Accumulation of dislocation loops in the α phase of Zr Excel alloy under heavy ion irradiation
NASA Astrophysics Data System (ADS)
Yu, Hongbing; Yao, Zhongwen; Idrees, Yasir; Zhang, He K.; Kirk, Mark A.; Daymond, Mark R.
2017-08-01
In-situ heavy ion irradiations were performed on the high Sn content Zr alloy 'Excel', measuring type dislocation loop accumulation up to irradiation damage doses of 10 dpa at a range of temperatures. The high content of Sn, which diffuses slowly, and the thin foil geometry of the sample provide a unique opportunity to study an extreme case where displacement cascades dominate the loop formation and evolution. The dynamic observation of dislocation loop evolution under irradiation at 200 °C reveals that type dislocation loops can form at very low dose (0.0025 dpa). The size of the dislocation loops increases slightly with irradiation damage dose. The mechanism controlling loop growth in this study is different from that in neutron irradiation; in this study, larger dislocation loops can condense directly from the interaction of displacement cascades and the high concentration of point defects in the matrix. The size of the dislocation loop is dependent on the point defect concentration in the matrix. A negative correlation between the irradiation temperature and the dislocation loop size was observed. A comparison between cascade dominated loop evolution (this study), diffusion dominated loop evolution (electron irradiation) and neutron irradiation suggests that heavy ion irradiation alone may not be enough to accurately reproduce neutron irradiation induced loop structures. An alternative method is proposed in this paper. The effects of Sn on the displacement cascades, defect yield, and the diffusion behavior of point defects are established.
NASA Astrophysics Data System (ADS)
Zheng, Zhongcheng; Gao, Ning; Tang, Rui; Yu, Yanxia; Zhang, Weiping; Shen, Zhenyu; Long, Yunxiang; Wei, Yaxia; Guo, Liping
2017-10-01
It has been found that under certain conditions, hydrogen retention would be strongly enhanced in irradiated austenitic stainless steels. To investigate the effect of the retained hydrogen on the defect microstructure, AL-6XN stainless steel specimens were irradiated with low energy (100 keV) H2+ so that high concentration of hydrogen was injected into the specimens while considerable displacement damage dose (up to 7 dpa) was also achieved. Irradiation induced dislocation loops and voids were characterised by transmission electron microscopy. For specimens irradiated to 7 dpa at 290 °C, dislocation loops with high number density were found and the void swelling was observed. At 380 °C, most of dislocation loops were unfaulted and tangled at 7 dpa, and the void swellings were observed at 5 dpa and above. Combining the data from low dose in previous work to high dose, four stages of dislocation loops evolution with hydrogen retention were suggested. Finally, molecular dynamics simulation was made to elucidate the division of large dislocation loops under irradiation.
Atomistic Simulation of Interstitial Dislocation Loop Evolution under Applied Stresses in BCC Iron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Xue Hao; Wang, Dong; Setyawan, Wahyu
Evolution of an interstitial 1/2⟨111⟩ dislocation loop under tensile, shear, and torsion stresses is studied with molecular statics method. Under a tensile stress, the dependence of ultimate tensile strength on size of loop is calculated. The formation of small shear loops around the initial prismatic loop is confirmed as an intermediate state to form the final dislocation network. Under a shear stress, the rotation of a loop is observed not only by a change of the habit plane but also through a transformation between a shear and a prismatic loop. Under torsion, a perfect BCC crystal may undergo a BCCmore » to FCC or BCC to HCP transformation. The present work indicates that a 1/2⟨111⟩ loop can delay these transformations, resulting in the formation of micro-crack on the surface.« less
Microstructure evolution of recrystallized Zircaloy-4 under charged particles irradiation
NASA Astrophysics Data System (ADS)
Gaumé, M.; Onimus, F.; Dupuy, L.; Tissot, O.; Bachelet, C.; Mompiou, F.
2017-11-01
Recrystallized zirconium alloys are used as nuclear fuel cladding tubes of Pressurized Water Reactors. During operation, these alloys are submitted to fast neutron irradiation which leads to their in-reactor deformation and to a change of their mechanical properties. These phenomena are directly related to the microstructure evolution under irradiation and especially to the formation of -type dislocation loops. In the present work, the radiation damage evolution in recrystallized Zircaloy-4 has been studied using charged particles irradiation. The loop nucleation and growth kinetics, and also the helical climb of linear dislocations, were observed in-situ using a High Voltage Electron Microscope (HVEM) under 1 MeV electron irradiation at 673 and 723 K. In addition, 600 keV Zr+ ion irradiations were conducted at the same temperature. Transmission Electron Microscopy (TEM) characterizations have been performed after both types of irradiations, and show dislocation loops with a Burgers vector belonging to planes close to { 10 1 bar 0 } first order prismatic planes. The nature of the loops has been characterized. Only interstitial dislocation loops have been observed after ion irradiation at 723 K. However, after electron irradiation conducted at 673 and 723 K, both interstitial and vacancy loops were observed, the proportion of interstitial loops increasing as the temperature is increased. The loop growth kinetics analysis shows that as the temperature increases, the loop number density decreases and the loop growth rate tends to increase. An increase of the flux leads to an increase of the loop number density and a decrease of the loop growth rate. The results are compared to previous works and discussed in the light of point defects diffusion.
Dislocation loop evolution during in-situ ion irradiation of model FeCrAl alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haley, Jack C.; Briggs, Samuel A.; Edmondson, Philip D.
Model FeCrAl alloys of Fe-10%Cr-5%Al, Fe-12%Cr-4.5%Al, Fe-15%Cr-4%Al, and Fe-18%Cr-3%Al (in wt %) were irradiated with 1 MeV Kr++ ions in-situ with transmission electron microscopy to a dose of 2.5 displacements per atom (dpa) at 320 °C. In all cases, the microstructural damage consisted of dislocation loops with ½< 111 > and <100 > Burgers vectors. The proportion of ½< 111 > dislocation loops varied from ~50% in the Fe-10%Cr-5%Al model alloy and the Fe-18Cr%-3%Al model alloy to a peak of ~80% in the model Fe-15%Cr-4.5%Al alloy. The dislocation loop volume density increased with dose for all alloys and showed signsmore » of approaching an upper limit. The total loop populations at 2.5 dpa had a slight (and possibly insignificant) decline as the chromium content was increased from 10 to 15 wt %, but the Fe-18%Cr-3%Al alloy had a dislocation loop population ~50% smaller than the other model alloys. As a result, the largest dislocation loops in each alloy had image sizes of close to 20 nm in the micrographs, and the median diameters for all alloys ranged from 6 to 8 nm. Nature analysis by the inside-outside method indicated most dislocation loops were interstitial type.« less
Dislocation loop evolution during in-situ ion irradiation of model FeCrAl alloys
Haley, Jack C.; Briggs, Samuel A.; Edmondson, Philip D.; ...
2017-07-06
Model FeCrAl alloys of Fe-10%Cr-5%Al, Fe-12%Cr-4.5%Al, Fe-15%Cr-4%Al, and Fe-18%Cr-3%Al (in wt %) were irradiated with 1 MeV Kr++ ions in-situ with transmission electron microscopy to a dose of 2.5 displacements per atom (dpa) at 320 °C. In all cases, the microstructural damage consisted of dislocation loops with ½< 111 > and <100 > Burgers vectors. The proportion of ½< 111 > dislocation loops varied from ~50% in the Fe-10%Cr-5%Al model alloy and the Fe-18Cr%-3%Al model alloy to a peak of ~80% in the model Fe-15%Cr-4.5%Al alloy. The dislocation loop volume density increased with dose for all alloys and showed signsmore » of approaching an upper limit. The total loop populations at 2.5 dpa had a slight (and possibly insignificant) decline as the chromium content was increased from 10 to 15 wt %, but the Fe-18%Cr-3%Al alloy had a dislocation loop population ~50% smaller than the other model alloys. As a result, the largest dislocation loops in each alloy had image sizes of close to 20 nm in the micrographs, and the median diameters for all alloys ranged from 6 to 8 nm. Nature analysis by the inside-outside method indicated most dislocation loops were interstitial type.« less
Reduced Moment-Based Models for Oxygen Precipitates and Dislocation Loops in Silicon
NASA Astrophysics Data System (ADS)
Trzynadlowski, Bart
The demand for ever smaller, higher-performance integrated circuits and more efficient, cost-effective solar cells continues to push the frontiers of process technology. Fabrication of silicon devices requires extremely precise control of impurities and crystallographic defects. Failure to do so not only reduces performance, efficiency, and yield, it threatens the very survival of commercial enterprises in today's fiercely competitive and price-sensitive global market. The presence of oxygen in silicon is an unavoidable consequence of the Czochralski process, which remains the most popular method for large-scale production of single-crystal silicon. Oxygen precipitates that form during thermal processing cause distortion of the surrounding silicon lattice and can lead to the formation of dislocation loops. Localized deformation caused by both of these defects introduces potential wells that trap diffusing impurities such as metal atoms, which is highly desirable if done far away from sensitive device regions. Unfortunately, dislocations also reduce the mechanical strength of silicon, which can cause wafer warpage and breakage. Engineers must negotiate this and other complex tradeoffs when designing fabrication processes. Accomplishing this in a complex, modern process involving a large number of thermal steps is impossible without the aid of computational models. In this dissertation, new models for oxygen precipitation and dislocation loop evolution are described. An oxygen model using kinetic rate equations to evolve the complete precipitate size distribution was developed first. This was then used to create a reduced model tracking only the moments of the size distribution. The moment-based model was found to run significantly faster than its full counterpart while accurately capturing the evolution of oxygen precipitates. The reduced model was fitted to experimental data and a sensitivity analysis was performed to assess the robustness of the results. Source code for both models is included. A moment-based model for dislocation loop formation from {311} defects in ion-implanted silicon was also developed and validated against experimental data. Ab initio density functional theory calculations of stacking faults and edge dislocations were performed to extract energies and elastic properties. This allowed the effect of applied stress on the evolution of {311} defects and dislocation loops to be investigated.
Dislocation loops in ultra-high purity Fe(Cr) alloys after 7.2 MeV proton irradiation
NASA Astrophysics Data System (ADS)
Chen, J.; Duval, F.; Jung, P.; Schäublin, R.; Gao, N.; Barthe, M. F.
2018-05-01
Ultra-high purity Fe(Cr) alloys (from 0 wt% Cr to 14 wt% Cr) were 3D homogeneously irradiated by 0-7.2 MeV protons to 0.3 dpa at nominal temperatures from 270 °C to 500 °C. Microstructural changes were observed by transmission electron microscopy (TEM). The results showed that evolution of dislocation loops depends on the Cr content. Below 300 °C, large ½ a0 <111> loops are dominating. Above 300 °C, a0 <100> loops with a habit plane {100} appear. Loop sizes of both types are more or less the same. At temperatures from 310 °C to 400 °C, a0 <100> loops form clusters with the same {100} habit plane as the one of the loops forming them. This indicates that <100> loops of the same variant start gliding under mutual elastic interaction. At 500 °C, dislocation loops form disc shaped clusters about 1000 nm in diameter and sitting on {111} and/or {100} planes in the pure Fe samples. Based on these observations a quantitative analysis of the dislocation loops configurations and their temperature dependence is made, leading to an understanding of the basic mechanisms of formation of these loops.
NASA Astrophysics Data System (ADS)
Ipatova, I.; Harrison, R. W.; Wady, P. T.; Shubeita, S. M.; Terentyev, D.; Donnelly, S. E.; Jimenez-Melero, E.
2018-04-01
We have performed proton irradiation of W and W-5wt.%Ta materials at 350 °C with a step-wise damage level increase up to 0.7 dpa and using two beam energies, namely 40 keV and 3 MeV, in order to probe the accumulation of radiation-induced lattice damage in these materials. Interstitial-type a/2 <111> dislocation loops are formed under irradiation, and their size increases in W-5Ta up to a loop width of 21 ± 4 nm at 0.3 dpa, where loop saturation takes place. In contrast, the loop length in W increases progressively up to 183 ± 50 nm at 0.7 dpa, whereas the loop width remains relatively constant at 29 ± 7 nm at >0.3 dpa, giving rise to dislocation strings. The dislocation loops and tangles are observed in both materials examined after a 3 MeV proton irradiation at 350 °C. Ta doping delays the evolution of radiation-induced dislocation structures in W, and can consequently impact the hydrogen isotope retention under plasma exposure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yanfei; Larson, Ben C.
There are large classes of materials problems that involve the solutions of stress, displacement, and strain energy of dislocation loops in elastically anisotropic solids, including increasingly detailed investigations of the generation and evolution of irradiation induced defect clusters ranging in sizes from the micro- to meso-scopic length scales. Based on a two-dimensional Fourier transform and Stroh formalism that are ideal for homogeneous and layered anisotropic solids, we have developed robust and computationally efficient methods to calculate the displacement fields for circular and polygonal dislocation loops. Using the homogeneous nature of the Green tensor of order -1, we have shown thatmore » the displacement and stress fields of dislocation loops can be obtained by numerical quadrature of a line integral. In addition, it is shown that the sextuple integrals associated with the strain energy of loops can be represented by the product of a pre-factor containing elastic anisotropy effects and a universal term that is singular and equal to that for elastic isotropic case. Furthermore, we have found that the self-energy pre-factor of prismatic loops is identical to the effective modulus of normal contact, and the pre-factor of shear loops differs from the effective indentation modulus in shear by only a few percent. These results provide a convenient method for examining dislocation reaction energetic and efficient procedures for numerical computation of local displacements and stresses of dislocation loops, both of which play integral roles in quantitative defect analyses within combined experimental–theoretical investigations.« less
Gao, Yanfei; Larson, Ben C.
2015-06-19
There are large classes of materials problems that involve the solutions of stress, displacement, and strain energy of dislocation loops in elastically anisotropic solids, including increasingly detailed investigations of the generation and evolution of irradiation induced defect clusters ranging in sizes from the micro- to meso-scopic length scales. Based on a two-dimensional Fourier transform and Stroh formalism that are ideal for homogeneous and layered anisotropic solids, we have developed robust and computationally efficient methods to calculate the displacement fields for circular and polygonal dislocation loops. Using the homogeneous nature of the Green tensor of order -1, we have shown thatmore » the displacement and stress fields of dislocation loops can be obtained by numerical quadrature of a line integral. In addition, it is shown that the sextuple integrals associated with the strain energy of loops can be represented by the product of a pre-factor containing elastic anisotropy effects and a universal term that is singular and equal to that for elastic isotropic case. Furthermore, we have found that the self-energy pre-factor of prismatic loops is identical to the effective modulus of normal contact, and the pre-factor of shear loops differs from the effective indentation modulus in shear by only a few percent. These results provide a convenient method for examining dislocation reaction energetic and efficient procedures for numerical computation of local displacements and stresses of dislocation loops, both of which play integral roles in quantitative defect analyses within combined experimental–theoretical investigations.« less
NASA Astrophysics Data System (ADS)
de los Reyes, Massey; Voskoboinikov, Roman; Kirk, Marquis A.; Huang, Hefei; Lumpkin, Greg; Bhattacharyya, Dhriti
2016-06-01
A candidate Nisbnd Mosbnd Crsbnd Fe alloy (GH3535) for application as a structural material in a molten salt nuclear reactor was irradiated with 1 MeV Kr2+ ions (723 K, max dose of 100 dpa) at the IVEM-Tandem facility. The evolution of defects like dislocation loops and vacancy- and self-interstitial clusters was examined in-situ. For obtaining a deeper insight into the true nature of these defects, the irradiated sample was further analysed under a TEM post-facto. The results show that there is a range of different types of defects formed under irradiation. Interaction of radiation defects with each other and with pre-existing defects, e.g., linear dislocations, leads to the formation of complex microstructures. Molecular dynamics simulations used to obtain a greater understanding of these defect transformations showed that the interaction between linear dislocations and radiation induced dislocation loops could form faulted structures that explain the fringed contrast of these defects observed in TEM.
Mishra, Srishti; Meraj, Md; Pal, Snehanshu
2018-06-19
A large-scale molecular dynamics (MD) simulation of nano-indentation was carried out to provide insight into the influence of the Al-Al 2 O 3 interface on dislocation evolution and deformation behavior of Al substrate coated with Al 2 O 3 thin film. Adaptive common neighbor analysis (a-CNA), centro-symmetry parameter (CSP) estimation, and dislocation extraction algorithm (DXA) were implemented to represent structural evolution during nano-indentation deformation. The absence of elastic regime was observed in the P-h curve for this simulated nano-indentation test of Al 2 O 3 thin film coated Al specimen. The displacement of oxygen atoms from Al 2 O 3 to Al partly through the interface greatly influences the plastic deformation behavior of the specimen during nano-indentation. Prismatic dislocation loops, which are formed due to pinning of Shockley partials (1/6 < 112>) by Stair-rod (1/6 < 110>) and Hirth dislocation (1/3 < 001>), were observed in all cases studied in this work. Pile-up of atoms was also observed and the extent of the pile-up was found to vary with the test temperature. A distorted stacking fault tetrahedron (SFT) is formed when a nano-indentation test is carried out at 100 K. The presence of a prismatic dislocation loop, SFT and dislocation forest caused strain hardening and, consequently, there is an increase in hardness as indentation depth increases. Graphical abstract Figure illustrates nano-indentation model set up along with load vs. depth curve and distorted stacking fault tetrahedron.
Ultrasonic Study of Dislocation Dynamics in Lithium -
NASA Astrophysics Data System (ADS)
Han, Myeong-Deok
1987-09-01
Experimental studies of dislocation dynamics in LiF single crystals, using ultrasonic techniques combined with dynamic loading, were performed to investigate the time evolution of the plastic deformation process under a short stress pulse at room temperature, and the temperature dependence of the dislocation damping mechanism in the temperature range 25 - 300(DEGREES)K. From the former, the time dependence of the ultrasonic attenuation was understood as resulting from dislocation multiplication followed by the evolution of mobile dislocations to immobile ones under large stress. From the latter, the temperature dependence of the ultrasonic attenuation was interpreted as due to the motion of the dislocation loops overcoming the periodic Peierls potential barrier in a manner analogous to the motion of a thermalized sine-Gordon chain under a small stress. The Peierls stress obtained from the experimental results by application of Seeger's relaxation model with exponential dislocation length distribution was 4.26MPa, which is consistent with the lowest stress for the linear relation between the dislocation velocity and stress observed by Flinn and Tinder.
Ion-irradiation-induced microstructural modifications in ferritic/martensitic steel T91
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiang; Miao, Yinbin; Li, Meimei
In this paper, in situ transmission electron microscopy investigations were carried out to study the microstructural evolution of ferritic/martensitic steel T91 under 1 MeV Krypton ion irradiation up to 4.2 x 10(15) ions/cm(2) at 573 K, 673 K, and 773 K. At 573 K, grown-in defects are strongly modified by black dot loops, and dislocation networks together with black-dot loops were observed after irradiation. At 673 K and 773 K, grown-in defects are only partially modified by dislocation loops; isolated loops and dislocation segments were commonly found after irradiation. Post irradiation examination indicates that at 4.2 x 1015 ions/cm(2), aboutmore » 51% of the loops were a(0)/2 < 111 > type for the 673 K irradiation, and the dominant loop type was a(0)< 100 > for the 773 K irradiation. Finally, a dispersed barrier hardening model was employed to estimate the change in yield strength, and the calculated ion data were found to follow the similar trend as the existing neutron data with an offset of 100-150 MPa. (C) 2017 Elsevier B.V. All rights reserved.« less
NASA Astrophysics Data System (ADS)
Shao, C. W.; Zhang, P.; Zhang, Z. J.; Liu, R.; Zhang, Z. F.
2017-12-01
We find the existing empirical relations based on monotonic tensile properties and/or hardness cannot satisfactorily predict the low-cycle fatigue (LCF) performance of materials, especially for twinning-induced plasticity (TWIP) steels. Given this, we first identified the different deformation mechanisms under monotonic and cyclic deformation after a comprehensive study of stress-strain behaviors and microstructure evolutions for Fe-Mn-C alloys during tension and LCF, respectively. It is found that the good tensile properties of TWIP steel mainly originate from the large activation of multiple twinning systems, which may be attributed to the grain rotation during tensile deformation; while its LCF performance depends more on the dislocation slip mode, in addition to its strength and plasticity. Based on this, we further investigate the essential relations between microscopic damage mechanism (dislocation-dislocation interaction) and cyclic stress response, and propose a hysteresis loop model based on dislocation annihilation theory, trying to quickly assess the LCF resistance of Fe-Mn-C steels as well as other engineering materials. It is suggested that the hysteresis loop and its evolution can provide significant information on cyclic deformation behavior, e.g., (point) defect multiplication and vacancy aggregation, which may help estimate the LCF properties.
The strength and dislocation microstructure evolution in superalloy microcrystals
NASA Astrophysics Data System (ADS)
Hussein, Ahmed M.; Rao, Satish I.; Uchic, Michael D.; Parthasarathay, Triplicane A.; El-Awady, Jaafar A.
2017-02-01
In this work, the evolution of the dislocations microstructure in single crystal two-phase superalloy microcrystals under monotonic loading has been studied using the three-dimensional discrete dislocation dynamics (DDD) method. The DDD framework has been extended to properly handle the collective behavior of dislocations and their interactions with large collections of arbitrary shaped precipitates. Few constraints are imposed on the initial distribution of the dislocations or the precipitates, and the extended DDD framework can support experimentally-obtained precipitate geometries. Full tracking of the creation and destruction of anti-phase boundaries (APB) is accounted for. The effects of the precipitate volume fraction, APB energy, precipitate size, and crystal size on the deformation of superalloy microcrystals have been quantified. Correlations between the precipitate microstructure and the dominant deformation features, such as dislocation looping versus precipitate shearing, are also discussed. It is shown that the mechanical strength is independent of the crystal size, increases linearly with increasing the volume fraction, follows a near square-root relationship with the APB energy and an inverse square-root relationship with the precipitate size. Finally, the flow strength in simulations having initial dislocation pair sources show a flow strength that is about one half of that predicted from simulations starting with single dislocation sources. The method developed can be used, with minimal extensions, to simulate dislocation microstructure evolution in general multiphase materials.
Structural Rheology of the Smectic Phase
Fujii, Shuji; Komura, Shigeyuki; Lu, Chun-Yi David
2014-01-01
In this review article, we discuss the rheological properties of the thermotropic smectic liquid crystal 8CB with focal conic domains (FCDs) from the viewpoint of structural rheology. It is known that the unbinding of the dislocation loops in the smectic phase drives the smectic-nematic transition. Here we discuss how the unbinding of the dislocation loops affects the evolution of the FCD size, linear and nonlinear rheological behaviors of the smectic phase. By studying the FCD formation from the perpendicularly oriented smectic layers, we also argue that dislocations play a key role in the structural development in layered systems. Furthermore, similarities in the rheological behavior between the FCDs in the smectic phase and the onion structures in the lyotropic lamellar phase suggest that these systems share a common physical origin for the elasticity. PMID:28788123
The co-evolution of microstructure features in self-ion irradiated HT9 at very high damage levels
NASA Astrophysics Data System (ADS)
Getto, Elizabeth Margaret
The objective of this study was to understand the co-evolution of microstructure features in self-ion irradiated HT9 at very high damage levels. HT9 (heat 84425) was pre-implanted with 10 atom parts per million helium and then irradiated with 5 MeV Fe++ in the temperature range of 440-480°C to 188 dpa. A damage dependence study from 75 to 650 dpa was performed at the peak swelling temperature of 460°C. The swelling, dislocation and precipitate evolution was determined using Analytic Electron Microscopes in both Conventional Transmission electron microscopy (CTEM) and Scanning Transmission Electron Microscopy (STEM) modes. Void swelling reached a nominally linear rate of 0.03%/dpa from 188 to 650 dpa at 460°C. G phase precipitates were observed by 75 dpa and grew linearly up to 650 dpa. M 2X was observed by 250 dpa and peaked in volume fraction at 450 dpa. Dislocation loop evolution was observed up to 650 dpa including a step change in diameter between 375 and 450 dpa; which correlated with nucleation and growth of M2X. The experimental results were interpreted using a rate theory model, the Radiation Induced Microstructure Evolution (RIME), in the damage range from 188 to 650 dpa. A simple system of voids and dislocations was modeled in which the dislocations measured from experiment were used as input, or the dislocations were allowed to evolve dynamically, resulting in swelling that was overestimated by 63% relative to that observed experimentally. G phase had limited effect on the void or dislocation behavior. The behavior of M2X within the microstructure was characterized as a direct effect as a coherent sink, and as an indirect effect in consuming carbon from the matrix, which had the largest impact on both void and dislocation behavior. A slowly monotonically increasing swelling rate was observed both experimentally and computationally, with swelling rates of ˜0.025%/dpa and ˜0.036%/dpa before and after 450 dpa. The agreement in void behavior between experiment and model when all effects (loops, network, G phase, M2X formation and growth, and removal of carbon) are accounted for demonstrates the importance of characterizing the evolution of the full microstructure over a large dpa range.
NASA Astrophysics Data System (ADS)
Jiao, Z.; Hesterberg, J.; Was, G. S.
2018-03-01
Post-irradiation annealing was performed on a 304L SS that was irradiated to 5.9 dpa in the Barsebäck 1 BWR reactor. Evolution of dislocation loops, radiation-induced solute clusters and radiation-induced segregation at the grain boundary was investigated following thermal annealing at 500 °C and 550 °C up to 20 h. Dislocation loops, Ni-Si and Al-Cu clusters, and enrichment of Ni, Si and depletion of Cr at the grain boundary were observed in the as-irradiated condition. Dislocation loop size did not change significantly after annealing at 550 °C for 5 h but the loop number density decreased considerably and loops mostly disappeared after annealing at 550 °C for 20 h. The average size of Ni-Si and Al-Cu clusters increased while the number density decreased with annealing. The increase in cluster size was due to diffusion of solutes rather than cluster coarsening. Significant volume fractions of Ni-Si and Al-Cu clusters still remained after annealing at 550 °C for 20 h. Substantial recovery of Cr and Ni at the grain boundary was observed after annealing at 550 °C for 5 h but neither Cr nor Ni was fully recovered after 20 h. Annihilation of dislocation loops, driven by the thermal vacancy concentration gradient caused by the strain field and stacking fault associated with the loops appeared to be faster than annihilation of solute clusters and recovery of Ni and Si at the grain boundary, both of which are driven by the solute concentration gradients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shenyang; Lavender, Curt A.; Joshi, Vineet V.
Recrystallization plays an important role in swelling kinetics of irradiated metallic nuclear fuels. This talk will present a three-dimensional microstructure-dependent swelling model by integrating the evolution of intra-and inter- granular gas bubbles, dislocation loop density, and recrystallization.
3D Imaging of a Dislocation Loop at the Onset of Plasticity in an Indented Nanocrystal.
Dupraz, M; Beutier, G; Cornelius, T W; Parry, G; Ren, Z; Labat, S; Richard, M-I; Chahine, G A; Kovalenko, O; De Boissieu, M; Rabkin, E; Verdier, M; Thomas, O
2017-11-08
Structural quality and stability of nanocrystals are fundamental problems that bear important consequences for the performances of small-scale devices. Indeed, at the nanoscale, their functional properties are largely influenced by elastic strain and depend critically on the presence of crystal defects. It is thus of prime importance to be able to monitor, by noninvasive means, the stability of the microstructure of nano-objects against external stimuli such as mechanical load. Here we demonstrate the potential of Bragg coherent diffraction imaging for such measurements, by imaging in 3D the evolution of the microstructure of a nanocrystal exposed to in situ mechanical loading. Not only could we observe the evolution of the internal strain field after successive loadings, but we also evidenced a transient microstructure hosting a stable dislocation loop. The latter is fully characterized from its characteristic displacement field. The mechanical behavior of this small crystal is clearly at odds with what happens in bulk materials where many dislocations interact. Moreover, this original in situ experiment opens interesting possibilities for the investigation of plastic deformation at the nanoscale.
Interaction of 〈1 0 0〉 dislocation loops with dislocations studied by dislocation dynamics in α-iron
NASA Astrophysics Data System (ADS)
Shi, X. J.; Dupuy, L.; Devincre, B.; Terentyev, D.; Vincent, L.
2015-05-01
Interstitial dislocation loops with Burgers vector of 〈1 0 0〉 type are formed in α-iron under neutron or heavy ion irradiation. As the density and size of these loops increase with radiation dose and temperature, these defects are thought to play a key role in hardening and subsequent embrittlement of iron-based steels. The aim of the present work is to study the pinning strength of the loops on mobile dislocations. Prior to run massive Dislocation Dynamics (DD) simulations involving experimentally representative array of radiation defects and dislocations, the DD code and its parameterization are validated by comparing the individual loop-dislocation reactions with those obtained from direct atomistic Molecular Dynamics (MD) simulations. Several loop-dislocation reaction mechanisms are successfully reproduced as well as the values of the unpinning stress to detach mobile dislocations from the defects.
Te homogeneous precipitation in Ge dislocation loop vicinity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perrin Toinin, J.; Portavoce, A., E-mail: alain.portavoce@im2np.fr; Texier, M.
2016-06-06
High resolution microscopies were used to study the interactions of Te atoms with Ge dislocation loops, after a standard n-type doping process in Ge. Te atoms neither segregate nor precipitate on dislocation loops, but form Te-Ge clusters at the same depth as dislocation loops, in contradiction with usual dopant behavior and thermodynamic expectations. Atomistic kinetic Monte Carlo simulations show that Te atoms are repulsed from dislocation loops due to elastic interactions, promoting homogeneous Te-Ge nucleation between dislocation loops. This phenomenon is enhanced by coulombic interactions between activated Te{sup 2+} or Te{sup 1+} ions.
Electron microscopy observations of radiation damage in irradiated and annealed tungsten
NASA Astrophysics Data System (ADS)
Grzonka, J.; Ciupiński, Ł.; Smalc-Koziorowska, J.; Ogorodnikova, O. V.; Mayer, M.; Kurzydłowski, K. J.
2014-12-01
In the present work tungsten samples were irradiated with W6+ ions with a kinetic energy of 20 MeV in order to simulate radiation damage by fast neutrons. Two samples with cumulative damage of 2.3 and 6.36 displacements per atom were produced. The scanning transmission electron microscopy investigations were carried out in order to determine structure changes resulting from the irradiation. The evolution of the damage with post implantation annealing in the temperature range 673-1100 K was also assessed. Damage profiles were studied at cross-sections. Scanning transmission electron microscopy studies of the lamellae after annealing revealed aggregation of defects and rearrangement as well as partial healing of dislocations at higher temperatures. The results confirm the higher density of radiation-induced dislocations in the near surface area of the sample (1.8 * 1014 m-2) in comparison with a deeper damage area (1.5 * 1014 m-2). Significant decrease of dislocation density was observed after annealing with a concurrent growth of dislocation loops. Transmission electron microscopy analyses show that the dislocation loops are perfect dislocations with the Burgers vectors of b = ½[ 1 1 1].
NASA Astrophysics Data System (ADS)
Gao, N.; Perez, D.; Lu, G. H.; Wang, Z. G.
2018-01-01
Atomic simulations are used to investigate the interaction between nanoscale interstitial dislocation loops and grain boundaries (GBs), the subsequent evolution of the GBs' structures, and the resulting impact on mechanical properties, in BCC iron. The interaction between loops and GBs - Σ 3 { 111 } and Σ 3 { 112 } - is affected by the angle (θ) between the Burgers vector and the normal to the GB plane, as well as by the distribution of free volume (FV) and stress. Loops can be totally absorbed by Σ 3 { 111 } boundaries, while the interaction with Σ 3 { 112 } boundaries is found to change the Burgers vector and habit plane after absorption, but to otherwise leave the loop intact, resulting in selective absorption. When θ =90o , no absorption occurs in Σ 3 { 112 } . The stress accumulation induced by the absorption affects the local mechanical properties of GBs. In nanocrystalline iron sample, a similar phenomenon is also observed, resulting in rearrangement of GBs and grain growth.
NASA Astrophysics Data System (ADS)
Drouet, Julie; Dupuy, Laurent; Onimus, Fabien; Mompiou, Frédéric; Perusin, Simon; Ambard, Antoine
2014-06-01
The mechanical behavior of Pressurized Water Reactor fuel cladding tubes made of zirconium alloys is strongly affected by neutron irradiation due to the high density of radiation induced dislocation loops. In order to investigate the interaction mechanisms between gliding dislocations and loops in zirconium, a new nodal dislocation dynamics code, adapted to Hexagonal Close Packed metals, has been used. Various configurations have been systematically computed considering different glide planes, basal or prismatic, and different characters, edge or screw, for gliding dislocations with -type Burgers vectors. Simulations show various interaction mechanisms such as (i) absorption of a loop on an edge dislocation leading to the formation of a double super-jog, (ii) creation of a helical turn, on a screw dislocation, that acts as a strong pinning point or (iii) sweeping of a loop by a gliding dislocation. It is shown that the clearing of loops is more favorable when the dislocation glides in the basal plane than in the prismatic plane explaining the easy dislocation channeling in the basal plane observed after neutron irradiation by transmission electron microscopy.
Dislocation loop formation by swift heavy ion irradiation of metals.
Khara, Galvin S; Murphy, Samuel T; Duffy, Dorothy M
2017-07-19
A coupled two-temperature, molecular dynamics methodology is used to simulate the structural evolution of bcc metals (Fe and W) and fcc metals (Cu and Ni) following irradiation by swift heavy ions. Electronic temperature dependent electronic specific heat capacities and electron-phonon coupling strengths are used to capture the full effects of the variation in the electronic density of states. Tungsten is found to be significantly more resistant to damage than iron, due both to the higher melting temperature and the higher thermal conductivity. Very interesting defect structures, quite different from defects formed in cascades, are found to be created by swift heavy ion irradiation in the bcc metals. Isolated vacancies form a halo around elongated interstitial dislocation loops that are oriented along the ion path. Such configurations are formed by rapid recrystallization of the molten cylindrical region that is created by the energetic ion. Vacancies are created at the recrystallization front, resulting in excess atoms at the core which form interstitial dislocation loops on completion of crystallization. These unique defect structures could, potentially, be used to create metal films with superior mechanical properties and interesting nanostructures.
Dislocation loop formation by swift heavy ion irradiation of metals
NASA Astrophysics Data System (ADS)
Khara, Galvin S.; Murphy, Samuel T.; Duffy, Dorothy M.
2017-07-01
A coupled two-temperature, molecular dynamics methodology is used to simulate the structural evolution of bcc metals (Fe and W) and fcc metals (Cu and Ni) following irradiation by swift heavy ions. Electronic temperature dependent electronic specific heat capacities and electron-phonon coupling strengths are used to capture the full effects of the variation in the electronic density of states. Tungsten is found to be significantly more resistant to damage than iron, due both to the higher melting temperature and the higher thermal conductivity. Very interesting defect structures, quite different from defects formed in cascades, are found to be created by swift heavy ion irradiation in the bcc metals. Isolated vacancies form a halo around elongated interstitial dislocation loops that are oriented along the ion path. Such configurations are formed by rapid recrystallization of the molten cylindrical region that is created by the energetic ion. Vacancies are created at the recrystallization front, resulting in excess atoms at the core which form interstitial dislocation loops on completion of crystallization. These unique defect structures could, potentially, be used to create metal films with superior mechanical properties and interesting nanostructures.
Edge-on dislocation loop in anisotropic hcp zirconium thin foil
NASA Astrophysics Data System (ADS)
Wu, Wenwang; Xia, Re; Qian, Guian; Xu, Shucai; Zhang, Jinhuan
2015-10-01
Edge-on dislocation loops with 〈 a 〉 -type and 〈 c 〉 -type of Burgers vectors can be formed on prismatic or basel habit planes of hexagonal close-packed (hcp) zirconium alloys during in-situ ion irradiation and neutron irradiation experiments. In this work, an anisotropic image stress method was employed to analyze the free surface effects of dislocation loops within hcp Zr thin foils. Calculation results demonstrate that image stress has a remarkable effect on the distortion fields of dislocation loops within infinite medium, and the image energy becomes remarkable when dislocation loops are situated close to the free surfaces. Moreover, image forces of the 1 / 2 〈 0001 〉 (0001) dislocation loop within (0001) thin foil is much stronger than that of the 1 / 3 〈 11 2 bar 0 〉 (11 2 bar 0) dislocation loop within (11 2 bar 0) thin foil of identical geometrical configurations. Finally, image stress effect on the physical behaviors of loops during in-situ ion irradiation experiments is discussed.
Dislocation loop models for the high temperature creep of Al-5.5 at.% Mg alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, S.U.; Blum, W.
1995-04-15
The Al-5.5 at.% Mg alloy is a typical class I type solution hardened material. The dislocation loop models proposed by Orlova and Cadek and by Mills et al., respectively are widely applied models in describing the high temperature creep behavior of the Al-5.5 at.% Mg alloy. These models, however, are in conflict in explaining dislocation loop theory. Orlova and Cadek suggest that in class I solution hardened alloys screw dislocations are relatively easier to migrate because they are subject to a smaller resistance in motion than edge dislocations. Consequently, the migration rate of screw dislocations is higher than that ofmore » edge dislocations. However, since dislocation loops are composed of both screw and edge components, the overall migration rate of screw dislocations are reduced by that of the edge component. Mills et al. on the contrary, used a different dislocation loop model. As the loop grows while it moves, it takes on the shape of an ellipsoid due to the unbalance in growth rate, the score segment moving much easier than the edge. Therefore, as shown in the results of the stress reduction tests, rapid elastic ({Delta} {var_epsilon}{sub el}) and anelastic contraction ({Delta} {var_epsilon}{sub an}) occur simultaneously directly after stress reduction. During the movement of the dislocation loop, the screw component hence becomes severely curved, while the edge component retains a straight line. This has been proved through dislocation structure observations by TEM.« less
Characterization of faulted dislocation loops and cavities in ion irradiated alloy 800H
NASA Astrophysics Data System (ADS)
Ulmer, Christopher J.; Motta, Arthur T.
2018-01-01
Alloy 800H is a high nickel austenitic stainless steel with good high temperature mechanical properties which is considered for use in current and advanced nuclear reactor designs. The irradiation response of 800H was examined by characterizing samples that had been bulk ion irradiated at the Michigan Ion Beam Laboratory with 5 MeV Fe2+ ions to 1, 10, and 20 dpa at 440 °C. Transmission electron microscopy was used to measure the size and density of both {111} faulted dislocation loops and cavities as functions of depth from the irradiated surface. The faulted loop density increased with dose from 1 dpa up to 10 dpa where it saturated and remained approximately the same until 20 dpa. The faulted loop average diameter decreased between 1 dpa and 10 dpa and again remained approximately constant from 10 dpa to 20 dpa. Cavities were observed after irradiation doses of 10 and 20 dpa, but not after 1 dpa. The average diameter of cavities increased with dose from 10 to 20 dpa, with a corresponding small decrease in density. Cavity denuded zones were observed near the irradiated surface and near the ion implantation peak. To further understand the microstructural evolution of this alloy, FIB lift-out samples from material irradiated in bulk to 1 and 10 dpa were re-irradiated in-situ in their thin-foil geometry with 1 MeV Kr2+ ions at 440 °C at the Intermediate Voltage Electron Microscope. It was observed that the cavities formed during bulk irradiation shrank under thin-foil irradiation in-situ while dislocation loops were observed to grow and incorporate into the dislocation network. The thin-foil geometry used for in-situ irradiation is believed to cause the cavities to shrink.
Split and sealing of dislocated pipes at the front of a growing crystal
NASA Astrophysics Data System (ADS)
Gutkin, M. Yu.; Sheinerman, A. G.
2004-07-01
A model is suggested for the split of dislocated pipes at the front a growing crystal. Within the model, the pipe split occurs through the generation of a dislocation semi-loop at the pipe and crystal surfaces and its subsequent expansion into the crystal interior. The strain energy of such a dislocation semi-loop as well as the stress field of a dislocated pipe perpendicular to a flat crystal surface are calculated. The parameter regions are determined at which the expansion of the dislocation semi-loop is energetically favorable and, thus, the pipe split becomes irreversible. A mechanism is proposed for the formation of a stable semi-loop resulting in the split and possible subsequent overgrowth of the dislocated pipe.
Zhang, Xuan; Li, Meimei; Park, Jun -Sang; ...
2016-12-30
The effect of neutron irradiation on tensile deformation of a Fe-9wt.%Cr alloy was investigated using in situ high-energy synchrotron X-ray diffraction during room-temperature uniaxial tensile tests. New insights into the deformation mechanisms were obtained through the measurements of lattice strain evolution and the analysis of diffraction peak broadening using the modified Williamson-Hall method. Two neutron-irradiated specimens, one irradiated at 300 °C to 0.01 dpa and the other at 450 °C to 0.01dpa, were tested along with an unirradiated specimen. The macroscopic stress–strain curves of the irradiated specimens showed increased strength, reduced ductility and work-hardening exponent compared to the unirradiated specimen.more » The evolutions of the lattice strain, the dislocation density and the coherent scattering domain size in the deformation process revealed different roles of the submicroscopic defects in the 300°C/0.01 dpa specimen and the TEM-visible nanometer-sized dislocation loops in the 450°C/0.01 dpa specimen: submicroscopic defects extended the linear work hardening stage (stage II) to a higher strain, while irradiation-induced dislocation loops were more effective in dislocation pinning. Lastly, while the work hardening rate of stage II was unaffected by irradiation, significant dynamic recovery in stage III in the irradiated specimens led to the early onset of necking without stage IV as observed in the unirradiated specimen.« less
Modeling collective behavior of dislocations in crystalline materials
NASA Astrophysics Data System (ADS)
Varadhan, Satya N.
Elastic interaction of dislocations leads to collective behavior and determines plastic response at the mesoscale. Notable characteristics of mesoscale plasticity include the formation of dislocation patterns, propagative instability phenomena due to strain aging such as the Luders and Portevin-Le Chatelier effects, and size-dependence of low stress. This work presents a unified approach to modeling collective behavior based on mesoscale field dislocation mechanics and crystal plasticity, using constitutive models with physical basis. Successful application is made to: compression of a bicrystal, where "smaller is stronger"---the flow stress increases as the specimen size is reduced; torsional creep of ice single crystals, where the plastic strain rate increases with time under constant applied torque; strain aging in a single crystal alloy, where the transition from homogeneous deformation to intermittent bands to continuous band is captured as the applied deformation rate is increased. A part of this work deals with the kinematics of dislocation density evolution. An explicit Galerkin/least-squares formulation is introduced for the quasilinear evolution equation, which leads to a symmetric and well-conditioned system of equations with constant coefficients, making it attractive for large-scale problems. It is shown that the evolution equation simplifies to the Hamilton-Jacobi equations governing geometric optics and level set methods in the following physical contexts: annihilation of dislocations, expansion of a polygonal dislocation loop and operation of a Frank-Read source. The weak solutions to these equations are not unique, and the numerical method is able to capture solutions corresponding to shock as well as expansion fans.
NASA Astrophysics Data System (ADS)
Tsai, K. V.; Maksimkin, O. P.; Turubarova, L. G.
2007-03-01
The formation and evolution of thermally-induced secondary precipitates in an austenitic stainless steel 12Kh18N9T irradiated in the core of a laboratory reactor VVR-K to a dose of 5 dpa and subjected to post-radiation isochronous annealings for 1 h in a temperature range from 450 to 1050°C have been studied using transmission electron microscopy (TEM) and microhardness measurements. It has been shown that the formation of stitch (secondary) titanium carbides and M 23C6 carbides at grain and twin boundaries after annealing at 1050°C is preceded by a complex evolution of fineparticles of secondary phases (titanium carbides and nitrides) precipitated at dislocation loops and dislocations during annealing at temperatures above 750°C.
Evolution of radiation defect and radiation hardening in heat treated SA508 Gr3 steel
NASA Astrophysics Data System (ADS)
Jin, Hyung-Ha; Kwon, Junhyun; Shin, Chansun
2014-01-01
The formation of radiation defects and corresponding radiation hardening in heat-treated SA508 Gr3 steel after Fe ion irradiation were investigated by means of transmission electron microscopy and a nano-indentation technique. As the residual dislocation density is increased in the matrix, the formation of radiation defects is considerably weakened. Comparison between the characteristics of the radiation defect and an evaluation of radiation hardening indicates that a large dislocation loop contributes little to the radiation hardening in the heat-treated SA508 Gr3 steel.
TEM characterization of irradiated microstructure of Fe-9%Cr ODS and ferritic-martensitic alloys
NASA Astrophysics Data System (ADS)
Swenson, M. J.; Wharry, J. P.
2018-04-01
The objective of this study is to evaluate the effects of irradiation dose and dose rate on defect cluster (i.e. dislocation loops and voids) evolution in a model Fe-9%Cr oxide dispersion strengthened steel and commercial ferritic-martensitic steels HCM12A and HT9. Complimentary irradiations using Fe2+ ions, protons, or neutrons to doses ranging from 1 to 100 displacements per atom (dpa) at 500 °C are conducted on each alloy. The irradiated microstructures are characterized using transmission electron microscopy (TEM). Dislocation loops exhibit limited growth after 1 dpa upon Fe2+ and proton irradiation, while any voids observed are small and sparse. The average size and number density of loops are statistically invariant between Fe2+, proton, and neutron irradiated specimens at otherwise fixed irradiation conditions of ∼3 dpa, 500 °C. Therefore, we conclude that higher dose rate charged particle irradiations can reproduce the neutron irradiated loop microstructure with temperature shift governed by the invariance theory; this temperature shift is ∼0 °C for the high sink strength alloys studied herein.
Crystal plasticity modeling of irradiation growth in Zircaloy-2
Patra, Anirban; Tome, Carlos; Golubov, Stanislav I.
2017-05-10
A reaction-diffusion based mean field rate theory model is implemented in the viscoplastic self-consistent (VPSC) crystal plasticity framework to simulate irradiation growth in hcp Zr and its alloys. A novel scheme is proposed to model the evolution (both number density and radius) of irradiation-induced dislocation loops that can be informed directly from experimental data of dislocation density evolution during irradiation. This framework is used to predict the irradiation growth behavior of cold-worked Zircaloy-2 and trends compared to available experimental data. The role of internal stresses in inducing irradiation creep is discussed. Effects of grain size, texture, and external stress onmore » the coupled irradiation growth and creep behavior are also studied.« less
Crystal plasticity modeling of irradiation growth in Zircaloy-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patra, Anirban; Tome, Carlos; Golubov, Stanislav I.
A reaction-diffusion based mean field rate theory model is implemented in the viscoplastic self-consistent (VPSC) crystal plasticity framework to simulate irradiation growth in hcp Zr and its alloys. A novel scheme is proposed to model the evolution (both number density and radius) of irradiation-induced dislocation loops that can be informed directly from experimental data of dislocation density evolution during irradiation. This framework is used to predict the irradiation growth behavior of cold-worked Zircaloy-2 and trends compared to available experimental data. The role of internal stresses in inducing irradiation creep is discussed. Effects of grain size, texture, and external stress onmore » the coupled irradiation growth and creep behavior are also studied.« less
Field, Kevin G.; Briggs, Samuel A.; Hu, Xunxiang; ...
2016-11-01
FeCrAl alloys are an attractive materials class for nuclear power applications due to their increased environmental compatibility over more traditional nuclear materials. Preliminary studies into the radiation tolerance of FeCrAl alloys under accelerated neutron testing between 300-400 °C have shown post-irradiation microstructures containing dislocation loops and Cr-rich ' phase. Although these initial works established the post-irradiation microstructures, little to no focus was applied towards the influence of pre-irradiation microstructures on this response. Here, a well annealed commercial FeCrAl alloy, Alkrothal 720, was neutron irradiated to 1.8 dpa at 382 °C and then the role of random high angle grain boundariesmore » on the spatial distribution and size of dislocation loops, dislocation loops, and black dot damage was analyzed using on-zone scanning transmission electron microscopy. Results showed a clear heterogeneous dislocation loop formation with dislocation loops showing an increased number density and size, black dot damage showing a significant number density decrease, and an increased size of dislocation loops in the vicinity directly adjacent to the grain boundary. Lastly, these results suggest the importance of the pre-irradiation microstructure on the radiation tolerance of FeCrAl alloys.« less
High temperature annealing of ion irradiated tungsten
Ferroni, Francesco; Yi, Xiaoou; Arakawa, Kazuto; ...
2015-03-21
In this study, transmission electron microscopy of high temperature annealing of pure tungsten irradiated by self-ions was conducted to elucidate microstructural and defect evolution in temperature ranges relevant to fusion reactor applications (500–1200°C). Bulk isochronal and isothermal annealing of ion irradiated pure tungsten (2 MeV W + ions, 500°C, 1014 W +/cm 2) with temperatures of 800, 950, 1100 and 1400°C, from 0.5 to 8 h, was followed by ex situ characterization of defect size, number density, Burgers vector and nature. Loops with diameters larger than 2–3 nm were considered for detailed analysis, among which all loops had View themore » MathML source and were predominantly of interstitial nature. In situ annealing experiments from 300 up to 1200°C were also carried out, including dynamic temperature ramp-ups. These confirmed an acceleration of loop loss above 900°C. At different temperatures within this range, dislocations exhibited behaviour such as initial isolated loop hopping followed by large-scale rearrangements into loop chains, coalescence and finally line–loop interactions and widespread absorption by free-surfaces at increasing temperatures. An activation energy for the annealing of dislocation length was obtained, finding E a=1.34±0.2 eV for the 700–1100°C range.« less
Radiation Enhanced Absorption of Frank Loops by Nanovoids in Cu
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Youxing; Zhang, Xinghang; Wang, Jian
Neutron and heavy ion irradiation generally induces voids in metallic materials, and continuous radiations typically result in void swelling and mechanical failure of the irradiated materials. Recent experiments showed that nanovoids in nanotwinned copper could act as sinks for radiation-induced Frank loops, significantly mitigating radiation damage [Y. Chen et al., Nat. Commun. 6:7036 (2015)]. In this paper, we report on structural evolution of Frank loops under cascades and address the role of nanovoids in absorbing Frank loops in detail by using molecular dynamics simulations. Results show that a stand-alone Frank loop is stable under cascades. When Frank loops are adjacentmore » to nanovoids, the diffusion of a group of atoms from the loop into nanovoids is accomplished via the formation and propagation of dislocation loops. The loop-nanovoid interactions result in the shrinkage of the nanovoids and the Frank loops.« less
Radiation Enhanced Absorption of Frank Loops by Nanovoids in Cu
Chen, Youxing; Zhang, Xinghang; Wang, Jian
2016-11-01
Neutron and heavy ion irradiation generally induces voids in metallic materials, and continuous radiations typically result in void swelling and mechanical failure of the irradiated materials. Recent experiments showed that nanovoids in nanotwinned copper could act as sinks for radiation-induced Frank loops, significantly mitigating radiation damage [Y. Chen et al., Nat. Commun. 6:7036 (2015)]. In this paper, we report on structural evolution of Frank loops under cascades and address the role of nanovoids in absorbing Frank loops in detail by using molecular dynamics simulations. Results show that a stand-alone Frank loop is stable under cascades. When Frank loops are adjacentmore » to nanovoids, the diffusion of a group of atoms from the loop into nanovoids is accomplished via the formation and propagation of dislocation loops. The loop-nanovoid interactions result in the shrinkage of the nanovoids and the Frank loops.« less
Peterman, Emily M.; Reddy, Steven M.; Saxey, David W.; Snoeyenbos, David R.; Rickard, William D. A.; Fougerouse, Denis; Kylander-Clark, Andrew R. C.
2016-01-01
Isotopic discordance is a common feature in zircon that can lead to an erroneous age determination, and it is attributed to the mobilization and escape of radiogenic Pb during its post-crystallization geological evolution. The degree of isotopic discordance measured at analytical scales of ~10 μm often differs among adjacent analysis locations, indicating heterogeneous distributions of Pb at shorter length scales. We use atom probe microscopy to establish the nature of these sites and the mechanisms by which they form. We show that the nanoscale distribution of Pb in a ~2.1 billion year old discordant zircon that was metamorphosed c. 150 million years ago is defined by two distinct Pb reservoirs. Despite overall Pb loss during peak metamorphic conditions, the atom probe data indicate that a component of radiogenic Pb was trapped in 10-nm dislocation loops that formed during the annealing of radiation damage associated with the metamorphic event. A second Pb component, found outside the dislocation loops, represents homogeneous accumulation of radiogenic Pb in the zircon matrix after metamorphism. The 207Pb/206Pb ratios measured from eight dislocation loops are equivalent within uncertainty and yield an age consistent with the original crystallization age of the zircon, as determined by laser ablation spot analysis. Our results provide a specific mechanism for the trapping and retention of radiogenic Pb during metamorphism and confirm that isotopic discordance in this zircon is characterized by discrete nanoscale reservoirs of Pb that record different isotopic compositions and yield age data consistent with distinct geological events. These data may provide a framework for interpreting discordance in zircon as the heterogeneous distribution of discrete radiogenic Pb populations, each yielding geologically meaningful ages. PMID:27617295
Stoichiometry effect on the irradiation response in the microstructure of zirconium carbides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young Yang; Wei-Yang Lo; Clayton Dickerson
2014-11-01
Zone-refined ultra high pure ZrC with five C/Zr ratios ranging from 0.84 to 1.17 was irradiated using a 2 MeV proton beam at 1125 C. The stoichiometry effect on the irradiation response of ZrC microstructure was examined using transmission electron microscopy following the irradiation. The irradiated microstructures generally feature a high density of perfect dislocation loops particularly at away from the graphite precipitates, and the C/Zr ratio shows a notable effect on the size and density of dislocation loops. The dislocation loops are identified as interstitial type perfect loops, and it was indirectly proved that the dislocation loop core likelymore » consists of carbon atoms. Graphite precipitates that form with excess carbon in the super-stoichiometric ZrC are detrimental, and the dramatic increases in the size of and density of dislocation loops in the vicinity of graphite precipitates in ZrC phase were observed. Irradiationinduced faceted voids were only observed in ZrC0.95, which is attributed to the pre-existing dislocation lines as biased sinks for vacancies.« less
Atomistic study of the hardening of ferritic iron by Ni-Cr decorated dislocation loops
NASA Astrophysics Data System (ADS)
Bonny, G.; Bakaev, A.; Terentyev, D.; Zhurkin, E.; Posselt, M.
2018-01-01
The exact nature of the radiation defects causing hardening in reactor structural steels consists of several components that are not yet clearly determined. While generally, the hardening is attributed to dislocation loops, voids and secondary phases (radiation-induced precipitates), recent advanced experimental and computational studies point to the importance of solute-rich clusters (SRCs). Depending on the exact composition of the steel, SRCs may contain Mn, Ni and Cu (e.g. in reactor pressure vessel steels) or Ni, Cr, Si, Mn (e.g. in high-chromium steels for generation IV and fusion applications). One of the hypotheses currently implied to explain their formation is the process of radiation-induced diffusion and segregation of these elements to small dislocation loops (heterogeneous nucleation), so that the distinction between SRCs and loops becomes somewhat blurred. In this work, we perform an atomistic study to investigate the enrichment of loops by Ni and Cr solutes and their interaction with an edge dislocation. The dislocation loops decorated with Ni and Cr solutes are obtained by Monte Carlo simulations, while the effect of solute segregation on the loop's strength and interaction mechanism is then addressed by large scale molecular dynamics simulations. The synergy of the Cr-Ni interaction and their competition to occupy positions in the dislocation loop core are specifically clarified.
New understanding of nano-scale interstitial dislocation loops in BCC iron
NASA Astrophysics Data System (ADS)
Gao, N.; Chen, J.; Kurtz, R. J.; Wang, Z. G.; Zhang, R. F.; Gao, F.
2017-11-01
Complex states of nanoscale interstitial dislocation loop can be described by its habit plane and Burgers vector. Using atomistic simulations, we provide direct evidences on the change of the habit plane of a 1/2〈1 1 1〉 loop from {1 1 1} to {1 1 0} and {2 1 1}, in agreement with TEM observations. A new {1 0 0} habit plane of this loop is also predicted by simulations. The non-conservation of the Burgers vector is approved theoretically for: (1) dislocation reactions between loops with different Burgers vectors and (2) the transition between 〈1 0 0〉 loops and 1/2〈1 1 1〉 loops. The rotation from a 1/2〈1 1 1〉 to a 〈1 0 0〉 loop has also been explored, which occurs at 570 K for time on the order of 10 s. The dislocation-precipitate phase duality and change of habit plane are then proposed as new features for nano-scale dislocation loops.
