below this pairing transition temperature can be derived from the nearest-neighbor interaction, while near the transition temperature, the distribution deviates from the form predicted by the nearest-neighbor interaction, suggesting the presence of collective effects.

  20. Gradient Plasticity Model and its Implementation into MARMOT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, Erin I.; Li, Dongsheng; Zbib, Hussein M.

    2013-08-01

    The influence of strain gradient on deformation behavior of nuclear structural materials, such as boby centered cubic (bcc) iron alloys has been investigated. We have developed and implemented a dislocation based strain gradient crystal plasticity material model. A mesoscale crystal plasticity model for inelastic deformation of metallic material, bcc steel, has been developed and implemented numerically. Continuum Dislocation Dynamics (CDD) with a novel constitutive law based on dislocation density evolution mechanisms was developed to investigate the deformation behaviors of single crystals, as well as polycrystalline materials by coupling CDD and crystal plasticity (CP). The dislocation density evolution law in thismore » model is mechanism-based, with parameters measured from experiments or simulated with lower-length scale models, not an empirical law with parameters back-fitted from the flow curves.« less

  1. Theory of electron-phonon-dislon interacting system—toward a quantized theory of dislocations

    NASA Astrophysics Data System (ADS)

    Li, Mingda; Tsurimaki, Yoichiro; Meng, Qingping; Andrejevic, Nina; Zhu, Yimei; Mahan, Gerald D.; Chen, Gang

    2018-02-01

    We provide a comprehensive theoretical framework to study how crystal dislocations influence the functional properties of materials, based on the idea of a quantized dislocation, namely a ‘dislon’. In contrast to previous work on dislons which focused on exotic phenomenology, here we focus on their theoretical structure and computational power. We first provide a pedagogical introduction that explains the necessity and benefits of taking the dislon approach and why the dislon Hamiltonian takes its current form. Then, we study the electron-dislocation and phonon-dislocation scattering problems using the dislon formalism. Both the effective electron and phonon theories are derived, from which the role of dislocations on electronic and phononic transport properties is computed. Compared with traditional dislocation scattering studies, which are intrinsically single-particle, low-order perturbation and classical quenched defect in nature, the dislon theory not only allows easy incorporation of quantum many-body effects such as electron correlation, electron-phonon interaction, and higher-order scattering events, but also allows proper consideration of the dislocation’s long-range strain field and dynamic aspects on equal footing for arbitrary types of straight-line dislocations. This means that instead of developing individual models for specific dislocation scattering problems, the dislon theory allows for the calculation of electronic structure and electrical transport, thermal transport, optical and superconducting properties, etc, under one unified theory. Furthermore, the dislon theory has another advantage over empirical models in that it requires no fitting parameters. The dislon theory could serve as a major computational tool to understand the role of dislocations on multiple materials’ functional properties at an unprecedented level of clarity, and may have wide applications in dislocated energy materials.

  2. Cross-slip in face-centered cubic metals: a general Escaig stress-dependent activation energy line tension model

    NASA Astrophysics Data System (ADS)

    Malka-Markovitz, Alon; Mordehai, Dan

    2018-02-01

    Cross-slip is a dislocation mechanism by which screw dislocations can change their glide plane. This thermally activated mechanism is an important mechanism in plasticity and understanding the energy barrier for cross-slip is essential to construct reliable cross-slip rules in dislocation models. In this work, we employ a line tension model for cross-slip of screw dislocations in face-centred cubic (FCC) metals in order to calculate the energy barrier under Escaig stresses. The analysis shows that the activation energy is proportional to the stacking fault energy, the unstressed dissociation width and a typical length for cross-slip along the dislocation line. Linearisation of the interaction forces between the partial dislocations yields that this typical length is related to the dislocation length that bows towards constriction during cross-slip. We show that the application of Escaig stresses on both the primary and the cross-slip planes varies the typical length for cross-slip and we propose a stress-dependent closed form expression for the activation energy for cross-slip in a large range of stresses. This analysis results in a stress-dependent activation volume, corresponding to the typical volume surrounding the stressed dislocation at constriction. The expression proposed here is shown to be in agreement with previous models, and to capture qualitatively the essentials found in atomistic simulations. The activation energy function can be easily implemented in dislocation dynamics simulations, owing to its simplicity and universality.

  3. 40 CFR 63.1316 - PET and polystyrene affected sources-emissions control provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... appropriate, and are not required to comply with the requirements specified in 40 CFR part 60, subpart DDD... requirements specified in 40 CFR part 60, subpart DDD. Compliance can be based on either organic HAP or TOC. (1...

  4. 40 CFR 63.1316 - PET and polystyrene affected sources-emissions control provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... appropriate, and are not required to comply with the requirements specified in 40 CFR part 60, subpart DDD... requirements specified in 40 CFR part 60, subpart DDD. Compliance can be based on either organic HAP or TOC. (1...

  5. A critique of the molecular target-based drug discovery paradigm based on principles of metabolic control: advantages of pathway-based discovery.

    PubMed

    Hellerstein, Marc K

    2008-01-01

    Contemporary drug discovery and development (DDD) is dominated by a molecular target-based paradigm. Molecular targets that are potentially important in disease are physically characterized; chemical entities that interact with these targets are identified by ex vivo high-throughput screening assays, and optimized lead compounds enter testing as drugs. Contrary to highly publicized claims, the ascendance of this approach has in fact resulted in the lowest rate of new drug approvals in a generation. The primary explanation for low rates of new drugs is attrition, or the failure of candidates identified by molecular target-based methods to advance successfully through the DDD process. In this essay, I advance the thesis that this failure was predictable, based on modern principles of metabolic control that have emerged and been applied most forcefully in the field of metabolic engineering. These principles, such as the robustness of flux distributions, address connectivity relationships in complex metabolic networks and make it unlikely a priori that modulating most molecular targets will have predictable, beneficial functional outcomes. These same principles also suggest, however, that unexpected therapeutic actions will be common for agents that have any effect (i.e., that complexity can be exploited therapeutically). A potential operational solution (pathway-based DDD), based on observability rather than predictability, is described, focusing on emergent properties of key metabolic pathways in vivo. Recent examples of pathway-based DDD are described. In summary, the molecular target-based DDD paradigm is built on a naïve and misleading model of biologic control and is not heuristically adequate for advancing the mission of modern therapeutics. New approaches that take account of and are built on principles described by metabolic engineers are needed for the next generation of DDD.

  6. Reduction in unnecessary ventricular pacing fails to affect hard clinical outcomes in patients with preserved left ventricular function: a meta-analysis.

    PubMed

    Shurrab, Mohammed; Healey, Jeff S; Haj-Yahia, Saleem; Kaoutskaia, Anna; Boriani, Giuseppe; Carrizo, Aldo; Botto, Gianluca; Newman, David; Padeletti, Luigi; Connolly, Stuart J; Crystal, Eugene

    2017-02-01

    Several pacing modalities across multiple manufacturers have been introduced to minimize unnecessary right ventricular pacing. We conducted a meta-analysis to assess whether ventricular pacing reduction modalities (VPRM) influence hard clinical outcomes in comparison to standard dual-chamber pacing (DDD). An electronic search was performed using Cochrane Central Register, PubMed, Embase, and Scopus. Only randomized controlled trials (RCT) were included in this analysis. Outcomes of interest included: frequency of ventricular pacing (VP), incident persistent/permanent atrial fibrillation (PerAF), all-cause hospitalization and all-cause mortality. Odds ratios (OR) were reported for dichotomous variables. Seven RCTs involving 4119 adult patients were identified. Ventricular pacing reduction modalities were employed in 2069 patients: (MVP, Medtronic Inc.) in 1423 and (SafeR, Sorin CRM, Clamart) in 646 patients. Baseline demographics and clinical characteristics were similar between VPRM and DDD groups. The mean follow-up period was 2.5 ± 0.9 years. Ventricular pacing reduction modalities showed uniform reduction in VP in comparison to DDD groups among all individual studies. The incidence of PerAF was similar between both groups {8 vs. 10%, OR 0.84 [95% confidence interval (CI) 0.57; 1.24], P = 0.38}. Ventricular pacing reduction modalities showed no significant differences in comparison to DDD for all-cause hospitalization or all-cause mortality [9 vs. 11%, OR 0.82 (95% CI 0.65; 1.03), P= 0.09; 6 vs. 6%, OR 0.97 (95% CI 0.74; 1.28), P = 0.84, respectively]. Novel VPRM measures effectively reduce VP in comparison to standard DDD. When actively programmed, VPRM did not improve clinical outcomes and were not superior to standard DDD programming in reducing incidence of PerAF, all-cause hospitalization, or all-cause mortality.

  7. Differences in utilisation of gastroprotective drugs between 2001 and 2005 in Australia and Nova Scotia, Canada.

    PubMed

    Tett, Susan E; Sketris, Ingrid; Cooke, Charmaine; van Zanten, Sander Veldhuyzen; Barozzi, Nadia

    2013-07-01

    This study aimed to compare use of histamine H2 receptor antagonists (H2RAs) and proton pump inhibitors (PPIs), 2001-2005, in the elderly and social security beneficiaries in Australia (AUS) and Nova Scotia, Canada (NS). Prescription dispensing data were collected for all subsidised H2RAs and PPIs. In AUS, dispensing data for concession beneficiaries were obtained from the Pharmaceutical Benefits Scheme database. In NS, data were sourced from the Pharmacare database. Relevant population data were used to convert to World Health Organisation Anatomic Therapeutic Chemical defined daily doses (2005) per 1000 beneficiaries per day (DDD/1000/day). Overall use of gastroprotective agents was similar and rising in NS and AUS (100-160 DDD/1000/day) over this 5-year time window. However, the proportion of this use accounted for by PPIs was far higher in AUS (over 85% by 2005) than in NS (23% rising to 35% over the 5 years). In AUS, PPI use rose from 50 to about 140 DDD/1000/day over the 5 years, whereas PPI use in NS rose slowly to less than 60 DDD/1000/day by 2005. H2RA use in NS was always high (over 100 DDD/1000/day), whereas in AUS, H2RA use fell from 54 to around 24 DDD/1000/day over this period. AUS had much higher use of PPIs than NS over 2001-2005. The proportion of PPIs in all gastroprotective agents rose in AUS to be nearly 90%. The differences in utilisation during this time window could lead to differences in health outcomes from either lower gastro-intestinal bleeding risk or higher long-term adverse effects of PPIs. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Measuring trends of outpatient antibiotic use in Europe: jointly modelling longitudinal data in defined daily doses and packages.

    PubMed

    Bruyndonckx, Robin; Hens, Niel; Aerts, Marc; Goossens, Herman; Molenberghs, Geert; Coenen, Samuel

    2014-07-01

    To complement analyses of the linear trend and seasonal fluctuation of European outpatient antibiotic use expressed in defined daily doses (DDD) by analyses of data in packages, to assess the agreement between both measures and to study changes in the number of DDD per package over time. Data on outpatient antibiotic use, aggregated at the level of the active substance (WHO version 2011) were collected from 2000 to 2007 for 31 countries and expressed in DDD and packages per 1000 inhabitants per day (DID and PID, respectively). Data expressed in DID and PID were analysed separately using non-linear mixed models while the agreement between these measurements was analysed through a joint non-linear mixed model. The change in DDD per package over time was studied with a linear mixed model. Total outpatient antibiotic and penicillin use in Europe and their seasonal fluctuation significantly increased in DID, but not in PID. The use of combinations of penicillins significantly increased in DID and in PID. Broad-spectrum penicillin use did not increase significantly in DID and decreased significantly in PID. For all but one subgroup, country-specific deviations moved in the same direction whether measured in DID or PID. The correlations are not perfect. The DDD per package increased significantly over time for all but one subgroup. Outpatient antibiotic use in Europe shows contrasting trends, depending on whether DID or PID is used as the measure. The increase of the DDD per package corroborates the recommendation to adopt PID to monitor outpatient antibiotic use in Europe. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Extreme Response in Tension and Compression of Tantalum

    NASA Astrophysics Data System (ADS)

    Remington, Tane Perry

    This research on a model bcc metal, tantalum, has three components: the study of tensile failure; defects generated under a nanoindenter; and dislocation velocities in an extreme regime generated by pulsed lasers. The processes of dynamic failure by spalling were established in nano, poly, and mono crystalline tantalum in recovery experiments following laser compression and release. The process of spall was characterized by different techniques: optical microscopy, scanning electron microscopy, microcomputerized tomography and electron backscatter diffraction. Additionally, the pull back signal was measured by VISAR and the pressure decay was compared with HYADES simulations. There are clear differences in the microscopic fracture mechanisms, dictated by the grain sizes. In the nano and poly crystals, spalling occurred by ductile fracture favoring grain boundaries. In the monocrystals, grain boundaries are absent, and the process was of ductile failure by void initiation, growth and coalescence. The spall strength of single crystalline tantalum was higher than the poly and nano crystals. It was experimentally confirmed that spall strength in tantalum increases with strain rate. In order to generate dislocations close to the surface, single crystalline tantalum with orientations (100), (110) and (111) was nanoindented with a Berkovich tip. Atomic force microscopy showed pile-ups of dislocations around the perimeter of the nanoindentations. Sections of nanoindentations were focused ion beam cut into transmission electron microscope foils. The mechanisms of deformation under a nanoindentation in tantalum were identified and quantified. Molecular dynamics simulations were conducted and the simulated plastic deformation proceeds by the formation of nanotwins, which rapidly evolve into shear dislocation loops. Dislocation densities under the indenter were estimated experimentally (~1.2 x 1015 m-2), by MD (~7 x1015 m-2) and through an analytical calculation (2.6--19 x10 15 m-2). Considering the assumptions and simplifications, this agreement is considered satisfactory. These indented crystals were subjected to shock compression and the results are being analyzed with the objective of establishing the velocities of dislocations. A novel technique to establish dislocation velocities is being tested. It consists of subjecting tantalum containing a matrix of nanoindentations to shock compression for post shock characterization enabling the determination of mean dislocation displacements.

  10. Free energy change of a dislocation due to a Cottrell atmosphere

    DOE PAGES

    Sills, R. B.; Cai, W.

    2018-03-07

    The free energy reduction of a dislocation due to a Cottrell atmosphere of solutes is computed using a continuum model. In this work, we show that the free energy change is composed of near-core and far-field components. The far-field component can be computed analytically using the linearized theory of solid solutions. Near the core the linearized theory is inaccurate, and the near-core component must be computed numerically. The influence of interactions between solutes in neighbouring lattice sites is also examined using the continuum model. We show that this model is able to reproduce atomistic calculations of the nickel–hydrogen system, predictingmore » hydride formation on dislocations. The formation of these hydrides leads to dramatic reductions in the free energy. Lastly, the influence of the free energy change on a dislocation’s line tension is examined by computing the equilibrium shape of a dislocation shear loop and the activation stress for a Frank–Read source using discrete dislocation dynamics.« less

  11. Free energy change of a dislocation due to a Cottrell atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sills, R. B.; Cai, W.

    The free energy reduction of a dislocation due to a Cottrell atmosphere of solutes is computed using a continuum model. In this work, we show that the free energy change is composed of near-core and far-field components. The far-field component can be computed analytically using the linearized theory of solid solutions. Near the core the linearized theory is inaccurate, and the near-core component must be computed numerically. The influence of interactions between solutes in neighbouring lattice sites is also examined using the continuum model. We show that this model is able to reproduce atomistic calculations of the nickel–hydrogen system, predictingmore » hydride formation on dislocations. The formation of these hydrides leads to dramatic reductions in the free energy. Lastly, the influence of the free energy change on a dislocation’s line tension is examined by computing the equilibrium shape of a dislocation shear loop and the activation stress for a Frank–Read source using discrete dislocation dynamics.« less

  12. Prognosis of intervertebral disc loss from diagnosis of degenerative disc disease

    NASA Astrophysics Data System (ADS)

    Li, S.; Lin, A.; Tay, K.; Romano, W.; Osman, Said

    2015-03-01

    Degenerative Disc Disease (DDD) is one of the most common causes of low back pain, and is a major factor in limiting the quality of life of an individual usually as they enter older stages of life, the disc degeneration reduces the shock absorption available which in turn causes pain. Disc loss is one of the central processes in the pathogenesis of DDD. In this study, we investigated whether the image texture features quantified from magnetic resonance imaging (MRI) could be appropriate markers for diagnosis of DDD and prognosis of inter-vertebral disc loss. The main objective is to use simple image based biomarkers to perform prognosis of spinal diseases using non-invasive procedures. Our results from 65 subjects proved the higher success rates of the combination marker compared to the individual markers and in the future, we will extend the study to other spine regions to allow prognosis and diagnosis of DDD for a wider region.

  13. Residues of DDT in brains and bodies of birds that died on dosage and in survivors

    USGS Publications Warehouse

    Stickel, L.F.; Stickel, W.H.; Christensen, R.

    1966-01-01

    Residues of 1,1 ,l-trichloro-2,2-bis(p-chlorophenyl)-ethane (DDT) and 1,1 -dichloro-2.2-bis(p-chlorophenyl)-ethane (DDD) in brains of cowbirds (Molothrus ater) killed hy dietary dosage of DDT were similar in birds that died after various lengths of time on dosage and in birds that died of delayed effects after as much as 40 days on clean food, Residues of DDT and DDD, but not of 1,1 -dichloro-2.2-bis-(p-chlorophenyl)-ethylene (DDE), were much lower in survivors 112 days after dosage. The relative importance of DDT and DDD in brains could nlot he determined, but DDE appeared not to be critical. Residues in brains of cowbirds were similar to those reported for robins, sparrows, eagles, and white rats. Residues in livers and carcass remainders (with the possible exception of DDD in the liver) appeared unsuitable for diagnosing the cause of death.

  14. Dislocation creation and void nucleation in FCC ductile metals under tensile loading: A general microscopic picture

    PubMed Central

    Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng

    2014-01-01

    Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies. PMID:25382029

  15. AAA-DDD triple hydrogen bond complexes.

    PubMed

    Blight, Barry A; Camara-Campos, Amaya; Djurdjevic, Smilja; Kaller, Martin; Leigh, David A; McMillan, Fiona M; McNab, Hamish; Slawin, Alexandra M Z

    2009-10-07

    Experiment and theory both suggest that the AAA-DDD pattern of hydrogen bond acceptors (A) and donors (D) is the arrangement of three contiguous hydrogen bonding centers that results in the strongest association between two species. Murray and Zimmerman prepared the first example of such a system (complex 3*2) and determined the lower limit of its association constant (K(a)) in CDCl(3) to be 10(5) M(-1) by (1)H NMR spectroscopy (Murray, T. J. and Zimmerman, S. C. J. Am. Chem. Soc. 1992, 114, 4010-4011). The first cationic AAA-DDD pair (3*4(+)) was described by Bell and Anslyn (Bell, D. A. and Anslyn, E. A. Tetrahedron 1995, 51, 7161-7172), with a K(a) > 5 x 10(5) M(-1) in CH(2)Cl(2) as determined by UV-vis spectroscopy. We were recently able to quantify the strength of a neutral AAA-DDD arrangement using a more chemically stable AAA-DDD system, 6*2, which has an association constant of 2 x 10(7) M(-1) in CH(2)Cl(2) (Djurdjevic, S., Leigh, D. A., McNab, H., Parsons, S., Teobaldi, G. and Zerbetto, F. J. Am. Chem. Soc. 2007, 129, 476-477). Here we report on further AA(A) and DDD partners, together with the first precise measurement of the association constant of a cationic AAA-DDD species. Complex 6*10(+)[B(3,5-(CF(3))(2)C(6)H(3))(4)(-)] has a K(a) = 3 x 10(10) M(-1) at RT in CH(2)Cl(2), by far the most strongly bound triple hydrogen bonded system measured to date. The X-ray crystal structure of 6*10(+) with a BPh(4)(-) counteranion shows a planar array of three short (NH...N distances 1.95-2.15 A), parallel (but staggered rather than strictly linear; N-H...N angles 165.4-168.8 degrees), primary hydrogen bonds. These are apparently reinforced, as theory predicts, by close electrostatic interactions (NH-*-N distances 2.78-3.29 A) between each proton and the acceptor atoms of the adjacent primary hydrogen bonds.

  16. Effects of adrenolytic mitotane on drug elimination pathways assessed in vitro.

    PubMed

    Theile, Dirk; Haefeli, Walter Emil; Weiss, Johanna

    2015-08-01

    Mitotane (1,1-dichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)ethane, o,p'-DDD) represents one of the most active drugs for the treatment of adrenocortical carcinoma. Its metabolites 1,1-(o,p'-dichlorodiphenyl) acetic acid (=o,p'-DDA) and 1,1-(o,p'-dichlorodiphenyl)-2,2 dichloroethene (=o,p'-DDE) partly contribute to its pharmacological effects. Because mitotane has a narrow therapeutic index and causes pharmacokinetic drug-drug interactions, knowledge about these compounds' effects on drug metabolizing and transporting proteins is crucial. Using quantitative real-time polymerase chain reaction, our study confirmed the strong inducing effects of o,p'-DDD on mRNA expression of cytochrome P450 3A4 (CYP3A4, 30-fold) and demonstrated that other enzymes and transporters are also induced (e.g., CYP1A2, 8.4-fold; ABCG2 (encoding breast resistance cancer protein, BCRP), 4.2-fold; ABCB1 (encoding P-glycoprotein, P-gp) 3.4-fold). P-gp induction was confirmed at the protein level. o,p'-DDE revealed a similar induction profile, however, with less potency and o,p'-DDA had only minor effects. Reporter gene assays clearly confirmed o,p'-DDD to be a PXR activator and for the first time demonstrated that o,p'-DDE and o,p'-DDA also activate PXR albeit with lower potency. Using isolated, recombinant CYP enzymes, o,p'-DDD and o,p'-DDE were shown to strongly inhibit CYP2C19 (IC50 = 0.05 and 0.09 µM). o,p'-DDA exhibited only minor inhibitory effects. In addition, o,p'-DDD, o,p'-DDE, and o,p'-DDA are demonstrated to be neither substrates nor inhibitors of BCRP or P-gp function. In summary, o,p'-DDD and o,p'-DDE might be potential perpetrators in pharmacokinetic drug-drug interactions through induction of drug-metabolizing enzymes or drug transporters and by potent inhibition of CYP2C19. In tumors over-expressing BCRP or P-gp, o,p'-DDD and its metabolites should retain their efficacy due to a lack of substrate characteristics.

  17. Price analysis of multiple sclerosis disease-modifying therapies marketed in the United States.

    PubMed

    Bin Sawad, Aseel; Seoane-Vazquez, Enrique; Rodriguez-Monguio, Rosa; Turkistani, Fatema

    2016-11-01

    This study assessed trends in the average wholesale price (AWP) at the market entry of disease-modifying therapies (DMTs) approved by Food and Drug Administration (FDA) in the period 1987-2014. DMT regulatory information was derived from the FDA website. The AWPs per unit at market entry data were derived from the Red Book (Truven Health Analytics Inc.). The AWP history for each DMT was collected from its date of approval to 31 December 2014. The FDA approved label defined daily dose (DDD) for adult patients was obtained from FDA approved labels. The AWP per DDD and the AWP/DDD per year of therapy were computed. Descriptive statistics, Wilcoxon tests, t-test, and multiple linear regression were performed. The statistical significance level was set at 0.05. The FDA approved 12 multiple sclerosis (MS) DMTs, including five new drug applications (NDAs) and seven biologic license applications (BLAs) as of 31 December 2014. The FDA granted orphan designation to five DMTs. There was one DMT approved by the FDA in the 1980s, three in the 1990s, three in 2000s, and five in the period 2010-2014. The market entry inflation-adjusted AWP per DDD was $10.23 for the first DMT (mitoxantrone hydrochloride) that was approved in the 1980s. The median market entry inflation-adjusted AWP per DDD was $12.41 (interquartile range [IQR] = 4.51) for DMTs approved in the 1990s, $71.26 (IQR = 58.35) in the 2000s, and $172.56 (IQR = 84.97) in the period 2010-2014. The median AWP per DDD was statistically significantly different (p = 0.011) for orphan (median = $41.82, IQR = 56.077) compared to non-orphan drugs (median = $171.32, IQR = 199.29). Year of market entry was positively associated with DMT prices at US market entry (p = 0.01). The AWP per DDD for DMTs at market entry increased substantially over time. The increase in DMTs prices exceeded the general consumer price index.

  18. Who is Eligible for DDD Services? Report No. 5.24.

    ERIC Educational Resources Information Center

    Kohlenberg, Elizabeth; And Others

    The effects of broadening the definition of eligibility for services from the Washington State Division of Developmental Disabilities (DDD) are analyzed. Five different definitions are discussed. The existing definition includes: (1) "statutory conditions," which includes persons who are mentally retarded or have difficulty carrying out…

  19. Microstructure in Worn Surface of Hadfield Steel Crossing

    NASA Astrophysics Data System (ADS)

    Zhang, F. C.; Lv, B.; Wang, T. S.; Zheng, C. L.; Li, M.; Zhang, M.

    In this paper a failed Hadfield (high manganese austenite) steel crossing used in railway system was studied. The microstructure in the worn surfaces of the crossing was investigated using optical microscopy, scanning electron microscopy, transmission electron microscopy and Mössbauer spectroscopy. The results indicated that a nanocrystallization layer formed on the surface of the crossing served. The formation mechanism of the nanocrystalline is the discontinuous dynamic recrystallization. The energy for the recrystallization nucleus formation originates from the interactions between the twins, the dislocations, as well as twin and dislocation. High-density vacancies promoted the recrystallization process including the dislocation climb and the atom diffusion.

  20. Impact of pacing and high-pass filter settings on ventricular bipolar electrograms in implantable cardioverter defibrillator systems. - Implication of predictors for inappropriate therapy caused by oversensing of repolarization electrograms-.

    PubMed

    Maesato, Akira; Higa, Satoshi; Lin, Yenn-Jiang; Chinen, Ichiro; Ishigaki, Sugako; Yajima, Machiko; Masuzaki, Hiroaki; Chen, Shih-Ann

    2011-01-01

    Predictors of T wave oversensing with implantable cardioverter-defibrillator (ICD) systems remains to be clarified. Thirteen consecutive patients who underwent ICD implantations were included. The depolarization (R) and repolarization (T) of bipolar electrograms during baseline, AAI and DDD modes, and an isoproterenol (ISO) infusion were evaluated. The R wave amplitude during DDD was significantly lower as compared to that during the other conditions in all high-pass filter settings. In contrast, there was no significant difference in the T wave amplitude during the DDD as compared to the other conditions. With the DDD, there was a significantly higher incidence of a T/R ratio of greater than 0.25 as compared to that with the other conditions. T wave amplitude in Brugada syndrome was significantly higher than that in non-Brugada syndrome. The existence of Brugada syndrome and T/R ratio during the AAI with a high-pass filter setting of 10/20 Hz was an excellent predictor of T wave oversensing in the follow-up period. DDD had a significant impact on the R wave amplitude reduction and the T/R ratio during AAI can be predictors of T wave oversensing. These findings have important implications for inappropriate shocks due to T wave oversensing.

  1. Cellular dislocations patterns in monolike silicon: Influence of stress, time under stress and impurity doping

    NASA Astrophysics Data System (ADS)

    Oliveira, V. A.; Rocha, M.; Lantreibecq, A.; Tsoutsouva, M. G.; Tran-Thi, T. N.; Baruchel, J.; Camel, D.

    2018-05-01

    Besides the well-known local sub-grain boundaries (SGBs) defects, monolike Si ingots grown by Directional Solidification present distributed background cellular dislocation structures. In the present work, the influence of stress level, time under stress, and doping by O and Ge, on the formation of dislocation cells in monolike silicon, is analysed. This is achieved by performing a comparative study of the dislocation structures respectively obtained during crystallisation of pilot scale monolike ingots on Czochralski (CZ) and monolike seeds, during annealing of Float Zone (FZ), CZ, and 1 × 1020 at/cm3 Ge-doped CZ (GCZ) samples, and during 4-point bending of FZ and GCZ samples at 1300 °C under resolved stresses of 0.3, 0.7 and 1.9 MPa during 1-20 h. Synchrotron X-ray White-beam Topography and Rocking Curve Imaging (RCI) are applied to visualize the dislocation arrangements and to quantify the spatial distribution of the associated lattice distortions. Annealed samples and samples bent under 0.3 MPa present dislocation structures corresponding to transient creep stages where dislocations generated from surface defects are propagating and multiplying in the bulk. The addition of the hardening element Ge is found to block the propagation of dislocations from these surface sources during the annealing test, and to retard dislocation multiplication during bending under 0.3 MPa. On the opposite, cellular structures corresponding to the final stationary creep stage are obtained both in the non-molten seeds and grown part of monolike ingots and in samples bent under 0.7 and 1.9 MPa. A comparative discussion is made of the dynamics of formation of these final dislocation structures during deformation at high temperature and monolike growth.

  2. Non-basal dislocations should be accounted for in simulating ice mass flow

    NASA Astrophysics Data System (ADS)

    Chauve, T.; Montagnat, M.; Piazolo, S.; Journaux, B.; Wheeler, J.; Barou, F.; Mainprice, D.; Tommasi, A.

    2017-09-01

    Prediction of ice mass flow and associated dynamics is pivotal at a time of climate change. Ice flow is dominantly accommodated by the motion of crystal defects - the dislocations. In the specific case of ice, their observation is not always accessible by means of the classical tools such as X-ray diffraction or transmission electron microscopy (TEM). Part of the dislocation population, the geometrically necessary dislocations (GNDs) can nevertheless be constrained using crystal orientation measurements via electron backscattering diffraction (EBSD) associated with appropriate analyses based on the Nye (1950) approach. The present study uses the Weighted Burgers Vectors, a reduced formulation of the Nye theory that enables the characterization of GNDs. Applied to ice, this method documents, for the first time, the presence of dislocations with non-basal [ c ] or < c + a > Burgers vectors. These [ c ] or < c + a > dislocations represent up to 35% of the GNDs observed in laboratory-deformed ice samples. Our findings offer a more complex and comprehensive picture of the key plasticity processes responsible for polycrystalline ice creep and provide better constraints on the constitutive mechanical laws implemented in ice sheet flow models used to predict the response of Earth ice masses to climate change.

  3. Effects of solutes on dislocation nucleation from grain boundaries

    DOE PAGES

    Borovikov, Valery; Mendelev, Mikhail I.; King, Alexander H.

    2016-12-27

    When grain sizes are reduced to the nanoscale, grain boundaries (GB) become the dominant sources of the dislocations that enable plastic deformation. Here, we present the first molecular dynamics (MD) study of the effect of substitutional solutes on the dislocation nucleation process from GBs during uniaxial tensile deformation. A simple bi-crystal geometry is utilized in which the nucleation and propagation of dislocations away from a GB is the only active mechanism of plastic deformation. Solutes with atomic radii both larger and smaller than the solvent atomic radius were considered. Although the segregation sites are different for the two cases, bothmore » produce increases in the stress required to nucleate a dislocation. MD simulations at room temperature revealed that this increase in the nucleation stress is associated with changes of the GB structure at the emission site caused by dislocation emission, leading to increases in the heats of segregation of the solute atoms, which cannot diffuse to lower-energy sites on the timescale of the nucleation event. These results contribute directly to understanding the strength of nanocrystalline materials, and suggest suitable directions for nanocrystalline alloy design leading toward structural applications.« less

  4. The Stress-Dependent Activation Parameters for Dislocation Nucleation in Molybdenum Nanoparticles.

    PubMed

    Chachamovitz, Doron; Mordehai, Dan

    2018-03-02

    Many specimens at the nanoscale are pristine of dislocations, line defects which are the main carriers of plasticity. As a result, they exhibit extremely high strengths which are dislocation-nucleation controlled. Since nucleation is a thermally activated process, it is essential to quantify the stress-dependent activation parameters for dislocation nucleation in order to study the strength of specimens at the nanoscale and its distribution. In this work, we calculate the strength of Mo nanoparticles in molecular dynamics simulations and we propose a method to extract the activation free-energy barrier for dislocation nucleation from the distribution of the results. We show that by deforming the nanoparticles at a constant strain rate, their strength distribution can be approximated by a normal distribution, from which the activation volumes at different stresses and temperatures are calculated directly. We found that the activation energy dependency on the stress near spontaneous nucleation conditions obeys a power-law with a critical exponent of approximately 3/2, which is in accordance with critical exponents found in other thermally activated processes but never for dislocation nucleation. Additionally, significant activation entropies were calculated. Finally, we generalize the approach to calculate the activation parameters for other driving-force dependent thermally activated processes.

  5. Communication Strategy: Proper Structure Necessary but not Sufficient

    DTIC Science & Technology

    2010-12-01

    Information, (1998), http://www.ncbi.nlm.nih.gov/ bookshelf /br.fcgi?book=nap6200&part=a20006484ddd00073 (accessed November 12, 2010). “The multidimensional...Biotechnology Information (1998). http://www.ncbi.nlm.nih.gov/ bookshelf /br.fcgi?book=nap6200&part=a20006484ddd000 73 (accessed November 12, 2010

  6. Communication Strategy: Proper Structure Necessary But Not Sufficient

    DTIC Science & Technology

    2010-01-01

    Information, (1998), http://www.ncbi.nlm.nih.gov/ bookshelf /br.fcgi?book=nap6200&part=a20006484ddd00073 (accessed November 12, 2010). “The multidimensional...Biotechnology Information (1998). http://www.ncbi.nlm.nih.gov/ bookshelf /br.fcgi?book=nap6200&part=a20006484ddd000 73 (accessed November 12, 2010

  7. Issue Brief on Diversity

    ERIC Educational Resources Information Center

    Division on Developmental Disabilities, Council for Exceptional Children (NJ1), 2013

    2013-01-01

    During the past year, the Diversity Committee of the Division of Developmental Disabilities (DDD) Board worked with the Board and the Issues Committee Chair to develop an issue brief addressing diversity, its impact on the membership and the wider community that is served by the work of DDD, resulting in recommendations that will influence policy…

  8. Simultaneous multiscale measurements on dynamic deformation of a magnesium alloy with synchrotron x-ray imaging and diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, L.; Sun, T.; Fezzaa, K.