NASA Astrophysics Data System (ADS)
Field, Kevin G.; Briggs, Samuel A.; Hu, Xunxiang; Yamamoto, Yukinori; Howard, Richard H.; Sridharan, Kumar
2017-01-01
FeCrAl alloys are an attractive class of materials for nuclear power applications because of their increased environmental compatibility compared with more traditional nuclear materials. Preliminary studies into the radiation tolerance of FeCrAl alloys under accelerated neutron testing between 300 and 400 °C have shown post-irradiation microstructures containing dislocation loops and a Cr-rich α‧ phase. Although these initial studies established the post-irradiation microstructures, there was little to no focus on understanding the influence of pre-irradiation microstructures on this response. In this study, a well-annealed commercial FeCrAl alloy, Alkrothal 720, was neutron irradiated to 1.8 displacements per atom (dpa) at 382 °C and then the effect of random high-angle grain boundaries on the spatial distribution and size of a〈100〉 dislocation loops, a/2〈111〉 dislocation loops, and black dot damage was analyzed using on-zone scanning transmission electron microscopy. Results showed a clear heterogeneous dislocation loop formation with a/2〈111〉 dislocation loops showing an increased number density and size, black dot damage showing a significant number density decrease, and a〈100〉 dislocation loops exhibiting an increased size in the vicinity of the grain boundary. These results suggest the importance of the pre-irradiation microstructure and, specifically, defect sink density spacing to the radiation tolerance of FeCrAl alloys.
Modal analysis of dislocation vibration and reaction attempt frequency
Sobie, Cameron; Capolungo, Laurent; McDowell, David L.; ...
2017-02-04
Transition state theory is a fundamental approach for temporal coarse-graining. It estimates the reaction rate for a transition processes by quantifying the activation free energy and attempt frequency for the unit process. To calculate the transition rate of a gliding dislocation, the attempt frequency is often obtained from line tension estimates of dislocation vibrations, a highly simplified model of dislocation behavior. This work revisits the calculation of attempt frequency for a dislocation bypassing an obstacle, in this case a self-interstitial atom (SIA) loop. First, a direct calculation of the vibrational characteristics of a finite pinned dislocation segment is compared tomore » line tension estimates before moving to the more complex case of dislocation-obstacle bypass. The entropic factor associated with the attempt frequency is calculated for a finite dislocation segment and for an infinite glide dislocation interacting with an SIA loop. Lastly, it is found to be dislocation length independent for three cases of dislocation-self interstitial atom (SIA) loop interactions.« less
NASA Astrophysics Data System (ADS)
Dickerson, Clayton A.
The materials TiC and TiN have been identified as potential candidate materials for advanced coated nuclear fuel components for the gas-cooled fast reactor (GFR). While a number of their thermal and mechanical properties have been studied, little is known about how these ceramics respond to particle irradiation. The goal of this study was to investigate the radiation effects in TiC and TiN by analyzing the irradiated microstructures and mechanical properties. Irradiations of TiC and TiN were conducted with 2.6 MeV protons at the University of Wisconsin -- Madison to simulate proposed conditions expected in a reactor. Each material was subjected to three incident proton fluences resulting in doses of ˜0.2 dpa to ˜1 dpa at three temperatures, 600°C, 800°C, and 900°C. Post irradiation examination included microstructural analysis via TEM, lattice parameter determinations with XRD, and mechanical property measurements with micro indentation hardness and fracture toughness tests. The predominant irradiation induced aggregate defects found by high resolution TEM and diffraction contrast TEM in both irradiated TiC and TiN were interstitial faulted dislocation loops. Only circular loops were identified in TiC while both circular and triangular loops were present in TiN. The influences on the microstructural evolution from a high inherent density of dislocations and high porosity were also determined. The strains resulting from the development of the defective microstructures were measured with XRD and shown to be highly dependent on the density of dislocation loops. Maximum strains for the irradiated samples were on the order of 0.5%. Measurements of the fracture toughness of Tic samples were made by ion milling the surface of the samples to create micro cantilever beams which were subsequently fractured by nano indentation. The formation of high densities of dislocation loops in the irradiated samples was found to significantly decrease the material's fracture toughness.
Crystal defect studies using x-ray diffuse scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, B.C.
1980-01-01
Microscopic lattice defects such as point (single atom) defects, dislocation loops, and solute precipitates are characterized by local electronic density changes at the defect sites and by distortions of the lattice structure surrounding the defects. The effect of these interruptions of the crystal lattice on the scattering of x-rays is considered in this paper, and examples are presented of the use of the diffuse scattering to study the defects. X-ray studies of self-interstitials in electron irradiated aluminum and copper are discussed in terms of the identification of the interstitial configuration. Methods for detecting the onset of point defect aggregation intomore » dislocation loops are considered and new techniques for the determination of separate size distributions for vacancy loops and interstitial loops are presented. Direct comparisons of dislocation loop measurements by x-rays with existing electron microscopy studies of dislocation loops indicate agreement for larger size loops, but x-ray measurements report higher concentrations in the smaller loop range. Methods for distinguishing between loops and three-dimensional precipitates are discussed and possibilities for detailed studies considered. A comparison of dislocation loop size distributions obtained from integral diffuse scattering measurements with those from TEM show a discrepancy in the smaller sizes similar to that described above.« less
Neutron irradiation effects in Fe and Fe-Cr at 300 °C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wei-Ying; Miao, Yinbin; Gan, Jian
2016-06-01
Fe and Fe-Cr (Cr = 10–16 at.%) specimens were neutron-irradiated at 300 °C to 0.01, 0.1 and 1 dpa. The TEM observations indicated that the Cr significantly reduced the mobility of dislocation loops and suppressed vacancy clustering, leading to distinct damage microstructures between Fe and Fe-Cr. Irradiation-induced dislocation loops in Fe were heterogeneously observed in the vicinity of grown-in dislocations, whereas the loop distribution observed in Fe-Cr is much more uniform. Voids were observed in the irradiated Fe samples, but not in irradiated Fe-Cr samples. Increasing Cr content in Fe-Cr results in a higher density, and a smaller size ofmore » irradiation-induced dislocation loops. Orowan mechanism was used to correlate the observed microstructure and hardening, which showed that the hardening in Fe-Cr can be attributed to the formation of dislocation loops and α' precipitates.« less
A numerical spectral approach to solve the dislocation density transport equation
NASA Astrophysics Data System (ADS)
Djaka, K. S.; Taupin, V.; Berbenni, S.; Fressengeas, C.
2015-09-01
A numerical spectral approach is developed to solve in a fast, stable and accurate fashion, the quasi-linear hyperbolic transport equation governing the spatio-temporal evolution of the dislocation density tensor in the mechanics of dislocation fields. The approach relies on using the Fast Fourier Transform algorithm. Low-pass spectral filters are employed to control both the high frequency Gibbs oscillations inherent to the Fourier method and the fast-growing numerical instabilities resulting from the hyperbolic nature of the transport equation. The numerical scheme is validated by comparison with an exact solution in the 1D case corresponding to dislocation dipole annihilation. The expansion and annihilation of dislocation loops in 2D and 3D settings are also produced and compared with finite element approximations. The spectral solutions are shown to be stable, more accurate for low Courant numbers and much less computation time-consuming than the finite element technique based on an explicit Galerkin-least squares scheme.
Effect of heavy ion irradiation on microstructural evolution in CF8 cast austenitic stainless steel
Chen, Wei-Ying; Li, Meimei; Kirk, Marquis A.; ...
2015-08-21
The microstructural evolution in ferrite and austenitic in cast austenitic stainless steel (CASS) CF8, as received or thermally aged at 400 °C for 10,000 h, was followed under TEM with in situ irradiation of 1 MeV Kr ions at 300 and 350 °C to a fluence of 1.9 × 10 15 ions/cm 2 (~3 dpa) at the IVEM-Tandem Facility. For the unaged CF8, the irradiation-induced dislocation loops appeared at a much lower dose in the austenite than in the ferrite. At the end dose, the austenite formed a well-developed dislocation network microstructure, while the ferrite exhibited an extended dislocation structuremore » as line segments. Compared to the unaged CF8, the aged specimen appeared to have lower rate of damage accumulation. The rate of microstructural evolution under irradiation in the ferrite was significantly lower in the aged specimen than in the unaged. Finally, we attributed this difference to the different initial microstructures in the unaged and aged specimens, which implies that thermal aging and irradiation are not independent but interconnected damage processes.« less
Full characterization of dislocations in ion-irradiated polycrystalline UO2
NASA Astrophysics Data System (ADS)
Onofri, C.; Legros, M.; Léchelle, J.; Palancher, H.; Baumier, C.; Bachelet, C.; Sabathier, C.
2017-10-01
In order to fully characterize the dislocation loops and lines features (Burgers vectors, habit/slip planes, interstitial or vacancy type) induced by irradiation in UO2, polycrystalline thin foils were irradiated with 4 MeV Au or 390 keV Xe ions at different temperatures (25, 600 and 800 °C) and fluences (0.5 and 1 × 1015 ions/cm2), and further analyzed using TEM. In all the cases, this study, performed on a large number of dislocation loops (diameter ranging from 10 to 80 nm) and for the first time on several dislocation lines, reveals unfaulted prismatic dislocation loops with an interstitial nature and Burgers vectors only along the <110>-type directions. Almost 60% of the studied loops are purely prismatic type and lie on {110} habit planes perpendicular to the Burgers vector directions. The others lie on the {110} or {111} planes, which are neither perpendicular to the Burgers vectors, nor contain them. About 87% of the dislocation lines, formed by loop overlapping as fluence increases, are edge or mixed type in the <100>{100} slip systems, as those induced under mechanical load.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wirth, Brian; Morgan, Dane; Kaoumi, Djamel
2013-12-01
The in-service degradation of reactor core materials is related to underlying changes in the irradiated microstructure. During reactor operation, structural components and cladding experience displacement of atoms by collisions with neutrons at temperatures at which the radiation-induced defects are mobile, leading to microstructure evolution under irradiation that can degrade material properties. At the doses and temperatures relevant to fast reactor operation, the microstructure evolves by dislocation loop formation and growth, microchemistry changes due to radiation-induced segregation, radiation-induced precipitation, destabilization of the existing precipitate structure, and in some cases, void formation and growth. These processes do not occur independently; rather, theirmore » evolution is highly interlinked. Radiationinduced segregation of Cr and existing chromium carbide coverage in irradiated alloy T91 track each other closely. The radiation-induced precipitation of Ni-Si precipitates and RIS of Ni and Si in alloys T91 and HCM12A are likely related. Neither the evolution of these processes nor their coupling is understood under the conditions required for materials performance in fast reactors (temperature range 300-600°C and doses beyond 200 dpa). Further, predictive modeling is not yet possible as models for microstructure evolution must be developed along with experiments to characterize these key processes and provide tools for extrapolation. To extend the range of operation of nuclear fuel cladding and structural materials in advanced nuclear energy and transmutation systems to that required for the fast reactor, the irradiation-induced evolution of the microstructure, microchemistry, and the associated mechanical properties at relevant temperatures and doses must be understood. Predictive modeling relies on an understanding of the physical processes and also on the development of microstructure and microchemical models to describe their evolution under irradiation. This project will focus on modeling microstructural and microchemical evolution of irradiated alloys by performing detailed modeling of such microstructure evolution processes coupled with well-designed in situ experiments that can provide validation and benchmarking to the computer codes. The broad scientific and technical objectives of this proposal are to evaluate the microstructure and microchemical evolution in advanced ferritic/martensitic and oxide dispersion strengthened (ODS) alloys for cladding and duct reactor materials under long-term and elevated temperature irradiation, leading to improved ability to model structural materials performance and lifetime. Specifically, we propose four research thrusts, namely Thrust 1: Identify the formation mechanism and evolution for dislocation loops with Burgers vector of a<100> and determine whether the defect microstructure (predominately dislocation loop/dislocation density) saturates at high dose. Thrust 2: Identify whether a threshold irradiation temperature or dose exists for the nucleation of growing voids that mark the beginning of irradiation-induced swelling, and begin to probe the limits of thermal stability of the tempered Martensitic structure under irradiation. Thrust 3: Evaluate the stability of nanometer sized Y- Ti-O based oxide dispersion strengthened (ODS) particles at high fluence/temperature. Thrust 4: Evaluate the extent to which precipitates form and/or dissolve as a function of irradiation temperature and dose, and how these changes are driven by radiation induced segregation and microchemical evolutions and determined by the initial microstructure.« less
NASA Astrophysics Data System (ADS)
Ni, Kai; Ma, Qian; Wan, Hao; Yang, Bin; Ge, Junjie; Zhang, Lingyu; Si, Naichao
2018-02-01
The evolution of microstructure for 7075 aluminum alloys with 50 Kev helium ions irradiation were studied by using optical microscopy (OM), scanning electron microscopy (SEM), x-ray diffraction (XRD) and transmission electron microscopy (TEM). The fluences of 1 × 1015, 1 × 1016 and 1 × 1017 ions cm-2 were selected, and irradiation experiments were conducted at room temperatures. The transmission process of He+ ions was simulated by using SRIM software, including distribution of ion ranges, energy losses and atomic displacements. Experimental results show that irradiated pits and micro-cracks were observed on irradiation sample surface, and the size of constituent particles (not including Mg2Si) decreased with the increasing dose. The x-ray diffraction results of the pair of peaks is better resolved in irradiated samples might indicate that the stressed structure consequence due to crystal defects (vacancies and interstitials) after He+ implantation. TEM observation indicated that the density of MgZn2 phase was significantly reduced after helium ion irradiation which is harmful to strength. Besides, the development of compressive stress produced a large amount of dislocation defects in the 1015 ions cm-2 sample. Moreover, higher fluence irradiation produced more dislocations in sample. At fluence of 1016 ions cm-2, dislocation wall formed by dislocation slip and aggregation in the interior of grains, leading to the refinement of these grains. As fluence increased to 1017 ions cm-2, dislocation loops were observed in pinned dislocation. Moreover, dislocation as effective defect sink, irradiation-induced vacancy defects aggregated to these sinks, and resulted in the formation of helium bubbles in dislocation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Ning; Shen, Tielong; Kurtz, Richard
The properties of nano-scale interstitial dislocation loops under the coupling effect of stress and temperature are studied using atomistic simulation methods and experiments. The decomposition of a loop by the emission of smaller loops is identified as one of the major mechanisms to release the localized stress induced by the coupling effect, which is validated by the TEM observations. The classical conservation law of Burgers vector cannot be applied during such decomposition process. The dislocation network is formed from the decomposed loops, which may initiate the irradiation creep much earlier than expected through the mechanism of climb-controlled glide of dislocations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shenyang; Setyawan, Wahyu; Joshi, Vineet V.
Xe gas bubble superlattice formation is observed in irradiated uranium–10 wt% molybdenum (U10Mo) fuels. However, the thermodynamic properties of the bubbles (the relationship among bubble size, equilibrium Xe concentration, and bubble pressure) and the mechanisms of bubble growth and superlattice formation are not well known. In this work, molecular dynamics is used to study these properties and mechanisms. The results provide important inputs for quantitative mesoscale models of gas bubble evolution and fuel performance. In the molecular dynamics simulations, the embedded-atom method (EAM) potential of U10Mo-Xe (Smirnova et al. 2013) is employed. Initial gas bubbles with low Xe concentration aremore » generated in a U10Mo single crystal. Then Xe atom atoms are continuously added into the bubbles, and the evolution of pressure and dislocation emission around the bubbles is analyzed. The relationship between pressure, equilibrium Xe concentration, and radius of the bubbles is established. It was found that the gas bubble growth is accompanied by partial dislocation emission, which results in a star-shaped dislocation structure and an anisotropic stress field. The emitted partial dislocations have a Burgers vector along the <111> direction and a slip plane of (11-2). Dislocation loop punch-out was not observed. A tensile stress was found along <110> directions around the bubble, favoring the nucleation and formation of a face-centered cubic bubble superlattice in body-centered cubic U10Mo fuels.« less
Interaction of irradiation-induced prismatic dislocation loops with free surfaces in tungsten
NASA Astrophysics Data System (ADS)
Fikar, Jan; Gröger, Roman; Schäublin, Robin
2017-02-01
The prismatic dislocation loops appear in metals as a result of high-energy irradiation. Understanding their formation and interaction is important for quantification of irradiation-induced deterioration of mechanical properties. Characterization of dislocation loops in thin foils is commonly made using transmission electron microscopy (TEM), but the results are inevitably influenced by the proximity of free surfaces. The prismatic loops are attracted to free surfaces by image forces. Depending on the type, size and depth of the loop in the foil, they can escape to the free surface, thus invalidating TEM observations and conclusions. In this article small prismatic hexagonal and circular dislocation loops in tungsten with the Burgers vectors 1/2 〈 1 1 1 〉 and 〈 1 0 0 〉 are studied by molecular statics simulations using three embedded atom method (EAM) potentials. The calculated image forces are compared to known elastic solutions. A particular attention is paid to the critical stress to move edge dislocations. The escape of the loop to the free surface is quantified by a combination of atomistic simulations and elastic calculations. For example, for the 1/2 〈 1 1 1 〉 loop with diameter 7.4 nm in a 55 nm thick foil we calculated that about one half of the loops will escape to the free surface. This implies that TEM observations detect only approx. 50% of the loops that were originally present in the foil.
Barashev, A. V.; Golubov, S. I.; Stoller, R. E.
2015-06-01
We studied the radiation growth of zirconium using a reaction–diffusion model which takes into account intra-cascade clustering of self-interstitial atoms and one-dimensional diffusion of interstitial clusters. The observed dose dependence of strain rates is accounted for by accumulation of sessile dislocation loops during irradiation. Moreover, the computational model developed and fitted to available experimental data is applied to study deformation of Zr single crystals under irradiation up to hundred dpa. Finally, the effect of cold work and the reasons for negative prismatic strains and co-existence of vacancy and interstitial loops are elucidated.
Cross Slip of Dislocation Loops in GaN Under Shear
2014-03-01
methodology 2.1 Discrete dislocation dynamic ( DDD ) simula- tions In this work, we employ a modified version of the ParaDiS code [15, 16]. First a...plane. 4 Conclusions The cross slip mechanisms of different dislocation loops have been studied via DDD simulations using the type <a> active
Singularity-free dislocation dynamics with strain gradient elasticity
NASA Astrophysics Data System (ADS)
Po, Giacomo; Lazar, Markus; Seif, Dariush; Ghoniem, Nasr
2014-08-01
The singular nature of the elastic fields produced by dislocations presents conceptual challenges and computational difficulties in the implementation of discrete dislocation-based models of plasticity. In the context of classical elasticity, attempts to regularize the elastic fields of discrete dislocations encounter intrinsic difficulties. On the other hand, in gradient elasticity, the issue of singularity can be removed at the outset and smooth elastic fields of dislocations are available. In this work we consider theoretical and numerical aspects of the non-singular theory of discrete dislocation loops in gradient elasticity of Helmholtz type, with interest in its applications to three dimensional dislocation dynamics (DD) simulations. The gradient solution is developed and compared to its singular and non-singular counterparts in classical elasticity using the unified framework of eigenstrain theory. The fundamental equations of curved dislocation theory are given as non-singular line integrals suitable for numerical implementation using fast one-dimensional quadrature. These include expressions for the interaction energy between two dislocation loops and the line integral form of the generalized solid angle associated with dislocations having a spread core. The single characteristic length scale of Helmholtz elasticity is determined from independent molecular statics (MS) calculations. The gradient solution is implemented numerically within our variational formulation of DD, with several examples illustrating the viability of the non-singular solution. The displacement field around a dislocation loop is shown to be smooth, and the loop self-energy non-divergent, as expected from atomic configurations of crystalline materials. The loop nucleation energy barrier and its dependence on the applied shear stress are computed and shown to be in good agreement with atomistic calculations. DD simulations of Lome-Cottrell junctions in Al show that the strength of the junction and its configuration are easily obtained, without ad-hoc regularization of the singular fields. Numerical convergence studies related to the implementation of the non-singular theory in DD are presented.
NASA Astrophysics Data System (ADS)
Krasnitckii, S. A.; Kolomoetc, D. R.; Smirnov, A. M.; Gutkin, M. Yu
2018-03-01
The misfit stress relaxation via generation of rectangular prismatic dislocation loops at the interface in core-shell nanowires is considered. The core has the shape of a long parallelepiped of a square cross-section. The energy change caused by loop generation in such nanowires is calculated. Critical conditions for the onset of such loops are calculated and analyzed.
Growth rate effects on the formation of dislocation loops around deep helium bubbles in Tungsten
Sandoval, Luis; Perez, Danny; Uberuaga, Blas P.; ...
2016-11-15
Here, the growth process of spherical helium bubbles located 6 nm below a (100) surface is studied using molecular dynamics and parallel replica dynamics simulations, over growth rates from 10 6 to 10 12 helium atoms per second. Slower growth rates lead to a release of pressure and lower helium content as compared with fast growth cases. In addition, at slower growth rates, helium bubbles are not decorated by multiple dislocation loops, as these tend to merge or emit given sufficient time. At faster rates, dislocation loops nucleate faster than they can emit, leading to a more complicated dislocation structuremore » around the bubble.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Kuan-Kan; Woon, Wei Yen; Chang, Ruey-Dar
We investigate the evolution of two dimensional transient enhanced diffusion (TED) of phosphorus in sub-micron scale patterned silicon template. Samples doped with low dose phosphorus with and without high dose silicon self-implantation, were annealed for various durations. Dopant diffusion is probed with plane-view scanning capacitance microscopy. The measurement revealed two phases of TED. Significant suppression in the second phase TED is observed for samples with high dose self-implantation. Transmission electron microscopy suggests the suppressed TED is related to the evolution of end of range defect formed around ion implantation sidewalls.
NASA Astrophysics Data System (ADS)
Hu, Kuan-Kan; Chang, Ruey-Dar; Woon, Wei Yen
2015-10-01
We investigate the evolution of two dimensional transient enhanced diffusion (TED) of phosphorus in sub-micron scale patterned silicon template. Samples doped with low dose phosphorus with and without high dose silicon self-implantation, were annealed for various durations. Dopant diffusion is probed with plane-view scanning capacitance microscopy. The measurement revealed two phases of TED. Significant suppression in the second phase TED is observed for samples with high dose self-implantation. Transmission electron microscopy suggests the suppressed TED is related to the evolution of end of range defect formed around ion implantation sidewalls.
Effect of orientation of prismatic dislocation loops on interaction with free surfaces in BCC iron
NASA Astrophysics Data System (ADS)
Fikar, Jan; Gröger, Roman; Schäublin, Robin
2017-12-01
The prismatic loops appear in metals as a result of high-energy irradiation. Understanding their formation and interaction is important for quantification of irradiation-induced deterioration of mechanical properties. Characterization of dislocation loops in thin foils is commonly made using transmission electron microscopy (TEM), but the results are inevitably influenced by the proximity of free surfaces. The prismatic loops are attracted to free surfaces by image forces. Depending on the type, shape, size, orientation and depth of the loop in the foil, they can escape to the free surface creating denuded loop-free zones and thus invalidating TEM observations. In our previous studies we described a simple general method to determine the critical depth and the critical stress to move prismatic dislocation loops. The critical depths can be further used to correct measurements of the loop density by TEM. Here, we use this procedure to compare 〈100〉 loops and 1/2 〈111〉 loops in body-centered cubic (BCC) iron. The influences of the interatomic potential and the loop orientation are studied in detail. The difference between interstitial and vacancy type loop is also investigated.
Cascade debris overlap mechanism of 〈100〉 dislocation loop formation in Fe and FeCr
NASA Astrophysics Data System (ADS)
Granberg, F.; Byggmästar, J.; Sand, A. E.; Nordlund, K.
2017-09-01
Two types of dislocation loops are observed in irradiated α-Fe, the 1/2〈111〉 loop and the 〈100〉 loop. Atomistic simulations consistently predict that only the energetically more favourable 1/2〈111〉 loops are formed directly in cascades, leaving the formation mechanism of 〈100〉 loops an unsolved question. We show how 〈100〉 loops can be formed when cascades overlap with random pre-existing primary radiation damage in Fe and FeCr. This indicates that there are no specific constraints involved in the formation of 〈100〉 loops, and can explain their common occurrence.
Crystal plasticity modeling of irradiation growth in Zircaloy-2
NASA Astrophysics Data System (ADS)
Patra, Anirban; Tomé, Carlos N.; Golubov, Stanislav I.
2017-08-01
A physically based reaction-diffusion model is implemented in the visco-plastic self-consistent (VPSC) crystal plasticity framework to simulate irradiation growth in hcp Zr and its alloys. The reaction-diffusion model accounts for the defects produced by the cascade of displaced atoms, their diffusion to lattice sinks and the contribution to crystallographic strain at the level of single crystals. The VPSC framework accounts for intergranular interactions and irradiation creep, and calculates the strain in the polycrystalline ensemble. A novel scheme is proposed to model the simultaneous evolution of both, number density and radius, of irradiation-induced dislocation loops directly from experimental data of dislocation density evolution during irradiation. This framework is used to predict the irradiation growth behaviour of cold-worked Zircaloy-2 and trends compared to available experimental data. The role of internal stresses in inducing irradiation creep is discussed. Effects of grain size, texture and external stress on the coupled irradiation growth and creep behaviour are also studied and compared with available experimental data.
Probing the character of ultra-fast dislocations
Rudd, R. E.; Ruestes, C. J.; Bringa, E. M.; ...
2015-11-23
Plasticity is often controlled by dislocation motion, which was first measured for low pressure, low strain rate conditions decades ago. However, many applications require knowledge of dislocation motion at high stress conditions where the data are sparse, and come from indirect measurements dominated by the effect of dislocation density rather than velocity. Here we make predictions based on atomistic simulations that form the basis for a new approach to measure dislocation velocities directly at extreme conditions using three steps: create prismatic dislocation loops in a near-surface region using nanoindentation, drive the dislocations with a shockwave, and use electron microscopy tomore » determine how far the dislocations moved and thus their velocity at extreme stress and strain rate conditions. We report on atomistic simulations of tantalum that make detailed predictions of dislocation flow, and find that the approach is feasible and can uncover an exciting range of phenomena, such as transonic dislocations and a novel form of loop stretching. Furthermore, the simulated configuration enables a new class of experiments to probe average dislocation velocity at very high applied shear stress.« less
NASA Astrophysics Data System (ADS)
Bergner, F.; Gillemot, F.; Hernández-Mayoral, M.; Serrano, M.; Török, G.; Ulbricht, A.; Altstadt, E.
2015-06-01
Dislocation loops, nanovoids and Cu-rich clusters (CRPs) are known to represent obstacles for dislocation glide in neutron-irradiated reactor pressure vessel (RPV) steels, but a consistent experimental determination of the respective obstacle strengths is still missing. A set of Cu-bearing low-Ni RPV steels and model alloys was characterized by means of SANS and TEM in order to specify mean size and number density of loops, nanovoids and CRPs. The obstacle strengths of these families were estimated by solving an over-determined set of linear equations. We have found that nanovoids are stronger than loops and loops are stronger than CRPs. Nevertheless, CRPs contribute most to irradiation hardening because of their high number density. Nanovoids were only observed for neutron fluences beyond typical end-of-life conditions of RPVs. The estimates of the obstacle strength are critically compared with reported literature data.
Structural evolution of zirconium carbide under ion irradiation
NASA Astrophysics Data System (ADS)
Gosset, D.; Dollé, M.; Simeone, D.; Baldinozzi, G.; Thomé, L.
2008-02-01
Zirconium carbide is one of the candidate materials to be used for some fuel components of the high temperature nuclear reactors planned in the frame of the Gen-IV project. Few data exist regarding its behaviour under irradiation. We have irradiated ZrC samples at room temperature with slow heavy ions (4 MeV Au, fluence from 10 11 to 5 × 10 15 cm -2) in order to simulate neutron irradiations. Grazing incidence X-Ray diffraction (GIXRD) and transmission electron microscopy (TEM) analysis have been performed in order to study the microstructural evolution of the material versus ion fluence. A high sensitivity to oxidation is observed with the formation of zirconia precipitates during the ion irradiations. Three damage stages are observed. At low fluence (<10 12 cm -2), low modifications are observed. At intermediate fluence, high micro-strains appear together with small faulted dislocation loops. At the highest fluence (>10 14 cm -2), the micro-strains saturate and the loops coalesce to form a dense dislocation network. No other structural modification is observed. The material shows a moderate cell parameter increase, corresponding to a 0.6 vol.% swelling, which saturates around 10 14 ions/cm 2, i.e., a few Zr dpa. As a result, in spite of a strong covalent bonding component, ZrC seems to have a behaviour under irradiation close to cubic metals.
A polycrystal plasticity model of strain localization in irradiated iron
NASA Astrophysics Data System (ADS)
Barton, Nathan R.; Arsenlis, Athanasios; Marian, Jaime
2013-02-01
At low to intermediate homologous temperatures, the degradation of structural materials performance in nuclear environments is associated with high number densities of nanometric defects produced in irradiation cascades. In polycrystalline ferritic materials, self-interstitial dislocations loops are a principal signature of irradiation damage, leading to a mechanical response characterized by increased yield strengths, decreased total strain to failure, and decreased work hardening as compared to the unirradiated behavior. Above a critical defect concentration, the material deforms by plastic flow localization, giving rise to strain softening in terms of the engineering stress-strain response. Flow localization manifests itself in the form of defect-depleted crystallographic channels, through which all dislocation activity is concentrated. In this paper, we describe the formulation of a crystal plasticity model for pure Fe embedded in a finite element polycrystal simulator and present results of uniaxial tensile deformation tests up to 10% strain. We use a tensorial damage descriptor variable to capture the evolution of the irradiation damage loop subpopulation during deformation. The model is parameterized with detailed dislocation dynamics simulations of tensile tests up to 1.5% deformation of systems containing various initial densities of irradiation defects. The coarse-grained simulations are shown to capture the essential details of the experimental stress response observed in ferritic alloys and steels. Our methodology provides an effective linkage between the defect scale, of the order of one nanometer, and the continuum scale involving multiple grain orientations.
NASA Astrophysics Data System (ADS)
Geslin, Pierre-Antoine; Gatti, Riccardo; Devincre, Benoit; Rodney, David
2017-11-01
We propose a framework to study thermally-activated processes in dislocation glide. This approach is based on an implementation of the nudged elastic band method in a nodal mesoscale dislocation dynamics formalism. Special care is paid to develop a variational formulation to ensure convergence to well-defined minimum energy paths. We also propose a methodology to rigorously parametrize the model on atomistic data, including elastic, core and stacking fault contributions. To assess the validity of the model, we investigate the homogeneous nucleation of partial dislocation loops in aluminum, recovering the activation energies and loop shapes obtained with atomistic calculations and extending these calculations to lower applied stresses. The present method is also applied to heterogeneous nucleation on spherical inclusions.
2006-07-01
dislocation-loop expansion . The new model was used to simulate the thermally reversible flow behaviour for C-S type two-step deformation, and the results are...implemented into the finite element software ABAQUS through a User MATerial subroutine (UMAT). A tangent modulus method [48] was used for the time...locking under a dislocation loop- expansion configuration. This approach was motivated by modern understanding of dislocation mechanisms for Ni3Al
NASA Astrophysics Data System (ADS)
Vattré, A.; Pan, E.
2018-07-01
Lattice dislocation interactions with semicoherent interfaces are investigated by means of anisotropic field solutions in metallic homo- and hetero-structures. The present framework is based on the mathematically elegant and computationally powerful Stroh formalism, combining further with the Fourier integral and series transforms, which cover different shapes and dimensions of various extrinsic and intrinsic dislocations. Two-dimensional equi-spaced arrays of straight lattice dislocations and finite arrangements of piled-up dislocations as well as any polygonal and elliptical dislocation loops in three dimensions are considered using a superposition scheme. Self, image and Peach-Koehler forces are derived to compute the equilibrium dislocation positions in pile-ups, including the internal structures and energetics of the interfacial dislocation networks. For illustration, the effects due to the elastic and misfit mismatches are discussed in the pure misfit Au/Cu and heterophase Cu/Nb systems, while discrepancies resulting from the approximation of isotropic elasticity are clearly exhibited. These numerical examples not only feature and enhance the existing works in anisotropic bimaterials, but also promote a novel opportunity of analyzing the equilibrium shapes of planar glide dislocation loops at nanoscale.
NASA Astrophysics Data System (ADS)
Mathayan, Vairavel; Kothalamuthu, Saravanan; Gnanasekaran, Jaiganesh; Balakrishnan, Sundaravel; Panigrahi, Binaykumar
2018-01-01
The O18 and self ions are implanted at same depth in Fe (1 1 0) crystal and annealed to study the oxygen trapping under excess self interstitial defects. Rutherford backscattering spectrometry, nuclear reaction analysis and channeling measurements have been performed to determine the lattice site position of O18. The presence of dislocation loops is confirmed by energy-dependent dechanneling parameter measurements. From the tilt angular scans of Fe and O18 signals along 〈1 0 0〉, 〈1 1 0〉 axes, O18 is found to be displaced 0.2 Å from tetrahedral towards octahedral interstitial site in O18. Similar lattice site location of oxygen with the displacement of 0.37 Å is predicted by density functional theory calculations for the interaction of oxygen with 〈1 0 0〉 interstitial dislocation loop structure. Our results provide strong evidence on oxygen trapping at interstitial dislocation loops in the presence of excess interstitial defects in iron.
Dislocation evolution in 316 L stainless steel during multiaxial ratchetting deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong Yawei; Kang Guozheng, E-mail: guozhengkang@yahoo.com.cn; Liu Yujie
2012-03-15
Dislocation patterns and their evolutions in 316 L stainless steel during the multiaxial ratchetting deformation were observed by transmission electron microscopy (TEM). The microscopic observations indicate that the dislocation evolution presented during the multiaxial ratchetting with four kinds of multiaxial loading paths is similar to that in the uniaxial case [G. Z. Kang et al., Mater Sci Eng A 527 (2010) 5952]. That is, dislocation networks and dislocation tangles are formed quickly by the multiple-slip and cross-slip of dislocation activated by applied multiaxial stress; and then polarized patterns such as dislocation walls and elongated incipient dislocation cells are formed atmore » the last stage of multiaxial ratchetting. The dislocation patterns evolve more quickly from the modes at low dislocation density to the ones at high density during the multiaxial ratchetting than that in the uniaxial case, and some traces of multiple-slip are observed in the multiaxial ones. The dislocation evolution during the multiaxial ratchetting deformation is summarized by comparing the observed dislocation patterns with those presented in the multiaxial strain-controlled and symmetrical stress-controlled cyclic tests. The multiaxial ratchetting of 316 L stainless steel can be microscopically and qualitatively explained by the observed evolution of dislocation patterns. - Highlights: Black-Right-Pointing-Pointer Dislocation patterns change from lines and nets to tangles, walls and cells. Black-Right-Pointing-Pointer Dislocation patterns evolve quicker in the multiaxial case. Black-Right-Pointing-Pointer Aligned dislocation arrays and some traces of multiple slips are observed. Black-Right-Pointing-Pointer Heterogeneous dislocation patterns result in the multiaxial ratchetting.« less
Illusory spirals and loops in crystal growth
Shtukenberg, Alexander G.; Zhu, Zina; Bhandari, Misha; Song, Pengcheng; Kahr, Bart; Ward, Michael D.
2013-01-01
The theory of dislocation-controlled crystal growth identifies a continuous spiral step with an emergent lattice displacement on a crystal surface; a mechanistic corollary is that closely spaced, oppositely winding spirals merge to form concentric loops. In situ atomic force microscopy of step propagation on pathological l-cystine crystals did indeed show spirals and islands with step heights of one lattice displacement. We show by analysis of the rates of growth of smaller steps only one molecule high that the major morphological spirals and loops are actually consequences of the bunching of the smaller steps. The morphology of the bunched steps actually inverts the predictions of the theory: Spirals arise from pairs of dislocations, loops from single dislocations. Only through numerical simulation of the growth is it revealed how normal growth of anisotropic layers of molecules within the highly symmetrical crystals can conspire to create features in apparent violation of the classic theory. PMID:24101507
Strength of Dislocation Junctions in FCC-monocrystals with a [\\overline{1}11] Deformation Axis
NASA Astrophysics Data System (ADS)
Kurinnaya, R. I.; Zgolich, M. V.; Starenchenko, V. A.
2017-07-01
The paper examines all dislocation reactions implemented in FCC-monocrystals with axis deformation oriented in the [\\overline{1}11] direction. It identifies the fracture stresses of dislocation junctions depending on intersection geometry of the reacting dislocation loop segments. Estimates are produced for the full spectrum of reacting forest dislocations. The paper presents the statistical data of the research performed and identifies the share of long strong dislocation junctions capable of limiting the zone of dislocation shift.
Effect of neutron irradiation on defect evolution in Ti 3SiC 2 and Ti 2AlC
Tallman, Darin J.; He, Lingfeng; Garcia-Diaz, Brenda L.; ...
2015-10-23
Here, we report on the characterization of defects formed in polycrystalline Ti 3SiC 2 and Ti 2AlC samples exposed to neutron irradiation – up to 0.1 displacements per atom (dpa) at 350 ± 40 °C or 695 ± 25 °C, and up to 0.4 dpa at 350 ± 40 °C. Black spots are observed in both Ti 3SiC 2 and Ti 2AlC after irradiation to both 0.1 and 0.4 dpa at 350 °C. After irradiation to 0.1 dpa at 695 °C, small basal dislocation loops, with a Burgers vector of b = 1/2 [0001] are observed in both materials. Atmore » 9 ± 3 and 10 ± 5 nm, the loop diameters in the Ti 3SiC 2 and Ti 2AlC samples, respectively, were comparable. At 1 × 10 23 loops/m 3, the dislocation loop density in Ti 2AlC was ≈1.5 orders of magnitude greater than in Ti 3SiC 2, at 3 x 10 21 loops/m3. After irradiation at 350 °C, extensive microcracking was observed in Ti 2AlC, but not in Ti 3SiC 2. The room temperature electrical resistivities increased as a function of neutron dose for all samples tested, and appear to saturate in the case of Ti 3SiC 2. The MAX phases are unequivocally more neutron radiation tolerant than the impurity phases TiC and Al 2O 3. Based on these results, Ti 3SiC 2 appears to be a more promising MAX phase candidate for high temperature nuclear applications than Ti 2AlC.« less
Helium bubbles aggravated defects production in self-irradiated copper
NASA Astrophysics Data System (ADS)
Wu, FengChao; Zhu, YinBo; Wu, Qiang; Li, XinZhu; Wang, Pei; Wu, HengAn
2017-12-01
Under the environment of high radiation, materials used in fission and fusion reactors will internally accumulate numerous lattice defects and bubbles. With extensive studies focused on bubble resolution under irradiation, the mutually effects between helium bubbles and displacement cascades in irradiated materials remain unaddressed. Therefore, the defects production and microstructure evolution under self-irradiation events in vicinity of helium bubbles are investigated by preforming large scale molecular dynamics simulations in single-crystal copper. When subjected to displacement cascades, distinguished bubble resolution categories dependent on bubble size are observed. With the existence of bubbles, radiation damage is aggravated with the increasing bubble size, represented as the promotion of point defects and dislocations. The atomic mechanisms of heterogeneous dislocation structures are attributed to different helium-vacancy cluster modes, transforming from the resolved gas trapped with vacancies to the biased absorption of vacancies by the over-pressured bubble. In both cases, helium impedes the recombination of point defects, leading to the accelerated formation of interstitial loops. The results and insight obtained here might contribute to understand the underlying mechanism of transmutant solute on the long-term evolution of irradiated materials.
Dislocation density evolution in the process of high-temperature treatment and creep of EK-181 steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vershinina, Tatyana, E-mail: vershinina@bsu.edu.ru
2017-03-15
X-ray diffraction has been used to study the dislocation structure in ferrite-martensite high-chromium steel EK-181 in the states after heat treatment and high-temperature creep. The influence of heat treatment and stress on evolution of lath martensite structure was investigated by and electron back-scattered diffraction. The effect of nitrogen content on the total dislocation density, fraction of edge and screw dislocation segments are analyzed. - Highlights: •Fraction of edge dislocation in quenched state depends on nitrogen concentration. •Nitrogen affects the character of dislocation structure evolution during annealing. •Edge dislocations fraction influences on dislocation density after aging and creep.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Xianming; Biner, Suleyman Bulent; Jiang, Chao
2015-12-01
Fe-Cr-Al steels are proposed as accident-tolerant-fuel (ATF) cladding materials in light water reactors due to their excellent oxidation resistance at high temperatures. Currently, the understanding of their performance in reactor environment is still limited. In this review, firstly we reviewed the experimental studies of Fe-Cr-Al based alloys with particular focus on the radiation effects in these alloys. Although limited data are available in literature, several previous and recent experimental studies have shown that Fe-Cr-Al based alloys have very good void swelling resistance at low and moderate irradiation doses but the growth of dislocation loops is very active. Overall, the behaviormore » of radiation damage evolution is similar to that in Fe-Cr ferritic/martensitic alloys. Secondly, we reviewed the rate theory-based modeling methods for modeling the coevolution of voids and dislocation loops in materials under irradiation such as Frenkel pair three-dimensional diffusion model (FP3DM) and cluster dynamics. Finally, we summarized and discussed our review and proposed our future plans for modeling radiation damage in Fe-Cr-Al based alloys.« less
Strain-relief by single dislocation loops in calcite crystals grown on self-assembled monolayers
Ihli, Johannes; Clark, Jesse N.; Côté, Alexander S.; ...
2016-06-15
Most of our knowledge of dislocation-mediated stress relaxation during epitaxial crystal growth comes from the study of inorganic heterostructures. In this study, we use Bragg coherent diffraction imaging to investigate a contrasting system, the epitaxial growth of calcite (CaCO 3) crystals on organic self-assembled monolayers, where these are widely used as a model for biomineralization processes. The calcite crystals are imaged to simultaneously visualize the crystal morphology and internal strain fields. Our data reveal that each crystal possesses a single dislocation loop that occupies a common position in every crystal. The loops exhibit entirely different geometries to misfit dislocations generatedmore » in conventional epitaxial thin films and are suggested to form in response to the stress field, arising from interfacial defects and the nanoscale roughness of the substrate. In conclusion, this work provides unique insight into how self-assembled monolayers control the growth of inorganic crystals and demonstrates important differences as compared with inorganic substrates.« less
Strain-relief by single dislocation loops in calcite crystals grown on self-assembled monolayers
Ihli, Johannes; Clark, Jesse N.; Côté, Alexander S.; Kim, Yi-Yeoun; Schenk, Anna S.; Kulak, Alexander N.; Comyn, Timothy P.; Chammas, Oliver; Harder, Ross J.; Duffy, Dorothy M.; Robinson, Ian K.; Meldrum, Fiona C.
2016-01-01
Most of our knowledge of dislocation-mediated stress relaxation during epitaxial crystal growth comes from the study of inorganic heterostructures. Here we use Bragg coherent diffraction imaging to investigate a contrasting system, the epitaxial growth of calcite (CaCO3) crystals on organic self-assembled monolayers, where these are widely used as a model for biomineralization processes. The calcite crystals are imaged to simultaneously visualize the crystal morphology and internal strain fields. Our data reveal that each crystal possesses a single dislocation loop that occupies a common position in every crystal. The loops exhibit entirely different geometries to misfit dislocations generated in conventional epitaxial thin films and are suggested to form in response to the stress field, arising from interfacial defects and the nanoscale roughness of the substrate. This work provides unique insight into how self-assembled monolayers control the growth of inorganic crystals and demonstrates important differences as compared with inorganic substrates. PMID:27302863
The evolution of helium from aged Zr tritides: A thermal helium desorption spectrometry study
NASA Astrophysics Data System (ADS)
Cheng, G. J.; Huang, G.; Chen, M.; Zhou, X. S.; Liu, J. H.; Peng, S. M.; Ding, W.; Wang, H. F.; Shi, L. Q.
2018-02-01
The evolution of He from Zr-tritides was investigated for aging times up to about 6.5 years using analytical thermal helium desorption spectrometry (THDS). Zr films were deposited onto Mo substrates and then converted into Zr-tritides (ZrT1.70∼1.95) inside a tritiding apparatus loaded with pure tritium gas. During aging, there are at least five forms of He in Zr-tritides, and more than 99% of He atoms are in the form of He bubbles. The isolated He bubbles in lattices begin to link with each other when the He/Zr atom ratio reaches about 0.21, and are connected to grain boundaries or dislocation networks at He concentration of He/Zr ≈ 0.26. An interconnected system of channels decorated by bubbles evolves from the network dislocations, dislocation loops and internal boundaries. These He filled networks are formed completely when the He/Zr atom ratio is about 0.38. Once the He/Zr reached about 0.45, the networks of He bubble penetrate to the film surface and He begins an "accelerated release". This critical ratio of He to Zr for He accelerated release is much greater than that found previously for Ti-tritides (0.23-0.30). The difference of He retention in Zr-tritides and Ti-tritides was also discussed in this paper.
Effects of temperature on the irradiation responses of Al 0.1 CoCrFeNi high entropy alloy
Yang, Tengfei; Xia, Songqin; Guo, Wei; ...
2017-09-29
Structural damage and chemical segregation in Al 0.1CoCrFeNi high entropy alloy irradiated at elevated temperatures are studied using transmission electron microscopy (TEM) and atom probe tomography (APT). Irradiation-induced defects include dislocation loops, long dislocations and stacking-fault tetrahedra, but no voids can be observed. Furthermore, as irradiation temperature increases, defect density is decreased but defect size is increased, which is induced by increasing defect mobility. Finally, APT characterization reveals that ion irradiation at elevated temperatures can induce an enrichment of Ni and Co as well as a depletion of Fe and Cr at defect clusters, mainly including dislocation loops and longmore » dislocations.« less
Effects of temperature on the irradiation responses of Al 0.1 CoCrFeNi high entropy alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Tengfei; Xia, Songqin; Guo, Wei
Structural damage and chemical segregation in Al 0.1CoCrFeNi high entropy alloy irradiated at elevated temperatures are studied using transmission electron microscopy (TEM) and atom probe tomography (APT). Irradiation-induced defects include dislocation loops, long dislocations and stacking-fault tetrahedra, but no voids can be observed. Furthermore, as irradiation temperature increases, defect density is decreased but defect size is increased, which is induced by increasing defect mobility. Finally, APT characterization reveals that ion irradiation at elevated temperatures can induce an enrichment of Ni and Co as well as a depletion of Fe and Cr at defect clusters, mainly including dislocation loops and longmore » dislocations.« less
NASA Astrophysics Data System (ADS)
Su, Xujun; Zhang, Jicai; Huang, Jun; Zhang, Jinping; Wang, Jianfeng; Xu, Ke
2017-06-01
Defect structures were investigated by transmission electron microscopy for AlN/sapphire (0 0 0 1) epilayers grown by high temperature hydride vapor phase epitaxy using a growth mode modification process. The defect structures, including threading dislocations, inversion domains, and voids, were analyzed by diffraction contrast, high-resolution imaging, and convergent beam diffraction. AlN film growth was initiated at 1450 °C with high V/III ratio for 8 min. This was followed by low V/III ratio growth for 12 min. The near-interfacial region shows a high density of threading dislocations and inversion domains. Most of these dislocations have Burgers vector b = 1/3〈1 1 2 0〉 and were reduced with the formation of dislocation loops. In the middle range 400 nm < h < 2 μm, dislocations gradually aggregated and reduced to ∼109 cm-2. The inversion domains have a shuttle-like shape with staggered boundaries that deviate by ∼ ±5° from the c axis. Above 2 μm thickness, the film consists of isolated threading dislocations with a total density of 8 × 108 cm-2. Most of threading dislocations are either pure edge or mixed dislocations. The threading dislocation reduction in these films is associated with dislocation loops formation and dislocation aggregation-interaction during island growth with high V/III ratio.
Shin, Sang-Jin; Kim, Nam-Ki
2015-05-01
The purpose of this study was to evaluate clinical and radiological outcomes after arthroscopically assisted coracoclavicular (CC) fixation using a single adjustable-loop-length suspensory fixation device for acute acromioclavicular dislocation and to report intraoperative and postoperative complications. Eighteen consecutive patients with acute acromioclavicular dislocation underwent arthroscopically assisted CC fixation using a single TightRope (Arthrex, Naples, FL). Using the Rockwood classification, 3 patients had grade III dislocations, one patient had a grade IV dislocation, and 14 patients had grade V dislocations. The preoperative CC distance of the injured shoulder was 16.1 ± 2.7 mm (range, 11.2 to 21.0 mm), and it increased by 99% ± 36% (range, 17% to 153%) on average compared with the contralateral shoulder. The average CC distance was 10.5 ± 2.5 mm (range, 7.7 to 15.5 mm), and it increased by 30% ± 30% (range, -9.4% to 90%) at the final follow-up. Compared with immediate postoperative radiographs, the CC distance was maintained in 12 patients, increased between 50% and 100% in 4 patients, and increased more than 100% in 2 patients at final follow-up. However, there was no statistical difference in Constant scores between 6 patients with reduction loss (95.6 ± 4.5) and 12 patients with reduction maintenance (98.4 ± 2.5; P = .17). Perioperative complications occurred in 8 patients, including one case of acromioclavicular arthritis, one case of delayed distal clavicular fracture at the clavicular hole of the device, 3 cases of clavicular or coracoid button failures, and 3 cases of clavicular bony erosion. Satisfactory clinical outcomes were obtained after CC fixation using the single adjustable-loop-length suspensory fixation device for acute acromioclavicular joint dislocation. However, CC fixation failure of greater than 50% of the unaffected side in radiological examinations occurred in 33% of the patients within 3 months after the operation. Additionally, 8 patients (44%) had complications associated with the adjustable-loop-length suspensory fixation device and surgical technical problems. Despite acceptable shoulder function restoration, adequate care should be exercised in surgical treatment of acute acromioclavicular dislocation with a single adjustable-loop-length suspensory fixation device for optimal radiological outcomes. Level IV, therapeutic case series. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, B.; The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207; Wang, L.
With large-scale molecular dynamics simulations, we investigate shock response of He nanobubbles in single crystal Cu. For sufficient bubble size or internal pressure, a prismatic dislocation loop may form around a bubble in unshocked Cu. The internal He pressure helps to stabilize the bubble against plastic deformation. However, the prismatic dislocation loops may partially heal but facilitate nucleation of new shear and prismatic dislocation loops. For strong shocks, the internal pressure also impedes internal jetting, while a bubble assists local melting; a high speed jet breaks a He bubble into pieces dispersed among Cu. Near-surface He bubbles may burst andmore » form high velocity ejecta containing atoms and small fragments, while the ejecta velocities do not follow the three-dimensional Maxwell-Boltzmann distributions expected for thermal equilibrium. The biggest fragment size deceases with increasing shock strength. With a decrease in ligament thickness or an increase in He bubble size, the critical shock strength required for bubble bursting decreases, while the velocity range, space extension and average velocity component along the shock direction, increase. Small bubbles are more efficient in mass ejecting. Compared to voids and perfect single crystal Cu, He bubbles have pronounced effects on shock response including bubble/void collapse, Hugoniot elastic limit (HEL), deformation mechanisms, and surface jetting. HEL is the highest for perfect single crystal Cu with the same orientations, followed by He bubbles without pre-existing prismatic dislocation loops, and then voids. Complete void collapse and shear dislocations occur for embedded voids, as opposed to partial collapse, and shear and possibly prismatic dislocations for He bubbles. He bubbles lower the threshhold shock strength for ejecta formation, and increase ejecta velocity and ejected mass.« less
NASA Astrophysics Data System (ADS)
Long, Fei
Zirconium alloys have been widely used in the CANDU (CANada Deuterium Uranium) reactor as core structural materials. Alloy such as Zircaloy-2 has been used for calandria tubes; fuel cladding; the pressure tube is manufactured from alloy Zr-2.5Nb. During in-reactor service, these alloys are exposed to a high flux of fast neutron at elevated temperatures. It is important to understand the effect of temperature and irradiation on the deformation mechanism of zirconium alloys. Aiming to provide experimental guidance for future modeling predictions on the properties of zirconium alloys this thesis describes the result of an investigation of the change of slip and twinning modes in Zircaloy-2 and Zr-2.5Nb as a function of temperature and irradiation. The aim is to provide scientific fundamentals and experimental evidences for future industry modeling in processing technique design, and in-reactor property change prediction of zirconium components. In situ neutron diffraction mechanical tests carried out on alloy Zircaloy-2 at three temperatures: 100¢ªC, 300¢ªC, and 500¢ªC, and described in Chapter 3. The evolution of the lattice strain of individual grain families in the loading and Poisson's directions during deformation, which probes the operation of slip and twinning modes at different stress levels, are described. By using the same type of in situ neutron diffraction technique, tests on Zr-2.5Nb pressure tube material samples, in either the fast-neutron irradiated or un-irradiated condition, are reported in Chapter 4. In Chapter 5, the measurement of dislocation density by means of line profile analysis of neutron diffraction patterns, as well as TEM observations of the dislocation microstructural evolution, is described. In Chapter 6 a hot-rolled Zr-2.5Nb with a larger grain size compared with the pressure tubing was used to study the development of dislocation microstructures with increasing plastic strain. In Chapter 7, in situ loading of heavy ion irradiated hot-rolled Zr-2.5Nb alloy is described, providing evidence for the interaction between moving dislocations and irradiation induced loops. Chapter 8 gives the effect on the dislocation structure of different levels of compressive strains along two directions in the hot-rolled Zr-2.5Nb alloy. By using high resolution neutron diffraction and TEM observations, the evolution of type and dislocation densities, as well as changes of dislocation microstructure with plastic strain were characterized.
Characterization of Electrically Active Defects in Si Using CCD Image Sensors
1978-02-01
63 35 Dislocation Segments in CCD Imager . . . . . . . . . . . . . 64 36 422 Reflection Topograph of Dislocation Loop ir... Loops . . . . . 3 39 422 Reflection Topograph of Scratch on CCD Imager, . . . 69 40 Dark Current Display of a CCD Imager with 32 ms integration Time...made of each slice using the elon -asoorbio aold developer described in Appendix D. The inagers were then thinned using the procedure at Appendix taor
Xia, Ming-Hua; Xie, Shui-Hua; Wu, Jun; Zhang, Wen-Qing; Chen, Wei-Dong; He, Jian-Hua; Ding, Hao; Hu, Qian-Qin; Wang, Xiao-Peng
2016-07-25
To explore the clinical effects of the triple no loop Endobutton plate combined with Orthcord line in treating acromioclavicular dislocation of Tossy type III. Between February 2011 and September 2013, 36 patients with acromioclavicular dislocation of Tossy type III were treated with triple no loop Endobutton plate and Orthcord line. There were 21 males and 15 females, aged from 9 to 48 years old with an average of (26.41±14.05) years. Couse of disease was from 2 to 7 days in the patients. The patients had the clinical manifestations such as shoulder pain, extension limited, acromioclavicular tenderness, positive organ point sign. Clinical effects were assessed by acromioclavicular scoring system. Thirty six patients were followed up from 8 to 15 months with an average of (12.2±4.3) months. All incisions got primary healing. At the final follow up, all shoulder pain vanished, acromioclavicular joints without tenderness, negative organ point sign. No redislocation and steel plate loosening were found. According to the acromioclavicular scoring system, 31 cases obtained excellent results, 5 good. The method of triple no loop Endobutton plate combined with Orthcord line for acromioclavicular dislocation of Tossy type III has advantage of less risk and complication, good functional rehabilitation and is an ideal method.
Mobile application MDDCS for modeling the expansion dynamics of a dislocation loop in FCC metals
NASA Astrophysics Data System (ADS)
Kirilyuk, Vasiliy; Petelin, Alexander; Eliseev, Andrey
2017-11-01
A mobile version of the software package Dynamic Dislocation of Crystallographic Slip (MDDCS) designed for modeling the expansion dynamics of dislocation loops and formation of a crystallographic slip zone in FCC-metals is examined. The paper describes the possibilities for using MDDCS, the application interface, and the database scheme. The software has a simple and intuitive interface and does not require special training. The user can set the initial parameters of the experiment, carry out computational experiments, export parameters and results of the experiment into separate text files, and display the experiment results on the device screen.
Liu, Xiang; Miao, Yinbin; Li, Meimei; ...
2018-04-15
Here, in situ ion irradiation and rate theory calculations were employed to directly compare the radiation resistance of an oxide dispersion strengthened alloy with that of a conventional ferritic/martensitic alloy. Compared to the rapid buildup of dislocation loops, loop growth, and formation of network dislocations in the conventional ferritic/martensitic alloy, the superior radiation resistance of the oxide dispersion strengthened alloy is manifested by its stable dislocation structure under the same irradiation conditions. Thus, the results are consistent with rate theory calculations, which show that high-density nanoparticles can significantly reduce freely migrating defects and suppress the buildup of clustered defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiang; Miao, Yinbin; Li, Meimei
Here, in situ ion irradiation and rate theory calculations were employed to directly compare the radiation resistance of an oxide dispersion strengthened alloy with that of a conventional ferritic/martensitic alloy. Compared to the rapid buildup of dislocation loops, loop growth, and formation of network dislocations in the conventional ferritic/martensitic alloy, the superior radiation resistance of the oxide dispersion strengthened alloy is manifested by its stable dislocation structure under the same irradiation conditions. Thus, the results are consistent with rate theory calculations, which show that high-density nanoparticles can significantly reduce freely migrating defects and suppress the buildup of clustered defects.