    Dynamic split Hopkinson pressure bar experiments with in situ synchrotron x-ray imaging and diffraction are conducted on a rolled magnesium alloy at high strain rates of ~5500 s-1. High speed multiscale measurements including stress–strain curves (macroscale), strain fields (mesoscale), and diffraction patterns (microscale) are obtained simultaneously, revealing strong anisotropy in deformation across different length scales. {1012} extension twinning induces homogenized strain fields and gives rise to rapid increase in strain hardening rate, while dislocation motion leads to inhomogeneous deformation and a decrease in strain hardening rate. During the early stage of plastic deformation, twinning is dominant in dynamic compression, whilemore » dislocation motion prevails in quasi-static loading, manifesting a strain-rate dependence of deformation.« less

  9. Molecular Dynamics Modeling and Simulation of Diamond Cutting of Cerium.

    PubMed

    Zhang, Junjie; Zheng, Haibing; Shuai, Maobing; Li, Yao; Yang, Yang; Sun, Tao

    2017-12-01

    The coupling between structural phase transformations and dislocations induces challenges in understanding the deformation behavior of metallic cerium at the nanoscale. In the present work, we elucidate the underlying mechanism of cerium under ultra-precision diamond cutting by means of molecular dynamics modeling and simulations. The molecular dynamics model of diamond cutting of cerium is established by assigning empirical potentials to describe atomic interactions and evaluating properties of two face-centered cubic cerium phases. Subsequent molecular dynamics simulations reveal that dislocation slip dominates the plastic deformation of cerium under the cutting process. In addition, the analysis based on atomic radial distribution functions demonstrates that there are trivial phase transformations from the γ-Ce to the δ-Ce occurred in both machined surface and formed chip. Following investigations on machining parameter dependence reveal the optimal machining conditions for achieving high quality of machined surface of cerium.

  10. Molecular Dynamics Modeling and Simulation of Diamond Cutting of Cerium

    NASA Astrophysics Data System (ADS)

    Zhang, Junjie; Zheng, Haibing; Shuai, Maobing; Li, Yao; Yang, Yang; Sun, Tao

    2017-07-01

    The coupling between structural phase transformations and dislocations induces challenges in understanding the deformation behavior of metallic cerium at the nanoscale. In the present work, we elucidate the underlying mechanism of cerium under ultra-precision diamond cutting by means of molecular dynamics modeling and simulations. The molecular dynamics model of diamond cutting of cerium is established by assigning empirical potentials to describe atomic interactions and evaluating properties of two face-centered cubic cerium phases. Subsequent molecular dynamics simulations reveal that dislocation slip dominates the plastic deformation of cerium under the cutting process. In addition, the analysis based on atomic radial distribution functions demonstrates that there are trivial phase transformations from the γ-Ce to the δ-Ce occurred in both machined surface and formed chip. Following investigations on machining parameter dependence reveal the optimal machining conditions for achieving high quality of machined surface of cerium.

  11. Absence of dynamic strain aging in an additively manufactured nickel-base superalloy.

    PubMed

    Beese, Allison M; Wang, Zhuqing; Stoica, Alexandru D; Ma, Dong

    2018-05-25

    Dynamic strain aging (DSA), observed macroscopically as serrated plastic flow, has long been seen in nickel-base superalloys when plastically deformed at elevated temperatures. Here we report the absence of DSA in Inconel 625 made by additive manufacturing (AM) at temperatures and strain rates where DSA is present in its conventionally processed counterpart. This absence is attributed to the unique AM microstructure of finely dispersed secondary phases (carbides, N-rich phases, and Laves phase) and textured grains. Based on experimental observations, we propose a dislocation-arrest model to elucidate the criterion for DSA to occur or to be absent as a competition between dislocation pipe diffusion and carbide-carbon reactions. With in situ neutron diffraction studies of lattice strain evolution, our findings provide a new perspective for mesoscale understanding of dislocation-solute interactions and their impact on work-hardening behaviors in high-temperature alloys, and have important implications for tailoring thermomechanical properties by microstructure control via AM.

  12. Interfacial diffusion aided deformation during nanoindentation

    DOE PAGES

    Samanta, Amit; E., Weinan

    2015-07-06

    Nanoindentation is commonly used to quantify the mechanical response of material surfaces. Despite its widespread use, a detailed understanding of the deformation mechanisms responsible for plasticity during these experiments has remained elusive. Nanoindentation measurements often show stress values close to a material’s ideal strength which suggests that dislocation nucleation and subsequent dislocation activity dominates the deformation. However, low strain-rate exponents and small activation volumes have also been reported which indicates high temperature sensitivity of the deformation processes. Using an order parameter aided temperature accelerated sampling technique called adiabatic free energy dynamics [J. B. Abrams and M. E. Tuckerman, J. Phys.more » Chem. B, 112, 15742 (2008)], and molecular dynamics we have probed the diffusive mode of deformation during nanoindentation. Localized processes such as surface vacancy and ad-atom pair formation, vacancy diffusion are found to play an important role during indentation. Furthermore, our analysis suggests a change in the dominant deformation mode from dislocation mediated plasticity to diffusional flow at high temperatures, slow indentation rates and small indenter tip radii.« less

  13. Spatiotemporal periodicity of dislocation dynamics in a two-dimensional microfluidic crystal flowing in a tapered channel

    DOE PAGES

    Gai, Ya; Min Leong, Chia; Cai, Wei; ...

    2016-10-10

    When a many-body system is driven away from equilibrium, order can spontaneously emerge in places where disorder might be expected. Here we report an unexpected order in the flow of a concentrated emulsion in a tapered microfluidic channel. The velocity profiles of individual drops in the emulsion show periodic patterns in both space and time. Such periodic patterns appear surprising from both a fluid and a solid mechanics point of view. In particular, when the emulsion is considered as a soft crystal under extrusion, a disordered scenario might be expected based on the stochastic nature of dislocation dynamics in microscopicmore » crystals. However, an orchestrated sequence of dislocation nucleation and migration is observed to give rise to a highly ordered deformation mode. This discovery suggests that nanocrystals can be made to deform more controllably than previously thought. It can also lead to novel flow control and mixing strategies in droplet microfluidics.« less

  14. Shock compression of [001] single crystal silicon

    DOE PAGES

    Zhao, S.; Remington, B.; Hahn, E. N.; ...

    2016-03-14

    Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent withmore » dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Furthermore, application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.« less

  15. Shock compression of [001] single crystal silicon

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Hahn, E. N.; Kad, B.; Remington, B. A.; Bringa, E. M.; Meyers, M. A.

    2016-05-01

    Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent with dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.

  16. Length-dependent mechanical properties of gold nanowires

    NASA Astrophysics Data System (ADS)

    Han, Jing; Fang, Liang; Sun, Jiapeng; Han, Ying; Sun, Kun

    2012-12-01

    The well-known "size effect" is not only related to the diameter but also to the length of the small volume materials. It is unfortunate that the length effect on the mechanical behavior of nanowires is rarely explored in contrast to the intensive studies of the diameter effect. The present paper pays attention to the length-dependent mechanical properties of <111>-oriented single crystal gold nanowires employing the large-scale molecular dynamics simulation. It is discovered that the ultrashort Au nanowires exhibit a new deformation and failure regime-high elongation and high strength. The constrained dislocation nucleation and transient dislocation slipping are observed as the dominant mechanism for such unique combination of high strength and high elongation. A mechanical model based on image force theory is developed to provide an insight to dislocation nucleation and capture the yield strength and nucleation site of first partial dislocation indicated by simulation results. Increasing the length of the nanowires, the ductile-to-brittle transition is confirmed. And the new explanation is suggested in the predict model of this transition. Inspired by the superior properties, a new approach to strengthen and toughen nanowires-hard/soft/hard sandwich structured nanowires is suggested. A preliminary evidence from the molecular dynamics simulation corroborates the present opinion.

  17. Accumulation of dislocation loops in the α phase of Zr Excel alloy under heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Yu, Hongbing; Yao, Zhongwen; Idrees, Yasir; Zhang, He K.; Kirk, Mark A.; Daymond, Mark R.

    2017-08-01

    In-situ heavy ion irradiations were performed on the high Sn content Zr alloy 'Excel', measuring type dislocation loop accumulation up to irradiation damage doses of 10 dpa at a range of temperatures. The high content of Sn, which diffuses slowly, and the thin foil geometry of the sample provide a unique opportunity to study an extreme case where displacement cascades dominate the loop formation and evolution. The dynamic observation of dislocation loop evolution under irradiation at 200 °C reveals that type dislocation loops can form at very low dose (0.0025 dpa). The size of the dislocation loops increases slightly with irradiation damage dose. The mechanism controlling loop growth in this study is different from that in neutron irradiation; in this study, larger dislocation loops can condense directly from the interaction of displacement cascades and the high concentration of point defects in the matrix. The size of the dislocation loop is dependent on the point defect concentration in the matrix. A negative correlation between the irradiation temperature and the dislocation loop size was observed. A comparison between cascade dominated loop evolution (this study), diffusion dominated loop evolution (electron irradiation) and neutron irradiation suggests that heavy ion irradiation alone may not be enough to accurately reproduce neutron irradiation induced loop structures. An alternative method is proposed in this paper. The effects of Sn on the displacement cascades, defect yield, and the diffusion behavior of point defects are established.

  18. Dislocation and Structural Studies at Metal-Metallic Glass Interface at Low Temperature

    NASA Astrophysics Data System (ADS)

    Gupta, Pradeep; Yedla, Natraj

    2017-12-01

    In this paper, molecular dynamics (MD) simulation deformation studies on the Al (metal)-Cu50Zr50 (metallic glass) model interface is carried out based on cohesive zone model. The interface is subjected to mode-I loading at a strain rate of 109 s-1 and temperature of 100 K. The dislocations reactions and evolution of dislocation densities during the deformation have been investigated. Atomic interactions between Al, Cu and Zr atoms are modeled using EAM (embedded atom method) potential, and a timestep of 0.002 ps is used for performing the MD simulations. A circular crack and rectangular notch are introduced at the interface to investigate the effect on the deformation behavior and fracture. Further, scale size effect is also investigated. The structural changes and evolution of dislocation density are also examined. It is found that the dominant deformation mechanism is by Shockley partial dislocation nucleation. Amorphization is observed in the Al regions close to the interface and occurs at a lower strain in the presence of a crack. The total dislocation density is found to be maximum after the first yield in both the perfect and defect interface models and is highest in the case of perfect interface with a density of 6.31 × 1017 m-2. In the perfect and circular crack defect interface models, it is observed that the fraction of Shockley partial dislocation density decreases, whereas that of strain rod dislocations increases with increase in strain.

  19. Structure and Mobility of Dissociated Vacancies at Twist Grain Boundaries and Screw Dislocations in Ionic Rocksalt Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolluri, Kedarnath; Martinez Saez, Enrique; Uberuaga, Blas Pedro

    Interfaces, grain boundaries, and dislocations are known to have significant impact on the transport properties of materials. Even so, it is still not clear how the structure of interfaces influences the mobility and concentration of carriers that are responsible for transport. Using low angle twist grain boundaries in MgO as a model system, we examine the structural and kinetic properties of vacancies. These boundaries are characterized by a network of screw dislocations. Vacancies of both types, Mg and O, are strongly attracted to the dislocation network, residing preferentially at the misfit dislocation intersections (MDIs). However, the vacancies can lower theirmore » energy by splitting into two parts, which then repel each other along the dislocation line between two MDIs, further lowering their energy. This dissociated structure has important consequences for transport, as the free energy of the dissociated vacancies decreases with decreasing twist angle, leading to an increase in the net migration barrier for diffusion as revealed by molecular dynamics simulations. Similar behavior is observed in BaO and NaCl, highlighting the generality of the behavior. Finally, we analyze the structure of the dissociated vacancies as a pair of jogs on the dislocation and construct a model containing electrostatic and elastic contributions that qualitatively describe the energetics of the dissociated vacancy. Our results represent the first validation of a mechanism for vacancy dissociation on screw dislocations in ionic materials first discussed by Thomson and Balluffi in 1962.« less

  20. Structure and Mobility of Dissociated Vacancies at Twist Grain Boundaries and Screw Dislocations in Ionic Rocksalt Compounds

    DOE PAGES

    Kolluri, Kedarnath; Martinez Saez, Enrique; Uberuaga, Blas Pedro

    2018-03-05

    Interfaces, grain boundaries, and dislocations are known to have significant impact on the transport properties of materials. Even so, it is still not clear how the structure of interfaces influences the mobility and concentration of carriers that are responsible for transport. Using low angle twist grain boundaries in MgO as a model system, we examine the structural and kinetic properties of vacancies. These boundaries are characterized by a network of screw dislocations. Vacancies of both types, Mg and O, are strongly attracted to the dislocation network, residing preferentially at the misfit dislocation intersections (MDIs). However, the vacancies can lower theirmore » energy by splitting into two parts, which then repel each other along the dislocation line between two MDIs, further lowering their energy. This dissociated structure has important consequences for transport, as the free energy of the dissociated vacancies decreases with decreasing twist angle, leading to an increase in the net migration barrier for diffusion as revealed by molecular dynamics simulations. Similar behavior is observed in BaO and NaCl, highlighting the generality of the behavior. Finally, we analyze the structure of the dissociated vacancies as a pair of jogs on the dislocation and construct a model containing electrostatic and elastic contributions that qualitatively describe the energetics of the dissociated vacancy. Our results represent the first validation of a mechanism for vacancy dissociation on screw dislocations in ionic materials first discussed by Thomson and Balluffi in 1962.« less

  1. Absolute configuration determination through the unique intramolecular excitonic coupling in the circular dichroisms of o,p'-DDT and o,p'-DDD. A combined experimental and theoretical study.

    PubMed

    Tanaka, Hiroki; Inoue, Yoshihisa; Nakano, Takeshi; Mori, Tadashi

    2017-04-12

    Circular dichroisms (CDs) of the o,p'-isomers of 1,1,1-trichloro- and 1,1-dichloro-2,2-bis(chlorophenyl)ethanes (DDT and DDD) were investigated experimentally and theoretically. A series of strong Cotton effect peaks in a characteristic negative-negative-positive-negative, or its mirror-imaged, pattern were observed in the CD spectra of these persistent organic pollutants. The theoretical CD spectra at the SAC-CI/B95(d) and RI-CC2/def2-TZVPP levels well reproduced the experimental ones, enabling us to unambiguously assign the absolute configuration of (+)-DDT and (-)-DDD as S.

  2. Multiscale Analysis of Structurally-Graded Microstructures Using Molecular Dynamics, Discrete Dislocation Dynamics and Continuum Crystal Plasticity

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.; Mishin, Yuri

    2014-01-01

    A multiscale modeling methodology is developed for structurally-graded material microstructures. Molecular dynamic (MD) simulations are performed at the nanoscale to determine fundamental failure mechanisms and quantify material constitutive parameters. These parameters are used to calibrate material processes at the mesoscale using discrete dislocation dynamics (DD). Different grain boundary interactions with dislocations are analyzed using DD to predict grain-size dependent stress-strain behavior. These relationships are mapped into crystal plasticity (CP) parameters to develop a computationally efficient finite element-based DD/CP model for continuum-level simulations and complete the multiscale analysis by predicting the behavior of macroscopic physical specimens. The present analysis is focused on simulating the behavior of a graded microstructure in which grain sizes are on the order of nanometers in the exterior region and transition to larger, multi-micron size in the interior domain. This microstructural configuration has been shown to offer improved mechanical properties over homogeneous coarse-grained materials by increasing yield stress while maintaining ductility. Various mesoscopic polycrystal models of structurally-graded microstructures are generated, analyzed and used as a benchmark for comparison between multiscale DD/CP model and DD predictions. A final series of simulations utilize the DD/CP analysis method exclusively to study macroscopic models that cannot be analyzed by MD or DD methods alone due to the model size.

  3. Epitaxial strain relaxation by provoking edge dislocation dipoles

    NASA Astrophysics Data System (ADS)

    Soufi, A.; El-Hami, K.

    2018-02-01

    Thin solid films have been used in various devices and engineering systems such as rapid development of highly integrated electronic circuits, the use of surface coatings to protect structural materials in high temperature environments, and thin films are integral parts of many micro-electro-mechanical systems designed to serve as sensors, actuators. Among techniques of ultra-thin films deposition, the heteroepitaxial method becomes the most useful at nanoscale level to obtain performed materials in various applications areas. On the other hand, stresses that appeared during the elaboration of thin films could rise deformations and fractures in materials. The key solution to solve this problem at the nanoscale level is the nucleation of interface dislocations from free surfaces. By provoking edge dislocation dipoles we obtained a strain relaxation in thin films. Moreover, the dynamic of nucleation in edge dislocations from free lateral surfaces was also studied.

  4. Atomistic simulation of the influence of Cr on the mobility of the edge dislocation in Fe(Cr) alloys

    NASA Astrophysics Data System (ADS)

    Hafez Haghighat, S. M.; Terentyev, D.; Schäublin, R.

    2011-10-01

    In this work Fe-Cr compounds, as model alloys for the ferritic base steels that are considered as main candidates for the structural materials of the future fusion reactors, are studied using molecular dynamics simulations. The Cr or so-called α' precipitates, which are obstacles to dislocations, affect mechanical properties, leading to hardening and loss of ductility. The flow stress to move an edge dislocation in a Cr solid solution in pure Fe is studied as a function of Cr content. The strength of a nanometric Cr precipitate as obstacle to an edge dislocation in pure Fe is investigated as a function of its Cr content. Results show that with increasing Cr content the precipitate obstacle strength increases, with a strong sensitivity to the local atomic order. Temperature induces a monotonic decrease of the flow stress of the Cr solid solution and of the Cr precipitate obstacle strength.

  5. Multiscale Modeling of Inclusions and Precipitation Hardening in Metal Matrix Composites: Application to Advanced High-Strength Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Askari, Hesam; Zbib, Hussein M.; Sun, Xin

    In this study, the strengthening effect of inclusions and precipitates in metals is investigated within a multiscale approach that utilizes models at various length scales, namely, Molecular Mechanics (MM), discrete Dislocation Dynamics (DD), and an Eigenstrain Inclusion Method (EIM). Particularly, precipitates are modeled as hardsoft particles whose stress fields interact with dislocations. The stress field resulting from the elastic mismatch between the particles and the matrix is accounted for through the EIM. While the MM method is employed for the purpose of developing rules for DD for short range interaction between a single dislocation and an inclusion, the DD methodmore » is used to predict the strength of the composite resulting from the interaction between ensembles of dislocations and particles. As an application to this method, the mechanical behavior of Advanced High Strength Steel (AHSS) is investigated and the results are then compared to the experimental data. The results show that the finely dispersive precipitates can strengthen the material by pinning the dislocations up to a certain shear stress and retarding the recovery, as well as annihilation of dislocations. The DD results show that strengthening due to nano sized particles is a function of the density and size of the precipitates. This size effect is then explained using a mechanistic model developed based on dislocation-particle interaction.« less

  6. Institutional profile: the national Swedish academic drug discovery & development platform at SciLifeLab

    PubMed Central

    Arvidsson, Per I; Sandberg, Kristian; Sakariassen, Kjell S

    2017-01-01

    The Science for Life Laboratory Drug Discovery and Development Platform (SciLifeLab DDD) was established in Stockholm and Uppsala, Sweden, in 2014. It is one of ten platforms of the Swedish national SciLifeLab which support projects run by Swedish academic researchers with large-scale technologies for molecular biosciences with a focus on health and environment. SciLifeLab was created by the coordinated effort of four universities in Stockholm and Uppsala: Stockholm University, Karolinska Institutet, KTH Royal Institute of Technology and Uppsala University, and has recently expanded to other Swedish university locations. The primary goal of the SciLifeLab DDD is to support selected academic discovery and development research projects with tools and resources to discover novel lead therapeutics, either molecules or human antibodies. Intellectual property developed with the help of SciLifeLab DDD is wholly owned by the academic research group. The bulk of SciLifeLab DDD's research and service activities are funded from the Swedish state, with only consumables paid by the academic research group through individual grants. PMID:28670468

  7. Glomeruli of Dense Deposit Disease contain components of the alternative and terminal complement pathway

    PubMed Central

    Sethi, Sanjeev; Gamez, Jeffrey D.; Vrana, Julie A.; Theis, Jason D.; Bergen, H. Robert; Zipfel, Peter F.; Dogan, Ahmet; Smith, Richard J. H.

    2009-01-01

    Dense Deposit Disease (DDD), or membranoproliferative glomerulonephritis type II, is a rare renal disease characterized by dense deposits in the mesangium and along the glomerular basement membranes that can be seen by electron microscopy. Although these deposits contain complement factor C3, as determined by immunofluorescence microscopy, their precise composition remains unknown. To address this question, we used mass spectrometry to identify the proteins in laser microdissected glomeruli isolated from paraffin-embedded tissue of eight confirmed cases of DDD. Compared to glomeruli from five control patients, we found that all of the glomeruli from patients with DDD contain components of the alternative pathway and terminal complement complex. Factor C9 was uniformly present as well as the two fluid-phase regulators of terminal complement complex clusterin and vitronectin. In contrast, in nine patients with immune complex–mediated membranoproliferative glomerulonephritis, glomerular samples contained mainly immunoglobulins and complement factors C3 and C4. Our study shows that in addition to fluid-phase dysregulation of the alternative pathway, soluble components of the terminal complement complex contribute to glomerular lesions found in DDD. PMID:19177158

  8. Opioid consumption before and after the establishment of a palliative medicine unit in an Egyptian cancer centre.

    PubMed

    Alsirafy, Samy A; Ibrahim, Noha Y; Abou-Elela, Enas N

    2012-01-01

    Opioid consumption before and after the establishment of a palliative medicine unit (PMU) in an Egyptian cancer centre was reviewed. A comparison of consumption during the year before the PMU was established to consumption during the third year after the PMU's establishment revealed that morphine consumption increased by 698 percent, fentanyl by 217 percent, and tramadol by 230 percent. Expressed in defined daily dose (DDD) and adjusted for 1,000 new cancer patients, consumption increased by 460 percent, from 4,678 DDD/1,000 new patients to 26,175 DDD/1,000 new patients. Expressed in grams of oral morphine equivalent (g OME), consumption increased by 644 percent, from 233 g OME/1,000 new patients to 1,731 g OME/1,000 new patients. The establishment of the PMU was associated with an increase in opioid consumption, especially morphine, which is an indicator of improvement in cancer pain control. The expression of opioid consumption in OME in addition to DDD may provide further information, especially when weak opioids are included in the analysis.

  9. Institutional profile: the national Swedish academic drug discovery & development platform at SciLifeLab.

    PubMed

    Arvidsson, Per I; Sandberg, Kristian; Sakariassen, Kjell S

    2017-06-01

    The Science for Life Laboratory Drug Discovery and Development Platform (SciLifeLab DDD) was established in Stockholm and Uppsala, Sweden, in 2014. It is one of ten platforms of the Swedish national SciLifeLab which support projects run by Swedish academic researchers with large-scale technologies for molecular biosciences with a focus on health and environment. SciLifeLab was created by the coordinated effort of four universities in Stockholm and Uppsala: Stockholm University, Karolinska Institutet, KTH Royal Institute of Technology and Uppsala University, and has recently expanded to other Swedish university locations. The primary goal of the SciLifeLab DDD is to support selected academic discovery and development research projects with tools and resources to discover novel lead therapeutics, either molecules or human antibodies. Intellectual property developed with the help of SciLifeLab DDD is wholly owned by the academic research group. The bulk of SciLifeLab DDD's research and service activities are funded from the Swedish state, with only consumables paid by the academic research group through individual grants.

  10. Outpatient utilization of psychopharmaceuticals: comparison between the cities of Zagreb and Sarajevo (2006-2009).

    PubMed

    Catić, Tarik; Stimac, Danijela; Zivković, Krešimir; Zelić, Ana

    2012-08-01

    To determine the real outpatient utilization of psychiatric drugs in Zagreb (Croatia) and Sarajevo (Bosnia and Herzegovina) and to compare the outpatient utilization of psychiatric drugs between this two cities. Data on the outpatient utilization of psycholpetics and psychoanaleptics (N05 and N06) in both cities were received from pharmacies and collected during 2006-2009. Based on the data obtained, a number of DDD and DDD per 1000 inhabitants perday (DDD/1000/day) has been calculated. The data in Zagreb were received from all pharmacies in Zagreb, whereas only 50% of pharmacies in Sarajevo participated, thus an extrapolation of data for Sarajevo was required and accomplished. All drugs were classified according to the ATC system. Based on the data obtained, a number of DDD and DDD/1000/day was calculated for all N05 and N06 drugs. Overall utilization trend was similar between the cities Sarajevo and Zagreb and followed trends in other neighbouring countries. Total consumption of psycholeptics and psychoanaleptics in Sarajevo was 22.6% (on average) lower than in Zagreb, during the 4-year period. During the 2006-2009 period the total consumption of psychopharmaceuticals showed increasing trend with peak in 2008 with similar trend between Zagreb and Sarajevo. It is necessary to implement systematic approach to drug utilization monitoring in Sarajevo and Bosnia and Herzegovina in general in order to improve prescribing quality as it is done in Croatia.

  11. Application of ATC/DDD methodology to evaluate perioperative antimicrobial prophylaxis.

    PubMed

    Akalin, Serife; Kutlu, Selda Sayin; Cirak, Bayram; Eskiçorapcı, Saadettin Yilmaz; Bagdatli, Dilek; Akkaya, Semih

    2012-02-01

    To evaluate quality of perioperative antibiotic prophylaxis (PAP) and to calculate the cost per procedure in a Turkish university hospital. A 352-bed teaching hospital in Denizli, Turkey. An prospective audit was performed between July and October 2010. All clean, clean-contaminated and contaminated elective surgical procedures in ten surgical wards were recorded. Antimicrobial use was calculated per procedure using the ATC-DDD system. The appropriateness of antibiotic use for each procedure was evaluated according to international guidelines on PAP. In addition, the cost per procedure was calculated. Overall, in 577 of the 625 (92.3%) of the studied procedures, PAP was used. PAP was indicated in 12.5% of the group where it was not used, and not indicated in 7.1% of the group where it was used. Unnecessarily prolonged antimicrobial prophylaxis was observed in 56.9% of the procedures, mean duration was 2.6 ± 2.7 days. The most frequently used antimicrobials were cefazolin (117.9 DDD/100-operation) and sulbactam/ampicillin (102.2 DDD/100-operation). The timing of the starting dose was appropriate in 545 procedures (94.5%). In the group that received PAP, only 80 (13.7%) of the procedures were found to be fully appropriate and correct. The density of antimicrobial use per operation was 2.8 DDD. The mean cost of the use of prophylactic antimicrobials 18.6 per procedure. The density of antimicrobial use in PAP was found to be very high in our hospital. Antibiotic overuse extended into the postoperative period.

  12. Scale transition using dislocation dynamics and the nudged elastic band method

    DOE PAGES

    Sobie, Cameron; Capolungo, Laurent; McDowell, David L.; ...

    2017-08-01

    Microstructural features such as precipitates or irradiation-induced defects impede dislocation motion and directly influence macroscopic mechanical properties such as yield point and ductility. In dislocation-defect interactions both atomic scale and long range elastic interactions are involved. Thermally assisted dislocation bypass of obstacles occurs when thermal fluctuations and driving stresses contribute sufficient energy to overcome the energy barrier. The Nudged Elastic Band (NEB) method is typically used in the context of atomistic simulations to quantify the activation barriers for a given reaction. In this work, the NEB method is generalized to coarse-grain continuum representations of evolving microstructure states beyond the discretemore » particle descriptions of first principles and atomistics. The method we employed enables the calculation of activation energies for a View the MathML source glide dislocation bypassing a [001] self-interstitial atom loop of size in the range of 4-10 nm with a spacing larger than 150nm in α-iron for a range of applied stresses and interaction geometries. This study is complemented by a comparison between atomistic and continuum based prediction of barriers.« less

  13. Pitfalls associated with the therapeutic reference pricing practice of asthma medication

    PubMed Central

    2012-01-01

    Background Therapeutic reference pricing (TRP) based on the WHO daily defined dose (DDD) is a method frequently employed for the cost-containment of pharmaceuticals. Our objective was to compare average drug use in the real world with DDD and to evaluate whether TRP based on DDD could result in cost savings on maintenance medication and the total direct health expenditures for asthma patients treated with Symbicort Turbuhaler (SYT) and Seretide Diskus (SED) in Hungary. Methods Real-world data were derived from the Hungarian National Health Insurance Fund database. Average doses and costs were compared between the high-dose and medium-dose SYT and SED groups. Multiple linear regressions were employed to adjust the data for differences in the gender and age distribution of patients. Results 27,779 patients with asthma were included in the analysis. Average drug use was lower than DDD in all groups, 1.38-1.95 inhalations in both SED groups, 1.28-1.97 and 1.74-2.49 inhalations in the medium and high-dose SYT groups, respectively. Although the cost of SED based on the DDD would be much lower than the cost of SYT in the medium-dose groups, no difference was found in the actual cost of the maintenance therapy. No significant differences were found between the groups in terms of total medical costs. Conclusions Cost-containment initiatives by payers may influence clinical decisions. TRP for inhalation asthma drugs raises special concern, because of differences in the therapeutic profile of pharmaceuticals and the lack of proven financial benefits after exclusion of the effect of generic price erosion. Our findings indicate that the presented TRP approach of asthma medications based on the daily therapeutic costs according to the WHO DDD does not result in reduced public healthcare spending in Hungary. Further analysis is required to show whether TRP generates additional expenditures by inducing switching costs and reducing patient compliance. Potential confounding factors may limit the generalisability of our conclusions. PMID:22818402

  14. Pitfalls associated with the therapeutic reference pricing practice of asthma medication.

    PubMed

    Kalo, Zoltan; Abonyi-Toth, Zsolt; Bartfai, Zoltan; Voko, Zoltan

    2012-07-20

    Therapeutic reference pricing (TRP) based on the WHO daily defined dose (DDD) is a method frequently employed for the cost-containment of pharmaceuticals. Our objective was to compare average drug use in the real world with DDD and to evaluate whether TRP based on DDD could result in cost savings on maintenance medication and the total direct health expenditures for asthma patients treated with Symbicort Turbuhaler (SYT) and Seretide Diskus (SED) in Hungary. Real-world data were derived from the Hungarian National Health Insurance Fund database. Average doses and costs were compared between the high-dose and medium-dose SYT and SED groups. Multiple linear regressions were employed to adjust the data for differences in the gender and age distribution of patients. 27,779 patients with asthma were included in the analysis. Average drug use was lower than DDD in all groups, 1.38-1.95 inhalations in both SED groups, 1.28-1.97 and 1.74-2.49 inhalations in the medium and high-dose SYT groups, respectively. Although the cost of SED based on the DDD would be much lower than the cost of SYT in the medium-dose groups, no difference was found in the actual cost of the maintenance therapy. No significant differences were found between the groups in terms of total medical costs. Cost-containment initiatives by payers may influence clinical decisions. TRP for inhalation asthma drugs raises special concern, because of differences in the therapeutic profile of pharmaceuticals and the lack of proven financial benefits after exclusion of the effect of generic price erosion. Our findings indicate that the presented TRP approach of asthma medications based on the daily therapeutic costs according to the WHO DDD does not result in reduced public healthcare spending in Hungary. Further analysis is required to show whether TRP generates additional expenditures by inducing switching costs and reducing patient compliance. Potential confounding factors may limit the generalisability of our conclusions.

  15. Long-term clinical effects of ventricular pacing reduction with a changeover mode to minimize ventricular pacing in a general pacemaker population

    PubMed Central

    Stockburger, Martin; Boveda, Serge; Moreno, Javier; Da Costa, Antoine; Hatala, Robert; Brachmann, Johannes; Butter, Christian; Garcia Seara, Javier; Rolando, Mara; Defaye, Pascal

    2015-01-01

    Aim Right ventricular pacing (VP) has been hypothesized to increase the risk in heart failure (HF) and atrial fibrillation (AF). The ANSWER study evaluated, whether an AAI-DDD changeover mode to minimize VP (SafeR) improves outcome compared with DDD in a general dual-chamber pacemaker population. Methods and results ANSWER was a randomized controlled multicentre trial assessing SafeR vs. standard DDD in sinus node disease (SND) or AV block (AVB) patients. After a 1-month run-in period, they were randomized (1 : 1) and followed for 3 years. Pre-specified co-primary end-points were VP and the composite of hospitalization for HF, AF, or cardioversion. Pre-specified secondary end-points were cardiac death or HF hospitalizations and cardiovascular hospitalizations. ANSWER enrolled 650 patients (52.0% SND, 48% AVB) at 43 European centres and randomized in SafeR (n = 314) or DDD (n = 318). The SafeR mode showed a significant decrease in VP compared with DDD (11.5 vs. 93.6%, P < 0.0001 at 3 years). Deaths and syncope did not differ between randomization arms. No significant difference between groups [HR = 0.78; 95% CI (0.48–1.25); P = 0.30] was found in the time to event of the co-primary composite of hospitalization for HF, AF, or cardioversion, nor in the individual components. SafeR showed a 51% risk reduction (RR) in experiencing cardiac death or HF hospitalization [HR = 0.49; 95% CI (0.27–0.90); P = 0.02] and 30% RR in experiencing cardiovascular hospitalizations [HR = 0.70; 95% CI (0.49–1.00); P = 0.05]. Conclusion SafeR safely and significantly reduced VP in a general pacemaker population though had no effect on hospitalization for HF, AF, or cardioversion, when compared with DDD. PMID:25179761

  16. DDT Analysis of Wetland Sediments in Upper Escambia Bay, Florida

    NASA Astrophysics Data System (ADS)

    Hopko, M. N.; Wright, J.; Liebens, J.; Vaughan, P.

    2017-12-01

    Dichlorodiphenyltrichloroethane (DDT) was a commonly used pesticide from World War II through the 1960's. DDT is generally used to control mosquito populations and as an agricultural insecticide. The pesticide and its degradation products (DDD and DDE) can bioaccumulate within ecosystems having negative implications for animal and human health. Consequently, DDT usage was banned in the United States in 1973. In a contaminant study performed in Escambia Bay, Florida, in 2009, DDT was present in 25% of study sites, most of which were located in the upper bay wetlands. Concentrations were well above the Florida Department of Environmental Protection's (FDEP) Probable Effect Level (PEL) and ratios of DDT and its metabolites indicated a recent introduction to the system. A follow-up study performed in 2016 found no DDT, but did show DDE at several sites. The current study repeated sampling in May 2017 at sites from the 2009 and 2016 studies. Sediment samples were collected in triplicate using a ponar sampler and DDT, DDD and DDE were extracted using EPA methods 3540c and 3620c. Extracts were analyzed using a gas chromatograph with electron capture detection (GC-ECD) as per EPA method 8081c. Sediment was also analyzed for organic carbon and particle size using an elemental NC analyzer and a laser diffraction particle sizer. Results show the presence of breakdown products DDE and DDD at multiple sites, but no detectable levels of DDT at any site. Sampling sites with high levels of DDT contamination in 2009 show only breakdown products in both 2016 and 2017. Particle size has little influence on DDD or DDE concentrations but OC is a controlling factor as indicated for contaminated sites by Pearson correlations between OC and DDE and DDD of 0.82 and 0.92, respectively. The presence of only DDD and/or DDE in the 2016 and 2017 studies indicates that the parent, DDT, has not been re-introduced into the watershed since 2009 but is degrading in the environment.

  17. DDD: Dynamic Database for Diatomics

    NASA Technical Reports Server (NTRS)

    Schwenke, David

    2004-01-01

    We have developed as web-based database containing spectra of diatomic moiecuies. All data is computed from first principles, and if a user requests data for a molecule/ion that is not in the database, new calculations are automatically carried out on that species. Rotational, vibrational, and electronic transitions are included. Different levels of accuracy can be selected from qualitatively correct to the best calculations that can be carried out. The user can view and modify spectroscopic constants, view potential energy curves, download detailed high temperature linelists, or view synthetic spectra.

  18. The Risk of TB in Patients With Type 2 Diabetes Initiating Metformin vs Sulfonylurea Treatment.

    PubMed

    Pan, Sheng-Wei; Yen, Yung-Feng; Kou, Yu Ru; Chuang, Pei-Hung; Su, Vincent Yi-Fong; Feng, Jia-Yih; Chan, Yu-Jiun; Su, Wei-Juin

    2017-12-16

    Metformin and the sulfonylureas are common initial antidiabetic agents; the former has demonstrated anti-TB action in in vitro and animal studies. The comparative effect of metformin vs the sulfonylureas on TB risk in patients with type 2 diabetes mellitus (T2DM) remains unclear. In this retrospective cohort study, patients without chronic kidney disease who received a T2DM diagnosis during 2003 to 2013 were identified from the Taiwan National Health Insurance Research Database. Participants with ≥ 2 years of follow-up were reviewed and observed for TB until December 2013. Patients receiving metformin ≥ 60 cumulative defined daily dose (cDDD) and sulfonylureas < 15 cDDD in the initial 2 years were defined as metformin majors; it was the inverse for sulfonylurea majors. The two groups were matched 1:1 by propensity score and compared for TB risk by multivariate Cox regression analysis. Among 40,179 patients with T2DM, 263 acquired TB (0.65%) over a mean follow-up of 6.1 years. In multivariate analysis, the initial 2-year dosage of metformin, but not that of the sulfonylureas, was an independent predictor of TB (60-cDDD increase (adjusted hazard ratio [HR], 0.931; 95% CI, 0.877-0.990) after adjustment by cofactors, including adapted diabetes complication severity index. Metformin majors had a significantly lower TB risk than that of sulfonylurea majors before and after matching (HR, 0.477; 95% CI, 0.268-0.850 and HR, 0.337; 95% CI, 0.169-0.673; matched pairs, n = 3,161). Compared with the reference group (initial 2-year metformin < 60 cDDD), metformin treatment showed a dose-dependent association with TB risk (60-219 cDDD; HR, 0.860; 95% CI, 0.637-1.161; 220-479 cDDD, HR, 0.706; 95% CI, 0.485-1.028; ≥ 480 cDDD, HR, 0.319; 95% CI, 0.118-0.863). Metformin use in the initial 2 years was associated with a decreased risk of TB, and metformin users had a reduced risk compared with their sulfonylurea comparators. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  19. Antimicrobial consumption on Austrian dairy farms: an observational study of udder disease treatments based on veterinary medication records.

    PubMed

    Firth, Clair L; Käsbohrer, Annemarie; Schleicher, Corina; Fuchs, Klemens; Egger-Danner, Christa; Mayerhofer, Martin; Schobesberger, Hermann; Köfer, Josef; Obritzhauser, Walter

    2017-01-01

    Antimicrobial use in livestock production is an important contemporary issue, which is of public interest worldwide. Antimicrobials are not freely available to Austrian farmers and can only be administered to livestock by veterinarians, or by farmers who are trained members of the Animal Health Service. Since 2015, veterinarians have been required by law to report antimicrobials dispensed to farmers for use in food-producing animals. The study presented here went further than the statutory framework, and collected data on antimicrobials dispensed to farmers and those administered by veterinarians. Seventeen veterinary practices were enrolled in the study via convenience sampling. These veterinarians were asked to contact interested dairy farmers regarding participation in the study (respondent-driven sampling). Data were collected from veterinary practice software between 1st October 2015 and 30th September 2016. Electronic data (89.4%) were transferred via an online interface and paper records (10.6%) were entered by the authors. Antimicrobial treatments with respect to udder disease were analysed by number of defined daily doses per cow and year (nDDD vet /cow/year), based on the European Medicines Agency technical unit, Defined Daily Dose for animals (DDD vet ). Descriptive statistics and the Wilcoxon rank sum test were used to analyse the results. Antimicrobial use data from a total of 248 dairy farms were collected during the study, 232 of these farms treated cows with antibiotics; dry cow therapy was excluded from the current analysis. The mean number of DDD vet /cow/year for the antimicrobial treatment of all udder disease was 1.33 DDD vet /cow/year. Of these treatments, 0.73 DDD vet /cow/year were classed as highest priority critically important antimicrobials (HPCIAs), according to the World Health Organization (WHO) definition. The Wilcoxon rank sum test determined a statistically significant difference between the median number of DDD vet /cow/year for acute and chronic mastitis treatment ( W  = 10,734, p  < 0.001). The most commonly administered antimicrobial class for the treatment of acute mastitis was beta-lactams. Intramammary penicillin was used at a mean of 0.63 DDD vet /cow/year, followed by the third generation cephalosporin, cefoperazone, (a HPCIA) at 0.60 DDD vet /cow/year. Systemic antimicrobial treatments were used at a lower overall level than intramammary treatments for acute mastitis. This study demonstrated that Austrian dairy cows in the study population were treated with antimicrobial substances for udder diseases at a relatively low frequency, however, a substantial proportion of these treatments were with substances considered critically important for human health. While it is vital that sick cows are treated, reductions in the overall use of antimicrobials, and critically important substances in particular, are still possible.

  20. Molecular dynamics simulations of dislocations in TlBr crystals under an electrical field

    DOE PAGES

    Zhou, X. W.; Foster, M. E.; Yang, P.; ...

    2016-07-13

    TlBr crystals have superior radiation detection properties; however, their properties degrade in the range of hours to weeks when an operating electrical field is applied. To account for this rapid degradation using the widely-accepted vacancy migration mechanism, the vacancy concentration must be orders of magnitude higher than any conventional estimates. The present work has incorporated a new analytical variable charge model in molecular dynamics (MD) simulations to examine the structural changes of materials under electrical fields. Our simulations indicate that dislocations in TlBr move under electrical fields. As a result, this discovery can lead to new understanding of TlBr agingmore » mechanisms under external fields.« less

  1. Antisymmetric vortex interactions in the wake behind a step cylinder

    NASA Astrophysics Data System (ADS)

    Tian, Cai; Jiang, Fengjian; Pettersen, Bjørnar; Andersson, Helge I.

    2017-10-01

    Flow around a step cylinder at the Reynolds number 150 was simulated by directly solving the full Navier-Stokes equations. The configuration was adopted from the work of Morton and Yarusevych ["Vortex shedding in the wake of a step cylinder," Phys. Fluids 22, 083602 (2010)], in which the wake dynamics were systematically described. A more detailed investigation of the vortex dislocation process has now been performed. Two kinds of new loop vortex structures were identified. Additionally, antisymmetric vortex interactions in two adjacent vortex dislocation processes were observed and explained. The results in this letter serve as a supplement for a more thorough understanding of the vortex dynamics in the step cylinder wake.

  2. Bragg coherent diffractive imaging of single-grain defect dynamics in polycrystalline films

    NASA Astrophysics Data System (ADS)

    Yau, Allison; Cha, Wonsuk; Kanan, Matthew W.; Stephenson, G. Brian; Ulvestad, Andrew

    2017-05-01

    Polycrystalline material properties depend on the distribution and interactions of their crystalline grains. In particular, grain boundaries and defects are crucial in determining their response to external stimuli. A long-standing challenge is thus to observe individual grains, defects, and strain dynamics inside functional materials. Here we report a technique capable of revealing grain heterogeneity, including strain fields and individual dislocations, that can be used under operando conditions in reactive environments: grain Bragg coherent diffractive imaging (gBCDI). Using a polycrystalline gold thin film subjected to heating, we show how gBCDI resolves grain boundary and dislocation dynamics in individual grains in three-dimensional detail with 10-nanometer spatial and subangstrom displacement field resolution. These results pave the way for understanding polycrystalline material response under external stimuli and, ideally, engineering particular functions.

  3. Bragg coherent diffractive imaging of single-grain defect dynamics in polycrystalline films

    DOE PAGES

    Yau, Allison; Cha, Wonsuk; Kanan, Matthew W.; ...

    2017-05-19

    Polycrystalline material properties depend on the distribution and interactions of their crystalline grains. In particular, grain boundaries and defects are crucial in determining their response to external stimuli. A long-standing challenge is thus to observe individual grains, defects, and strain dynamics inside functional materials. Here we report a technique capable of revealing grain heterogeneity, including strain fields and individual dislocations, that can be used under operando conditions in reactive environments: grain Bragg coherent diffractive imaging (gBCDI). Using a polycrystalline gold thin film subjected to heating, we show how gBCDI resolves grain boundary and dislocation dynamics in individual grains in three-dimensionalmore » detail with 10-nanometer spatial and subangstrom displacement field resolution. Finally, these results pave the way for understanding polycrystalline material response under external stimuli and, ideally, engineering particular functions.« less

  4. A Dislocation Model of Seismic Wave Attenuation and Micro-creep in the Earth: Harold Jeffreys and the Rheology of the Solid Earth

    NASA Astrophysics Data System (ADS)

    Karato, S.

    A microphysical model of seismic wave attenuation is developed to provide a physical basis to interpret temperature and frequency dependence of seismic wave attenuation. The model is based on the dynamics of dislocation motion in minerals with a high Peierls stress. It is proposed that most of seismic wave attenuation occurs through the migration of geometrical kinks (micro-glide) and/or nucleation/migration of an isolated pair of kinks (Bordoni peak), whereas the long-term plastic deformation involves the continuing nucleation and migration of kinks (macro-glide). Kink migration is much easier than kink nucleation, and this provides a natural explanation for the vast difference in dislocation mobility between seismic and geological time scales. The frequency and temperature dependences of attenuation depend on the geometry and dynamics of dislocation motion both of which affect the distribution of relaxation times. The distribution of relaxation times is largely controlled by the distribution in distance between pinning points of dislocations, L, and the observed frequency dependence of Q, Q, Q ωα is shown to require a distribution function of P(L) L-m with m=4-2α The activation energy of Q-1 in minerals with a high Peierls stress corresponds to that for kink nucleation and is similar to that of long-term creep. The observed large lateral variation in Q-1 strongly suggests that the Q-1 in the mantle is frequency dependent. Micro-deformation with high dislocation mobility will (temporarily) cease when all the geometrical kinks are exhausted. For a typical dislocation density of 108 m-2, transient creep with small viscosity related to seismic wave attenuation will persist up to the strain of 10-6, thus even a small strain ( 10-6-10-4) process such as post-glacial rebound is only marginally affected by this type of anelastic relaxation. At longer time scales continuing nucleation of kinks becomes important and enables indefinitely large strain, steady-state creep, causing viscous behavior.

  5. Atomistic study of the hardening of ferritic iron by Ni-Cr decorated dislocation loops

    NASA Astrophysics Data System (ADS)

    Bonny, G.; Bakaev, A.; Terentyev, D.; Zhurkin, E.; Posselt, M.

    2018-01-01

    The exact nature of the radiation defects causing hardening in reactor structural steels consists of several components that are not yet clearly determined. While generally, the hardening is attributed to dislocation loops, voids and secondary phases (radiation-induced precipitates), recent advanced experimental and computational studies point to the importance of solute-rich clusters (SRCs). Depending on the exact composition of the steel, SRCs may contain Mn, Ni and Cu (e.g. in reactor pressure vessel steels) or Ni, Cr, Si, Mn (e.g. in high-chromium steels for generation IV and fusion applications). One of the hypotheses currently implied to explain their formation is the process of radiation-induced diffusion and segregation of these elements to small dislocation loops (heterogeneous nucleation), so that the distinction between SRCs and loops becomes somewhat blurred. In this work, we perform an atomistic study to investigate the enrichment of loops by Ni and Cr solutes and their interaction with an edge dislocation. The dislocation loops decorated with Ni and Cr solutes are obtained by Monte Carlo simulations, while the effect of solute segregation on the loop's strength and interaction mechanism is then addressed by large scale molecular dynamics simulations. The synergy of the Cr-Ni interaction and their competition to occupy positions in the dislocation loop core are specifically clarified.

  6. 78 FR 24426 - Orthopaedic and Rehabilitation Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-25

    ... application for the Kineflex/C Cervical Artificial Disc sponsored by SpinalMotion. The Kineflex/C is a metal-on-metal (cobalt chrome molybdenum alloy) cervical total disc replacement device. The Kineflex/C is... degenerative disc disease (DDD) where DDD is defined as discogenic back pain with degeneration of the disc as...

  7. Ignition of Nanocomposite Thermites by Electric Spark and Shock Wave

    DTIC Science & Technology

    2014-04-30

    Acknowledgments The research described here was based on work supported by the US Army Research Office under awards W911NG-13-0217 ( DDD ) and W911NF-12-1...0161 (ELD), and the US Defense Threat Reduc- tion Agency (DTRA) under award HDTRA1-12-1-0011 ( DDD ). William L. Shaw acknowledges support from the

  8. Medication usage in Majuro, Marshall Islands.

    PubMed

    Harding, Andrew

    2005-03-01

    To conduct a drug utilisation study to determine the top 50 drugs by prescription count, top 50 drugs by cost to government and the top 30 drugs by consumption for Majuro Atoll, Marshall Islands for the year 2003. Data was collected from the Majuro Hospital computer dispensing system. All outpatient prescriptions dispensed in the year 2003 were included. The defined daily dose (DDD) methodology was employed. Drug consumption was presented as DDD/1000 population/day. The top 5 drugs by consumption in Majuro for 2003 were glibenclamide (glyburide), enalapril, ferrous sulphate, amoxycillin and ascorbic acid. Values for the DDD/1000 population/day were on average lower than many other countries. This is the first local study of medication usage in the Marshall Islands. It provided some useful baseline data.

  9. Synthesis of C13- and N15-Labeled DNAN

    DTIC Science & Technology

    2014-07-24

    Multiplicities are described as singlet (s), doublet (d), triplet (t), quartet (q), doublet of doublets (dd), doublet of doublet of doublets ( ddd ), multiplet...dd, 4.8Hz, 2.6Hz, 1H), 8.40 ( ddd , 8.8Hz, 2.6Hz, 1.8Hz, 1H), and 7.81 (d, 8.8Hz, 1H) ppm. 13C NMR (CDCl3): δ 147.8 (dd, 18Hz, 3Hz), 146.3 (dd, 17Hz...Dinitroanisole mp: 86-88 °C 1H NMR (CDCl3): δ 8.77 (m, 4.8Hz, 2.6Hz, 1H), 8.46 ( ddd , 9.2Hz, 2.6Hz, 1.8Hz, 1H), 7.23 (d, 9.2Hz, 1H), and 4.10 (s, 3H

  10. The Effect of Reported Head Injury on Team Performance and Partner Evaluation

    DTIC Science & Technology

    2015-02-17

    4 Measures……………………………………………………………………………… 5 DDD Task…….…………………………………………………………………. 5 Evaluation survey……………………………………………………………….. 5...6 The effects of injury condition on DDD performance and evaluation......................... 7 Discussion...tables 1. Overall team DDD score and evaluation subscales as a function of injury condition….. 7 2. Correlations among the measured variables

  11. Movement of Dislocations in Quartz

    DTIC Science & Technology

    1992-04-01

    which N mdislocations are possible, it is essentially a static process. * * Pontikise recently made the point that computer molecular dynamics (MD...34 Proc. 38th ASFC pp. 42-49, 1984. [46] Vassilis Pontikis , "Defect Dynamics Revealed," Physics World, pp. 25-28, 1990. 9

  12. Dislocation Onset and Glide in Carbon Nanotubes under Torsion

    NASA Astrophysics Data System (ADS)

    Dumitrica, Traian; Zhang, Dong-Bo; James, Richard

    2009-03-01

    The torsional plastic response of carbon nanotubes is comprehensively described in the objective molecular dynamics framework [1-3]. It is shown that an (n,m) tube is prone to slip along a nearly-axial helical path, which introduces a distinct (+1,-1) change in the wrapping index. The low energy realization occurs without loss of mass, via nucleation of a 5-7-7-5 dislocation dipole, followed by a nearly-axial glide of the 5-7 dislocation. The onset of plasticity depends not only on chirality but also on handedness. For a given handedness of the applied twist, chiral tubes of opposed handedness are most susceptible to yield. A right-handed applied twist on an armchair (zig-zag) tube leads to a right- (left-) handed tube. [4pt] [1] T. Dumitrica and R.D. James, Objective Molecular Dynamics, Journal of the Mechanics and Physics of Solids 55, 2206 (2007). [0pt] [2] D.-B. Zhang, M. Hua, and T. Dumitrica, Stability of Polycrystalline and Wurtzite Si Nanowires via Symmetry-Adapted Tight-Binding Objective Molecular Dynamics, Journal of Chemical Physics 128, 084104 (2008). [0pt] [3] D.-B. Zhang and T. Dumitrica, Elasticity of Ideal Single-Walled Carbon Nanotubes via Symmetry-Adapted Tight-Binding Objective Modeling, Applied Physics Letters 93, 031919 (2008).

  13. Molecular-dynamics Simulation-based Cohesive Zone Representation of Intergranular Fracture Processes in Aluminum

    NASA Technical Reports Server (NTRS)

    Yamakov, Vesselin I.; Saether, Erik; Phillips, Dawn R.; Glaessgen, Edward H.

    2006-01-01

    A traction-displacement relationship that may be embedded into a cohesive zone model for microscale problems of intergranular fracture is extracted from atomistic molecular-dynamics simulations. A molecular-dynamics model for crack propagation under steady-state conditions is developed to analyze intergranular fracture along a flat 99 [1 1 0] symmetric tilt grain boundary in aluminum. Under hydrostatic tensile load, the simulation reveals asymmetric crack propagation in the two opposite directions along the grain boundary. In one direction, the crack propagates in a brittle manner by cleavage with very little or no dislocation emission, and in the other direction, the propagation is ductile through the mechanism of deformation twinning. This behavior is consistent with the Rice criterion for cleavage vs. dislocation blunting transition at the crack tip. The preference for twinning to dislocation slip is in agreement with the predictions of the Tadmor and Hai criterion. A comparison with finite element calculations shows that while the stress field around the brittle crack tip follows the expected elastic solution for the given boundary conditions of the model, the stress field around the twinning crack tip has a strong plastic contribution. Through the definition of a Cohesive-Zone-Volume-Element an atomistic analog to a continuum cohesive zone model element - the results from the molecular-dynamics simulation are recast to obtain an average continuum traction-displacement relationship to represent cohesive zone interaction along a characteristic length of the grain boundary interface for the cases of ductile and brittle decohesion. Keywords: Crack-tip plasticity; Cohesive zone model; Grain boundary decohesion; Intergranular fracture; Molecular-dynamics simulation

  14. Fundamental Studies of Strengthening Mechanisms in Metals Using Dislocation Dynamics

    DTIC Science & Technology

    2006-03-26

    to quantify the elastic fields of inclusion eigenstrain problems in 2D and 3D (Lerma et al. 2003). The inclusions can be of any shape or size and the... eigenstrains can be arbitrarily assigned, i.e. constant or non-constant within the inclusion. The method works well for material or field points...geometry and misfits. Recently, we have developed a new distributed-dislocation method for modeling eigenstrain problems such as gamma prime inclusions

  15. Void initiation from interfacial debonding of spherical silicon particles inside a silicon-copper nanocomposite: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Cui, Yi; Chen, Zengtao

    2017-02-01

    Silicon particles with diameters from 1.9 nm to 30 nm are embedded in a face-centered-cubic copper matrix to form nanocomposite specimens for simulation. The interfacial debonding of silicon particles from the copper matrix and the subsequent growth of nucleated voids are studied via molecular dynamics (MD). The MD results are examined from several different perspectives. The overall mechanical performance is monitored by the average stress-strain response and the accumulated porosity. The ‘relatively farthest-traveled’ atoms are identified to characterize the onset of interfacial debonding. The relative displacement field is plotted to illustrate both subsequent interfacial debonding and the growth of a nucleated void facilitated by a dislocation network. Our results indicate that the initiation of interfacial debonding is due to the accumulated surface stress if the matrix is initially dislocation-free. However, pre-existing dislocations can make a considerable difference. In either case, the dislocation emission also contributes to the subsequent debonding process. As for the size effect, the debonding of relatively larger particles causes a drop in the stress-strain curve. The volume fraction of second-phase particles is found to be more influential than the size of the simulation box on the onset of interfacial debonding. The volume fraction of second-phase particles also affects the shape of the nucleated void and, therefore, influences the stress response of the composite.

  16. Chain Ends and the Ultimate Tensile Strength of Polyethylene Fibers

    NASA Astrophysics Data System (ADS)

    O'Connor, Thomas C.; Robbins, Mark O.

    Determining the tensile yield mechanisms of oriented polymer fibers remains a challenging problem in polymer mechanics. By maximizing the alignment and crystallinity of polyethylene (PE) fibers, tensile strengths σ ~ 6 - 7 GPa have been achieved. While impressive, first-principal calculations predict carbon backbone bonds would allow strengths four times higher (σ ~ 20 GPa) before breaking. The reduction in strength is caused by crystal defects like chain ends, which allow fibers to yield by chain slip in addition to bond breaking. We use large scale molecular dynamics (MD) simulations to determine the tensile yield mechanism of orthorhombic PE crystals with finite chains spanning 102 -104 carbons in length. The yield stress σy saturates for long chains at ~ 6 . 3 GPa, agreeing well with experiments. Chains do not break but always yield by slip, after nucleation of 1D dislocations at chain ends. Dislocations are accurately described by a Frenkel-Kontorova model, parametrized by the mechanical properties of an ideal crystal. We compute a dislocation core size ξ = 25 . 24 Å and determine the high and low strain rate limits of σy. Our results suggest characterizing such 1D dislocations is an efficient method for predicting fiber strength. This research was performed within the Center for Materials in Extreme Dynamic Environments (CMEDE) under the Hopkins Extreme Materials Institute at Johns Hopkins University. Financial support was provided by Grant W911NF-12-2-0022.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulte, Kevin L.; France, Ryan M.; McMahon, William E.

    In this work we develop control over dislocation glide dynamics in Ga xIn 1-xP compositionally graded buffer layers (CGBs) through control of CuPt ordering on the group-III sublattice. The ordered structure is metastable in the bulk, so any glissile dislocation that disrupts the ordered pattern will release stored energy, and experience an increased glide force. Here we show how this connection between atomic ordering and dislocation glide force can be exploited to control the threading dislocation density (TDD) in Ga xIn 1-xP CGBs. When ordered Ga xIn 1-xP is graded from the GaAs lattice constant to InP, the order parametermore » ..eta.. decreases as x decreases, and dislocation glide switches from one set of glide planes to the other. This glide plane switch (GPS) is accompanied by the nucleation of dislocations on the new glide plane, which typically leads to increased TDD. We develop control of the GPS position within a Ga xIn 1-xP CGB through manipulation of deposition temperature, surfactant concentration, and strain-grading rate. We demonstrate a two-stage Ga xIn 1-xP CGB from GaAs to InP with sufficiently low TDD for high performance devices, such as the 4-junction inverted metamorphic multi-junction solar cell, achieved through careful control the GPS position. Here, experimental results are analyzed within the context of a model that considers the force balance on dislocations on the two competing glide planes as a function of the degree of ordering.« less

  18. Length-scale dependent mechanical properties of Al-Cu eutectic alloy: Molecular dynamics based model and its experimental verification

    NASA Astrophysics Data System (ADS)

    Tiwary, C. S.; Chakraborty, S.; Mahapatra, D. R.; Chattopadhyay, K.

    2014-05-01

    This paper attempts to gain an understanding of the effect of lamellar length scale on the mechanical properties of two-phase metal-intermetallic eutectic structure. We first develop a molecular dynamics model for the in-situ grown eutectic interface followed by a model of deformation of Al-Al2Cu lamellar eutectic. Leveraging the insights obtained from the simulation on the behaviour of dislocations at different length scales of the eutectic, we present and explain the experimental results on Al-Al2Cu eutectic with various different lamellar spacing. The physics behind the mechanism is further quantified with help of atomic level energy model for different length scale as well as different strain. An atomic level energy partitioning of the lamellae and the interface regions reveals that the energy of the lamellae core are accumulated more due to dislocations irrespective of the length-scale. Whereas the energy of the interface is accumulated more due to dislocations when the length-scale is smaller, but the trend is reversed when the length-scale is large beyond a critical size of about 80 nm.

  19. The Microstructural Evolution and Special Flow Behavior of Ti-5Al-2Sn-2Zr-4Mo-4Cr During Isothermal Compression at a Low Strain Rate

    NASA Astrophysics Data System (ADS)

    Sun, J. Z.; Li, M. Q.; Li, H.

    2017-09-01

    The microstructural evolution and special flow behavior of Ti-5Al-2Sn-2Zr-4Mo-4Cr during isothermal compression at a strain rate of 0.0001 s-1 were investigated. The dislocation climbs in elongated α grains resulted in the formation of low-angle boundaries that transform into high-angle boundaries with greater deformation, and the elongated α grains subsequently separated into homogenous globular α grains with the penetration of the β phase. The simultaneous occurrence of discontinuous dynamic recrystallization and continuous dynamic recrystallization in the primary β grains resulted in a trimode grain distribution. The β grains surrounded by dislocations presented an equilateral-hexagonal morphology, which suggests that grain boundary sliding through dislocation climbs was the main deformation mechanism. The true stress-strain curves for 1073 and 1113 K abnormally intersect at a strain of 0.35, related to the α → β phase transformation and distinct growth of the β grain size.

  20. Outpatient utilization of psychopharmaceuticals in the City of Zagreb 2001-2006.

    PubMed

    Stimac, Danijela; Culig, Josip

    2009-03-01

    A comprehensive insight into drug utilization as an economic and primarily a public health issue can only be acquired in the context of overall health state of the respective population. The objectives of the study were: 1) to determine the real outpatient utilization of psychopharmaceuticals in Zagreb, 2) to determine the psychopharmaceutical prescribing quality during the study period; and 3) to propose appropriate interventions in Zagreb on the basis of the results obtained. Data on drug utilization were obtained from all Zagreb pharmacies. The number of defined daily doses (DDD) and number of DDD per 1000 inhabitants per day (DDD/1000/day) were calculated from the number of particular drug packages. The Drug Utilization 90% (DU90%) method was used as a criterion of prescribing quality. Outpatient utilization of psychopharmaceuticals showed a declining pattern from 115.40 DDD/1000/day in 2001 to 93.15 DDD/1000/day in 2006. Anxiolytics accounted for the majority of this drug group utilization in the City of Zagreb, although the anxiolytic/antidepressant ratio decreased from 7.19 in 2001 to 3.86 in 2006. The utilization of selective serotonin reuptake inhibitors showed a 2.5-fold increase and accounted for 90% of overall antidepressant utilization. A 2.5-fold decrease was recorded in the utilization of antipsychotics, while the atypical/typical antipsychotic ratio changed from 1:2 in 2001 to 1.1:1 in 2006. Despite some improvement observed in the prescribing quality, the predominance of benzodiazepines in the utilization of psychopharmaceuticals points to the need of additional rationalization in the field.

  1. Safety of the Wearable Cardioverter Defibrillator (WCD) in Patients with Implanted Pacemakers.

    PubMed

    Schmitt, Joern; Abaci, Guezine; Johnson, Victoria; Erkapic, Damir; Gemein, Christopher; Chasan, Ritvan; Weipert, Kay; Hamm, Christian W; Klein, Helmut U

    2017-03-01

    The wearable cardioverter defibrillator (WCD) is an important approach for better risk stratification, applied to patients considered to be at high risk of sudden arrhythmic death. Patients with implanted pacemakers may also become candidates for use of the WCD. However, there is a potential risk that pacemaker signals may mislead the WCD detection algorithm and cause inappropriate WCD shock delivery. The aim of the study was to test the impact of different types of pacing, various right ventricular (RV) lead positions, and pacing modes for potential misleading of the WCD detection algorithm. Sixty patients with implanted pacemakers received the WCD for a short time and each pacing mode (AAI, VVI, and DDD) was tested for at least 30 seconds in unipolar and bipolar pacing configuration. In case of triggering the WCD detection algorithm and starting the sequence of arrhythmia alarms, shock delivery was prevented by pushing of the response buttons. In six of 60 patients (10%), continuous unipolar pacing in DDD mode triggered the WCD detection algorithm. In no patient, triggering occurred with bipolar DDD pacing, unipolar and bipolar AAI, and VVI pacing. Triggering was independent of pacing amplitude, RV pacing lead position, and pulse generator implantation site. Unipolar DDD pacing bears a high risk of false triggering of the WCD detection algorithm. Other types of unipolar pacing and all bipolar pacing modes do not seem to mislead the WCD detection algorithm. Therefore, patients with no reprogrammable unipolar DDD pacing should not become candidates for the WCD. © 2016 Wiley Periodicals, Inc.

  2. Biological Treatment Approaches for Degenerative Disk Disease: A Literature Review of In Vivo Animal and Clinical Data

    PubMed Central

    Moriguchi, Yu; Alimi, Marjan; Khair, Thamina; Manolarakis, George; Berlin, Connor; Bonassar, Lawrence J.; Härtl, Roger

    2016-01-01

    Study Design  Literature review. Objective  Degenerative disk disease (DDD) has a negative impact on quality of life and is a major cause of morbidity worldwide. There has been a growing interest in the biological repair of DDD by both researchers and clinicians alike. To generate an overview of the recent progress in reparative strategies for the treatment of DDD highlighting their promises and limitations, a comprehensive review of the current literature was performed elucidating data from in vivo animal and clinical studies. Methods  Articles and abstracts available in electronic databases of PubMed, Web of Science, and Google Scholar as of December 2014 were reviewed. Additionally, data from unpublished, ongoing clinical trials was retrieved from clinicaltrials.gov and available abstracts from research forums. Data was extracted from the most recent in vivo animal or clinical studies involving any of the following: (1) treatment with biomolecules, cells, or tissue-engineered constructs and (2) annulus fibrosus repair. Results  Seventy-five articles met the inclusion criteria for review. Among these, 17 studies involved humans; 37, small quadrupeds; and 21, large quadrupeds. Findings from all treatments employed demonstrated improvement either in regenerative capacity or in pain attenuation, with the exception of one clinical study. Conclusion  Published clinical studies on cell therapy have reported encouraging results in the treatment of DDD and resultant back pain. We expect new data to emerge in the near future as treatments for DDD continue to evolve in parallel to our greater understanding of disk health and pathology. PMID:27433434

  3. Determination of DDT and metabolites in surface water and sediment using LLE, SPE, ACE and SE.

    PubMed

    Sibali, Linda L; Okonkwo, Jonathan O; Zvinowanda, Caliphs

    2009-12-01

    Surface water and sediment samples collected from Jukskei River in South Africa, were subjected to different extraction techniques, liquid-liquid (LLE), solid-phase extraction (SPE), activated carbon extraction (ACE) and soxhlet extraction (SE) for sediment. The samples were extracted with dichloromethane, cleaned in a silica gel column and the extracts quantified using a Varian 3800 GC-ECD. The percentage recovery test for 2,4'DDT, DDE and DDD and 4,4'DDT, DDE and DDD in water ranged from 80%-96% and 76%-95% (LLE); 56%-76% and 56%-70% (SPE) and 75%-84% (ACE), respectively; while that recoveries for sediment samples varied from 65%-95% for 2,4'DDT, DDE and DDD and 80%-91% for 4,4'DDT, DDE and DDD. The high recoveries exhibited by ACE compared very well with LLE and SE. This was not the case with SPE which exhibited the lowest value of recoveries for both 2,4 and 4,4'DDD, DDE and DDT standard samples. The mean concentrations of DDT and metabolites ranged from nd-1.10 μg/L, nd-0.80 μg/L, nd-1.21 μg/L and 1.92 μg/L for LLE, SPE, ACE and SE, respectively. The total DDT (2,4' and 4,4'-DDT) in water and sediment samples ranged from 1.20-3.25 μg/L and 1.82-5.24 μg/L, respectively. The low concentrations of the DDT metabolites obtained in the present study may suggest a recent contamination of the river by DDT.

  4. The effect of different atrioventricular delays on left atrium and left atrial appendage function in patients with DDD pacemaker.