Idealized vs. Realistic Microstructures: An Atomistic Simulation Case Study on γ/γ′ Microstructures
Prakash, Aruna; Bitzek, Erik
2017-01-01
Single-crystal Ni-base superalloys, consisting of a two-phase γ/γ′ microstructure, retain high strengths at elevated temperatures and are key materials for high temperature applications, like, e.g., turbine blades of aircraft engines. The lattice misfit between the γ and γ′ phases results in internal stresses, which significantly influence the deformation and creep behavior of the material. Large-scale atomistic simulations that are often used to enhance our understanding of the deformation mechanisms in such materials must accurately account for such misfit stresses. In this work, we compare the internal stresses in both idealized and experimentally-informed, i.e., more realistic, γ/γ′ microstructures. The idealized samples are generated by assuming, as is frequently done, a periodic arrangement of cube-shaped γ′ particles with planar γ/γ′ interfaces. The experimentally-informed samples are generated from two different sources to produce three different samples—the scanning electron microscopy micrograph-informed quasi-2D atomistic sample and atom probe tomography-informed stoichiometric and non-stoichiometric atomistic samples. Additionally, we compare the stress state of an idealized embedded cube microstructure with finite element simulations incorporating 3D periodic boundary conditions. Subsequently, we study the influence of the resulting stress state on the evolution of dislocation loops in the different samples. The results show that the stresses in the atomistic and finite element simulations are almost identical. Furthermore, quasi-2D boundary conditions lead to a significantly different stress state and, consequently, different evolution of the dislocation loop, when compared to samples with fully 3D boundary conditions. PMID:28772453
Idealized vs. Realistic Microstructures: An Atomistic Simulation Case Study on γ/γ' Microstructures.
Prakash, Aruna; Bitzek, Erik
2017-01-23
Single-crystal Ni-base superalloys, consisting of a two-phase γ / γ ' microstructure, retain high strengths at elevated temperatures and are key materials for high temperature applications, like, e.g., turbine blades of aircraft engines. The lattice misfit between the γ and γ ' phases results in internal stresses, which significantly influence the deformation and creep behavior of the material. Large-scale atomistic simulations that are often used to enhance our understanding of the deformation mechanisms in such materials must accurately account for such misfit stresses. In this work, we compare the internal stresses in both idealized and experimentally-informed, i.e., more realistic, γ / γ ' microstructures. The idealized samples are generated by assuming, as is frequently done, a periodic arrangement of cube-shaped γ ' particles with planar γ / γ ' interfaces. The experimentally-informed samples are generated from two different sources to produce three different samples-the scanning electron microscopy micrograph-informed quasi-2D atomistic sample and atom probe tomography-informed stoichiometric and non-stoichiometric atomistic samples. Additionally, we compare the stress state of an idealized embedded cube microstructure with finite element simulations incorporating 3D periodic boundary conditions. Subsequently, we study the influence of the resulting stress state on the evolution of dislocation loops in the different samples. The results show that the stresses in the atomistic and finite element simulations are almost identical. Furthermore, quasi-2D boundary conditions lead to a significantly different stress state and, consequently, different evolution of the dislocation loop, when compared to samples with fully 3D boundary conditions.
Modeling of dislocation channel width evolution in irradiated metals
Doyle, Peter J.; Benensky, Kelsa M.; Zinkle, Steven J.
2017-11-08
Defect-free dislocation channel formation has been reported to promote plastic instability during tensile testing via localized plastic flow, leading to a distinct loss of ductility and strain hardening in many low-temperature irradiated materials. In order to study the underlying mechanisms governing dislocation channel width and formation, the channel formation process is modeled via a simple stochastic dislocation-jog process dependent upon grain size, defect cluster density, and defect size. Dislocations traverse a field of defect clusters and jog stochastically upon defect interaction, forming channels of low defect-density. And based upon prior molecular dynamics (MD) simulations and in-situ experimental transmission electron microscopymore » (TEM) observations, each dislocation encounter with a dislocation loop or stacking fault tetrahedron (SFT) is assumed to cause complete absorption of the defect cluster, prompting the dislocation to jog up or down by a distance equal to half the defect cluster diameter. Channels are predicted to form rapidly and are comparable to reported TEM measurements for many materials. Predicted channel widths are found to be most strongly dependent on mean defect size and correlated well with a power law dependence on defect diameter and density, and distance from the dislocation source. Due to the dependence of modeled channel width on defect diameter and density, maximum channel width is predicted to slowly increase as accumulated dose increases. The relatively weak predicted dependence of channel formation width with distance, in accordance with a diffusion analogy, implies that after only a few microns from the source, most channels observed via TEM analyses may not appear to vary with distance because of limitations in the field-of-view to a few microns. Furthermore, examinations of the effect of the so-called “source-broadening” mechanism of channel formation showed that its effect is simply to add a minimum thickness to the channel without affecting channel dependence on the given parameters.« less
Modeling of dislocation channel width evolution in irradiated metals
NASA Astrophysics Data System (ADS)
Doyle, Peter J.; Benensky, Kelsa M.; Zinkle, Steven J.
2018-02-01
Defect-free dislocation channel formation has been reported to promote plastic instability during tensile testing via localized plastic flow, leading to a distinct loss of ductility and strain hardening in many low-temperature irradiated materials. In order to study the underlying mechanisms governing dislocation channel width and formation, the channel formation process is modeled via a simple stochastic dislocation-jog process dependent upon grain size, defect cluster density, and defect size. Dislocations traverse a field of defect clusters and jog stochastically upon defect interaction, forming channels of low defect-density. Based upon prior molecular dynamics (MD) simulations and in-situ experimental transmission electron microscopy (TEM) observations, each dislocation encounter with a dislocation loop or stacking fault tetrahedron (SFT) is assumed to cause complete absorption of the defect cluster, prompting the dislocation to jog up or down by a distance equal to half the defect cluster diameter. Channels are predicted to form rapidly and are comparable to reported TEM measurements for many materials. Predicted channel widths are found to be most strongly dependent on mean defect size and correlated well with a power law dependence on defect diameter and density, and distance from the dislocation source. Due to the dependence of modeled channel width on defect diameter and density, maximum channel width is predicted to slowly increase as accumulated dose increases. The relatively weak predicted dependence of channel formation width with distance, in accordance with a diffusion analogy, implies that after only a few microns from the source, most channels observed via TEM analyses may not appear to vary with distance because of limitations in the field-of-view to a few microns. Further, examinations of the effect of the so-called "source-broadening" mechanism of channel formation showed that its effect is simply to add a minimum thickness to the channel without affecting channel dependence on the given parameters.
Modeling of dislocation channel width evolution in irradiated metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doyle, Peter J.; Benensky, Kelsa M.; Zinkle, Steven J.
Defect-free dislocation channel formation has been reported to promote plastic instability during tensile testing via localized plastic flow, leading to a distinct loss of ductility and strain hardening in many low-temperature irradiated materials. In order to study the underlying mechanisms governing dislocation channel width and formation, the channel formation process is modeled via a simple stochastic dislocation-jog process dependent upon grain size, defect cluster density, and defect size. Dislocations traverse a field of defect clusters and jog stochastically upon defect interaction, forming channels of low defect-density. And based upon prior molecular dynamics (MD) simulations and in-situ experimental transmission electron microscopymore » (TEM) observations, each dislocation encounter with a dislocation loop or stacking fault tetrahedron (SFT) is assumed to cause complete absorption of the defect cluster, prompting the dislocation to jog up or down by a distance equal to half the defect cluster diameter. Channels are predicted to form rapidly and are comparable to reported TEM measurements for many materials. Predicted channel widths are found to be most strongly dependent on mean defect size and correlated well with a power law dependence on defect diameter and density, and distance from the dislocation source. Due to the dependence of modeled channel width on defect diameter and density, maximum channel width is predicted to slowly increase as accumulated dose increases. The relatively weak predicted dependence of channel formation width with distance, in accordance with a diffusion analogy, implies that after only a few microns from the source, most channels observed via TEM analyses may not appear to vary with distance because of limitations in the field-of-view to a few microns. Furthermore, examinations of the effect of the so-called “source-broadening” mechanism of channel formation showed that its effect is simply to add a minimum thickness to the channel without affecting channel dependence on the given parameters.« less
Ultrasonic influence on evolution of disordered dislocation structures
NASA Astrophysics Data System (ADS)
Bachurin, D. V.; Murzaev, R. T.; Nazarov, A. A.
2017-12-01
Evolution of disordered dislocation structures under ultrasonic influence is studied in a model two-dimensional grain within the discrete-dislocation approach. Non-equilibrium grain boundary state is mimicked by a mesodefect located at the corners of the grain, stress field of which is described by that of a wedge junction disclination quadrupole. Significant rearrangement related to gliding of lattice dislocations towards the grain boundaries is found, which results in a noticeable reduction of internal stress fields and cancel of disclination quadrupole. The process of dislocation structure evolution passes through two stages: rapid and slow. The main dislocation rearrangement occurs during the first stage. Reduction of internal stress fields is associated with the number of dislocations entered into the grain boundaries. The change of misorientation angle due to lattice dislocations absorbed by the grain boundaries is evaluated. Amplitude of ultrasonic treatment significantly influences the relaxation of dislocation structure. Preliminary elastic relaxation of dislocation structure does not affect substantially the results of the following ultrasonic treatment. Substantial grain size dependence of relaxation of disordered dislocation systems is found. Simulation results are consistent with experimental data.
McHugh, Stuart
1976-01-01
The material in this report is concerned with the effects of a vertically oriented rectangular dislocation loop on the tilts observed at the free surface of an elastic half-space. Part I examines the effect of a spatially variable static strike-slip distribution across the slip surface. The tilt components as a function of distance parallel, or perpendicular, to the strike of the slip surface are displayed for different slip-versus-distance profiles. Part II examines the effect of spatially and temporally variable slip distributions across the dislocation loop on the quasi-static tilts at the free surface of an elastic half space. The model discussed in part II may be used to generate theoretical tilt versus time curves produced by creep events.
Microstructural evolution of neutron-irradiated T91 and NF616 to ~4.3 dpa at 469 °C
Tan, Lizhen; Kim, B. K.; Yang, Ying; ...
2017-05-30
Ferritic-martensitic steels such as T91 and NF616 are candidate materials for several nuclear applications. Here, this study evaluates radiation resistance of T91 and NF616 by examining their microstructural evolutions and hardening after the samples were irradiated in the Advanced Test Reactor to ~4.3 displacements per atom (dpa) at an as-run temperature of 469 °C. In general, this irradiation did not result in significant difference in the radiation-induced microstructures between the two steels. Compared to NF616, T91 had a higher number density of dislocation loops and a lower level of radiation-induced segregation, together with a slightly higher radiation-hardening. Unlike dislocation loopsmore » developed in both steels, radiation-induced cavities were only observed in T91 but remained small with sub-10 nm sizes. Lastly, other than the relatively stable M 23C 6, a new phase (likely Sigma phase) was observed in T91 and radiation-enhanced MX → Z phase transformation was identified in NF616. Laves phase was not observed in the samples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setyawan, Wahyu; Nandipati, Giridhar; Kurtz, Richard J.
The stability of tungsten self-interstitial atom (SIA) clusters is studied using first-principles methods. Clusters from one to seven SIAs are systematically explored from 1264 unique configurations. Finite-size effect of the simulation cell is corrected based on the scaling of formation energy versus inverse volume cell. Furthermore, the accuracy of the calculations is improved by treating the 5p semicore states as valence states. Configurations of the three most stable clusters in each cluster size n are presented, which consist of parallel [111] dumbbells. The evolution of these clusters leading to small dislocation loops is discussed. The binding energy of size-n clustersmore » is analyzed relative to an n → (n-1) + 1 dissociation and is shown to increase with size. Extrapolation for n > 7 is presented using a dislocation loop model. In addition, the interaction of these clusters with a substitutional Re, Os, or Ta solute is explored by replacing one of the dumbbells with the solute. Re and Os strongly attract these clusters, but Ta strongly repels. The strongest interaction is found when the solute is located on the periphery of the cluster rather than in the middle. The magnitude of this interaction decreases with cluster size. Empirical fits to describe the trend of the solute binding energy are presented.« less
NASA Astrophysics Data System (ADS)
Bonafos, C.; Alquier, D.; Martinez, A.; Mathiot, D.; Claverie, A.
1996-05-01
When end-of-range defects are located close to or within doping profiles they render diffusion "anomalous" by both enhancing the dopant diffusivity and trapping it, both phenomena decreasing with time. Upon annealing, these defects grow in size and their density is reduced through the emission and capture of Si-interstitial atoms by a coarsening process called Ostwald ripening. In this paper, we report on how, by coupling the Ostwald ripening theory with TEM observations of the time evolution of the dislocation loops upon annealing, quantitative information allowing the enhanced diffusivity to be understood can be extracted. Indeed, during the coarsening process, a supersaturation, {C}/{C e}, of Si self-interstitial atoms is maintained between the loops and decreases with time. The enhanced diffusivity is assumed to be linked to the evolution of this interstitial supersaturation during annealing through the interstitial component of boron diffusion. We show that C drastically decreases during the first second of the anneal to asymptotically reach a value just above the equilibrium concentration Ce. This rapid decay is precisely at the origin of the transient enhanced diffusivity of dopants in the vicinity of the loops.
Microstructural defects in He-irradiated polycrystalline α-SiC at 1000 °C
NASA Astrophysics Data System (ADS)
Han, Wentuo; Li, Bingsheng
2018-06-01
In order to investigate the effect of the high-temperature irradiation on microstructural evolutions of the polycrystalline SiC, an ion irradiation at 1000 °C with the 500 keV He2+ was imposed to the α-SiC. The platelets, He bubbles, dislocation loops, and particularly, their interaction with the stacking fault and grain boundaries were focused on and characterized by the cross-sectional transmission electron microscopy (XTEM). The platelets expectably exhibit a dominant plane of (0001), while planes of (01-10) and (10-16) are also found. Inside the platelet, the over-pressurized bubbles exist and remarkably cause a strong-strain zone surrounding the platelet. The disparate roles between the grain boundaries and stacking faults in interacting with the bubbles and loops are found. The results are compared with the previous weighty findings and discussed.
NASA Astrophysics Data System (ADS)
Kato, Takahiko; Nakata, Kiyotomo; Masaoka, Isao; Takahashi, Heishichiro; Takeyama, Taro; Ohnuki, Soumei; Osanai, Hisashi
1984-05-01
The microstructural development for Inconel X-750, N1-13 at%A1, and Ni-11.5 at%Si alloys during irradiation was investigated. These alloys were previously heat-treated at temperatures of 723-1073 K, and γ' precipitates were produced. Irradiation was performed in a high voltage electron microscope (1000 kV) in the temperature range 673-823 K. In the case of solution-treated Inconel, interstitial dislocation loops were formed initially, while voids were nucleated after longer times. When the Inconel specimen containing a high number density of small γ' was irradiated, dislocation loops were formed in both the matrix and precipitate-matrix interface. The loops formed on the interface scarcely grew during irradiation. On the other hand, for the Ni-Al alloy fine γ' nucleated during irradiation, the large γ' precipitated by pre-aging, dissolved. A similar resolution process was also observed in Ni-Si alloy. Furthermore, in the Ni-Si alloy precipitates of γ' formed preferentially at interstitial dislocation loops and both specimen surfaces.
NASA Astrophysics Data System (ADS)
Yao, Z.; Jenkins, M. L.; Hernández-Mayoral, M.; Kirk, M. A.
2010-12-01
A transition is reported in the dislocation microstructure of pure Fe produced by heavy-ion irradiation of thin foils, which took place between irradiation temperatures (T irr) of 300°C and 500°C. At T irr ≤ 400°C, the microstructure was dominated by round or irregular non-edge dislocation loops of interstitial nature and with Burgers vectors b = ½ ⟨111⟩, although interstitial ⟨100⟩ loops were also present; at 500°C only rectilinear pure-edge ⟨100⟩ loops occurred. At intermediate temperatures there was a gradual transition between the two types of microstructure. At temperatures just below 500°C, mobile ½⟨111⟩ loops were seen to be subsumed by sessile ⟨100⟩ loops. A possible explanation of these observations is given.
Aidhy, Dilpuneet S.; Lu, Chenyang; Jin, Ke; ...
2015-08-08
Using molecular dynamics simulations, we elucidate irradiation-induced point defect evolution in fcc pure Ni, Ni 0.5Fe 0.5, and Ni 0.8Cr 0.2 solid solution alloys. We find that irradiation-induced interstitials form dislocation loops that are of 1/3 <111>{111}-type, consistent with our experimental results. While the loops are formed in all the three materials, the kinetics of formation is considerably slower in NiFe and NiCr than in pure Ni, indicating that defect migration barriers and extended defect formation energies could be higher in the alloys than pure Ni. As a result, while larger size clusters are formed in pure Ni, smaller andmore » more clusters are observed in the alloys. The vacancy diffusion occurs at relatively higher temperatures than interstitials, and their clustering leads to formation of stacking fault tetrahedra, also consistent with our experiments. The results also show that the surviving Frenkel pairs are composition-dependent and are largely Ni dominated.« less
1989-04-08
now good experimental data on the effects of impurities, including locking by non-electrical xii Preface impurities, and the effect of electrically... locks which result from the interaction of the gliding dislocations. As a matter of fact, these dislocation configurations look similar to those...loop on the go° partial. Structure of grain boundaries and dislocations 3 2.2. Lomer-Cottrell lock : a/2>. Two 60’ dislocations can react and give
Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum
NASA Astrophysics Data System (ADS)
Koyanagi, Takaaki; Kumar, N. A. P. Kiran; Hwang, Taehyun; Garrison, Lauren M.; Hu, Xunxiang; Snead, Lance L.; Katoh, Yutai
2017-07-01
Microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ∼90-800 °C to 0.03-4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ∼90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ∼1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- and Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.
McHugh, Stuart
1976-01-01
The material in this report can be grouped into two categories: 1) programs that compute tilts produced by a vertically oriented expanding rectangular dislocation loop in an elastic or viscoelastic material and 2) programs that compute the shear stresses, strains, and shear displacements in a three-phase half-space (i.e. a half-space containing a vertical slab). Each section describes the relevant theory, and provides a detailed guide to the operation of the programs. A series of examples is provided at the end of each section.
Dislocation loop formation in model FeCrAl alloys after neutron irradiation below 1 dpa
Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar; ...
2017-08-01
FeCrAl alloys with varying compositions and microstructures are under consideration for accident-tolerant fuel cladding, but limited details exist on dislocation loop formation and growth for this class of alloys under neutron irradiation. Four model FeCrAl alloys with chromium contents ranging from 10.01 to 17.51 wt % and alunimum contents of 4.78 to 2.93 wt % were neutron irradiated to doses of 0.3–0.8 displacements per atom (dpa) at temperatures of 335–355°C. On-zone STEM imaging revealed a mixed population of black dots and larger dislocation loops with either a/2< 111 > or a< 100 > Burgers vectors. Weak composition dependencies were observedmore » and varied depending on whether the defect size, number density, or ratio of defect types was of interest. Here, the results were found to mirror those of previous studies on FeCrAl and FeCr alloys irradiated under similar conditions, although distinct differences exist.« less
Dislocation loop formation in model FeCrAl alloys after neutron irradiation below 1 dpa
NASA Astrophysics Data System (ADS)
Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar; Yamamoto, Yukinori; Howard, Richard H.
2017-11-01
FeCrAl alloys with varying compositions and microstructures are under consideration for accident-tolerant fuel cladding, but limited details exist on dislocation loop formation and growth for this class of alloys under neutron irradiation. Four model FeCrAl alloys with chromium contents ranging from 10.01 to 17.51 wt % and aluminum contents of 4.78 to 2.93 wt % were neutron irradiated to doses of 0.3-0.8 displacements per atom (dpa) at temperatures of 335-355 °C. On-zone STEM imaging revealed a mixed population of black dots and larger dislocation loops with either a / 2 〈 111 〉 or a 〈 100 〉 Burgers vectors. Weak composition dependencies were observed and varied depending on whether the defect size, number density, or ratio of defect types was of interest. Results were found to mirror those of previous studies on FeCrAl and FeCr alloys irradiated under similar conditions, although distinct differences exist.
NASA Astrophysics Data System (ADS)
Wang, H.; Dudley, M.; Wu, F.; Yang, Y.; Raghothamachar, B.; Zhang, J.; Chung, G.; Thomas, B.; Sanchez, E. K.; Mueller, S. G.; Hansen, D.; Loboda, M. J.
2015-05-01
Synchrotron x-ray topography and KOH etching studies have been carried out on n-type 4H-SiC offcut substrates before and after homoepitaxial growth to study defect replication and strain relaxation processes and identify the nucleation sources of both interfacial dislocations (IDs) and half-loop arrays (HLAs), which are known to have a deleterious effect on device performance. Two cases are reported. In one, they nucleate from short segments of edge-oriented basal plane dislocations (BPDs) in the substrate which are drawn into the epilayer. In the other, they form from segments of half-loops of BPD that are attached to the substrate surface prior to growth which glide into the epilayer. The significance of these findings is: (1) It is demonstrated that it is not necessary for a BPD to intersect the substrate surface in order for it to be replicated into the homoepitaxial layer and take part in nucleation of IDs and HLAs; (2) The conversion of the surface intersections of a substrate BPD half-loop into threading edge dislocations (TEDs) does not prevent it from also becoming involved in nucleation of IDs and HLAs. This means that, while BPD to TED conversion can eliminate most of the BPD transfer into the epilayer, further mitigation may only be possible by continued efforts to reduce the BPD density in substrates by control of temperature-gradient- induced stresses during their physical vapor transport (PVT) growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yulan; Hu, Shenyang Y.; Sun, Xin
2011-06-15
Microstructure evolution kinetics in irradiated materials has strongly spatial correlation. For example, void and second phases prefer to nucleate and grow at pre-existing defects such as dislocations, grain boundaries, and cracks. Inhomogeneous microstructure evolution results in inhomogeneity of microstructure and thermo-mechanical properties. Therefore, the simulation capability for predicting three dimensional (3-D) microstructure evolution kinetics and its subsequent impact on material properties and performance is crucial for scientific design of advanced nuclear materials and optimal operation conditions in order to reduce uncertainty in operational and safety margins. Very recently the meso-scale phase-field (PF) method has been used to predict gas bubblemore » evolution, void swelling, void lattice formation and void migration in irradiated materials,. Although most results of phase-field simulations are qualitative due to the lake of accurate thermodynamic and kinetic properties of defects, possible missing of important kinetic properties and processes, and the capability of current codes and computers for large time and length scale modeling, the simulations demonstrate that PF method is a promising simulation tool for predicting 3-D heterogeneous microstructure and property evolution, and providing microstructure evolution kinetics for higher scale level simulations of microstructure and property evolution such as mean field methods. This report consists of two parts. In part I, we will present a new phase-field model for predicting interstitial loop growth kinetics in irradiated materials. The effect of defect (vacancy/interstitial) generation, diffusion and recombination, sink strength, long-range elastic interaction, inhomogeneous and anisotropic mobility on microstructure evolution kinetics is taken into account in the model. The model is used to study the effect of elastic interaction on interstitial loop growth kinetics, the interstitial flux, and sink strength of interstitial loop for interstitials. In part II, we present a generic phase field model and discuss the thermodynamic and kinetic properties in phase-field models including the reaction kinetics of radiation defects and local free energy of irradiated materials. In particular, a two-sublattice thermodynamic model is suggested to describe the local free energy of alloys with irradiated defects. Fe-Cr alloy is taken as an example to explain the required thermodynamic and kinetic properties for quantitative phase-field modeling. Finally the great challenges in phase-field modeling will be discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Lizhen; Kim, B. K.; Yang, Ying
Ferritic-martensitic steels such as T91 and NF616 are candidate materials for several nuclear applications. Here, this study evaluates radiation resistance of T91 and NF616 by examining their microstructural evolutions and hardening after the samples were irradiated in the Advanced Test Reactor to ~4.3 displacements per atom (dpa) at an as-run temperature of 469 °C. In general, this irradiation did not result in significant difference in the radiation-induced microstructures between the two steels. Compared to NF616, T91 had a higher number density of dislocation loops and a lower level of radiation-induced segregation, together with a slightly higher radiation-hardening. Unlike dislocation loopsmore » developed in both steels, radiation-induced cavities were only observed in T91 but remained small with sub-10 nm sizes. Lastly, other than the relatively stable M 23C 6, a new phase (likely Sigma phase) was observed in T91 and radiation-enhanced MX → Z phase transformation was identified in NF616. Laves phase was not observed in the samples.« less
“Conjugate Channeling” Effect in Dislocation Core Diffusion: Carbon Transport in Dislocated BCC Iron
Ishii, Akio; Li, Ju; Ogata, Shigenobu
2013-01-01
Dislocation pipe diffusion seems to be a well-established phenomenon. Here we demonstrate an unexpected effect, that the migration of interstitials such as carbon in iron may be accelerated not in the dislocation line direction , but in a conjugate diffusion direction. This accelerated random walk arises from a simple crystallographic channeling effect. is a function of the Burgers vector b, but not , thus a dislocation loop possesses the same everywhere. Using molecular dynamics and accelerated dynamics simulations, we further show that such dislocation-core-coupled carbon diffusion in iron has temperature-dependent activation enthalpy like a fragile glass. The 71° mixed dislocation is the only case in which we see straightforward pipe diffusion that does not depend on dislocation mobility. PMID:23593255
Ishii, Akio; Li, Ju; Ogata, Shigenobu
2013-01-01
Dislocation pipe diffusion seems to be a well-established phenomenon. Here we demonstrate an unexpected effect, that the migration of interstitials such as carbon in iron may be accelerated not in the dislocation line direction ξ, but in a conjugate diffusion direction. This accelerated random walk arises from a simple crystallographic channeling effect. c is a function of the Burgers vector b, but not ξ, thus a dislocation loop possesses the same everywhere. Using molecular dynamics and accelerated dynamics simulations, we further show that such dislocation-core-coupled carbon diffusion in iron has temperature-dependent activation enthalpy like a fragile glass. The 71° mixed dislocation is the only case in which we see straightforward pipe diffusion that does not depend on dislocation mobility.
High-energy synchrotron study of in-pile-irradiated U–Mo fuels
Miao, Yinbin; Mo, Kun; Ye, Bei; ...
2015-12-30
We report synchrotron scattering analysis results on U-7wt%Mo fuel samples irradiated in the Advanced Test Reactor to three different burnup levels. Mature fission gas bubble superlattice was observed to form at intermediate burnup. The superlattice constant was determined to be 11.7 nm and 12.1 nm by wide-angle and small-angle scattering respectively. Grain sub-division takes place throughout the irradiation and causes the collapse of the superlattice at high burnup. The bubble superlattice expands the lattice constant and acts as strong sinks of radiation induced defects. The evolution of dislocation loops was therefore suppressed until the bubble superlattice collapses.
Evolution of the substructure of a novel 12% Cr steel under creep conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Surya Deo, E-mail: surya.yadav@tugraz.at; Kalácska, Szilvia, E-mail: kalacska@metal.elte.hu; Dománková, Mária, E-mail: maria.domankova@stuba.sk
2016-05-15
In this work we study the microstruture evolution of a newly developed 12% Cr martensitic/ferritic steel in as-received condition and after creep at 650 °C under 130 MPa and 80 MPa. The microstructure is described as consisting of mobile dislocations, dipole dislocations, boundary dislocations, precipitates, lath boundaries, block boundaries, packet boundaries and prior austenitic grain boundaries. The material is characterized employing light optical microscopy (LOM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and electron backscatter diffraction (EBSD). TEM is used to characterize the dislocations (mobile + dipole) inside the subgrains and XRD measurements are used tomore » the characterize mobile dislocations. Based on the subgrain boundary misorientations obtained from EBSD measurements, the boundary dislocation density is estimated. The total dislocation density is estimated for the as-received and crept conditions adding the mobile, boundary and dipole dislocation densities. Additionally, the subgrain size is estimated from the EBSD measurements. In this publication we propose the use of three characterization techniques TEM, XRD and EBSD as necessary to characterize all type of dislocations and quantify the total dislocation densty in martensitic/ferritic steels. - Highlights: • Creep properties of a novel 12% Cr steel alloyed with Ta • Experimental characterization of different types of dislocations: mobile, dipole and boundary • Characterization and interpretation of the substructure evolution using unique combination of TEM, XRD and EBSD.« less
Hardening Mechanisms of Silicon Nanospheres: A Molecular Dynamics Study
2011-05-01
in single oxide system 111 Figure 5.9 Dislocation motion in double oxide systems 112 x Figure 5.10 Dislocation response to incremental...addressed as no single dislocation loops were ever separated and no diffraction peaks indicative of the -Sn phase were observed. The load vs. displacement...as the diamond cubic structure has angle dependent covalent bonds. Therefore, other potentials have been 20 developed that model the
NASA Astrophysics Data System (ADS)
Wang, Shaofeng; Yao, Yin; Bai, Jianhui; Wang, Rui
2017-04-01
This paper investigated the intermediate states and the structure evolution of the dislocation in graphene when it falls freely from the saddle point of the energy landscape. The O-type dislocation, an unstable equilibrium structure located at the saddle point, is obtained from the lattice theory of the dislocation structure and improved by the ab initio calculation to take the buckling into account. Intermediate states along the kinetics path in the falling process are obtained from the ab initio simulation. Once the dislocation falls from the saddle point to the energy valley, this O-type dislocation transforms into the stable structure that is referred to as the B-type dislocation, and in the meantime, it moves a distance that equals half a Burgers vector. The structure evolution and the energy variation in the free-falling process are revealed explicitly. It is observed that rather than smooth change, a platform manifests itself in the energy curve. The unusual behaviour in the energy curve is mainly originated from symmetry breaking and bond formation in the dislocation core. The results can provide deep insight in the mechanism of the brittle feature of covalent materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Thao; Luscher, D. J.; Wilkerson, J. W.
We developed a framework for dislocation-based viscoplasticity and dynamic ductile failure to model high strain rate deformation and damage in single crystals. The rate-dependence of the crystal plasticity formulation is based on the physics of relativistic dislocation kinetics suited for extremely high strain rates. The damage evolution is based on the dynamics of void growth, which are governed by both micro-inertia as well as dislocation kinetics and dislocation substructure evolution. Furthermore, an averaging scheme is proposed in order to approximate the evolution of the dislocation substructure in both the macroscale as well as its spatial distribution at the microscale. Inmore » addition, a concept of a single equivalent dislocation density that effectively captures the collective influence of dislocation density on all active slip systems is proposed here. Together, these concepts and approximations enable the use of semi-analytic solutions for void growth dynamics developed in [J. Wilkerson and K. Ramesh. A dynamic void growth model governed by dislocation kinetics. J. Mech. Phys. Solids, 70:262–280, 2014.], which greatly reduce the computational overhead that would otherwise be required. The resulting homogenized framework has been implemented into a commercially available finite element package, and a validation study against a suite of direct numerical simulations was carried out.« less
A dislocation-based crystal plasticity framework for dynamic ductile failure of single crystals
NASA Astrophysics Data System (ADS)
Nguyen, Thao; Luscher, D. J.; Wilkerson, J. W.
2017-11-01
A framework for dislocation-based viscoplasticity and dynamic ductile failure has been developed to model high strain rate deformation and damage in single crystals. The rate-dependence of the crystal plasticity formulation is based on the physics of relativistic dislocation kinetics suited for extremely high strain rates. The damage evolution is based on the dynamics of void growth, which are governed by both micro-inertia as well as dislocation kinetics and dislocation substructure evolution. An averaging scheme is proposed in order to approximate the evolution of the dislocation substructure in both the macroscale as well as its spatial distribution at the microscale. Additionally, a concept of a single equivalent dislocation density that effectively captures the collective influence of dislocation density on all active slip systems is proposed here. Together, these concepts and approximations enable the use of semi-analytic solutions for void growth dynamics developed in (Wilkerson and Ramesh, 2014), which greatly reduce the computational overhead that would otherwise be required. The resulting homogenized framework has been implemented into a commercially available finite element package, and a validation study against a suite of direct numerical simulations was carried out.
A dislocation-based crystal plasticity framework for dynamic ductile failure of single crystals
Nguyen, Thao; Luscher, D. J.; Wilkerson, J. W.
2017-08-02
We developed a framework for dislocation-based viscoplasticity and dynamic ductile failure to model high strain rate deformation and damage in single crystals. The rate-dependence of the crystal plasticity formulation is based on the physics of relativistic dislocation kinetics suited for extremely high strain rates. The damage evolution is based on the dynamics of void growth, which are governed by both micro-inertia as well as dislocation kinetics and dislocation substructure evolution. Furthermore, an averaging scheme is proposed in order to approximate the evolution of the dislocation substructure in both the macroscale as well as its spatial distribution at the microscale. Inmore » addition, a concept of a single equivalent dislocation density that effectively captures the collective influence of dislocation density on all active slip systems is proposed here. Together, these concepts and approximations enable the use of semi-analytic solutions for void growth dynamics developed in [J. Wilkerson and K. Ramesh. A dynamic void growth model governed by dislocation kinetics. J. Mech. Phys. Solids, 70:262–280, 2014.], which greatly reduce the computational overhead that would otherwise be required. The resulting homogenized framework has been implemented into a commercially available finite element package, and a validation study against a suite of direct numerical simulations was carried out.« less
NASA Astrophysics Data System (ADS)
Li, Nan-Lin; Wu, Wen-Ping; Nie, Kai
2018-05-01
The evolution of misfit dislocation network at γ /γ‧ phase interface and tensile mechanical properties of Ni-based single crystal superalloys at various temperatures and strain rates are studied by using molecular dynamics (MD) simulations. From the simulations, it is found that with the increase of loading, the dislocation network effectively inhibits dislocations emitted in the γ matrix cutting into the γ‧ phase and absorbs the matrix dislocations to strengthen itself which increases the stability of structure. Under the influence of the temperature, the initial mosaic structure of dislocation network gradually becomes irregular, and the initial misfit stress and the elastic modulus slowly decline as temperature increasing. On the other hand, with the increase of the strain rate, it almost has no effect on the elastic modulus and the way of evolution of dislocation network, but contributes to the increases of the yield stress and tensile strength. Moreover, tension-compression asymmetry of Ni-based single crystal superalloys is also presented based on MD simulations.
NASA Astrophysics Data System (ADS)
Volodin, B. L.; Emel'yanov, Vladimir I.
1990-05-01
An analysis is made of a vacancy-deformation mechanism of generation of dislocations by laser radiation involving condensation of laser-induced vacancies when the vacancy concentration exceeds a certain critical value. The theory can be used to estimate the radius of the resultant dislocation loops and their density. It is used to interpret anisotropic laser melting of semiconductor surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Z.Y., E-mail: zhengye.zhong@hzg.de; Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, D-21502 Geesthacht; Brokmeier, H.-G.
2015-10-15
The dislocation density evolution along the loading axis of a textured AA 7020-T6 aluminum alloy during uniaxial tension was investigated by in-situ synchrotron diffraction. The highly parallel synchrotron beam at the High Energy Materials Science beamline P07 in PETRA III, DESY, offers excellent conditions to separate different influences for line broadening from which micro-strains are obtained using the modified Williamson–Hall method which is also for defect density investigations. During tensile loading the dislocation density evolution was documented from the as-received material (initial micro-strain state) to the relaxation of the strains during elastic deformation. After yield, the increasing rate of dislocationmore » density growth was relatively fast till half-way between yield and UTS. After that, the rate started to decrease and the dislocation density fluctuated as the elongation increased due to the generation and annihilation of dislocations. When dislocation generation is dominant, the correlation between the flow stress and dislocation density satisfies the Taylor equation. Besides, a method to correct the thickness effect on peak broadening is developed in the present study. - Highlights: • In-situ synchrotron diffraction was applied to characterize peak broadening. • Dislocation evolution along the loading axis during uniaxial tension was investigated. • A method to correct the sample thickness effect on peak broadening was developed. • Dislocation density and flow stress satisfy the Taylor equation at a certain range. • The texture before load and after sample fracture was analyzed.« less
Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum
Koyanagi, Takaaki; Kumar, N. A. P. Kiran; Hwang, Taehyun; ...
2017-04-13
Here, microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ~90–800 °C to 0.03–4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ~90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ~1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- andmore » Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.« less
Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koyanagi, Takaaki; Kumar, N. A. P. Kiran; Hwang, Taehyun
Here, microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ~90–800 °C to 0.03–4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ~90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ~1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- andmore » Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.« less
Recent Results from Epitaxial Growth on Step Free 4H-SiC Mesas
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Trunek, Andrew J.; Spry, David J.; Powell, J. Anthony; Du, Hui; Skowronski, Marek; Bassim, Nabil D.; Mastro, Michael A.; Twigg, Mark E.; Holm, Ronald T.;
2006-01-01
This paper updates recent progress made in growth, characterization, and understanding of high quality homoepitaxial and heteroepitaxial films grown on step-free 4H-SiC mesas. First, we report initial achievement of step-free 4H-SiC surfaces with carbon-face surface polarity. Next, we will describe further observations of how step-free 4H-SiC thin lateral cantilever evolution is significantly impacted by crystal faceting behavior that imposes non-uniform film thickness on cantilever undersides. Finally, recent investigations of in-plane lattice constant mismatch strain relief mechanisms observed for heteroepitaxial growth of 3C-SiC as well as 2H-AlN/GaN heterofilms on step-free 4H-SiC mesas will be reviewed. In both cases, the complete elimination of atomic heterointerface steps on the mesa structure enables uniquely well-ordered misfit dislocation arrays to form near the heterointerfaces with remarkable lack of dislocations threading vertically into the heteroepilayers. In the case of 3C-SiC heterofilms, it has been proposed that dislocation half-loops nucleate at mesa edges and glide laterally along the step-free 3C/4H interfaces. In contrast, 3C-SiC and 2H-AlN/GaN heterofilms grown on 4H-SiC mesas with steps exhibit highly disordered interface misfit dislocation structure coupled with 100X greater density of dislocations threading through the thickness of the heteroepilayers. These results indicate that the presence of steps at the heteroepitaxial interface (i.e., on the initial heteroepitaxial nucleation surface) plays a highly important role in the defect structure, quality, and relaxation mechanisms of single-crystal heteroepitaxial films.
NASA Astrophysics Data System (ADS)
Zhang, J.; Chen, Z.; Cheng, C.; Wang, Y. X.
2017-10-01
A phase field crystal (PFC) model is employed to study morphology evolution of nanoheteroepitaxy and misfit dislocation generation when applied with enhanced supercooling, lattice mismatch and substrate vicinal angle conditions. Misfit strain that rises due to lattice mismatch causes rough surfaces or misfit dislocations, deteriorates film properties, hence, efforts taken to reveal their microscopic mechanism are significant for film quality improvement. Uniform islands, instead of misfit dislocations, are developed in subcritical thickness film, serving as a way of strain relief by surface mechanism. Misfit dislocations generate when strain relief by surface mechanism is deficient in higher supercooling, multilayers of misfit dislocations dominate, but the number of layers reduces gradually when the supercooling is further enhanced. Rough surfaces like islands or cuspate pits are developed which is ascribed to lattice mismatch, multilayers of misfit dislocations generate to further enhance lattice mismatch. Layers of misfit dislocations generate at a thickening position at enhanced substrate vicinal angle, this further enhancing the angle leading to sporadic generation of misfit dislocations.
Interfacial dislocations in (111) oriented (Ba 0.7Sr 0.3)TiO 3 films on SrTiO 3 single crystal
Shen, Xuan; Yamada, Tomoaki; Lin, Ruoqian; ...
2015-10-08
In this study, we have investigated the interfacial structure of epitaxial (Ba,Sr)TiO 3 films grown on (111)-oriented SrTiO 3 single-crystal substrates using transmission electron microscopy (TEM) techniques. Compared with the (100) epitaxial perovskite films, we observe dominant dislocation half-loop with Burgers vectors of a<110> comprised of a misfit dislocation along <112>, and threading dislocations along <110> or <100>. The misfit dislocation with Burgers vector of a <110> can dissociate into two ½ a <110> partial dislocations and one stacking fault. We found the dislocation reactions occur not only between misfit dislocations, but also between threading dislocations. Via three-dimensional electron tomography,more » we retrieved the configurations of the threading dislocation reactions. The reactions between threading dislocations lead to a more efficient strain relaxation than do the misfit dislocations alone in the near-interface region of the (111)-oriented (Ba 0.7Sr 0.3)TiO 3 films.« less
NASA Astrophysics Data System (ADS)
Levo, E.; Granberg, F.; Fridlund, C.; Nordlund, K.; Djurabekova, F.
2017-07-01
Single-phase multicomponent alloys of equal atomic concentrations ("equiatomic") have proven to exhibit promising mechanical and corrosion resistance properties, that are sought after in materials intended for use in hazardous environments like next-generation nuclear reactors. In this article, we investigate the damage production and dislocation mobility by simulating irradiation of elemental Ni and the alloys NiCo, NiCoCr, NiCoFe and NiFe, to assess the effect of elemental composition. We compare the defect production and the evolution of dislocation networks in the simulation cells of two different sizes, for all five studied materials. We find that the trends in defect evolution are in good agreement between the different cell sizes. The damage is generally reduced with increased alloy complexity, and the dislocation evolution is specific to each material, depending on its complexity. We show that increasing complexity of the alloys does not always lead to decreased susceptibility to damage accumulation under irradiation. We show that, for instance, the NiCo alloy behaves very similarly to Ni, while presence of Fe or Cr in the alloy even as a third component reduces the saturated level of damage substantially. Moreover, we linked the defect evolution with the dislocation transformations in the alloys. Sudden drops in defect number and large defect fluctuations from the continuous irradiation can be explained from the dislocation activity.
Dislocation Multiplication by Single Cross Slip for FCC at Submicron Scales
NASA Astrophysics Data System (ADS)
Cui, Yi-Nan; Liu, Zhan-Li; Zhuang, Zhuo
2013-04-01
The operation mechanism of single cross slip multiplication (SCSM) is investigated by studying the response of one dislocation loop expanding in face-centered-cubic (FCC) single crystal using three-dimensional discrete dislocation dynamic (3D-DDD) simulation. The results show that SCSM can trigger highly correlated dislocation generation in a short time, which may shed some light on understanding the large strain burst observed experimentally. Furthermore, we find that there is a critical stress and material size for the operation of SCSM, which agrees with that required to trigger large strain burst in the compression tests of FCC micropillars.
Depth dependence of defect evolution and TED during annealing
NASA Astrophysics Data System (ADS)
Colombeau, B.; Cowern, N. E. B.; Cristiano, F.; Calvo, P.; Lamrani, Y.; Cherkashin, N.; Lampin, E.; Claverie, A.
2004-02-01
A quantitative transmission electron microscopy (TEM) study on the depth profile of extended defects, formed after Si implantation, has been carried out. Two different Si + implant conditions have been considered. TEM analysis for the highest energy/dose shows that {1 1 3} defects evolve into dislocation loops whilst the defect depth distribution remains unchanged as a function of annealing time. For the lowest energy/dose, {1 1 3} defects grow and dissolve while the defect band shrinks preferentially on the surface side. At the same time, extraction of boron transient enhanced diffusion (TED) as a function of depth shows a decrease of the supersaturation towards the surface, starting at the location of the defect band. The study clearly shows that in these systems the silicon surface is the principal sink for interstitials. The results provide a critical test of the ability of physical models to simulate defect evolution and TED.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Li; Ungár, Tamás; Toth, Laszlo S.
The evolution of texture, grain size, grain shape, dislocation and twin density has been determined by synchrotron X-ray diffraction and line profile analysis in a nanocrystalline Ni- Fe alloy after cold rolling along different directions related to the initial fiber and the long axis of grains. The texture evolution has been simulated by the Taylor-type relaxed constraints viscoplastic polycrystal model. The simulations were based on the activity of partial dislocations in correlation with the experimental results of dislocation density determination. The concept of stress-induced shear-coupling is supported and strengthened by both the texture simulations and the experimentally determined evolution ofmore » the microstructure parameters. Grain-growth and texture evolution are shown to proceed by the shear-coupling mechanism supported by dislocation activity as long as the grain size is not smaller than about 20 nm.« less
Lattice strain in irradiated materials unveils a prevalent defect evolution mechanism
NASA Astrophysics Data System (ADS)
Debelle, Aurélien; Crocombette, Jean-Paul; Boulle, Alexandre; Chartier, Alain; Jourdan, Thomas; Pellegrino, Stéphanie; Bachiller-Perea, Diana; Carpentier, Denise; Channagiri, Jayanth; Nguyen, Tien-Hien; Garrido, Frédérico; Thomé, Lionel
2018-01-01
Modification of materials using ion beams has become a widespread route to improve or design materials for advanced applications, from ion doping for microelectronic devices to emulation of nuclear reactor environments. Yet, despite decades of studies, major issues regarding ion/solid interactions are not solved, one of them being the lattice-strain development process in irradiated crystals. In this work, we address this question using a consistent approach that combines x-ray diffraction (XRD) measurements with both molecular dynamics (MD) and rate equation cluster dynamics (RECD) simulations. We investigate four distinct materials that differ notably in terms of crystalline structure and nature of the atomic bonding. We demonstrate that these materials exhibit a common behavior with respect to the strain development process. In fact, a strain build-up followed by a strain relaxation is observed in the four investigated cases. The strain variation is unambiguously ascribed to a change in the defect configuration, as revealed by MD simulations. Strain development is due to the clustering of interstitial defects into dislocation loops, while the strain release is associated with the disappearance of these loops through their integration into a network of dislocation lines. RECD calculations of strain depth profiles, which are in agreement with experimental data, indicate that the driving force for the change in the defect nature is the defect clustering process. This study paves the way for quantitative predictions of the microstructure changes in irradiated materials.
NASA Astrophysics Data System (ADS)
Xia, Shengxu; El-Azab, Anter
2015-07-01
We present a continuum dislocation dynamics model that predicts the formation of dislocation cell structure in single crystals at low strains. The model features a set of kinetic equations of the curl type that govern the space and time evolution of the dislocation density in the crystal. These kinetic equations are coupled to stress equilibrium and deformation kinematics using the eigenstrain approach. A custom finite element method has been developed to solve the coupled system of equations of dislocation kinetics and crystal mechanics. The results show that, in general, dislocations self-organize in patterns under their mutual interactions. However, the famous dislocation cell structure has been found to form only when cross slip is implemented in the model. Cross slip is also found to lower the yield point, increase the hardening rate, and sustain an increase in the dislocation density over the hardening regime. Analysis of the cell structure evolution reveals that the average cell size decreases with the applied stress, which is consistent with the similitude principle.
Self-ion emulation of high dose neutron irradiated microstructure in stainless steels
NASA Astrophysics Data System (ADS)
Jiao, Z.; Michalicka, J.; Was, G. S.
2018-04-01
Solution-annealed 304L stainless steel (SS) was irradiated to 130 dpa at 380 °C, and to 15 dpa at 500 °C and 600 °C, and cold-worked 316 SS (CW 316 SS) was irradiated to 130 dpa at 380 °C using 5 MeV Fe++/Ni++ to produce microstructures and radiation-induced segregation (RIS) for comparison with that from neutron irradiation at 320 °C to 46 dpa in the BOR60 reactor. For the 304L SS alloy, self-ion irradiation at 380 °C produced a dislocation loop microstructure that was comparable to that by neutron irradiation. No voids were observed in either the 380 °C self-ion irradiation or the neutron irradiation conditions. Irradiation at 600 °C produced the best match to radiation-induced segregation of Cr and Ni with the neutron irradiation, consistent with the prediction of a large temperature shift by Mansur's invariant relations for RIS. For the CW 316 SS alloy irradiated to 130 dpa at 380 °C, both the irradiated microstructure (dislocation loops, precipitates and voids) and RIS reasonably matched the neutron-irradiated sample. The smaller temperature shift for RIS in CW 316 SS was likely due to the high sink (dislocation) density induced by the cold work. A single self-ion irradiation condition at a dose rate ∼1000× that in reactor does not match both dislocation loops and RIS in solution-annealed 304L SS. However, a single irradiation temperature produced a reasonable match with both the dislocation/precipitate microstructure and RIS in CW 316 SS, indicating that sink density is a critical factor in determining the temperature shift for self-ion irradiations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Fei; Daymond, Mark R., E-mail: mark.daymond@queensu.ca; Yao, Zhongwen
2015-03-14
The effect of heavy-ion irradiation on deformation mechanisms of a Zr-2.5Nb alloy was investigated by using the in situ transmission electron microscopy deformation technique. The gliding behavior of prismatic 〈a〉 dislocations has been dynamically observed before and after irradiation at room temperature and 300 °C. Irradiation induced loops were shown to strongly pin the gliding dislocations. Unpinning occurred while loops were incorporated into or eliminated by 〈a〉 dislocations. In the irradiated sample, loop depleted areas with a boundary parallel to the basal plane trace were found by post-mortem observation after room temperature deformation, supporting the possibility of basal channel formation inmore » bulk neutron irradiated samples. Strong activity of pyramidal slip was also observed at both temperatures, which might be another important mechanism to induce plastic instability in irradiated zirconium alloys. Finally, (011{sup ¯}1)〈01{sup ¯}12〉 twinning was identified in the irradiated sample deformed at 300 °C.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Fei; Daymond, Mark R.; Yao, Zhongwen
2015-03-14
The effect of heavy-ion irradiation on deformation mechanisms of a Zr-2.5Nb alloy was investigated by using the in situ transmission electron microscopy deformation technique. The gliding behavior of prismatic < a > dislocations has been dynamically observed before and after irradiation at room temperature and 300 degrees C. Irradiation induced loops were shown to strongly pin the gliding dislocations. Unpinning occurred while loops were incorporated into or eliminated by < a > dislocations. In the irradiated sample, loop depleted areas with a boundary parallel to the basal plane trace were found by post-mortem observation after room temperature deformation, supporting themore » possibility of basal channel formation in bulk neutron irradiated samples. Strong activity of pyramidal slip was also observed at both temperatures, which might be another important mechanism to induce plastic instability in irradiated zirconium alloys. Finally, {01 (1) over bar1}< 0 (1) over bar 12 > twinning was identified in the irradiated sample deformed at 300 degrees C.« less
Effet Bauschinger lors de la plasticité cyclique de l'aluminium pur monocristallin
NASA Astrophysics Data System (ADS)
Alhamany, A.; Chicois, J.; Fougères, R.; Hamel, A.
1992-08-01
This paper is concerned with the study of microscopic mechanisms which control the cyclic deformation of pure aluminium and especially with the analysis of the Bauschinger effect which appears in aluminium single crystals deformed by cyclic straining. Fatigue tests are performed on Al single crystals with the crystal axis parallel to [ overline{1}23] at room temperature, at plastic shear strain amplitudes in the range from 10^{-4} to 3× 10^{-3}. Mechanical saturation is not obtained at any strain level. Instead, a hardening-softening-secondary hardening sequence is found. The magnitude of the Bauschinger effect as the difference between yield stresses in traction and in compression, changes all along the fatigue loop and during the fatigue test. The Bauschinger effect disappears at two points of the fatigue loop, one in the traction part, the other in the compression one. At these points, the Bauschinger effect is inverted. Dislocation arrangement evolutions with fatigue conditions can explain the cyclic behaviour of Al single crystals. An heterogeneous dislocation distribution can be observed in the cyclically strained metal : dislocation tangles, long dislocation walls and dislocation cell walls, separated by dislocation poor channels appear in the material as a function of the cycle number. The long range internal stress necessary to ensure the compatibility of deformation between the hard and soft regions controls the observed Bauschinger effect. Ce travail s'inscrit dans le cadre de l'étude des mécanismes microsocopiques intervenant lors de la déformation cyclique de l'aluminium pur et concerne en particulier l'analyse de l'effet Bauschinger apparaissant au cours de la solliciation cyclique des monocristaux. L'étude a été menée à température ambiante sur des monocristaux d'aluminium pur orientés pour un glissement simple (axe [ overline{1}23] ), à des amplitudes de déformation plastique comprise entre 10^{-4} et quelques 10^{-3}. Nous n'avons pas obtenu de véritable saturation mécanique. Nous sommes en présence d'une séquence durcissement-adoucissement-durcissement secondaire. L'amplitude de l'effet Bauschinger considéré comme la différence entre les limites élastiques en traction et en compression mesurées selon une procédure appropriée, évolue le long d'une boucle de fatigue, s'annule pour deux points particuliers l'un en traction l'autre en compression. De part et d'autre de ces points, le signe de l'effet Bauschinger est inversé. Les microstructures des états fatigués sont caractérisés par une répartition hétérogène des dislocations constituée d'amas, de murs ou des parois, suivant le degré de déformation cyclique, séparés par des zones à faible densité de dislocations. Les contraintes internes liées aux incompatibilités de déformation résultant de cette répartition hétérogène des dislocations sont à l'origine de l'effet Bauschinger observé dans les monocristaux. Ces contraintes et l'évolution de la quantité de cellules de dislocations avec la fatigue expliquent le durcissement secondaire.
NASA Astrophysics Data System (ADS)
Matsuhata, Hirofumi; Sekiguchi, Takashi
2018-04-01
Morphology of single Shockley-type stacking faults (SFs) generated by recombination enhanced dislocation glide (REDG) in 4H-SiC are discussed and analysed. A complete set of the 12 different dissociated states of basal-plane dislocation loops is obtained using the crystallographic space group operations. From this set, six different double rhombic-shaped SFs are derived. These tables indicate the rules that connect shapes of SFs with the locations of partial dislocations having different core structures, the positions of slip planes in a unit cell, and the Burgers vectors of partial dislocations. We applied these tables for the analysis of SFs generated by the REDG effect reported in the past articles. Shapes, growing process of SFs and perfect dislocations for origins of SFs were well analysed systematically.
Modeling and 2-D discrete simulation of dislocation dynamics for plastic deformation of metal
NASA Astrophysics Data System (ADS)
Liu, Juan; Cui, Zhenshan; Ou, Hengan; Ruan, Liqun
2013-05-01
Two methods are employed in this paper to investigate the dislocation evolution during plastic deformation of metal. One method is dislocation dynamic simulation of two-dimensional discrete dislocation dynamics (2D-DDD), and the other is dislocation dynamics modeling by means of nonlinear analysis. As screw dislocation is prone to disappear by cross-slip, only edge dislocation is taken into account in simulation. First, an approach of 2D-DDD is used to graphically simulate and exhibit the collective motion of a large number of discrete dislocations. In the beginning, initial grains are generated in the simulation cells according to the mechanism of grain growth and the initial dislocation is randomly distributed in grains and relaxed under the internal stress. During the simulation process, the externally imposed stress, the long range stress contribution of all dislocations and the short range stress caused by the grain boundaries are calculated. Under the action of these forces, dislocations begin to glide, climb, multiply, annihilate and react with each other. Besides, thermal activation process is included. Through the simulation, the distribution of dislocation and the stress-strain curves can be obtained. On the other hand, based on the classic dislocation theory, the variation of the dislocation density with time is described by nonlinear differential equations. Finite difference method (FDM) is used to solve the built differential equations. The dislocation evolution at a constant strain rate is taken as an example to verify the rationality of the model.
Atomic scale study of the life cycle of a dislocation in graphene from birth to annihilation
NASA Astrophysics Data System (ADS)
Lehtinen, O.; Kurasch, S.; Krasheninnikov, A. V.; Kaiser, U.
2013-06-01
Dislocations, one of the key entities in materials science, govern the properties of any crystalline material. Thus, understanding their life cycle, from creation to annihilation via motion and interaction with other dislocations, point defects and surfaces, is of fundamental importance. Unfortunately, atomic-scale investigations of dislocation evolution in a bulk object are well beyond the spatial and temporal resolution limits of current characterization techniques. Here we overcome the experimental limits by investigating the two-dimensional graphene in an aberration-corrected transmission electron microscope, exploiting the impinging energetic electrons both to image and stimulate atomic-scale morphological changes in the material. The resulting transformations are followed in situ, atom-by-atom, showing the full life cycle of a dislocation from birth to annihilation. Our experiments, combined with atomistic simulations, reveal the evolution of dislocations in two-dimensional systems to be governed by markedly long-ranging out-of-plane buckling.
Yi, Xiaoou; Culham Science Centre, Abingdon; Jenkins, Michael L.; ...
2015-04-21
The displacement damage induced in bulk W and W-5 wt.% Re and W-5 wt.% Ta alloys by 2 MeV W + irradiation to doses 3.3×10 17 - 2.5×10 19 W +/m 2 at temperatures ranging from 300 to750°C has been characterized by transmission electron microscopy. An automated sizing and counting approach based on Image J has been proposed and performed for all irradiation data. In all cases the damage comprised dislocation loops, mostly of interstitial type, with Burgers vectors b = ½<111> (> 60%) and b = <100>. The diameters of loops did not exceed 20 nm, with the majoritymore » being ≤ 6 nm. The loop number density varied between 10 22 and 10 23 loops/m 3 . With increasing irradiation temperature, the loop size distributions shifted towards larger sizes, and there was a substantial decrease in loop number densities. The damage microstructure was less sensitive to dose than to temperature. Under the same irradiation conditions, loop number densities in the alloys were higher than in pure W but loops were smaller. In grains with normals close to z = <001>, loop strings developed in W at temperatures ≥ 500°C and doses ≥ 1.2 dpa, but such strings were not observed in the W-Re or W-Ta alloys. However, in other grain orientations complex structures appeared in all materials and dense dislocation networks formed at higher doses.« less
Damage-tolerant nanotwinned metals with nanovoids under radiation environments
Chen, Y.; Yu, K Y.; Liu, Y.; Shao, S.; Wang, H.; Kirk, M. A.; Wang, J.; Zhang, X.