    PubMed

    Kanadaşı, Mehmet; Caylı, Murat; Sahin, Durmuş Yıldıray; Sen, Ömer; Koç, Mevlüt; Usal, Ayhan; Batur, Mustafa Kemal; Demirtaş, Mustafa

    2011-07-01

    Although it has been known that optimization of atrioventricular delay (AVD) has favorable effect on the left ventricular functions in patients with DDD pacemaker, the effect of different AVDs on left atrium (LA) and left atrial appendage (LAA) functions has not been exactly evaluated. The aim of the present study was to assess the effect of different AVDs on LA and LAA functions in DDD pacemaker implanted patients with atrioventricular block. Forty-eight patients with DDD pacemaker were enrolled into the study. Patients were divided into two groups according to the echocardiographic diastolic function: Group I (normal diastolic function) and Group II (diastolic dysfunction). LAA emptying velocity on pulsed wave Doppler and LAA late systolic wave velocity by using tissue Doppler were recorded. Patients were paced for five successive continuous pacing periods of 10 minutes duration using five selective AVDs (80-250 ms). Significant effect on LA and LAA functions has not been observed by the setting of AVD in Group I. However, when the AVD was gradually shortened form 150 ms to 80 ms, LA and LAA functions gradually decreased in Group II patients. When AVD increased to 200 ms, LA and LAA functions were improved. Further increase in AVD resulted in decreased LA and LAA functions. Setting of AVD has not significant effect on the LA and LAA functions in patients with normal diastolic function, but moderate prolongation of AVD in physiological limits improved LA and LAA functions in DDD pacemaker implanted patients with diastolic dysfunction. © 2011, Wiley Periodicals, Inc.

  5. Enantioselective induction of cytotoxicity by o,p'-DDD in PC12 cells: implications of chirality in risk assessment of POPs metabolites.

    PubMed

    Wang, Cui; Li, Zhuoyu; Zhang, Quan; Zhao, Meirong; Liu, Weiping

    2013-04-16

    The increased release of chiral persistent organic pollutants (POPs) into the environment has resulted in more attention to the role of enantioselectivity in the fate and ecotoxicological effects of these compounds. Although the enantioselectivity of chiral POPs has been considered in previous studies, little effort has been expended to discern the enantiospecific effects of chiral POPs metabolites, which may impede comprehensive risk assessments of these chemicals. In the present study, o,p'-DDD, the chiral metabolite of o,p'-DDT, was used as a model chiral metabolite. First, a preferential chiral separation at 100% ethanol was employed to obtain a pure enantiomer. The enantioselective cytotoxicity of o,p'-DDD in rat cells (PC12) was evaluated by detecting activation of the cellular apoptosis and oxidative stress systems and microarray analysis. We have documented for the first time that R-(+)-o,p'-DDD increases apoptosis by selectively disturbing the oxidative system (enzymes and molecules) and regulating the transcription of Aven, Bid, Cideb and Tp53. By comparing the data from the present study to data derived from the parent compound, we concluded that the R-enantiomer is the more detrimental stereostructure for both o,p'-DDT and o,p'-DDD. This observed stereostructural effect is in line with the structure-activity relationship formulated at other structural levels. Biological activities of the chiral metabolites are likely to occur in the same absolute configuration between chiral POPs and their metabolites provided that they have the similar stereostructures.

  6. Trends in the use of antiasthmatic medications in Morocco (1999-2010).

    PubMed

    Ghanname, Imane; Ahid, Samir; Berrada, Ghizlane; Belaiche, Abdelmjid; Hassar, Mohamed; Cherrah, Yahya

    2013-12-01

    Asthma is a big public health problem in Morocco. The drug therapy existing in Morocco is currently insufficient because of the low purchasing power and the low health insurance coverage available to the average citizen in Morocco. In this study we evaluated the consumption of antiasthmatics in Morocco during the period 1999-2010, the classes of used drugs and the generics' market share. We used sales data from the Moroccan subsidiaries of the IMS Health "Intercontinental Marketing Service". The consumption volume was converted to Defined Daily Doses (DDDs). During 1999-2010, antiasthmatics's consumption increased from 3.91 to 14.47 DDD per 1000 inhabitants per day. In 2010, the association Beta-2-mimetic-Glucocorticosteroids were the most consumed (8.53 DDD/1000 Inhabitants/day) followed by the short-acting inhaled Beta-2-mimetic (4 DDD/1000 Inhabitants/day) and inhaled Glucocorticosteroids alone accounted for 1.13 DDD/1000 Inhabitants/day. The largest consumption share in volume was held by the short-acting inhaled Beta-2-mimetic (42%) followed by the combination Beta-2-mimetic-Glucocorticosteroids (38%). Between 1999 and 2010, the market for generic antiasthmatics increased from 1.84 to 2.18 DDD/1000 Inhabitants/day. The ratio of the monthly average cost of treatment to the minimum wage in Morocco decreased from 10.8% in 1999 to 7.11% in 2010. Antiasthmatics' consumption in Morocco has undergone significant changes between 1999 and 2010. However, the availability of these drugs expressed as the Average Monthly Expenditure/Guaranteed Minimum Wage ratio improved. Despite this, the use of antiasmathics in Morocco remains low.

  7. Occurrences and fate of DDT principal isomers/metabolites, DDA, and o,p'-DDD enantiomers in fish, sediment and water at a DDT-impacted Superfund site.

    PubMed

    Garrison, A W; Cyterski, M; Roberts, K D; Burdette, D; Williamson, J; Avants, J K

    2014-11-01

    In the 1950s and 60s, discharges from a DDT manufacturing plant contaminated a tributary system of the Tennessee River near Huntsville, Alabama, USA. Regulatory action resulted in declaring the area a Superfund site which required remediation and extensive monitoring. Monitoring data collected from 1988, after remediation, through 2011 showed annual decreases approximating first-order decay in concentrations of total DDT and its six principal congeners (p,p'-DDT, o,p'-DDT, p,p'-DDD, o,p'-DDD, p,p'-DDE and o,p'-DDE) in filets from three species of fish. As of 2013, these concentrations met the regulatory requirements of 5 mg/kg or less total DDT for each fish tested. The enantiomer fractions (EF) of chiral o,p'-DDD in smallmouth buffalo and channel catfish were always below 0.5, indicating preferential decay of the (+)-enantiomer of this congener; this EF did not change significantly over 15 years. The often-neglected DDT metabolite p,p'-DDA was found at a concentration of about 20 μg/l in the ecosystem water. Published by Elsevier Ltd.

  8. Differential effect of DDT, DDE, and DDD on COX-2 expression in the human trophoblast derived HTR-8/SVneo cells.

    PubMed

    Dominguez-Lopez, Pablo; Diaz-Cueto, Laura; Olivares, Aleida; Ulloa-Aguirre, Alfredo; Arechavaleta-Velasco, Fabian

    2012-11-01

    The purpose of this study was to investigate the effect of 1,1,1-trichloro-2,2-bis-(chlorophenyl)ethane (DDT), 1,1-bis-(chlorophenyl)-2,2-dichloroethene (DDE), and 1,1-dichloro-2,2-bis(chlorophenyl)ethane (DDD) isomers on COX-2 expression in a human trophoblast-derived cell line. Cultured HTR-8/SVneo trophoblast cells were exposed to DDT isomers and its metabolites for 24 h, and COX-2 mRNA and protein expression were assessed by RT-PCR, Western blotting, and ELISA. Prostaglandin E₂ production was also measured by ELISA. Both COX-2 mRNA and protein were detected under control (unexposed) conditions in the HTR-8/SVneo cell line. COX-2 protein expression and prostaglandin E₂ production but not COX-2 mRNA levels increased only after DDE and DDD isomers exposure. It is concluded that DDE and DDD exposure induce the expression of COX-2 protein, leading to increased prostaglandin E2 production. Interestingly, the regulation of COX-2 by these organochlorines pesticides appears to be at the translational level. © 2012 Wiley Periodicals, Inc.

  9. Ferroelastic domain switching dynamics under electrical and mechanical excitations.

    PubMed

    Gao, Peng; Britson, Jason; Nelson, Christopher T; Jokisaari, Jacob R; Duan, Chen; Trassin, Morgan; Baek, Seung-Hyub; Guo, Hua; Li, Linze; Wang, Yiran; Chu, Ying-Hao; Minor, Andrew M; Eom, Chang-Beom; Ramesh, Ramamoorthy; Chen, Long-Qing; Pan, Xiaoqing

    2014-05-02

    In thin film ferroelectric devices, switching of ferroelastic domains can significantly enhance electromechanical response. Previous studies have shown disagreement regarding the mobility or immobility of ferroelastic domain walls, indicating that switching behaviour strongly depends on specific microstructures in ferroelectric systems. Here we study the switching dynamics of individual ferroelastic domains in thin Pb(Zr0.2,Ti0.8)O3 films under electrical and mechanical excitations by using in situ transmission electron microscopy and phase-field modelling. We find that ferroelastic domains can be effectively and permanently stabilized by dislocations at the substrate interface while similar domains at free surfaces without pinning dislocations can be removed by either electric or stress fields. For both electrical and mechanical switching, ferroelastic switching is found to occur most readily at the highly active needle points in ferroelastic domains. Our results provide new insights into the understanding of polarization switching dynamics as well as the engineering of ferroelectric devices.

  10. Ferroelastic domain switching dynamics under electrical and mechanical excitations

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Britson, Jason; Nelson, Christopher T.; Jokisaari, Jacob R.; Duan, Chen; Trassin, Morgan; Baek, Seung-Hyub; Guo, Hua; Li, Linze; Wang, Yiran; Chu, Ying-Hao; Minor, Andrew M.; Eom, Chang-Beom; Ramesh, Ramamoorthy; Chen, Long-Qing; Pan, Xiaoqing

    2014-05-01

    In thin film ferroelectric devices, switching of ferroelastic domains can significantly enhance electromechanical response. Previous studies have shown disagreement regarding the mobility or immobility of ferroelastic domain walls, indicating that switching behaviour strongly depends on specific microstructures in ferroelectric systems. Here we study the switching dynamics of individual ferroelastic domains in thin Pb(Zr0.2,Ti0.8)O3 films under electrical and mechanical excitations by using in situ transmission electron microscopy and phase-field modelling. We find that ferroelastic domains can be effectively and permanently stabilized by dislocations at the substrate interface while similar domains at free surfaces without pinning dislocations can be removed by either electric or stress fields. For both electrical and mechanical switching, ferroelastic switching is found to occur most readily at the highly active needle points in ferroelastic domains. Our results provide new insights into the understanding of polarization switching dynamics as well as the engineering of ferroelectric devices.

  11. A Stereo Dual-Channel Dynamic Programming Algorithm for UAV Image Stitching

    PubMed Central

    Chen, Ruizhi; Zhang, Weilong; Li, Deren; Liao, Xuan; Zhang, Peng

    2017-01-01

    Dislocation is one of the major challenges in unmanned aerial vehicle (UAV) image stitching. In this paper, we propose a new algorithm for seamlessly stitching UAV images based on a dynamic programming approach. Our solution consists of two steps: Firstly, an image matching algorithm is used to correct the images so that they are in the same coordinate system. Secondly, a new dynamic programming algorithm is developed based on the concept of a stereo dual-channel energy accumulation. A new energy aggregation and traversal strategy is adopted in our solution, which can find a more optimal seam line for image stitching. Our algorithm overcomes the theoretical limitation of the classical Duplaquet algorithm. Experiments show that the algorithm can effectively solve the dislocation problem in UAV image stitching, especially for the cases in dense urban areas. Our solution is also direction-independent, which has better adaptability and robustness for stitching images. PMID:28885547

  12. A Stereo Dual-Channel Dynamic Programming Algorithm for UAV Image Stitching.

    PubMed

    Li, Ming; Chen, Ruizhi; Zhang, Weilong; Li, Deren; Liao, Xuan; Wang, Lei; Pan, Yuanjin; Zhang, Peng

    2017-09-08

    Dislocation is one of the major challenges in unmanned aerial vehicle (UAV) image stitching. In this paper, we propose a new algorithm for seamlessly stitching UAV images based on a dynamic programming approach. Our solution consists of two steps: Firstly, an image matching algorithm is used to correct the images so that they are in the same coordinate system. Secondly, a new dynamic programming algorithm is developed based on the concept of a stereo dual-channel energy accumulation. A new energy aggregation and traversal strategy is adopted in our solution, which can find a more optimal seam line for image stitching. Our algorithm overcomes the theoretical limitation of the classical Duplaquet algorithm. Experiments show that the algorithm can effectively solve the dislocation problem in UAV image stitching, especially for the cases in dense urban areas. Our solution is also direction-independent, which has better adaptability and robustness for stitching images.

  13. The "tract" of history in the treatment of lumbar degenerative disc disease.

    PubMed

    Chedid, Khalil J; Chedid, Mokbel K

    2004-01-15

    In this paper past, present, and future treatments of degenerative disc disease (DDD) of the lumbar spine are outlined in a straight forward manner. This is done to review previous knowledge of the disease, define current treatment procedures, and discuss future perspectives. An analysis of a subject of this magnitude dictates that one describes as accurate a history as possible: an anatomical/historical "tract" with emphasis on all possible deviations. Although spinal disorders have been recognized for a long time, the view of DDD as a particular disease entity is a more recent development. In this paper, the authors attempt to outline the history of DDD of the lumbar spine in an unbiased and scientific fashion. Physiological, diagnostic, and therapeutic implications will all be addressed in this study.

  14. Molecular dynamics simulation on the elastoplastic properties of copper nanowire under torsion

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Li, Ying; Yang, Zailin; Zhang, Guowei; Wang, Xizhi; Liu, Jin

    2018-02-01

    Influences of different factors on the torsion properties of single crystal copper nanowire are studied by molecular dynamics method. The length, torsional rate, and temperature of the nanowire are discussed at the elastic-plastic critical point. According to the average potential energy curve and shear stress curve, the elastic-plastic critical angle is determined. Also, the dislocation at elastoplastic critical points is analyzed. The simulation results show that the single crystal copper nanowire can be strengthened by lengthening the model, decreasing the torsional rate, and lowering the temperature. Moreover, atoms move violently and dislocation is more likely to occur with a higher temperature. This work mainly describes the mechanical behavior of the model under different states.

  15. TEM study on relationship between stacking faults and non-basal dislocations in Mg

    NASA Astrophysics Data System (ADS)

    Zhang, Dalong; Jiang, Lin; Schoenung, Julie M.; Mahajan, Subhash; Lavernia, Enrique J.

    2015-12-01

    Recent interest in the study of stacking faults and non-basal slip in Mg alloys is partly based on the argument that these phenomena positively influence mechanical behaviour. Inspection of the published literature, however, reveals that there is a lack of fundamental information on the mechanisms that govern the formation of stacking faults, especially I1-type stacking faults (I1 faults). Moreover, controversial and sometimes contradictory mechanisms have been proposed concerning the interactions between stacking faults and dislocations. Therefore, we describe a fundamental transmission electron microscope investigation on Mg 2.5 at. % Y (Mg-2.5Y) processed via hot isostatic pressing (HIP) and extrusion at 623 K. In the as-HIPed Mg-2.5Y, many and dislocations, together with some dislocations were documented, but no stacking faults were observed. In contrast, in the as-extruded Mg-2.5Y, a relatively high density of stacking faults and some non-basal dislocations were documented. Specifically, there were three different cases for the configurations of observed stacking faults. Case (I): pure I2 faults; Case (II): mixture of I1 faults and non-basal dislocations having component, together with basal dislocations; Case (III): mixture of predominant I2 faults and rare I1 faults, together with jog-like dislocation configuration. By comparing the differences in extended defect configurations, we propose three distinct stacking fault formation mechanisms for each case in the context of slip activity and point defect generation during extrusion. Furthermore, we discuss the role of stacking faults on deformation mechanisms in the context of dynamic interactions between stacking faults and non-basal slip.

  16. Modeling dislocation generation in high pressure Czochralski growth of indium phosphide single crystals

    NASA Astrophysics Data System (ADS)

    Pendurti, Srinivas

    InP is an important material for opto-electronic and high speed electronics applications. Its main use today is as the substrate material for epitaxy to produce GaInAsP lasers. The present technology for growing bulk InP is the high pressure Czochralski process. Bulk InP grown through this technique suffers from presence of a high density of line defects or dislocations, which are produced by thermal stresses the material goes through during its growth in the high temperature furnace. Modeling of these thermal stresses and the resulting plastic deformation, giving rise to dislocation densities, entails simulation of the entire thermal history of the crystal during its growth in the furnace, and studying the deformation of the crystal through suitable visco-plastic constitutive equations. Accordingly, a suitable visco-plastic model for deformation of InP was constructed, integrated with the ABAQUS finite element code, and verified through experimental data for uniaxial constant strain rate deformation tests available in literature. This was then coupled with a computation fluid dynamics model, predicting the entire temperature history in the furnace during crystal growth, to study the plastic deformation and dislocation density evolution in the crystal during growth. Growth in a variety of conditions was simulated and those conditions that generate minimum dislocation density identified. Macroscopic controllable parameters that affect the dislocation densities the most, have also been delineated. It was found that the strength of gas convection in the Czochralski furnace has the strongest effect on the dislocation densities in the fully grown crystal. Comparison of the simulated dislocation densities on wafers, with experimentally recorded etch pit profiles on as-grown crystals was reasonable. Finally some limitations in the work are discussed and avenues for future work identified.

  17. Reduced dislocation density in Ga xIn 1–xP compositionally graded buffer layers through engineered glide plane switch

    DOE PAGES

    Schulte, Kevin L.; France, Ryan M.; McMahon, William E.; ...

    2016-11-17

    In this work we develop control over dislocation glide dynamics in Ga xIn 1-xP compositionally graded buffer layers (CGBs) through control of CuPt ordering on the group-III sublattice. The ordered structure is metastable in the bulk, so any glissile dislocation that disrupts the ordered pattern will release stored energy, and experience an increased glide force. Here we show how this connection between atomic ordering and dislocation glide force can be exploited to control the threading dislocation density (TDD) in Ga xIn 1-xP CGBs. When ordered Ga xIn 1-xP is graded from the GaAs lattice constant to InP, the order parametermore » ..eta.. decreases as x decreases, and dislocation glide switches from one set of glide planes to the other. This glide plane switch (GPS) is accompanied by the nucleation of dislocations on the new glide plane, which typically leads to increased TDD. We develop control of the GPS position within a Ga xIn 1-xP CGB through manipulation of deposition temperature, surfactant concentration, and strain-grading rate. We demonstrate a two-stage Ga xIn 1-xP CGB from GaAs to InP with sufficiently low TDD for high performance devices, such as the 4-junction inverted metamorphic multi-junction solar cell, achieved through careful control the GPS position. Here, experimental results are analyzed within the context of a model that considers the force balance on dislocations on the two competing glide planes as a function of the degree of ordering.« less

  18. Hydrogen-vacancy-dislocation interactions in α-Fe

    NASA Astrophysics Data System (ADS)

    Tehranchi, A.; Zhang, X.; Lu, G.; Curtin, W. A.

    2017-02-01

    Atomistic simulations of the interactions between dislocations, hydrogen atoms, and vacancies are studied to assess the viability of a recently proposed mechanism for the formation of nanoscale voids in Fe-based steels in the presence of hydrogen. Quantum-mechanics/molecular-mechanics method calculations confirm molecular statics simulations based on embedded atom method (EAM) potential showing that individual vacancies on the compressive side of an edge dislocation can be transported with the dislocation as it glides. Molecular dynamics simulations based on EAM potential then show, however, that vacancy clusters in the glide plane of an approaching dislocation are annihilated or reduced in size by the creation of a double-jog/climb process that is driven by the huge reduction in energy accompanying vacancy annihilation. The effectiveness of annihilation/reduction processes is not reduced by the presence of hydrogen in the vacancy clusters because typical V-H cluster binding energies are much lower than the vacancy formation energy, except at very high hydrogen content in the cluster. Analysis of a range of configurations indicates that hydrogen plays no special role in stabilizing nanovoids against jog formation processes that shrink voids. Experimental observations of nanovoids on the fracture surfaces of steels must be due to as-yet undetermined processes.

  19. From Mild to WildLV14378 Fluctuations in Crystal Plasticity

    NASA Astrophysics Data System (ADS)

    Weiss, J.; Rhouma, W. Ben; Richeton, T.; Dechanel, S.; Louchet, F.; Truskinovsky, L.

    2015-03-01

    Macroscopic crystal plasticity is classically viewed as an outcome of uncorrelated dislocation motions producing Gaussian fluctuations. An apparently conflicting picture emerged in recent years emphasizing highly correlated dislocation dynamics characterized by power-law distributed fluctuations. We use acoustic emission measurements in crystals with different symmetries to show that intermittent and continuous visions of plastic flow are not incompatible. We demonstrate the existence of crossover regimes where strongly intermittent events coexist with a Gaussian quasiequilibrium background and propose a simple theoretical framework compatible with these observations.

  20. Defect evolution in a Nisbnd Mosbnd Crsbnd Fe alloy subjected to high-dose Kr ion irradiation at elevated temperature

    NASA Astrophysics Data System (ADS)

    de los Reyes, Massey; Voskoboinikov, Roman; Kirk, Marquis A.; Huang, Hefei; Lumpkin, Greg; Bhattacharyya, Dhriti

    2016-06-01

    A candidate Nisbnd Mosbnd Crsbnd Fe alloy (GH3535) for application as a structural material in a molten salt nuclear reactor was irradiated with 1 MeV Kr2+ ions (723 K, max dose of 100 dpa) at the IVEM-Tandem facility. The evolution of defects like dislocation loops and vacancy- and self-interstitial clusters was examined in-situ. For obtaining a deeper insight into the true nature of these defects, the irradiated sample was further analysed under a TEM post-facto. The results show that there is a range of different types of defects formed under irradiation. Interaction of radiation defects with each other and with pre-existing defects, e.g., linear dislocations, leads to the formation of complex microstructures. Molecular dynamics simulations used to obtain a greater understanding of these defect transformations showed that the interaction between linear dislocations and radiation induced dislocation loops could form faulted structures that explain the fringed contrast of these defects observed in TEM.

  1. Pure climb creep mechanism drives flow in Earth’s lower mantle

    PubMed Central

    Boioli, Francesca; Carrez, Philippe; Cordier, Patrick; Devincre, Benoit; Gouriet, Karine; Hirel, Pierre; Kraych, Antoine; Ritterbex, Sebastian

    2017-01-01

    At high pressure prevailing in the lower mantle, lattice friction opposed to dislocation glide becomes very high, as reported in recent experimental and theoretical studies. We examine the consequences of this high resistance to plastic shear exhibited by ringwoodite and bridgmanite on creep mechanisms under mantle conditions. To evaluate the consequences of this effect, we model dislocation creep by dislocation dynamics. The calculation yields to an original dominant creep behavior for lower mantle silicates where strain is produced by dislocation climb, which is very different from what can be activated under high stresses under laboratory conditions. This mechanism, named pure climb creep, is grain-size–insensitive and produces no crystal preferred orientation. In comparison to the previous considered diffusion creep mechanism, it is also a more efficient strain-producing mechanism for grain sizes larger than ca. 0.1 mm. The specificities of pure climb creep well match the seismic anisotropy observed of Earth’s lower mantle. PMID:28345037

  2. Comparative CYP-dependent binding of the adrenocortical toxicants 3-methylsulfonyl-DDE and o,p'-DDD in Y-1 adrenal cells.

    PubMed

    Hermansson, Veronica; Asp, Vendela; Bergman, Ake; Bergström, Ulrika; Brandt, Ingvar

    2007-11-01

    The environmental pollutant 3-MeSO(2)-DDE [2-(3-methylsulfonyl-4-chlorophenyl)-2-(4-chlorophenyl)-1,1-dichloroethene] is an adrenocortical toxicant in mice, specifically in the glucocorticoid-producing zona fasciculata, due to a cytochrome P450 11B1 (CYP11B1)-catalysed bioactivation and formation of covalently bound protein adducts. o,p'-DDD [2-(2-chlorophenyl)-2-(4-chlorophenyl)-1,1-dichloroethane] is toxic and inhibits steroidogenesis in the human adrenal cortex after bioactivation by unidentified CYPs, but does not exert any toxic effects on the mouse adrenal. As a step towards determining in vitro/in vivo relationships for the CYP-catalysed binding and toxicity of 3-MeSO(2)-DDE and o,p'-DDD, we have investigated the irreversible protein binding of these two toxicants in the murine adrenocortical cell line Y-1. The irreversible binding of 3-MeSO(2)-DDE previously demonstrated in vivo was successfully reproduced and could be inhibited by the CYP-inhibitors etomidate, ketoconazole and metyrapone. Surprisingly, o,p'-DDD reached similar levels of binding as 3-MeSO(2)-DDE. The binding of o,p'-DDD was sensitive to etomidate and ketoconazole, but not to metyrapone. Moreover, GSH depletion increased the binding of 3-MeSO(2)-DDE, but not of o,p'-DDD, indicating an important role of GSH conjugation in the detoxification of the 3-MeSO(2)-DDE-derived reactive metabolite. In addition, the specificity of CYP11B1 in activating 3-MeSO(2)-DDE was investigated using structurally analogous compounds. None of the analogues produced histopathological lesions in the mouse adrenal in vivo following a single i.p. injection of 100 mg/kg body weight, but two of the compounds were able to decrease the irreversible binding of 3-MeSO(2)-DDE to Y-1 cells. These results indicate that the bioactivation of 3-MeSO(2)-DDE by CYP11B1 is highly structure-dependent. In conclusion, both 3-MeSO(2)-DDE and o,p'-DDD bind irreversibly to Y-1 cells despite differences in binding and adrenotoxicity in mice in vivo. This reveals a notable in vitro/in vivo discrepancy, the contributing factors of which remain unexplained. We consider the Y-1 cell line as appropriate for studies of the cellular mechanisms behind the adrenocortical toxicity of these substances.

  3. Defining the Complement Biomarker Profile of C3 Glomerulopathy

    PubMed Central

    Zhang, Yuzhou; Nester, Carla M.; Martin, Bertha; Skjoedt, Mikkel-Ole; Meyer, Nicole C.; Shao, Dingwu; Borsa, Nicolò; Palarasah, Yaseelan

    2014-01-01

    Background and objectives C3 glomerulopathy (C3G) applies to a group of renal diseases defined by a specific renal biopsy finding: a dominant pattern of C3 fragment deposition on immunofluorescence. The primary pathogenic mechanism involves abnormal control of the alternative complement pathway, although a full description of the disease spectrum remains to be determined. This study sought to validate and define the association of complement dysregulation with C3G and to determine whether specific complement pathway abnormalities could inform disease definition. Design, setting, participants, & measurements This study included 34 patients with C3G (17 with C3 glomerulonephritis [C3GN] and 17 with dense deposit disease [DDD]) diagnosed between 2008 and 2013 selected from the C3G Registry. Control samples (n=100) were recruited from regional blood drives. Nineteen complement biomarkers were assayed on all samples. Results were compared between C3G disease categories and with normal controls. Results Assessment of the alternative complement pathway showed that compared with controls, patients with C3G had lower levels of serum C3 (P<0.001 for both DDD and C3GN) and factor B (P<0.001 for both DDD and C3GN) as well as higher levels of complement breakdown products including C3d (P<0.001 for both DDD and C3GN) and Bb (P<0.001 for both DDD and C3GN). A comparison of terminal complement pathway proteins showed that although C5 levels were significantly suppressed (P<0.001 for both DDD and C3GN) its breakdown product C5a was significantly higher only in patients with C3GN (P<0.05). Of the other terminal pathway components (C6–C9), the only significant difference was in C7 levels between patients with C3GN and controls (P<0.01). Soluble C5b-9 was elevated in both diseases but only the difference between patients with C3GN and controls reached statistical significance (P<0.001). Levels of C3 nephritic factor activity were qualitatively higher in patients with DDD compared with patients with C3GN. Conclusions Complement biomarkers are significantly abnormal in patients with C3G compared with controls. These data substantiate the link between complement dysregulation and C3G and identify C3G interdisease differences. PMID:25341722

  4. A continuum dislocation dynamics framework for plasticity of polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Askari, Hesam Aldin

    The objective of this research is to investigate the mechanical response of polycrystals in different settings to identify the mechanisms that give rise to specific response observed in the deformation process. Particularly the large deformation of magnesium alloys and yield properties of copper in small scales are investigated. We develop a continuum dislocation dynamics framework based on dislocation mechanisms and interaction laws and implement this formulation in a viscoplastic self-consistent scheme to obtain the mechanical response in a polycrystalline system. The versatility of this method allows various applications in the study of problems involving large deformation, study of microstructure and its evolution, superplasticity, study of size effect in polycrystals and stochastic plasticity. The findings from the numerical solution are compared to the experimental results to validate the simulation results. We apply this framework to study the deformation mechanisms in magnesium alloys at moderate to fast strain rates and room temperature to 450 °C. Experiments for the same range of strain rates and temperatures were carried out to obtain the mechanical and material properties, and to compare with the numerical results. The numerical approach for magnesium is divided into four main steps; 1) room temperature unidirectional loading 2) high temperature deformation without grain boundary sliding 3) high temperature with grain boundary sliding mechanism 4) room temperature cyclic loading. We demonstrate the capability of our modeling approach in prediction of mechanical properties and texture evolution and discuss the improvement obtained by using the continuum dislocation dynamics method. The framework was also applied to nano-sized copper polycrystals to study the yield properties at small scales and address the observed yield scatter. By combining our developed method with a Monte Carlo simulation approach, the stochastic plasticity at small length scales was studied and the sources of the uncertainty in the polycrystalline structure are discussed. Our results suggest that the stochastic response is mainly because of a) stochastic plasticity due to dislocation substructure inside crystals and b) the microstructure of the polycrystalline material. The extent of the uncertainty is correlated to the "effective cell length" in the sampling procedure whether using simulations and experimental approach.

  5. MD modeling of screw dislocation influence upon initiation and mechanism of BCC-HCP polymorphous transition in iron

    NASA Astrophysics Data System (ADS)

    Dremov, V. V.; Ionov, G. V.; Sapozhnikov, F. A.; Smirnov, N. A.; Karavaev, A. V.; Vorobyova, M. A.; Ryzhkov, M. V.

    2015-09-01

    The present work is devoted to classical molecular dynamics investigation into microscopic mechanisms of the bcc-hcp transition in iron. The interatomic potential of EAM type used in the calculations was tested for the capability to reproduce ab initio data on energy evolution along the bcc-hcp transformation path (Burgers deformation + shuffe) and then used in the large-scale MD simulations. The large-scale simulations included constant volume deformation along the Burgers path to study the origin and nature of the plasticity, hydrostatic volume compression of defect free samples above the bcc to hcp transition threshold to observe the formation of new phase embryos, and the volume compression of samples containing screw dislocations to study the effect of the dislocations on the probability of the new phase critical embryo formation. The volume compression demonstrated high level of metastability. The transition starts at pressure much higher than the equilibrium one. Dislocations strongly affect the probability of the critical embryo formation and significantly reduce the onset pressure of transition. The dislocations affect also the resulting structure of the samples upon the transition. The formation of layered structure is typical for the samples containing the dislocations. The results of the simulations were compared with the in-situ experimental data on the mechanism of the bcc-hcp transition in iron.

  6. Harnessing atomistic simulations to predict the rate at which dislocations overcome obstacles

    NASA Astrophysics Data System (ADS)

    Saroukhani, S.; Nguyen, L. D.; Leung, K. W. K.; Singh, C. V.; Warner, D. H.

    2016-05-01

    Predicting the rate at which dislocations overcome obstacles is key to understanding the microscopic features that govern the plastic flow of modern alloys. In this spirit, the current manuscript examines the rate at which an edge dislocation overcomes an obstacle in aluminum. Predictions were made using different popular variants of Harmonic Transition State Theory (HTST) and compared to those of direct Molecular Dynamics (MD) simulations. The HTST predictions were found to be grossly inaccurate due to the large entropy barrier associated with the dislocation-obstacle interaction. Considering the importance of finite temperature effects, the utility of the Finite Temperature String (FTS) method was then explored. While this approach was found capable of identifying a prominent reaction tube, it was not capable of computing the free energy profile along the tube. Lastly, the utility of the Transition Interface Sampling (TIS) approach was explored, which does not need a free energy profile and is known to be less reliant on the choice of reaction coordinate. The TIS approach was found capable of accurately predicting the rate, relative to direct MD simulations. This finding was utilized to examine the temperature and load dependence of the dislocation-obstacle interaction in a simple periodic cell configuration. An attractive rate prediction approach combining TST and simple continuum models is identified, and the strain rate sensitivity of individual dislocation obstacle interactions is predicted.

  7. Solid phase synthesis of phosphorothioate oligonucleotides utilizing diethyldithiocarbonate disulfide (DDD) as an efficient sulfur transfer reagent.

    PubMed

    Cheruvallath, Zacharia S; Kumar, R Krishna; Rentel, Claus; Cole, Douglas L; Ravikumar, Vasulinga T

    2003-04-01

    Diethyldithiodicarbonate (DDD), a cheap and easily prepared compound, is found to be a rapid and efficient sulfurizing reagent in solid phase synthesis of phosphorothioate oligodeoxyribonucleotides via the phosphoramidite approach. Product yield and quality based on IP-LC-MS compares well with high quality oligonucleotides synthesized using phenylacetyl disulfide (PADS) which is being used for manufacture of our antisense drugs.

  8. Fusion-nonfusion hybrid construct versus anterior cervical hybrid decompression and fusion: a comparative study for 3-level cervical degenerative disc diseases.

    PubMed

    Ding, Fan; Jia, Zhiwei; Wu, Yaohong; Li, Chao; He, Qing; Ruan, Dike

    2014-11-01

    A retrospective analysis. This study aimed to compare the safety and efficacy between the fusion-nonfusion hybrid construct (HC: anterior cervical corpectomy and fusion plus artificial disc replacement, ACCF plus cADR) and anterior cervical hybrid decompression and fusion (ACHDF: anterior cervical corpectomy and fusion plus discectomy and fusion, ACCF plus ACDF) for 3-level cervical degenerative disc diseases (cDDD). The optimal anterior technique for 3-level cDDD remains uncertain. Long-segment fusion substantially induced biomechanical changes at adjacent levels, which may lead to symptomatic adjacent segment degeneration. Hybrid surgery consisting of ACDF and cADR has been reported with good results for 2-level cDDD. In this context, ACCF combining with cADR may be an alternative to ACHDF for 3-level cDDD. Between 2009 and 2012, 28 patients with 3-level cDDD who underwent HC (n=13) and ACHDF (15) were retrospectively reviewed. Clinical assessments were based on Neck Disability Index, Japanese Orthopedic Association disability scale, visual analogue scale, Japanese Orthopedic Association recovery rate, and Odom criteria. Radiological analysis included range of motion of C2-C7 and adjacent segments and cervical lordosis. Perioperative parameters, radiological adjacent-level changes, and the complications were also assessed. HC showed better Neck Disability Index improvement at 12 and 24 months, as well as Japanese Orthopedic Association and visual analogue scale improvement at 24 months postoperatively (P<0.05). HC had better outcome according to Odom criteria but not significantly (P>0.05). The range of motion of C2-C7 and adjacent segments was less compromised in HC (P<0.05). Both 2 groups showed significant lordosis recovery postoperatively (P<0.05), but no difference was found between groups (P>0.05). The incidence of adjacent-level degenerative changes and complications was higher in ACHDF but not significantly (P>0.05). HC may be an alternative to ACHDF for 3-level cDDD due to the equivalent or superior early clinical outcomes, less compromised C2-C7 range of motion, and less impact at adjacent levels. 3.

  9. Assessment of perioperative antimicrobial prophylaxis using ATC/DDD methodology.

    PubMed

    Bozkurt, Fatma; Kaya, Safak; Gulsun, Serda; Tekin, Recep; Deveci, Özcan; Dayan, Saim; Hoşoglu, Salih

    2013-12-01

    In the light of international experience and guidelines and in order to improve the quality of perioperative antimicrobial prophylaxis (PAP), various hospitals have set up their own multidisciplinary healthcare teams and have evaluated the density of PAP through close supervision and interventions. The aim of the present study was to compare the density, quality, and cost of PAP before and after an intervention implemented at our hospital in order to increase the quality of PAP. PAP was monitored using a form prepared in line with the international guidelines, which was completed by the infection control nurse under the supervision of the infectious diseases specialist. In order to reduce the frequent errors in our PAP procedures, an intervention was implemented, and the period before this intervention (January-April 2011) was compared with the post-intervention period 1 year later (January-April 2012). The density of PAP was calculated according to the Anatomical Therapeutic Chemical classification/defined daily dose (ATC/DDD) methodology. A total of 2398 patients received PAP during this period. The most frequently used antibiotic before and after the intervention was cefazolin. Its use further increased after the intervention (p<0.001). After the intervention, the ratio of the correct timing of the first antibiotic dose increased from 91.7% to 99.0% (p<0.001), while the excessively long administration of PAP was reduced from 77.0% to 44.7% (p<0.001). The ratio of full compliance with the guidelines increased from 15.5% to 40.2% (p<0.001) and the rate of surgical site infections dropped from 18.5% to 12.0%. The density of antibiotic use dropped from 305.7 DDD/100 procedures=3.1 DDD/procedure to 162.1 DDD/100 procedures=1.6 DDD/procedure. The quality of PAP may be improved through better compliance with healthcare guidelines, close supervision, and training activities. Also, surgical site infections and the cost of PAP may be reduced through more appropriate antibiotic use, thus contributing to the national healthcare budget. Copyright © 2013 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  10. Retrospective analysis of reasons for failure of DDD pacemaker implantation in patients operated on between 1993 and 2005.

    PubMed

    Lelakowski, Jacek; Majewski, Jacek; Małecka, Barbara; Bednarek, Jacek; Stypuła, Paweł; Szeglowski, Marcin

    2007-01-01

    During implantation of a DDD pacemaker the following difficulties may be encountered: venous anomalies (the absence of vessels of adequate calibre or difficulty in subclavian vein puncture), arrhythmias during implantation (episodes of atrial flutter/fibrillation while the atrial leads are being positioned), lack of mechanical stability of the electrode in the heart chamber and inability to achieve an acceptable pacing and sensing threshold during implantation. The purpose of the study was to analyse retrospectively the reasons for DDD pacemaker failure in patients operated on between 1993 and 2005. We reviewed retrospectively all implantation data from 1988 to 2005 to identify patients with primary failure of DDD pacemaker implantation. Further analysis included patients who had received a DDD pacemaker between 1993 and 2005, when this type of pacemaker made up between 9 and 40% of all pacemaker implantations. We implanted 7469 pacemakers, including 1958 (26.2%) dual-chamber pacemakers, in 783 patients with atrioventricular block (AVB), 392 with sick sinus syndrome (SSS), 450 with AVB +/- SSS and 333 with tachy-brady syndrome (TBS). The mean age of the patients was 65.5 +/- 17.3 years. DDD pacing was unsuccessful in 108 (1.4%) patients, including 32 with AVB, 22 with SSS, 16 with SSS +/- AVB and 38 with TBS. The mean age of these patients was 78.5 +/- 19.4 years. The reasons for failed implantation were venous anomalies in 12%, an arrhythmia episode in 27.8%, a high pacing threshold in the atrium in 17.6%, low atrial potential amplitude in 25.9% and lack of mechanical stability of the electrode in 16.7% of patients. The difficulties were encountered in elderly patients (p < 0.01), most frequently in patients with SSS and TBS (71). Between 2004 and 2005 venous anomalies and a high pacing threshold were the main causes of failure. Currently the main difficulties encountered during pacemaker implantation are venous anomalies and a high pacing threshold. Arrhythmia episodes, low atrial potential amplitude and lack of mechanical stability are of minor importance. Elderly patients with sick sinus syndrome and tachy-brady syndrome have the highest failure rate. (Cardiol J 2007; 14: 155-159).

  11. Modeling of dislocation channel width evolution in irradiated metals

    DOE PAGES

    Doyle, Peter J.; Benensky, Kelsa M.; Zinkle, Steven J.

    2017-11-08

    Defect-free dislocation channel formation has been reported to promote plastic instability during tensile testing via localized plastic flow, leading to a distinct loss of ductility and strain hardening in many low-temperature irradiated materials. In order to study the underlying mechanisms governing dislocation channel width and formation, the channel formation process is modeled via a simple stochastic dislocation-jog process dependent upon grain size, defect cluster density, and defect size. Dislocations traverse a field of defect clusters and jog stochastically upon defect interaction, forming channels of low defect-density. And based upon prior molecular dynamics (MD) simulations and in-situ experimental transmission electron microscopymore » (TEM) observations, each dislocation encounter with a dislocation loop or stacking fault tetrahedron (SFT) is assumed to cause complete absorption of the defect cluster, prompting the dislocation to jog up or down by a distance equal to half the defect cluster diameter. Channels are predicted to form rapidly and are comparable to reported TEM measurements for many materials. Predicted channel widths are found to be most strongly dependent on mean defect size and correlated well with a power law dependence on defect diameter and density, and distance from the dislocation source. Due to the dependence of modeled channel width on defect diameter and density, maximum channel width is predicted to slowly increase as accumulated dose increases. The relatively weak predicted dependence of channel formation width with distance, in accordance with a diffusion analogy, implies that after only a few microns from the source, most channels observed via TEM analyses may not appear to vary with distance because of limitations in the field-of-view to a few microns. Furthermore, examinations of the effect of the so-called “source-broadening” mechanism of channel formation showed that its effect is simply to add a minimum thickness to the channel without affecting channel dependence on the given parameters.« less

  12. Modeling of dislocation channel width evolution in irradiated metals

    NASA Astrophysics Data System (ADS)

    Doyle, Peter J.; Benensky, Kelsa M.; Zinkle, Steven J.

    2018-02-01

    Defect-free dislocation channel formation has been reported to promote plastic instability during tensile testing via localized plastic flow, leading to a distinct loss of ductility and strain hardening in many low-temperature irradiated materials. In order to study the underlying mechanisms governing dislocation channel width and formation, the channel formation process is modeled via a simple stochastic dislocation-jog process dependent upon grain size, defect cluster density, and defect size. Dislocations traverse a field of defect clusters and jog stochastically upon defect interaction, forming channels of low defect-density. Based upon prior molecular dynamics (MD) simulations and in-situ experimental transmission electron microscopy (TEM) observations, each dislocation encounter with a dislocation loop or stacking fault tetrahedron (SFT) is assumed to cause complete absorption of the defect cluster, prompting the dislocation to jog up or down by a distance equal to half the defect cluster diameter. Channels are predicted to form rapidly and are comparable to reported TEM measurements for many materials. Predicted channel widths are found to be most strongly dependent on mean defect size and correlated well with a power law dependence on defect diameter and density, and distance from the dislocation source. Due to the dependence of modeled channel width on defect diameter and density, maximum channel width is predicted to slowly increase as accumulated dose increases. The relatively weak predicted dependence of channel formation width with distance, in accordance with a diffusion analogy, implies that after only a few microns from the source, most channels observed via TEM analyses may not appear to vary with distance because of limitations in the field-of-view to a few microns. Further, examinations of the effect of the so-called "source-broadening" mechanism of channel formation showed that its effect is simply to add a minimum thickness to the channel without affecting channel dependence on the given parameters.

  13. Modeling of dislocation channel width evolution in irradiated metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doyle, Peter J.; Benensky, Kelsa M.; Zinkle, Steven J.

    Defect-free dislocation channel formation has been reported to promote plastic instability during tensile testing via localized plastic flow, leading to a distinct loss of ductility and strain hardening in many low-temperature irradiated materials. In order to study the underlying mechanisms governing dislocation channel width and formation, the channel formation process is modeled via a simple stochastic dislocation-jog process dependent upon grain size, defect cluster density, and defect size. Dislocations traverse a field of defect clusters and jog stochastically upon defect interaction, forming channels of low defect-density. And based upon prior molecular dynamics (MD) simulations and in-situ experimental transmission electron microscopymore » (TEM) observations, each dislocation encounter with a dislocation loop or stacking fault tetrahedron (SFT) is assumed to cause complete absorption of the defect cluster, prompting the dislocation to jog up or down by a distance equal to half the defect cluster diameter. Channels are predicted to form rapidly and are comparable to reported TEM measurements for many materials. Predicted channel widths are found to be most strongly dependent on mean defect size and correlated well with a power law dependence on defect diameter and density, and distance from the dislocation source. Due to the dependence of modeled channel width on defect diameter and density, maximum channel width is predicted to slowly increase as accumulated dose increases. The relatively weak predicted dependence of channel formation width with distance, in accordance with a diffusion analogy, implies that after only a few microns from the source, most channels observed via TEM analyses may not appear to vary with distance because of limitations in the field-of-view to a few microns. Furthermore, examinations of the effect of the so-called “source-broadening” mechanism of channel formation showed that its effect is simply to add a minimum thickness to the channel without affecting channel dependence on the given parameters.« less

  14. Real-time display of flow-pressure-volume loops.

    PubMed

    Morozoff, P E; Evans, R W

    1992-01-01

    Graphic display of respiratory waveforms can be valuable for monitoring the progress of ventilated patients. A system has been developed that can display flow-pressure-volume loops as derived from a patient's respiratory circuit in real time. It can also display, store, print, and retrieve ventilatory waveforms. Five loops can be displayed at once: current, previous, reference, "ideal," and previously saved. Two components, the data-display device (DDD) and the data-collection device (DCD), comprise the system. An IBM 286/386 computer with a graphics card (VGA) and bidirectional parallel port is used for the DDD; an eight-bit microprocessor card and an A/D convertor card make up the DCD. A real-time multitasking operating system was written to control the DDD, while the DCD operates from in-line assembly code. The DCD samples the pressure and flow sensors at 100 Hz and looks for a complete flow waveform pattern based on flow slope. These waveforms are then passed to the DDD via the mutual parallel port. Within the DDD a process integrates the flow to create a volume signal and performs a multilinear regression on the pressure, flow, and volume data to calculate the elastance, resistance, pressure offset, and coefficient of determination. Elastance, resistance, and offset are used to calculate Pr and Pc where: Pr[k] = P[k]-offset-(elastance.V[k]) and Pc[k] = P[k]-offset-(resistance.F[k]). Volume vs. Pc and flow vs. Pr can be displayed in real time. Patient data from previous clinical tests were loaded into the device to verify the software calculations. An analog waveform generator was used to simulate flow and pressure waveforms that validated the system.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Comparison of Psychotropic Drug Prescribing Quality between Zagreb, Croatia and Sarajevo, B&H.

    PubMed

    Polić-Vižintin, Marina; Štimac, Danijela; Čatić, Tarik; Šostar, Zvonimir; Zelić, Ana; Živković, Krešimir; Draganić, Pero

    2014-12-01

    The purpose of this paper was to compare outpatient consumption and quality of psychotropic drug prescribing between Croatia and Bosnia & Herzegovina 2006-2010. Data on drug utilization from Zagreb Municipal Pharmacy and Sarajevo Public Pharmacy were used to calculate the number of defined daily doses (DDD) and DDD per 1000 inhabitants per day (DDD/TID) using the WHO Anatomical-Therapeutic-Chemical methodology. Total utilization of psychopharmaceuticals increased in both cities; however, it was higher in Zagreb than in Sarajevo throughout the study period. The utilization of psycholeptics increased in Zagreb by 2.4% (from 74.5 to 76.3 DDD/TID) and in Sarajevo by 3.8% (from 62.4 to 64.8 DDD/TID). The utilization of anxiolytics decreased in Zagreb by 2.1% and in Sarajevo by even 18.7%. The utilization of antidepressants increased in both cities with predominance of SSRI over TCA utilization, greater in Sarajevo (96.6%) than in Zagreb (10.2%). The anxiolytic/antidepressant ratio decreased by 11.1% in Zagreb (from 2.87 to 2.55) and by 58.7% in Sarajevo (from 5.66 to 2.34). Outpatient utilization of antipsychotics increased significantly in Sarajevo, predominated by typical ones, whereas in Zagreb the utilization of antipsychotics was stable, predominated by atypical ones. In Croatia and Bosnia & Herzegovina, there was an obvious tendency to follow western trends in drug prescribing, as demonstrated by the increased use of antidepressants and reduced use of anxiolytics. Despite some improvement observed in the prescribing quality, high use of antipsychotics with dominance of typical antipsychotics in Sarajevo points to the need of prescribing guidelines for antipsychotics.

  16. An Overview of Starfish: A Table-Centric Tool for Interactive Synthesis

    NASA Technical Reports Server (NTRS)

    Tsow, Alex

    2008-01-01

    Engineering is an interactive process that requires intelligent interaction at many levels. My thesis [1] advances an engineering discipline for high-level synthesis and architectural decomposition that integrates perspicuous representation, designer interaction, and mathematical rigor. Starfish, the software prototype for the design method, implements a table-centric transformation system for reorganizing control-dominated system expressions into high-level architectures. Based on the digital design derivation (DDD) system a designer-guided synthesis technique that applies correctness preserving transformations to synchronous data flow specifications expressed as co- recursive stream equations Starfish enhances user interaction and extends the reachable design space by incorporating four innovations: behavior tables, serialization tables, data refinement, and operator retiming. Behavior tables express systems of co-recursive stream equations as a table of guarded signal updates. Developers and users of the DDD system used manually constructed behavior tables to help them decide which transformations to apply and how to specify them. These design exercises produced several formally constructed hardware implementations: the FM9001 microprocessor, an SECD machine for evaluating LISP, and the SchemEngine, garbage collected machine for interpreting a byte-code representation of compiled Scheme programs. Bose and Tuna, two of DDD s developers, have subsequently commercialized the design derivation methodology at Derivation Systems, Inc. (DSI). DSI has formally derived and validated PCI bus interfaces and a Java byte-code processor; they further executed a contract to prototype SPIDER-NASA's ultra-reliable communications bus. To date, most derivations from DDD and DRS have targeted hardware due to its synchronous design paradigm. However, Starfish expressions are independent of the synchronization mechanism; there is no commitment to hardware or globally broadcast clocks. Though software back-ends for design derivation are limited to the DDD stream-interpreter, targeting synchronous or real-time software is not substantively different from targeting hardware.

  17. Biotransformation of dichlorodiphenyltrichloroethane in the benthic polychaete, Nereis succinea: quantitative estimation by analyzing the partitioning of chemicals between gut fluid and lipid.

    PubMed

    Wang, Fei; Pei, Yuan-yuan; You, Jing

    2015-02-01

    Biotransformation plays an important role in the bioaccumulation and toxicity of a chemical in biota. Dichlorodiphenyltrichloroethane (DDT) commonly co-occurs with its metabolites (dichlorodiphenyldichloroethane [DDD] and dichlorodiphenyldichloroethylene [DDE]), in the environment; thus it is a challenge to accurately quantify the biotransformation rates of DDT and distinguish the sources of the accumulated metabolites in an organism. The present study describes a method developed to quantitatively analyze the biotransformation of p,p'-DDT in the benthic polychaete, Nereis succinea. The lugworms were exposed to sediments spiked with DDT at various concentrations for 28 d. Degradation of DDT to DDD and DDE occurred in sediments during the aging period, and approximately two-thirds of the DDT remained in the sediment. To calculate the biotransformation rates, residues of individual compounds measured in the bioaccumulation testing (after biotransformation) were compared with residues predicted by analyzing the partitioning of the parent and metabolite compounds between gut fluid and tissue lipid (before biotransformation). The results suggest that sediment ingestion rates decreased when DDT concentrations in sediment increased. Extensive biotransformation of DDT occurred in N. succinea, with 86% of DDT being metabolized to DDD and <2% being transformed to DDE. Of the DDD that accumulated in the lugworms, approximately 70% was the result of DDT biotransformation, and the remaining 30% was from direct uptake of sediment-associated DDD. In addition, the biotransformation was not dependent on bulk sediment concentrations, but rather on bioaccessible concentrations of the chemicals in sediment, which were quantified by gut fluid extraction. The newly established method improved the accuracy of prediction of the bioaccumulation and toxicity of DDTs. © 2014 SETAC.

  18. Quantitative trait loci that control plasma lipid levels in an F2 intercross between C57BL/6J and DDD.Cg-A(y) inbred mouse strains.

    PubMed

    Suto, Jun-ichi

    2012-04-01

    The objectives of this study were to characterize plasma lipid phenotypes and dissect the genetic basis of plasma lipid levels in an obese DDD.Cg-A(y) mouse strain. Plasma triglyceride (TG) levels were significantly higher in the DDD.Cg-A(y) strain than in the B6.Cg-A(y) strain. In contrast, plasma total-cholesterol (CHO) levels did not substantially differ between the two strains. As a rule, the A(y) allele significantly increased TG levels, but did not increase CHO levels. Quantitative trait locus (QTL) analyses for plasma TG and CHO levels were performed in two types of F(2) female mice [F(2)A(y) (F(2) mice carrying the A(y) allele) and F(2) non- A(y) mice (F(2) mice without the A(y) allele)] produced by crossing C57BL/6J females and DDD.Cg-A(y) males. Single QTL scan identified one significant QTL for TG levels on chromosome 1, and two significant QTLs for CHO levels on chromosomes 1 and 8. When the marker nearest to the QTL on chromosome 1 was used as covariates, four additional significant QTLs for CHO levels were identified on chromosomes 5, 6, and 17 (two loci). In contrast, consideration of the agouti locus genotype as covariates did not detect additional QTLs. DDD.Cg-A(y) showed a low CHO level, although it had Apoa2(b), which was a CHO-increasing allele at the Apoa2 locus. This may have been partly due to the presence of multiple QTLs, which were associated with decreased CHO levels, on chromosome 8.

  19. Use of the p,p'-DDD: p,p'-DDE concentration ratio to trace contaminant migration from a hazardous waste site.

    PubMed

    Pinkney, Alfred E; McGowan, Peter C

    2006-09-01

    For approximately 50 years, beginning in the 1920s, hazardous wastes were disposed in an 11-hectare area of the Marine Corps Base (MCB) Quantico, Virginia, USA known as the Old Landfill. Polychlorinated biphenyls (PCBs) and DDT compounds were the primary contaminants of concern. These contaminants migrated into the sediments of a 78-hectare area of the Potomac River, the Quantico Embayment. Fish tissue contamination resulted in the MCB posting signs along the embayment shoreline warning fishermen to avoid consumption. In this paper, we interpret total PCB (t-PCBs) and total DDT (t-DDT, sum of six DDT, DDD, and DDE isomers) data from monitoring studies. We use the ratio of p,p'-DDD to p,p'-DDE concentrations as a tracer to distinguish site-related from regional contamination. The median DDD/DDE ratio in Quantico Embayment sediments (3.5) was significantly higher than the median ratio (0.71) in sediments from nearby Powells Creek, used as a reference area. In general, t-PCBs and t-DDT concentrations were significantly higher in killifish (Fundulus diaphanus) and carp (Cyprinus carpio) from the Quantico Embayment compared with Powells Creek. For both species, Quantico Embayment fish had mean or median DDD/DDE ratios greater than one. Median ratios were significantly higher in Quantico Embayment (4.6) than Powells Creek (0.28) whole body carp. In contrast, t-PCBs and t-DDT in channel catfish (Ictalurus punctatus) fillets were similar in Quantico Embayment and Powells Creek collections, with median ratios of 0.34 and 0.26, respectively. Differences between species may be attributable to movement (carp and killifish being more localized) and feeding patterns (carp ingesting sediment while feeding). We recommend that environmental scientists use this ratio when investigating sites with DDT contamination.

  20. Organochlorine pesticide residues in bed sediments of the San Joaquin River and its tributary streams, California

    USGS Publications Warehouse

    Gilliom, R.J.; Clifton, D.G.

    1987-01-01

    The distribution and concentrations of organochlorine pesticide residues in bed sediments were assessed from samples collected at 24 sites in the San Joaquin River and its tributaries in the San Joaquin Valley, California. Sampling was designed to collect the finest grained bed sediments present in the vicinity of each site. One or more of the 14 pesticides analyzed were detected at every site. Pesticides detected at one or more sites were chlordane, DDD, DDE, DDT, dieldrin, endosulfan, mirex, and toxaphene. Pesticides not detected were endrin, heptachlor, heptachlor epoxide, lindane, methoxychlor, and perthane. The most frequently detected pesticides were DDD (83% of sites), DDE (all sites), DDT (33% of sites), and dieldrin (58% of sites). Maximum concentrations of these pesticides, which were correlated with each other and with the amount of organic carbon in the sample, were DDD, 260 micrograms/kg; DDE, 430 micrograms/kg; DDT, 420 micrograms/kg; and dieldrin, 8.9 micrograms/kg. Six small tributary streams that drain agricultural areas west of the San Joaquin River had the highest concentrations. Water concentrations and loads were estimated for each pesticide from its concentration in bed sediments, the concentration of suspended sediment, and streamflow. Estimated loadings of DDD, DDE, DDT, and dieldrin from tributaries to the San Joaquin River indicate that most of the loading to the river at the time of the study was probably from the westside tributaries. Estimated water concentrations exceeded the aquatic life criterion for the sum of DDD, DDE, and DDt of 0.001 microgram/L at nine of the 24 sites sampled. Five of the nine sites are westside tributaries and one is the San Joaquin River near Vernalis. (Author 's abstract)

  1. [Atrial fibrillation before and after pacemaker implantation (WI and DDD) in patients with complete atrioventricular block].

    PubMed

    Matusik, Paweł; Woznica, Natalia; Lelakowsk, Jacek

    2010-05-01

    Atrial fibrillation (AF) is a frequent problem of patients with pacemakers, and depends not only on disease but also on stimulation method. The aim of the study was to estimate the prevalence of AF before and after pacemaker implantation as well as to assess the influence of VVI and DDD cardiac pacing on onset of AF in patients with complete atrioventricularblock (AVB). We included 155 patients controlled between 2000 and 2008 in Pacemaker Clinic because of AVB III degree, treated with VVI or DDD pacemaker implantation. Information about the health status of the patients was gathered from medical documentation and analysis of clinical ambulatory electrocardiograms. The study group comprised of 68 women and 87 men, mean age 68.7 +/- 13.9 years during implantation. 69% of patients had VVI pacemaker. There were 72.3% of patients with sinus rhythm before pacemaker implantation. During follow-up 4 +/- 2.8 years in 19.6% cases onset of atrial fibrillation de novo was diagnosed (in 31.3% in VVI mode vs. 2.2% in DDD mode; p = 0.00014). Mean time to AF since implantation was approximately 2.5 years. In VVI group (21 persons) amounted 32.1 months, while in 1 patient with DDD pacemaker 18 months. Between group with AF after implantation and with sinus rhythm preserved there was no statistically significant difference in age or gender (p = 0.89512 and p = 0.1253, respectively). Prevalence of atrial fibrillation after pacemaker implantation increased to 40%. Atrial fibrillation is frequent in patients before and after pacemaker implantation, especially in patients stimulated in VVI mode. Major possibility of atrial fibrillation onset after pacemaker implantation should result in more attention during routine ECG examination.

  2. [Accumulation and degradation of organochorine pesticides in shellfish culture environment in Xiamen sea area].

    PubMed

    Zhong, Shuo-liang; Dong, Li-ming

    2011-09-01

    By using GC-ECD, the concentrations of organochlorine pesticides hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethane (DDT) in the shellfish culture environment (sea water, sediments, and culture-shellfishes) in Xiamen sea area were analyzed, and the accumulation and degradation patterns of the HCH and DDT were preliminarily approached. In the sea area, there existed remarkable differences in the accumulation and degradation of HCH and DDT among different shellfish culture environments, being mostly associated with the habitation environment and physiological life habits of shellfish. The accumulated HCH isomers (Rx > 1) were mainly beta-HCH, delta-HCH, and gamma-HCH, whereas the degraded HCH isomers (Rx < 1) were mainly alpha-HCH. The ratio of alpha-HCH to gamma-HCH was less than or equal to 1.0, suggesting that the HCH was come from industrial HCH and lindane, most of the HCH had remained in the culture environment for a longer time, and a small amount of lindane was imported. The DDT in the sea water was aerobically degraded, its main degradation product was DDE, and the ratios of (DDD+DDE) to DDTs (p,p-DDE+p,p-DDD+o,p-DDT+p,p-DDT) was less than 0.5, whereas the DDT in sediments and shellfishes was anaerobically degraded, its main degradation product was DDD, and the ratios of (DDD+DDE) to DDTs was greater than 0.5, suggesting that there was a small amount of DDT newly imported in the sea water, and most DDT in sediments and shellfishes were already degraded and transformed into DDD and DDE. There were definite differences in the degradation rates of HCH isomers in the culture environment, suggesting the conformational change of HCH in its transformation processes in the shellfish culture ecosystem.

  3. Cardiac pacing for severe childhood neurally mediated syncope with reflex anoxic seizures

    PubMed Central

    McLeod, K; Wilson, N; Hewitt, J; Norrie, J; Stephenson, J

    1999-01-01

    OBJECTIVE—To determine whether permanent cardiac pacing could prevent syncope and seizures in children with frequent severe neurally mediated syncope, and if so whether dual chamber pacing was superior to single chamber ventricular pacing.
METHODS—Dual chamber pacemakers were implanted into 12 children (eight male, four female) aged 2-14 years (median 2.8 years) with frequent episodes of reflex anoxic seizures and a recorded prolonged asystole during an attack. The pacemaker was programmed to sensing only (ODO), single chamber ventricular pacing with hysteresis (VVI), and dual chamber pacing with rate drop response (DDD) for four month periods, with each patient allocated to one of the six possible sequences of these modes, according to chronological order of pacemaker implantation. The parent and patient were blinded to the pacemaker mode and asked to record all episodes of syncope or presyncope ("near miss" events). The doctor analysing the results was blinded to the patient and pacemaker mode.
RESULTS—One patient was withdrawn from the study after the pacemaker was removed because of infection. In the remaining children, both dual chamber and single chamber pacing significantly reduced the number of syncopal episodes compared with sensing only (p = 0.0078 for both). VVI was as effective as DDD for preventing syncope, but DDD was superior to VVI in reducing near miss events (p = 0.016).
CONCLUSIONS—Permanent pacing is an effective treatment for children with severe neurally mediated syncope and reflex anoxic seizures. VVI is as effective as DDD in preventing syncope and seizures, but DDD is superior in preventing overall symptoms.


Keywords: syncope; reflex anoxic seizures; pacing; paediatric cardiology PMID:10573501

  4. Size effects on plasticity and fatigue microstructure evolution in FCC single crystals

    NASA Astrophysics Data System (ADS)

    El-Awady, Jaafar Abbas

    In aircraft structures and engines, fatigue damage is manifest in the progressive emergence of distributed surface cracks near locations of high stress concentrations. At the present time, reliable methods for prediction of fatigue crack initiation are not available, because the phenomenon starts at the atomic scale. Initiation of fatigue cracks is associated with the formation of Persistent slip bands (PSBs), which start at certain critical conditions inside metals with specific microstructure dimensions. The main objective of this research is to develop predictive computational capabilities for plasticity and fatigue damage evolution in finite volumes. In that attempt, a dislocation dynamics model that incorporates the influence of free and internal interfaces on dislocation motion is presented. The model is based on a self-consistent formulation of 3-D Parametric Dislocation Dynamics (PDD) with the Boundary Element method (BEM) to describe dislocation motion, and hence microscopic plastic flow in finite volumes. The developed computer models are bench-marked by detailed comparisons with the experimental data, developed at the Wright-Patterson Air Force Lab (WP-AFRL), by three dimensional large scale simulations of compression loading on micro-scale samples of FCC single crystals. These simulation results provide an understanding of plastic deformation of micron-size single crystals. The plastic flow characteristics as well as the stress-strain behavior of simulated micropillars are shown to be in general agreement with experimental observations. New size scaling aspects of plastic flow and work-hardening are identified through the use of these simulations. The flow strength versus the diameter of the micropillar follows a power law with an exponent equal to -0.69. A stronger correlation is observed between the flow strength and the average length of activated dislocation sources. This relationship is again a power law, with an exponent -0.85. Simulation results with and without the activation of cross-slip are compared. Discontinuous hardening is observed when cross-slip is included. Experimentally-observed size effects on plastic flow and work- hardening are consistent with a "weakest-link activation mechanism". In addition, the variations and periodicity of dislocation activation are analyzed using the Fast Fourier Transform (FFT). We then present models of localized plastic deformation inside Persistent Slip Band channels. We investigate the interaction between screw dislocations as they pass one another inside channel walls in copper. The model shows the mechanisms of dislocation bowing, dipole formation and binding, and dipole destruction as screw dislocations pass one another. The mechanism of (dipole passing) is assessed and interpreted in terms of the fatigue saturation stress. We also present results for the effects of the wall dipole structure on the dipole passing mechanism. The edge dislocation dipolar walls is seen to have an effect on the passing stress as well. It is shown that the passing stress in the middle of the channel is reduced by 11 to 23% depending on the initial configuration of the screw dislocations with respect to one another. Finally, from large scale simulations of the expansion process of the edge dipoles from the walls in the channel the screw dislocations in the PSB channels may not meet "symmetrically", i.e. precisely in the center of the channel but preferably a little on one or the other side. For this configuration the passing stress will be lowered which is in agreement to experimental observations.

  5. Unified Static and Dynamic Recrystallization Model for the Minerals of Earth's Mantle Using Internal State Variable Model

    NASA Astrophysics Data System (ADS)

    Cho, H. E.; Horstemeyer, M. F.; Baumgardner, J. R.

    2017-12-01

    In this study, we present an internal state variable (ISV) constitutive model developed to model static and dynamic recrystallization and grain size progression in a unified manner. This method accurately captures temperature, pressure and strain rate effect on the recrystallization and grain size. Because this ISV approach treats dislocation density, volume fraction of recrystallization and grain size as internal variables, this model can simultaneously track their history during the deformation with unprecedented realism. Based on this deformation history, this method can capture realistic mechanical properties such as stress-strain behavior in the relationship of microstructure-mechanical property. Also, both the transient grain size during the deformation and the steady-state grain size of dynamic recrystallization can be predicted from the history variable of recrystallization volume fraction. Furthermore, because this model has a capability to simultaneously handle plasticity and creep behaviors (unified creep-plasticity), the mechanisms (static recovery (or diffusion creep), dynamic recovery (or dislocation creep) and hardening) related to dislocation dynamics can also be captured. To model these comprehensive mechanical behaviors, the mathematical formulation of this model includes elasticity to evaluate yield stress, work hardening in treating plasticity, creep, as well as the unified recrystallization and grain size progression. Because pressure sensitivity is especially important for the mantle minerals, we developed a yield function combining Drucker-Prager shear failure and von Mises yield surfaces to model the pressure dependent yield stress, while using pressure dependent work hardening and creep terms. Using these formulations, we calibrated against experimental data of the minerals acquired from the literature. Additionally, we also calibrated experimental data for metals to show the general applicability of our model. Understanding of realistic mantle dynamics can only be acquired once the various deformation regimes and mechanisms are comprehensively modeled. The results of this study demonstrate that this ISV model is a good modeling candidate to help reveal the realistic dynamics of the Earth's mantle.

  6. Investigation of Strain-Relaxation Characteristics of Nitrides Grown on Si(110) by Metalorganic Chemical Vapor Deposition Using X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Jiang, Quanzhong; Lewins, Christopher J.; Allsopp, Duncan W. E.; Bowen, Chris R.; Wang, Wang N.

    2013-08-01

    This paper describes the effect of an interfacial biaxial stress field on the dislocation formation dynamics during epitaxial growth of nitrides on Si(110). The anisotropic mismatch stress between a 2-fold symmetry Si(110) atomic plane and the AlN basal plane of 6-fold symmetry may be relaxed through the creation of additional characteristic dislocations, as proposed by Ruiz-Zepeda et al. with Burgers vectors: b= 1/2[bar 2110] and b= [1bar 210], +/-60° from [11bar 20]. The dislocations generated under such a biaxial stress field appear annihilating more efficiently with increasing thickness, leading to high-quality nitride epilayers on Si(110) for improved quantum efficiency of InGaN/GaN quantum wells.

  7. Edge facet dynamics during the growth of heavily doped n-type silicon by the Czochralski-method

    NASA Astrophysics Data System (ADS)

    Stockmeier, L.; Kranert, C.; Raming, G.; Miller, A.; Reimann, C.; Rudolph, P.; Friedrich, J.

    2018-06-01

    During the growth of [0 0 1]-oriented, heavily n-type doped silicon crystals by the Czochralski (CZ) method dislocation formation occurs frequently which leads to a reduction of the crystal yield. In this publication the evolution of the solid-liquid interface and the formation of the {1 1 1} edge facets are analyzed on a microscopic scale as possible reason for dislocation formation in heavily n-type doped [0 0 1]-oriented CZ crystals. A correlation between the length of the {1 1 1} edge facets and the curvature of the interface is found. They ultimately promote supercooled areas and interrupted growth kinetics, which increase the probability for dislocation formation at the boundary between the {1 1 1} edge facets and the atomically rough interface.