2015-01-01
Material performance in extreme radiation environments is central to the design of future nuclear reactors. Radiation induces significant damage in the form of dislocation loops and voids in irradiated materials, and continuous radiation often leads to void growth and subsequent void swelling in metals with low stacking fault energy. Here we show that by using in situ heavy ion irradiation in a transmission electron microscope, pre-introduced nanovoids in nanotwinned Cu efficiently absorb radiation-induced defects accompanied by gradual elimination of nanovoids, enhancing radiation tolerance of Cu. In situ studies and atomistic simulations reveal that such remarkable self-healing capability stems from high density of coherent and incoherent twin boundaries that rapidly capture and transport point defects and dislocation loops to nanovoids, which act as storage bins for interstitial loops. This study describes a counterintuitive yet significant concept: deliberate introduction of nanovoids in conjunction with nanotwins enables unprecedented damage tolerance in metallic materials. PMID:25906997
Damage-tolerant nanotwinned metals with nanovoids under radiation environments.
Chen, Y; Yu, K Y; Liu, Y; Shao, S; Wang, H; Kirk, M A; Wang, J; Zhang, X
2015-04-24
Material performance in extreme radiation environments is central to the design of future nuclear reactors. Radiation induces significant damage in the form of dislocation loops and voids in irradiated materials, and continuous radiation often leads to void growth and subsequent void swelling in metals with low stacking fault energy. Here we show that by using in situ heavy ion irradiation in a transmission electron microscope, pre-introduced nanovoids in nanotwinned Cu efficiently absorb radiation-induced defects accompanied by gradual elimination of nanovoids, enhancing radiation tolerance of Cu. In situ studies and atomistic simulations reveal that such remarkable self-healing capability stems from high density of coherent and incoherent twin boundaries that rapidly capture and transport point defects and dislocation loops to nanovoids, which act as storage bins for interstitial loops. This study describes a counterintuitive yet significant concept: deliberate introduction of nanovoids in conjunction with nanotwins enables unprecedented damage tolerance in metallic materials.
Damage-tolerant nanotwinned metals with nanovoids under radiation environments
Chen, Y.; Yu, K. Y.; Liu, Y.; ...
2015-04-24
Material performance in extreme radiation environments is central to the design of future nuclear reactors. Radiation induces significant damage in the form of dislocation loops and voids in irradiated materials, and continuous radiation often leads to void growth and subsequent void swelling in metals with low stacking fault energy. Here we show that by using in situ heavy ion irradiation in a transmission electron microscope, pre-introduced nanovoids in nanotwinned Cu efficiently absorb radiation-induced defects accompanied by gradual elimination of nanovoids, enhancing radiation tolerance of Cu. In situ studies and atomistic simulations reveal that such remarkable self-healing capability stems from highmore » density of coherent and incoherent twin boundaries that rapidly capture and transport point defects and dislocation loops to nanovoids, which act as storage bins for interstitial loops. This study describes a counterintuitive yet significant concept: deliberate introduction of nanovoids in conjunction with nanotwins enables unprecedented damage tolerance in metallic materials.« less
Effect of irradiation temperature on microstructure of ferritic-martensitic ODS steel
NASA Astrophysics Data System (ADS)
Klimenkov, M.; Lindau, R.; Jäntsch, U.; Möslang, A.
2017-09-01
The EUROFER-ODS alloy with 0.5% Y2O3 was neutron irradiated with doses up to 16.2 dpa at 250 °C, 350 °C and 450 °C. The radiation induced changes in the microstructure (e.g. dislocation loops and voids) were investigated using transmission electron microscopy (TEM). The number density of radiation induced defects was found to be significantly lower than in EUROFER 97 irradiated at the same conditions. It was found that the appearance and extent of radiation damage strongly depend not only on the irradiation temperature but also on the local number density and size distribution of ODS particles. The higher number density of dislocation loops and voids was found in the local areas with low number density of ODS particles. The interstitial loops with Burgers vector of both ½<111> and <100> types were detected by imaging using different diffraction conditions.
Cyclic softening based on dislocation annihilation at sub-cell boundary for SA333 Grade-6 C-Mn steel
NASA Astrophysics Data System (ADS)
Bhattacharjee, S.; Dhar, S.; Acharyya, S. K.; Gupta, S. K.
2018-01-01
In this work, the response of SA333 Grade-6 C-Mn steel subjected to uniaxial and in-phase biaxial tension-torsion cyclic loading is experimented and an attempt is made to model the material behaviour. Experimentally observed cyclic softening is modelled based on ‘dislocation annihilation at low angle grain boundary’, while Ohno-Wang kinematic hardening rule is used to simulate the stress-strain hysteresis loops. The relevant material parameters are extracted from the appropriate experimental results and metallurgical investigations. The material model is plugged as user material subroutine into ABAQUS FE platform to simulate pre-saturation low cycle fatigue loops with cyclic softening and other cyclic plastic behaviour under prescribed loading. The stress-strain hysteresis loops and peak stress with cycles were compared with the experimental results and good agreements between experimental and simulated results validated the material model.
Mechanical annealing under low-amplitude cyclic loading in micropillars
NASA Astrophysics Data System (ADS)
Cui, Yi-nan; Liu, Zhan-li; Wang, Zhang-jie; Zhuang, Zhuo
2016-04-01
Mechanical annealing has been demonstrated to be an effective method for decreasing the overall dislocation density in submicron single crystal. However, simultaneously significant shape change always unexpectedly happens under extremely high monotonic loading to drive the pre-existing dislocations out of the free surfaces. In the present work, through in situ TEM experiments it is found that cyclic loading with low stress amplitude can drive most dislocations out of the submicron sample with virtually little change of the shape. The underlying dislocation mechanism is revealed by carrying out discrete dislocation dynamic (DDD) simulations. The simulation results indicate that the dislocation density decreases within cycles, while the accumulated plastic strain is small. By comparing the evolution of dislocation junction under monotonic, cyclic and relaxation deformation, the cumulative irreversible slip is found to be the key factor of promoting junction destruction and dislocation annihilation at free surface under low-amplitude cyclic loading condition. By introducing this mechanics into dislocation density evolution equations, the critical conditions for mechanical annealing under cyclic and monotonic loadings are discussed. Low-amplitude cyclic loading which strengthens the single crystal without seriously disturbing the structure has the potential applications in the manufacture of defect-free nano-devices.
Microstructural characterisation of proton irradiated niobium using X-ray diffraction technique
NASA Astrophysics Data System (ADS)
Dutta, Argha; Gayathri, N.; Neogy, S.; Mukherjee, P.
2018-04-01
The microstructural parameters in pure Nb, irradiated with 5 MeV proton beam have been evaluated as a function of dose using X-ray diffraction line profile analysis. In order to assess the microstructural changes in the homogeneous region and in the peak damage region of the damage energy deposition profile, X-ray diffraction patterns have been collected using two different geometries (Bragg-Brentano and parallel beam geometries). Different X-ray line profile analysis like Williamson-Hall (W-H) analysis, modified W-H analysis, double-Voigt analysis, modified Rietveld technique and convolutional multiple whole profile fitting have been employed to extract the microstructural parameters like coherent domain size, microstrain within the domain, dislocation density and arrangement of dislocations. The coherent domain size decreases drastically along with increase in microstrain and dislocation density in the first dose for both the geometries. With increasing dose, a decreasing trend in microstrain associated with decrease in dislocation density is observed for both the geometries. This is attributed to the formation of defect clusters due to irradiation which with increasing dose collapse to dislocation loops to minimise the strain in the matrix. This is corroborated with the observation of black dots and loops in the TEM images. No significant difference is observed in the trend of microstructural parameters between the homogeneous and peak damage region of the damage profile.
Evolution of irradiation-induced strain in an equiatomic NiFe alloy
Ullah, Mohammad W.; Zhang, Yanwen; Sellami, Neila; ...
2017-07-10
Here, we investigate the formation and accumulation of irradiation-induced atomic strain in an equiatomic NiFe concentrated solid-solution alloy using both atomistic simulations and x-ray diffraction (XRD) analysis of irradiated samples. Experimentally, the irradiations are performed using 1.5 MeV Ni ions to fluences ranging from 1 × 10 13 to 1 × 10 14 cm -2. The irradiation simulations are carried out by overlapping 5 keV Ni recoils cascades up to a total of 300 recoils. An increase of volumetric strain is observed at low dose, which is associated with production of point defects and small clusters. A relaxation of strainmore » occurs at higher doses, when large defect clusters, like dislocation loops, dominate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y. Huang; B.R. Maier; T.R. Allen
2014-10-01
Zirconium carbide (ZrC) is being considered for utilization in deep burn TRISO fuel particles for hightemperature, gas-cooled reactors. Zirconium carbide has a cubic B1 type crystal structure along with a very high melting point (3420 ?C), exceptional hardness and good thermal and electrical conductivities. Understanding the ZrC irradiation response is crucial for establishing ZrC as an alternative component in TRISO fuel. Until now, very few studies on irradiation effects on ZrC have been released and fundamental aspects of defect evolution and kinetics are not well understood although some atomistic simulations and phenomenological studies have been performed. This work was carriedmore » out to understand the damage evolution in float-zone refined ZrC with different stoichiometries. Proton irradiations at 800 ?C up to doses of 3 dpa were performed on ZrCx (where x ranges from 0.9 to 1.2) to investigate the damage evolution. The irradiation-induced defects, such as density of dislocation loops, at different stoichiometries and doses which were characterized by transmission electron microscopy (TEM) is presented and discussed.« less
Consideration of the oxide particle-dislocation interaction in 9Cr-ODS steel
NASA Astrophysics Data System (ADS)
Ijiri, Yuta; Oono, N.; Ukai, S.; Yu, Hao; Ohtsuka, S.; Abe, Y.; Matsukawa, Y.
2017-05-01
The interaction between oxide particles and dislocations in a 9Cr-ODS ferritic steel is investigated by both static and in situ TEM observation under dynamic straining conditions and room temperature. The measured obstacle strength (?) of the oxide particles was no greater than 0.80 and the average was 0.63. The dislocation loops around some coarsened particles were also observed. The calculated obstacle strength by a stress formula of the Orowan interaction is nearly equaled to the average experimental value. Not only cross-slip system but also the Orowan interaction should be considered as the main interaction mechanism between oxide particles and dislocation in 9CrODS ferritic steel.
Damage structures in fission-neutron irradiated Ni-based alloys at high temperatures
NASA Astrophysics Data System (ADS)
Yamakawa, K.; Shimomura, Y.
1999-01-01
The defects formed in Ni based (Ni-Si, Ni-Cu and Ni-Fe) alloys which were irradiated with fission-neutrons were examined by electron microscopy. Irradiations were carried out at 473 K and 573 K. In the 473 K irradiated specimens, a high density of large interstitial loops and small vacancy clusters with stacking fault tetrahedra (SFT) were observed. The number densities of these two types of defects did not strongly depend on the amount of solute atoms in each alloy. The density of the loops in Ni-Si alloys was much higher than those in Ni-Cu and Ni-Fe alloys, while the density of SFT only slightly depended on the kind of solute. Also, the size of the loops depended on the kinds and amounts of solute. In 573 K irradiated Ni-Cu specimens, a high density of dislocation lines developed during the growth of interstitial loops. In Ni-Si alloys, the number density and size of the interstitial loops changed as a function of the amount of solute. Voids were formed in Ni-Cu alloys but scarcely formed in Ni-Si alloys. The number density of voids was one hundredth of that of SFT observed in 473 K irradiated Ni-Cu alloys. Possible formation processes of interstitial loops, SFT dislocation lines and voids are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Hee Joon; Edwards, Dan J.; Kurtz, Richard J.
An investigation of the influence of helium on damage evolution under neutron irradiation of an 11 at% Al, 19 at% Cr ODS ferritic PM2000 alloy was carried out in the High Flux Isotope Reactor (HFIR) using a novel in situ helium injection (ISHI) technique. Helium was injected into adjacent TEM discs from thermal neutron 59Ni(nth, 59Ni(nth,α) reactions in a thin NiAl layer. The PM2000 undergoes concurrent displacement damage from the high-energy neutrons. The ISHI technique allows direct comparisons of regions with and without high concentrations of helium since only the side coated with the NiAl experiences helium injection. The correspondingmore » microstructural and microchemical evolutions were characterized using both conventional and scanning transmission electron microscopy techniques. The evolutions observed include formation of dislocation loops and associated helium bubbles, precipitation of a variety of phases, amorphization of the Al2YO3 oxides (which also variously contained internal voids), and several manifestations of solute segregation. Notably, high concentrations of helium had a significant effect on many of these diverse phenomena. These results on PM2000 are compared and contrasted to the evolution of so-called nanostructured ferritic alloys (NFA).« less
Irradiation effects in UO2 and CeO2
NASA Astrophysics Data System (ADS)
Ye, Bei; Oaks, Aaron; Kirk, Mark; Yun, Di; Chen, Wei-Ying; Holtzman, Benjamin; Stubbins, James F.
2013-10-01
Single crystal CeO2, as a surrogate material to UO2, was irradiated with 500 keV xenon ions at 800 °C while being observed using in situ transmission electron microscopy (TEM). Experimental results show the formation and growth of defect clusters including dislocation loops and cavities as a function of increasing atomic displacement dose. At high dose, the dislocation loop structure evolves into an extended dislocation line structure, which appears to remain stable to the high dose levels examined in this study. A high concentration of cavities was also present in the microstructure. Despite high atomic displacement doses, the specimen remained crystalline to a cumulated dose of 5 × 1015 ions/cm2, which is consistent with the known stability of the fluorite structure under high dose irradiation. Kinetic Monte Carlo calculations show that oxygen mobility is substantially higher in hypo-stoichiometric UO2/CeO2 than hyper-stoichiometric systems. This result is consistent with the ability of irradiation damage to recover even at intermediate irradiation temperatures.
Localizing softness and stress along loops in 3D topological metamaterials
NASA Astrophysics Data System (ADS)
Baardink, Guido; Souslov, Anton; Paulose, Jayson; Vitelli, Vincenzo
2018-01-01
Topological states can be used to control the mechanical properties of a material along an edge or around a localized defect. The rigidity of elastic networks is characterized by a topological invariant called the polarization; materials with a well-defined uniform polarization display a dramatic range of edge softness depending on the orientation of the polarization relative to the terminating surface. However, in all 3D mechanical metamaterials proposed to date, the topological modes are mixed with bulk soft modes, which organize themselves in Weyl loops. Here, we report the design of a 3D topological metamaterial without Weyl lines and with a uniform polarization that leads to an asymmetry between the number of soft modes on opposing surfaces. We then use this construction to localize topological soft modes in interior regions of the material by including defect lines—dislocation loops—that are unique to three dimensions. We derive a general formula that relates the difference in the number of soft modes and states of self-stress localized along the dislocation loop to the handedness of the vector triad formed by the lattice polarization, Burgers vector, and dislocation-line direction. Our findings suggest a strategy for preprogramming failure and softness localized along lines in 3D, while avoiding extended soft Weyl modes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirras, G., E-mail: dirras@univ-paris13.fr; Gubicza, J.; Heczel, A.
2015-10-15
The microstructure evolution in body-centered cubic (bcc) Ti{sub 20}Zr{sub 20}Hf{sub 20}Nb{sub 20}Ta{sub 20} high entropy alloy during quasi-static compression test was studied by X-ray line profile analysis (XLPA) and transmission electron microscopy (TEM). The average lattice constant and other important parameters of the microstructure such as the mean crystallite size, the dislocation density and the edge/screw character of dislocations were determined by XLPA. The elastic anisotropy factor required for XLPA procedure was determined by nanoindentation. XLPA shows that the crystallite size decreased while the dislocation density increased with strain during compression, and their values reached about 39 nm and 15more » × 10{sup 14} m{sup −2}, respectively, at a plastic strain of ~ 20%. It was revealed that with increasing strain the dislocation character became more screw. This can be explained by the reduced mobility of screw dislocations compared to edge dislocations in bcc structures. These observations are in line with TEM investigations. The development of dislocation density during compression was related to the yield strength evolution. - Highlights: • Ti{sub 20}Zr{sub 20}Hf{sub 20}Nb{sub 20}Ta{sub 20} high entropy alloy was processed by arc-melting. • The mechanical was evaluated by RT compression test. • The microstructure evolution was studied by XLPA and TEM. • With increasing strain the dislocation character became more screw. • The yield strength was related to the development of the dislocation density.« less
NASA Astrophysics Data System (ADS)
Oriwol, Daniel; Trempa, Matthias; Sylla, Lamine; Leipner, Hartmut S.
2017-04-01
Dislocation clusters are the main crystal defects in multicrystalline silicon and are detrimental for solar cell efficiency. They were formed during the silicon ingot casting due to the relaxation of strain energy. The evolution of the dislocation clusters was studied by means of automated analysing tools of the standard wafer and cell production giving information about the cluster development as a function of the ingot height. Due to the observation of the whole wafer surface the point of view is of macroscopic nature. It was found that the dislocations tend to build clusters of high density which usually expand in diameter as a function of ingot height. According to their structure the dislocation clusters can be divided into light and dense clusters. The appearance of both types shows a clear dependence on the orientation of the grain growth direction. Additionally, a process of annihilation of dislocation clusters during the crystallization has been observed. To complement the macroscopic description, the dislocation clusters were also investigates by TEM. It is shown that the dislocations within the subgrain boundaries are closely arranged. Distances of 40-30 nm were found. These results lead to the conclusion that the dislocation density within the cluster structure is impossible to quantify by means of etch pit counting.
NASA Astrophysics Data System (ADS)
Ananthakrishna, G.; K, Srikanth
2018-03-01
It is well known that plastic deformation is a highly nonlinear dissipative irreversible phenomenon of considerable complexity. As a consequence, little progress has been made in modeling some well-known size-dependent properties of plastic deformation, for instance, calculating hardness as a function of indentation depth independently. Here, we devise a method of calculating hardness by calculating the residual indentation depth and then calculate the hardness as the ratio of the load to the residual imprint area. Recognizing the fact that dislocations are the basic defects controlling the plastic component of the indentation depth, we set up a system of coupled nonlinear time evolution equations for the mobile, forest, and geometrically necessary dislocation densities. Within our approach, we consider the geometrically necessary dislocations to be immobile since they contribute to additional hardness. The model includes dislocation multiplication, storage, and recovery mechanisms. The growth of the geometrically necessary dislocation density is controlled by the number of loops that can be activated under the contact area and the mean strain gradient. The equations are then coupled to the load rate equation. Our approach has the ability to adopt experimental parameters such as the indentation rates, the geometrical parameters defining the Berkovich indenter, including the nominal tip radius. The residual indentation depth is obtained by integrating the Orowan expression for the plastic strain rate, which is then used to calculate the hardness. Consistent with the experimental observations, the increasing hardness with decreasing indentation depth in our model arises from limited dislocation sources at small indentation depths and therefore avoids divergence in the limit of small depths reported in the Nix-Gao model. We demonstrate that for a range of parameter values that physically represent different materials, the model predicts the three characteristic features of hardness, namely, increase in the hardness with decreasing indentation depth, and the linear relation between the square of the hardness and the inverse of the indentation depth, for all but 150 nm, deviating for smaller depths. In addition, we also show that it is straightforward to obtain optimized parameter values that give good fit to the hardness data for polycrystalline cold worked copper and single crystals of silver.
One dimensional motion of interstitial clusters and void growth in Ni and Ni alloys
NASA Astrophysics Data System (ADS)
Yoshiie, T.; Ishizaki, T.; Xu, Q.; Satoh, Y.; Kiritani, M.
2002-12-01
One dimensional (1-D) motion of interstitial clusters is important for the microstructural evolution in metals. In this paper, the effect of 2 at.% alloying with elements Si (volume size factor to Ni: -5.81%), Cu (7.18%), Ge (14.76%) and Sn (74.08%) in Ni on 1-D motion of interstitial clusters and void growth was studied. In neutron irradiated pure Ni, Ni-Cu and Ni-Ge, well developed dislocation networks and voids in the matrix, and no defects near grain boundaries were observed at 573 K to a dose of 0.4 dpa by transmission electron microscopy. No voids were formed and only interstitial type dislocation loops were observed near grain boundaries in Ni-Si and Ni-Sn. The reaction kinetics analysis which included the point defect flow into planar sink revealed the existence of 1-D motion of interstitial clusters in Ni, Ni-Cu and Ni-Ge, and lack of such motion in Ni-Si and Ni-Sn. In Ni-Sn and Ni-Si, the alloying elements will trap interstitial clusters and thereby reduce the cluster mobility, which lead to the reduction in void growth.
NASA Astrophysics Data System (ADS)
Ashmawi, Waeil Muhammad Al-Anwar
New analytical and computational formulations have been developed for the investigation of micro structurally induced ductile failure mechanisms in porous polycrystalline aggregates with low and high (CSL) angle grain-boundaries (GBs). A multiple-slip rate-dependent crystalline constitutive formulation that is coupled to the evolution of mobile and immobile dislocation densities, a new internal porosity formulation for void nucleation and growth, and specialized computational schemes have been developed to obtain a detailed understanding of the multi-scale interrelated physical mechanisms that result in ductile failure in polycrystalline materials. Comprehensive transmission and pile-up mechanisms have also been introduced to investigate dislocation-density impedance and slip-rate incompatibility at the GBs. The interrelated effects of GB orientation, mobile and immobile dislocation densities, strain hardening, geometrical softening, localized plastic strains, and dislocation-density transmission and blockage on void growth, interaction, and coalescence have been studied. Criteria have been developed to identify and monitor the initiation and development of potential dislocation-density activity sites adjacent to GB regions. These interactions play an important role in the formation of GB pile-up and transmission regions. The effects of GB structure and orientation on ductile failure have been accounted for by the development of GB interfacial kinematic conditions that account for a multitude of dislocation-density interactions with GBs, such as full and partial transmission, impedance, blockage, and absorption. Pile-ups and transmission regions are identified and monitored as the deformation and failure evolve. These kinematic conditions are linked to the initiation and evolution of failure modes by the development of a new internal porosity evolution formulation that accounts for void nucleation and growth. The internal porosity relation is coupled with the proposed dislocation-density based crystalline constitutive formulation, the interfacial GB dislocation-density interaction models, and the specialized computational schemes to obtain detailed predictions of the behavior of aggregates with explicit voids that have different orientations and combinations of sizes, shapes, and spacings. Results from the present study indicate that material failure is a competition between different interrelated effects, such as stress triaxiality, accumulated plastic shear strain, temperature, dislocation density concentration, and grain and GB crystallographic orientations. For all void arrangements, as the void size is increased, specimen necking is diffuse and failure is concentrated in the ligament regions. Furthermore, there are more dislocation-density activity sites for potential transmission and pile-ups at the GBs. Failure is concentrated along the void peripheries and within intervoid ligaments. It has been shown that the evolution of the mobile dislocation density saturation curves, and their saturation rate are directly related to the aggregate response. Nucleation and growth for all void distributions have occurred in regions of maximum dislocation density and along preferred crystallographic orientations. Spatial distributions of porosity, accumulated plastic strains, and pressure have been obtained to further elucidate how these parameters evolve and affect void to void interaction in critical ligament and localized regions as a function of intervoid spacing and nominal strains. These failure predictions can be also used to identify intergranular and transgranular failure propagation. The present study underscores the importance of using dislocation-density based multiple-slip crystalline constitutive formulations and GB interfacial mechanisms that are consistent with experimental observations and results to accurately characterize the microstructural evolution of deformation and failure modes on a length scale that is commensurate with the material competition between the inherent strengthening and softening mechanisms of crystalline systems.
Yoshida, Kenta; Shimodaira, Masaki; Toyama, Takeshi; Shimizu, Yasuo; Inoue, Koji; Yoshiie, Toshimasa; Milan, Konstantinovic J; Gerard, Robert; Nagai, Yasuyoshi
2017-04-01
To evaluate dislocations induced by neutron irradiation, we developed a weak-beam scanning transmission electron microscopy (WB-STEM) system by installing a novel beam selector, an annular detector, a high-speed CCD camera and an imaging filter in the camera chamber of a spherical aberration-corrected transmission electron microscope. The capabilities of the WB-STEM with respect to wide-view imaging, real-time diffraction monitoring and multi-contrast imaging are demonstrated using typical reactor pressure vessel steel that had been used in an European nuclear reactor for 30 years as a surveillance test piece with a fluence of 1.09 × 1020 neutrons cm-2. The quantitatively measured size distribution (average loop size = 3.6 ± 2.1 nm), number density of the dislocation loops (3.6 × 1022 m-3) and dislocation density (7.8 × 1013 m m-3) were carefully compared with the values obtained via conventional weak-beam transmission electron microscopy studies. In addition, cluster analysis using atom probe tomography (APT) further demonstrated the potential of the WB-STEM for correlative electron tomography/APT experiments. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Effect of solute atoms on swelling in Ni alloys and pure Ni under He + ion irradiation
NASA Astrophysics Data System (ADS)
Wakai, E.; Ezawa, T.; Imamura, J.; Takenaka, T.; Tanabe, T.; Oshima, R.
2002-12-01
The effects of solute atoms on microstructural evolutions have been investigated using Ni alloys under 25 keV He + irradiation at 500 °C. The specimens used were pure Ni, Ni-Si, Ni-Co, Ni-Cu, Ni-Mn and Ni-Pd alloys with different volume size factors. The high number densities of dislocation loops about 1.5×10 22 m -3 were formed in the specimens irradiated to 1×10 19 ions/m 2, and they were approximately equivalent, except for Ni-Si. The mean size of loops tended to increase with the volume size factor of solute atoms. In a dose of 4×10 20 ions/m 2, the swelling was changed from 0.2% to 4.5%, depending on the volume size factors. The number densities of bubbles tended to increase with the absolute values of the volume size factor, and the swelling increased with the volume size factors. This suggests that the mobility of helium and vacancy atoms may be influenced by the interaction of solute atoms with them.
NASA Astrophysics Data System (ADS)
Alsagabi, Sultan
The 9Cr-2W ferritic-martensitic steel (i.e. Grade 92 steel) possesses excellent mechanical and thermophysical properties; therefore, it has been considered to suit more challenging applications where high temperature strength and creep-rupture properties are required. The high temperature deformation mechanism was investigated through a set of tensile testing at elevated temperatures. Hence, the threshold stress concept was applied to elucidate the operating high temperature deformation mechanism. It was identified as the high temperature climb of edge dislocations due to the particle-dislocation interactions and the appropriate constitutive equation was developed. In addition, the microstructural evolution at room and elevated temperatures was investigated. For instance, the microstructural evolution under loading was more pronounced and carbide precipitation showed more coarsening tendency. The growth of these carbide precipitates, by removing W and Mo from matrix, significantly deteriorates the solid solution strengthening. The MX type carbonitrides exhibited better coarsening resistance. To better understand the thermal microstructural stability, long tempering schedules up to 1000 hours was conducted at 560, 660 and 760°C after normalizing the steel. Still, the coarsening rate of M23C 6 carbides was higher than the MX-type particles. Moreover, the Laves phase particles were detected after tempering the steel for long periods before they dissolve back into the matrix at high temperature (i.e. 720°C). The influence of the tempering temperature and time was studied for Grade 92 steel via Hollomon-Jaffe parameter. Finally, the irradiation performance of Grade 92 steel was evaluated to examine the feasibility of its eventual reactor use. To that end, Grade 92 steel was irradiated with iron (Fe2+) ions to 10, 50 and 100 dpa at 30 and 500°C. Overall, the irradiated samples showed some irradiation-induced hardening which was more noticeable at 30°C. Additionally, irradiation-induced defect clusters and dislocation loops were observed and the irradiated samples did not show any bubble or void.
Free energy change of a dislocation due to a Cottrell atmosphere
NASA Astrophysics Data System (ADS)
Sills, R. B.; Cai, W.
2018-06-01
The free energy reduction of a dislocation due to a Cottrell atmosphere of solutes is computed using a continuum model. We show that the free energy change is composed of near-core and far-field components. The far-field component can be computed analytically using the linearized theory of solid solutions. Near the core the linearized theory is inaccurate, and the near-core component must be computed numerically. The influence of interactions between solutes in neighbouring lattice sites is also examined using the continuum model. We show that this model is able to reproduce atomistic calculations of the nickel-hydrogen system, predicting hydride formation on dislocations. The formation of these hydrides leads to dramatic reductions in the free energy. Finally, the influence of the free energy change on a dislocation's line tension is examined by computing the equilibrium shape of a dislocation shear loop and the activation stress for a Frank-Read source using discrete dislocation dynamics.
Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys
Lu, Chenyang; Yang, Taini; Jin, Ke; ...
2017-01-12
A group of single-phase concentrated solid-solution alloys (SP-CSAs), including NiFe, NiCoFe, NiCoFeCr, as well as a high entropy alloy NiCoFeCrMn, was irradiated with 3 MeV Ni 2+ ions at 773 K to a fluence of 5 10 16 ions/cm 2 for the study of radiation response with increasing compositional complexity. Advanced transmission electron microscopy (TEM) with electron energy loss spectroscopy (EELS) was used to characterize the dislocation loop distribution and radiation-induced segregation (RIS) on defect clusters in the SP-CSAs. The results show that a higher fraction of faulted loops exists in the more compositionally complex alloys, which indicate that increasingmore » compositional complexity can extend the incubation period and delay loop growth. The RIS behaviors of each element in the SP-CSAs were observed as follows: Ni and Co tend to enrich, but Cr, Fe and Mn prefer to deplete near the defect clusters. RIS level can be significantly suppressed by increasing compositional complexity due to the sluggish atom diffusion. According to molecular static (MS) simulations, disk like segregations may form near the faulted dislocation loops in the SP-CSAs. Segregated elements tend to distribute around the whole faulted loop as a disk rather than only around the edge of the loop.« less
NASA Astrophysics Data System (ADS)
Pogorelko, V. V.; Mayer, A. E.
2016-11-01
With the use of the molecular dynamic simulations, we investigated the effect of the high-speed (500 m/s, 1000 m/s) copper nanoparticle impact on the mechanical properties of an aluminum surface. Dislocation analysis shows that a large number of dislocations are formed in the impact area; the total length of dislocations is determined not only by the speed and size of the incoming copper nanoparticle (kinetic energy of the nanoparticle), but by a temperature of the system as well. The dislocations occupy the whole area of the aluminum single crystal at high kinetic energy of the nanoparticle. With the decrease of the nanoparticle kinetic energy, the dislocation structures are formed in the near-surface layer; formation of the dislocation loops takes place. Temperature rise of the system (aluminum substrate + nanoparticle) reduces the total dislocation length in the single crystal of aluminum; there is deeper penetration of the copper atoms in the aluminum at high temperatures. Average energy of the nanoparticles and room temperature of the system are optimal for production of high-quality layers of copper on the aluminum surface.
Greiner, Christian; Liu, Zhilong; Strassberger, Luis; Gumbsch, Peter
2016-06-22
Tailoring the surface properties of a material for low friction and little wear has long been a goal of tribological research. Since the microstructure of the material under the contact strongly influences tribological performance, the ability to control this microstructure is thereby of key importance. However, there is a significant lack of knowledge about the elementary mechanisms of microstructure evolution under tribological load. To cover different stages of this microstructure evolution, high-purity copper was investigated after increasing numbers of sliding cycles of a sapphire sphere in reciprocating motion. Scanning electron and focused ion beam (FIB) microscopy were applied to monitor the microstructure changes. A thin tribologically deformed layer which grew from tens of nanometers to several micrometers with increasing number of cycles was observed in cross-sections. By analyzing dislocation structures and local orientation changes in the cross-sectional areas, dislocation activity, the occurrence of a distinct dislocation trace line, and the emergence of new subgrain boundaries could be observed at different depths. These results strongly suggest that dislocation self-organization is a key elementary mechanism for the microstructure evolution under a tribological load. The distinct elementary processes at different stages of sliding identified here will be essential for the future modeling of the microstructure evolution in tribological contacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinogradov, A.; Laboratory of Hybrid Nanostructured Materials, NITU MISiS, Moscow 119490; Yasnikov, I. S.
2014-06-21
We demonstrate that the fractal dimension (FD) of the dislocation population in a deforming material is an important quantitative characteristic of the evolution of the dislocation structure. Thus, we show that peaking of FD signifies a nearing loss of uniformity of plastic flow and the onset of strain localization. Two techniques were employed to determine FD: (i) inspection of surface morphology of the deforming crystal by white light interferometry and (ii) monitoring of acoustic emission (AE) during uniaxial tensile deformation. A connection between the AE characteristics and the fractal dimension determined from surface topography measurements was established. As a commonmore » platform for the two methods, the dislocation density evolution in the bulk was used. The relations found made it possible to identify the occurrence of a peak in the median frequency of AE as a harbinger of plastic instability leading to necking. It is suggested that access to the fractal dimension provided by AE measurements and by surface topography analysis makes these techniques important tools for monitoring the evolution of the dislocation structure during plastic deformation—both as stand-alone methods and especially when used in tandem.« less
TEM in situ cube-corner indentation analysis using ViBe motion detection algorithm
NASA Astrophysics Data System (ADS)
Yano, K. H.; Thomas, S.; Swenson, M. J.; Lu, Y.; Wharry, J. P.
2018-04-01
Transmission electron microscopic (TEM) in situ mechanical testing is a promising method for understanding plasticity in shallow ion irradiated layers and other volume-limited materials. One of the simplest TEM in situ experiments is cube-corner indentation of a lamella, but the subsequent analysis and interpretation of the experiment is challenging, especially in engineering materials with complex microstructures. In this work, we: (a) develop MicroViBE, a motion detection and background subtraction-based post-processing approach, and (b) demonstrate the ability of MicroViBe, in combination with post-mortem TEM imaging, to carry out an unbiased qualitative interpretation of TEM indentation videos. We focus this work around a Fe-9%Cr oxide dispersion strengthened (ODS) alloy, irradiated with Fe2+ ions to 3 dpa at 500 °C. MicroViBe identifies changes in Laue contrast that are induced by the indentation; these changes accumulate throughout the mechanical loading to generate a "heatmap" of features in the original TEM video that change the most during the loading. Dislocation loops with b = ½ <111> identified by post-mortem scanning TEM (STEM) imaging correspond to hotspots on the heatmap, whereas positions of dislocation loops with b = <100> do not correspond to hotspots. Further, MicroViBe enables consistent, objective quantitative approximation of the b = ½ <111> dislocation loop number density.
Effects of pre-creep on the dislocations of 316LN Austenite stainless steel
NASA Astrophysics Data System (ADS)
Pei, Hai-xiang; Hui, Jun; Hua, Hou; Feng, Zai-xin; Xu, Xiao-long
2017-09-01
The 316LN Austenite stainless steels (316LNASS) were pre-creep treated, the evolution of microstructure were investigated. The samples were pre-creep at 593 K and from 500 to 2000 h at 873 K with a stress in the range of 20 to 150 MPa, Then the evolution of microstructure and precipitation were investigated by optical microscope (OM), and transmission electron microscope (TEM). The results show that the crystal surface slipping resulted in dislocations and original dislocations decomposition during the pre-creep process, and generate quadrilateral or hexagonal dislocation network was obviously. The sub-grain boundary gradually became narrow with the increasing of pre-creep treatment time and temperature. When the pre-creep temperature was 593 K and 873 K, dislocation network gradually disappear with the increasing of pre-creep time and load. When the pre-creep temperature was 873 K under 120 MPa, and the treatment time was 2000 h, the hexagonal dislocation network (HDN) would completely disappeared. When the pre-creep temperature was 593 K under 20 MPa, and the treatment time was 500 h, the quadrilateral dislocation network (QDN) would completely disappeared.
Gradient Plasticity Model and its Implementation into MARMOT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, Erin I.; Li, Dongsheng; Zbib, Hussein M.
2013-08-01
The influence of strain gradient on deformation behavior of nuclear structural materials, such as boby centered cubic (bcc) iron alloys has been investigated. We have developed and implemented a dislocation based strain gradient crystal plasticity material model. A mesoscale crystal plasticity model for inelastic deformation of metallic material, bcc steel, has been developed and implemented numerically. Continuum Dislocation Dynamics (CDD) with a novel constitutive law based on dislocation density evolution mechanisms was developed to investigate the deformation behaviors of single crystals, as well as polycrystalline materials by coupling CDD and crystal plasticity (CP). The dislocation density evolution law in thismore » model is mechanism-based, with parameters measured from experiments or simulated with lower-length scale models, not an empirical law with parameters back-fitted from the flow curves.« less
The co-evolution of microstructure features in self-ion irradiated HT9 at very high damage levels
NASA Astrophysics Data System (ADS)
Getto, E.; Vancoevering, G.; Was, G. S.
2017-02-01
Understanding the void swelling and phase evolution of reactor structural materials at very high damage levels is essential to maintaining safety and longevity of components in Gen IV fast reactors. A combination of ion irradiation and modeling was utilized to understand the microstructure evolution of ferritic-martensitic alloy HT9 at high dpa. Self-ion irradiation experiments were performed on alloy HT9 to determine the co-evolution of voids, dislocations and precipitates up to 650 dpa at 460 °C. Modeling of microstructure evolution was conducted using the modified Radiation Induced Microstructure Evolution (RIME) model, which utilizes a mean field rate theory approach with grouped cluster dynamics. Irradiations were performed with 5 MeV raster-scanned Fe2+ ions on samples pre-implanted with 10 atom parts per million He. The swelling, dislocation and precipitate evolution at very high dpa was determined using Analytical Electron Microscopy in Scanning Transmission Electron Microscopy (STEM) mode. Experimental results were then interpreted using the RIME model. A microstructure consisting only of dislocations and voids is insufficient to account for the swelling evolution observed experimentally at high damage levels in a complicated microstructure such as irradiated alloy HT9. G phase was found to have a minimal effect on either void or dislocation evolution. M2X played two roles; a variable biased sink for defects, and as a vehicle for removal of carbon from solution, thus promoting void growth. When accounting for all microstructure interactions, swelling at high damage levels is a dynamic process that continues to respond to other changes in the microstructure as long as they occur.
Ontsouka, E C; Steiner, A; Bruckmaier, R M; Blum, J W; Meylan, M
2009-05-01
Muscarinic receptors mediate acetylcholine-induced muscular contractions. In this study, mRNA levels of muscarinic receptor subtypes 2 and 3 (M(2) and M(3)) in the ileum, caecum, proximal loop of the ascending colon (PLAC) and external loop of the spiral colon (ELSC) were determined by quantitative polymerase chain reaction in seven cows with caecal dilatation-dislocation (CDD) and seven healthy control cows. Levels of M(2) were significantly lower in the caecum, PLAC and ELSC and levels of M(3) were significantly lower in the ileum, caecum, PLAC and ELSC of cows with CDD compared to healthy cows (P<0.05). Down-regulation of M(3) may play a role in the pathogenesis of CDD.
Atomistic modeling of shock-induced void collapse in copper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davila, L P; Erhart, P; Bringa, E M
2005-03-09
Nonequilibrium molecular dynamics (MD) simulations show that shock-induced void collapse in copper occurs by emission of shear loops. These loops carry away the vacancies which comprise the void. The growth of the loops continues even after they collide and form sessile junctions, creating a hardened region around the collapsing void. The scenario seen in our simulations differs from current models that assume that prismatic loop emission is responsible for void collapse. We propose a new dislocation-based model that gives excellent agreement with the stress threshold found in the MD simulations for void collapse as a function of void radius.
NASA Astrophysics Data System (ADS)
Charniy, L. A.; Morozov, A. N.; Bublik, V. T.; Scherbachev, K. D.; Stepantsova, I. V.; Kaganer, V. M.
1992-03-01
Microdefects in dislocation-free Si-doped (n = (1-3) × 10 18cm-3) HB GaAs crystals were studied by X-ray diffuse scattering measured with the help of a triple-crystal diffractometer. The intensity of the diffuse scattering as well as the isointensity contours around different reciprocal lattice points were analysed. A comparison of the measured isointensity contours with the theoretically calculated ones showed that the microdefects detected are interstitial dislocation loops with the Burgers vectors b = {1}/{2}<110 #3862;; lying in the planes #38;{110} and {111}. The mean radius of the dislocation loops R0 was determined using the wave vector q0 alpha; R-10 corresponding to the transmition point where the Huang diffuse scattering I( q) alpha q-2 ( q < q0) changed to the asymptotic scattering I( q) alpha q-4 ( q #62 q0). The analysis of a D-shaped cross-sectional (111) wafer cut from the end part of the HB ingot showed that R0 changed smoothly along the [ overline211] symmetry axis of the wafer. The highly inhomogeneous "new-moon"-like distribution of the non-dislocational etch-pits was also obtained. The maximal loop radius obtained at the edges of the wafer, R 0 = 1 μm, corresponds to the wafer area enriched with etch-pits and the minimal one, R 0 = 0.3 μm, corresponds to the bound of the new-moon-like area denuded from etch-pits. Microdefects of a new type were detected in the denuded area. These microdefects consist of nuclei, 0.1 μm in radius, and an extended atmosphere of interstitials. The minimal microdefect radius in the centre of the wafer corresponds to the maximum local value of the lattice parameter a = 5.655380 Å, and the minimum local value a = 5.65372 Å was obtained at the wafer edges enriched with microdefect-related etch-pits. Absolute X-ray diffuse intensity measurements were used for microdefect concentration determination. Normalization of I( q) was based on the comparison of the Huang intensity with the thermal diffuse scattering intensity which is predominant for the wave vector q å R-10. The microdefect concentration determined in this way appeared to be 4 × 10 9 cm -3 at the edges of the wafer and 4 × 10 11 cm -3 at the centre of the new-moon-like etch-pit denuded zone. The number of interstitial atoms forming dislocation loops is shown to be the same across the area of the wafer and equal to 10 16 cm -3.
Singular orientations and faceted motion of dislocations in body-centered cubic crystals.
Kang, Keonwook; Bulatov, Vasily V; Cai, Wei
2012-09-18
Dislocation mobility is a fundamental material property that controls strength and ductility of crystals. An important measure of dislocation mobility is its Peierls stress, i.e., the minimal stress required to move a dislocation at zero temperature. Here we report that, in the body-centered cubic metal tantalum, the Peierls stress as a function of dislocation orientation exhibits fine structure with several singular orientations of high Peierls stress-stress spikes-surrounded by vicinal plateau regions. While the classical Peierls-Nabarro model captures the high Peierls stress of singular orientations, an extension that allows dislocations to bend is necessary to account for the plateau regions. Our results clarify the notion of dislocation kinks as meaningful only for orientations within the plateau regions vicinal to the Peierls stress spikes. These observations lead us to propose a Read-Shockley type classification of dislocation orientations into three distinct classes-special, vicinal, and general-with respect to their Peierls stress and motion mechanisms. We predict that dislocation loops expanding under stress at sufficiently low temperatures, should develop well defined facets corresponding to two special orientations of highest Peierls stress, the screw and the M111 orientations, both moving by kink mechanism. We propose that both the screw and the M111 dislocations are jointly responsible for the yield behavior of BCC metals at low temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Shi; Bei, Hongbin; Robertson, Ian M.
2017-06-08
One-dimensional glide of loops during ion irradiation at 773 K in a series of Ni-containing concentrated solid solution alloys has been observed directly during experiments conducted inside a transmission electron microscope. It was found that the frequency of the oscillatory motion of the loop, the loop glide velocity as well as the loop jump distance were dependent on the composition of the alloy and the size of the loop. Loop glide was most common for small loops and occurred more frequently in the less complex alloys, being highest in Ni, then NiCo, NiFe and NiCoFeCr. As a result, no measurablemore » loop glide occurred in the NiCoCr, NiCoFeCrMn and NiCoFeCrPd alloys.« less
Supersonic Dislocation Bursts in Silicon
Hahn, E. N.; Zhao, S.; Bringa, E. M.; Meyers, M. A.
2016-01-01
Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolution we successfully predict a dislocation density of 1.5 × 1012 cm−2 within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon. PMID:27264746
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolotov, D. A., E-mail: zolotovden@crys.ras.ru; Buzmakov, A. V.; Elfimov, D. A.
2017-01-15
The spatial arrangement of single linear defects in a Si single crystal (input surface (111)) has been investigated by X-ray topo-tomography using laboratory X-ray sources. The experimental technique and the procedure of reconstructing a 3D image of dislocation half-loops near the Si crystal surface are described. The sizes of observed linear defects with a spatial resolution of about 10 μm are estimated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinhero, Patrick; Windes, William
2015-03-10
The fast particle radiation damage effect of graphite, a main material in current and future nuclear reactors, has significant influence on the utilization of this material in fission and fusion plants. Atoms on graphite crystals can be easily replaced or dislocated by fast protons and result in interstitials and vacancies. The currently accepted model indicates that after most of the interstitials recombine with vacancies, surviving interstitials form clusters and furthermore gather to create loops with each other between layers. Meanwhile, surviving vacancies and interstitials form dislocation loops on the layers. The growth of these inserted layers cause the dimensional increase,more » i.e. swelling, of graphite. Interstitial and vacancy dislocation loops have been reported and they can easily been observed by electron microscope. However, observation of the intermediate atom clusters becomes is paramount in helping prove this model. We utilize fast protons generated from the University of Missouri Research Reactor (MURR) cyclotron to irradiate highly- oriented pyrolytic graphite (HOPG) as target for this research. Post-irradiation examination (PIE) of dosed targets with high-resolution transmission electron microscopy (HRTEM) has permit observation and analysis of clusters and dislocation loops to support the proposed theory. Another part of the research is to validate M.I. Heggie’s Ruck and Tuck model, which introduced graphite layers may fold under fast particle irradiation. Again, we employed microscopy to image irradiated specimens to determine how the extent of Ruck and Tuck by calculating the number of folds as a function of dose. Our most significant accomplishment is the invention of a novel class of high-intensity pure beta-emitters for long-term lightweight batteries. We have filed four invention disclosure records based on the research conducted in this project. These batteries are lightweight because they consist of carbon and tritium and can be fabricated to conform to many geometric shapes. In addition, we have published eight peer-reviewed American Nuclear Society (ANS) transactions, and presented our findings at ANS National Meetings, and several universities.« less
Kirby, S.H.; Wegner, M.W.
1978-01-01
Cleaved and mechanically polished surfaces of olivine from peridotite xenoliths from San Carlos, Arizona, were chemically etched using the techniques of Wegner and Christie (1974). Dislocation etch pits are produced on all surface orientations and they tend to be preferentially aligned along the traces of subgrain boundaries, which are approximately parallel to (100), (010), and (001). Shallow channels were also produced on (010) surfaces and represent dislocations near the surface that are etched out along their lengths. The dislocation etch channel loops are often concentric, and emanate from (100) subgrain boundaries, which suggests that dislocation sources are in the boundaries. Data on subgrain misorientation and dislocation line orientation and arguments based on subgrain boundary energy minimization are used to characterize the dislocation structures of the subgrain boundaries. (010) subgrain boundaries are of the twist type, composed of networks of [100] and [001] screw dislocations. Both (100) and (001) subgrain boundaries are tilt walls composed of arrays of edge dislocation with Burgers vectors b=[100] and [001], respectively. The inferred slip systems are {001} ???100???, {100} ???001???, and {010} ???100??? in order of diminishing importance. Exploratory transmission electron microscopy is in accord with these identifications. The flow stresses associated with the development of the subgrain structure are estimated from the densities of free dislocations and from the subgrain dimensions. Inferred stresses range from 35 to 75 bars using the free dislocation densities and 20 to 100 bars using the subgrain sizes. ?? 1978 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Adam, Khaled; Zöllner, Dana; Field, David P.
2018-04-01
Modeling the microstructural evolution during recrystallization is a powerful tool for the profound understanding of alloy behavior and for use in optimizing engineering properties through annealing. In particular, the mechanical properties of metallic alloys are highly dependent upon evolved microstructure and texture from the softening process. In the present work, a Monte Carlo (MC) Potts model was used to model the primary recrystallization and grain growth in cold rolled single-phase Al alloy. The microstructural representation of two kinds of dislocation densities, statistically stored dislocations and geometrically necessary dislocations were quantified based on the ViscoPlastic Fast Fourier transform method. This representation was then introduced into the MC Potts model to identify the favorable sites for nucleation where orientation gradients and entanglements of dislocations are high. Additionally, in situ observations of non-isothermal microstructure evolution for single-phase aluminum alloy 1100 were made to validate the simulation. The influence of the texture inhomogeneity is analyzed from a theoretical point of view using an orientation distribution function for deformed and evolved texture.
Solute softening and defect generation during prismatic slip in magnesium alloys
NASA Astrophysics Data System (ADS)
Yi, Peng; Cammarata, Robert C.; Falk, Michael L.
2017-12-01
Temperature and solute effects on prismatic slip of 〈a〉 dislocations in Mg are studied using molecular dynamics simulation. Prismatic slip is controlled by the low mobility screw dislocation. The screw dislocation glides on the prismatic plane through alternating cross-slip between the basal plane and the prismatic plane. In doing so, it exhibits a locking-unlocking mechanism at low temperatures and a more continuous wavy propagation at high temperatures. The dislocation dissociates into partials on the basal plane and the constriction formation of the partials is identified to be the rate-limiting process for unlocking. In addition, the diffusion of partials on the basal plane enables the formation of jogs and superjogs for prismatic slip, which lead to the generation of vacancies and dislocation loops. Solute softening in Mg alloys was observed in the presence of both Al and Y solute. The softening in prismatic slip is found to be due to solute pinning on the basal plane, instead of the relative energy change of the screw dislocation on the basal and prismatic planes, as has been hypothesized.
Dislocation-Twin Boundary Interactions Induced Nanocrystalline via SPD Processing in Bulk Metals
NASA Astrophysics Data System (ADS)
Zhang, Fucheng; Feng, Xiaoyong; Yang, Zhinan; Kang, Jie; Wang, Tiansheng
2015-03-01
This report investigated dislocation-twin boundary (TB) interactions that cause the TB to disappear and turn into a high-angle grain boundary (GB). The evolution of the microstructural characteristics of Hadfield steel was shown as a function of severe plastic deformation processing time. Sessile Frank partial dislocations and/or sessile unit dislocations were formed on the TB through possible dislocation reactions. These reactions induced atomic steps on the TB and led to the accumulation of gliding dislocations at the TB, which resulted in the transition from coherent TB to incoherent GB. The factors that affect these interactions were described, and a physical model was established to explain in detail the feasible dislocation reactions at the TB.
Dislocation-twin boundary interactions induced nanocrystalline via SPD processing in bulk metals.
Zhang, Fucheng; Feng, Xiaoyong; Yang, Zhinan; Kang, Jie; Wang, Tiansheng
2015-03-11
This report investigated dislocation-twin boundary (TB) interactions that cause the TB to disappear and turn into a high-angle grain boundary (GB). The evolution of the microstructural characteristics of Hadfield steel was shown as a function of severe plastic deformation processing time. Sessile Frank partial dislocations and/or sessile unit dislocations were formed on the TB through possible dislocation reactions. These reactions induced atomic steps on the TB and led to the accumulation of gliding dislocations at the TB, which resulted in the transition from coherent TB to incoherent GB. The factors that affect these interactions were described, and a physical model was established to explain in detail the feasible dislocation reactions at the TB.
NASA Astrophysics Data System (ADS)
Harrison, R. W.; Greaves, G.; Hinks, J. A.; Donnelly, S. E.
2017-11-01
Transmission electron microscopy (TEM) with in-situ He ion irradiation has been used to examine the damage microstructure of W when varying the helium concentration to displacement damage ratio, irradiation temperature and total dose. Irradiations employed 15, 60 or 85 keV He ions, at temperatures between 500 and 1000 °C up to doses of ∼3.0 DPA. Once nucleated and grown to an observable size in the TEM, bubble diameter as a function of irradiation dose did not measurably increase at irradiation temperatures of 500 °C between 1.0 and 3.0 DPA; this is attributed to the low mobility of vacancies and He/vacancy complexes at these temperatures. Bubble diameter increased slightly for irradiation temperatures of 750 °C and rapidly increased when irradiated at 1000 °C. Dislocation loops were observed at irradiation temperatures of 500 and 750 °C and no loops were observed at 1000 °C. Burgers vectors of the dislocations were determined to be b = ±½<111> type only and both vacancy and interstitial loops were observed. The proportion of interstitial loops increased with He-appm/DPA ratio and this is attributed to the concomitant increase in bubble areal density, which reduces the vacancy flux for both the growth of vacancy-type loops and the annihilation of interstitial clusters.
NASA Astrophysics Data System (ADS)
Gu, Yejun; El-Awady, Jaafar A.
2018-03-01
We present a new framework to quantify the effect of hydrogen on dislocations using large scale three-dimensional (3D) discrete dislocation dynamics (DDD) simulations. In this model, the first order elastic interaction energy associated with the hydrogen-induced volume change is accounted for. The three-dimensional stress tensor induced by hydrogen concentration, which is in equilibrium with respect to the dislocation stress field, is derived using the Eshelby inclusion model, while the hydrogen bulk diffusion is treated as a continuum process. This newly developed framework is utilized to quantify the effect of different hydrogen concentrations on the dynamics of a glide dislocation in the absence of an applied stress field as well as on the spacing between dislocations in an array of parallel edge dislocations. A shielding effect is observed for materials having a large hydrogen diffusion coefficient, with the shield effect leading to the homogenization of the shrinkage process leading to the glide loop maintaining its circular shape, as well as resulting in a decrease in dislocation separation distances in the array of parallel edge dislocations. On the other hand, for materials having a small hydrogen diffusion coefficient, the high hydrogen concentrations around the edge characters of the dislocations act to pin them. Higher stresses are required to be able to unpin the dislocations from the hydrogen clouds surrounding them. Finally, this new framework can open the door for further large scale studies on the effect of hydrogen on the different aspects of dislocation-mediated plasticity in metals. With minor modifications of the current formulations, the framework can also be extended to account for general inclusion-induced stress field in discrete dislocation dynamics simulations.
Free energy change of a dislocation due to a Cottrell atmosphere
Sills, R. B.; Cai, W.
2018-03-07
The free energy reduction of a dislocation due to a Cottrell atmosphere of solutes is computed using a continuum model. In this work, we show that the free energy change is composed of near-core and far-field components. The far-field component can be computed analytically using the linearized theory of solid solutions. Near the core the linearized theory is inaccurate, and the near-core component must be computed numerically. The influence of interactions between solutes in neighbouring lattice sites is also examined using the continuum model. We show that this model is able to reproduce atomistic calculations of the nickel–hydrogen system, predictingmore » hydride formation on dislocations. The formation of these hydrides leads to dramatic reductions in the free energy. Lastly, the influence of the free energy change on a dislocation’s line tension is examined by computing the equilibrium shape of a dislocation shear loop and the activation stress for a Frank–Read source using discrete dislocation dynamics.« less
Free energy change of a dislocation due to a Cottrell atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sills, R. B.; Cai, W.
The free energy reduction of a dislocation due to a Cottrell atmosphere of solutes is computed using a continuum model. In this work, we show that the free energy change is composed of near-core and far-field components. The far-field component can be computed analytically using the linearized theory of solid solutions. Near the core the linearized theory is inaccurate, and the near-core component must be computed numerically. The influence of interactions between solutes in neighbouring lattice sites is also examined using the continuum model. We show that this model is able to reproduce atomistic calculations of the nickel–hydrogen system, predictingmore » hydride formation on dislocations. The formation of these hydrides leads to dramatic reductions in the free energy. Lastly, the influence of the free energy change on a dislocation’s line tension is examined by computing the equilibrium shape of a dislocation shear loop and the activation stress for a Frank–Read source using discrete dislocation dynamics.« less
Microstructural comparison of the kinematics of discrete and continuum dislocations models
NASA Astrophysics Data System (ADS)
Sandfeld, Stefan; Po, Giacomo
2015-12-01
The Continuum Dislocation Dynamics (CDD) theory and the Discrete Dislocation Dynamics (DDD) method are compared based on concise mathematical formulations of the coarse graining of discrete data. A numerical tool for converting from a discrete to a continuum representation of a given dislocation configuration is developed, which allows to directly compare both simulation approaches based on continuum quantities (e.g. scalar density, geometrically necessary densities, mean curvature). Investigating the evolution of selected dislocation configurations within analytically given velocity fields for both DDD and CDD reveals that CDD contains a surprising number of important microstructural details.
Silva, Chinthaka M.; Leonard, Keith J.; Van Abel, Eric; ...