  8. Substituent effects in double-helical hydrogen-bonded AAA-DDD complexes.

    PubMed

    Wang, Hong-Bo; Mudraboyina, Bhanu P; Wisner, James A

    2012-01-27

    Two series of DDD and AAA hydrogen-bond arrays were synthesized that form triply-hydrogen-bonded double-helical complexes when combined in CDCl(3) solution. Derivatization of the DDD arrays with electron-withdrawing groups increases the complex association constants by up to a factor of 30 in those arrays examined. Derivatization of the AAA arrays with electron donating substituents reveals a similar magnitude effect on the complex stabilities. The effect of substitution on both types of arrays are modeled quite satisfactorily (R(2) > 0.96 in all cases) as free energy relationships with respect to the sums of their Hammett substituent constants. In all, the complex stabilities can be manipulated over more than three orders of magnitude (>20 kJ mol(-1)) using this type of modification. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. In situ atomic scale mechanical microscopy discovering the atomistic mechanisms of plasticity in nano-single crystals and grain rotation in polycrystalline metals.

    PubMed

    Han, Xiaodong; Wang, Lihua; Yue, Yonghai; Zhang, Ze

    2015-04-01

    In this review, we briefly introduce our in situ atomic-scale mechanical experimental technique (ASMET) for transmission electron microscopy (TEM), which can observe the atomic-scale deformation dynamics of materials. This in situ mechanical testing technique allows the deformation of TEM samples through a simultaneous double-tilt function, making atomic-scale mechanical microscopy feasible. This methodology is generally applicable to thin films, nanowires (NWs), tubes and regular TEM samples to allow investigation of the dynamics of mechanically stressed samples at the atomic scale. We show several examples of this technique applied to Pt and Cu single/polycrystalline specimens. The in situ atomic-scale observation revealed that when the feature size of these materials approaches the nano-scale, they often exhibit "unusual" deformation behaviours compared to their bulk counterparts. For example, in Cu single-crystalline NWs, the elastic-plastic transition is size-dependent. An ultra-large elastic strain of 7.2%, which approaches the theoretical elasticity limit, can be achieved as the diameter of the NWs decreases to ∼6 nm. The crossover plasticity transition from full dislocations to partial dislocations and twins was also discovered as the diameter of the single-crystalline Cu NWs decreased. For Pt nanocrystals (NC), the long-standing uncertainties of atomic-scale plastic deformation mechanisms in NC materials (grain size G less than 15 nm) were clarified. For larger grains with G<∼10 nm, we frequently observed movements and interactions of cross-grain full dislocations. For G between 6 and 10 nm, stacking faults resulting from partial dislocations become more frequent. For G<∼6 nm, the plasticity mechanism transforms from a mode of cross-grain dislocation to a collective grain rotation mechanism. This grain rotation process is mediated by grain boundary (GB) dislocations with the assistance of GB diffusion and shuffling. These in situ atomic-scale images provide a direct demonstration that grain rotation, through the evolution of the misorientation angle between neighbouring grains, can be quantitatively assessed by the dislocation content within the grain boundaries. In combination with the revolutionary Cs-corrected sub-angstrom imaging technologies developed by Urban et al., the opportunities for experimental mechanics at the atomic scale are emerging. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Mechanical properties and crack growth behavior of polycrystalline copper using molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Qiu, Ren-Zheng; Li, Chi-Chen; Fang, Te-Hua

    2017-08-01

    This study investigated the mechanical properties and crack propagation behavior of polycrystalline copper using a molecular dynamics simulation. The effects of temperature, grain size, and crack length were evaluated in terms of atomic trajectories, slip vectors, common neighbor analysis, the material’s stress-strain diagram and Young’s modulus. The simulation results show that the grain boundary of the material is more easily damaged at high temperatures and that grain boundaries will combine at the crack tip. From the stress-strain diagram, it was observed that the maximum stress increased as the temperature decreased. In contrast, the maximum stress was reduced by increasing the temperature. With regard to the effect of the grain size, when the grain size was too small, the structure of the sample deformed due to the effect of atomic interactions, which caused the grain boundary structure to be disordered in general. However, when the grain size was larger, dislocations appeared and began to move from the tip of the crack, which led to a new dislocation phenomenon. With regards to the effect of the crack length, the tip of the crack did not affect the sample’s material when the crack length was less than 5 nm. However, when the crack length was above 7.5 nm, the grain boundary was damaged, and twinning structures and dislocations appeared on both sides of the crack tip. This is because the tip of the crack was blunt at first before sharpening due to the dislocation effect.

  11. Graphics processing unit accelerated phase field dislocation dynamics: Application to bi-metallic interfaces

    DOE PAGES

    Eghtesad, Adnan; Germaschewski, Kai; Beyerlein, Irene J.; ...

    2017-10-14

    We present the first high-performance computing implementation of the meso-scale phase field dislocation dynamics (PFDD) model on a graphics processing unit (GPU)-based platform. The implementation takes advantage of the portable OpenACC standard directive pragmas along with Nvidia's compute unified device architecture (CUDA) fast Fourier transform (FFT) library called CUFFT to execute the FFT computations within the PFDD formulation on the same GPU platform. The overall implementation is termed ACCPFDD-CUFFT. The package is entirely performance portable due to the use of OPENACC-CUDA inter-operability, in which calls to CUDA functions are replaced with the OPENACC data regions for a host central processingmore » unit (CPU) and device (GPU). A comprehensive benchmark study has been conducted, which compares a number of FFT routines, the Numerical Recipes FFT (FOURN), Fastest Fourier Transform in the West (FFTW), and the CUFFT. The last one exploits the advantages of the GPU hardware for FFT calculations. The novel ACCPFDD-CUFFT implementation is verified using the analytical solutions for the stress field around an infinite edge dislocation and subsequently applied to simulate the interaction and motion of dislocations through a bi-phase copper-nickel (Cu–Ni) interface. It is demonstrated that the ACCPFDD-CUFFT implementation on a single TESLA K80 GPU offers a 27.6X speedup relative to the serial version and a 5X speedup relative to the 22-multicore Intel Xeon CPU E5-2699 v4 @ 2.20 GHz version of the code.« less

  12. A molecular dynamics investigation into the mechanisms of subsurface damage and material removal of monocrystalline copper subjected to nanoscale high speed grinding

    NASA Astrophysics Data System (ADS)

    Li, Jia; Fang, Qihong; Liu, Youwen; Zhang, Liangchi

    2014-06-01

    This paper investigates the mechanisms of subsurface damage and material removal of monocrystalline copper when it is under a nanoscale high speed grinding of a diamond tip. The analysis was carried out with the aid of three-dimensional molecular dynamics simulations. The key factors that would influence the deformation of the material were carefully explored by analyzing the chip, dislocation movement, and workpiece deformation, which include grinding speed, depth of cut, grid tip radius, crystal orientation and machining angle of copper. An analytical model was also established to predict the emission of partial dislocations during the nanoscale high speed grinding. The investigation showed that a higher grinding velocity, a larger tip radius or a larger depth of cut would result in a larger chipping volume and a greater temperature rise in the copper workpiece. A lower grinding velocity would produce more intrinsic stacking faults. It was also found that the transition of deformation mechanisms depends on the competition between the dislocations and deformation twinning. There is a critical machining angle, at which a higher velocity, a smaller tip radius, or a smaller depth of cut will reduce the subsurface damage and improve the smoothness of a ground surface. The established analytical model showed that the Shockley dislocation emission is most likely to occur with the crystal orientations of (0 0 1)[1 0 0] at 45° angle.

  13. Dislocation-accommodated grain boundary sliding as the major deformation mechanism of olivine in the Earth’s upper mantle

    PubMed Central

    Ohuchi, Tomohiro; Kawazoe, Takaaki; Higo, Yuji; Funakoshi, Ken-ichi; Suzuki, Akio; Kikegawa, Takumi; Irifune, Tetsuo

    2015-01-01

    Understanding the deformation mechanisms of olivine is important for addressing the dynamic processes in Earth’s upper mantle. It has been thought that dislocation creep is the dominant mechanism because of extrapolated laboratory data on the plasticity of olivine at pressures below 0.5 GPa. However, we found that dislocation-accommodated grain boundary sliding (DisGBS), rather than dislocation creep, dominates the deformation of olivine under middle and deep upper mantle conditions. We used a deformation-DIA apparatus combined with synchrotron in situ x-ray observations to study the plasticity of olivine aggregates at pressures up to 6.7 GPa (that is, ~200-km depth) and at temperatures between 1273 and 1473 K, which is equivalent to the conditions in the middle region of the upper mantle. The creep strength of olivine deforming by DisGBS is apparently less sensitive to pressure because of the competing pressure-hardening effect of the activation volume and pressure-softening effect of water fugacity. The estimated viscosity of olivine controlled by DisGBS is independent of depth and ranges from 1019.6 to 1020.7 Pa·s throughout the asthenospheric upper mantle with a representative water content (50 to 1000 parts per million H/Si), which is consistent with geophysical viscosity profiles. Because DisGBS is a grain size–sensitive creep mechanism, the evolution of the grain size of olivine is an important process controlling the dynamics of the upper mantle. PMID:26601281

  14. Deformation localization and dislocation channel dynamics in neutron-irradiated austenitic stainless steels

    DOE PAGES

    Gussev, Maxim N.; Field, Kevin G.; Busby, Jeremy T.

    2015-02-24

    We investigated dynamics of deformation localization and dislocation channel formation in situ in a neutron irradiated AISI 304 austenitic stainless steel and a model 304-based austenitic alloy by combining several analytical techniques including optic microscopy and laser confocal microscopy, scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. Channel formation was observed at 70% of the formal tensile yield stress for both alloys. It was shown that triple junction points do not always serve as a source of dislocation channels; at stress levels below the yield stress, channels often formed near the middle of the grain boundary. For amore » single grain, the role of elastic stiffness value (Young modulus) in the channel formation was analyzed; it was shown that in the irradiated 304 steels the initial channels appeared in soft grains with a high Schmid factor located near stiff grains with high elastic stiffness. Moreover, the spatial organization of channels in a single grain was analyzed; it was shown that secondary channels operating in the same slip plane as primary channels often appeared at the middle or at one third of the way between primary channels. The twinning nature of dislocation channels was analyzed for grains of different orientation using TEM. Finally, it was shown that in the AISI 304 steel, channels were twin-free in grains oriented close to [001] and [101] of standard unit triangle; [111]-grains and grains oriented close to Schmid factor maximum contained deformation twins.« less

  15. Graphics processing unit accelerated phase field dislocation dynamics: Application to bi-metallic interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eghtesad, Adnan; Germaschewski, Kai; Beyerlein, Irene J.

    We present the first high-performance computing implementation of the meso-scale phase field dislocation dynamics (PFDD) model on a graphics processing unit (GPU)-based platform. The implementation takes advantage of the portable OpenACC standard directive pragmas along with Nvidia's compute unified device architecture (CUDA) fast Fourier transform (FFT) library called CUFFT to execute the FFT computations within the PFDD formulation on the same GPU platform. The overall implementation is termed ACCPFDD-CUFFT. The package is entirely performance portable due to the use of OPENACC-CUDA inter-operability, in which calls to CUDA functions are replaced with the OPENACC data regions for a host central processingmore » unit (CPU) and device (GPU). A comprehensive benchmark study has been conducted, which compares a number of FFT routines, the Numerical Recipes FFT (FOURN), Fastest Fourier Transform in the West (FFTW), and the CUFFT. The last one exploits the advantages of the GPU hardware for FFT calculations. The novel ACCPFDD-CUFFT implementation is verified using the analytical solutions for the stress field around an infinite edge dislocation and subsequently applied to simulate the interaction and motion of dislocations through a bi-phase copper-nickel (Cu–Ni) interface. It is demonstrated that the ACCPFDD-CUFFT implementation on a single TESLA K80 GPU offers a 27.6X speedup relative to the serial version and a 5X speedup relative to the 22-multicore Intel Xeon CPU E5-2699 v4 @ 2.20 GHz version of the code.« less

  16. Dislocation-accommodated grain boundary sliding as the major deformation mechanism of olivine in the Earth's upper mantle.

    PubMed

    Ohuchi, Tomohiro; Kawazoe, Takaaki; Higo, Yuji; Funakoshi, Ken-Ichi; Suzuki, Akio; Kikegawa, Takumi; Irifune, Tetsuo

    2015-10-01

    Understanding the deformation mechanisms of olivine is important for addressing the dynamic processes in Earth's upper mantle. It has been thought that dislocation creep is the dominant mechanism because of extrapolated laboratory data on the plasticity of olivine at pressures below 0.5 GPa. However, we found that dislocation-accommodated grain boundary sliding (DisGBS), rather than dislocation creep, dominates the deformation of olivine under middle and deep upper mantle conditions. We used a deformation-DIA apparatus combined with synchrotron in situ x-ray observations to study the plasticity of olivine aggregates at pressures up to 6.7 GPa (that is, ~200-km depth) and at temperatures between 1273 and 1473 K, which is equivalent to the conditions in the middle region of the upper mantle. The creep strength of olivine deforming by DisGBS is apparently less sensitive to pressure because of the competing pressure-hardening effect of the activation volume and pressure-softening effect of water fugacity. The estimated viscosity of olivine controlled by DisGBS is independent of depth and ranges from 10(19.6) to 10(20.7) Pa·s throughout the asthenospheric upper mantle with a representative water content (50 to 1000 parts per million H/Si), which is consistent with geophysical viscosity profiles. Because DisGBS is a grain size-sensitive creep mechanism, the evolution of the grain size of olivine is an important process controlling the dynamics of the upper mantle.

  17. An ethical assessment model for digital disease detection technologies.

    PubMed

    Denecke, Kerstin

    2017-09-20

    Digital epidemiology, also referred to as digital disease detection (DDD), successfully provided methods and strategies for using information technology to support infectious disease monitoring and surveillance or understand attitudes and concerns about infectious diseases. However, Internet-based research and social media usage in epidemiology and healthcare pose new technical, functional and formal challenges. The focus of this paper is on the ethical issues to be considered when integrating digital epidemiology with existing practices. Taking existing ethical guidelines and the results from the EU project M-Eco and SORMAS as starting point, we develop an ethical assessment model aiming at providing support in identifying relevant ethical concerns in future DDD projects. The assessment model has four dimensions: user, application area, data source and methodology. The model supports in becoming aware, identifying and describing the ethical dimensions of DDD technology or use case and in identifying the ethical issues on the technology use from different perspectives. It can be applied in an interdisciplinary meeting to collect different viewpoints on a DDD system even before the implementation starts and aims at triggering discussions and finding solutions for risks that might not be acceptable even in the development phase. From the answers, ethical issues concerning confidence, privacy, data and patient security or justice may be judged and weighted.

  18. Construction Strategy and Progress of Whole Intervertebral Disc Tissue Engineering.

    PubMed

    Yang, Qiang; Xu, Hai-wei; Hurday, Sookesh; Xu, Bao-shan

    2016-02-01

    Degenerative disc disease (DDD) is the major cause of low back pain, which usually leads to work absenteeism, medical visits and hospitalization. Because the current conservative procedures and surgical approaches to treatment of DDD only aim to relieve the symptoms of disease but not to regenerate the diseased disc, their long-term efficiency is limited. With the rapid developments in medical science, tissue engineering techniques have progressed markedly in recent years, providing a novel regenerative strategy for managing intervertebral disc disease. However, there are as yet no ideal methods for constructing tissue-engineered intervertebral discs. This paper reviews published reports pertaining to intervertebral disc tissue engineering and summarizes data concerning the seed cells and scaffold materials for tissue-engineered intervertebral discs, construction of tissue-engineered whole intervertebral discs, relevant animal experiments and effects of mechanics on the construction of tissue-engineered intervertebral disc and outlines the existing problems and future directions. Although the perfect regenerative strategy for treating DDD has not yet been developed, great progress has been achieved in the construction of tissue-engineered intervertebral discs. It is believed that ongoing research on intervertebral disc tissue engineering will result in revolutionary progress in the treatment of DDD. © 2016 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.

  19. Oligosaccharide composition is similar in drusen and dense deposits in membranoproliferative glomerulonephritis type II.

    PubMed

    D'souza, Yvonne B; Jones, Carolyn J P; Short, Colin D; Roberts, Ian S D; Bonshek, Richard E

    2009-04-01

    Drusen are a feature of age-related macular degeneration (AMD). Lesions similar in appearance to drusen are also found in the fundi of patients with membranoproliferative glomerulonephritis type II (dense deposit disease, DDD). The lamina densa of the glomerular basement membrane, in DDD, is transformed into an electron-dense structure by deposition of microscopically homogeneous material. Our study sought to compare the saccharide composition of drusen and dense deposits in the formalin-fixed, paraffin-embedded tissue from the eye and kidney. Six eye specimens were obtained from patients diagnosed with AMD but another eye was obtained from a patient with partial lipodystrophy, who died after renal failure presumably because of DDD. The kidney specimens were from three biopsy-proven cases of DDD. Glycosylation patterns were measured by the binding of 19 biotinylated lectins before and after neuraminidase pre-treatment. High mannose, bi/tri-antennary non-bisected and bisected complex N-glycan, N-acetyl glucosamine, galactose, and sialic acid residues were found in both drusen and dense deposits. Treatment with neuraminidase exposed subterminal galactose in both sites and sparse N-acetyl galactosamine residues in drusen alone. Our study found similar pathologic oligosaccharide structures in the eye and kidney, suggesting that drusen may be a common end result of retinal and glomerular disease.

  20. Characterization of mitotane (o,p'-DDD)--cyclodextrin inclusion complexes: phase-solubility method and NMR.

    PubMed

    Alfonsi, R; Attivi, D; Astier, A; Socha, M; Morice, S; Gibaud, S

    2013-05-01

    Mitotane (o,p'-dichlorodimethyl dichloroethane [o,p'-DDD]) is used for the treatment of adrenocortical cancer and occasionally Cushing's syndrome. This drug is very poorly soluble in water, and following oral administration, approximately 60% of the dose is recovered in the feces unaltered. The preparation of a soluble formulation (i.e. by complexation with cyclodextrins) with improved bioavailability is the aim of this work. The inclusion of mitotane in methyl-ß-cyclodextrins was studied using both phase-solubility methods and NMR experiments. To elucidate the inclusion mechanism, o,p'-DDD was compared to its regioisomer (i.e. p,p'-DDD). It was demonstrated that two dimethyl-ß-cyclodextrins (DMßCD) can complex with the aromatic rings. From the phase-solubility diagrams, we observe that both cases are very different: K(1:1) is between 37 000 and 85 000 mol.l(-1), whereas K(1:2) is between 5.3 and 32 mol.l(-1). The NMR experiments confirmed the inclusion but it also gave an insight into the kinetics of the dissociation: the ortho-chloro moiety is in slow exchange on the NMR time scale, whereas the para-chloro moiety is in fast exchange rate. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  1. Prediction of Precipitation Strengthening in the Commercial Mg Alloy AZ91 Using Dislocation Dynamics

    DOE PAGES

    Aagesen, L. K.; Miao, J.; Allison, J. E.; ...

    2018-03-05

    In this paper, dislocation dynamics simulations were used to predict the strengthening of a commercial magnesium alloy, AZ91, due to β-Mg 17Al 12 formed in the continuous precipitation mode. The precipitate distributions used in simulations were determined based on experimental characterization of the sizes, shapes, and number densities of the precipitates for 10-hour aging and 50-hour aging. For dislocations gliding on the basal plane, which is expected to be the dominant contributor to plastic deformation at room temperature, the critical resolved shear stress to bypass the precipitate distribution was 3.5 MPa for the 10-hour aged sample and 16.0 MPa formore » the 50-hour aged sample. The simulation results were compared to an analytical model of strengthening in this alloy, and the analytical model was found to predict critical resolved shear stresses that were approximately 30 pct lower. A model for the total yield strength was developed and compared with experiment for the 50-hour aged sample. Finally, the predicted yield strength, which included the precipitate strengthening contribution from the DD simulations, was 132.0 MPa, in good agreement with the measured yield strength of 141 MPa.« less

  2. Length-scale dependent mechanical properties of Al-Cu eutectic alloy: Molecular dynamics based model and its experimental verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwary, C. S., E-mail: cst.iisc@gmail.com; Chattopadhyay, K.; Chakraborty, S.

    2014-05-28

    This paper attempts to gain an understanding of the effect of lamellar length scale on the mechanical properties of two-phase metal-intermetallic eutectic structure. We first develop a molecular dynamics model for the in-situ grown eutectic interface followed by a model of deformation of Al-Al{sub 2}Cu lamellar eutectic. Leveraging the insights obtained from the simulation on the behaviour of dislocations at different length scales of the eutectic, we present and explain the experimental results on Al-Al{sub 2}Cu eutectic with various different lamellar spacing. The physics behind the mechanism is further quantified with help of atomic level energy model for different lengthmore » scale as well as different strain. An atomic level energy partitioning of the lamellae and the interface regions reveals that the energy of the lamellae core are accumulated more due to dislocations irrespective of the length-scale. Whereas the energy of the interface is accumulated more due to dislocations when the length-scale is smaller, but the trend is reversed when the length-scale is large beyond a critical size of about 80 nm.« less

  3. Prediction of Precipitation Strengthening in the Commercial Mg Alloy AZ91 Using Dislocation Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aagesen, L. K.; Miao, J.; Allison, J. E.

    In this paper, dislocation dynamics simulations were used to predict the strengthening of a commercial magnesium alloy, AZ91, due to β-Mg 17Al 12 formed in the continuous precipitation mode. The precipitate distributions used in simulations were determined based on experimental characterization of the sizes, shapes, and number densities of the precipitates for 10-hour aging and 50-hour aging. For dislocations gliding on the basal plane, which is expected to be the dominant contributor to plastic deformation at room temperature, the critical resolved shear stress to bypass the precipitate distribution was 3.5 MPa for the 10-hour aged sample and 16.0 MPa formore » the 50-hour aged sample. The simulation results were compared to an analytical model of strengthening in this alloy, and the analytical model was found to predict critical resolved shear stresses that were approximately 30 pct lower. A model for the total yield strength was developed and compared with experiment for the 50-hour aged sample. Finally, the predicted yield strength, which included the precipitate strengthening contribution from the DD simulations, was 132.0 MPa, in good agreement with the measured yield strength of 141 MPa.« less

  4. Prediction of Precipitation Strengthening in the Commercial Mg Alloy AZ91 Using Dislocation Dynamics

    NASA Astrophysics Data System (ADS)

    Aagesen, L. K.; Miao, J.; Allison, J. E.; Aubry, S.; Arsenlis, A.

    2018-03-01

    Dislocation dynamics simulations were used to predict the strengthening of a commercial magnesium alloy, AZ91, due to β-Mg17Al12 formed in the continuous precipitation mode. The precipitate distributions used in simulations were determined based on experimental characterization of the sizes, shapes, and number densities of the precipitates for 10-hour aging and 50-hour aging. For dislocations gliding on the basal plane, which is expected to be the dominant contributor to plastic deformation at room temperature, the critical resolved shear stress to bypass the precipitate distribution was 3.5 MPa for the 10-hour aged sample and 16.0 MPa for the 50-hour aged sample. The simulation results were compared to an analytical model of strengthening in this alloy, and the analytical model was found to predict critical resolved shear stresses that were approximately 30 pct lower. A model for the total yield strength was developed and compared with experiment for the 50-hour aged sample. The predicted yield strength, which included the precipitate strengthening contribution from the DD simulations, was 132.0 MPa, in good agreement with the measured yield strength of 141 MPa.

  5. A two-stage constitutive model of X12CrMoWVNbN10-1-1 steel during elevated temperature

    NASA Astrophysics Data System (ADS)

    Zhu, Luobei; He, Jianli; Zhang, Ying

    2018-02-01

    In order to clarify the competition between work hardening (WH) caused by dislocation movements and the dynamic softening result from dynamic recovery (DRV) and dynamic recrystallization (DRX), a new two-stage flow stress model of X12CrMoWVNbN10-1-1 (X12) ferrite heat-resistant steel was established to describe the whole hot deformation behavior. And the parameters were determined by the experimental data operated on a Gleeble-3800 thermo- mechanical simulation. In this constitutive model, a single internal variable dislocation density evolution model is used to describe the influence of WH and DRV to flow stress. The DRX kinetic dynamic model can express accurately the contribution of DRX to the decline of flow stress, which was established on the Avrami equation. Furthermore, The established new model was compared with Fields-Bachofen (F-B) model and experimental data. The results indicate the new two-stage flow stress model can more accurately represent the hot deformation behavior of X12 ferrite heat-resistant steel, and the average error is only 0.0995.

  6. Analysis of the Temperature and Strain-Rate Dependences of Strain Hardening

    NASA Astrophysics Data System (ADS)

    Kreyca, Johannes; Kozeschnik, Ernst

    2018-01-01

    A classical constitutive modeling-based Ansatz for the impact of thermal activation on the stress-strain response of metallic materials is compared with the state parameter-based Kocks-Mecking model. The predicted functional dependencies suggest that, in the first approach, only the dislocation storage mechanism is a thermally activated process, whereas, in the second approach, only the mechanism of dynamic recovery is. In contradiction to each of these individual approaches, our analysis and comparison with experimental evidence shows that thermal activation contributes both to dislocation generation and annihilation.

  7. Distributional and regularized radiation fields of non-uniformly moving straight dislocations, and elastodynamic Tamm problem

    NASA Astrophysics Data System (ADS)

    Lazar, Markus; Pellegrini, Yves-Patrick

    2016-11-01

    This work introduces original explicit solutions for the elastic fields radiated by non-uniformly moving, straight, screw or edge dislocations in an isotropic medium, in the form of time-integral representations in which acceleration-dependent contributions are explicitly separated out. These solutions are obtained by applying an isotropic regularization procedure to distributional expressions of the elastodynamic fields built on the Green tensor of the Navier equation. The obtained regularized field expressions are singularity-free, and depend on the dislocation density rather than on the plastic eigenstrain. They cover non-uniform motion at arbitrary speeds, including faster-than-wave ones. A numerical method of computation is discussed, that rests on discretizing motion along an arbitrary path in the plane transverse to the dislocation, into a succession of time intervals of constant velocity vector over which time-integrated contributions can be obtained in closed form. As a simple illustration, it is applied to the elastodynamic equivalent of the Tamm problem, where fields induced by a dislocation accelerated from rest beyond the longitudinal wave speed, and thereafter put to rest again, are computed. As expected, the proposed expressions produce Mach cones, the dynamic build-up and decay of which is illustrated by means of full-field calculations.

  8. A novel multiple-stage antimalarial agent that inhibits protein synthesis.

    PubMed

    Baragaña, Beatriz; Hallyburton, Irene; Lee, Marcus C S; Norcross, Neil R; Grimaldi, Raffaella; Otto, Thomas D; Proto, William R; Blagborough, Andrew M; Meister, Stephan; Wirjanata, Grennady; Ruecker, Andrea; Upton, Leanna M; Abraham, Tara S; Almeida, Mariana J; Pradhan, Anupam; Porzelle, Achim; Luksch, Torsten; Martínez, María Santos; Luksch, Torsten; Bolscher, Judith M; Woodland, Andrew; Norval, Suzanne; Zuccotto, Fabio; Thomas, John; Simeons, Frederick; Stojanovski, Laste; Osuna-Cabello, Maria; Brock, Paddy M; Churcher, Tom S; Sala, Katarzyna A; Zakutansky, Sara E; Jiménez-Díaz, María Belén; Sanz, Laura Maria; Riley, Jennifer; Basak, Rajshekhar; Campbell, Michael; Avery, Vicky M; Sauerwein, Robert W; Dechering, Koen J; Noviyanti, Rintis; Campo, Brice; Frearson, Julie A; Angulo-Barturen, Iñigo; Ferrer-Bazaga, Santiago; Gamo, Francisco Javier; Wyatt, Paul G; Leroy, Didier; Siegl, Peter; Delves, Michael J; Kyle, Dennis E; Wittlin, Sergio; Marfurt, Jutta; Price, Ric N; Sinden, Robert E; Winzeler, Elizabeth A; Charman, Susan A; Bebrevska, Lidiya; Gray, David W; Campbell, Simon; Fairlamb, Alan H; Willis, Paul A; Rayner, Julian C; Fidock, David A; Read, Kevin D; Gilbert, Ian H

    2015-06-18

    There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood-stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along messenger RNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.

  9. A novel multiple-stage antimalarial agent that inhibits protein synthesis

    NASA Astrophysics Data System (ADS)

    Baragaña, Beatriz; Hallyburton, Irene; Lee, Marcus C. S.; Norcross, Neil R.; Grimaldi, Raffaella; Otto, Thomas D.; Proto, William R.; Blagborough, Andrew M.; Meister, Stephan; Wirjanata, Grennady; Ruecker, Andrea; Upton, Leanna M.; Abraham, Tara S.; Almeida, Mariana J.; Pradhan, Anupam; Porzelle, Achim; Martínez, María Santos; Bolscher, Judith M.; Woodland, Andrew; Norval, Suzanne; Zuccotto, Fabio; Thomas, John; Simeons, Frederick; Stojanovski, Laste; Osuna-Cabello, Maria; Brock, Paddy M.; Churcher, Tom S.; Sala, Katarzyna A.; Zakutansky, Sara E.; Jiménez-Díaz, María Belén; Sanz, Laura Maria; Riley, Jennifer; Basak, Rajshekhar; Campbell, Michael; Avery, Vicky M.; Sauerwein, Robert W.; Dechering, Koen J.; Noviyanti, Rintis; Campo, Brice; Frearson, Julie A.; Angulo-Barturen, Iñigo; Ferrer-Bazaga, Santiago; Gamo, Francisco Javier; Wyatt, Paul G.; Leroy, Didier; Siegl, Peter; Delves, Michael J.; Kyle, Dennis E.; Wittlin, Sergio; Marfurt, Jutta; Price, Ric N.; Sinden, Robert E.; Winzeler, Elizabeth A.; Charman, Susan A.; Bebrevska, Lidiya; Gray, David W.; Campbell, Simon; Fairlamb, Alan H.; Willis, Paul A.; Rayner, Julian C.; Fidock, David A.; Read, Kevin D.; Gilbert, Ian H.

    2015-06-01

    There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood-stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along messenger RNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.

  10. Association of catechol-O-methyltransferase genetic variants with outcome in patients undergoing surgical treatment for lumbar degenerative disc disease.

    PubMed

    Dai, Feng; Belfer, Inna; Schwartz, Carolyn E; Banco, Robert; Martha, Julia F; Tighioughart, Hocine; Tromanhauser, Scott G; Jenis, Louis G; Kim, David H

    2010-11-01

    Surgical treatment for lumbar degenerative disc disease (DDD) has been associated with highly variable results in terms of postoperative pain relief and functional improvement. Many experts believe that DDD should be considered a chronic pain disorder as opposed to a degenerative disease. Genetic variation of the catechol-O-methyltransferase (COMT) gene has been associated with variation in human pain sensitivity and response to analgesics in previous studies. To determine whether genetic variation of COMT is associated with clinical outcome after surgical treatment for DDD. Prospective genetic association study. Sixty-nine patients undergoing surgical treatment for lumbar DDD. Diagnosis was based on documentation of chronic disabling low back pain (LBP) present for a minimum of 6 months and unresponsive to supervised nonoperative treatment, including activity modification, medication, physical therapy, and/or injection therapy. Plain radiographs and magnetic resonance imaging revealed intervertebral disc desiccation, tears, and/or collapse without focal herniation, nerve root compression, stenosis, spondylolisthesis, spondylolysis, or alternative diagnoses. Oswestry Disability Index (ODI) and visual analog score (VAS) for LBP. Surgical treatment included 65 instrumented fusions and four disc arthroplasty procedures. All patients completed preoperative and 1-year postoperative ODI questionnaires. DNA was extracted from a sample of venous blood, and genotype analysis was performed for five common COMT single nucleotide polymorphisms (SNPs). Potential genetic association between these COMT SNPs and the primary outcome variable, 1-year change in ODI, was investigated using both single-marker and haplotype association analyses. Association with VAS scores for LBP was analyzed as a secondary outcome variable. Single-marker analysis revealed that the COMT SNP rs4633 was significantly associated with greater improvement in ODI score 1 year after surgery (p=.03), with individuals homozygous for the less common "T" allele demonstrating the largest improvement in ODI. Haplotype analysis of four COMT SNPs, rs6269, rs4633, rs4818, and rs4680, also identified a common haplotype "ATCA" (haplotype frequency of 39.3% in the study population) associated with greater improvement in ODI (p=.046). The greatest mean improvement in ODI was observed in patients homozygous for the "ATCA"COMT haplotype. A nonsignificant trend was observed between SNP rs4633 and greater improvement in VAS score for LBP. This is the first study to report an association between surgical treatment success in DDD patients and genetic variation in the putative pain sensitivity gene COMT. These findings require replication in other DDD populations but suggest that genetic testing for pain-relevant genetic markers such as COMT may provide useful clinical information in terms of predicting outcome after surgery for patients diagnosed with DDD. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Water redistribution in experimentally deformed natural milky quartz single crystals—Implications for H2O-weakening processes

    NASA Astrophysics Data System (ADS)

    Stünitz, H.; Thust, A.; Heilbronner, R.; Behrens, H.; Kilian, R.; Tarantola, A.; Fitz Gerald, J. D.

    2017-02-01

    Natural quartz single crystals were experimentally deformed in two orientations: (1) ⊥ to one prism plane and (2) in O+ orientation at 900 and 1000°C, 1.0 and 1.5 GPa, and strain rates of 1 × 10-6 s-1. In addition, hydrostatic and annealing experiments were performed. The starting material was milky quartz, which consisted of dry quartz with a large number of fluid inclusions of variable size up to several 100 µm. During pressurization fluid inclusions decrepitated producing much smaller fluid inclusions. Deformation on the sample scale is anisotropic due to dislocation glide on selected slip systems and inhomogeneous due to an inhomogeneous distribution of fluid inclusions. Dislocation glide is accompanied by minor dynamic recovery. Strongly deformed regions show a pointed broad absorption band in the 3400 cm-1 region consisting of a superposition of bands of molecular H2O and three discrete absorption bands (at 3367, 3400, and 3434 cm-1). In addition, there is a discrete absorption band at 3585 cm-1, which only occurs in deformed regions and reduces or disappears after annealing, so that this band appears to be associated with dislocations. H2O weakening in inclusion-bearing natural quartz crystals is assigned to the H2O-assisted dislocation generation and multiplication. Processes in these crystals represent recycling of H2O between fluid inclusions, cracking and crack healing, incorporation of structurally bound H in dislocations, release of H2O from dislocations during recovery, and dislocation generation at very small fluid inclusions. The H2O weakening by this process is of disequilibrium nature because it depends on the amount of H2O available.

  12. Atomistic simulation study of influence of Al2O3-Al interface on dislocation interaction and prismatic loop formation during nano-indentation on Al2O3-coated aluminum.

    PubMed

    Mishra, Srishti; Meraj, Md; Pal, Snehanshu

    2018-06-19

    A large-scale molecular dynamics (MD) simulation of nano-indentation was carried out to provide insight into the influence of the Al-Al 2 O 3 interface on dislocation evolution and deformation behavior of Al substrate coated with Al 2 O 3 thin film. Adaptive common neighbor analysis (a-CNA), centro-symmetry parameter (CSP) estimation, and dislocation extraction algorithm (DXA) were implemented to represent structural evolution during nano-indentation deformation. The absence of elastic regime was observed in the P-h curve for this simulated nano-indentation test of Al 2 O 3 thin film coated Al specimen. The displacement of oxygen atoms from Al 2 O 3 to Al partly through the interface greatly influences the plastic deformation behavior of the specimen during nano-indentation. Prismatic dislocation loops, which are formed due to pinning of Shockley partials (1/6 < 112>) by Stair-rod (1/6 < 110>) and Hirth dislocation (1/3 < 001>), were observed in all cases studied in this work. Pile-up of atoms was also observed and the extent of the pile-up was found to vary with the test temperature. A distorted stacking fault tetrahedron (SFT) is formed when a nano-indentation test is carried out at 100 K. The presence of a prismatic dislocation loop, SFT and dislocation forest caused strain hardening and, consequently, there is an increase in hardness as indentation depth increases. Graphical abstract Figure illustrates nano-indentation model set up along with load vs. depth curve and distorted stacking fault tetrahedron.

  13. Mean stress and the exhaustion of fatigue-damage resistance

    NASA Technical Reports Server (NTRS)

    Berkovits, Avraham

    1989-01-01

    Mean-stress effects on fatigue life are critical in isothermal and thermomechanically loaded materials and composites. Unfortunately, existing mean-stress life-prediction methods do not incorporate physical fatigue damage mechanisms. An objective is to examine the relation between mean-stress induced damage (as measured by acoustic emission) and existing life-prediction methods. Acoustic emission instrumentation has indicated that, as with static yielding, fatigue damage results from dislocation buildup and motion until dislocation saturation is reached, after which void formation and coalescence predominate. Correlation of damage processes with similar mechanisms under monotonic loading led to a reinterpretation of Goodman diagrams for 40 alloys and a modification of Morrow's formulation for life prediction under mean stresses. Further testing, using acoustic emission to monitor dislocation dynamics, can generate data for developing a more general model for fatigue under mean stress.

  14. Dynamic strain aging and plastic instabilities

    NASA Astrophysics Data System (ADS)

    Mesarovic, Sinisa Dj.

    1995-05-01

    A constitutive model proposed by McCormick [(1988) Theory of flow localization due to dynamic strain ageing. Acta. Metall.36, 3061-3067] based on dislocation-solute interaction and describing dynamic strain aging behavior, is analyzed for the simple loading case of uniaxial tension. The model is rate dependent and includes a time-varying state variable, representing the local concentration of the impurity atoms at dislocations. Stability of the system and its post-instability behavior are considered. The methods used include analytical and numerical stability and bifurcation analysis with a numerical continuation technique. Yield point behavior and serrated yielding are found to result for well defined intervals of temperature and strain rate. Serrated yielding emerges as a branch of periodic solutions of the relaxation oscillation type, similar to frictional stick-slip. The distinction between the temporal and spatial (loss of homogeneity of strain) instability is emphasized. It is found that a critical machine stiffness exists above which a purely temporal instability cannot occur. The results are compared to the available experimental data.

  15. Stress-dislocation interaction mechanism in low-temperature thermo-compression sintering of Ag NPs

    NASA Astrophysics Data System (ADS)

    Wang, Fuliang; Tang, Zikai; He, Hu

    2018-04-01

    The sintering of metal nanoparticles (NPs) has been widely studied in the field of nanotechnology, and low-temperature sintering has become the industry standard. In this study, a molecular dynamics (MD) model was established to study the sintering behaviour of silver NPs during low-temperature thermo-compression. Primarily, we studied the sintering process, in which the ratio of neck radius to particle radius (x/r) changes. Under a uniaxial pressure, the maximum ratio in the temperature range 420-425 K was 1. According to the change of x/r, the process can be broken down into three stages: the neck-formation stage, neck-growth stage, and neck-stability stage. In addition, the relationship between potential energy, internal stress, and dislocation density during sintering is discussed. The results showed that cycling internal stress played an important role in sintering. Under the uniaxial pressure, the stress-dislocation interaction was found to be the major mechanism for thermo-compression sintering because the plastic deformation product dislocation intensified the diffusion of atoms. Also, the displacement vector, the mean square displacement, and the changing crystal structure during sintering were studied.

  16. Characterization and modeling of mechanical behavior of single crystal titanium deformed by split-Hopkinson pressure bar

    DOE PAGES

    Morrow, B. M.; Lebensohn, R. A.; Trujillo, C. P.; ...

    2016-03-28

    Single crystal titanium samples were dynamically loaded using split-Hopkinson pressure bar (SHPB) and the resulting microstructures were examined. Characterization of the twins and dislocations present in the microstructure was conducted to understand the pathway for observed mechanical behavior. Electron backscatter diffraction (EBSD) was used to measure textures and quantify twinning. Microstructures were profusely twinned after loading, and twin variants and corresponding textures were different as a function of initial orientation. Focused ion beam (FIB) foils were created to analyze dislocation content using transmission electron microscopy (TEM). Large amounts of dislocations were present, indicating that plasticity was achieved through slip andmore » twinning together. Viscoplastic self-consistent (VPSC) modeling was used to confirm the complex order of operations during deformation. The activation of different mechanisms was highly dependent upon crystal orientation. For [0001] and View the MathML source[101¯1]-oriented crystals, compressive twinning was observed, followed by secondary tensile twinning. Furthermore, dislocations though prevalent in the microstructure, contributed to final texture far less than twinning.« less

  17. Hot Spots from Dislocation Pile-up Avalanches

    NASA Astrophysics Data System (ADS)

    Armstrong, Ronald; Grise, William

    2005-07-01

    The model of hot spots developed at dislocation pile-up avalanches has been employed to explain both: greater drop- weight heights being required to initiate chemical decomposition of smaller crystals [1]; and, the susceptibility to shear banding of energetic and reference inert materials, for example, adiabatic shear banding in steel [2]. The evidence for RDX (cyclotrimethylenetrinitramine) is that few dislocations are needed in the pile-ups thus providing justification for assessing dynamic pile-up release on a numerical basis for few dislocation numbers [3]. For release from a viscous obstacle, previous and new computations lead to a local temperature plateau occurring at the origin of pile-up release [4], in line with the physical concept of a hot spot. [1] R.W. Armstrong, C.S. Coffey, V.F. DeVost and W.L. Elban, J. Appl. Phys. 68 (1990) 979. [2] R.W. Armstrong and F.J. Zerilli, Mech. Mater. 17 (1994) 319. [3] R.W. Armstrong, Proc. Eighth Intern. Seminar: New Trends in Research of Energetic Materials, April 19- 21, 2005, Pardubice, CZ. [4] W.R. Grise, NRC/AFOSR Summer Faculty Fellowship Program, AFRL/MNME, Eglin Air Force Base, FL, 2003.

  18. Preferential nucleation, guiding, and blocking of self-propelled droplets by dislocations

    NASA Astrophysics Data System (ADS)

    Kanjanachuchai, Songphol; Wongpinij, Thipusa; Kijamnajsuk, Suphakan; Himwas, Chalermchai; Panyakeow, Somsak; Photongkam, Pat

    2018-04-01

    Lattice-mismatched layers of GaAs/InGaAs are grown on GaAs(001) using molecular beam epitaxy and subsequently heated in vacuum while the surface is imaged in situ using low-energy electron microscopy, in order to study (i) the nucleation of group-III droplets formed as a result of noncongruent sublimation and (ii) the dynamics of these self-propelled droplets as they navigate the surface. It is found that the interfacial misfit dislocation network not only influences the nucleation sites of droplets, but also exerts unusual steering power over their subsequent motion. Atypical droplet flow patterns including 90° and 180° turns are found. The directions of these dislocations-guided droplets are qualitatively explained in terms of in-plane and out-of-plane stress fields associated with the buried dislocations and the driving forces due to chemical potential and stress gradients typical of Marangoni flow. The findings would benefit processes and devices that employ droplets as catalysts or active structures such as droplet epitaxy of quantum nanostructures, vapor-liquid-solid growth of nanowires, or the fabrication of self-integrated circuits.

  19. High attenuation in MgSiO3 post-perovskite due to [100] dislocation glide under D'' conditions: an atomic scale study

    NASA Astrophysics Data System (ADS)

    Cordier, P.; Goryaeva, A.; Carrez, P.

    2016-12-01

    Dislocation motion in crystalline materials represents one of the most efficient mechanisms to produce plastic shear, the key mechanism for CPO development. Previous atomistic simulations show that MgSiO3 ppv is characterized by remarkably low lattice friction opposed to the glide of straight [100] screw dislocations in (010), while glide in (001) requires one order of magnitude larger stress values [1]. At finite temperature, dislocation glide occurs through nucleation and propagation of kink-pairs, i.e. dislocation does not move as a straight line, but partly bows out over the Peierls potential. We propose a theoretical study of a kink-pair formation mechanism for [100] screw dislocations in MgSiO3 ppv employing the line tension (LT) model [2] in conjunction with ab-initio atomic-scale modeling. The dislocation line tension, which plays a key role in dislocation dynamics, is computed at atomic scale as the energy increase resulting from individual atomic displacements due to the nucleation of a bow out. The estimated kink-pair formation enthalpy gives an access to evolution of critical resolved shear stress (CRSS) with temperature. Our results clearly demonstrate that at the lower mantle conditions, lattice friction in ppv vanishes for temperatures above ca. 600 K, i.e. ppv deforms in the athermal regime in contrast to the high-lattice friction bridgmanite [3]. Moreover, in the Earth's mantle, high-pressure Mg-ppv can be expected to be as ductile as MgO. Our simulations demonstrate that ppv contributes to a weak layer at the base of the mantle which is likely to promote alignment of (010) planes. In addition to that, we show that the high mobility of [100] dislocations results in a decrease of the apparent shear modulus (up to 15%) which contributes to a decrease of the shear wave velocity of about 7% and suggest that ppv induces energy dissipation and strong seismic attenuation in the D" layer. References[1] Goryaeva A, Carrez Ph & Cordier P (2015) Modeling defects and plasticity in MgSiO3 post-perovskite: Part 2 - screw and edge [100] dislocations. Phys. Chem. Miner. 45:793-803 [2] Seeger A (1984) in "Dislocations", CNRS, Paris, p. 141. [3] Kraych A, Carrez Ph & Cordier P (2016) On dislocation glide in MgSiO3 bridgmanite at high pressure and high-temperature. Earth Planet. Sci. Lett. submitted.

  20. Molecular dynamics studies of InGaN growth on nonpolar (11 2 \\xAF0 ) GaN surfaces

    NASA Astrophysics Data System (ADS)

    Chu, K.; Gruber, J.; Zhou, X. W.; Jones, R. E.; Lee, S. R.; Tucker, G. J.

    2018-01-01

    We have performed direct molecular dynamics (MD) simulations of heteroepitaxial vapor deposition of I nxG a1 -xN films on nonpolar (11 2 ¯0 ) wurtzite-GaN surfaces to investigate strain relaxation by misfit-dislocation formation. The simulated growth is conducted on an atypically large scale by sequentially injecting nearly a million individual vapor-phase atoms towards a fixed GaN substrate. We apply time-and-position-dependent boundary constraints to affect the appropriate environments for the vapor phase, the near-surface solid phase, and the bulklike regions of the growing layer. The simulations employ a newly optimized Stillinger-Weber In-Ga-N system interatomic potential wherein multiple binary and ternary structures are included in the underlying density-functional theory and experimental training sets to improve the treatment of the In-Ga-N related interactions. To examine the effect of growth conditions, we study a matrix of 63 different MD-growth simulations spanning seven I nxG a1 -xN -alloy compositions ranging from x =0.0 to x =0.8 and nine growth temperatures above half the simulated melt temperature. We found a composition dependent temperature range where all kinetically trapped defects were eliminated, leaving only quasiequilibrium misfit and threading dislocations present in the simulated films. Based on the MD results obtained in this temperature range, we observe the formation of interfacial misfit and threading dislocation arrays with morphologies strikingly close to those seen in experiments. In addition, we compare the MD-observed thickness-dependent onset of misfit-dislocation formation to continuum-elasticity-theory models of the critical thickness and find reasonably good agreement. Finally, we use the three-dimensional atomistic details uniquely available in the MD-growth histories to directly observe the nucleation of dislocations at surface pits in the evolving free surface.

  1. 3-D Spherical Convection Modeling Applied to Mercury: Dislocation Versus Diffusion Rheology

    NASA Astrophysics Data System (ADS)

    Robertson, S. D.; King, S. D.

    2016-12-01

    Mercury is the smallest among the terrestrial planets and, prior to NASA's MESSENGER mission was thought to be the least tectonically and volcanically active body. Gravity and moment of inertia from MESSENGER constrain Mercury to have a thin silicate mantle shell of approximately 400 km over a massive iron core. This mantle is thinner than previously thought and the smallest end-member in comparison with the other terrestrial planets. Although Mercury currently has a stagnant lid and the present day mantle is likely not convecting, a significant proportion of Mercury's surface features could have been derived from convection in the viscous mantle. Given Mercury's small size, the amount of volcanism and tectonic activity was a surprise. We investigate the effect of dislocation creep rheology in olivine on the dynamics of Mercury. At the pressures and temperatures of Mercury's mantle, laboratory creep studies indicate that olivine deforms by dislocation creep. Previous studies using diffusion creep rheology find that the thin mantle shell of Mercury quickly becomes diffusive and, this is difficult to reconcile with the surface observations. We use the three-dimensional spherical code, CitcomS, to compare numerical models with both dislocation and diffusion creep. We compare gravity, topography, and mantle temperature as a function of time from the models with constraints on the timing of volcanic and tectonic activity on Mercury. The results show that with the dislocation creep mechanism, there is potential for convective flow in the mantle over billions of years. In contrast, models with the diffusion creep mechanism start with a convecting mantle that transitions to global diffusive cooling within 500 Myrs. Diffusion creep rheology does not adequately produce a dynamic interior that is consistent with the historical volcanic and tectonic evolution of the planet. This research is the result of participation in GLADE, a nine-week summer REU program directed by Dave Stegman (SIO/UCSD).

  2. Geodynamics in a Thin Shell

    NASA Astrophysics Data System (ADS)

    King, S. D.; Robertson, S.

    2018-05-01

    At the pressure and temperature regime of Mercury's silicate interior, olivine deforms by dislocation creep (power law rheology). This allows Mercury to maintain a dynamic interior much later in time than earlier estimates using Newtonian rheology.

  3. Drug usage by outpatients in Croatia during an 8-year period: Influence of changes in pricing policy.

    PubMed

    Vitezic, Dinko; Madjarevic, Tomislav; Gantumur, Monja; Buble, Tonci; Vitezic, Miomira; Kovacevic, Miljenko; Mrsic-Pelcic, Jasenka; Sestan, Branko

    2012-07-01

    The aim of our study was to investigate the changes in drug usage and financial expenditure according to legal changes in Croatia during the period 2001 - 2008, especially considering pricing policy. The data on outpatient drug usage during the studied period was obtained from the Croatian National Health Insurance (CNHI). CNHI maintains a database on drugs prescribed by primary health care physicians and dispensed by pharmacies. The data was calculated and presented in defined daily doses (DDD) per inhabitant per year for antibiotics and in DDD/1,000 inhabitants/day for other drugs. The data is also presented in Euro/DDD and the financial expenditures are presented in Euros. During the investigated period drug usage increased 81.33%, while financial expenditure increased 77.23%. While total DDD/1,000 increased ~ 10% every year, financial expenditure increased 10 - 20% annually until 2006, but since then there have been no significant changes. Pricing policy changes could influence drug financial expenditure considerably in the short-term, but it is also important to apply a combination of measures for drug expenditure control. Numerous interventions from authorities from different countries all over the world, prove that there is still no so called "gold standard" which could restrain growing usage and expenditure of drugs. Clinical pharmacologists and clinical pharmacists should be included in these processes.

  4. Instrumented posterior lumbar interbody fusion (PLIF) with interbody fusion device (Cage) in degenerative disc disease (DDD): 3 years outcome.

    PubMed

    Ahsan, M K; Hossain, M A; Sakeb, N; Khan, S I; Zaman, N

    2013-10-01

    This prospective interventional study carried out at Bangabandhu Sheikh Mujib Medical University and a private hospital in Dhaka, Bangladesh during the period from October 2003 to September 2011. Surgical treatment of degenerative disc disease (DDD) should aim to re-expand the interbody space and stabilize until fusion is complete. The present study conducted to find out the efficacy of using interbody fusion device (Cage) to achieve interbody space re-expansion and fusion in surgical management of DDD. We have performed the interventional study on 53 patients, 42 female and 11 male, with age between 40 to 67 years. All the patients were followed up for 36 to 60 months (average 48 months). Forty seven patients were with spondylolisthesis and 06 with desiccated disc. All subjects were evaluated with regard to immediate and long term complications, radiological fusion and interbody space re-expansion and maintenance. The clinical outcome (pain and disability) was scored by standard pre and postoperative questionnaires. Intrusion, extrusion and migration of the interbody fusion cage were also assessed. Forty seven patients were considered to have satisfactory outcome in at least 36 months follow up. Pseudoarthrosis developed in 04 cases and 06 patients developed complications. In this series posterior lumbar interbody fusion (PLIF) with interbody cage and instrumentation in DDD showed significant fusion rate and maintenance of interbody space. Satisfactory outcome observed in 88.68% cases.

  5. Clinical features and outcomes of 98 children and adults with dense deposit disease

    PubMed Central

    Moon, Mikyung; Lanning, Lynne D.; McCarthy, Ann Marie; Smith, Richard J. H.

    2015-01-01

    Background Dense deposit disease (DDD) is an ultra-rare renal disease. Methods In the study reported here, 98 patients and their families participated in a descriptive patient-centered survey using an online research format. Reports were completed by patients (38%) or their parents (62%). Age at diagnosis ranged from 1.9 to 38.9 years (mean 14 years). Results The majority of patients presented with proteinuria and hematuria; 50% had hypertension and edema. Steroids were commonly prescribed, although their use was not evidence-based. One-half of the patients with DDD for 10 years progressed to end-stage renal disease (ESRD), with young females having the greatest risk for renal failure. Of first allografts, 45% failed within 5 years, most frequently due to recurrent disease (70%). Type 1 diabetes (T1D) was present in over 16% of families, which represents a 116-fold increase in incidence compared with the general population (p<0.001). Conclusions Based on these findings, we suggest that initiatives are needed to explore the high incidence of T1D in family members of DDD patients and the greater risk for progression to ESRD in young females with DDD. These efforts must be supported by sufficient numbers of patients to establish evidence-based practice guidelines for disease management. An international collaborative research survey should be implemented to encourage broad access and participation. PMID:22105967

  6. Review of Utilization of Cardiovascular Medicines by Daily Defined Dose in the Czech Republic and Slovak Republic.

    PubMed

    Szilágyiová, Petra; Slušná, Jana; Babela, Robert

    2017-11-01

    To the Editor, Drug utilization is an important field of drug policy and an integral part of public health internationally. This area of research attracts increasing interest but the pioneering work was done 50 years ago when the first drug consumption report from six European countries for the period of 1966-1967 showed great differences in drug utilization between population groups (WHO, 1968). These results gave important stimulus for creation of Anatomical Therapeutic Chemical (ATC) classification and technical unit of measurement called the Defined Daily Dose (DDD) which is specified as "the assumed average maintenance dose per day for a drug used for its main indication in adults" that dealt with the objections against traditional units of measurement in drug utilization studies (WHO, 2016). The ATC/DDD methodology has in the meantime proved its suitability in drug utilization monitoring and research. As mentioned previously, consumption of pharmaceuticals is often used as a basis for comparison between countries. Based on our professional expertise, we decided to analyze the consumption of cardiovascular medicines by DDD in the Czech Republic and Slovak Republic within all ATC groups reported to OECD (OECD, 2016a). According to OECD indicator results, the Slovak Republic showed in 2014 a higher pharmaceutical consumption by DDD in ATC group C (cardiovascular system) compared to the Czech Republic (OECD, 2016a).

  7. Dynamic Processes in Nanostructured Crystals Under Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Uglov, V. V.; Kvasov, N. T.; Shimanski, V. I.; Safronov, I. V.; Komarov, N. D.

    2018-02-01

    The paper presents detailed investigations of dynamic processes occurring in nanostructured Si(Fe) material under the radiation exposure, namely: heating, thermoelastic stress generation, elastic disturbances of the surrounding medium similar to weak shock waves, and dislocation generation. The performance calculations are proposed for elastic properties of the nanostructured material with a glance to size effects in nanoparticles.

  8. The Dichotic Digits difference Test (DDdT): Development, Normative Data, and Test-Retest Reliability Studies Part 1.

    PubMed

    Cameron, Sharon; Glyde, Helen; Dillon, Harvey; Whitfield, Jessica; Seymour, John

    2016-06-01

    The dichotic digits test is one of the most widely used assessment tools for central auditory processing disorder. However, questions remain concerning the impact of cognitive factors on test results. To develop the Dichotic Digits difference Test (DDdT), an assessment tool that could differentiate children with cognitive deficits from children with genuine dichotic deficits based on differential test results. The DDdT consists of four subtests: dichotic free recall (FR), dichotic directed left ear (DLE), dichotic directed right ear (DRE), and diotic. Scores for six conditions are calculated (FR left ear [LE], FR right ear [RE], and FR total, as well as DLE, DRE, and diotic). Scores for four difference measures are also calculated: dichotic advantage, right-ear advantage (REA) FR, REA directed, and attention advantage. Experiment 1 involved development of the DDdT, including error rate analysis. Experiment 2 involved collection of normative and test-retest reliability data. Twenty adults (aged 25 yr 10 mo to 50 yr 7 mo, mean 36 yr 4 mo) took part in the development study; 62 normal-hearing, typically developing, primary-school children (aged 7 yr 1 mo to 11 yr 11 mo, mean 9 yr 4 mo) and 10 adults (aged 25 yr 0 mo to 51 yr 6 mo, mean 34 yr 10 mo) took part in the normative and test-retest reliability study. In Experiment 1, error rate analysis was conducted on the 36 digit-pair combinations of the DDdT. Normative data collected in Experiment 2 were arcsine transformed to achieve a distribution that was closer to a normal distribution and z-scores calculated. Pearson product-moment correlations were used to determine the strength of relationships between DDdT conditions. The development study revealed no significant differences in the adult population between test and retest on any DDdT condition. Error rates on 36 digit pairs ranged from 1.5% to 16.7%. The most and the least error-prone digits were removed before commencement of the normative data study, leaving 25 unique digit pairs. Average z-scores calculated from the arcsine-transformed data collected from the 62 children who took part in the normative data study revealed that FR dichotic processing (LE, RE, and total) was highly correlated with diotic processing (r ranging from 0.5 to 0.6; p < 0.0001). Significant improvements in performance on retest occurred for the FR LE, RE, total, and diotic conditions (p ranging from 0.05 to 0.0004), the conditions that would be expected to improve with practice if the participant's response strategies are better the second time around. The addition of a diotic control task-that shares many response demands with the usual dichotic tasks-opens up the possibility of differentiating children who perform below expectations because of poor dichotic processing skills from those who perform poorly because of impaired attention, memory, or other cognitive abilities. The high correlation between dichotic and diotic performance suggests that factors other than dichotic performance play a substantial role in a child's ability to perform a dichotic listening task. This hypothesis is investigated further in the cognitive correlation study that follows in the companion paper (DDdT Study Part 2; Cameron et al, 2016). American Academy of Audiology.

  9. [Resistance of uropathogenic strains of Escherichia coli in pregnant women and other women in generative ages in comparison with antibiotics consumption in Zagreb].

    PubMed

    Culig, Josip; Mlinarić-Dzepina, Ana; Leppée, Marcel; Vranes, Jasmina

    2010-02-01

    To compare resistance of uropathogenic strains of Escherichia coli (UPEC) to antibiotics in women in generative ages and pregnant women during two year period (2004 and 2008) in Zagreb, and comparison of resistance and the consumption of antibiotics. The standard disk-diffusion method was used for sensitivity testing to 16 different antibiotics. Data on antibiotic utilization were used to calculate the number of defined daily doses (DDD) and DDD per 1000 inhabitants using Anatomical-Therapeutic-Chemical/DDD methodology. Data on antibiotic consumption during pregnancy were collected using a questionnaire filled in by 893 women after delivery. During 2004 resistance of UPEC to antimicrobial drugs was not different in pregnant and in non-pregnant women, with the exception of amoxicillin and nitrofurantoin, with statistically higher resistance in pregnant women (p < 0.01). Four years later the statistically higher resistance to norfloxacin was observed in non-pregnant women (p < 0.01). Comparing the resistance in 2004 and 2008, in the both groups of women a statistically significant decrease of resistance to cefalexin and nitrofurantoin was detected (p < 0.01). Outpatient utilization of antimicrobial drugs in Zagreb increased significantly, from 32 to 39 DDD/1000 inhabitants per day. The most used antibiotic was co-amoxiclav, and its utilization increased from 9.6 to 12.2 DDD/1000/day. Amoxicillin and co-amoxiclav were used during pregnancy by 9.6% interviewed women. The observed significant decrease of resistance to cefalexin makes that antibiotic the drug of choice for treatment of urinary tract infections in women in generative ages, and together with coamoxiclav can be administered in pregnancy. Constant monitoring of urinary tract pathogens resistance to antimicrobial agents ensures the effectiveness of empirical therapy, whose versatile use is limited due the potentially harmful effects of antimicrobial drugs on fetus.

  10. The systolic index: a noninvasive approach for the assessment of cardiac function: implications for patients with DDD and CRT devices.

    PubMed

    Chirife, Raul; Ruiz, G Aurora; Gayet, Enrique; Muratore, Claudio; Mazzetti, Héctor; Pellegrini, Alejandro; Tentori, M Cristina

    2013-10-01

    Our objective was to evaluate the systolic index (SI), the ratio between rate-corrected left ventricular ejection time (LVETc), and a preejection period surrogate (PEPsu), to assess cardiac function in patients with DDD and cardiac resynchronization therapy (CRT) pacemakers. LVETc and PEPsu were automatically measured from electrocardiogram and finger photoplethismography. Atrioventricular (AV) and mode switch (CRT to DDD) were used as hemodynamic challenges. Performance of SI, beat-by-beat systolic blood pressure (SBP), and Doppler aortic velocity/time integral (AoVTI) were compared in 36 patients, and SI's detection of CRT to DDD mode switch in nine patients, responders to CRT. AVs were changed from 30 ms to 250 ms (20 ms steps) at constant paced heart rate, alternating with a reference AV (RefAV), to reduce hemodynamic drift. The coefficient of variation (standard deviation/mean) of SI, SBP, and AoVTI during all RefAVs were used as error marker. The percentage detection of hemodynamic changes during AV transitions was a marker of sensitivity. Fifty-five patients (males 62%, age 69.6 ± 17) were studied. SI detected 441 of 544 transitions (81%) versus 361 (66%) of SBP (P = 0.005). Error during RefAVs was smaller for SI (3.4%) as compared to AoVTI (7.8%, P = 0.015) and to SBP (5.7%, P = 0.005). SIs correlated with AoVTI (R from 0.71 to 0.98, all P < 0.001). SI detected all CRT to DDD changes (P < 0.001). The noninvasive SI obtained with a simple, observer-independent hemodynamic assessment procedure has higher accuracy than SBP and AoVTI and better sensitivity than SBP. It detects mechanical resynchronization in CRT and allows programming a suitable AV delay. ©2013, The Authors. Journal compilation ©2013 Wiley Periodicals, Inc.

  11. Forecasting carbapenem resistance from antimicrobial consumption surveillance: Lessons learnt from an OXA-48-producing Klebsiella pneumoniae outbreak in a West London renal unit.

    PubMed

    Gharbi, M; Moore, L S P; Gilchrist, M; Thomas, C P; Bamford, K; Brannigan, E T; Holmes, A H

    2015-08-01

    This study aimed to forecast the incidence rate of carbapenem resistance and to assess the impact of an antimicrobial stewardship intervention using routine antimicrobial consumption surveillance data. Following an outbreak of OXA-48-producing Klebsiella pneumoniae (January 2008-April 2010) in a renal cohort in London, a forecasting ARIMA model was derived using meropenem consumption data [defined daily dose per 100 occupied bed-days (DDD/100OBD)] from 2005-2014 as a predictor of the incidence rate of OXA-48-producing organisms (number of new cases/year/100,000OBD). Interrupted times series assessed the impact of meropenem consumption restriction as part of the outbreak control. Meropenem consumption at lag -1 year (the preceding year), highly correlated with the incidence of OXA-48-producing organisms (r=0.71; P=0.005), was included as a predictor within the forecasting model. The number of cases/100,000OBD for 2014-2015 was estimated to be 4.96 (95% CI 2.53-7.39). Analysis of meropenem consumption pre- and post-intervention demonstrated an increase of 7.12 DDD/100OBD/year (95% CI 2.97-11.27; P<0.001) in the 4 years preceding the intervention, but a decrease thereafter. The change in slope was -9.11 DDD/100OBD/year (95% CI -13.82 to -4.39). Analysis of alternative antimicrobials showed a significant increase in amikacin consumption post-intervention from 0.54 to 3.41 DDD/100OBD/year (slope +0.72, 95% CI 0.29-1.15; P=0.01). Total antimicrobials significantly decreased from 176.21 to 126.24 DDD/100OBD/year (P=0.05). Surveillance of routinely collected antimicrobial consumption data may provide a key warning indicator to anticipate increased incidence of carbapenem-resistant organisms. Further validation using real-time data is needed. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Survival After Rate-Responsive Programming in Patients With Cardiac Resynchronization Therapy-Defibrillator Implants Is Associated With a Novel Parameter: The Heart Rate Score.

    PubMed

    Olshansky, Brian; Richards, Mark; Sharma, Arjun; Wold, Nicholas; Jones, Paul; Perschbacher, David; Wilkoff, Bruce L

    2016-08-01

    Rate-responsive pacing (DDDR) versus nonrate-responsive pacing (DDD) has shown no survival benefit for patients undergoing cardiac resynchronization therapy defibrillator (CRT-D) implants. The heart rate score (HRSc), an indicator of heart rate variation, may predict survival. We hypothesized that high-risk HRSc CRT-D patients will have improved survival with DDDR versus DDD alone. All CRT-D patients in LATITUDE remote monitoring (2006-2011), programmed DDD, had HRSc calculated at first data upload after implant (median 1.4 months). Patients subsequently reprogrammed to DDDR 7.6 median months later were compared with a propensity-matched DDD group and followed for 21.4 median months by remote monitoring. Data were adjusted for age, sex, lower rate limit, percent atrial pacing, percent biventricular pacing, and implant year. The social security death index was used to identify deaths. Remote monitoring provided programming and histogram data. DDDR programming in CRT-D patients was associated with improved survival (adjusted hazard ratio =0.77; P<0.001). However, only those with baseline HRSc ≥70% (2308/6164) had improved HRSc with DDDR (from 88±9% to 78±15%; P<0.001) and improved survival (hazard ratio =0.74; P<0.001). Patients with a high baseline HRSc and significant improvement over time were more likely to survive (hazard ratio =0.63; P=0.006). For patients with HRSc <70%, DDDR reprogramming increased the HRSc from 46±11% to 50±15% (P<0.001); survival did not change. The HRSc did not change with DDD pacing over time. In CRT-D patients with HRSc ≥70%, DDDR reprogramming improved the HRSc and was associated with survival. Patients with lower HRSc had no change in survival with DDDR programming. © 2016 American Heart Association, Inc.

  13. Return to Work After Diskogenic Fusion in Workers' Compensation Subjects.

    PubMed

    Anderson, Joshua T; Haas, Arnold R; Percy, Rick; Woods, Stephen T; Ahn, Uri M; Ahn, Nicholas U

    2015-12-01

    Lumbar fusion for degenerative disk disease (DDD) is associated with variable clinical outcomes. Patients with workers' compensation claims often have worse fusion outcomes than the general population. Few studies have evaluated the risk factors for poor outcomes within this clinically distinct population. The goal of this study was to identify preoperative predictors of return to work status after fusion for DDD in a workers' compensation setting. The authors used International Classification of Diseases, Ninth Revision (ICD-9), diagnosis and Current Procedural Terminology (CPT) procedural codes to identify 1037 subjects from the Ohio Bureau of Workers' Compensation database who underwent fusion for DDD between 1993 and 2013. Of these subjects, 23.2% (n=241) made a sustained return to work within 2 years after fusion. To identify preoperative predictors of postoperative return to work status, the authors used multivariate logistic regression analysis, adjusting for many important covariates. These included prolonged time out of work (P<.001; odds ratio [OR], 0.24), psychiatric history (P<.001; OR, 0.14), prolonged use of opioid analgesics (P<.001; OR, 0.46), male sex (P=.014; OR, 0.65), and legal representation (P=.042; OR, 0.67). The return to work rates associated with these risk factors were 10.4%, 2.0%, 11.9%, 21.1%, and 20.7%, respectively. Of the study subjects, 76.8% (n=796) did not return to work and had considerably worse postoperative outcomes, highlighted by chronic opioid dependence and high rates of failed back syndrome, additional surgery, and new psychiatric comorbidity. The low return to work rates and other generally poor outcomes reported in this study may indicate a more limited role for lumbar fusion among patients with DDD who have workers' compensation claims. More studies are needed to determine whether fusion for DDD can improve function and quality of life in these patients. Copyright 2015, SLACK Incorporated.