2017-12-09
Here two types of Zircaloy-4 (alpha-annealed and beta-quenched) were investigated in their different forms. It was found that mechanical properties of Zircaloy-4 are affected significantly by welding and hydrogen-charging followed by neutron irradiation. Evaluation of microstructural properties of samples showed that these changes are mainly due to the formation of secondary phases such as hydrides—mostly along grain boundaries, dislocation channeling and their disruptions, and the increase in the type dislocation loops.
Modelling irradiation-induced softening in BCC iron by crystal plasticity approach
NASA Astrophysics Data System (ADS)
Xiao, Xiazi; Terentyev, Dmitry; Yu, Long; Song, Dingkun; Bakaev, A.; Duan, Huiling
2015-11-01
Crystal plasticity model (CPM) for BCC iron to account for radiation-induced strain softening is proposed. CPM is based on the plastically-driven and thermally-activated removal of dislocation loops. Atomistic simulations are applied to parameterize dislocation-defect interactions. Combining experimental microstructures, defect-hardening/absorption rules from atomistic simulations, and CPM fitted to properties of non-irradiated iron, the model achieves a good agreement with experimental data regarding radiation-induced strain softening and flow stress increase under neutron irradiation.
NASA Astrophysics Data System (ADS)
Silva, Chinthaka M.; Leonard, Keith J.; Van Abel, Eric; Geringer, J. Wilna; Bryan, Chris D.
2018-02-01
Two types of Zircaloy-4 (alpha-annealed and beta-quenched) were investigated in their different forms. It was found that mechanical properties of Zircaloy-4 are affected significantly by welding and hydrogen-charging followed by neutron irradiation. Evaluation of microstructural properties of samples showed that these changes are mainly due to the formation of secondary phases such as hydrides-mostly along grain boundaries, dislocation channeling and their disruptions, and the increase in the type dislocation loops.
NASA Astrophysics Data System (ADS)
Dong, Y.; Sencer, B. H.; Garner, F. A.; Marquis, E. A.
2015-12-01
AISI 304 stainless steel was irradiated at 416 °C and 450 °C at a 4.4 × 10-9 and 3.05 × 10-7 dpa/s to ∼0.4 and ∼28 dpa, respectively, in the reflector of the EBR-II fast reactor. Both unirradiated and irradiated conditions were examined using standard and scanning transmission electron microscopy, energy dispersive spectroscopy, and atom probe tomography on very small specimens produced by focused ion beam milling. These results are compared with previous electron microscopy examination of 3 mm disks from essentially the same material. By comparing a very low dose specimen with a much higher dose specimen, both derived from a single reactor assembly, it has been demonstrated that the coupled microstructural and microchemical evolution of dislocation loops and other sinks begins very early, with elemental segregation producing at these sinks what appears to be measurable precursors to fully formed precipitates found at higher doses. The nature of these sinks and their possible precursors are examined in detail.
Temperature impact on the micro structure of tungsten exposed to He irradiation in LHD
NASA Astrophysics Data System (ADS)
Bernard, Elodie; Sakamoto, Ryuichi; Tokitani, Masayuki; Masuzaki, Suguru; Hayashi, Hiromi; Yamada, Hiroshi; Yoshida, Naoaki
2017-02-01
A new temperature controlled material probe was designed for the exposure of tungsten samples to helium plasma in the LHD. Samples were exposed to estimated fluences of ∼1023 m-2 and temperatures ranging from 65 to 600 °C. Transmission Electron Microscopy analysis allowed the study of the impact of He irradiation under high temperatures on tungsten micro structure for the first time in real-plasma exposure conditions. Both dislocation loops and bubbles appeared from low to medium temperatures and saw an impressive increase of size (factor 4 to 6) most probably by coalescence as the temperature reaches 600 °C, with 500 °C appearing as a threshold for bubble growth. Annealing of the samples up to 800 C highlighted the stability of the dislocation damages formed by helium irradiation at high surface temperature, as bubbles and dislocation loops seem to conserve their characteristics. Additional studies on cross-sections showed that bubbles were formed much deeper (70-100 nm) than the heavily damaged surface layer (10-20 nm), raising concern about the impact on the material mechanical properties conservation and potential additional trapping of hydrogen isotopes.
Implementation and application of a gradient enhanced crystal plasticity model
NASA Astrophysics Data System (ADS)
Soyarslan, C.; Perdahcıoǧlu, E. S.; Aşık, E. E.; van den Boogaard, A. H.; Bargmann, S.
2017-10-01
A rate-independent crystal plasticity model is implemented in which description of the hardening of the material is given as a function of the total dislocation density. The evolution of statistically stored dislocations (SSDs) is described using a saturating type evolution law. The evolution of geometrically necessary dislocations (GNDs) on the other hand is described using the gradient of the plastic strain tensor in a non-local manner. The gradient of the incremental plastic strain tensor is computed explicitly during an implicit FE simulation after each converged step. Using the plastic strain tensor stored as state variables at each integration point and an efficient numerical algorithm to find the gradients, the GND density is obtained. This results in a weak coupling of the equilibrium solution and the gradient enhancement. The algorithm is applied to an academic test problem which considers growth of a cylindrical void in a single crystal matrix.
Dislocation and Structural Studies at Metal-Metallic Glass Interface at Low Temperature
NASA Astrophysics Data System (ADS)
Gupta, Pradeep; Yedla, Natraj
2017-12-01
In this paper, molecular dynamics (MD) simulation deformation studies on the Al (metal)-Cu50Zr50 (metallic glass) model interface is carried out based on cohesive zone model. The interface is subjected to mode-I loading at a strain rate of 109 s-1 and temperature of 100 K. The dislocations reactions and evolution of dislocation densities during the deformation have been investigated. Atomic interactions between Al, Cu and Zr atoms are modeled using EAM (embedded atom method) potential, and a timestep of 0.002 ps is used for performing the MD simulations. A circular crack and rectangular notch are introduced at the interface to investigate the effect on the deformation behavior and fracture. Further, scale size effect is also investigated. The structural changes and evolution of dislocation density are also examined. It is found that the dominant deformation mechanism is by Shockley partial dislocation nucleation. Amorphization is observed in the Al regions close to the interface and occurs at a lower strain in the presence of a crack. The total dislocation density is found to be maximum after the first yield in both the perfect and defect interface models and is highest in the case of perfect interface with a density of 6.31 × 1017 m-2. In the perfect and circular crack defect interface models, it is observed that the fraction of Shockley partial dislocation density decreases, whereas that of strain rod dislocations increases with increase in strain.
NASA Astrophysics Data System (ADS)
Barabash, R. I.; Ice, G. E.; Tamura, N.; Valek, B. C.; Bravman, J. C.; Spolenak, R.; Patel, J. R.
2003-05-01
Electromigration during accelerated testing can induce plastic deformation in apparently undamaged Al interconnect lines as recently revealed by white beam scanning x-ray microdiffraction. In the present article, we provide a first quantitative analysis of the dislocation structure generated in individual micron-sized Al grains during an in situ electromigration experiment. Laue reflections from individual interconnect grains show pronounced streaking during the early stages of electromigration. We demonstrate that the evolution of the dislocation structure during electromigration is highly inhomogeneous and results in the formation of unpaired randomly distributed dislocations as well as geometrically necessary dislocation boundaries. Approximately half of all unpaired dislocations are grouped within the walls. The misorientation created by each boundary and density of unpaired individual dislocations is determined. The origin of the observed plastic deformation is considered in view of the constraints for dislocation arrangements under the applied electric field during electromigration.
A discrete mechanics approach to dislocation dynamics in BCC crystals
NASA Astrophysics Data System (ADS)
Ramasubramaniam, A.; Ariza, M. P.; Ortiz, M.
2007-03-01
A discrete mechanics approach to modeling the dynamics of dislocations in BCC single crystals is presented. Ideas are borrowed from discrete differential calculus and algebraic topology and suitably adapted to crystal lattices. In particular, the extension of a crystal lattice to a CW complex allows for convenient manipulation of forms and fields defined over the crystal. Dislocations are treated within the theory as energy-minimizing structures that lead to locally lattice-invariant but globally incompatible eigendeformations. The discrete nature of the theory eliminates the need for regularization of the core singularity and inherently allows for dislocation reactions and complicated topological transitions. The quantization of slip to integer multiples of the Burgers' vector leads to a large integer optimization problem. A novel approach to solving this NP-hard problem based on considerations of metastability is proposed. A numerical example that applies the method to study the emanation of dislocation loops from a point source of dilatation in a large BCC crystal is presented. The structure and energetics of BCC screw dislocation cores, as obtained via the present formulation, are also considered and shown to be in good agreement with available atomistic studies. The method thus provides a realistic avenue for mesoscale simulations of dislocation based crystal plasticity with fully atomistic resolution.
NASA Astrophysics Data System (ADS)
Huang, Min-Sheng; Zhu, Ya-Xin; Li, Zhen-Huan
2014-04-01
The influence of dislocation dissociation on the evolution of Frank—Read (F-R) sources is studied using a three-dimensional discrete dislocation dynamics simulation (3D-DDD). The classical Orowan nucleation stress and recently proposed Benzerga nucleation time models for F-R sources are improved. This work shows that it is necessary to introduce the dislocation dissociation scheme into 3D-DDD simulation, especially for simulations on micro-plasticity of small sized materials with low stacking fault energy.
Interface Mediated Nucleation and Growth of Dislocations in fcc-bcc nanocomposite
NASA Astrophysics Data System (ADS)
Zhang, Ruifeng; Wang, Jian; Beyerlein, Irene J.; Germann, Timothy C.
2011-03-01
Heterophase interfaces play a crucial role in determining material strength for nanostructured materials because they can block, store, nucleate, and remove dislocations, the essential defects that enable plastic deformation. Much recent theoretical and experimental effort has been conducted on nanostructured Cu-Nb multilayer composites that exhibited extraordinarily high strength, ductility, and resistance to radiation and mechanical loading. In decreasing layer thicknesses to the order of a few tens of nanometers or less, the deformation behavior of such composites is mainly controlled by the Cu/Nb interface. In this work, we focus on the cooperative mechanisms of dislocation nucleation and growth from Cu/Nb interfaces, and their interaction with interface. Two types of experimentally observed Cu/Nb incoherent interfaces are comparatively studied. We found that the preferred dislocation nucleation sites are closely related to atomic interface structure, which in turn, depend on the orientation relationship. The activation stress and energies for an isolated Shockley dislocation loop of different sizes from specific interface sites depend strongly on dislocation size, atomic interface pattern, and loading conditions. Such findings provide important insight into the mechanical response of a wide range of fcc/bcc metallic nanocomposites via atomic interface design.
Unravelling the physics of size-dependent dislocation-mediated plasticity
NASA Astrophysics Data System (ADS)
El-Awady, Jaafar A.
2015-01-01
Size-affected dislocation-mediated plasticity is important in a wide range of materials and technologies. Here we develop a generalized size-dependent dislocation-based model that predicts strength as a function of crystal/grain size and the dislocation density. Three-dimensional (3D) discrete dislocation dynamics (DDD) simulations reveal the existence of a well-defined relationship between strength and dislocation microstructure at all length scales for both single crystals and polycrystalline materials. The results predict a transition from dislocation-source strengthening to forest-dominated strengthening at a size-dependent critical dislocation density. It is also shown that the Hall-Petch relationship can be physically interpreted by coupling with an appropriate kinetic equation of the evolution of the dislocation density in polycrystals. The model is shown to be in remarkable agreement with experiments. This work presents a micro-mechanistic framework to predict and interpret strength size-scale effects, and provides an avenue towards performing multiscale simulations without ad hoc assumptions.
NASA Astrophysics Data System (ADS)
Donnini, Riccardo; Fabrizi, Alberto; Bonollo, Franco; Zanardi, Franco; Angella, Giuliano
2017-09-01
The aim of this investigation was to determine a procedure based on tensile testing to assess the critical range of austempering times for having the best ausferrite produced through austempering. The austempered ductile iron (ADI) 1050 was quenched at different times during austempering and the quenched samples were tested in tension. The dislocation-density-related constitutive equation proposed by Estrin for materials having high density of geometrical obstacles to dislocation motion, was used to model the flow curves of the tensile tested samples. On the basis of strain hardening theory, the equation parameters were related to the microstructure of the quenched samples and were used to assess the ADI microstructure evolution during austempering. The microstructure evolution was also analysed through conventional optical microscopy, electron back-scattered diffraction technique and transmission electron microscopy. The microstructure observations resulted to be consistent with the assessment based on tensile testing, so the dislocation-density-related constitutive equation was found to be a powerful tool to characterise the evolution of the solid state transformations of austempering.
Scale transition using dislocation dynamics and the nudged elastic band method
Sobie, Cameron; Capolungo, Laurent; McDowell, David L.; ...
2017-08-01
Microstructural features such as precipitates or irradiation-induced defects impede dislocation motion and directly influence macroscopic mechanical properties such as yield point and ductility. In dislocation-defect interactions both atomic scale and long range elastic interactions are involved. Thermally assisted dislocation bypass of obstacles occurs when thermal fluctuations and driving stresses contribute sufficient energy to overcome the energy barrier. The Nudged Elastic Band (NEB) method is typically used in the context of atomistic simulations to quantify the activation barriers for a given reaction. In this work, the NEB method is generalized to coarse-grain continuum representations of evolving microstructure states beyond the discretemore » particle descriptions of first principles and atomistics. The method we employed enables the calculation of activation energies for a View the MathML source glide dislocation bypassing a [001] self-interstitial atom loop of size in the range of 4-10 nm with a spacing larger than 150nm in α-iron for a range of applied stresses and interaction geometries. This study is complemented by a comparison between atomistic and continuum based prediction of barriers.« less
Elimination of trench defects and V-pits from InGaN/GaN structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smalc-Koziorowska, Julita; Grzanka, Ewa; Czernecki, Robert
2015-03-09
The microstructural evolution of InGaN/GaN multiple quantum wells grown by metalorganic chemical vapor phase epitaxy was studied as a function of the growth temperature of the GaN quantum barriers (QBs). We observed the formation of basal stacking faults (BSFs) in GaN QBs grown at low temperature. The presence of BSFs terminated by stacking mismatch boundaries (SMBs) leads to the opening of the structure at the surface into a V-shaped trench loop. This trench may form above an SMB, thereby terminating the BSF, or above a junction between the SMB and a subsequent BSF. Fewer BSFs and thus fewer trench defectsmore » were observed in GaN QBs grown at temperatures higher than 830 °C. Further increase in the growth temperature of the GaN QBs led to the suppression of the threading dislocation opening into V-pits.« less
MD simulation of plastic deformation nucleation in stressed crystallites under irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korchuganov, A. V., E-mail: avkor@ispms.tsc.ru; Zolnikov, K. P., E-mail: kost@ispms.tsc.ru; Kryzhevich, D. S., E-mail: kryzhev@ispms.tsc.ru
2016-12-15
The investigation of plastic deformation nucleation in metals and alloys under irradiation and mechanical loading is one of the topical issues of materials science. Specific features of nucleation and evolution of the defect system in stressed and irradiated iron, vanadium, and copper crystallites were studied by molecular dynamics simulation. Mechanical loading was performed in such a way that the modeled crystallite volume remained unchanged. The energy of the primary knock-on atom initiating a cascade of atomic displacements in a stressed crystallite was varied from 0.05 to 50 keV. It was found that atomic displacement cascades might cause global structural transformationsmore » in a region far larger than the radiation-damaged area. These changes are similar to the ones occurring in the process of mechanical loading of samples. They are implemented by twinning (in iron and vanadium) or through the formation of partial dislocation loops (in copper).« less
RBS-channeling study of radiation damage in Ar{sup +} implanted CuInSe{sub 2} crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yakushev, Michael V., E-mail: michael.yakushev@strath.ac.uk; Ural Federal University, Ekaterinburg 620002; Institute of Solid State Chemistry of the Urals Branch of RAS, Ekaterinburg 620990
2016-09-15
Chalcopyrite solar cells are reported to have a high tolerance to irradiation by high energy electrons or ions, but the origin of this is not well understood. This work studies the evolution of damage in Ar{sup +}-bombarded CuInSe{sub 2} single crystal using Rutherford backscattering/channeling analysis. Ar{sup +} ions of 30 keV were implanted with doses in the range from 10{sup 12} to 3 × 10{sup 16} cm{sup −2} at room temperature. Implantation was found to create two layers of damage: (1) on the surface, caused by preferential sputtering of Se and Cu atoms; (2) at the layer of implanted Ar, possibly consisting of stackingmore » faults and dislocation loops. The damage in the second layer was estimated to be less than 2% of the theoretical prediction suggesting efficient healing of primary implantation defects.« less
Off-stoichiometric defect clustering in irradiated oxides
NASA Astrophysics Data System (ADS)
Khalil, Sarah; Allen, Todd; EL-Azab, Anter
2017-04-01
A cluster dynamics model describing the formation of vacancy and interstitial clusters in irradiated oxides has been developed. The model, which tracks the composition of the oxide matrix and the defect clusters, was applied to the early stage formation of voids and dislocation loops in UO2, and the effects of irradiation temperature and dose rate on the evolution of their densities and composition was investigated. The results show that Frenkel defects dominate the nucleation process in irradiated UO2. The results also show that oxygen vacancies drive vacancy clustering while the migration energy of uranium vacancies is a rate-limiting factor for the nucleation and growth of voids. In a stoichiometric UO2 under irradiation, off-stoichiometric vacancy clusters exist with a higher concentration of hyper-stoichiometric clusters. Similarly, off-stoichiometric interstitial clusters form with a higher concentration of hyper-stoichiometric clusters. The UO2 matrix was found to be hyper-stoichiometric due to the accumulation of uranium vacancies.
NASA Astrophysics Data System (ADS)
Seth, Prem Prakash; Das, A.; Bar, H. N.; Sivaprasad, S.; Basu, A.; Dutta, K.
2015-07-01
Tensile behavior of BH220 steel with different pre-strain conditions (2 and 8%) followed by bake hardening was studied at different strain rates (0.001 and 0.1/s). Dislocation densities of the deformed specimens were successfully estimated from x-ray diffraction profile analysis using the modified Williamson-Hall equation. The results indicate that other than 2% pre-strain the dislocation density increases with increase in pre-strain level as well as with strain rate. The decrease in the dislocation density in 2% pre-strain condition without any drop in strength value is attributed to the characteristic dislocation feature formed during pre-straining.
Modeling of dislocation dynamics in germanium Czochralski growth
NASA Astrophysics Data System (ADS)
Artemyev, V. V.; Smirnov, A. D.; Kalaev, V. V.; Mamedov, V. M.; Sidko, A. P.; Podkopaev, O. I.; Kravtsova, E. D.; Shimansky, A. F.
2017-06-01
Obtaining very high-purity germanium crystals with low dislocation density is a practically difficult problem, which requires knowledge and experience in growth processes. Dislocation density is one of the most important parameters defining the quality of germanium crystal. In this paper, we have performed experimental study of dislocation density during 4-in. germanium crystal growth using the Czochralski method and comprehensive unsteady modeling of the same crystal growth processes, taking into account global heat transfer, melt flow and melt/crystal interface shape evolution. Thermal stresses in the crystal and their relaxation with generation of dislocations within the Alexander-Haasen model have been calculated simultaneously with crystallization dynamics. Comparison to experimental data showed reasonable agreement for the temperature, interface shape and dislocation density in the crystal between calculation and experiment.
NASA Astrophysics Data System (ADS)
Liao, Yiliang; Ye, Chang; Gao, Huang; Kim, Bong-Joong; Suslov, Sergey; Stach, Eric A.; Cheng, Gary J.
2011-07-01
Warm laser shock peening (WLSP) is a new high strain rate surface strengthening process that has been demonstrated to significantly improve the fatigue performance of metallic components. This improvement is mainly due to the interaction of dislocations with highly dense nanoscale precipitates, which are generated by dynamic precipitation during the WLSP process. In this paper, the dislocation pinning effects induced by the nanoscale precipitates during WLSP are systematically studied. Aluminum alloy 6061 and AISI 4140 steel are selected as the materials with which to conduct WLSP experiments. Multiscale discrete dislocation dynamics (MDDD) simulation is conducted in order to investigate the interaction of dislocations and precipitates during the shock wave propagation. The evolution of dislocation structures during the shock wave propagation is studied. The dislocation structures after WLSP are characterized via transmission electron microscopy and are compared with the results of the MDDD simulation. The results show that nano-precipitates facilitate the generation of highly dense and uniformly distributed dislocation structures. The dislocation pinning effect is strongly affected by the density, size, and space distribution of nano-precipitates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schayes, Claire; Valeo Engine Electrical Systems, 2 Rue André Boulle, 94046 Créteil; Bouquerel, Jérémie, E-mail: jeremie.bouquerel@univ-lille1.fr
The current work aims at proposing an EBSD-based indicator for fatigue damage of a Fe-3Si steel. At the same time direct observation of dislocation structures is provided by electron channelling contrast imaging (ECCI). The investigation consisted in processing the EBSD data from patterns collected on specimen subjected to low cycle fatigue. It revealed two different regimes depending on the applied total strain variation which is explained by the identification of the dislocations structures and their evolution. At low strain variation, strain accommodation occurs by planar glide of dislocations uniformly distributed throughout the grains. No misorientation evolution is observed. At highermore » strain variation, the vein-channel structure is observed within the grain and the wall-channel structure in the vicinity of grain boundaries. The misorientation between these two dislocation structures is evaluated at about 0.7° which is detected by the EBSD analyses and explains the increase of the different misorientation based criteria. The EBSD study enables also the prediction of crack initiation mode. Finally, this study points out the limits of the EBSD technique as no misorientation evolution is detected at small strain variation. Indeed, the lattice distortion is too weak to be detected by conventional EBSD. - Highlights: • Microstructure investigation of the fatigue behaviour of an iron-silicon steel • Use of cECCI to investigate the fatigue dislocations structures • Characterisation of local plastic accommodation through EBSD misorientation criteria.« less
NASA Astrophysics Data System (ADS)
Bremnes, O.; Progin, O.; Gremaud, G.; Benoit, W.
1997-04-01
Ultrasonic experiments using a two-wave coupling technique were performed on 99.999% pure Al in order to study the interaction mechanisms occurring between dislocations and point defects. The coupling technique consists in measuring the attenuation of ultrasonic waves during low-frequency stress cycles (t). One obtains closed curves () called signatures whose shape and evolution are characteristic of the interaction mechanism controlling the low-frequency dislocation motion. The signatures observed were attributed to the interaction of the dislocations with extrinsic point defects. A new interpretation of the evolution of the signatures measured below 200 K with respect to temperature and stress frequency had to be established: they are linked to depinning of immobile point defects, whereas a thermally activated depinning mechanism does not fit the observations. The signatures measured between 200 and 370 K were interpreted as dragging and depinning of extrinsic point defects which are increasingly mobile with temperature.
NASA Astrophysics Data System (ADS)
Vattré, A.; Devincre, B.; Feyel, F.; Gatti, R.; Groh, S.; Jamond, O.; Roos, A.
2014-02-01
A unified model coupling 3D dislocation dynamics (DD) simulations with the finite element (FE) method is revisited. The so-called Discrete-Continuous Model (DCM) aims to predict plastic flow at the (sub-)micron length scale of materials with complex boundary conditions. The evolution of the dislocation microstructure and the short-range dislocation-dislocation interactions are calculated with a DD code. The long-range mechanical fields due to the dislocations are calculated by a FE code, taking into account the boundary conditions. The coupling procedure is based on eigenstrain theory, and the precise manner in which the plastic slip, i.e. the dislocation glide as calculated by the DD code, is transferred to the integration points of the FE mesh is described in full detail. Several test cases are presented, and the DCM is applied to plastic flow in a single-crystal Nickel-based superalloy.
Dislocation Ledge Sources: Dispelling the Myth of Frank-Read Source Importance
NASA Astrophysics Data System (ADS)
Murr, L. E.
2016-12-01
In the early 1960s, J.C.M. Li questioned the formation of dislocation pileups at grain boundaries, especially in high-stacking-fault free-energy fcc metals and alloys, and proposed grain boundary ledge sources for dislocations in contrast to Frank -Read sources. This article reviews these proposals and the evolution of compelling evidence for grain boundary or related interfacial ledge sources of dislocations in metals and alloys, including unambiguous observations using transmission electron microscopy. Such observations have allowed grain boundary ledge source emission profiles of dislocations to be quantified in 304 stainless steel (with a stacking-fault free energy of 23 mJ/m2) and nickel (with a stacking-fault free energy of 128 mJ/m2) as a function of engineering strain. The evidence supports the conclusion that FR dislocation sources are virtually absent in metal and alloy deformation with ledges at interfaces dominating as dislocation sources.
Microstructure and mechanical properties of FeCrAl alloys under heavy ion irradiations
NASA Astrophysics Data System (ADS)
Aydogan, E.; Weaver, J. S.; Maloy, S. A.; El-Atwani, O.; Wang, Y. Q.; Mara, N. A.
2018-05-01
FeCrAl ferritic alloys are excellent cladding candidates for accident tolerant fuel systems due to their high resistance to oxidation as a result of formation of a protective Al2O3 scale at high temperatures in steam. In this study, we report the irradiation response of the 10Cr and 13Cr FeCrAl cladding tubes under Fe2+ ion irradiation up to ∼16 dpa at 300 °C. Dislocation loop size, density and characteristics were determined using both two-beam bright field transmission electron microscopy and on-zone scanning transmission electron microscopy techniques. 10Cr (C06M2) tube has a lower dislocation density, larger grain size and a slightly weaker texture compared to the 13Cr (C36M3) tube before irradiation. After irradiation to 0.7 dpa and 16 dpa, the fraction of <100> type sessile dislocations decreases with increasing Cr amount in the alloys. It has been found that there is neither void formation nor α‧ precipitation as a result of ion irradiations in either alloy. Therefore, dislocation loops were determined to be the only irradiation induced defects contributing to the hardening. Nanoindentation testing before the irradiation revealed that the average nanohardness of the C36M3 tube is higher than that of the C06M2 tube. The average nanohardness of irradiated tube samples saturated at 1.6-2.0 GPa hardening for both tubes between ∼3.4 dpa and ∼16 dpa. The hardening calculated based on transmission electron microscopy was found to be consistent with nanohardness measurements.
Microstructure and mechanical properties of FeCrAl alloys under heavy ion irradiations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aydogan, E.; Weaver, J. S.; Maloy, S. A.
FeCrAl ferritic alloys are excellent cladding candidates for accident tolerant fuel systems due to their high resistance to oxidation as a result of formation of a protective Al 2O 3 scale at high temperatures in steam. In this study, we report the irradiation response of the 10Cr and 13Cr FeCrAl cladding tubes under Fe 2+ ion irradiation up to ~16 dpa at 300 °C. Dislocation loop size, density and characteristics were determined using both two beam bright field transmission electron microscopy and on-zone scanning transmission electron microscopy techniques. 10Cr (C06M2) tube has a lower dislocation density, larger grain size andmore » a slightly weaker texture compared to the 13Cr (C36M3) tube before irradiation. After irradiation to 0.7 dpa and 16 dpa, the fraction of <100> type sessile dislocations decreases with increasing Cr amount in the alloys. It has been found that there is neither void formation nor α' precipitation as a result of ion irradiations in either alloy. Therefore, dislocation loops were determined to be the only irradiation induced defects contributing to the hardening. Nanoindentation testing before the irradiation revealed that the average nanohardness of the C36M3 tube is higher than that of the C06M2 tube. The average nanohardness of irradiated tube samples saturated at 1.6-2.0 GPa hardening for both tubes between ~3.4 dpa and ~16 dpa. The hardening calculated based on transmission electron microscopy was found to be consistent with nanohardness measurements.« less
Microstructure and mechanical properties of FeCrAl alloys under heavy ion irradiations
Aydogan, E.; Weaver, J. S.; Maloy, S. A.; ...
2018-03-02
FeCrAl ferritic alloys are excellent cladding candidates for accident tolerant fuel systems due to their high resistance to oxidation as a result of formation of a protective Al 2O 3 scale at high temperatures in steam. In this study, we report the irradiation response of the 10Cr and 13Cr FeCrAl cladding tubes under Fe 2+ ion irradiation up to ~16 dpa at 300 °C. Dislocation loop size, density and characteristics were determined using both two beam bright field transmission electron microscopy and on-zone scanning transmission electron microscopy techniques. 10Cr (C06M2) tube has a lower dislocation density, larger grain size andmore » a slightly weaker texture compared to the 13Cr (C36M3) tube before irradiation. After irradiation to 0.7 dpa and 16 dpa, the fraction of <100> type sessile dislocations decreases with increasing Cr amount in the alloys. It has been found that there is neither void formation nor α' precipitation as a result of ion irradiations in either alloy. Therefore, dislocation loops were determined to be the only irradiation induced defects contributing to the hardening. Nanoindentation testing before the irradiation revealed that the average nanohardness of the C36M3 tube is higher than that of the C06M2 tube. The average nanohardness of irradiated tube samples saturated at 1.6-2.0 GPa hardening for both tubes between ~3.4 dpa and ~16 dpa. The hardening calculated based on transmission electron microscopy was found to be consistent with nanohardness measurements.« less
Dislocation–Twin Boundary Interactions Induced Nanocrystalline via SPD Processing in Bulk Metals
Zhang, Fucheng; Feng, Xiaoyong; Yang, Zhinan; Kang, Jie; Wang, Tiansheng
2015-01-01
This report investigated dislocation–twin boundary (TB) interactions that cause the TB to disappear and turn into a high-angle grain boundary (GB). The evolution of the microstructural characteristics of Hadfield steel was shown as a function of severe plastic deformation processing time. Sessile Frank partial dislocations and/or sessile unit dislocations were formed on the TB through possible dislocation reactions. These reactions induced atomic steps on the TB and led to the accumulation of gliding dislocations at the TB, which resulted in the transition from coherent TB to incoherent GB. The factors that affect these interactions were described, and a physical model was established to explain in detail the feasible dislocation reactions at the TB. PMID:25757550
Defect-induced change of temperature-dependent elastic constants in BCC iron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, N.; Setyawan, W.; Zhang, S. H.
2017-07-01
The effects of radiation-induced defects (randomly distributed vacancies, voids, and interstitial dislocation loops) on temperature-dependent elastic constants, C11, C12, and C44 in BCC iron, are studied with molecular dynamics method. The elastic constants are found to decrease with increasing temperatures for all cases containing different defects. The presence of vacancies, voids, or interstitial loops further decreases the elastic constants. For a given number of point defects, the randomly distributed vacancies show the strongest effect compared to voids or interstitial loops. All these results are expected to provide useful information to combine with experimental results for further understanding of radiation damage.
Evolution of stress and microstructure in silicon-doped aluminum gallium nitride thin films
NASA Astrophysics Data System (ADS)
Manning, Ian C.
The present work examines the effects of the Si incorporation on the stress evolution of AlxGa1-xN thin films deposited using metalorganic chemical vapor deposition. Specifically, tensile stress generation was evaluated using an in situ wafer curvature measurement technique, and correlated with the inclination of edge-type threading dislocations observed with transmission electron microscopy (TEM). This microstructural process had been theorized to relax compressive strain with increasing film thickness by expanding the missing planes of atoms associated with the dislocations. Prior work regarded dislocation bending as being the result of an effective climb mechanism. In a preliminary investigation, the accuracy of the model derived to quantify the strain induced by dislocation inclination was tested. The relevant parameters were measured to calculate a theoretical stress gradient, which was compared with the gradient as extract from experimental stress data. The predicted value was found to overestimate the measured value. It was also confirmed during the preliminary investigation that Si incorporation alone was sufficient to initiate dislocation bending. The overestimation of the stress gradient yielded by the prediction of the model was then addressed by exploring the effects of dislocation annihilation and fusion reactions occurring during film growth. Si-doped Al0.42Ga 0.58N layers exhibiting inclined threading dislocations were grown to different thicknesses. The dislocation density at the surface of each sample was then measured using plan-view TEM, and was found to be inversely proportional to the thickness. As the original model assumed a constant dislocation density, applying the correction for its reduction yielded a better prediction of the stress evolution. In an attempt to extend the predictive capabilities of the model beyond the single composition examined above, and to better understand the interaction of Si with the host AlxGa1-xN lattice, several sets of AlxGa1-xN films were grown, each with a unique composition. The Si doping level was varied within each set. It was determined that the dominant influence on tensile strain generation is in fact the initial dislocation density, which increased with increasing Al content as observed with plan-view TEM. This was expounded in a series of modeling examples. In addition, threading dislocation inclination was studied in nominally undoped and Si-doped Al xGa1-xN grown under conditions of tensile stress to isolate the influence of Si from that of compressive stress, which had also been found to induce dislocation bending. The effects due to Si and compressive stress were found not to combine as expected, based on a stochastic model of dislocation jog formation that had been developed in prior work to describe the inclination mechanism. Having confirmed the strong, direct relationship between the initial dislocation density and the degree of tensile stress generated in the Al xGa1-xN epilayers during growth, an effort was made to demonstrate the advantage that might be gained by using AlN substrates rather than SiC. In principle, AlN provides a growth surface that inhibits defect formation due to its close similarity to AlxGa1-xN lattice structure and chemistry, particularly at high Al mole fractions. Threading dislocation densities were reduced by an order of magnitude in comparison with samples grown on SiC, with a corresponding reduction in the stress gradient arising from dislocation inclination. (Abstract shortened by UMI.)
Loop Evolution Observed with AIA and Hi-C
NASA Technical Reports Server (NTRS)
Mulu-Moore, Fana; Winebarger, Amy R.; Cirtain, Jonathan W.; Kobayashi, Ken; Korreck, Kelly E.; Golub, Leon; Kuzin, Sergei; Walsh, Robert William; DeForest, Craig E.; De Pontieu, Bart;
2012-01-01
In the past decade, the evolution of EUV loops has been used to infer the loop substructure. With the recent launch of High Resolution Coronal Imager (Hi-C), this inference can be validated. In this presentation we discuss the first results of loop analysis comparing AIA and Hi-C data. In the past decade, the evolution of EUV loops has been used to infer the loop substructure. With the recent launch of High Resolution Coronal Imager (Hi-C), this inference can be validated. In this presentation we discuss the first results of loop analysis comparing AIA and Hi-C data.
NASA Astrophysics Data System (ADS)
Zhang, Weiping; Shen, Zhenyu; Tang, Rui; Jin, Suoxue; Song, Yaoxiang; Long, Yunxiang; Wei, Yaxia; Zhou, Xiong; Chen, Cheng; Guo, Liping
2018-07-01
An effective method to improve the irradiation resistance of austenitic stainless steels is adding oversized solutes into steels. In this work, the irradiation resistances of two type of modified 310S steels, in one of which Zr was added and in another Nb, Ta, and W were added, were investigated by proton irradiations at 563 K. Irradiation induced vacancy-type defects was characterized with positron annihilation spectroscopy (PAS), while dislocation loops and bubbles whose size are greater than 1 nm are characterized with transmission electron microscopy (TEM). It is found that the relative S parameter ΔS/S extracted from PAS is more effective than S parameter in evaluating the quantity of vacancy-type defects. It was revealed from ΔS/S that more vacancy-type defects produced in (Nb, Ta, W)-added steels than that in Zr-added steels, and this trend became more obvious with the dose increasing. S-W curves reveal that proton irradiation induced two kinds of vacancy-type defects, i.e. vacancy clusters and proton-vacancy clusters. TEM observation shows that the density of small bubbles induced by proton in (Nb, Ta, W)-added steels is much higher than that in Zr-added steels. Both 1/3 <1 1 1> and 1/2 <1 1 0> dislocation loops were observed with TEM in all of the specimens. The mean size and number density of dislocation loops in (Nb, Ta, W)-added steels are slightly larger than that in Zr-added steels, and increased with increasing irradiation dose. Both PAS and TEM observations shows that irradiation damage in Zr-added steels is less serious than that (Nb, Ta, W)-added steels, and the possible mechanisms are discussed through the enhancement of point defect recombination by oversized solute atoms.
NASA Astrophysics Data System (ADS)
Kuleshova, E. A.; Gurovich, B. A.; Bukina, Z. V.; Frolov, A. S.; Maltsev, D. A.; Krikun, E. V.; Zhurko, D. A.; Zhuchkov, G. M.
2017-07-01
This work summarizes and analyzes our recent research results on the effect of irradiation temperature within the range of (50-400)°C on microstructure and properties of 15Kh2NMFAA class 1 steel (VVER-1000 reactor pressure vessel (RPV) base metal). The paper considers the influence of accelerated irradiation with different temperature up to different fluences on the carbide and irradiation-induced phases, radiation defects, yield strength changes and critical brittleness temperature shift (ΔTK) as well as on changes of the fraction of brittle intergranular fracture and segregation processes in the steel. Low temperature irradiation resulted solely in formation of radiation defects - dislocation loops of high number density, the latter increased with increase in irradiation temperature while their size decreased. In this regard high embrittlement rate observed at low temperature irradiation is only due to the hardening mechanism of radiation embrittlement. Accelerated irradiation at VVER-1000 RPV operating temperature (∼300 °C) caused formation of radiation-induced precipitates and dislocation loops, as well as some increase in phosphorus grain boundary segregation. The observed ΔTK shift being within the regulatory curve for VVER-1000 RPV base metal is due to both hardening and non-hardening mechanisms of radiation embrittlement. Irradiation at elevated temperature caused more intense phosphorus grain boundary segregation, but no formation of radiation-induced precipitates or dislocation loops in contrast to irradiation at 300 °C. Carbide transformations observed only after irradiation at 400 °C caused increase in yield strength and, along with a contribution of the non-hardening mechanism, resulted in the lowest ΔTK shift in the studied range of irradiation temperature and fluence.
Recent Progress in Discrete Dislocation Dynamics and Its Applications to Micro Plasticity
NASA Astrophysics Data System (ADS)
Po, Giacomo; Mohamed, Mamdouh S.; Crosby, Tamer; Erel, Can; El-Azab, Anter; Ghoniem, Nasr
2014-10-01
We present a self-contained review of the discrete dislocation dynamics (DDD) method for the numerical investigation of plasticity in crystals, focusing on recent development and implementation progress. The review covers the theoretical foundations of DDD within the framework of incompatible elasticity, its numerical implementation via the nodal method, the extension of the method to finite domains and several implementation details. Applications of the method to current topics in micro-plasticity are presented, including the size effects in nano-indentation, the evolution of the dislocation microstructure in persistent slip bands, and the phenomenon of dislocation avalanches in micro-pillar compression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jianfeng; Xuan, Fu-Zhen, E-mail: fzxuan@ecust.edu.cn
The interrupted low cycle fatigue test of austenitic stainless steel was conducted and the dislocation structure and fatigue damage was evaluated subsequently by using both transmission electron microscope and nonlinear ultrasonic wave techniques. A “mountain shape” correlation between the nonlinear acoustic parameter and the fatigue life fraction was achieved. This was ascribed to the generation and evolution of planar dislocation structure and nonplanar dislocation structure such as veins, walls, and cells. The “mountain shape” correlation was interpreted successfully by the combined contribution of dislocation monopole and dipole with an internal-stress dependent term of acoustic nonlinearity.
NASA Astrophysics Data System (ADS)
Tanigawa, Hiroyasu; Katoh, Yutai; Kohyama, Akira
1995-08-01
Effects of applied stress on early stages of interstitial type Frank loop evolution were investigated by both numerical calculation and irradiation experiments. The final objective of this research is to propose a comprehensive model of complex stress effects on microstructural evolution under various conditions. In the experimental part of this work, the microstructural analysis revealed that the differences in resolved normal stress caused those in the nucleation rates of Frank loops on {111} crystallographic family planes, and that with increasing external applied stress the total nucleation rate of Frank loops was increased. A numerical calculation was carried out primarily to evaluate the validity of models of stress effects on nucleation processes of Frank loop evolution. The calculation stands on rate equuations which describe evolution of point defects, small points defect clusters and Frank loops. The rate equations of Frank loop evolution were formulated for {111} planes, considering effects of resolved normal stress to clustering processes of small point defects and growth processes of Frank loops, separately. The experimental results and the predictions from the numerical calculation qualitatively coincided well with each other.
NASA Astrophysics Data System (ADS)
Ramar, A.; Baluc, N.; Schäublin, R.
2007-08-01
Ferritic/martensitic (F/M) steels show good resistance to swelling and low damage accumulation upon irradiation relative to stainless steels. 0.3 wt% yttria particles were added to the F/M steel EUROFER 97 to produce oxide dispersion strengthened (ODS) steel, to increase the operating temperature as well as mechanical strength. ODS EUROFER 97 was irradiated in the PIREX facility with 590 MeV protons to 0.3, 1 and 2 dpa at 40 °C. Microstructure of the irradiated samples is analyzed in the transmission electron microscope using bright field, dark field and weak beam conditions. The presence of voids and dislocation loops is observed for the higher doses, where as at low dose (0.3 dpa) only small defects with sizes of 1-3 nm are observed as black dots. The relationship between the defect density to dispersoids is measured and the Burgers' vector of dislocation loops is analyzed.
Dislocation gliding and cross-hatch morphology formation in AIII-BV epitaxial heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovalskiy, V. A., E-mail: kovalva@iptm.ru; Vergeles, P. S.; Eremenko, V. G.
2014-12-08
An approach for understanding the origin of cross-hatch pattern (CHP) on the surface of lattice mismatched GaMnAs/InGaAs samples grown on GaAs (001) substrates is developed. It is argued that the motion of threading dislocations in the (111) slip planes during the relaxation of InGaAs buffer layer is more complicated process and its features are similar to the ones of dislocation half-loops gliding in plastically deformed crystals. The heterostructures were characterized by atomic force microscopy and electron beam induced current (EBIC). Detailed EBIC experiments revealed contrast features, which cannot be accounted for by the electrical activity of misfit dislocations at themore » buffer/substrate interface. We attribute these features to specific extended defects (EDs) generated by moving threading dislocations in the partially relaxed InGaAs layers. We believe that the core topology, surface reconstruction, and elastic strains from these EDs accommodated in slip planes play an important role in the CHP formation. The study of such electrically active EDs will allow further understanding of degradation and changes in characteristics of quantum devices based on strained heterostructures.« less
NASA Astrophysics Data System (ADS)
Bardhan, Abheek; Mohan, Nagaboopathy; Chandrasekar, Hareesh; Ghosh, Priyadarshini; Sridhara Rao, D. V.; Raghavan, Srinivasan
2018-04-01
The bending and interaction of threading dislocations are essential to reduce their density for applications involving III-nitrides. Bending of dislocation lines also relaxes the compressive growth stress that is essential to prevent cracking on cooling down due to tensile thermal expansion mismatch stress while growing on Si substrates. It is shown in this work that surface roughness plays a key role in dislocation bending. Dislocations only bend and relax compressive stresses when the lines intersect a smooth surface. These films then crack. In rough films, dislocation lines which terminate at the bottom of the valleys remain straight. Compressive stresses are not relaxed and the films are relatively crack-free. The reasons for this difference are discussed in this work along with the implications on simultaneously meeting the requirements of films being smooth, crack free and having low defect density for device applications.
A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals
Mohamed, Mamdouh S.; Larson, Bennett C.; Tischler, Jonathan Z.; ...
2015-05-18
The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoreticalmore » analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kr ner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.« less
Field Dislocation Mechanics for heterogeneous elastic materials: A numerical spectral approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Djaka, Komlan Senam; Villani, Aurelien; Taupin, Vincent
Spectral methods using Fast Fourier Transform (FFT) algorithms have recently seen a surge in interest in the mechanics of materials community. The present work addresses the critical question of determining accurate local mechanical fields using FFT methods without artificial fluctuations arising from materials and defects induced discontinuities. Precisely, this work introduces a numerical approach based on intrinsic discrete Fourier transforms for the simultaneous treatment of material discontinuities arising from the presence of dislocations and from elastic stiffness heterogeneities. To this end, the elasto-static equations of the field dislocation mechanics theory for periodic heterogeneous materials are numerically solved with FFT inmore » the case of dislocations in proximity of inclusions of varying stiffness. An optimal intrinsic discrete Fourier transform method is sought based on two distinct schemes. A centered finite difference scheme for differential rules are used for numerically solving the Poisson-type equation in the Fourier space, while centered finite differences on a rotated grid is chosen for the computation of the modified Fourier–Green’s operator associated with the Lippmann–Schwinger-type equation. By comparing different methods with analytical solutions for an edge dislocation in a composite material, it is found that the present spectral method is accurate, devoid of any numerical oscillation, and efficient even for an infinite phase elastic contrast like a hole embedded in a matrix containing a dislocation. The present FFT method is then used to simulate physical cases such as the elastic fields of dislocation dipoles located near the matrix/inclusion interface in a 2D composite material and the ones due to dislocation loop distributions surrounding cubic inclusions in 3D composite material. In these configurations, the spectral method allows investigating accurately the elastic interactions and image stresses due to dislocation fields in the presence of elastic inhomogeneities.« less
Field Dislocation Mechanics for heterogeneous elastic materials: A numerical spectral approach
Djaka, Komlan Senam; Villani, Aurelien; Taupin, Vincent; ...
2017-03-01
Spectral methods using Fast Fourier Transform (FFT) algorithms have recently seen a surge in interest in the mechanics of materials community. The present work addresses the critical question of determining accurate local mechanical fields using FFT methods without artificial fluctuations arising from materials and defects induced discontinuities. Precisely, this work introduces a numerical approach based on intrinsic discrete Fourier transforms for the simultaneous treatment of material discontinuities arising from the presence of dislocations and from elastic stiffness heterogeneities. To this end, the elasto-static equations of the field dislocation mechanics theory for periodic heterogeneous materials are numerically solved with FFT inmore » the case of dislocations in proximity of inclusions of varying stiffness. An optimal intrinsic discrete Fourier transform method is sought based on two distinct schemes. A centered finite difference scheme for differential rules are used for numerically solving the Poisson-type equation in the Fourier space, while centered finite differences on a rotated grid is chosen for the computation of the modified Fourier–Green’s operator associated with the Lippmann–Schwinger-type equation. By comparing different methods with analytical solutions for an edge dislocation in a composite material, it is found that the present spectral method is accurate, devoid of any numerical oscillation, and efficient even for an infinite phase elastic contrast like a hole embedded in a matrix containing a dislocation. The present FFT method is then used to simulate physical cases such as the elastic fields of dislocation dipoles located near the matrix/inclusion interface in a 2D composite material and the ones due to dislocation loop distributions surrounding cubic inclusions in 3D composite material. In these configurations, the spectral method allows investigating accurately the elastic interactions and image stresses due to dislocation fields in the presence of elastic inhomogeneities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carnevale, Santino D.; Deitz, Julia I.; Carlin, John A.
Electron channeling contrast imaging (ECCI) is used to characterize misfit dislocations in heteroepitaxial layers of GaP grown on Si(100) substrates. Electron channeling patterns serve as a guide to tilt and rotate sample orientation so that imaging can occur under specific diffraction conditions. This leads to the selective contrast of misfit dislocations depending on imaging conditions, confirmed by dynamical simulations, similar to using standard invisibility criteria in transmission electron microscopy (TEM). The onset and evolution of misfit dislocations in GaP films with varying thicknesses (30 to 250 nm) are studied. This application simultaneously reveals interesting information about misfit dislocations in GaP/Si layersmore » and demonstrates a specific measurement for which ECCI is preferable versus traditional plan-view TEM.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stubbins, James; Heuser, Brent; Hosemann, Peter
This final technical report summarizes the research performed during October 2014 and December 2017, with a focus on investigating the radiation-induced microstructural and mechanical property modifications in optimized advanced alloys for sodium-cooled fast reactor (SFR) structural applications. To accomplish these objectives, the radiation responses of several different advanced alloys, including austenitic steel Alloy 709 (A709) and 316H, and ferritic/ martensitic Fe–9Cr steels T91 and G92, were investigated using a combination of microstructure characterizations and nanoindentation measurements. Different types of irradiation, including ex situ bulk ion irradiation and in situ transmission electron microscopy (TEM) ion irradiation, were employed in this study.more » Radiation-induced dislocations, precipitates, and voids were characterized by TEM. Scanning transmission electron microscopy with energy dispersive X-ray spectroscopy (STEM-EDS) and/or atom probe tomography (APT) were used to study radiation-induced segregation and precipitation. Nanoindentation was used for hardness measurements to study irradiation hardening. Austenitic A709 and 316H was bulk-irradiated by 3.5 MeV Fe ++ ions to up to 150 peak dpa at 400, 500, and 600°. Compared to neutron-irradiated stainless steel (SS) 316, the Frank loop density of ion-irradiated A709 shows similar dose dependence at 400°, but very different temperature dependence. Due to the noticeable difference in the initial microstructure of A709 and 316H, no systematic comparison on the Frank loops in A709 vs 316H was made. It would be helpful that future ion irradiation study on 316 stainless steel could be conducted to directly compare the temperature dependence of Frank loop density in ion-irradiated 316 SS with that in neutron-irradiated 316 SS. In addition, future neutron irradiation on A709 at 400–600° at relative high dose (≥10 dpa) can be carried out to compare with ion-irradiated A709. The radiation-induced segregation (RIS) of Ni and Si was observed in both A709 and 316H in all irradiated conditions and was found at various sinks: line dislocations, dislocation loops, void surfaces, carbide-matrix interfaces, etc. Radiation also induced the formation of Ni,Si-rich precipitates. As suggested in a previous study on neutron-irradiated 316 stainless steel, one possible consequence of the significant RIS of Si is that the enrichment at defect sinks depletes the silicon in the matrix, which can lead to enhanced void nucleation rate. The enrichment of Ni and Si is accompanied by the depletion of Cr at defect sinks, which could also affect the corrosion resistance. Radiation-induced change in the orientation relationship of pre-existing MX precipitates was observed at 600°. It is believed that this change is associated with the network dislocations formed under irradiation. The underlying mechanism is still not well understood. This change could be a positive indication that the MX precipitates can survive high density network dislocations. It would be helpful if neutron irradiation at similar dose conditions could be carried out to verify that this effect is not unique for ion irradiation. Intragranular Cr-rich carbides with a core-shell structure, i.e. Cr-rich carbide core and Ni,Si-rich shell was found at 500° and 600° in the highest dose (150 peak dpa) specimens. Coarse voids (30 nm in diameter) were only commonly found at 500° in the 50 and 150 peak dpa specimens in regions less than 750 nm in depth. The highest swelling for A709 irradiated to 50 and 150 peak dpa at 500° is about 0.44% and 0.37%, respectively. Due to the choice of 100 degree temperature intervals, this study did not attempt to precisely identify peak void swelling conditions, merely the range of irradiation temperatures where this could be a concern. It is known high-dose ion irradiation can significantly suppress void nucleation. Future neutron irradiation in the 500–600° range (without considering the temperature shift) is needed to determine the onset of accelerated void swelling (possibly at lower dose).« less
NASA Astrophysics Data System (ADS)
Berkov, D. V.; Gorn, N. L.
2018-06-01
In this paper we present a simple and effective numerical method which allows a fast Fourier transformation-based evaluation of stress generated by dislocations with arbitrary directions and Burgers vectors if the (site-dependent) dislocation density is known. Our method allows the evaluation of the dislocation stress using a rectangular grid with shape-anisotropic discretization cells without employing higher multipole moments of the dislocation interaction coefficients. Using the proposed method, we first simulate the stress created by relatively simple non-homogeneous distributions of vertical edge and so-called ‘mixed’ dislocations in a disk-shaped sample, which is necessary to understand the dislocation behavior in more complicated systems. The main part of our research is devoted to the stress distribution in polycrystalline layers with the dislocation density rapidly varying with the distance to the layer bottom. Considering GaN as a typical example of such systems, we investigate dislocation-induced stress for edge and mixed dislocations, having random orientations of Burgers vectors among crystal grains. We show that the rapid decay of the dislocation density leads to many highly non-trivial features of the stress distributions in such layers and study in detail the dependence of these features on the average grain size. Finally we develop an analytical approach which allows us to predict the evolution of the stress variance with the grain size and compare analytical predictions with numerical results.
NASA Astrophysics Data System (ADS)
Sharma, Amit; Mohan, Sangeneni; Suwas, Satyam
2018-04-01
In this work, a detailed investigation has been performed on hetero-epitaxial growth and microstructural evolution in highly oriented Ni-Mn-Ga (1 0 0) films grown on MgO (1 0 0) substrate using high-resolution X-ray diffraction and orientation imaging microscopy. Mosaicity of the films has been analysed in terms of tilt angle, twist angle, lateral and vertical coherence length and threading dislocation densities by performing rocking curve measurements and reciprocal space mapping. Density of edge dislocations is found to be an order of magnitude higher than the density of screw dislocations, irrespective of film thickness. X-ray pole figure measurements have revealed an orientation relationship of ? || (1 0 0)MgO; ? || [0 0 1]MgO between the film and substrate. Microstructure predicted by X-ray diffraction is in agreement with that obtained from electron microscopy and atomic force microscopy. The evolution of microstructure in the film with increasing thickness has been explained vis-à-vis dislocation generation and growth mechanisms. Orientation imaging microscopy observations indicate evolutionary growth of film by overgrowth mechanism. Decrease in coercivity with film thickness has been explained as an interplay between stress field developed due to crystal defects and magnetic domain pinning due to surface roughness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiang; Chen, Youping; Xiong, Liming
2014-12-28
We present a molecular dynamics study of grain boundary (GB) resistance to dislocation-mediated slip transfer and phonon-mediated heat transfer in nanocrystalline silicon bicrystal. Three most stable 〈110〉 tilt GBs in silicon are investigated. Under mechanical loading, the nucleation and growth of hexagonal-shaped shuffle dislocation loops are reproduced. The resistances of different GBs to slip transfer are quantified through their constitutive responses. Results show that the Σ3 coherent twin boundary (CTB) in silicon exhibits significantly higher resistance to dislocation motion than the Σ9 GB in glide symmetry and the Σ19 GB in mirror symmetry. The distinct GB strengths are explained bymore » the atomistic details of the dislocation-GB interaction. Under thermal loading, based on a thermostat-induced heat pulse model, the resistances of the GBs to transient heat conduction in ballistic-diffusive regime are characterized. In contrast to the trend found in the dislocation-GB interaction in bicrystal models with different GBs, the resistances of the same three GBs to heat transfer are strikingly different. The strongest dislocation barrier Σ3 CTB is almost transparent to heat conduction, while the dislocation-permeable Σ9 and Σ19 GBs exhibit larger resistance to heat transfer. In addition, simulation results suggest that the GB thermal resistance not only depends on the GB energy but also on the detailed atomic structure along the GBs.« less
Pesenti, Sebastien; Blondel, Benjamin; Faure, Alice; Peltier, Emilie; Launay, Franck; Jouve, Jean-Luc
2016-09-16
Paediatric Chance fracture are rare lesions but often associated with abdominal injuries. We herein present the case of a seven years old patient who sustained an entrapment of small bowel and an ureteropelvic disruption associated with a Chance fracture and spine dislocation following a traffic accident. Initial X-rays and computed tomographic (CT) scan showed a Chance fracture with dislocation of L3 vertebra, with an incarceration of a small bowel loop in the spinal canal and a complete section of the left lumbar ureter. Paraplegia was noticed on the initial neurological examination. A posterior L2-L4 osteosynthesis was performed firstly. In a second time she underwent a sus umbilical laparotomy to release the incarcerated jejunum loop in the spinal canal. An end-to-end anastomosis was performed on a JJ probe to suture the left injured ureter. One month after the traumatism, she started to complain of severe headaches related to a leakage of cerebrospinalis fluid. Three months after the traumatism there was a clear regression of the leakage. One year after the trauma, an anterior intervertebral fusion was done. At final follow-up, no neurologic recovery was noticed. In case of Chance fracture, all physicians should think about abdominal injuries even if the patient is asymptomatic. Initial abdominal CT scan and magnetic resonance imaging provide in such case crucial info for management of the spine and the associated lesions.
Termentzidis, Konstantinos; Isaiev, Mykola; Salnikova, Anastasiia; Belabbas, Imad; Lacroix, David; Kioseoglou, Joseph
2018-02-14
We report the thermal transport properties of wurtzite GaN in the presence of dislocations using molecular dynamics simulations. A variety of isolated dislocations in a nanowire configuration are analyzed and found to considerably reduce the thermal conductivity while impacting its temperature dependence in a different manner. Isolated screw dislocations reduce the thermal conductivity by a factor of two, while the influence of edge dislocations is less pronounced. The relative reduction of thermal conductivity is correlated with the strain energy of each of the five studied types of dislocations and the nature of the bonds around the dislocation core. The temperature dependence of the thermal conductivity follows a physical law described by a T -1 variation in combination with an exponent factor that depends on the material's nature, type and the structural characteristics of the dislocation core. Furthermore, the impact of the dislocation density on the thermal conductivity of bulk GaN is examined. The variation and absolute values of the total thermal conductivity as a function of the dislocation density are similar for defected systems with both screw and edge dislocations. Nevertheless, we reveal that the thermal conductivity tensors along the parallel and perpendicular directions to the dislocation lines are different. The discrepancy of the anisotropy of the thermal conductivity grows with increasing density of dislocations and it is more pronounced for the systems with edge dislocations. Besides the fundamental insights of the presented results, these could also be used for the identification of the type of dislocations when one experimentally obtains the evolution of thermal conductivity with temperature since each type of dislocation has a different signature, or one could extract the density of dislocations with a simple measurement of thermal anisotropy.
Microstructural evolution in fast-neutron-irradiated austenitic stainless steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoller, R.E.
1987-12-01
The present work has focused on the specific problem of fast-neutron-induced radiation damage to austenitic stainless steels. These steels are used as structural materials in current fast fission reactors and are proposed for use in future fusion reactors. Two primary components of the radiation damage are atomic displacements (in units of displacements per atom, or dpa) and the generation of helium by nuclear transmutation reactions. The radiation environment can be characterized by the ratio of helium to displacement production, the so-called He/dpa ratio. Radiation damage is evidenced microscopically by a complex microstructural evolution and macroscopically by density changes and alteredmore » mechanical properties. The purpose of this work was to provide additional understanding about mechanisms that determine microstructural evolution in current fast reactor environments and to identify the sensitivity of this evolution to changes in the He/dpa ratio. This latter sensitivity is of interest because the He/dpa ratio in a fusion reactor first wall will be about 30 times that in fast reactor fuel cladding. The approach followed in the present work was to use a combination of theoretical and experimental analysis. The experimental component of the work primarily involved the examination by transmission electron microscopy of specimens of a model austenitic alloy that had been irradiated in the Oak Ridge Research Reactor. A major aspect of the theoretical work was the development of a comprehensive model of microstructural evolution. This included explicit models for the evolution of the major extended defects observed in neutron irradiated steels: cavities, Frank faulted loops and the dislocation network. 340 refs., 95 figs., 18 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Meimei; Wang, Leyun; Almer, Jonathan D.
Deformation processes in Grade 91 (Fe–9%Cr–1%Mo–V,Nb) and Grade 92 (Fe–9%Cr–0.5%Mo–2%W–V,Nb) ferritic–martensitic steels were investigated at temperatures between 20 and 650 °C using high-energy synchrotron X-ray diffraction with in situ thermal–mechanical loading. The change of the dislocation density with strain was quantified by X-ray diffraction line profile analysis complemented by transmission electron microscopy measurements. The relationship between dislocation density and strain during uniform deformation was described by a dislocation model, and two critical materials parameters, namely dislocation mean free path and dynamic recovery coefficient, were determined as a function of temperature. Effects of alloy chemistry, thermal–mechanical treatment and temperature on themore » tensile deformation process in Grade 91 and Grade 92 steels can be well understood by the dislocation evolution behavior.« less
Effects of neutron irradiation of Ti 3SiC 2 and Ti 3AlC 2 in the 121–1085 °C temperature range
Tallman, Darin J.; He, Lingfeng; Gan, Jian; ...
2016-11-19
Herein we report on the formation of defects in response to neutron irradiation of polycrystalline Ti 3SiC 2 and Ti 3AlC 2 samples exposed to doses of 0.14±0.01, 1.6±0.1, and 3.4±0.1 displacements per atom (dpa) at irradiation temperatures of 121±12, 735±6 and 1085±68 °C. After irradiation to 0.14 dpa at 121 °C and 735 °C, black spots are observed in both Ti 3SiC 2 and Ti 3AlC 2. After irradiation to 1.6 and 3.4 dpa at 735 °C, basal dislocation loops, with a Burgers vector of b = ½ [0001] are observed in Ti 3SiC 2, with loop diameters ofmore » 21±6 and 30±8 nm for 1.6 dpa and 3.4 dpa, respectively. In Ti3AlC2, larger dislocation loops, 75±34 nm in diameter are observed after 3.4 dpa at 735 °C, in addition to stacking faults. Impurity particles of TiC, as well as stacking fault TiC platelets in the MAX phases, are seen to form extensive dislocation loops under all conditions. Voids are observed at grain boundaries and within stacking faults after 3.4 dpa irradiation, with extensive void formation in the TiC regions at 1085 °C. Remarkably, denuded zones on the order of 1 µm are observed in Ti 3SiC 2 after irradiation to 3.4 dpa at 735 °C. Small grains, 3-5 µm in diameter, are damage free after irradiation at 1085 °C at this dose. The presence of the A-layer in the MAX phases is seen to provide enhanced irradiation tolerance. Based on these results, and up to 3.41 dpa, Ti 3SiC 2 remains a promising candidate for high temperature nuclear applications.« less
Effects of neutron irradiation of Ti 3SiC 2 and Ti 3AlC 2 in the 121–1085 °C temperature range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tallman, Darin J.; He, Lingfeng; Gan, Jian
Herein we report on the formation of defects in response to neutron irradiation of polycrystalline Ti 3SiC 2 and Ti 3AlC 2 samples exposed to doses of 0.14±0.01, 1.6±0.1, and 3.4±0.1 displacements per atom (dpa) at irradiation temperatures of 121±12, 735±6 and 1085±68 °C. After irradiation to 0.14 dpa at 121 °C and 735 °C, black spots are observed in both Ti 3SiC 2 and Ti 3AlC 2. After irradiation to 1.6 and 3.4 dpa at 735 °C, basal dislocation loops, with a Burgers vector of b = ½ [0001] are observed in Ti 3SiC 2, with loop diameters ofmore » 21±6 and 30±8 nm for 1.6 dpa and 3.4 dpa, respectively. In Ti3AlC2, larger dislocation loops, 75±34 nm in diameter are observed after 3.4 dpa at 735 °C, in addition to stacking faults. Impurity particles of TiC, as well as stacking fault TiC platelets in the MAX phases, are seen to form extensive dislocation loops under all conditions. Voids are observed at grain boundaries and within stacking faults after 3.4 dpa irradiation, with extensive void formation in the TiC regions at 1085 °C. Remarkably, denuded zones on the order of 1 µm are observed in Ti 3SiC 2 after irradiation to 3.4 dpa at 735 °C. Small grains, 3-5 µm in diameter, are damage free after irradiation at 1085 °C at this dose. The presence of the A-layer in the MAX phases is seen to provide enhanced irradiation tolerance. Based on these results, and up to 3.41 dpa, Ti 3SiC 2 remains a promising candidate for high temperature nuclear applications.« less
NASA Astrophysics Data System (ADS)
Wan, Hao; Si, Naichao; Wang, Quan; Zhao, Zhenjiang
2018-02-01
Morphology variation, composition alteration and microstructure changes in 1060 aluminum irradiated with 50 keV helium ions were characterized by field emission scanning electron microscopy (FESEM) equipped with x-ray elemental scanning, 3D measuring laser microscope and transmission electron microscope (TEM). The results show that, helium ions irradiation induced surface damage and Si-rich aggregates in the surfaces of irradiated samples. Increasing the dose of irradiation, more damages and Si-rich aggregates would be produced. Besides, defects such as dislocations, dislocation loops and dislocation walls were the primary defects in the ion implanted layer. The forming of surface damages were related with preferentially sputtering of Al component. While irradiation-enhanced diffusion and irradiation-induced segregation resulted in the aggregation of impurity atoms. And the aggregation ability of impurity atoms were discussed based on the atomic radius, displacement energy, lattice binding energy and surface binding energy.
Crystal Plasticity Model of Reactor Pressure Vessel Embrittlement in GRIZZLY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Pritam; Biner, Suleyman Bulent; Zhang, Yongfeng
2015-07-01
The integrity of reactor pressure vessels (RPVs) is of utmost importance to ensure safe operation of nuclear reactors under extended lifetime. Microstructure-scale models at various length and time scales, coupled concurrently or through homogenization methods, can play a crucial role in understanding and quantifying irradiation-induced defect production, growth and their influence on mechanical behavior of RPV steels. A multi-scale approach, involving atomistic, meso- and engineering-scale models, is currently being pursued within the GRIZZLY project to understand and quantify irradiation-induced embrittlement of RPV steels. Within this framework, a dislocation-density based crystal plasticity model has been developed in GRIZZLY that captures themore » effect of irradiation-induced defects on the flow stress behavior and is presented in this report. The present formulation accounts for the interaction between self-interstitial loops and matrix dislocations. The model predictions have been validated with experiments and dislocation dynamics simulation.« less
Computational study of dislocation based mechanisms in FCC materials
NASA Astrophysics Data System (ADS)
Yellakara, Ranga Nikhil
Understanding the relationships between microstructures and properties of materials is a key to developing new materials with more suitable qualities or employing the appropriate materials in special uses. In the present world of material research, the main focus is on microstructural control to cost-effectively enhance properties and meet performance specifications. This present work is directed towards improving the fundamental understanding of the microscale deformation mechanisms and mechanical behavior of metallic alloys, particularly focusing on face centered cubic (FCC) structured metals through a unique computational methodology called three-dimensional dislocation dynamics (3D-DD). In these simulations, the equations of motion for dislocations are mathematically solved to determine the evolution and interaction of dislocations. Microstructure details and stress-strain curves are a direct observation in the simulation and can be used to validate experimental results. The effect of initial dislocation microstructure on the yield strength has been studied. It has been shown that dislocation density based crystal plasticity formulations only work when dislocation densities/numbers are sufficiently large so that a statistically accurate description of the microstructure can be obtainable. The evolution of the flow stress for grain sizes ranging from 0.5 to 10 mum under uniaxial tension was simulated using an improvised model by integrating dislocation pile-up mechanism at grain boundaries has been performed. This study showed that for a same initial dislocation density, the Hall--Petch relationship holds well at small grain sizes (0.5--2 mum), beyond which the yield strength remains constant as the grain size increases. Various dislocation-particle interaction mechanisms have been introduced and investigations were made on their effect on the uniaxial tensile properties. These studies suggested that increase in particle volume fraction and decrease in particle size has contributed to the strength of these alloys. This work has been successful of capturing complex dislocation mechanisms that involves interactions with particles during the deformation of particle hardened FCC alloys. Finally, the DD model has been extended into studying the cyclic behavior of FCC metallic alloys. This study showed that the strength as well as the cyclic hardening increases due to grain refinement and increase in particle volume fraction. It also showed that the cyclic deformation of ultra-fine grained (UFG) material have undergone cyclic softening at all plastic strain amplitudes. The results provided very useful quantitative information for developing future fatigue models.
High-speed collision of copper nanoparticle with aluminum surface: Molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Pogorelko, Victor V.; Mayer, Alexander E.; Krasnikov, Vasiliy S.
2016-12-01
We investigate the effect of the high-speed collision of copper nanoparticles with aluminum surface by means of molecular dynamic simulations. Studied diameter of nanoparticles is varied within the range 7.2-22 nm and the velocity of impact is equal to 500 or 1000 m/s. Dislocation analysis shows that a large quantity of dislocations is formed within the impact area. Overall length of dislocations is determined, first of all, by the impact velocity and by the size of incident copper nanoparticle, in other words, by the kinetic energy of the nanoparticle. Dislocations occupy the total volume of the impacted aluminum single crystal layer (40.5 nm in thickness) in the form of intertwined structure in the case of large kinetic energy of the incident nanoparticle. Decrease in the initial kinetic energy or increase in the layer thickness lead to restriction of the penetration depth of the dislocation net; formation of separate dislocation loops is observed in this case. Increase in the initial system temperature slightly raises the dislocation density inside the bombarded layer and considerably decreases the dislocation density inside the nanoparticle. The temperature increase also leads to a deeper penetration of the copper atoms inside the aluminum. Additional molecular dynamic simulations show that the deposited particles demonstrate a very good adhesion even in the case of the considered relatively large nanoparticles. Medium energy of the nanoparticles corresponding to velocity of about 500 m/s and elevated temperature of the system about 700-900 K are optimal parameters for production of high-quality layers of copper on the aluminum surface. These conditions provide both a good adhesion and a less degree of the plastic deformation. At the same time, higher impact velocities can be used for combined treatment consisting of both the plastic deformation and the coating.
Dislocation dynamics and crystal plasticity in the phase-field crystal model
NASA Astrophysics Data System (ADS)
Skaugen, Audun; Angheluta, Luiza; Viñals, Jorge
2018-02-01
A phase-field model of a crystalline material is introduced to develop the necessary theoretical framework to study plastic flow due to dislocation motion. We first obtain the elastic stress from the phase-field crystal free energy under weak distortion and show that it obeys the stress-strain relation of linear elasticity. We focus next on dislocations in a two-dimensional hexagonal lattice. They are composite topological defects in the weakly nonlinear amplitude equation expansion of the phase field, with topological charges given by the standard Burgers vector. This allows us to introduce a formal relation between the dislocation velocity and the evolution of the slowly varying amplitudes of the phase field. Standard dissipative dynamics of the phase-field crystal model is shown to determine the velocity of the dislocations. When the amplitude expansion is valid and under additional simplifications, we find that the dislocation velocity is determined by the Peach-Koehler force. As an application, we compute the defect velocity for a dislocation dipole in two setups, pure glide and pure climb, and compare it with the analytical predictions.
How to identify dislocations in molecular dynamics simulations?
NASA Astrophysics Data System (ADS)
Li, Duo; Wang, FengChao; Yang, ZhenYu; Zhao, YaPu
2014-12-01
Dislocations are of great importance in revealing the underlying mechanisms of deformed solid crystals. With the development of computational facilities and technologies, the observations of dislocations at atomic level through numerical simulations are permitted. Molecular dynamics (MD) simulation suggests itself as a powerful tool for understanding and visualizing the creation of dislocations as well as the evolution of crystal defects. However, the numerical results from the large-scale MD simulations are not very illuminating by themselves and there exist various techniques for analyzing dislocations and the deformed crystal structures. Thus, it is a big challenge for the beginners in this community to choose a proper method to start their investigations. In this review, we summarized and discussed up to twelve existing structure characterization methods in MD simulations of deformed crystal solids. A comprehensive comparison was made between the advantages and disadvantages of these typical techniques. We also examined some of the recent advances in the dynamics of dislocations related to the hydraulic fracturing. It was found that the dislocation emission has a significant effect on the propagation and bifurcation of the crack tip in the hydraulic fracturing.
NASA Astrophysics Data System (ADS)
Gao, Yuan; Zhuang, Zhuo; You, XiaoChuan
2011-04-01
We develop a new hierarchical dislocation-grain boundary (GB) interaction model to predict the mechanical behavior of polycrystalline metals at micro and submicro scales by coupling 3D Discrete Dislocation Dynamics (DDD) simulation with the Molecular Dynamics (MD) simulation. At the microscales, the DDD simulations are responsible for capturing the evolution of dislocation structures; at the nanoscales, the MD simulations are responsible for obtaining the GB energy and ISF energy which are then transferred hierarchically to the DDD level. In the present model, four kinds of dislocation-GB interactions, i.e. transmission, absorption, re-emission and reflection, are all considered. By this methodology, the compression of a Cu micro-sized bi-crystal pillar is studied. We investigate the characteristic mechanical behavior of the bi-crystal compared with that of the single-crystal. Moreover, the comparison between the present penetrable model of GB and the conventional impenetrable model also shows the accuracy and efficiency of the present model.
New interatomic potentials of W, Re and W-Re alloy for radiation defects
NASA Astrophysics Data System (ADS)
Chen, Yangchun; Li, Yu-Hao; Gao, Ning; Zhou, Hong-Bo; Hu, Wangyu; Lu, Guang-Hong; Gao, Fei; Deng, Huiqiu
2018-04-01
Tungsten (W) and W-based alloys have been considered as promising candidates for plasma-facing materials (PFMs) in future fusion reactors. The formation of rhenium (Re)-rich clusters and intermetallic phases due to high energy neutron irradiation and transmutations significantly induces the hardening and embrittlement of W. In order to better understand these phenomena, in the present work, new interatomic potentials of W-W, Re-Re and W-Re, suitable for description of radiation defects in such alloys, have been developed. The fitted potentials not only reproduce the results of the formation energy, binding energy and migration energy of various radiation defects and the physical properties from the extended database obtained from DFT calculations, but also predict well the relative stability of different interstitial dislocation loops in W, as reported in experiments. These potentials are applicable for describing the evolution of defects in W and W-Re alloys, thus providing a possibility for the detailed understanding of the precipitation mechanism of Re in W under irradiation.
NASA Astrophysics Data System (ADS)
Luscher, D. J.; Addessio, F. L.; Cawkwell, M. J.; Ramos, K. J.
2017-01-01
We have developed a model for the finite deformation thermomechanical response of α-cyclotrimethylene trinitramine (RDX). Our model accounts for nonlinear thermoelastic lattice deformation through a free energy-based equation of state developed by Cawkwell et al. (2016) in combination with temperature and pressure dependent elastic constants, as well as dislocation-mediated plastic slip on a set of slip systems motivated by experimental observation. The kinetics of crystal plasticity are modeled using the Orowan equation relating slip rate to dislocation density and the dislocation velocity developed by Austin and McDowell (2011), which naturally accounts for transition from thermally activated to dislocation drag limited regimes. Evolution of dislocation density is specified in terms of local ordinary differential equations reflecting dislocation-dislocation interactions. This paper presents details of the theory and parameterization of the model, followed by discussion of simulations of flyer plate impact experiments. Impact conditions explored within this combined simulation and experimental effort span shock pressures ranging from 1 to 3 GPa for four crystallographic orientations and multiple specimen thicknesses. Simulation results generated using this model are shown to be in strong agreement with velocimetry measurements from the corresponding plate impact experiments. Finally, simulation results are used to motivate conclusions about the nature of dislocation-mediated plasticity in RDX.
2015-02-04
dislocation dynamics models ( DDD ), continuum representations). Coupling of these models is difficult. Coupling of atomistics and DDD models has been...explored to some extent, but the coupling between DDD and continuum models of the evolution of large populations of dislocations is essentially unexplored
Treatment and evolution of grade III acromioclavicular dislocations in soccer players.
Pereira-Graterol, Ernesto; Álvarez-Díaz, Pedro; Seijas, Roberto; Ares, Oscar; Cuscó, Xavier; Cugat, Ramón
2013-07-01
To evaluate postoperative functional results in soccer players diagnosed with acute grade III acromioclavicular dislocation, stabilized with clavicular hook plate. Between 2006 and 2010, 11 soccer players were diagnosed with acute acromioclavicular dislocation. Mean age was 22.9 years. The clavicular hook plate was used for stabilization. The follow-up was 4 years (2-6 years). Constant score showed 82 % excellent results and 18 % good functional results. Average pain measured with VAS was 1.8 (±0.59) mm out of 10. We did not report any complication within the process. Use of the clavicular hook plate is considered adequate for the treatment of acute acromioclavicular dislocation in soccer players, allowing a quick return to sports. Retrospective case series, Level IV.
Patra, Anirban; McDowell, David L.
2016-03-25
We use a continuum crystal plasticity framework to study the effect of microstructure and mesoscopic factors on dislocation channeling and flow localization in an irradiated model bcc alloy. For simulated dislocation channeling characteristics we correlate the dislocation and defect densities in the substructure, local Schmid factor, and stress triaxiality, in terms of their temporal and spatial evolution. A metric is introduced to assess the propensity for localization and is correlated to the grain-level Schmid factor. We also found that localization generally takes place in grains with a local Schmid factor in the range 0.42 or higher. Surface slip step heightsmore » are computed at free surfaces and compared to relevant experiments.« less
Jones, Reese E.; Zimmerman, Jonathan A.; Po, Giacomo; ...
2016-02-01
Accurate simulation of the plastic deformation of ductile metals is important to the design of structures and components to performance and failure criteria. Many techniques exist that address the length scales relevant to deformation processes, including dislocation dynamics (DD), which models the interaction and evolution of discrete dislocation line segments, and crystal plasticity (CP), which incorporates the crystalline nature and restricted motion of dislocations into a higher scale continuous field framework. While these two methods are conceptually related, there have been only nominal efforts focused at the global material response that use DD-generated information to enhance the fidelity of CPmore » models. To ascertain to what degree the predictions of CP are consistent with those of DD, we compare their global and microstructural response in a number of deformation modes. After using nominally homogeneous compression and shear deformation dislocation dynamics simulations to calibrate crystal plasticity ow rule parameters, we compare not only the system-level stress-strain response of prismatic wires in torsion but also the resulting geometrically necessary dislocation density fields. To establish a connection between explicit description of dislocations and the continuum assumed with crystal plasticity simulations we ascertain the minimum length-scale at which meaningful dislocation density fields appear. Furthermore, our results show that, for the case of torsion, that the two material models can produce comparable spatial dislocation density distributions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Chi; Chen, Wei-Ying; Zhang, Xuan
Microstructural changes resulted from neutron irradiation and post-irradiation annealing in a high-temperature ultra-fine precipitate strengthened (HT-UPS) stainless steel were characterized using transmission electron microscopy (TEM) and atom probe tomography (APT). Three HT-UPS samples were neutron-irradiated to 3 dpa at 500 °C, and after irradiation, two of them were annealed for 1 h at 600 °C and 700 °C, respectively. Frank dislocation loops were the dominant defect structure in both the as-irradiated and 600 °C post-irradiation-annealed (PIAed) samples, and the loop sizes and densities were similar in these two samples. Unfaulted dislocation loops were observed in the 700 °C PIAed sample, and the loop density was greatly reducedmore » in comparison with that in the as-irradiated sample. Nano-sized MX precipitates were observed under TEM in the 700 °C PIAed sample, but not in the 600 °C PIAed or the as-irradiated samples. The titanium-rich clusters were identified in all three samples using APT. The post-irradiation annealing (PIA) caused the growth of the Ti-rich clusters with a stronger effect at 700 °C than at 600 °C. The irradiation caused elemental segregations at the grain boundary and the grain interior, and the grain boundary segregation behavior is consistent with observations in other irradiated austenitic steels. APT results showed that PIA reduced the magnitude of irradiation induced segregations.« less
NASA Astrophysics Data System (ADS)
Li, Y.; Robertson, C.
2018-06-01
The influence of irradiation defect dispersions on plastic strain spreading is investigated by means of three-dimensional dislocation dynamics (DD) simulations, accounting for thermally activated slip and cross-slip mechanisms in Fe-2.5%Cr grains. The defect-induced evolutions of the effective screw dislocation mobility are evaluated by means of statistical comparisons, for various defect number density and defect size cases. Each comparison is systematically associated with a quantitative Defect-Induced Apparent Straining Temperature shift (or «ΔDIAT»), calculated without any adjustable parameters. In the investigated cases, the ΔDIAT level associated with a given defect dispersion closely replicates the measured ductile to brittle transition temperature shift (ΔDBTT) due to the same, actual defect dispersion. The results are further analyzed in terms of dislocation-based plasticity mechanisms and their possible relations with the dose-dependent changes of the ductile to brittle transition temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesterova, E.V.; Bouvier, S.; Bacroix, B.
Transmission electron microscopy (TEM) microstructures of a high-strength dual-phase steel DP800 have been examined after moderate plastic deformations in simple shear and uniaxial tension. Special attention has been paid to the effect of the intergranular hard phase (martensite) on the microstructure evolution in the near-grain boundary regions. Quantitative parameters of dislocation patterning have been determined and compared with the similar characteristics of previously examined single-phase steels. The dislocation patterning in the interiors of the ferrite grains in DP800 steel is found to be similar to that already observed in the single-phase IF (Interstitial Free) steel whereas the martensite-affected zones presentmore » a delay in patterning and display very high gradients of continuous (gradual) disorientations associated with local internal stresses. The above stresses are shown to control the work-hardening of dual-phase materials at moderate strains for monotonic loading and are assumed to influence their microstructure evolution and mechanical behavior under strain-path changes. - Highlights: • The microstructure evolution has been studied by TEM in a DP800 steel. • It is influenced by both martensite and dislocations in the initial state. • The DP800 steel presents a high work-hardening rate due to internal stresses.« less
Olsen, Raina J.; Jin, Ke; Lu, Chenyang; ...
2015-11-23
The nature of defect clusters in Ni and Nimore » $$_{50}$$Co$$_{50}$$ (NiCo) irradiated at room temperature with 2–16 MeV Ni ions is studied using asymptotic diffuse X-ray scattering and transmission electron microscopy (TEM). Analysis of the scattering data provides separate size distributions for vacancy and interstitial type defect clusters, showing that both types of defect clusters have a smaller size and higher density in NiCo than in Ni. Diffuse scattering results show good quantitative agreement with TEM results for cluster sizes greater than 4 nm diameter, but find that the majority of vacancy clusters are under 2 nm in NiCo, which, if not detected, would lead to the conclusion that defect density was actually lower in the alloy. Interstitial dislocation loops and stacking fault tetrahedra are identified by TEM. Lastly comparison of diffuse scattering lineshapes to those calculated for dislocation loops and SFTs indicates that most of the vacancy clusters are SFTs.« less
NASA Astrophysics Data System (ADS)
Yazdani, Armin; Chen, Renyu; Dunham, Scott T.
2017-03-01
This work models competitive gettering of metals (Cu, Ni, Fe, Mo, and W) by boron, phosphorus, and dislocation loops, and connects those results directly to device performance. Density functional theory calculations were first performed to determine the binding energies of metals to the gettering sites, and based on that, continuum models were developed to model the redistribution and trapping of the metals. Our models found that Fe is most strongly trapped by the dislocation loops while Cu and Ni are most strongly trapped by the P4V clusters formed in high phosphorus concentrations. In addition, it is found that none of the mentioned gettering sites are effective in gettering Mo and W. The calculated metal redistribution along with the associated capture cross sections and trap energy levels are passed to device simulation via the recombination models to calculate carrier lifetime and the resulting device performance. Thereby, a comprehensive and predictive TCAD framework is developed to optimize the processing conditions to maximize performance of lifetime sensitive devices.
Effect of Ni +-ION bombardment on nickel and binary nickel alloys
NASA Astrophysics Data System (ADS)
Roarty, K. B.; Sprague, J. A.; Johnson, R. A.; Smidt, F. A.
1981-03-01
Pure nickel and four binary nickel alloys have been subjected to high energy Ni ion bombardment at 675, 625 and 525°C. After irradiation, each specimen was studied by transmission electron microscopy. The pure nickel control was found to swell appreciably (1 to 5%) and the Ni-Al and the Ni-Ti samples were found to swell at all temperatures, but to a lesser degree (0.01 to 0.35%). The Ni-Mo contained a significant density of voids only at 525° C, while swelling was suppressed at all temperatures in the Ni-Si alloy. The dislocation structure progressed from loops to tangles as temperature increased in all materials except the Ni-Ti, in which there was an absence of loops at all temperatures. Dislocation densities decreased as temperature increased in all samples. These results do not correlate well with the relative behavior of the same alloys observed after neutron irradiation at 455°C. The differences between these two sets of data appear to be caused by different mechanisms controlling void nucleation in ion and neutron irradiation of these alloys.
Dendrochronology of strain-relaxed islands.
Merdzhanova, T; Kiravittaya, S; Rastelli, A; Stoffel, M; Denker, U; Schmidt, O G
2006-06-09
We report on the observation and study of tree-ring structures below dislocated SiGe islands (superdomes) grown on Si(001) substrates. Analogous to the study of tree rings (dendrochronology), these footprints enable us to gain unambiguous information on the growth and evolution of superdomes and their neighboring islands. The temperature dependence of the critical volume for dislocation introduction is measured and related to the composition of the islands. We show clearly that island coalescence is the dominant pathway towards dislocation nucleation at low temperatures, while at higher temperatures anomalous coarsening is effective and leads to the formation of a depletion region around superdomes.
Inelastic deformation and phenomenological modeling of aluminum including transient effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, C.W.
A review was made of several phenomenological theories which have recently been proposed to describe the inelastic deformation of crystalline solids. Hart's deformation theory has many advantages, but there are disagreements with experimental deformation at stress levels below yield. A new inelastic deformation theory was proposed, introducing the concept of microplasticity. The new model consists of five deformation elements: a friction element representing a deformation element controlled by dislocation glide, a nonrecoverable plastic element representing the dislocation leakage rate over the strong dislocation barriers, a microplastic element representing the dislocation leakage rate over the weak barriers, a short range anelasticmore » spring element representing the recoverable anelastic strain stored by piled-up dislocations against the weak barriers, and a long range anelastic spring element representing the recoverable strain stored by piled-up dislocations against the strong barriers. Load relaxation and tensile testing in the plastic range were used to determine the material parameters for the plastic friction elements. The short range and long range anelastic moduli and the material parameters for the kinetics of microplasticity were determined by the measurement of anelastic loops and by performing load relaxation tests in the microplastic region. Experimental results were compared with a computer simulation of the transient deformation behavior of commercial purity aluminum. An attempt was made to correlate the material parameters and the microstructure from TEM. Stability of material parameters during inelastic deformation was discussed and effect of metallurgical variables was examined experimentally. 71 figures, 5 tables.« less
Cyclic deformation leads to defect healing and strengthening of small-volume metal crystals
Wang, Zhang-Jie; Li, Qing-Jie; Cui, Yi-Nan; ...
2015-10-19
When microscopic and macroscopic specimens of metals are subjected to cyclic loading, the creation, interaction, and accumulation of defects lead to damage, cracking, and failure. We demonstrate that when aluminum single crystals of submicrometer dimensions are subjected to low-amplitude cyclic deformation at room temperature, the density of preexisting dislocation lines and loops can be dramatically reduced with virtually no change of the overall sample geometry and essentially no permanent plastic strain. Furthermore, this “cyclic healing” of the metal crystal leads to significant strengthening through dramatic reductions in dislocation density, in distinct contrast to conventional cyclic strain hardening mechanisms arising frommore » increases in dislocation density and interactions among defects in microcrystalline and macrocrystalline metals and alloys. Our real-time, in situ transmission electron microscopy observations of tensile tests reveal that pinned dislocation lines undergo shakedown during cyclic straining, with the extent of dislocation unpinning dependent on the amplitude, sequence, and number of strain cycles. Those unpinned mobile dislocations moving close enough to the free surface of the thin specimens as a result of such repeated straining are then further attracted to the surface by image forces that facilitate their egress from the crystal. Our results point to a versatile pathway for controlled mechanical annealing and defect engineering in submicrometer-sized metal crystals, thereby obviating the need for thermal annealing or significant plastic deformation that could cause change in shape and/or dimensions of the specimen.« less
Cyclic deformation leads to defect healing and strengthening of small-volume metal crystals
Wang, Zhang-Jie; Li, Qing-Jie; Cui, Yi-Nan; Liu, Zhan-Li; Ma, Evan; Li, Ju; Sun, Jun; Zhuang, Zhuo; Dao, Ming; Shan, Zhi-Wei; Suresh, Subra
2015-01-01
When microscopic and macroscopic specimens of metals are subjected to cyclic loading, the creation, interaction, and accumulation of defects lead to damage, cracking, and failure. Here we demonstrate that when aluminum single crystals of submicrometer dimensions are subjected to low-amplitude cyclic deformation at room temperature, the density of preexisting dislocation lines and loops can be dramatically reduced with virtually no change of the overall sample geometry and essentially no permanent plastic strain. This “cyclic healing” of the metal crystal leads to significant strengthening through dramatic reductions in dislocation density, in distinct contrast to conventional cyclic strain hardening mechanisms arising from increases in dislocation density and interactions among defects in microcrystalline and macrocrystalline metals and alloys. Our real-time, in situ transmission electron microscopy observations of tensile tests reveal that pinned dislocation lines undergo shakedown during cyclic straining, with the extent of dislocation unpinning dependent on the amplitude, sequence, and number of strain cycles. Those unpinned mobile dislocations moving close enough to the free surface of the thin specimens as a result of such repeated straining are then further attracted to the surface by image forces that facilitate their egress from the crystal. These results point to a versatile pathway for controlled mechanical annealing and defect engineering in submicrometer-sized metal crystals, thereby obviating the need for thermal annealing or significant plastic deformation that could cause change in shape and/or dimensions of the specimen. PMID:26483463
Ion channeling study of defects in compound crystals using Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Turos, A.; Jozwik, P.; Nowicki, L.; Sathish, N.
2014-08-01
Ion channeling is a well-established technique for determination of structural properties of crystalline materials. Defect depth profiles have been usually determined basing on the two-beam model developed by Bøgh (1968) [1]. As long as the main research interest was focused on single element crystals it was considered as sufficiently accurate. New challenge emerged with growing technological importance of compound single crystals and epitaxial heterostructures. Overlap of partial spectra due to different sublattices and formation of complicated defect structures makes the two beam method hardly applicable. The solution is provided by Monte Carlo computer simulations. Our paper reviews principal aspects of this approach and the recent developments in the McChasy simulation code. The latter made it possible to distinguish between randomly displaced atoms (RDA) and extended defects (dislocations, loops, etc.). Hence, complex defect structures can be characterized by the relative content of these two components. The next refinement of the code consists of detailed parameterization of dislocations and dislocation loops. Defect profiles for variety of compound crystals (GaN, ZnO, SrTiO3) have been measured and evaluated using the McChasy code. Damage accumulation curves for RDA and extended defects revealed non monotonous defect buildup with some characteristic steps. Transition to each stage is governed by the different driving force. As shown by the complementary high resolution XRD measurements lattice strain plays here the crucial role and can be correlated with the concentration of extended defects.
NASA Astrophysics Data System (ADS)
Rezaei Mianroodi, Jaber; Svendsen, Bob
2015-04-01
The purpose of the current work is the development of a phase field model for dislocation dissociation, slip and stacking fault formation in single crystals amenable to determination via atomistic or ab initio methods in the spirit of computational material design. The current approach is based in particular on periodic microelasticity (Wang and Jin, 2001; Bulatov and Cai, 2006; Wang and Li, 2010) to model the strongly non-local elastic interaction of dislocation lines via their (residual) strain fields. These strain fields depend in turn on phase fields which are used to parameterize the energy stored in dislocation lines and stacking faults. This energy storage is modeled here with the help of the "interface" energy concept and model of Cahn and Hilliard (1958) (see also Allen and Cahn, 1979; Wang and Li, 2010). In particular, the "homogeneous" part of this energy is related to the "rigid" (i.e., purely translational) part of the displacement of atoms across the slip plane, while the "gradient" part accounts for energy storage in those regions near the slip plane where atomic displacements deviate from being rigid, e.g., in the dislocation core. Via the attendant global energy scaling, the interface energy model facilitates an atomistic determination of the entire phase field energy as an optimal approximation of the (exact) atomistic energy; no adjustable parameters remain. For simplicity, an interatomic potential and molecular statics are employed for this purpose here; alternatively, ab initio (i.e., DFT-based) methods can be used. To illustrate the current approach, it is applied to determine the phase field free energy for fcc aluminum and copper. The identified models are then applied to modeling of dislocation dissociation, stacking fault formation, glide and dislocation reactions in these materials. As well, the tensile loading of a dislocation loop is considered. In the process, the current thermodynamic picture is compared with the classical mechanical one as based on the Peach-Köhler force.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teichmann, Katharina; Marioara, Calin D.; Andersen, Sigmund J.
The interaction mechanisms between dislocations and semi-coherent, needle-shaped {beta} Prime precipitates in Al-Mg-Si alloys have been studied by High Resolution Transmission Electron Microscopy (HRTEM). Dislocation loops appearing as broad contrast rings around the precipitate cross-sections were identified in the Al matrix. A size dependency of the interaction mechanism was observed; the precipitates were sheared when the longest dimension of their cross-section was shorter than approximately 15 nm, and looped otherwise. A more narrow ring located between the Al matrix and bulk {beta} Prime indicates the presence of a transition interface layer. Together with the bulk {beta} Prime structure, this wasmore » further investigated by High Angle Annular Dark Field Scanning TEM (HAADF-STEM). In the bulk {beta} Prime a higher intensity could be correlated with a third of the Si-columns, as predicted from the published structure. The transition layer incorporates Si columns in the same arrangement as in bulk {beta} Prime , although it is structurally distinct from it. The Z-contrast information and arrangement of these Si-columns demonstrate that they are an extension of the Si-network known to structurally connect all the precipitate phases in the Al-Mg-Si(-Cu) system. The width of the interface layer was estimated to about 1 nm. - Highlights: Black-Right-Pointing-Pointer {beta} Prime is found to be looped at sizes larger than 15 nm (cross section diameter). Black-Right-Pointing-Pointer {beta} Prime is found to be sheared at sizes smaller than 15 nm (cross section diameter). Black-Right-Pointing-Pointer The recently determined crystal structure of {beta} Prime is confirmed by HAADF-STEM. Black-Right-Pointing-Pointer Between {beta} Prime and the Al-matrix a transition layer of about 1 nm is existent. Black-Right-Pointing-Pointer The {beta} Prime /matrix layer is structurally distinct from bulk {beta} Prime and the aluminium matrix.« less
Antisymmetric vortex interactions in the wake behind a step cylinder
NASA Astrophysics Data System (ADS)
Tian, Cai; Jiang, Fengjian; Pettersen, Bjørnar; Andersson, Helge I.
2017-10-01
Flow around a step cylinder at the Reynolds number 150 was simulated by directly solving the full Navier-Stokes equations. The configuration was adopted from the work of Morton and Yarusevych ["Vortex shedding in the wake of a step cylinder," Phys. Fluids 22, 083602 (2010)], in which the wake dynamics were systematically described. A more detailed investigation of the vortex dislocation process has now been performed. Two kinds of new loop vortex structures were identified. Additionally, antisymmetric vortex interactions in two adjacent vortex dislocation processes were observed and explained. The results in this letter serve as a supplement for a more thorough understanding of the vortex dynamics in the step cylinder wake.
Nano-size defects in arsenic-implanted HgCdTe films: a HRTEM study
NASA Astrophysics Data System (ADS)
Bonchyk, O. Yu.; Savytskyy, H. V.; Swiatek, Z.; Morgiel, Y.; Izhnin, I. I.; Voitsekhovskii, A. V.; Korotaev, A. G.; Mynbaev, K. D.; Fitsych, O. I.; Varavin, V. S.; Dvoretsky, S. A.; Marin, D. V.; Yakushev, M. V.
2018-02-01
Radiation damage and its transformation under annealing were studied with bright-field and high-resolution transmission electron microscopy for arsenic-implanted HgCdTe films with graded-gap surface layers. In addition to typical highly defective layers in as-implanted material, a 50 nm-thick sub-surface layer with very low defect density was observed. The main defects in other layers after implantation were dislocation loops, yet after arsenic activation annealing, the dominating defects were single dislocations. Transport (from depth to surface), transformation and annihilation of radiation-induced defects were observed as a result of annealing, with the depth with the maximum defect density decreasing from 110 to 40 nm.
Wang, Zhangwei; Baker, Ian; Cai, Zhonghou; ...
2016-09-01
A systematic study of the effects of up to 1.1 at. % carbon on the mechanical properties and evolution of the dislocation substructure in a series of a high entropy alloys (HEA) based on Fe 40.4Ni 11.3Mn 34.8Al 7.5Cr 6 is presented. Transmission electron microscopy (TEM), synchrotron X-ray diffraction (XRD) and atom probe tomography (APT) were used to show that all the alloys are single-phase f.c.c. random solid solutions. The lattice constant, determined from synchrotron XRD measurements, increases linearly with increasing carbon concentration, which leads to a linear relationship between the yield strength and the carbon concentration. The dislocation substructures,more » as determined by a TEM, show a transition from wavy slip to planar slip and, at higher strains, and from cell-forming structure (dislocations cells, cell blocks and dense dislocation walls) to non-cell forming structure (Taylor lattice, microbands and domain boundaries) with the addition of carbon, features related to the increase in lattice friction stress. The stacking fault energy (measured via weak-beam imaging of the separation of dislocation partials) decreases with increasing carbon content, which also contributes to the transition from wavy slip to planar slip. The formation of non-cell forming structure induced by carbon leads to a high degree of strain hardening and a substantial increase in the ultimate tensile strength. In conclusion, the consequent postponement of necking due to the high strain hardening, along with the plasticity accommodation arising from the formation of microbands and domain boundaries, result in an increase of ductility due to the carbon addition.« less
Surface dislocation nucleation controlled deformation of Au nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roos, B.; Kapelle, B.; Volkert, C. A., E-mail: volkert@ump.gwdg.de
2014-11-17
We investigate deformation in high quality Au nanowires under both tension and bending using in-situ transmission electron microscopy. Defect evolution is investigated during: (1) tensile deformation of 〈110〉 oriented, initially defect-free, single crystal nanowires with cross-sectional widths between 30 and 300 nm, (2) bending deformation of the same wires, and (3) tensile deformation of wires containing coherent twin boundaries along their lengths. We observe the formation of twins and stacking faults in the single crystal wires under tension, and storage of full dislocations after bending of single crystal wires and after tension of twinned wires. The stress state dependence of themore » deformation morphology and the formation of stacking faults and twins are not features of bulk Au, where deformation is controlled by dislocation interactions. Instead, we attribute the deformation morphologies to the surface nucleation of either leading or trailing partial dislocations, depending on the Schmid factors, which move through and exit the wires producing stacking faults or full dislocation slip. The presence of obstacles such as neutral planes or twin boundaries hinder the egress of the freshly nucleated dislocations and allow trailing and leading partial dislocations to combine and to be stored as full dislocations in the wires. We infer that the twins and stacking faults often observed in nanoscale Au specimens are not a direct size effect but the result of a size and obstacle dependent transition from dislocation interaction controlled to dislocation nucleation controlled deformation.« less
Lyu, J; Zhao, P-q
2016-01-01
Purpose We report a simplified ab externo scleral fixation technique to manage the late dislocation of scleral-sutured polymethyl methacrylate (PMMA) intraocular lenses (IOLs) in the absence of capsule support. Materials and methods The technique was performed on five eyes of five patients. Symmetrical scleral pocket tunnels without conjunctival peritomy were created. An anterior vitrectomy via a limbal approach with an anterior chamber infusion or a 3-port pars plana vitrectomy was performed to rescue the dislocated IOL. A long straight suture needle and 23-gauge vitreoretinal forceps were used to conveniently reposition the IOL and loop sutures through the IOL positioning eyelets without externalizing IOL haptics. The outside suture knots were buried under the roof of the scleral tunnels. Results The patients were followed for 5–14 months after surgery. All the operated eyes quickly recovered with negligible corneal endothelial cell loss and mild inflammation. Visual acuity improvement and IOL centration were achieved in all eyes with no major complications. Conclusion The simplified ab externo scleral fixation technique offers an effective and minimally invasive surgical alternative to salvage dislocated previously scleral-sutured PMMA IOLs. PMID:26795420
Lyu, J; Zhao, P-Q
2016-05-01
PurposeWe report a simplified ab externo scleral fixation technique to manage the late dislocation of scleral-sutured polymethyl methacrylate (PMMA) intraocular lenses (IOLs) in the absence of capsule support.Materials and methodsThe technique was performed on five eyes of five patients. Symmetrical scleral pocket tunnels without conjunctival peritomy were created. An anterior vitrectomy via a limbal approach with an anterior chamber infusion or a 3-port pars plana vitrectomy was performed to rescue the dislocated IOL. A long straight suture needle and 23-gauge vitreoretinal forceps were used to conveniently reposition the IOL and loop sutures through the IOL positioning eyelets without externalizing IOL haptics. The outside suture knots were buried under the roof of the scleral tunnels.ResultsThe patients were followed for 5-14 months after surgery. All the operated eyes quickly recovered with negligible corneal endothelial cell loss and mild inflammation. Visual acuity improvement and IOL centration were achieved in all eyes with no major complications.ConclusionThe simplified ab externo scleral fixation technique offers an effective and minimally invasive surgical alternative to salvage dislocated previously scleral-sutured PMMA IOLs.
NASA Astrophysics Data System (ADS)
Slimani, A.; Fleischmann, P.; Fougères, R.
1992-06-01
The cyclic plasticity of 5N polycrystalline aluminium have been studied at room temperature by measuring the continuous acoustic emission (A.E.) due to dislocations movements in the metal. In this study, original data have been obtained in the understanding of continuous A.E. sources. In comparison with classical interpretation given in the literature, the fact that dislocations are arranged according to a dislocation cell structure from the first cycle has been included in the analysis of the results. From this, it has been shown that the amplitude of the A.E. signal is not directly connected with the plastic strain rate prescribed to the fatigue sample and that the probability density function of dislocation loops created during the cycling can be determined. La plasticité cyclique de l'AI 5N polycristallin a été étudiée à la température ambiante à partir de mesures d'émission acoustique continue (E.A.). L'application de la technique de l'E.A. nous a permis d'obtenir des données originales quant aux mécanismes sources d'E.A. Par rapport aux interprétations classiques de la littérature, nous avons fait intervenir le fait que, dès les premiers cycles, une structure cellulaire de dislocations est établie. Nous montrons que l'amplitude du signal d'E.A. n'est plus liée directement à la vitesse de déformation plastique macroscopique. A partir de cette donnée, l'analyse des résultats d'E.A. permet d'obtenir des informations sur la fonction distribution des boucles de dislocations créées au cours de la déformation cyclique.
Enthalpy-Based Thermal Evolution of Loops: III. Comparison of Zero-Dimensional Models
NASA Technical Reports Server (NTRS)
Cargill, P. J.; Bradshaw, Stephen J.; Klimchuk, James A.
2012-01-01
Zero dimensional (0D) hydrodynamic models, provide a simple and quick way to study the thermal evolution of coronal loops subjected to time-dependent heating. This paper presents a comparison of a number of 0D models that have been published in the past and is intended to provide a guide for those interested in either using the old models or developing new ones. The principal difference between the models is the way the exchange of mass and energy between corona, transition region and chromosphere is treated, as plasma cycles into and out of a loop during a heating-cooling cycle. It is shown that models based on the principles of mass and energy conservation can give satisfactory results at some, or, in the case of the Enthalpy Based Thermal Evolution of Loops (EBTEL) model, all stages of the loop evolution. Empirical models can lead to low coronal densities, spurious delays between the peak density and temperature, and, for short heating pulses, overly short loop lifetimes.
NASA Astrophysics Data System (ADS)
Lin, Bing; Huang, Minsheng; Zhao, Liguo; Roy, Anish; Silberschmidt, Vadim; Barnard, Nick; Whittaker, Mark; McColvin, Gordon
2018-06-01
Strain-controlled cyclic deformation of a nickel-based single crystal superalloy has been modelled using three-dimensional (3D) discrete dislocation dynamics (DDD) for both [0 0 1] and [1 1 1] orientations. The work focused on the interaction between dislocations and precipitates during cyclic plastic deformation at elevated temperature, which has not been well studied yet. A representative volume element with cubic γ‧-precipitates was chosen to represent the material, with enforced periodical boundary conditions. In particular, cutting of superdislocations into precipitates was simulated by a back-force method. The global cyclic stress-strain responses were captured well by the DDD model when compared to experimental data, particularly the effects of crystallographic orientation. Dislocation evolution showed that considerably high density of dislocations was produced for [1 1 1] orientation when compared to [0 0 1] orientation. Cutting of dislocations into the precipitates had a significant effect on the plastic deformation, leading to material softening. Contour plots of in-plane shear strain proved the development of heterogeneous strain field, resulting in the formation of shear-band embryos.
Abat, F; Gich, I; Natera, L; Besalduch, M; Sarasquete, J
To analyse the results of arthroscopic repair of acromioclavicular dislocation in terms of health-related quality of life. Prospective study of patients with acromioclavicular dislocation Rockwood grade iii-v, treated arthroscopically with a mean follow up of 25.4 months. The demographics of the series were recorded and evaluations were performed preoperatively, at 3 months and 2 years with validated questionnaires as Short Form-36 Health Survey (SF-36), visual analogue scale (VAS), The Disabilities of the Arm, Shoulder and Hand (DASH), Constant-Murley Shoulder Outcome Score (Constant) and Walch-Duplay Score (WD). Twenty patients, 17 men and 3 women with a mean age of 36.1 years, were analysed. According to the classification of Rockwood, 3 patients were grade iii, 3 grade iv and 14 grade v. Functional and clinical improvement was detected in all clinical tests (SF-36, VAS and DASH) at 3 months and 2 years follow up (P<.001). The final Constant score was 95.3±2.4 and the WD was 1.8±0.62. It was not found that the health-related quality of life was affected by any variable studied except the evolution of DASH. The health-related quality of life (assessed by SF-36) in patients undergoing arthroscopic repair of acromioclavicular joint dislocation grades iii-v was not influenced by gender, age, grade, displacement, handedness, evolution of the VAS, scoring of the Constant or by the WD. However, it is correlated with the evolution in the DASH score. Copyright © 2017 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.
Computational issues in the simulation of two-dimensional discrete dislocation mechanics
NASA Astrophysics Data System (ADS)
Segurado, J.; LLorca, J.; Romero, I.
2007-06-01
The effect of the integration time step and the introduction of a cut-off velocity for the dislocation motion was analysed in discrete dislocation dynamics (DD) simulations of a single crystal microbeam. Two loading modes, bending and uniaxial tension, were examined. It was found that a longer integration time step led to a progressive increment of the oscillations in the numerical solution, which would eventually diverge. This problem could be corrected in the simulations carried out in bending by introducing a cut-off velocity for the dislocation motion. This strategy (long integration times and a cut-off velocity for the dislocation motion) did not recover, however, the solution computed with very short time steps in uniaxial tension: the dislocation density was overestimated and the dislocation patterns modified. The different response to the same numerical algorithm was explained in terms of the nature of the dislocations generated in each case: geometrically necessary in bending and statistically stored in tension. The evolution of the dislocation density in the former was controlled by the plastic curvature of the beam and was independent of the details of the simulations. On the contrary, the steady-state dislocation density in tension was determined by the balance between nucleation of dislocations and those which are annihilated or which exit the beam. Changes in the DD imposed by the cut-off velocity altered this equilibrium and the solution. These results point to the need for detailed analyses of the accuracy and stability of the dislocation dynamic simulations to ensure that the results obtained are not fundamentally affected by the numerical strategies used to solve this complex problem.
Microstructure of calcite deformed by high-pressure torsion: An X-ray line profile study
NASA Astrophysics Data System (ADS)
Schuster, Roman; Schafler, Erhard; Schell, Norbert; Kunz, Martin; Abart, Rainer
2017-11-01
Calcite aggregates were deformed to high strain using high-pressure torsion and applying confining pressures of 1-6 GPa and temperatures between room temperature and 450 °C. The run products were characterized by X-ray diffraction, and key microstructural parameters were extracted employing X-ray line profile analysis. The dominant slip system was determined as r { 10 1 bar 4 } ⟨ 2 bar 021 ⟩ with edge dislocation character. The resulting dislocation density and the size of the coherently scattering domains (CSD) exhibit a systematic dependence on the P-T conditions of deformation. While high pressure generally impedes recovery through reducing point defect mobility, the picture is complicated by pressure-induced phase transformations in the CaCO3 system. Transition from the calcite stability field to those of the high-pressure polymorphs CaCO3-II, CaCO3-III and CaCO3-IIIb leads to a change of the microstructural evolution with deformation. At 450 °C and pressures within the calcite stability field, dislocation densities and CSD sizes saturate at shear strains exceeding 10 in agreement with earlier studies at lower pressures. In the stability field of CaCO3-II, the dislocation density exhibits a more complex behavior. Furthermore, at a given strain and strain rate, the dislocation density increases and the CSD size decreases with increasing pressure within the stability fields of either calcite or of the high-pressure polymorphs. There is, however, a jump from high dislocation densities and small CSDs in the upper pressure region of the calcite stability field to lower dislocation densities and larger CSDs in the low-pressure region of the CaCO3-II stability field. This jump is more pronounced at higher temperatures and less so at room temperature. The pressure influence on the deformation-induced evolution of dislocation densities implies that pressure variations may change the rheology of carbonate rocks. In particular, a weakening is expected to occur at the transition from the calcite to the CaCO3-II stability field, if aragonite does not form.
Surface alloying of aluminum with molybdenum by high-current pulsed electron beam
NASA Astrophysics Data System (ADS)
Xia, Han; Zhang, Conglin; Lv, Peng; Cai, Jie; Jin, Yunxue; Guan, Qingfeng
2018-02-01
The surface alloying of pre-coated molybdenum (Mo) film on aluminum (Al) substrate by high-current pulsed electron beam (HCPEB) was investigated. The microstructure and phase analysis were conducted by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that Mo particles were dissolved into Al matrix to form alloying layer, which was composed of Mo, Al and acicular or equiaxed Al5Mo phases after surface alloying. Meanwhile, various structure defects such as dislocation loops, high-density dislocations and dislocation walls were observed in the alloying surface. The corrosion resistance was tested by using potentiodynamic polarization curves and electrochemical impedance spectra (EIS). Electrochemical results indicate that all the alloying samples had better corrosion resistance in 3.5 wt% NaCl solution compared to initial sample. The excellent corrosion resistance is mainly attributed to the combined effect of the structure defects and the addition of Mo element to form a more stable passive film.
Manipulation of domain-wall solitons in bi- and trilayer graphene
NASA Astrophysics Data System (ADS)
Jiang, Lili; Wang, Sheng; Shi, Zhiwen; Jin, Chenhao; Utama, M. Iqbal Bakti; Zhao, Sihan; Shen, Yuen-Ron; Gao, Hong-Jun; Zhang, Guangyu; Wang, Feng
2018-01-01
Topological dislocations and stacking faults greatly affect the performance of functional crystalline materials1-3. Layer-stacking domain walls (DWs) in graphene alter its electronic properties and give rise to fascinating new physics such as quantum valley Hall edge states4-10. Extensive efforts have been dedicated to the engineering of dislocations to obtain materials with advanced properties. However, the manipulation of individual dislocations to precisely control the local structure and local properties of bulk material remains an outstanding challenge. Here we report the manipulation of individual layer-stacking DWs in bi- and trilayer graphene by means of a local mechanical force exerted by an atomic force microscope tip. We demonstrate experimentally the capability to move, erase and split individual DWs as well as annihilate or create closed-loop DWs. We further show that the DW motion is highly anisotropic, offering a simple approach to create solitons with designed atomic structures. Most artificially created DW structures are found to be stable at room temperature.
A continuum theory of edge dislocations
NASA Astrophysics Data System (ADS)
Berdichevsky, V. L.
2017-09-01
Continuum theory of dislocation aims to describe the behavior of large ensembles of dislocations. This task is far from completion, and, most likely, does not have a "universal solution", which is applicable to any dislocation ensemble. In this regards it is important to have guiding lines set by benchmark cases, where the transition from a discrete set of dislocations to a continuum description is made rigorously. Two such cases have been considered recently: equilibrium of dislocation walls and screw dislocations in beams. In this paper one more case is studied, equilibrium of a large set of 2D edge dislocations placed randomly in a 2D bounded region. The major characteristic of interest is energy of dislocation ensemble, because it determines the structure of continuum equations. The homogenized energy functional is obtained for the periodic dislocation ensembles with a random contents of the periodic cell. Parameters of the periodic structure can change slowly on distances of order of the size of periodic cells. The energy functional is obtained by the variational-asymptotic method. Equilibrium positions are local minima of energy. It is confirmed the earlier assertion that energy density of the system is the sum of elastic energy of averaged elastic strains and microstructure energy, which is elastic energy of the neutralized dislocation system, i.e. the dislocation system placed in a constant dislocation density field making the averaged dislocation density zero. The computation of energy is reduced to solution of a variational cell problem. This problem is solved analytically. The solution is used to investigate stability of simple dislocation arrays, i.e. arrays with one dislocation in the periodic cell. The relations obtained yield two outcomes: First, there is a state parameter of the system, dislocation polarization; averaged stresses affect only dislocation polarization and cannot change other characteristics of the system. Second, the structure of dislocation phase space is strikingly simple. Dislocation phase space is split in a family of subspaces corresponding to constant values of dislocation polarizations; in each equipolarization subspace there are many local minima of energy; for zero external stresses the system is stuck in a local minimum of energy; for non-zero slowly changing external stress, dislocation polarization evolves, while the system moves over local energy minima of equipolarization subspaces. Such a simple picture of dislocation dynamics is due to the presence of two time scales, slow evolution of dislocation polarization and fast motion of the system over local minima of energy. The existence of two time scales is justified for a neutral system of edge dislocations.
NASA Astrophysics Data System (ADS)
Yang, X. B.; Han, X. X.; Zhou, T. B.; Liu, E. L.
2017-04-01
Through the comparative analysis of the results of the triaxial compression experiments of sandstone and the numerical simulation results of particle flow code PFC2D under the same conditions, the typical simulation curve and the corresponding simulation process were selected to analyze the evolution characteristics of the surface deformation field, the evolution characteristics of the velocity field and displacement field of the deformation localization bands of sandstone under triaxial compression. Research results show that the changes of the velocities and displacements of deformation localization bands corresponds to the change of stress during compression; In the same deformation localization band, the dislocation velocities are always in the same direction, but in the direction vertical to the localization band, the localization band sometimes squeezes and sometimes stretches; At different positions of the same deformation localization band, the dislocation velocities and extrusion velocities are both different at the same time; In the post-peak stage of loading, along the same deformation localization band, the dislocation displacements close to both loaded ends are generally greater than the ones near to the middle position of the specimen, the stretching displacements close to both loaded ends are generally smaller than the ones near to the middle position of the specimen.