  14. Maritime Mobile Force Protection (MMFP) Program

    DTIC Science & Technology

    2010-05-28

    to draw or write on the screen.  Thin design has a starting weight of 4.65lbs.  Capture handwriting : scrawl onscreen with the included dockable...Will say “Past CPA” if CPA has already occurred. Range at CPA DDD Yards Range at Closest Point of Approach to HVU Closing Speed DDD knots Speed of...closing to HVU, if greater than or equal to zero. Will say “Opening” if the closing speed is less than zero. Data Source Radar, AIS, Correlated Source

  15. Readily functionalized AAA-DDD triply hydrogen-bonded motifs.

    PubMed

    Tong, Feng; Linares-Mendez, Iamnica J; Han, Yi-Fei; Wisner, James A; Wang, Hong-Bo

    2018-04-25

    Herein we present a new, readily functionalized AAA-DDD hydrogen bond array. A novel AAA monomeric unit (3a-b) was obtained from a two-step synthetic procedure starting with 2-aminonicotinaldehyde via microwave radiation (overall yield of 52-66%). 1H NMR and fluorescence spectroscopy confirmed the complexation event with a calculated association constant of 1.57 × 107 M-1. Likewise, the usefulness of this triple hydrogen bond motif in supramolecular polymerization was demonstrated through viscosity measurements in a crosslinked supramolecular alternating copolymer.

  16. Solute segregation kinetics and dislocation depinning in a binary alloy

    NASA Astrophysics Data System (ADS)

    Dontsova, E.; Rottler, J.; Sinclair, C. W.

    2015-06-01

    Static strain aging, a phenomenon caused by diffusion of solute atoms to dislocations, is an important contributor to the strength of substitutional alloys. Accurate modeling of this complex process requires both atomic spatial resolution and diffusional time scales, which is very challenging to achieve with commonly used atomistic computational methods. In this paper, we use the recently developed "diffusive molecular dynamics" (DMD) method that is capable of describing the kinetics of the solute segregation process at the atomic level while operating on diffusive time scales in a computationally efficient way. We study static strain aging in the Al-Mg system and calculate the depinning shear stress between edge and screw dislocations and their solute atmospheres formed for various waiting times with different solute content and for a range of temperatures. A simple phenomenological model is also proposed that describes the observed behavior of the critical shear stress as a function of segregation level.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Tianyi; Tan, Lizhen; Lu, Zizhe

    Instrumented nanoindentation was used in this paper to investigate the hardness, elastic modulus, and creep behavior of an austenitic Fe-20Cr-25Ni model alloy at room temperature, with the indented grain orientation being the variant. The samples indented close to the {111} surfaces exhibited the highest hardness and modulus. However, nanoindentation creep tests showed the greatest tendency for creep in the {111} indented samples, compared with the samples indented close to the {001} and {101} surfaces. Scanning electron microscopy and cross-sectional transmission electron microscopy revealed slip bands and dislocations in all samples. The slip band patterns on the indented surfaces were influencedmore » by the grain orientations. Deformation twinning was observed only under the {001} indented surfaces. Finally, microstructural analysis and molecular dynamics modeling correlated the anisotropic nanoindentation-creep behavior with the different dislocation substructures formed during indentation, which resulted from the dislocation reactions of certain active slip systems that are determined by the indented grain orientations.« less

  18. Crystal Plasticity Model of Reactor Pressure Vessel Embrittlement in GRIZZLY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Pritam; Biner, Suleyman Bulent; Zhang, Yongfeng

    2015-07-01

    The integrity of reactor pressure vessels (RPVs) is of utmost importance to ensure safe operation of nuclear reactors under extended lifetime. Microstructure-scale models at various length and time scales, coupled concurrently or through homogenization methods, can play a crucial role in understanding and quantifying irradiation-induced defect production, growth and their influence on mechanical behavior of RPV steels. A multi-scale approach, involving atomistic, meso- and engineering-scale models, is currently being pursued within the GRIZZLY project to understand and quantify irradiation-induced embrittlement of RPV steels. Within this framework, a dislocation-density based crystal plasticity model has been developed in GRIZZLY that captures themore » effect of irradiation-induced defects on the flow stress behavior and is presented in this report. The present formulation accounts for the interaction between self-interstitial loops and matrix dislocations. The model predictions have been validated with experiments and dislocation dynamics simulation.« less

  19. Fast algorithms for evaluating the stress field of dislocation lines in anisotropic elastic media

    NASA Astrophysics Data System (ADS)

    Chen, C.; Aubry, S.; Oppelstrup, T.; Arsenlis, A.; Darve, E.

    2018-06-01

    In dislocation dynamics (DD) simulations, the most computationally intensive step is the evaluation of the elastic interaction forces among dislocation ensembles. Because the pair-wise interaction between dislocations is long-range, this force calculation step can be significantly accelerated by the fast multipole method (FMM). We implemented and compared four different methods in isotropic and anisotropic elastic media: one based on the Taylor series expansion (Taylor FMM), one based on the spherical harmonics expansion (Spherical FMM), one kernel-independent method based on the Chebyshev interpolation (Chebyshev FMM), and a new kernel-independent method that we call the Lagrange FMM. The Taylor FMM is an existing method, used in ParaDiS, one of the most popular DD simulation softwares. The Spherical FMM employs a more compact multipole representation than the Taylor FMM does and is thus more efficient. However, both the Taylor FMM and the Spherical FMM are difficult to derive in anisotropic elastic media because the interaction force is complex and has no closed analytical formula. The Chebyshev FMM requires only being able to evaluate the interaction between dislocations and thus can be applied easily in anisotropic elastic media. But it has a relatively large memory footprint, which limits its usage. The Lagrange FMM was designed to be a memory-efficient black-box method. Various numerical experiments are presented to demonstrate the convergence and the scalability of the four methods.

  20. On the mobility of carriers at semi-coherent oxide heterointerfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dholabhai, Pratik P.; Martinez, Enrique Saez; Brown, Nicholas Taylor

    In the quest to develop new materials with enhanced ionic conductivity for battery and fuel cell applications, nano-structured oxides have attracted attention. Experimental reports indicate that oxide heterointerfaces can lead to enhanced ionic conductivity, but these same reports cannot elucidate the origin of this enhancement, often vaguely referring to pipe diffusion at misfit dislocations as a potential explanation. However, this highlights the need to understand the role of misfit dislocation structure at semi-coherent oxide heterointerfaces in modifying carrier mobilities. Here, we use atomistic and kinetic Monte Carlo (KMC) simulations to develop a model of oxygen vacancy migration at SrTiO 3/MgOmore » interfaces, chosen because the misfit dislocation structure can be modified by changing the termination chemistry. We use atomistic simulations to determine the energetics of oxygen vacancies at both SrO and TiO 2 terminated interfaces, which are then used as the basis of the KMC simulations. While this model is approximate (as revealed by select nudged elastic band calculations), it highlights the role of the misfit dislocation structure in modifying the oxygen vacancy dynamics. We find that oxygen vacancy mobility is significantly reduced at either interface, with slight differences at each interface due to the differing misfit dislocation structure. Here, we conclude that if such semi-coherent oxide heterointerfaces induce enhanced ionic conductivity, it is not a consequence of higher carrier mobility.« less

  1. On the mobility of carriers at semi-coherent oxide heterointerfaces

    DOE PAGES

    Dholabhai, Pratik P.; Martinez, Enrique Saez; Brown, Nicholas Taylor; ...

    2017-08-17

    In the quest to develop new materials with enhanced ionic conductivity for battery and fuel cell applications, nano-structured oxides have attracted attention. Experimental reports indicate that oxide heterointerfaces can lead to enhanced ionic conductivity, but these same reports cannot elucidate the origin of this enhancement, often vaguely referring to pipe diffusion at misfit dislocations as a potential explanation. However, this highlights the need to understand the role of misfit dislocation structure at semi-coherent oxide heterointerfaces in modifying carrier mobilities. Here, we use atomistic and kinetic Monte Carlo (KMC) simulations to develop a model of oxygen vacancy migration at SrTiO 3/MgOmore » interfaces, chosen because the misfit dislocation structure can be modified by changing the termination chemistry. We use atomistic simulations to determine the energetics of oxygen vacancies at both SrO and TiO 2 terminated interfaces, which are then used as the basis of the KMC simulations. While this model is approximate (as revealed by select nudged elastic band calculations), it highlights the role of the misfit dislocation structure in modifying the oxygen vacancy dynamics. We find that oxygen vacancy mobility is significantly reduced at either interface, with slight differences at each interface due to the differing misfit dislocation structure. Here, we conclude that if such semi-coherent oxide heterointerfaces induce enhanced ionic conductivity, it is not a consequence of higher carrier mobility.« less

  2. Multi-scale simulation of lithium diffusion in the presence of a 30° partial dislocation and stacking fault in Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao-Ying; Li, Chen-liang; Wu, Guo-Xun

    The multi-scale simulation method is employed to investigate how defects affect the performances of Li-ion batteries (LIBs). The stable positions, binding energies and dynamics properties of Li impurity in Si with a 30° partial dislocation and stacking fault (SF) have been studied in comparison with the ideal crystal. It is found that the most table position is the tetrahedral (T{sub d}) site and the diffusion barrier is 0.63 eV in bulk Si. In the 30° partial dislocation core and SF region, the most stable positions are at the centers of the octagons (Oct-A and Oct-B) and pentahedron (site S), respectively. Inmore » addition, Li dopant may tend to congregate in these defects. The motion of Li along the dislocation core are carried out by the transport among the Oct-A (Oct-B) sites with the barrier of 1.93 eV (1.12 eV). In the SF region, the diffusion barrier of Li is 0.91 eV. These two types of defects may retard the fast migration of Li dopant that is finally trapped by them. Thus, the presence of the 30° partial dislocation and SF may deactivate the Li impurity and lead to low rate capability of LIB.« less

  3. Trapping of edge dislocations by a moving smectic-A smectic-B interface

    NASA Astrophysics Data System (ADS)

    Oswald, P.; Lejcek, L.

    1991-09-01

    We analyze how the motion of the edge dislocations of the smectic-A liquid crystal allows the system to relax plastically the stresses that are generated during the growth of the smectic-B plastic crystal. These stresses are both due, to the density difference between the two phases, and to the layer thickness variation at the phase transition. In particular, we calculate under which conditions a dislocation can be trapped by the smectic-B phase. Finally, we suggest that this dynamical trapping is responsible for the very large amount of stacking faults observed by X-ray diffraction. Nous analysons comment le mouvement des dislocations coin du cristal liquide smectique A permet de relaxer plastiquement les contraintes induites par la croissance du cristal plastique smectique B. Ces contraintes sont engendrées à la fois par la différence de densité qui existe entre les deux phases et par la variation d'épaisseur des couches à la transition. Nous calculons en particulier dans quelles conditions une dislocation coin peut être piégée par le smectique B. Enfin, nous suggérons que ce piégeage dynamique est à l'origine de la très forte densité de fautes d'empilement qui est couramment observée aux rayons X dans la phase B.

  4. Implications for plastic flow in the deep mantle from modelling dislocations in MgSiO3 minerals.

    PubMed

    Carrez, Philippe; Ferré, Denise; Cordier, Patrick

    2007-03-01

    The dynamics of the Earth's interior is largely controlled by mantle convection, which transports radiogenic and primordial heat towards the surface. Slow stirring of the deep mantle is achieved in the solid state through high-temperature creep of rocks, which are dominated by the mineral MgSiO3 perovskite. Transformation of MgSiO3 to a 'post-perovskite' phase may explain the peculiarities of the lowermost mantle, such as the observed seismic anisotropy, but the mechanical properties of these mineralogical phases are largely unknown. Plastic flow of solids involves the motion of a large number of crystal defects, named dislocations. A quantitative description of flow in the Earth's mantle requires information about dislocations in high-pressure minerals and their behaviour under stress. This property is currently out of reach of direct atomistic simulations using either empirical interatomic potentials or ab initio calculations. Here we report an alternative to direct atomistic simulations based on the framework of the Peierls-Nabarro model. Dislocation core models are proposed for MgSiO3 perovskite (at 100 GPa) and post-perovskite (at 120 GPa). We show that in perovskite, plastic deformation is strongly influenced by the orthorhombic distortions of the unit cell. In silicate post-perovskite, large dislocations are relaxed through core dissociation, with implications for the mechanical properties and seismic anisotropy of the lowermost mantle.

  5. Deformation response of cube-on-cube and non-coherent twin interfaces in AgCu eutectic after dynamic plastic compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eftink, Benjamin P.; Mara, Nathan Allan; Kingstedt, Owen T.

    For this research, Split-Hopkinson pressure bar dynamic compression experiments were conducted to determine the defect/interface interaction dependence on interface type, bilayer thickness and interface orientation with respect to the loading direction in the Ag-Cu eutectic system. Specifically, the deformation microstructure in alloys with either a cube-on-cube orientation relationship with {111} Ag||{111} Cu interface habit planes or a twin orientation relationship with {more » $$\\overline{3}13$$} Ag||{$$\\overline{1}12$$} Cu interface habit planes and with bilayer thicknesses of 500 nm, 1.1 µm and 2.2 µm were probed using TEM. The deformation was carried by dislocation slip and in certain conditions, deformation twinning. The twinning response was dependent on loading orientation with respect to the interface plane, bilayer thickness, and interface type. Twinning was only observed when loading at orientations away from the growth direction and decreased in prevalence with decreasing bilayer thickness. Twinning in Cu was dependent on twinning partial dislocations being transmitted from Ag, which only occurred for cube-on-cube interfaces. Lastly, dislocation slip and deformation twin transfer across the interfaces is discussed in terms of the slip transfer conditions developed for grain boundaries in FCC alloys.« less

  6. Deformation response of cube-on-cube and non-coherent twin interfaces in AgCu eutectic after dynamic plastic compression

    DOE PAGES

    Eftink, Benjamin P.; Mara, Nathan Allan; Kingstedt, Owen T.; ...

    2017-12-02

    For this research, Split-Hopkinson pressure bar dynamic compression experiments were conducted to determine the defect/interface interaction dependence on interface type, bilayer thickness and interface orientation with respect to the loading direction in the Ag-Cu eutectic system. Specifically, the deformation microstructure in alloys with either a cube-on-cube orientation relationship with {111} Ag||{111} Cu interface habit planes or a twin orientation relationship with {more » $$\\overline{3}13$$} Ag||{$$\\overline{1}12$$} Cu interface habit planes and with bilayer thicknesses of 500 nm, 1.1 µm and 2.2 µm were probed using TEM. The deformation was carried by dislocation slip and in certain conditions, deformation twinning. The twinning response was dependent on loading orientation with respect to the interface plane, bilayer thickness, and interface type. Twinning was only observed when loading at orientations away from the growth direction and decreased in prevalence with decreasing bilayer thickness. Twinning in Cu was dependent on twinning partial dislocations being transmitted from Ag, which only occurred for cube-on-cube interfaces. Lastly, dislocation slip and deformation twin transfer across the interfaces is discussed in terms of the slip transfer conditions developed for grain boundaries in FCC alloys.« less

  7. Properties of a Laser Shock Wave in Al-Cu Alloy under Elevated Temperatures: A Molecular Dynamics Simulation Study

    PubMed Central

    Meng, Xiankai; Zhou, Jianzhong; Huang, Shu; Su, Chun; Sheng, Jie

    2017-01-01

    The laser shock wave (LSW) generated by the interaction between a laser and a material has been widely used in laser manufacturing, such as laser shock peening and laser shock forming. However, due to the high strain rate, the propagation of LSW in materials, especially LSW at elevated temperatures, is difficult to study through experimental methods. A molecular dynamics simulation was used in this study to investigate the propagation of LSW in an Al-Cu alloy. The Hugoniot relations of LSW were obtained at different temperatures and the effects of elevated temperatures on shock velocity and shock pressure were analyzed. Then the elastic and plastic wave of the LSW was researched. Finally, the evolution of dislocations induced by LSW and its mechanism under elevated temperatures was explored. The results indicate that the shock velocity and shock pressure induced by LSW both decrease with the increasing temperatures. Moreover, the velocity of elastic wave and plastic wave both decrease with the increasing treatment temperature, while their difference decreases as the temperature increases. Moreover, the dislocation atoms increases with the increasing temperatures before 2 ps, while it decreases with the increasing temperatures after 2 ps. The reason for the results is related to the formation and evolution of extended dislocations. PMID:28772433

  8. Properties of a Laser Shock Wave in Al-Cu Alloy under Elevated Temperatures: A Molecular Dynamics Simulation Study.

    PubMed

    Meng, Xiankai; Zhou, Jianzhong; Huang, Shu; Su, Chun; Sheng, Jie

    2017-01-18

    The laser shock wave (LSW) generated by the interaction between a laser and a material has been widely used in laser manufacturing, such as laser shock peening and laser shock forming. However, due to the high strain rate, the propagation of LSW in materials, especially LSW at elevated temperatures, is difficult to study through experimental methods. A molecular dynamics simulation was used in this study to investigate the propagation of LSW in an Al-Cu alloy. The Hugoniot relations of LSW were obtained at different temperatures and the effects of elevated temperatures on shock velocity and shock pressure were analyzed. Then the elastic and plastic wave of the LSW was researched. Finally, the evolution of dislocations induced by LSW and its mechanism under elevated temperatures was explored. The results indicate that the shock velocity and shock pressure induced by LSW both decrease with the increasing temperatures. Moreover, the velocity of elastic wave and plastic wave both decrease with the increasing treatment temperature, while their difference decreases as the temperature increases. Moreover, the dislocation atoms increases with the increasing temperatures before 2 ps, while it decreases with the increasing temperatures after 2 ps. The reason for the results is related to the formation and evolution of extended dislocations.

  9. A Novel Approach for Dynamic Testing of Total Hip Dislocation under Physiological Conditions.

    PubMed

    Herrmann, Sven; Kluess, Daniel; Kaehler, Michael; Grawe, Robert; Rachholz, Roman; Souffrant, Robert; Zierath, János; Bader, Rainer; Woernle, Christoph

    2015-01-01

    Constant high rates of dislocation-related complications of total hip replacements (THRs) show that contributing factors like implant position and design, soft tissue condition and dynamics of physiological motions have not yet been fully understood. As in vivo measurements of excessive motions are not possible due to ethical objections, a comprehensive approach is proposed which is capable of testing THR stability under dynamic, reproducible and physiological conditions. The approach is based on a hardware-in-the-loop (HiL) simulation where a robotic physical setup interacts with a computational musculoskeletal model based on inverse dynamics. A major objective of this work was the validation of the HiL test system against in vivo data derived from patients with instrumented THRs. Moreover, the impact of certain test conditions, such as joint lubrication, implant position, load level in terms of body mass and removal of muscle structures, was evaluated within several HiL simulations. The outcomes for a normal sitting down and standing up maneuver revealed good agreement in trend and magnitude compared with in vivo measured hip joint forces. For a deep maneuver with femoral adduction, lubrication was shown to cause less friction torques than under dry conditions. Similarly, it could be demonstrated that less cup anteversion and inclination lead to earlier impingement in flexion motion including pelvic tilt for selected combinations of cup and stem positions. Reducing body mass did not influence impingement-free range of motion and dislocation behavior; however, higher resisting torques were observed under higher loads. Muscle removal emulating a posterior surgical approach indicated alterations in THR loading and the instability process in contrast to a reference case with intact musculature. Based on the presented data, it can be concluded that the HiL test system is able to reproduce comparable joint dynamics as present in THR patients.

  10. A Novel Approach for Dynamic Testing of Total Hip Dislocation under Physiological Conditions

    PubMed Central

    Herrmann, Sven; Kluess, Daniel; Kaehler, Michael; Grawe, Robert; Rachholz, Roman; Souffrant, Robert; Zierath, János; Bader, Rainer; Woernle, Christoph

    2015-01-01

    Constant high rates of dislocation-related complications of total hip replacements (THRs) show that contributing factors like implant position and design, soft tissue condition and dynamics of physiological motions have not yet been fully understood. As in vivo measurements of excessive motions are not possible due to ethical objections, a comprehensive approach is proposed which is capable of testing THR stability under dynamic, reproducible and physiological conditions. The approach is based on a hardware-in-the-loop (HiL) simulation where a robotic physical setup interacts with a computational musculoskeletal model based on inverse dynamics. A major objective of this work was the validation of the HiL test system against in vivo data derived from patients with instrumented THRs. Moreover, the impact of certain test conditions, such as joint lubrication, implant position, load level in terms of body mass and removal of muscle structures, was evaluated within several HiL simulations. The outcomes for a normal sitting down and standing up maneuver revealed good agreement in trend and magnitude compared with in vivo measured hip joint forces. For a deep maneuver with femoral adduction, lubrication was shown to cause less friction torques than under dry conditions. Similarly, it could be demonstrated that less cup anteversion and inclination lead to earlier impingement in flexion motion including pelvic tilt for selected combinations of cup and stem positions. Reducing body mass did not influence impingement-free range of motion and dislocation behavior; however, higher resisting torques were observed under higher loads. Muscle removal emulating a posterior surgical approach indicated alterations in THR loading and the instability process in contrast to a reference case with intact musculature. Based on the presented data, it can be concluded that the HiL test system is able to reproduce comparable joint dynamics as present in THR patients. PMID:26717236

  11. The First Report of KRT5 Mutation Underlying Acantholytic Dowling-Degos Disease with Mottled Hypopigmentation in an Indian Family

    PubMed Central

    Verma, Shyam; Pasternack, Sandra M.; Rütten, Arno; Ruzicka, Thomas; Betz, Regina C.; Hanneken, Sandra

    2014-01-01

    Galli Galli disease (GGD) is the name given to a rare form of acantholytic Dowling-Degos disease. (DDD), the latter itself being a rare condition. We believe we are describing for the first time in Indian dermatologic literature a case of GGD in a family where 25 persons have DDD and have been able to document a KRT5 mutation in four members of the family. Whereas reticulate pigmentation is a hallmark of DDD there are rare reports of mottled pigmentation with multiple asymptomatic hypopigmented macules scattered diffusely along with the pigmentation. All the cases described here show a mottled pigmentation comprising hypo and hyperpigmented asymptomatic macules. After the clinical diagnosis was made by one of the authors (SV) in India, the German authors repeated histological examination and successfully demonstrated a heterozygous nonsense mutation, c.C10T (p.Gln4X), in exon 1 of the KRT5 gene, from various centers in Munich, Bonn, Dusseldorf and Friedrichschafen in Germany. PMID:25284854

  12. [Generic drugs and the consumption trends of antihypertensives in Morocco].

    PubMed

    Berrada El Azizi, Ghizlane; Ahid, Samir; Ghanname, Imane; Ghannam, Imane; Belaiche, Abdelmajid; Hassar, Mohammed; Cherrah, Yahia

    2013-01-01

    To evaluate the evolution of consumption of antihypertensive drugs generic among 1991-2010, to assess the impacts after the institution of Mandatory Health Insurance and the marketing of generic drugs. We used sales data from the Moroccan subsidiary of IMS Health Intercontinental Marketing Service. Consumption of generic antihypertensive drugs increased from 0.08 to 10.65 DDD/1 000 inhabitants/day between 1991 and 2010. In 2010, generic of the calcium channel blockers (CCBs) represented 4.08 DDD/1 000 inhabitants/day (82.09%), followed by angiotensin converting enzyme inhibitors (ACEI) by 2.40 DDD/1 000 inhabitants/day (48.29%). The generics market of CCBs is the most dominant and represented in 2010, 79.21% in volume and 62.58% in value. In developing countries like Morocco, the generic drug is a key element for access to treatment especially for the poor population. © 2013 Société Française de Pharmacologie et de Thérapeutique.

  13. Analyzing U.S. prescription lists with RxNorm and the ATC/DDD Index.

    PubMed

    Bodenreider, Olivier; Rodriguez, Laritza M

    2014-01-01

    To evaluate the suitability of the ATC/DDD Index (Anatomical Therapeutic Chemical (ATC) Classification System/Defined Daily Dose) for analyzing prescription lists in the U.S. We mapped RxNorm clinical drugs to ATC. We used this mapping to classify a large set of prescription drugs with ATC and compared the prescribed daily dose to the defined daily dose (DDD) in ATC. 64% of the 11,422 clinical drugs could be precisely mapped to ATC. 97% of the 87,001 RxNorm codes from the prescription dataset could be classified with ATC, and 97% of the prescribed daily doses could be assessed. Although the mapping of RxNorm ingredients to ATC appears to be largely incomplete, the most frequently prescribed drugs in the prescription dataset we analyzed were covered. This study demonstrates the feasibility of using ATC in conjunction with RxNorm for analyzing U.S. prescription datasets for drug classification and assessment of the prescribed daily doses.

  14. Influence of grain size on the mechanical properties of nano-crystalline copper; insights from molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Rida, A.; Makke, A.; Rouhaud, E.; Micoulaut, M.

    2017-10-01

    We use molecular dynamics simulations to study the mechanical properties of a columnar nanocrystalline copper with a mean grain size between 8.91 nm and 24 nm. The used samples were generated by using a melting cooling method. These samples were submitted to uniaxial tensile test. The results reveal the presence of a critical mean grain size between 16 and 20 nm, where there is an inversion in the conventional Hall-Petch tendency. This inversion is illustrated by the increase of flow stress with the increase of the mean grain size. This transition is caused by shifting of the deformation mechanism from dislocations to a combination of grain boundaries sliding and dislocations. Moreover, the effect of temperature on the mechanical properties of nanocrystalline copper has been investigated. The results show a decrease of the flow stress and Young's modulus when the temperature increases.

  15. Mesoscale Thermodynamic Analysis of Atomic-Scale Dislocation-Obstacle Interactions Simulated by Molecular Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monet, Giath; Bacon, David J; Osetskiy, Yury N

    2010-01-01

    Given the time and length scales in molecular dynamics (MD) simulations of dislocation-defect interactions, quantitative MD results cannot be used directly in larger scale simulations or compared directly with experiment. A method to extract fundamental quantities from MD simulations is proposed here. The first quantity is a critical stress defined to characterise the obstacle resistance. This mesoscopic parameter, rather than the obstacle 'strength' designed for a point obstacle, is to be used for an obstacle of finite size. At finite temperature, our analyses of MD simulations allow the activation energy to be determined as a function of temperature. The resultsmore » confirm the proportionality between activation energy and temperature that is frequently observed by experiment. By coupling the data for the activation energy and the critical stress as functions of temperature, we show how the activation energy can be deduced at a given value of the critical stress.« less

  16. Structural properties and defects of GaN crystals grown at ultra-high pressures: A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Gao, Tinghong; Li, Yidan; Xie, Quan; Tian, Zean; Chen, Qian; Liang, Yongchao; Ren, Lei; Hu, Xuechen

    2018-01-01

    The growth of GaN crystals at different pressures was studied by molecular dynamics simulation employing the Stillinger-Weber potential, and their structural properties and defects were characterized using the radial distribution function, the Voronoi polyhedron index method, and a suitable visualization technology. Crystal structures formed at 0, 1, 5, 10, and 20 GPa featured an overwhelming number of <4 0 0 0> Voronoi polyhedra, whereas amorphous structures comprising numerous disordered polyhedra were produced at 50 GPa. During quenching, coherent twin boundaries were easily formed between zinc-blende and wurtzite crystal structures in GaN. Notably, point defects usually appeared at low pressure, whereas dislocations were observed at high pressure, since the simultaneous growth of two crystal grains with different crystal orientations and their boundary expansion was hindered in the latter case, resulting in the formation of a dislocation between these grains.

  17. Unraveling Recrystallization Mechanisms Governing Texture Development from Rare Earth Element Additions to Magnesium

    NASA Astrophysics Data System (ADS)

    Imandoust, Aidin

    The origin of texture components associated with rare-earth (RE) element additions in wrought magnesium (Mg) alloys is a long-standing problem in magnesium technology. The objective of this research is to identify the mechanisms accountable for rare-earth texture during dynamic recrystallization (DRX). Towards this end, we designed binary Mg-Cerium and Mg-Gadolinium alloys along with complex alloy compositions containing zinc, yttrium and Mischmetal. Binary alloys along with pure Mg were designed to individually investigate their effects on texture evolutions, while complex compositions are designed to develop randomized texture, and be used in automotive and aerospace applications. We selected indirect extrusion to thermo-mechanically process our materials. Different extrusion ratios and speeds were designed to produce partially and fully recrystallized microstructures, allowing us to analyze DRX from its early stages to completion. X-ray diffraction, electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) were used to conduct microstructure and texture analyses. Our analyses revealed that rare-earth elements in zinc-containing magnesium alloys promote discontinuous dynamic recrystallization at the grain boundaries. During nucleation, the effect of rare earth elements on orientation selection was explained by the concomitant actions of multiple Taylor axes in the same grain. Isotropic grain growth was observed due to rare earth elements segregating to grain boundaries, which lead to texture randomization. The nucleation in binary Mg-RE alloys took place by continuous formation of necklace structures. Stochastic relaxation of basal and non-basal dislocations into low-angle grain boundaries produced chains of embryos with nearly random orientations. Schmid factor analysis showed a lower net activation of dislocations in RE textured grains compared to ones on the other side of the stereographic triangle. Lower dislocation densities within RE grains favored their growth by setting the boundary migration direction toward grains with higher dislocation density, thereby decreasing the system energy. We investigated the influence of RE elements on extension twinning induced hardening. RE addition enhanced tensile twinning induced hardening significantly. EBSD analysis illustrated that tensile twins cross low angle grain boundaries in Mg-RE alloys, which produced large twins and facilitated transmutation of basal to prismatic dislocations. Higher activity of pyramidal II dislocations in Mg-RE alloys resulted in higher twinning induced hardening.

  18. Organochlorine pesticide residues in bed sediments of the San Joaquin River, California

    USGS Publications Warehouse

    Gilliom, Robert J.; Clifton, Daphne G.

    1990-01-01

    Bed sediments of the San Joaquin River and its tributaries were sampled during October 7–11, 1985, and analyzed for organochiorine pesticide residues in order to determine their areal distribution and to evaluate and prioritize needs for further study. Residues of DDD, DDE, DDT, and dieldrin are widespread in the fine-grained bed sediments of the San Joaquin River and its tributaries despite little or no use of these pesticides for more than 15 years. The San Joaquin River has among the highest bed-sediment concentrations of DDD, DDE, DDT, and dieldrin residues of major rivers in the United States. Concentrations of all four pesticides were correlated with each other and with the amount of organic carbon and fine-grained particles in the bed sediments. The highest concentrations occurred in bed sediments of westside tributary streams. Potential tributary loads of DDD, DDE, DDT, and dieldrin to the San Joaquin River were computed from bed-sediment concentrations and data on streamfiow and suspended-sediment concentration in order to identify the general magnitude of differences between streams and to determine study priorities. The estimated loads indicate that the most important sources of residues during the study period were Salt Slough because of a high load of fine sediment, and Newman Wasteway, Orestimba Creek, and Hospital Creek because of high bed-sediment concentrations. Generally, the highest estimated loads of DDD, DDE, DDT, and dieldrin were in Orestimba and Hospital Creeks.

  19. The two faces of hydrogen-bond strength on triple AAA-DDD arrays.

    PubMed

    Lopez, Alfredo Henrique Duarte; Caramori, Giovanni Finoto; Coimbra, Daniel Fernando; Parreira, Renato Luis Tame; da Silva, Éder Henrique

    2013-12-02

    Systems that are connected through multiple hydrogen bonds are the cornerstone of molecular recognition processes in biology, and they are increasingly being employed in supramolecular chemistry, specifically in molecular self-assembly processes. For this reason, the effects of different substituents (NO2, CN, F, Cl, Br, OCH3 and NH2) on the electronic structure, and consequently on the magnitude of hydrogen bonds in triple AAA-DDD arrays (A=acceptor, D=donor) were evaluated in the light of topological [electron localization function (ELF) and quantum theory of atoms in molecules (QTAIM)], energetic [Su-Li energy-decomposition analysis (EDA) and natural bond orbital analysis (NBO)], and geometrical analysis. The results based on local H-bond descriptors (geometries, QTAIM, ELF, and NBO) indicate that substitutions with electron-withdrawing groups on the AAA module tend to strengthen, whereas electron-donating substituents tend to weaken the covalent character of the AAA-DDD intermolecular H-bonds, and also indicate that the magnitude of the effect is dependent on the position of substitution. In contrast, Su-Li EDA results show an opposite behavior when compared to local H-bond descriptors, indicating that electron-donating substituents tend to increase the magnitude of H-bonds in AAA-DDD arrays, and thus suggesting that the use of local H-bond descriptors describes the nature of H bonds only partially, not providing enough insight about the strength of such H bonds. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Black Carbon Facilitated Dechlorination of DDT and its Metabolites by Sulfide.

    PubMed

    Ding, Kai; Xu, Wenqing

    2016-12-06

    1,1-trichloro-2,2-di(4-chlorophenyl)ethane (DDT) and its metabolites 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane (DDD) and 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene (DDE), are often detected in soils and sediments containing high concentrations of black carbon. Sulfide (∼5 mM) from biological sulfate reduction often coexists with black carbon and serves as both a strong reductant and a nucleophile for the abiotic transformation of contaminants. In this study, we found that the abiotic transformation of DDT, DDD, and DDE (collectively referred to as DDX) require both sulfide and black carbon. 89.3 ± 1.8% of DDT, 63.2 ± 1.9% of DDD, and 50.9 ± 1.6% of DDE were degraded by sulfide (5 mM) in the presence of graphite powder (21 g/L) after 28 days at pH 7. Chloride was a product of DDX degradation. To better understand the reaction pathways, electrochemical cells and batch reactor experiments with sulfide-pretreated graphite powder were used to differentiate the involvement of black carbon materials in DDX transformation by sulfide. Our results suggest that DDT and DDD are transformed by surface intermediates formed from the reaction between sulfide and black carbon, while DDE degradation involves reductive dechlorination. This research lays the groundwork for developing an alternative in situ remediation technique for rapidly decontaminating soils and sediments to lower toxic products under environmentally relevant conditions.

Top