Effects of neutron irradiation of Ti3SiC2 and Ti3AlC2 in the 121-1085 °C temperature range
NASA Astrophysics Data System (ADS)
Tallman, Darin J.; He, Lingfeng; Gan, Jian; Caspi, El'ad N.; Hoffman, Elizabeth N.; Barsoum, Michel W.
2017-02-01
Herein we report on the formation of defects in response to neutron irradiation of polycrystalline Ti3SiC2 and Ti3AlC2 samples exposed to total fluences of ≈6 × 1020 n/m2, 5 × 1021 n/m2 and 1.7 × 1022 n/m2 at irradiation temperatures of 121(12), 735(6) and 1085(68)°C. These fluences correspond to 0.14, 1.6 and 3.4 dpa, respectively. After irradiation to 0.14 dpa at 121 °C and 735 °C, black spots are observed via transmission electron microscopy in both Ti3SiC2 and Ti3AlC2. After irradiation to 1.6 and 3.4 dpa at 735 °C, basal dislocation loops, with a Burgers vector of b = ½ [0001] are observed in Ti3SiC2, with loop diameters of 21(6) and 30(8) nm after 1.6 dpa and 3.4 dpa, respectively. In Ti3AlC2, larger dislocation loops, 75(34) nm in diameter are observed after 3.4 dpa at 735 °C, in addition to stacking faults. Impurity particles of TiC, as well as stacking fault TiC platelets in the MAX phases, are seen to form extensive dislocation loops under all conditions. Cavities were observed at grain boundaries and within stacking faults after 3.4 dpa irradiation, with extensive cavity formation in the TiC regions at 1085 °C. Remarkably, denuded zones on the order of 1 μm are observed in Ti3SiC2 after irradiation to 3.4 dpa at 735 °C. Small grains, 3-5 μm in diameter, are damage free after irradiation at 1085 °C at this dose. The results shown herein confirm once again that the presence of the A-layers in the MAX phases considerably enhance their irradiation tolerance. Based on these results, and up to 3.4 dpa, Ti3SiC2 remains a promising candidate for high temperature nuclear applications as long as the temperature remains >700 °C.
Heating and dynamics of two flare loop systems observed by AIA and EIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y.; Ding, M. D.; Qiu, J., E-mail: yingli@nju.edu.cn
2014-02-01
We investigate heating and evolution of flare loops in a C4.7 two-ribbon flare on 2011 February 13. From Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) imaging observations, we can identify two sets of loops. Hinode/EUV Imaging Spectrometer (EIS) spectroscopic observations reveal blueshifts at the feet of both sets of loops. The evolution and dynamics of the two sets are quite different. The first set of loops exhibits blueshifts for about 25 minutes followed by redshifts, while the second set shows stronger blueshifts, which are maintained for about one hour. The UV 1600 observation by AIA also shows that the feet ofmore » the second set of loops brighten twice. These suggest that continuous heating may be present in the second set of loops. We use spatially resolved UV light curves to infer heating rates in the few tens of individual loops comprising the two loop systems. With these heating rates, we then compute plasma evolution in these loops with the 'enthalpy-based thermal evolution of loops' model. The results show that, for the first set of loops, the synthetic EUV light curves from the model compare favorably with the observed light curves in six AIA channels and eight EIS spectral lines, and the computed mean enthalpy flow velocities also agree with the Doppler shift measurements by EIS. For the second set of loops modeled with twice-heating, there are some discrepancies between modeled and observed EUV light curves in low-temperature bands, and the model does not fully produce the prolonged blueshift signatures as observed. We discuss possible causes for the discrepancies.« less
Luscher, Darby Jon; Addessio, Francis L.; Cawkwell, Marc Jon; ...
2017-01-01
Here, we have developed a model for the finite deformation thermomechanical response of α-cyclotrimethylene trinitramine (RDX). Our model accounts for nonlinear thermoelastic lattice deformation through a free energy-based equation of state developed by Cawkwell et al. (2016) in combination with temperature and pressure dependent elastic constants, as well as dislocation-mediated plastic slip on a set of slip systems motivated by experimental observation. The kinetics of crystal plasticity are modeled using the Orowan equation relating slip rate to dislocation density and the dislocation velocity developed by Austin and McDowell (2011), which naturally accounts for transition from thermally activated to dislocation dragmore » limited regimes. Evolution of dislocation density is specified in terms of local ordinary differential equations reflecting dislocation–dislocation interactions. This paper presents details of the theory and parameterization of the model, followed by discussion of simulations of flyer plate impact experiments. Impact conditions explored within this combined simulation and experimental effort span shock pressures ranging from 1 to 3 GPa for four crystallographic orientations and multiple specimen thicknesses. Simulation results generated using this model are shown to be in strong agreement with velocimetry measurements from the corresponding plate impact experiments. Finally, simulation results are used to motivate conclusions about the nature of dislocation-mediated plasticity in RDX.« less
Xu, Shuozhi; Xiong, Liming; Chen, Youping; ...
2016-01-29
Sequential slip transfer across grain boundaries (GB) has an important role in size-dependent propagation of plastic deformation in polycrystalline metals. For example, the Hall–Petch effect, which states that a smaller average grain size results in a higher yield stress, can be rationalised in terms of dislocation pile-ups against GBs. In spite of extensive studies in modelling individual phases and grains using atomistic simulations, well-accepted criteria of slip transfer across GBs are still lacking, as well as models of predicting irreversible GB structure evolution. Slip transfer is inherently multiscale since both the atomic structure of the boundary and the long-range fieldsmore » of the dislocation pile-up come into play. In this work, concurrent atomistic-continuum simulations are performed to study sequential slip transfer of a series of curved dislocations from a given pile-up on Σ3 coherent twin boundary (CTB) in Cu and Al, with dominant leading screw character at the site of interaction. A Frank-Read source is employed to nucleate dislocations continuously. It is found that subject to a shear stress of 1.2 GPa, screw dislocations transfer into the twinned grain in Cu, but glide on the twin boundary plane in Al. Moreover, four dislocation/CTB interaction modes are identified in Al, which are affected by (1) applied shear stress, (2) dislocation line length, and (3) dislocation line curvature. Our results elucidate the discrepancies between atomistic simulations and experimental observations of dislocation-GB reactions and highlight the importance of directly modeling sequential dislocation slip transfer reactions using fully 3D models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Shuozhi; Xiong, Liming; Chen, Youping
Sequential slip transfer across grain boundaries (GB) has an important role in size-dependent propagation of plastic deformation in polycrystalline metals. For example, the Hall–Petch effect, which states that a smaller average grain size results in a higher yield stress, can be rationalised in terms of dislocation pile-ups against GBs. In spite of extensive studies in modelling individual phases and grains using atomistic simulations, well-accepted criteria of slip transfer across GBs are still lacking, as well as models of predicting irreversible GB structure evolution. Slip transfer is inherently multiscale since both the atomic structure of the boundary and the long-range fieldsmore » of the dislocation pile-up come into play. In this work, concurrent atomistic-continuum simulations are performed to study sequential slip transfer of a series of curved dislocations from a given pile-up on Σ3 coherent twin boundary (CTB) in Cu and Al, with dominant leading screw character at the site of interaction. A Frank-Read source is employed to nucleate dislocations continuously. It is found that subject to a shear stress of 1.2 GPa, screw dislocations transfer into the twinned grain in Cu, but glide on the twin boundary plane in Al. Moreover, four dislocation/CTB interaction modes are identified in Al, which are affected by (1) applied shear stress, (2) dislocation line length, and (3) dislocation line curvature. Our results elucidate the discrepancies between atomistic simulations and experimental observations of dislocation-GB reactions and highlight the importance of directly modeling sequential dislocation slip transfer reactions using fully 3D models.« less
A discrete dislocation dynamics model of creeping single crystals
NASA Astrophysics Data System (ADS)
Rajaguru, M.; Keralavarma, S. M.
2018-04-01
Failure by creep is a design limiting issue for metallic materials used in several high temperature applications. Current theoretical models of creep are phenomenological with little connection to the underlying microscopic mechanisms. In this paper, a bottom-up simulation framework based on the discrete dislocation dynamics method is presented for dislocation creep aided by the diffusion of vacancies, known to be the rate controlling mechanism at high temperature and stress levels. The time evolution of the creep strain and the dislocation microstructure in a periodic unit cell of a nominally infinite single crystal is simulated using the kinetic Monte Carlo method, together with approximate constitutive laws formulated for the rates of thermal activation of dislocations over local pinning obstacles. The deformation of the crystal due to dislocation glide between individual thermal activation events is simulated using a standard dislocation dynamics algorithm, extended to account for constant stress periodic boundary conditions. Steady state creep conditions are obtained in the simulations with the predicted creep rates as a function of stress and temperature in good agreement with experimentally reported values. Arrhenius scaling of the creep rates as a function of temperature and power-law scaling with the applied stress are also reproduced, with the values of the power-law exponents in the high stress regime in good agreement with experiments.
NASA Astrophysics Data System (ADS)
Olikh, Ya. M.; Tymochko, M. D.; Olikh, O. Ya.; Shenderovsky, V. A.
2018-05-01
We studied the temperature dependence (77-300 K) of the electron concentration and mobility using the Hall method under ultrasound (the acoustic Hall method) to determine the mechanisms by which ultrasound influences the electrical activity of near-dislocation clusters in n-type low-ohmic Cd1-x Zn x Te single crystals (N Cl ≈ 1024 m-3; x = 0; 0.04) with different dislocation density (0.4-5.1) × 1010 m-2. Changes in electrophysical parameters were found to occur as a function of temperature and ultrasound intensity. To evaluate the relative contribution of different charge carrier scattering mechanisms (lattice scattering, ionized impurity scattering, neutral impurity scattering, and dislocation scattering) and their change under ultrasound, a differential evolution method was used. This method made it possible to analyze experimental mobility μ H(T) by its nonlinear approximation with characteristic temperature dependence for each mechanism. An increase in neutral impurity scattering and a decrease in ionized impurity and dislocation scattering components were observed under ultrasound. The character and the amount of these acoustically induced changes correlate with particular sample dislocation characteristics. It was concluded that the observed effects are related to the acoustically induced transformation of the point-defect structure, mainly in the near dislocation crystal regions.
Husser, Edgar; Bargmann, Swantje
2017-01-01
The mechanical behavior of single crystalline, micro-sized copper is investigated in the context of cantilever beam bending experiments. Particular focus is on the role of geometrically necessary dislocations (GNDs) during bending-dominated load conditions and their impact on the characteristic bending size effect. Three different sample sizes are considered in this work with main variation in thickness. A gradient extended crystal plasticity model is presented and applied in a three-dimensional finite-element (FE) framework considering slip system-based edge and screw components of the dislocation density vector. The underlying mathematical model contains non-standard evolution equations for GNDs, crystal-specific interaction relations, and higher-order boundary conditions. Moreover, two element formulations are examined and compared with respect to size-independent as well as size-dependent bending behavior. The first formulation is based on a linear interpolation of the displacement and the GND density field together with a full integration scheme whereas the second is based on a mixed interpolation scheme. While the GND density fields are treated equivalently, the displacement field is interpolated quadratically in combination with a reduced integration scheme. Computational results indicate that GND storage in small cantilever beams strongly influences the evolution of statistically stored dislocations (SSDs) and, hence, the distribution of the total dislocation density. As a particular example, the mechanical bending behavior in the case of a physically motivated limitation of GND storage is studied. The resulting impact on the mechanical bending response as well as on the predicted size effect is analyzed. Obtained results are discussed and related to experimental findings from the literature. PMID:28772657
NASA Astrophysics Data System (ADS)
Zhang, J. Y.; Li, J.; Wu, K.; Liu, G.; Sun, J.
2017-03-01
Due to their interface and nanoscale effects associated with structural peculiarities of nanostructured, face-centered-cubic (FCC) ultrafine-grained/nanocrystalline (UFG/NC) metals, in particular nanotwinned (NT) metals exhibit unexpected deformation behaviours fundamentally different from their coarse-grained (CG) counterparts. These internal boundaries, including grain boundaries and twin boundaries in UFG/NC metals, strongly interact with dislocations as deformation barriers to enhance the strength and strain rate sensitivity (SRS) of materials on the one hand, and play critical roles in their microstructural evolution as dislocation sources/sinks to sustain plastic deformation on the other. In this work, building on the findings of twin softening and (de)twinning-mediated grain growth/refinement in stretched free-standing NT-Ni foils, a constitutive model based on the thermally activated depinning process of dislocations residing in boundaries has been proposed to predict the steady-state grain size and simulate the plastic flow of NT-Ni, by considering the blocking effects of nanotwins on the absorption of dislocations emitted from boundaries. It is uncovered that the stress ratio (ηstress) of effective-to-internal stress can be taken as a signature to estimate the stability of microstructures during plastic deformation. This model not only reproduces well the plastic flow of the stretched NT-Ni foils as well as reported NT-Cu and the steady-state grain size, but also sheds light on the size-dependent SRS and failure of FCC UFG/NC metals. This theoretical framework offers the opportunity to tune the microstructures in the polycrystalline materials to synthesise high performance engineering materials with high strength and great ductility.
The Evolution of Transition Region Loops Using IRIS and AIA
NASA Technical Reports Server (NTRS)
Winebarger, Amy R.; DePontieu, Bart
2014-01-01
Over the past 50 years, the model for the structure of the solar transition region has evolved from a simple transition layer between the cooler chromosphere to the hotter corona to a complex and diverse region that is dominated by complete loops that never reach coronal temperatures. The IRIS slitjaw images show many complete transition region loops. Several of the "coronal" channels in the SDO AIA instrument include contributions from weak transition region lines. In this work, we combine slitjaw images from IRIS with these channels to determine the evolution of the loops. We develop a simple model for the temperature and density evolution of the loops that can explain the simultaneous observations. Finally, we estimate the percentage of AIA emission that originates in the transition region.
NASA Astrophysics Data System (ADS)
Sun, J. Z.; Li, M. Q.; Li, H.
2017-09-01
The microstructural evolution and special flow behavior of Ti-5Al-2Sn-2Zr-4Mo-4Cr during isothermal compression at a strain rate of 0.0001 s-1 were investigated. The dislocation climbs in elongated α grains resulted in the formation of low-angle boundaries that transform into high-angle boundaries with greater deformation, and the elongated α grains subsequently separated into homogenous globular α grains with the penetration of the β phase. The simultaneous occurrence of discontinuous dynamic recrystallization and continuous dynamic recrystallization in the primary β grains resulted in a trimode grain distribution. The β grains surrounded by dislocations presented an equilateral-hexagonal morphology, which suggests that grain boundary sliding through dislocation climbs was the main deformation mechanism. The true stress-strain curves for 1073 and 1113 K abnormally intersect at a strain of 0.35, related to the α → β phase transformation and distinct growth of the β grain size.
NASA Astrophysics Data System (ADS)
Fan, Zhijian; Jóni, Bertalan; Xie, Lei; Ribárik, Gábor; Ungár, Tamás
2018-04-01
Specimens of cold-rolled zirconium were tensile-deformed along the rolling (RD) and the transverse (TD) directions. The stress-strain curves revealed a strong texture dependence. High resolution X-ray line profile analysis was used to determine the prevailing active slip-systems in the specimens with different textures. The reflections in the X-ray diffraction patterns were separated into two groups. One group corresponds to the major and the other group to the random texture component, respectively. The dislocation densities, the subgrain size and the prevailing active slip-systems were evaluated by using the convolutional multiple whole profile (CMWP) procedure. These microstructure parameters were evaluated separately in the two groups of reflections corresponding to the two different texture components. Significant differences were found in both, the evolution of dislocation densities and the development of the fractions of and
NASA Astrophysics Data System (ADS)
Wu, Cheng-Da; Tsai, Hsing-Wei
2018-06-01
The effect of temperature on the structural evolution of nanocrystalline (NC) and single-crystalline (SC) Au nanowires (NWs) under torsional deformation is studied using molecular dynamics simulations based on the many-body embedded-atom potential. The effect is investigated using common neighbor analysis and discussed in terms of shear strain distribution and atomic flow field. The simulation results show that deformation for NC NWs is mainly driven by the nucleation and propagation of dislocations and the gliding of grain boundaries (GBs) and that for SC NWs is mainly driven by dislocations and the formation of disordered structures. Dislocations for NC and SC NWs easily nucleate at GBs and free surfaces, respectively. For NC NWs, torsional buckling occurs easily at GBs with large gliding. SC NWs have a more uniform and larger elastic deformation under torsion compared to that for NC NWs due to the former's lack of grains. SC NWs have a long period of elastic deformation transforming into plastic deformation. Increasing temperature facilitates stress transmission throughout NWs.
Primary creep deformation behaviors related with lamellar interface in TiAl alloy
NASA Astrophysics Data System (ADS)
Cho, Han Seo; Nam, Soo Woo; Kim, Young-Won
1998-02-01
Constant tensile stress creep tests under the condition of 760 816°C/172 276 MPa in an air environment are conducted, and the microstructural evolution during primary creep deformation at the creep condition of 816°C/172 MPa was observed by transmission electron microscopy (TEM) for the lamellar structured Ti-45. 5Al-2Cr-2.6Nb-0.17W-0.lB-0.2C-0.15Si (at.%) alloy. The amount of creep strain deformed during primary creep stage is considered to be the summation of the strains occurred by gliding of initial dislocations and of newly generated dislocations. Creep rate controlling process within the primary stage seems to be shifting from the initial dislocation climb controlled to the generation of the new dislocations by the phase transformation of 2 to as creep strain increases.
NASA Astrophysics Data System (ADS)
Bollinger, C.; Idrissi, H.; Boioli, F.; Cordier, P.
2015-12-01
There is a growing consensus to recognize that rheological law established for olivine at high-temperature (ca. >1000°C) fail when extrapolated to low temperatures relevant for the lithospheric mantle. Hence it appears necessary to fit rheological laws against data at low temperatures where olivine tends to become more and more brittle. The usual approach consists in applying confining pressure to inhibit brittleness. Here we propose an innovative approach based on the use of very small samples and numerical modelling. New commercial in situ TEM nanotensile testing equipment recently developed by Hysitron.Inc is combined with weak-beam dark-field TEM diffraction contrast imaging in order to obtain information on the elementary mechanisms controlling the plasticity of olivine: namely glide of [001] screw dislocations. The olivine tensile beams dedicated for in situ TEM nanomechanical testing were produced using microfabrication techniques based on MEMS-type procedures. The testing geometry was designed as to induce maximum resolved shear stresses on the [001](110) slip system. Under tensile loads between 2 and 3 GPa, ductile behaviour was reached with the development and propagation of dislocation loops across the sample allowing to measure the velocity of screw and non-screw dislocations as a function of stress. This information is introduced into a numerical model involving Dislocation Dynamics in order to obtain the stress-strain curves describing the mechanical response of olivine single crystals deformed in tension at room temperature.
Mechanical behavior of NiTi arc wires under pseudoelastic cycling and cathodically hydrogen charging
NASA Astrophysics Data System (ADS)
Sarraj, R.; Hassine, T.; Gamaoun, F.
2018-01-01
NiTi wires are mainly used to design orthodontic devices. However, they may be susceptible to a delayed fracture while they are submitted to cyclic loading with the presence of hydrogen in the oral cavity. Hydrogen may cause the embrittlement of the structure, leading to lower ductility and to a change in transformation behavior. The aim of the present study is to predict the NiTi behavior under cyclic loading with hydrogen charging. One the one hand, samples are submitted to superelastic cyclic loading, which results in investigating their performance degradations. On the other hand, after hydrogen charging, cyclic tensile aging tests are carried out on NiTi orthodontic wires at room temperature in the air. During cyclic loading, we notice that the critical stress for the martensite transformation evolves, the residual strain is accumulated in the structure and the hysteresis loop changes. Thus, via this work, we can assume that the embrittlement is due to the diffusion of hydrogen and the generation of dislocations after aging. The evolution of mechanical properties of specimens becomes more significant with hydrogen charging rather than without it.
The Khachaturyan theory of elastic inclusions: Recollections and results
NASA Astrophysics Data System (ADS)
Morris, J. W.
2010-01-01
In keeping with the assignment, this paper has two parts. The first is a personal recollection of my interactions with Professor Armen Khachaturyan since he first visited Berkeley in the 1970s. The second part is a review of the Khachaturyan formulation of the theory of elastic inclusions, with emphasis on results found since his classic monograph on the Theory of Structural Transformations in Solids [Wiley, New York, 1983]. The focus here is on the shapes and habits of coherent inclusions. The basic theory is presented, briefly, to exhibit Khachaturyan's results for the strain and energy within a coherent inclusion and show that the elastic energy is minimal for a thin-plate morphology with a definite habit. The preferred habit of the thin-plate inclusion is then discussed and computed for inclusions with dyadic strain (including the dislocation loop) and coherent inclusions with orthorhombic or simpler symmetry. This is followed by a discussion of the evolution of precipitate shape during coarsening, including the theory of the spontaneous splitting of coarsening precipitates and the development of octahedral or tetrahedral shapes.
Predicting neutron damage using TEM with in situ ion irradiation and computer modeling
NASA Astrophysics Data System (ADS)
Kirk, Marquis A.; Li, Meimei; Xu, Donghua; Wirth, Brian D.
2018-01-01
We have constructed a computer model of irradiation defect production closely coordinated with TEM and in situ ion irradiation of Molybdenum at 80 °C over a range of dose, dose rate and foil thickness. We have reexamined our previous ion irradiation data to assign appropriate error and uncertainty based on more recent work. The spatially dependent cascade cluster dynamics model is updated with recent Molecular Dynamics results for cascades in Mo. After a careful assignment of both ion and neutron irradiation dose values in dpa, TEM data are compared for both ion and neutron irradiated Mo from the same source material. Using the computer model of defect formation and evolution based on the in situ ion irradiation of thin foils, the defect microstructure, consisting of densities and sizes of dislocation loops, is predicted for neutron irradiation of bulk material at 80 °C and compared with experiment. Reasonable agreement between model prediction and experimental data demonstrates a promising direction in understanding and predicting neutron damage using a closely coordinated program of in situ ion irradiation experiment and computer simulation.
Transformations of dislocation martensite in tempering secondary-hardening steel
NASA Astrophysics Data System (ADS)
Gorynin, I. V.; Rybin, V. V.; Malyshevskii, V. A.; Semicheva, T. G.; Sherokhina, L. G.
1999-09-01
Analysis of the evolution of the fine structure of secondary-hardening steel in tempering makes it possible to understand the nature of processes that cause changes in the strength and ductility. They are connected with the changes that occur in the solid solution, the ensemble of disperse segregations of the carbide phase, and the dislocation structure of martensite. These transformations are interrelated, and their specific features are determined by the chemical composition of the steel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhan, Hongyi, E-mail: h.zhan@uq.edu.au; Zeng, Weidong; Wang, Gui
2015-04-15
The microstructural evolution and grain refinement within adiabatic shear bands in the Ti6554 alloy deformed at high strain rates and elevated temperatures have been characterized using transmission electron microscopy. No stress drops were observed in the corresponding stress–strain curve, indicating that the initiation of adiabatic shear bands does not lead to the loss of load capacity for the Ti6554 alloy. The outer region of the shear bands mainly consists of cell structures bounded by dislocation clusters. Equiaxed subgrains in the core area of the shear band can be evolved from the subdivision of cell structures or reconstruction and transverse segmentationmore » of dislocation clusters. It is proposed that dislocation activity dominates the grain refinement process. The rotational recrystallization mechanism may operate as the kinetic requirements for it are fulfilled. The coexistence of different substructures across the shear bands implies that the microstructural evolution inside the shear bands is not homogeneous and different grain refinement mechanisms may operate simultaneously to refine the structure. - Graphical abstract: Display Omitted - Highlights: • The microstructure within the adiabatic shear band was characterized by TEM. • No stress drops were observed in the corresponding stress–strain curve. • Dislocation activity dominated the grain refinement process. • The kinetic requirements for rotational recrystallization mechanism were fulfilled. • Different grain refinement mechanisms operated simultaneously to refine the structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medlin, D. L.; Hattar, K.; Zimmerman, J. A.
Grain boundaries often develop faceted morphologies in systems for which the interfacial free energy depends on the boundary inclination. Although the mesoscale thermodynamic basis for such morphological evolution has been extensively studied, the influence of line defects, such as secondary grain boundary dislocations, on the facet configurations has not been thoroughly explored. In this paper, through a combination of atomistic simulations and electron microscopic observations, we examine in detail the structure of an asymmetric Σ = 5 [001] grain boundary in well-annealed, body-centered cubic (BCC) Fe. The observed boundary forms with a hill-and-valley morphology composed of nanoscale {310} and {210}more » facets. Our analysis clarifies the atomic structure of the {310}/{210} facet junctions and identifies the presence of an array of secondary grain boundary dislocations that are localized to these junctions. Analysis of the Burgers vectors of the grain boundary dislocations, which are of type (1/5)<310> and (1/5)<120>, shows that the defect density is consistent with that required to accommodate a small observed angular deviation from the exact Σ = 5 orientation relationship. As a result, these observations and analysis suggest a crucial role for secondary grain boundary dislocations in dictating the length-scale of grain boundary facets, a consideration which has not been included in prior analyses of facet evolution and equilibrium facet length.« less
Medlin, D. L.; Hattar, K.; Zimmerman, J. A.; ...
2016-11-16
Grain boundaries often develop faceted morphologies in systems for which the interfacial free energy depends on the boundary inclination. Although the mesoscale thermodynamic basis for such morphological evolution has been extensively studied, the influence of line defects, such as secondary grain boundary dislocations, on the facet configurations has not been thoroughly explored. In this paper, through a combination of atomistic simulations and electron microscopic observations, we examine in detail the structure of an asymmetric Σ = 5 [001] grain boundary in well-annealed, body-centered cubic (BCC) Fe. The observed boundary forms with a hill-and-valley morphology composed of nanoscale {310} and {210}more » facets. Our analysis clarifies the atomic structure of the {310}/{210} facet junctions and identifies the presence of an array of secondary grain boundary dislocations that are localized to these junctions. Analysis of the Burgers vectors of the grain boundary dislocations, which are of type (1/5)<310> and (1/5)<120>, shows that the defect density is consistent with that required to accommodate a small observed angular deviation from the exact Σ = 5 orientation relationship. As a result, these observations and analysis suggest a crucial role for secondary grain boundary dislocations in dictating the length-scale of grain boundary facets, a consideration which has not been included in prior analyses of facet evolution and equilibrium facet length.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhangwei; Baker, Ian; Cai, Zhonghou
2016-11-01
A systematic study of the effects of up to 1.1 at. % carbon on the mechanical properties and evolution of the dislocation substructure in a series of a high entropy alloys (HEA) based on Fe40.4Ni11.3Mn34.8Al7.5Cr6 is presented. Transmission electron microscopy (TEM), synchrotron X-ray diffraction (XRD) and atom probe tomography (APT) were used to show that all the alloys are single-phase f.c.c. random solid solutions. The lattice constant, determined from synchrotron XRD measurements, increases linearly with increasing carbon concentration, which leads to a linear relationship between the yield strength and the carbon concentration. The dislocation substructures, as determined by a TEM,more » show a transition from wavy slip to planar slip and, at higher strains, and from cell-forming structure (dislocations cells, cell blocks and dense dislocation walls) to non-cell forming structure (Taylor lattice, microbands and domain boundaries) with the addition of carbon, features related to the increase in lattice friction stress. The stacking fault energy (measured via weak-beam imaging of the separation of dislocation partials) decreases with increasing carbon content, which also contributes to the transition from wavy slip to planar slip. The formation of non-cell forming structure induced by carbon leads to a high degree of strain hardening and a substantial increase in the ultimate tensile strength. The consequent postponement of necking due to the high strain hardening, along with the plasticity accommodation arising from the formation of microbands and domain boundaries, result in an increase of ductility due to the carbon addition. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.« less
NASA Astrophysics Data System (ADS)
Kim, H. J.; Zhao, Z. M.; Xie, Y. H.
2003-11-01
Three-stage nucleation and growth of Ge self-assembled quantum dots (SAQDs) on a relaxed SiGe buffer layer has been studied. Plastic relaxation of the SiGe buffer layer is associated with a network of buried 60° dislocations leading to an undulating strain field. As a result, the surface possesses three different types of sites for the nucleation and growth of Ge SAQDs: over the intersection of two perpendicular buried dislocations, over a single dislocation line, and in the region beyond one diffusion length away from any dislocation. Ge SAQDs are observed to nucleate exclusively over the dislocation intersections first, followed by over single dislocation lines, and finally in the region far away from dislocations. By increasing the Ge coverage at a slow rate, the prenucleation stage at the various sites is observed. It appears that the varying strain field has a significant effect on both the diffusion of Ge adatoms before SAQD nucleation, as well as the shape evolution of the SAQDs after they form. Moreover, two distinctly different self-assembly mechanisms are observed at different sites. There exist denuded zones free of Ge SAQDs adjacent to dislocation lines. The width of the denuded zone can be used to make direct determination of the Ge adatom diffusion lengths. The partially relaxed substrate provides a useful experimental vehicle for the in-depth understanding of the formation mechanism of SAQDs grown epitaxially in the Stranski-Krastanov growth mode.
Modeling plastic deformation of post-irradiated copper micro-pillars
NASA Astrophysics Data System (ADS)
Crosby, Tamer; Po, Giacomo; Ghoniem, Nasr M.
2014-12-01
We present here an application of a fundamentally new theoretical framework for description of the simultaneous evolution of radiation damage and plasticity that can describe both in situ and ex situ deformation of structural materials [1]. The theory is based on the variational principle of maximum entropy production rate; with constraints on dislocation climb motion that are imposed by point defect fluxes as a result of irradiation. The developed theory is implemented in a new computational code that facilitates the simulation of irradiated and unirradiated materials alike in a consistent fashion [2]. Discrete Dislocation Dynamics (DDD) computer simulations are presented here for irradiated fcc metals that address the phenomenon of dislocation channel formation in post-irradiated copper. The focus of the simulations is on the role of micro-pillar boundaries and the statistics of dislocation pinning by stacking-fault tetrahedra (SFTs) on the onset of dislocation channel and incipient surface crack formation. The simulations show that the spatial heterogeneity in the distribution of SFTs naturally leads to localized plastic deformation and incipient surface fracture of micro-pillars.
Effect of strain rate and dislocation density on the twinning behavior in Tantalum
Florando, Jeffrey N.; El-Dasher, Bassem S.; Chen, Changqiang; ...
2016-04-28
The conditions which affect twinning in tantalum have been investigated across a range of strain rates and initial dislocation densities. Tantalum samples were subjected to a range of strain rates, from 10 –4/s to 10 3/s under uniaxial stress conditions, and under laser-induced shock-loading conditions. In this study, twinning was observed at 77K at strain rates from 1/s to 103/s, and during laser-induced shock experiments. The effect of the initial dislocation density, which was imparted by deforming the material to different amounts of pre-strain, was also studied, and it was shown that twinning is suppressed after a given amount ofmore » pre-strain, even as the global stress continues to increase. These results indicate that the conditions for twinning cannot be represented solely by a critical global stress value, but are also dependent on the evolution of the dislocation density. Additionally, the analysis shows that if twinning is initiated, the nucleated twins may continue to grow as a function of strain, even as the dislocation density continues to increase.« less
Turcotte, Martin M; Reznick, David N; Daniel Hare, J
2013-05-01
An eco-evolutionary feedback loop is defined as the reciprocal impacts of ecology on evolutionary dynamics and evolution on ecological dynamics on contemporary timescales. We experimentally tested for an eco-evolutionary feedback loop in the green peach aphid, Myzus persicae, by manipulating initial densities and evolution. We found strong evidence that initial aphid density alters the rate and direction of evolution, as measured by changes in genotype frequencies through time. We also found that evolution of aphids within only 16 days, or approximately three generations, alters the rate of population growth and predicts density compared to nonevolving controls. The impact of evolution on population dynamics also depended on density. In one evolution treatment, evolution accelerated population growth by up to 10.3% at high initial density or reduced it by up to 6.4% at low initial density. The impact of evolution on population growth was as strong as or stronger than that caused by a threefold change in intraspecific density. We found that, taken together, ecological condition, here intraspecific density, alters evolutionary dynamics, which in turn alter concurrent population growth rate (ecological dynamics) in an eco-evolutionary feedback loop. Our results suggest that ignoring evolution in studies predicting population dynamics might lead us to over- or underestimate population density and that we cannot predict the evolutionary outcome within aphid populations without considering population size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Guozheng, E-mail: guozhengkang@home.swjtu.edu.cn; Dong, Yawei; Liu, Yujie
The uniaxial ratchetting of Ti–6Al–4V alloy with two phases (i.e., primary hexagonal close packed (HCP) α and secondary body-centered cubic (BCC) β phases) was investigated by macroscopic and microscopic experiments at room temperature. Firstly, the effects of cyclic softening/hardening feature, applied mean stress and stress amplitude on the uniaxial ratchetting of the alloy were discussed. The macroscopic investigation of Ti–6Al–4V alloy presents obvious strain-amplitude-dependent cyclic softening, as well as a three-staged evolution curve with regard to the ratchetting strain rate. The ratchetting depends greatly on the applied mean stress and stress amplitude while the ratchetting strain increases with the increasingmore » applied mean stress and stress amplitude. Then, the evolution of dislocation patterns and deformation twinning during the uniaxial ratchetting of two-phase Ti–6Al–4V alloy were observed using transmission electron microscopy (TEM). The microscopic observation shows that deformation twinning occurs in the primary α phase and its amount increases gradually during the uniaxial ratchetting. Simultaneously, the planar dislocation evolves from discrete lines to some dislocation nets and parallel lines with the increasing number of cycles. The deformation twinning in the primary α phase is one of main contributions to the uniaxial ratchetting of Ti–6Al–4V alloy, and should be considered in the construction of corresponding constitutive model. - Highlights: • A three-staged ratchetting occurs in the stress-controlled cyclic tests of Ti–6Al–4V alloy. • Dislocation patterns change from discrete lines to nets and parallel lines. • Deformation twinning occurs during the uniaxial ratchetting. • Both dislocation slipping and twinning are the causes of ratchetting.« less
NASA Astrophysics Data System (ADS)
Lantreibecq, A.; Legros, M.; Plassat, N.; Monchoux, J. P.; Pihan, E.
2018-02-01
The PV properties of wafers processed from Cz-seeded directionally solidified silicon ingots suffer from variable structural defects. In this study, we draw an overview on the types of structural defects encountered in the specific case of full 〈1 0 0〉 oriented growth. We found micro twins, background dislocations, and subgrains boundaries. We discuss the possible links between thermomechanical stresses and growth processes with spatial evolution of both background dislocation densities and subgrain boundaries length.
2015-01-01
still necessary. One such model that could bridge this gap is discrete dis- location dynamics ( DDD ) simulations, in which both the time- and length-scale...limitations from atomic simulations are greatly reduced. Over the past two decades, two-dimen- sional (2D) and three-dimensional (3D) DDD methods have...dislocation ensem- bles according to physics-based rules [27–34]. The physics that can be incorporated in DDD simulations can range http://dx.doi.org
NASA Astrophysics Data System (ADS)
Zhang, Shiying; Xiu, Xiangqian; Xu, Qingjun; Li, Yuewen; Hua, Xuemei; Chen, Peng; Xie, Zili; Liu, Bin; Zhou, Yugang; Han, Ping; Zhang, Rong; Zheng, Youdou
2016-12-01
GaN pyramid arrays have been successfully synthesized by selective photo-assisted chemical etching in a K2S2O8/KOH solution. A detailed analysis of time evolution of surface morphology has been conducted, which describes an etching process of GaN pyramids. Room temperature cathodoluminescence images indicate that these pyramids are composed of crystalline GaN surrounding dislocations, which is caused by the greater recombination rate of electrons and holes at dislocation than that of crystalline GaN. The Raman results show a stress relaxation in GaN pyramids compared with unetched GaN. The optical property of both unetched GaN and GaN pyramids has been studied by photoluminescence. The formation mechanism and feature of GaN pyramids are also rationally explained.
Dupraz, Maxime; Beutier, Guillaume; Rodney, David; Mordehai, Dan; Verdier, Marc
2015-06-01
Crystal defects induce strong distortions in diffraction patterns. A single defect alone can yield strong and fine features that are observed in high-resolution diffraction experiments such as coherent X-ray diffraction. The case of face-centred cubic nanocrystals is studied numerically and the signatures of typical defects close to Bragg positions are identified. Crystals of a few tens of nanometres are modelled with realistic atomic potentials and 'relaxed' after introduction of well defined defects such as pure screw or edge dislocations, or Frank or prismatic loops. Diffraction patterns calculated in the kinematic approximation reveal various signatures of the defects depending on the Miller indices. They are strongly modified by the dissociation of the dislocations. Selection rules on the Miller indices are provided, to observe the maximum effect of given crystal defects in the initial and relaxed configurations. The effect of several physical and geometrical parameters such as stacking fault energy, crystal shape and defect position are discussed. The method is illustrated on a complex structure resulting from the simulated nanoindentation of a gold nanocrystal.
Dupraz, Maxime; Beutier, Guillaume; Rodney, David; Mordehai, Dan; Verdier, Marc
2015-01-01
Crystal defects induce strong distortions in diffraction patterns. A single defect alone can yield strong and fine features that are observed in high-resolution diffraction experiments such as coherent X-ray diffraction. The case of face-centred cubic nanocrystals is studied numerically and the signatures of typical defects close to Bragg positions are identified. Crystals of a few tens of nanometres are modelled with realistic atomic potentials and ‘relaxed’ after introduction of well defined defects such as pure screw or edge dislocations, or Frank or prismatic loops. Diffraction patterns calculated in the kinematic approximation reveal various signatures of the defects depending on the Miller indices. They are strongly modified by the dissociation of the dislocations. Selection rules on the Miller indices are provided, to observe the maximum effect of given crystal defects in the initial and relaxed configurations. The effect of several physical and geometrical parameters such as stacking fault energy, crystal shape and defect position are discussed. The method is illustrated on a complex structure resulting from the simulated nanoindentation of a gold nanocrystal. PMID:26089755
NASA Astrophysics Data System (ADS)
Jiang, Shaoning; Wang, Zhiming
2018-03-01
The effect of post-irradiation annealing on the microstructures and mechanical properties of V-4Cr-4Ti alloys was studied. Helium-hydrogen-irradiated sequentially V-4Cr-4Ti alloys at room temperature (RT) were undergone post-irradiation annealing at 450 °C over periods of up to 30 h. These samples were carried out by high-resolution transmission electron microscopy (HRTEM) observation and nanoindentation test. With the holding time, large amounts of point defects produced during irradiation at RT accumulated into large dislocation loops and then dislocation nets which promoted the irradiation hardening. Meanwhile, bubbles appeared. As annealing time extended, these bubbles grew up and merged, and finally broke up. In the process, the size of bubbles increased and the number density decreased. Microstructural changes due to post-irradiation annealing corresponded to the change of hardening. Dislocations and bubbles are co-contributed to irradiation hardening. With the holding time up to 30 h, the recovery of hardening is not obvious. The phenomenon was discussed by dispersed barrier hardening model and Friedel-Kroupa-Hirsch relationship.
Arya, Preeti; Acharya, Vishal
2018-02-01
STAND P-loop NTPase is the common weapon used by plant and other organisms from all three kingdoms of life to defend themselves against pathogen invasion. The purpose of this study is to review comprehensively the latest finding of plant STAND P-loop NTPase related to their genomic distribution, evolution, and their mechanism of action. Earlier, the plant STAND P-loop NTPase known to be comprised of only NBS-LRRs/AP-ATPase/NB-ARC ATPase. However, recent finding suggests that genome of early green plants comprised of two types of STAND P-loop NTPases: (1) mammalian NACHT NTPases and (2) NBS-LRRs. Moreover, YchF (unconventional G protein and members of P-loop NTPase) subfamily has been reported to be exceptionally involved in biotic stress (in case of Oryza sativa), thereby a novel member of STAND P-loop NTPase in green plants. The lineage-specific expansion and genome duplication events are responsible for abundance of plant STAND P-loop NTPases; where "moderate tandem and low segmental duplication" trajectory followed in majority of plant species with few exception (equal contribution of tandem and segmental duplication). Since the past decades, systematic research is being investigated into NBS-LRR function supported the direct recognition of pathogen or pathogen effectors by the latest models proposed via 'integrated decoy' or 'sensor domains' model. Here, we integrate the recently published findings together with the previous literature on the genomic distribution, evolution, and distinct models proposed for functional molecular mechanism of plant STAND P-loop NTPases.
Current Status of the Quality of 4H-SiC Substrates and Epilayers for Power Device Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudley, M.; Wang, H.; Guo, Jianqiu
ABSTRACT Interfacial dislocations (IDs) and half-loop arrays (HLAs) present in the epilayers of 4H-SiC crystal are known to have a deleterious effect on device performance. Synchrotron X-ray Topography studies carried out on n-type 4H-SiC offcut wafers before and after epitaxial growth show that in many cases BPD segments in the substrate are responsible for creating IDs and HLAs during CVD growth. This paper reviews the behaviors of BPDs in the substrate during the epitaxial growth in different cases: (1) screw-oriented BPD segments intersecting the surface replicate directly through the interface during the epitaxial growth and take part in stress relaxationmore » process by creating IDs and HLAs (Matthews-Blakeslee model [1] ); (2) non-screw oriented BPD half loop intersecting the surface glides towards and replicates through the interface, while the intersection points convert to threading edge dislocations (TEDs) and pin the half loop, leaving straight screw segments in the epilayer and then create IDs and HLAs; (3) edge oriented short BPD segments well below the surface get dragged towards the interface during epitaxial growth, leaving two long screw segments in their wake, some of which replicate through the interface and create IDs and HLAs. The driving force for the BPDs to glide toward the interface is thermal stress and driving force for the relaxation process to occur is the lattice parameter difference at growth temperature which results from the doping concentration difference between the substrate and epilayer.« less
Coronal Loop Evolution Observed with AIA and Hi-C
NASA Technical Reports Server (NTRS)
Mulu-Moore, Fana; Winebarger, A.; Cirtain, J.; Kobayashi, K.; Korreck, K.; Golub, L.; Kuzin. S.; Walsh, R.; DeForest, C.; DePontieu, B.;
2012-01-01
Despite much progress toward understanding the dynamics of the solar corona, the physical properties of coronal loops are not yet fully understood. Recent investigations and observations from different instruments have yielded contradictory results about the true physical properties of coronal loops. In the past, the evolution of loops has been used to infer the loop substructure. With the recent launch of High Resolution Coronal Imager (Hi-C), this inference can be validated. In this poster we discuss the first results of loop analysis comparing AIA and Hi-C data. We find signatures of cooling in a pixel selected along a loop structure in the AIA multi-filter observations. However, unlike previous studies, we find that the cooling time is much longer than the draining time. This is inconsistent with previous cooling models.
Extreme Response in Tension and Compression of Tantalum
NASA Astrophysics Data System (ADS)
Remington, Tane Perry
This research on a model bcc metal, tantalum, has three components: the study of tensile failure; defects generated under a nanoindenter; and dislocation velocities in an extreme regime generated by pulsed lasers. The processes of dynamic failure by spalling were established in nano, poly, and mono crystalline tantalum in recovery experiments following laser compression and release. The process of spall was characterized by different techniques: optical microscopy, scanning electron microscopy, microcomputerized tomography and electron backscatter diffraction. Additionally, the pull back signal was measured by VISAR and the pressure decay was compared with HYADES simulations. There are clear differences in the microscopic fracture mechanisms, dictated by the grain sizes. In the nano and poly crystals, spalling occurred by ductile fracture favoring grain boundaries. In the monocrystals, grain boundaries are absent, and the process was of ductile failure by void initiation, growth and coalescence. The spall strength of single crystalline tantalum was higher than the poly and nano crystals. It was experimentally confirmed that spall strength in tantalum increases with strain rate. In order to generate dislocations close to the surface, single crystalline tantalum with orientations (100), (110) and (111) was nanoindented with a Berkovich tip. Atomic force microscopy showed pile-ups of dislocations around the perimeter of the nanoindentations. Sections of nanoindentations were focused ion beam cut into transmission electron microscope foils. The mechanisms of deformation under a nanoindentation in tantalum were identified and quantified. Molecular dynamics simulations were conducted and the simulated plastic deformation proceeds by the formation of nanotwins, which rapidly evolve into shear dislocation loops. Dislocation densities under the indenter were estimated experimentally (~1.2 x 1015 m-2), by MD (~7 x1015 m-2) and through an analytical calculation (2.6--19 x10 15 m-2). Considering the assumptions and simplifications, this agreement is considered satisfactory. These indented crystals were subjected to shock compression and the results are being analyzed with the objective of establishing the velocities of dislocations. A novel technique to establish dislocation velocities is being tested. It consists of subjecting tantalum containing a matrix of nanoindentations to shock compression for post shock characterization enabling the determination of mean dislocation displacements.
Microstructure evolution of T91 irradiated in the BOR60 fast reactor
NASA Astrophysics Data System (ADS)
Jiao, Z.; Taller, S.; Field, K.; Yeli, G.; Moody, M. P.; Was, G. S.
2018-06-01
Microstructures of T91 neutron irradiated in the BOR60 reactor at five temperatures between 376 °C and 524 °C to doses between 15.4 and 35.1 dpa were characterized using transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), and atom probe tomography (APT). Type a<100> dislocation loops were observed at 376-415 °C and network dislocations dominated at 460 °C and 524 °C. Cavities appeared in a bimodal distribution with a high density of small bubbles less than 2 nm at irradiation temperatures between 376 °C and 415 °C. Small bubbles were also observed at 460 °C and 524 °C but cavities greater than 2 nm were absent. Enrichment of Cr, Ni, and Si at the grain boundary was observed at all irradiation temperatures. Radiation-induced segregation (RIS) of Cr, Ni and Si appeared to saturate at 17.1 dpa and 376 °C. The temperature dependence of RIS of Cr, Ni and Si at the grain boundary, which showed a peak Cr enrichment temperature of 460 °C and a lower peak Ni and Si enrichment temperature of ∼400 °C, was consistent with observations of RIS of Cr in proton irradiated T91, suggesting that the same RIS mechanism may also apply to BOR60 irradiated T91. G-phase and Cu-rich precipitates were observed at 376-415 °C but were absent at 460 °C and 524 °C. The absence of G-phase at 524 °C could be related to the minimal segregation of Ni and Si in that condition.
Microstructure evolution of T91 irradiated in the BOR60 fast reactor
Jiao, Z.; Taller, S.; Field, K.; ...
2018-03-14
In this paper, microstructures of T91 neutron irradiated in the BOR60 reactor at five temperatures between 376 °C and 524 °C to doses between 15.4 and 35.1 dpa were characterized using transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), and atom probe tomography (APT). Type a<100> dislocation loops were observed at 376–415 °C and network dislocations dominated at 460 °C and 524 °C. Cavities appeared in a bimodal distribution with a high density of small bubbles less than 2 nm at irradiation temperatures between 376 °C and 415 °C. Small bubbles were also observed at 460 °C and 524more » °C but cavities greater than 2 nm were absent. Enrichment of Cr, Ni, and Si at the grain boundary was observed at all irradiation temperatures. Radiation-induced segregation (RIS) of Cr, Ni and Si appeared to saturate at 17.1 dpa and 376 °C. The temperature dependence of RIS of Cr, Ni and Si at the grain boundary, which showed a peak Cr enrichment temperature of 460 °C and a lower peak Ni and Si enrichment temperature of ~400 °C, was consistent with observations of RIS of Cr in proton irradiated T91, suggesting that the same RIS mechanism may also apply to BOR60 irradiated T91. G-phase and Cu-rich precipitates were observed at 376–415 °C but were absent at 460 °C and 524 °C. Finally, the absence of G-phase at 524 °C could be related to the minimal segregation of Ni and Si in that condition.« less
Microstructure evolution of T91 irradiated in the BOR60 fast reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Z.; Taller, S.; Field, K.
In this paper, microstructures of T91 neutron irradiated in the BOR60 reactor at five temperatures between 376 °C and 524 °C to doses between 15.4 and 35.1 dpa were characterized using transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), and atom probe tomography (APT). Type a<100> dislocation loops were observed at 376–415 °C and network dislocations dominated at 460 °C and 524 °C. Cavities appeared in a bimodal distribution with a high density of small bubbles less than 2 nm at irradiation temperatures between 376 °C and 415 °C. Small bubbles were also observed at 460 °C and 524more » °C but cavities greater than 2 nm were absent. Enrichment of Cr, Ni, and Si at the grain boundary was observed at all irradiation temperatures. Radiation-induced segregation (RIS) of Cr, Ni and Si appeared to saturate at 17.1 dpa and 376 °C. The temperature dependence of RIS of Cr, Ni and Si at the grain boundary, which showed a peak Cr enrichment temperature of 460 °C and a lower peak Ni and Si enrichment temperature of ~400 °C, was consistent with observations of RIS of Cr in proton irradiated T91, suggesting that the same RIS mechanism may also apply to BOR60 irradiated T91. G-phase and Cu-rich precipitates were observed at 376–415 °C but were absent at 460 °C and 524 °C. Finally, the absence of G-phase at 524 °C could be related to the minimal segregation of Ni and Si in that condition.« less
Implications of Grain Size Evolution for the Effective Stress Exponent in Ice
NASA Astrophysics Data System (ADS)
Behn, M. D.; Goldsby, D. L.; Hirth, G.
2016-12-01
Viscous flow in ice has typically been described by the Glen law—a non-Newtonian, power-law relationship between stress and strain-rate with a stress exponent n 3. The Glen law is attributed to grain-size-insensitive dislocation creep; however, laboratory and field studies demonstrate that deformation in ice is strongly dependent on grain size. This has led to the hypothesis that at sufficiently low stresses, ice flow is controlled by grain boundary sliding [1], which explicitly incorporates the grain-size dependence of ice rheology. Yet, neither dislocation creep (n 4), nor grain boundary sliding (n 1.8), have stress exponents that match the value of n 3 for the Glen law. Thus, although the Glen law provides an approximate description of ice flow in glaciers and ice sheets, its functional form cannot be explained by a single deformation mechanism. Here we seek to understand the origin of the n 3 dependence of the Glen law through a new model for grain-size evolution in ice. In our model, grain size evolves in response to the balance between dynamic recrystallization and grain growth. To simulate these processes we adapt the "wattmeter" [2], originally developed within the solid-Earth community to quantify grain size in crustal and mantle rocks. The wattmeter posits that grain size is controlled by a balance between the mechanical work required for grain growth and dynamic grain size reduction. The evolution of grain size in turn controls the relative contributions of dislocation creep and grain boundary sliding, and thus the effective stress exponent for ice flow. Using this approach, we first benchmark our grain size evolution model on experimental data and then calculate grain size in two end-member scenarios: (1) as a function of depth within an ice-sheet, and (2) across an ice-stream margin. We show that the calculated grain sizes match ice core observations for the interior of ice sheets. Furthermore, owing to the influence of grain size on strain rate, the variation in grain size with deformation conditions results in an effective stress exponent intermediate between grain boundary sliding and dislocation creep. [1] Goldsby & Kohlstedt, JGR, 2001; [2] Austin & Evans, Geology, 1997
The coupling technique: A two-wave acoustic method for the study of dislocation dynamics
NASA Astrophysics Data System (ADS)
Gremaud, G.; Bujard, M.; Benoit, W.
1987-03-01
Progress in the study of dislocation dynamics has been achieved using a two-wave acoustic method, which has been called the coupling technique. In this method, the attenuation α and the velocity v of ultrasonic waves are measured in a sample submitted simultaneously to a harmonic stress σ of low frequency. Closed curves Δα(σ) and Δv/v(σ) are drawn during each cycle of the applied stress. The shapes of these curves and their evolution are characteristic of each dislocation motion mechanism which is activated by the low-frequency applied stress. For this reason, the closed curves Δα(σ) and Δv/v(σ) can be considered as signatures of the interaction mechanism which controls the low-frequency dislocation motion. In this paper, the concept of signature is presented and explained with some experimental examples. It will also be shown that theoretical models can be developed which explain very well the experimental results.
NASA Astrophysics Data System (ADS)
Kundu, Amrita; Field, David P.
2018-06-01
Measurement of geometrically necessary dislocation (GND) density using electron backscatter diffraction (EBSD) has become rather common place in modern metallurgical research. The utility of this measure as an indicator of the expected flow behavior of the material is not obvious. Incorporation of total dislocation density into the Taylor equation relating flow stress to dislocation density is generally accepted, but this does not automatically extend to a similar relationship for the GND density. This is discussed in the present work using classical equations for isotropic metal plasticity in a rather straight-forward theoretical framework. This investigation examines the development of GND structure in a commercially produced interstitial free steel subject to tensile deformation. Quantification of GND density was carried out using conventional EBSD at various strain levels on the surface of a standard dog-bone-shaped tensile specimen. There is linear increase of the average GND density with imposed macroscopic strain. This is in agreement with the established framework.
Edge facet dynamics during the growth of heavily doped n-type silicon by the Czochralski-method
NASA Astrophysics Data System (ADS)
Stockmeier, L.; Kranert, C.; Raming, G.; Miller, A.; Reimann, C.; Rudolph, P.; Friedrich, J.
2018-06-01
During the growth of [0 0 1]-oriented, heavily n-type doped silicon crystals by the Czochralski (CZ) method dislocation formation occurs frequently which leads to a reduction of the crystal yield. In this publication the evolution of the solid-liquid interface and the formation of the {1 1 1} edge facets are analyzed on a microscopic scale as possible reason for dislocation formation in heavily n-type doped [0 0 1]-oriented CZ crystals. A correlation between the length of the {1 1 1} edge facets and the curvature of the interface is found. They ultimately promote supercooled areas and interrupted growth kinetics, which increase the probability for dislocation formation at the boundary between the {1 1 1} edge facets and the atomically rough interface.
The application of an atomistic J-integral to a ductile crack.
Zimmerman, Jonathan A; Jones, Reese E
2013-04-17
In this work we apply a Lagrangian kernel-based estimator of continuum fields to atomic data to estimate the J-integral for the emission dislocations from a crack tip. Face-centered cubic (fcc) gold and body-centered cubic (bcc) iron modeled with embedded atom method (EAM) potentials are used as example systems. The results of a single crack with a K-loading compare well to an analytical solution from anisotropic linear elastic fracture mechanics. We also discovered that in the post-emission of dislocations from the crack tip there is a loop size-dependent contribution to the J-integral. For a system with a finite width crack loaded in simple tension, the finite size effects for the systems that were feasible to compute prevented precise agreement with theory. However, our results indicate that there is a trend towards convergence.
Effect of strain rate and dislocation density on the twinning behavior in tantalum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Florando, Jeffrey N., E-mail: florando1@llnl.gov; Swift, Damian C.; Barton, Nathan R.
2016-04-15
The conditions which affect twinning in tantalum have been investigated across a range of strain rates and initial dislocation densities. Tantalum samples were subjected to a range of strain rates, from 10{sup −4}/s to 10{sup 3}/s under uniaxial stress conditions, and under laser-induced shock-loading conditions. In this study, twinning was observed at 77 K at strain rates from 1/s to 10{sup 3}/s, and during laser-induced shock experiments. The effect of the initial dislocation density, which was imparted by deforming the material to different amounts of pre-strain, was also studied, and it was shown that twinning is suppressed after a givenmore » amount of pre-strain, even as the global stress continues to increase. These results indicate that the conditions for twinning cannot be represented solely by a critical global stress value, but are also dependent on the evolution of the dislocation density. In addition, the analysis shows that if twinning is initiated, the nucleated twins may continue to grow as a function of strain, even as the dislocation density continues to increase.« less
New mesoscopic constitutive model for deformation of pearlitic steels up to moderate strains
NASA Astrophysics Data System (ADS)
Alkorta, J.; Martínez-Esnaola, J. M.; de Jaeger, P.; Gil Sevillano, J.
2017-07-01
A new constitutive model for deformation of pearlitic steels has been developed that describes the mechanical behaviour and microstructural evolution of lamellar multi-colony pearlite. The model, a two-phase continuum model, considers the plastic anisotropy of ferrite derived from its lamellar structure but ignores any anisotropy associated with cementite and does not consider the crystal structure of either constituent. The resulting plastic constitutive equation takes into account a dependence on both the pearlitic spacing (arising from the confined slip of dislocations in the lamellae) and on strengthening from the evolving intra-lamellar dislocation density. A Kocks-Mecking strain hardening/recovery model is used for the lamellar ferrite, whereas perfect-plastic behaviour is assumed for cementite. The model naturally captures the microstructural evolution and the internal micro-stresses developed due to the different mechanical behaviour of both phases. The model is also able to describe the lamellar evolution (orientation and interlamellar spacing) with good accuracy. The role of plastic anisotropy in the ferritic phase has also been studied, and the results show that anisotropy has an important impact on both microstructural evolution and strengthening of heavily drawn wires.
Strength and Dislocation Structure Evolution of Small Metals under Vibrations
NASA Astrophysics Data System (ADS)
Ngan, Alfonso
2015-03-01
It is well-known that ultrasonic vibration can soften metals, and this phenomenon has been widely exploited in industrial applications concerning metal forming and bonding. In this work, we explore the effects of a superimposed small oscillatory load on metal plasticity, from the nano- to macro-size range, and from audible to ultrasonic frequency ranges. Macroscopic and nano-indentation were performed on aluminum, copper and molybdenum, and the results show that the simultaneous application of oscillatory stresses can lower the hardness of these samples. More interestingly, EBSD and TEM observations show that subgrain formation and reduction in dislocation density generally occurred when stress oscillations were applied. These findings point to an important knowledge gap in metal plasticity - the existing understanding of ultrasound softening in terms of the vibrations either imposing additional stress waves to augment the quasi-static applied load, or heating up the metal, whereas the metal's intrinsic deformation resistance or dislocation interactive processes are assumed unaltered by the ultrasound, is proven wrong by the present results. Furthermore, in the case of nanoindentation, the Continuous Stiffness Measurement technique for contact stiffness measurement assumes that the imposed signal-carrier oscillations do not intrinsically alter the material properties of the specimen, and again, the present results prove that this can be wrong. To understand the enhanced subgrain formation and dislocation annihilation, Discrete Dislocation Dynamics (DDD) simulations were carried out and these show that when an oscillatory stress is superimposed on a quasi-static applied stress, reversals of motion of dislocations may occur, and these allow the dislocations to revisit repeatedly suitable configurations for annihilation. DDD, however, was unable to predict the observed subgrain formation presumably because the number of dislocations that can be handled is not large enough. Subgrain formation was directly predicted by a new simulation method of dislocation plasticity based on the dynamics of dislocation density functions.
Evolution of Radiation Induced Defects in SiC: A Multiscale Simulation Approach
NASA Astrophysics Data System (ADS)
Jiang, Hao
Because of various excellent properties, SiC has been proposed for many applications in nuclear reactors including cladding layers in fuel rod, fission products container in TRISO fuel, and first wall/blanket in magnetic controlled fusion reactors. Upon exposure to high energy radiation environments, point defects and defect clusters are generated in materials in amounts significantly exceeding their equilibrium concentrations. The accumulation of defects can lead to undesired consequences such as crystalline-to-amorphous transformation1, swelling, and embrittlement, and these phenomena can adversely affect the lifetime of SiC based components in nuclear reactors. It is of great importance to understand the accumulation process of these defects in order to estimate change in properties of this material and to design components with superior ability to withstand radiation damages. Defect clusters are widely in SiC irradiated at the operation temperatures of various reactors. These clusters are believed to cause more than half of the overall swelling of irradiated SiC and can potentially lead to lowered thermal conductivity and mechanical strength. It is critical to understand the formation and growth of these clusters. Diffusion of these clusters is one importance piece to determine the growth rate of clusters; however it is unclear so far due to the challenges in simulating rare events. Using a combination of kinetic Activation Relaxation Technique with empirical potential and ab initio based climbing image nudged elastic band method, I performed an extensive search of the migration paths of the most stable carbon tri-interstitial cluster in SiC. This research reveals paths with the lowest energy barriers to migration, rotation, and dissociation of the most stable cluster. Based on these energy barriers, I concluded defect clusters are thermally immobile at temperatures lower than 1500 K and can dissociate into smaller clusters and single interstitials at temperatures beyond that. Even though clusters cannot diffuse by thermal vibrations, we found they can migrate at room temperature under the influence of electron radiation. This is the first direct observation of radiation-induced diffusion of defect clusters in bulk materials. We show that the underlying mechanism of this athermal diffusion is elastic collision between incoming electrons and cluster atoms. Our findings suggest that defect clusters may be mobile under certain irradiation conditions, changing current understanding of cluster annealing process in irradiated SiC. With the knowledge of cluster diffusion in SiC demonstrated in this thesis, we now become able to predict cluster evolution in SiC with good agreement with experimental measurements. This ability can enable us to estimate changes in many properties of irradiated SiC relevant for its applications in reactors. Internal interfaces such as grain boundaries can behave as sinks to radiation induced defects. The ability of GBs to absorb, transport, and annihilate radiation-induced defects (sink strength) is important to understand radiation response of polycrystalline materials and to better design interfaces for improved resistance to radiation damage. Nowadays, it is established GBs' sink strength is not a static property but rather evolves with many factors, including radiation environments, grain size, and GB microstructure. In this thesis, I investigated the response of small-angle tilt and twist GBs to point defects fluxes in SiC. First of all, I found the pipe diffusion of interstitials in tilt GBs is slower than bulk diffusion. This is because the increased interatomic distance at dislocation cores raises the migration barrier of interstitial dumbbells. Furthermore, I show that both the annihilation of interstitials at jogs and jog nucleation from clusters are diffusion-controlled and can occur under off-stoichiometric interstitial fluxes. Finally, a dislocation line model is developed to predict the role of tilt GBs in annihilating radiation damage. The model predicts the role of tilt GBs in annihilating defects depends on the rate of defects segregation to and diffusion along tilt GBs. Tilt GBs mainly serve as diffusion channel for defects to reach other sinks when defect diffusivity is high at boundaries. When defect diffusivity is low, most of the defects segregated to tilt GBs are annihilated by dislocation climb. Up-to-date, the response of twist GBs under irradiation has been rarely reported in literature and is still unclear. It is important to develop atom scale insight on this question in order to predict twist GBs' sink strength for a better understanding of radiation response of polycrystalline materials. By using a combination of molecular dynamics and grand canonical Monte Carlo, here I demonstrate the defect kinetics in {001} and {111} twist GBs and the microstructural evolution of these GBs under defect fluxes in SiC. I found due to the deep potential well for interstitials at dislocation intersections within the interface, the mobility of defects on dislocation grid is retard and this leads to defect accumulation at GBs for many cases. Furthermore, I conclude both types of twist GBs have to form mixed dislocations with edge component in order to absorb accumulated interstitials at the interface. The formation of mixed dislocation is either by interstitial loop nucleation or by dislocation reactions at the interface. The continuous formation and climb of these mixed dislocations make twist GBs unsaturatable sinks to radiation induced defects.
Impact of grain size evolution on necking and pinch-and-swell formation in calcite layers
NASA Astrophysics Data System (ADS)
Schmalholz, Stefan Markus; Duretz, Thibault
2017-04-01
The formation of necking zones and the associated formation of pinch-and-swell structure is one form of strain localization in extending, competent layers. Natural pinch-and-swell structure in centimetre-thick calcite layers typically shows a reduction of grain size from swell towards pinch. However, the impact of grain size evolution on necking and pinch-and-swell formation is incompletely understood. We perform zero-dimensional (0D) and 2D thermo-mechanical numerical simulations to quantify the impact of grain size evolution on necking for extension rates between 10-12s^-1and10^-14 s-1 and temperatures around 350°C. For a combination of diffusion and dislocation creep we calculate grain size evolution according to the paleowattmeter (grain size is proportional to mechanical work rate) or the paleopiezometer (grain size is proportional to stress). Numerical results fit two observations: (i) grain size reduction from swells towards pinches, and (ii) dislocation creep dominated deformation in swells and significant contribution of diffusion creep in pinches. Modelled grain size in pinches (10 to 60 μm) and swells (70 to 800 μm) is close to observed grain size in pinches (15 to 27 μm) and in swells (250 to 1500 μm). Grain size evolution has only a minor impact on necking suggesting that grain size evolution is a consequence, and not the cause of necking. Viscous shear heating and grain size evolution had a negligible thermal impact in the simulations.
NASA Astrophysics Data System (ADS)
Dremov, V. V.; Ionov, G. V.; Sapozhnikov, F. A.; Smirnov, N. A.; Karavaev, A. V.; Vorobyova, M. A.; Ryzhkov, M. V.
2015-09-01
The present work is devoted to classical molecular dynamics investigation into microscopic mechanisms of the bcc-hcp transition in iron. The interatomic potential of EAM type used in the calculations was tested for the capability to reproduce ab initio data on energy evolution along the bcc-hcp transformation path (Burgers deformation + shuffe) and then used in the large-scale MD simulations. The large-scale simulations included constant volume deformation along the Burgers path to study the origin and nature of the plasticity, hydrostatic volume compression of defect free samples above the bcc to hcp transition threshold to observe the formation of new phase embryos, and the volume compression of samples containing screw dislocations to study the effect of the dislocations on the probability of the new phase critical embryo formation. The volume compression demonstrated high level of metastability. The transition starts at pressure much higher than the equilibrium one. Dislocations strongly affect the probability of the critical embryo formation and significantly reduce the onset pressure of transition. The dislocations affect also the resulting structure of the samples upon the transition. The formation of layered structure is typical for the samples containing the dislocations. The results of the simulations were compared with the in-situ experimental data on the mechanism of the bcc-hcp transition in iron.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barabash, R.I.; Ice, G.E.; Tamura, N.
2005-09-01
The scaling of device dimensions with a simultaneous increase in functional density imposes a challenge to materials technology and reliability of interconnects. White beam X-ray microdiffraction is particularly well suited for the in situ study of electromigration. M.A. Krivoglaz theory was applied for the interpretation of white beam diffraction. The technique was used to probe microstructure in interconnects and has recently been able to monitor the onset of plastic deformation induced by mass transport during electromigration in Al(Cu) lines even before any macroscopic damage became visible. In the present paper, we demonstrate that the evolution of the dislocation structure duringmore » electromigration is highly inhomogeneous and results in the formation of unpaired randomly distributed geometrically necessary dislocations as well as geometrically necessary dislocation boundaries. When almost all unpaired dislocations and dislocation walls with the density n+ are parallel (as in the case of Al-based interconnects), the anisotropy in the scattering properties of the material becomes important, and the electrical properties of the interconnect depend strongly on the direction of the electric current relative to the orientation of the dislocation network. A coupling between the dissolution, growth and reprecipitation of Al2Cu precipitates and the electromigration-induced plastic deformation of grains in interconnects is observed.« less
Arliani, Gustavo Gonçalves; Utino, Artur Yudi; Nishimura, Eduardo Misao; Terra, Bernardo Barcellos; Belangero, Paulo Santoro; Astur, Diego Costa
2015-01-01
Objective To evaluate the approaches and procedures used by Brazilian orthopedic surgeons in treatment and rehabilitation of acromioclavicular dislocation of the shoulder. Methods A questionnaire comprising eight closed questions that addressed topics relating to treatment and rehabilitation of acromioclavicular dislocation was applied to Brazilian orthopedic surgeons over the three days of the 45th Brazilian Congress of Orthopedics and Traumatology, in 2013. Results A total of 122 surgeons completely filled out the questionnaire and formed part of the sample analyzed. Most of them came from the southeastern region of the country. In this sample, 67% of the participants would choose surgical treatment for patients with grade 3 acromioclavicular dislocation. Regarding the preferred technique for surgical treatment of acute acromioclavicular dislocation, a majority of the surgeons used subcoracoid ligature with acromioclavicular fixation and transfer of the coracoacromial ligament (25.4%). Regarding complications found after surgery had been performed, 43.4% and 32.8% of the participants, respectively, stated that residual deformity of the operated joint and pain were the complications most seen during the postoperative period. Conclusions Although there was no consensus regarding the treatment and rehabilitation of acromioclavicular dislocation, evolution had occurred in some of the topics analyzed in this questionnaire applied to Brazilian orthopedists. However, further controlled prospective studies are needed in order to evaluate the clinical and scientific benefit of these trends. PMID:26535196
Arliani, Gustavo Gonçalves; Utino, Artur Yudi; Nishimura, Eduardo Misao; Terra, Bernardo Barcellos; Belangero, Paulo Santoro; Astur, Diego Costa
2015-01-01
To evaluate the approaches and procedures used by Brazilian orthopedic surgeons in treatment and rehabilitation of acromioclavicular dislocation of the shoulder. A questionnaire comprising eight closed questions that addressed topics relating to treatment and rehabilitation of acromioclavicular dislocation was applied to Brazilian orthopedic surgeons over the three days of the 45th Brazilian Congress of Orthopedics and Traumatology, in 2013. A total of 122 surgeons completely filled out the questionnaire and formed part of the sample analyzed. Most of them came from the southeastern region of the country. In this sample, 67% of the participants would choose surgical treatment for patients with grade 3 acromioclavicular dislocation. Regarding the preferred technique for surgical treatment of acute acromioclavicular dislocation, a majority of the surgeons used subcoracoid ligature with acromioclavicular fixation and transfer of the coracoacromial ligament (25.4%). Regarding complications found after surgery had been performed, 43.4% and 32.8% of the participants, respectively, stated that residual deformity of the operated joint and pain were the complications most seen during the postoperative period. Although there was no consensus regarding the treatment and rehabilitation of acromioclavicular dislocation, evolution had occurred in some of the topics analyzed in this questionnaire applied to Brazilian orthopedists. However, further controlled prospective studies are needed in order to evaluate the clinical and scientific benefit of these trends.
NASA Astrophysics Data System (ADS)
Wallis, D.; Hansen, L. N.; Tasaka, M.; Kumamoto, K. M.; Lloyd, G. E.; Parsons, A. J.; Kohlstedt, D. L.; Wilkinson, A. J.
2016-12-01
Changes in concentration of H+ ions in olivine have impacts on its rheological behaviour and therefore on tectonic processes involving mantle deformation. Deformation experiments on aggregates of wet olivine exhibit different evolution of crystal preferred orientations (CPO) and substructure from experiments on dry olivine, suggesting that elevated H+ concentrations impact activity of dislocation slip-systems. We use high angular-resolution electron backscatter diffraction (HR-EBSD) to map densities of different types of geometrically necessary dislocations (GND) in polycrystalline olivine deformed experimentally under wet and dry conditions and also in nature. HR-EBSD provides unprecedented angular resolution, resolving misorientations < 0.01°. We also employ visco-plastic self-consistent (VPSC) simulations to investigate changes in slip-system activity. HR-EBSD maps from experimental samples demonstrate that olivine deformed under hydrous conditions contains higher proportions of (001)[100] and (100)[001] edge dislocations than olivine deformed under anhydrous conditions. Furthermore, maps of wet olivine exhibit more polygonal subgrain boundaries indicative of enhanced recovery by dislocation climb. VPSC simulations with low critical resolved shear stresses for the (001)[100] and (100)[001] slip systems reproduce an unusual CPO with bimodal maxima of both [100] and [001] observed in wet olivine aggregates. Analysis of a mylonitic lherzolite xenolith from Lesotho reveals the same unusual CPO and similar proportions of dislocation types to `wet' experimental samples, supporting the applicability of these findings to natural deformation conditions. These results support suggestions that H+ impacts the flow properties of olivine by altering dislocation activity and climb, while also providing full quantification of GND content. In particular, the relative proportions of dislocation types may provide a basis for identifying olivine deformed under wet and dry conditions.
NASA Astrophysics Data System (ADS)
Pendurti, Srinivas
InP is an important material for opto-electronic and high speed electronics applications. Its main use today is as the substrate material for epitaxy to produce GaInAsP lasers. The present technology for growing bulk InP is the high pressure Czochralski process. Bulk InP grown through this technique suffers from presence of a high density of line defects or dislocations, which are produced by thermal stresses the material goes through during its growth in the high temperature furnace. Modeling of these thermal stresses and the resulting plastic deformation, giving rise to dislocation densities, entails simulation of the entire thermal history of the crystal during its growth in the furnace, and studying the deformation of the crystal through suitable visco-plastic constitutive equations. Accordingly, a suitable visco-plastic model for deformation of InP was constructed, integrated with the ABAQUS finite element code, and verified through experimental data for uniaxial constant strain rate deformation tests available in literature. This was then coupled with a computation fluid dynamics model, predicting the entire temperature history in the furnace during crystal growth, to study the plastic deformation and dislocation density evolution in the crystal during growth. Growth in a variety of conditions was simulated and those conditions that generate minimum dislocation density identified. Macroscopic controllable parameters that affect the dislocation densities the most, have also been delineated. It was found that the strength of gas convection in the Czochralski furnace has the strongest effect on the dislocation densities in the fully grown crystal. Comparison of the simulated dislocation densities on wafers, with experimentally recorded etch pit profiles on as-grown crystals was reasonable. Finally some limitations in the work are discussed and avenues for future work identified.
Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; ...
2016-01-01
The tungsten plasma-facing components of fusion reactors will experience an extreme environment including high temperature, intense particle fluxes of gas atoms, high-energy neutron irradiation, and significant cyclic stress loading. Irradiation-induced defect accumulation resulting in severe thermo-mechanical property degradation is expected. For this reason, and because of the lack of relevant fusion neutron sources, the fundamentals of tungsten radiation damage must be understood through coordinated mixed-spectrum fission reactor irradiation experiments and modeling. In this study, high-purity (110) single-crystal tungsten was examined by positron annihilation spectroscopy and transmission electron microscopy following low-temperature (~90 °C) and low-dose (0.006 and 0.03 dpa) mixed-spectrum neutronmore » irradiation and subsequent isochronal annealing at 400, 500, 650, 800, 1000, 1150, and 1300 °C. The results provide insights into microstructural and defect evolution, thus identifying the mechanisms of different annealing behavior. Following 1 h annealing, ex situ characterization of vacancy defects using positron lifetime spectroscopy and coincidence Doppler broadening was performed. The vacancy cluster size distributions indicated intense vacancy clustering at 400 °C with significant damage recovery around 1000 °C. Coincidence Doppler broadening measurements confirm the trend of the vacancy defect evolution, and the S–W plots indicate that only a single type of vacancy cluster is present. Furthermore, transmission electron microscopy observations at selected annealing conditions provide supplemental information on dislocation loop populations and visible void formation. This microstructural information is consistent with the measured irradiation-induced hardening at each annealing stage. This provides insight into tungsten hardening and embrittlement due to irradiation-induced matrix defects.« less
Enthalpy-Based Thermal Evolution of Loops: II. Improvements to the Model
NASA Technical Reports Server (NTRS)
Cargill, P. J.; Bradshaw, S. J.; Klimchuk, J. A.
2011-01-01
This paper further develops the zero-dimensional (0D) hydrodynamic coronal loop model "Enthalpy-based Thermal Evolution of Loops" (EBTEL) originally proposed by Klimchuk et al (2008), which studies the plasma response to evolving coronal heating. It has typically been applied to impulsive heating events. The basis of EBTEL is the modelling of mass exchange between the corona and transition region and chromosphere in response to heating variations, with the key parameter being the ratio of transition region to coronal radiation. We develop new models for this parameter that now include gravitational stratification and a physically motivated approach to radiative cooling. A number of examples are presented, including nanoflares in short and long loops, and a small flare. It is found that while the evolution of the loop temperature is rather insensitive to the details of the model, accurate tracking of the density requires the inclusion of our new features. In particular, we are able to now obtain highly over-dense loops in the late cooling phase and decreases to the coronal density arising due to stratification. The 0D results are compared to a 1D hydro code (Hydrad). The agreement is acceptable, with the exception of the flare case where some versions of Hydrad can give significantly lower densities. This is attributed to the method used to model the chromosphere in a flare. EBTEL is suitable for general use as a tool for (a) quick-look results of loop evolution in response to a given heating function and (b) situations where the modelling of hundreds or thousands of elemental loops is needed. A single run takes a few seconds on a contemporary laptop.
The relationship between strain geometry and geometrically necessary dislocations
NASA Astrophysics Data System (ADS)
Hansen, Lars; Wallis, David
2016-04-01
The kinematics of past deformations are often a primary goal in structural analyses of strained rocks. Details of the strain geometry, in particular, can help distinguish hypotheses about large-scale tectonic phenomena. Microstructural indicators of strain geometry have been heavily utilized to investigate large-scale kinematics. However, many of the existing techniques require structures for which the initial morphology is known, and those structures must undergo the same deformation as imposed macroscopically. Many deformed rocks do not exhibit such convenient features, and therefore the strain geometry is often difficult (if not impossible) to ascertain. Alternatively, crystallographic textures contain information about the strain geometry, but the influence of strain geometry can be difficult to separate from other environmental factors that might affect slip system activity and therefore the textural evolution. Here we explore the ability for geometrically necessary dislocations to record information about the deformation geometry. It is well known that crystallographic slip due to the motion of dislocations yields macroscopic plastic strain, and the mathematics are established to relate dislocation glide on multiple slip systems to the strain tensor of a crystal. This theoretical description generally assumes that dislocations propagate across the entire crystal. However, at any point during the deformation, dislocations are present that have not fully transected the crystal, existing either as free dislocations or as dislocations organized into substructures like subgrain boundaries. These dislocations can remain in the lattice after deformation if the crystal is quenched sufficiently fast, and we hypothesize that this residual dislocation population can be linked to the plastic strain geometry in a quantitative manner. To test this hypothesis, we use high-resolution electron backscatter diffraction to measure lattice curvatures in experimentally deformed single crystals and aggregates of olivine for which the strain geometry is known. Tested geometries include constrictional strain, flattening strain, and plane strain. We use measured lattice curvatures to calculate the densities and spatial distributions of geometrically necessary dislocations. Dislocation densities are calculated for each of the major dislocation types in olivine. These densities are then used to estimate the plastic strain geometry under the assumption that the population of geometrically necessary dislocations accurately represents the relative activity of different dislocations during deformation. Our initial results demonstrate compelling relationships between the imposed strain geometry and the calculated plastic strain geometry. In addition, the calculated plastic strain geometry is linked to the distribution of crystallographic orientations, giving insight into the nature of plastic anisotropy in textured olivine aggregates. We present this technique as a new microstructural tool for assessing the kinematic history of deformed rocks.
Non-Invasive Optical Characterization of Defects in Gallium Arsenide.
NASA Astrophysics Data System (ADS)
Cao, Xuezhong
This work is concerned with the development of a non-invasive comprehensive defect analysis system based on computer-assisted near infrared (NIR) microscopy. Focus was placed on the development of software for quantitative image analysis, contrast enhancement, automated defects density counting, and two-dimensional defect density mapping. Bright field, dark field, phase contrast, and polarized light imaging modes were explored for the analysis of striations, precipitates, decorated and undecorated dislocations, surface and subsurface damage, and local residual strain in GaAs wafers. The origin of the contrast associated with defect image formation in NIR microscopy was analyzed. The local change in the index of refraction about a defect was modelled as a mini-lens. This model can explain reversal of image contrast for dislocations in heavily doped n-type GaAs during defocusing. Defect structures in GaAs crystals grown by the conventional liquid encapsulated Czochralski (LEC) method are found to differ significantly from those grown by the horizontal Bridgman (HB) or vertical gradient freeze (VGF) method. Dislocation densities in HB and VGF GaAs are one to two orders of magnitude lower compared to those in conventional LEC GaAs. The dislocations in HB and VGF GaAs remain predominantly on the {111}/<1 |10> primary slip system and tend to form small-angle subboundaries. Much more complicated dislocation structures are found in conventional LEC GaAs. Dislocation loops, dipoles, and helices were observed, indicating strong interaction between dislocations and point defects in these materials. Precipitates were observed in bulk GaAs grown by the LEC, HB, and VGF methods. Precipitation was found to occur predominantly along dislocation lines, however, discrete particles were also observed in dislocation-free regions of the GaAs matrix. The size of discrete precipitates is much smaller than that of the precipitates along dislocations. Quenching after high temperature annealing at 1150^ circC was found effective in dissolving the precipitates but glide dislocations are generated during the quenching process. STEM/EDX analysis showed that the precipitates are essentially pure arsenic in both undoped and doped GaAs. NIR phase contrast transmission microscopy was found to be very sensitive in detecting surface and subsurface damage on commercial GaAs wafers. Wafers from a number of GaAs manufacturers were examined. It was shown that some GaAs wafers exhibit perfect surface quality, but in many instances they exhibit, to various extents, subsurface damage. Computer-assisted NIR transmission microscopy in a variety of modes is found to be a rapid and non-invasive technique suitable for wafer characterization in a fabline environment. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.) (Abstract shortened by UMI.).
Size effects on plasticity and fatigue microstructure evolution in FCC single crystals
NASA Astrophysics Data System (ADS)
El-Awady, Jaafar Abbas
In aircraft structures and engines, fatigue damage is manifest in the progressive emergence of distributed surface cracks near locations of high stress concentrations. At the present time, reliable methods for prediction of fatigue crack initiation are not available, because the phenomenon starts at the atomic scale. Initiation of fatigue cracks is associated with the formation of Persistent slip bands (PSBs), which start at certain critical conditions inside metals with specific microstructure dimensions. The main objective of this research is to develop predictive computational capabilities for plasticity and fatigue damage evolution in finite volumes. In that attempt, a dislocation dynamics model that incorporates the influence of free and internal interfaces on dislocation motion is presented. The model is based on a self-consistent formulation of 3-D Parametric Dislocation Dynamics (PDD) with the Boundary Element method (BEM) to describe dislocation motion, and hence microscopic plastic flow in finite volumes. The developed computer models are bench-marked by detailed comparisons with the experimental data, developed at the Wright-Patterson Air Force Lab (WP-AFRL), by three dimensional large scale simulations of compression loading on micro-scale samples of FCC single crystals. These simulation results provide an understanding of plastic deformation of micron-size single crystals. The plastic flow characteristics as well as the stress-strain behavior of simulated micropillars are shown to be in general agreement with experimental observations. New size scaling aspects of plastic flow and work-hardening are identified through the use of these simulations. The flow strength versus the diameter of the micropillar follows a power law with an exponent equal to -0.69. A stronger correlation is observed between the flow strength and the average length of activated dislocation sources. This relationship is again a power law, with an exponent -0.85. Simulation results with and without the activation of cross-slip are compared. Discontinuous hardening is observed when cross-slip is included. Experimentally-observed size effects on plastic flow and work- hardening are consistent with a "weakest-link activation mechanism". In addition, the variations and periodicity of dislocation activation are analyzed using the Fast Fourier Transform (FFT). We then present models of localized plastic deformation inside Persistent Slip Band channels. We investigate the interaction between screw dislocations as they pass one another inside channel walls in copper. The model shows the mechanisms of dislocation bowing, dipole formation and binding, and dipole destruction as screw dislocations pass one another. The mechanism of (dipole passing) is assessed and interpreted in terms of the fatigue saturation stress. We also present results for the effects of the wall dipole structure on the dipole passing mechanism. The edge dislocation dipolar walls is seen to have an effect on the passing stress as well. It is shown that the passing stress in the middle of the channel is reduced by 11 to 23% depending on the initial configuration of the screw dislocations with respect to one another. Finally, from large scale simulations of the expansion process of the edge dipoles from the walls in the channel the screw dislocations in the PSB channels may not meet "symmetrically", i.e. precisely in the center of the channel but preferably a little on one or the other side. For this configuration the passing stress will be lowered which is in agreement to experimental observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bremner, S. P.; Ban, K.-Y.; Faleev, N. N.
2013-09-14
We describe InAs quantum dot creation in InAs/GaAsSb barrier structures grown on GaAs (001) wafers by molecular beam epitaxy. The structures consist of 20-nm-thick GaAsSb barrier layers with Sb content of 8%, 13%, 15%, 16%, and 37% enclosing 2 monolayers of self-assembled InAs quantum dots. Transmission electron microscopy and X-ray diffraction results indicate the onset of relaxation of the GaAsSb layers at around 15% Sb content with intersected 60° dislocation semi-loops, and edge segments created within the volume of the epitaxial structures. 38% relaxation of initial elastic stress is seen for 37% Sb content, accompanied by the creation of amore » dense net of dislocations. The degradation of In surface migration by these dislocation trenches is so severe that quantum dot formation is completely suppressed. The results highlight the importance of understanding defect formation during stress relaxation for quantum dot structures particularly those with larger numbers of InAs quantum-dot layers, such as those proposed for realizing an intermediate band material.« less
NASA Astrophysics Data System (ADS)
Abbod, M. F.; Sellars, C. M.; Cizek, P.; Linkens, D. A.; Mahfouf, M.
2007-10-01
The present work describes a hybrid modeling approach developed for predicting the flow behavior, recrystallization characteristics, and crystallographic texture evolution in a Fe-30 wt pct Ni austenitic model alloy subjected to hot plane strain compression. A series of compression tests were performed at temperatures between 850 °C and 1050 °C and strain rates between 0.1 and 10 s-1. The evolution of grain structure, crystallographic texture, and dislocation substructure was characterized in detail for a deformation temperature of 950 °C and strain rates of 0.1 and 10 s-1, using electron backscatter diffraction and transmission electron microscopy. The hybrid modeling method utilizes a combination of empirical, physically-based, and neuro-fuzzy models. The flow stress is described as a function of the applied variables of strain rate and temperature using an empirical model. The recrystallization behavior is predicted from the measured microstructural state variables of internal dislocation density, subgrain size, and misorientation between subgrains using a physically-based model. The texture evolution is modeled using artificial neural networks.
Coronal hole boundaries evolution at small scales. I. EIT 195 Å and TRACE 171 Å view
NASA Astrophysics Data System (ADS)
Madjarska, M. S.; Wiegelmann, T.
2009-09-01
Aims: We aim to study the small-scale evolution at the boundaries of an equatorial coronal hole connected with a channel of open magnetic flux to the polar region and an “isolated” one in the extreme-ultraviolet spectral range. We determine the spatial and temporal scale of these changes. Methods: Imager data from TRACE in the Fe ix/x 171 Å passband and EIT on-board Solar and Heliospheric Observatory in the Fe xii 195 Å passband were analysed. Results: We found that small-scale loops known as bright points play an essential role in coronal hole boundary evolution at small scales. Their emergence and disappearance continuously expand or contract coronal holes. The changes appear to be random on a time scale comparable to the lifetime of the loops seen at these temperatures. No signature was found for a major energy release during the evolution of the loops. Conclusions: Although coronal holes seem to maintain their general shape during a few solar rotations, a closer look at their day-by-day and even hour-by-hour evolution demonstrates significant dynamics. The small-scale loops (10´´-40´´ and smaller) which are abundant along coronal hole boundaries contribute to the small-scale evolution of coronal holes. Continuous magnetic reconnection of the open magnetic field lines of the coronal hole and the closed field lines of the loops in the quiet Sun is more likely to take place. Movies are only available in electronic form at http://www.aanda.org
Lopez Barrilao, Jennifer; Kuhn, Bernd; Wessel, Egbert
2018-05-01
In the present study a stainless, high strength, ferritic (non-martensitic) steel was analysed regarding microstructure and particle evolution. The preceding hot-rolling process of the steel results in the formation of sub-grain structures, which disappear over time at high temperature. Besides that the formation of particle-free zones was observed. The pronounced formation of these zones preferentially appears close to high angle grain boundaries and is considered to be responsible for long-term material failure under creep conditions. The reasons for this are lacking particle hardening and thus a concentration and accumulation of deformation in the particle free areas close to the grain boundaries. Accordingly in-depth investigations were performed by electron microscopy to analyse dislocation behaviour and its possible effect on the mechanical response of these weak areas. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gradient-type modeling of the effects of plastic recovery and surface passivation in thin films
NASA Astrophysics Data System (ADS)
Liu, Jinxing; Kah Soh, Ai
2016-08-01
The elasto-plastic responses of thin films subjected to cyclic tension-compression loading and bending are studied, with a focus on Bauschinger and size effects. For this purpose, a model is established by incorporating plastic recovery into the strain gradient plasticity theory we proposed recently. Elastic and plastic parts of strain and strain gradient, which are determined by the elasto-plastic decomposition according to the associative rule, are assumed to have a degree of material-dependent reversibility. Based on the above assumption, a dislocation reversibility-dependent rule is built to describe evolutions of different deformation components under cyclic loadings. Furthermore, a simple strategy is provided to implement the passivated boundary effects by introducing a gradual change to relevant material parameters in the yield function. Based on this theory, both bulge and bending tests under cyclic loading conditions are investigated. By comparing the present predictions with the existing experimental data, it is found that the yield function is able to exhibit the size effect, the Bauschinger effect, the influence of surface passivation and the hysteresis-loop phenomenon. Thus, the proposed model is deemed helpful in studying plastic deformations of micron-scale films.
Wen, Wei; Capolungo, Laurent; Patra, Anirban; ...
2017-02-23
In this work, a physics-based thermal creep model is developed based on the understanding of the microstructure in Fe-Cr alloys. This model is associated with a transition state theory based framework that considers the distribution of internal stresses at sub-material point level. The thermally activated dislocation glide and climb mechanisms are coupled in the obstacle-bypass processes for both dislocation and precipitate-type barriers. A kinetic law is proposed to track the dislocation densities evolution in the subgrain interior and in the cell wall. The predicted results show that this model, embedded in the visco-plastic self-consistent (VPSC) framework, captures well the creepmore » behaviors for primary and steady-state stages under various loading conditions. We also discuss the roles of the mechanisms involved.« less
Meng, Xiankai; Zhou, Jianzhong; Huang, Shu; Su, Chun; Sheng, Jie
2017-01-01
The laser shock wave (LSW) generated by the interaction between a laser and a material has been widely used in laser manufacturing, such as laser shock peening and laser shock forming. However, due to the high strain rate, the propagation of LSW in materials, especially LSW at elevated temperatures, is difficult to study through experimental methods. A molecular dynamics simulation was used in this study to investigate the propagation of LSW in an Al-Cu alloy. The Hugoniot relations of LSW were obtained at different temperatures and the effects of elevated temperatures on shock velocity and shock pressure were analyzed. Then the elastic and plastic wave of the LSW was researched. Finally, the evolution of dislocations induced by LSW and its mechanism under elevated temperatures was explored. The results indicate that the shock velocity and shock pressure induced by LSW both decrease with the increasing temperatures. Moreover, the velocity of elastic wave and plastic wave both decrease with the increasing treatment temperature, while their difference decreases as the temperature increases. Moreover, the dislocation atoms increases with the increasing temperatures before 2 ps, while it decreases with the increasing temperatures after 2 ps. The reason for the results is related to the formation and evolution of extended dislocations. PMID:28772433
Meng, Xiankai; Zhou, Jianzhong; Huang, Shu; Su, Chun; Sheng, Jie
2017-01-18
The laser shock wave (LSW) generated by the interaction between a laser and a material has been widely used in laser manufacturing, such as laser shock peening and laser shock forming. However, due to the high strain rate, the propagation of LSW in materials, especially LSW at elevated temperatures, is difficult to study through experimental methods. A molecular dynamics simulation was used in this study to investigate the propagation of LSW in an Al-Cu alloy. The Hugoniot relations of LSW were obtained at different temperatures and the effects of elevated temperatures on shock velocity and shock pressure were analyzed. Then the elastic and plastic wave of the LSW was researched. Finally, the evolution of dislocations induced by LSW and its mechanism under elevated temperatures was explored. The results indicate that the shock velocity and shock pressure induced by LSW both decrease with the increasing temperatures. Moreover, the velocity of elastic wave and plastic wave both decrease with the increasing treatment temperature, while their difference decreases as the temperature increases. Moreover, the dislocation atoms increases with the increasing temperatures before 2 ps, while it decreases with the increasing temperatures after 2 ps. The reason for the results is related to the formation and evolution of extended dislocations.
Powder metallurgy processing and deformation characteristics of bulk multimodal nickel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farbaniec, L., E-mail: lfarban1@jhu.edu; Dirras, G., E-mail: dirras@univ-paris13.fr; Krawczynska, A.
2014-08-15
Spark plasma sintering was used to process bulk nickel samples from a blend of three powder types. The resulting multimodal microstructure was made of coarse (average size ∼ 135 μm) spherical microcrystalline entities (the core) surrounded by a fine-grained matrix (average grain size ∼ 1.5 μm) or a thick rim (the shell) distinguishable from the matrix. Tensile tests revealed yield strength of ∼ 470 MPa that was accompanied by limited ductility (∼ 2.8% plastic strain). Microstructure observation after testing showed debonding at interfaces between the matrix and the coarse entities, but in many instances, shallow dimples within the rim weremore » observed indicating local ductile events in the shell. Dislocation emission and annihilation at grain boundaries and twinning at crack tip were the main deformation mechanisms taking place within the fine-grained matrix as revealed by in-situ transmission electron microscopy. Estimation of the stress from loop's curvature and dislocation pile-up indicates that dislocation emission from grain boundaries and grain boundary overcoming largely contributes to the flow stress. - Highlights: • Bulk multi-modal Ni was processed by SPS from a powder blend. • Ultrafine-grained matrix or rim observed around spherical microcrystalline entities • Yield strength (470 MPa) and ductility (2.8% plastic strain) were measured. • Debonding was found at the matrix/microcrystalline entity interfaces. • In-situ TEM showed twinning, dislocation emission and annihilation at grain boundaries.« less
Single versus successive pop-in modes in nanoindentation tests of single crystals
Xia, Yuzhi; Gao, Yanfei; Pharr, George M.; ...
2016-05-24
From recent nanoindentation experiments, two types of pop-in modes have been identified: a single pop-in with a large displacement excursion, or a number of pop-ins with comparable and small displacement excursions. Theoretical analyses are developed here to study the roles played by indenter tip radius, pre-existing defect density, heterogeneous nucleation source type, and lattice resistance on the pop-in modes. The evolution of dislocation structures in earlier pop-ins provides input to modeling a stochastic, heterogeneous mechanism that may be responsible for the subsequent pop-ins. It is found that when the first pop-in occurs near theoretical shear stress, the pop-in mode ismore » determined by the lattice resistance and tip radius. When the first pop-in occurs at low shear stress, whether the successive pop-in mode occurs depends on how the heterogeneous dislocation nucleation source density increases as compared to the increase of the total dislocation density. Lastly, the above transitions are found to correlate well with the ratio of indenter tip radius to the mean spacing of dislocation nucleation sources.« less
NASA Astrophysics Data System (ADS)
Gao, Siwen; Rajendran, Mohan Kumar; Fivel, Marc; Ma, Anxin; Shchyglo, Oleg; Hartmaier, Alexander; Steinbach, Ingo
2015-10-01
Three-dimensional discrete dislocation dynamics (DDD) simulations in combination with the phase-field method are performed to investigate the influence of different realistic Ni-base single crystal superalloy microstructures with the same volume fraction of {γ\\prime} precipitates on plastic deformation at room temperature. The phase-field method is used to generate realistic microstructures as the boundary conditions for DDD simulations in which a constant high uniaxial tensile load is applied along different crystallographic directions. In addition, the lattice mismatch between the γ and {γ\\prime} phases is taken into account as a source of internal stresses. Due to the high antiphase boundary energy and the rare formation of superdislocations, precipitate cutting is not observed in the present simulations. Therefore, the plastic deformation is mainly caused by dislocation motion in γ matrix channels. From a comparison of the macroscopic mechanical response and the dislocation evolution for different microstructures in each loading direction, we found that, for a given {γ\\prime} phase volume fraction, the optimal microstructure should possess narrow and homogeneous γ matrix channels.
NASA Astrophysics Data System (ADS)
Choe, J. I.
2016-04-01
A series mathematical model has been developed for the prediction of flow stress and microstructure evolution during the hot deformation of metals such as copper or austenitic steels with low stacking fault energies, involving features of both diffusional flow and dislocation motion. As the strain rate increases, multiple peaks on the stress-strain curve decrease. At a high strain rate, the stress rises to a single peak, while dynamic recrystallization causes an oscillatory behavior. At a low strain rate (when there is sufficient time for the recrystallizing grains to grow before they become saturated with high dislocation density with an increase in strain rate), the difference in stored stress between recrystallizing and old grains diminishes, resulting in reduced driving force for grain growth and rendering smaller grains in the alloy. The final average grain size at the steady stage (large strain) increases with a decrease in the strain rate. During large strain deformation, grain size reduction accompanying dislocation creep might be balanced by the grain growth at the border delimiting the ranges of realization (field boundary) of the dislocation-creep and diffusion-creep mechanisms.
Study on Dynamic Strain Aging and Low-Cycle Fatigue of Stainless Steel in Ultra-Supercritical Unit
NASA Astrophysics Data System (ADS)
Hongwei, Zhou; Yizhu, He; Jizu, Lv; Sixian, Rao
Dynamic strain aging (DSA) and low-cycle fatigue (LCF) behavior of TP347H stainless steel in ultra-supercritical unit were investigated at 550-650 °C. All the LCF tests were carried out under a fully-reversed, total axial strain control mode at the total strain amplitude from ±0.2% to ±1.0%. The effects of DSA in cyclic stress response, microstructure evolution and fatigue fracture surfaces and fatigue life were investigated in detail. The results show that DSA occurs during tensile, which is manifested as serrated flow in tensile stress-strain curves. The apparent activation energy for appearing of serrations in tensile stress-strain curves was 270 kJ/mol. Pipe diffusion of substitutional solutes such as Cr and Nb along the dislocation core, and strong interactions between segregated solutes and dislocations are considered as the mechanism of DSA. DSA partly restricts dislocation cross-slip, and dislocation cross-slip and planar-slip happen simultaneously during LCF. A lot of planar structures form, which is due to dislocation gliding on the special plane. This localized deformation structures result in many crack initiation sites. Meanwhile, DSA hardening increases cyclic stress response, accelerating crack propagation, which reduces high temperature strain fatigue life of steel.
A Simple Model for the Evolution of Multi-Stranded Coronal Loops
NASA Technical Reports Server (NTRS)
Fuentes, M. C. Lopez; Klimchuk, J. A.
2010-01-01
We develop and analyze a simple cellular automaton (CA) model that reproduces the main properties of the evolution of soft X-ray coronal loops. We are motivated by the observation that these loops evolve in three distinguishable phases that suggest the development, maintainance, and decay of a self-organized system. The model is based on the idea that loops are made of elemental strands that are heated by the relaxation of magnetic stress in the form of nanoflares. In this vision, usually called "the Parker conjecture" (Parker 1988), the origin of stress is the displacement of the strand footpoints due to photospheric convective motions. Modeling the response and evolution of the plasma we obtain synthetic light curves that have the same characteristic properties (intensity, fluctuations, and timescales) as the observed cases. We study the dependence of these properties on the model parameters and find scaling laws that can be used as observational predictions of the model. We discuss the implications of our results for the interpretation of recent loop observations in different wavelengths. Subject headings: Sun: corona - Sun: flares - Sun: magnetic topology - Sun: X-rays, gamma rays
ANALYSIS AND MODELING OF TWO FLARE LOOPS OBSERVED BY AIA AND EIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y.; Ding, M. D.; Qiu, J.
2012-10-10
We analyze and model an M1.0 flare observed by SDO/AIA and Hinode/EIS to investigate how flare loops are heated and evolve subsequently. The flare is composed of two distinctive loop systems observed in extreme ultraviolet (EUV) images. The UV 1600 A emission at the feet of these loops exhibits a rapid rise, followed by enhanced emission in different EUV channels observed by the Atmospheric Imaging Assembly (AIA) and the EUV Imaging Spectrometer (EIS). Such behavior is indicative of impulsive energy deposit and the subsequent response in overlying coronal loops that evolve through different temperatures. Using the method we recently developed,more » we infer empirical heating functions from the rapid rise of the UV light curves for the two loop systems, respectively, treating them as two big loops with cross-sectional area of 5'' by 5'', and compute the plasma evolution in the loops using the EBTEL model. We compute the synthetic EUV light curves, which, with the limitation of the model, reasonably agree with observed light curves obtained in multiple AIA channels and EIS lines: they show the same evolution trend and their magnitudes are comparable by within a factor of two. Furthermore, we also compare the computed mean enthalpy flow velocity with the Doppler shift measurements by EIS during the decay phase of the two loops. Our results suggest that the two different loops with different heating functions as inferred from their footpoint UV emission, combined with their different lengths as measured from imaging observations, give rise to different coronal plasma evolution patterns captured both in the model and in observations.« less
NASA Astrophysics Data System (ADS)
Satoh, Y.; Yoshiie, T.; Arai, S.
2018-03-01
We conducted systematic experiments of defect structure development in Cu base binary alloys under 1000 kV electron irradiation at temperatures higher than 300 K, using in situ observations with high voltage electron microscopy. This report describes the effects of undersize elements: Co (-3.78%), Ni (-8.45%) and Be (-26.45%). The volume size factors are given in parentheses. The amounts of the respective elements were 2, 0.3, 0.05 at.%, or less. In Cu-Ni and Cu-Co and in the reference Cu, temperature dependence of the number density of interstitial-type dislocation loops had a down peak (i.e. loops hardly formed) at approximately 373 K, attributed to unexpected impurity atoms. Above the down-peak temperature, the addition of Co or Ni increased the loop number density through continuous nucleation of loops, extended the loop formation to higher temperatures, and decreased the apparent activation energy of loop growth rate. The addition of Be for 0.3 at.% or more delayed loop formation after formation of stacking fault tetrahedra (SFTs) around 300 K. The apparent mobility of self-interstitial atoms is expected to be smaller than that of vacancies because of strong binding with Be. Loop formation at temperatures higher than 373 K was enhanced by Be for 0.3 or 2 at.%, although it was suppressed greatly for 0.05 at.% or less. All undersize atoms increased the stability of SFTs under irradiation. Mechanisms of those effects were discussed and were briefly compared with earlier results found for oversize elements in Cu.
A complex approach to the blue-loop problem
NASA Astrophysics Data System (ADS)
Ostrowski, Jakub; Daszynska-Daszkiewicz, Jadwiga
2015-08-01
The problem of the blue loops during the core helium burning, outstanding for almost fifty years, is one of the most difficult and poorly understood problems in stellar astrophysics. Most of the work focused on the blue loops done so far has been performed with old stellar evolution codes and with limited computational resources. In the end the obtained conclusions were based on a small sample of models and could not have taken into account more advanced effects and interactions between them.The emergence of the blue loops depends on many details of the evolution calculations, in particular on chemical composition, opacity, mixing processes etc. The non-linear interactions between these factors contribute to the statement that in most cases it is hard to predict without a precise stellar modeling whether a loop will emerge or not. The high sensitivity of the blue loops to even small changes of the internal structure of a star yields one more issue: a sensitivity to numerical problems, which are common in calculations of stellar models on advanced stages of the evolution.To tackle this problem we used a modern stellar evolution code MESA. We calculated a large grid of evolutionary tracks (about 8000 models) with masses in the range of 3.0 - 25.0 solar masses from the zero age main sequence to the depletion of helium in the core. In order to make a comparative analysis, we varied metallicity, helium abundance and different mixing parameters resulting from convective overshooting, rotation etc.The better understanding of the properties of the blue loops is crucial for our knowledge of the population of blue supergiants or pulsating variables such as Cepheids, α-Cygni or Slowly Pulsating B-type supergiants. In case of more massive models it is also of great importance for studies of the progenitors of supernovae.
A Multi-Scale Simulation Approach to Deformation Mechanism Prediction in Superalloys
NASA Astrophysics Data System (ADS)
Lv, Duchao
High-temperature alloys in general and superalloys in particular are crucial for manufacturing gas turbines for aircraft and power generators. Among the superalloy family, the Ni-based superalloys are the most frequently used due to their excellent strength-to-weight ratio. Their strength results from their ordered intermetallic phases (precipitates), which are relatively stable at elevated temperatures. The major deformation processes of Ni-based and Co-based superalloys are precipitate shearing and Orowan looping. The key to developing physics-based models of creep and yield strength of aircraft engine components is to understand the two deformation mechanisms mentioned above. Recent discoveries of novel dislocation structures and stacking-fault configurations in deformed superalloys implied that the traditional anti-phase boundary (APB)-type, yield-strength model is unable to explain the shearing mechanisms of the gamma" phase in 718-type (Ni-based) superalloys. While the onset of plastic deformation is still related to the formation of highly-energetic stacking faults, the physics-based yield strength prediction requires that the novel dislocation structure and the correct intermediate stacking-fault be considered in the mathematical expressions. In order to obtain the dependence of deformation mechanisms on a materials chemical composition, the relationship between the generalized-stacking-fault (GSF) surface and its chemical composition must be understood. For some deformation scenarios in which one precipitate phase and one mechanism are dominant (e.g., Orowan looping), their use in industry requires a fast-acting model that can capture the features of the deformation (e.g., the volume fraction of the sheared matrix) and reduces lost time by not repeating fine-scale simulations. The objective of this thesis was to develop a multi-scale, physics-based simulation approach that can be used to optimize existing superalloys and to accelerate the design of new alloys. In particular, density functional theory (DFT) was used to calculate the GSF surface of the gamma" phase in the 718-type superalloy. In addition, the deformation pathways inside the gamma" particles were identified, and the dislocation emissions were predicted. Many novel dislocation sources inside the gamma" particles were simulated by using the phase-field method, which predicts and explains the dislocation configurations that appear during the deformation process or that are left as debris. Moreover, based on the stacking-fault energies in the available literature, we calculated the dependence of the chemical composition of the GSF surface of the gamma' phase in Co-based, CoNi-based, and Ni-based superalloys. The phase-field simulation, which used the GSF surfaces as inputs, explained the relationship between the shearing mechanism and chemical composition. Thus, two fast-acting models were developed by using the modified analytic expressions of particle shearing and Orowan looping. These expressions were calibrated by using the GSF surface and the simulation of the phase-field, and they were used to predict the yield strength of 718-type superalloy and the localized creep features of the gamma/gamma' microstructure. The fast-acting yield models were trained by the available experimental results. Since the chemical re-ordering and the segregation effects are not considered in this work, the fast-acting models are designed to the predict mechanical behaviors at the room temperature and the intermediate temperature.
NASA Astrophysics Data System (ADS)
Wu, Wenqian; Guo, Lin; Liu, Bin; Ni, Song; Liu, Yong; Song, Min
2017-12-01
The effects of torsional deformation on the microstructures and mechanical properties of a CoCrFeNiMo0.15 high-entropy alloy have been investigated. The torsional deformation generates a gradient microstructure distribution due to the gradient torsional strain. Both dislocation activity and deformation twinning dominated the torsional deformation process. With increasing the torsional equivalent strain, the microstructural evolution can be described as follows: (1) formation of pile-up dislocations parallel to the trace of {1 1 1}-type slip planes; (2) formation of Taylor lattices; (3) formation of highly dense dislocation walls; (3) formation of microbands and deformation twins. The extremely high deformation strain (strained to fracture) results in the activation of wavy slip. The tensile strength is very sensitive to the torsional deformation, and increases significantly with increasing the torsional angle.
Numerical simulations of flares on M dwarf stars. I - Hydrodynamics and coronal X-ray emission
NASA Technical Reports Server (NTRS)
Cheng, Chung-Chieh; Pallavicini, Roberto
1991-01-01
Flare-loop models are utilized to simulate the time evolution and physical characteristics of stellar X-ray flares by varying the values of flare-energy input and loop parameters. The hydrodynamic evolution is studied in terms of changes in the parameters of the mass, energy, and momentum equations within an area bounded by the chromosphere and the corona. The zone supports a magnetically confined loop for which processes are described including the expansion of heated coronal gas, chromospheric evaporation, and plasma compression at loop footpoints. The intensities, time profiles, and average coronal temperatures of X-ray flares are derived from the simulations and compared to observational evidence. Because the amount of evaporated material does not vary linearly with flare-energy input, large loops are required to produce the energy measured from stellar flares.
Lattice strain measurements of deuteride phase formation in epitaxial niobium on sapphire
NASA Astrophysics Data System (ADS)
Allain, Monica Marie Cortez
Deuteride phase formation in epitaxial niobium on sapphire was investigated for two film thicknesses (200 and 1200A). A palladium cap of approximately 40A facilitated deuterium absorption from the gas phase and each exposure condition ensured that the film passed through the miscibility gap. In situ resistivity and x-ray diffraction (XRD) provided a correlation between the film resistance and each of the phases. This correlation was used during helium-3 nuclear reaction analysis to determine the deuterium concentration at the beginning and end of the miscibility gap providing a closer look at the strain behavior vs. deuterium concentration within the single and two-phase region. Three orthogonal reciprocal lattice points, the out-of-plane (1--10), the in-plane (002), and the in-plane (110), were monitored with XRD during deuterium absorption to saturation. Cycling effects on the 1200A Nb film were analyzed and found not to influence the strain behavior. The strain was anisotropic for both films, giving an enhanced out-of-plane expansion relative to the two in-plane directions. This is consistent with a clamping force inhibiting in-plane expansion. The observed out-of-plane strain can be used to estimate the in-plane clamping stress; the result is approximately 1 and 2 GPa for the 1200 and 200A Nb films respectively. The volumetric expansion determined from in situ XRD measurements demonstrate that the know value of the specific volume of deuterium, Deltanu/O, in bulk Nb (Deltanu/O = 0.174) does not hold for thin-film, epitaxial geometry (Deltanu/O ≈ 1). Further, the behavior of the specific volume shows a discontinuity at the phase boundary that does not exist in bulk. Lattice strain and overall film expansion from simultaneous XRD and x-ray reflectivity (XRR) measurements, respectively, were performed on both films. These results demonstrate a larger out-of-plane film expansion compared to the out-of-plane lattice strain for the 1200A Nb film compared to the 200A Nb film. It is believe that this is a consequence of greater plasticity within the 1200A film and associated dislocation generation. The enhance plasticity is also confirmed by a greater loss in structural coherence for the 1200A film and the fact that the in-plane clamping stress is greater for the 200A film. Evidence of significant dislocation formation has been confirmed with high-resolution electron microscopy (HREM) for the 1200A Nb film. The HREM images were used to estimate a dislocation density of 1012 cm-2 after repeated cycling. A residual out-of-plane compressive strain was observed in the 1200A Nb film after complete deuterium evolution. This observation can be explained by irreversible interstitial dislocation loop formation.
Band-Like Behavior of Localized States of Metal Silicide Precipitate in Silicon
NASA Astrophysics Data System (ADS)
Bondarenko, Anton; Vyvenko, Oleg
2018-03-01
Deep-level transient spectroscopy (DLTS) investigations of energy levels of charge-carrier traps associated with precipitates of metal silicide often show that they behave not like localized monoenergetic traps but as a continuous density of allowed states in the bandgap with fast carrier exchange between these states, so-called band-like behavior. This kind of behavior was ascribed to the dislocation loop bounding the platelet, which in addition exhibits an attractive potential caused by long-range elastic strain. In previous works, the presence of the dislocation-related deformation potential in combination with the external electric field of the Schottky diode was included to obtain a reasonable fit of the proposed model to experimental data. Another well-known particular property of extended defects—the presence of their own strong electric field in their vicinity that is manifested in the logarithmic kinetics of electron capture—was not taken into account. We derive herein a theoretical model that takes into account both the external electric field and the intrinsic electric field of dislocation self-charge as well as its deformation potential, which leads to strong temporal variation of the activation energy during charge-carrier emission. We performed numerical simulations of the DLTS spectra based on such a model for a monoenergetic trap, finding excellent agreement with available experimental data.
In situ synchrotron tensile investigations on 14YWT, MA957, and 9-Cr ODS alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jun-Li; Mo, Kun; Yun, Di
2016-04-01
Advanced ODS alloys provide exceptional radiation tolerance and high-temperature mechanical properties when compared to traditional ferritic and ferritic/martensitic 9F/M) steels. Their remarkable properties result from ultrahigh density and ultrafine size of Y-Ti-O nanoclusters within the ferritic matrix. In this work, we applied a high-energy synchrotron radiation X-ray to study the deformation process of three advanced ODS materials including 14YWT, MA957, and 9-Cr ODS steel. Only the relatively large nanoparticles in the 9-Cr ODS were observed in the synchrotron X-ray diffraction. The nanoclusters in both 14YWT and MA957 were invisible in the measurement due to their non-stoichiometric nature. Due to themore » different sizes of nanoparticles and nanoclusters in the materials, the Orowan looping was considered to be the major strengthening mechanism in the 9-Cr ODS, while the dispersed-barrier-hardening is dominant strengthening mechanism in both 14YWT and MA957, This analysis was inferred from the different build-up rates of dislocation density when plastic deformation was initiated. Finally, the dislocation densities interpreted from the X-ray measurements were successfully modeled using the Bergstrom's dislocation models. (C) 2016 Elsevier B.V. All rights reserved.« less
Wu, Wei; An, Ke; Liaw, Peter K.
2014-12-23
In the current study, the deformation mechanisms of a rolled magnesium alloy were investigated under cyclic loading using real-time in situ neutron diffraction under a continuous-loading condition. The relationship between the macroscopic cyclic deformation behavior and the microscopic response at the grain level was established. The neutron diffraction results indicate that more and more grains are involved in the twinning and detwinning deformation process with the increase of fatigue cycles. The residual twins appear in the early fatigue life, which is responsible for the cyclic hardening behavior. The asymmetric shape of the hysteresis loop is attributed to the early exhaustionmore » of the detwinning process during compression, which leads to the activation of dislocation slips and rapid strain-hardening. The critical resolved shear stress for the activation of tensile twinning closely depends on the residual strain developed during cyclic loading. In the cycle before the sample fractured, the dislocation slips became active in tension, although the sample was not fully twinned. The increased dislocation density leads to the rise of the stress concentration at weak spots, which is believed to be the main reason for the fatigue failure. Furthermore, the deformation history greatly influences the deformation mechanisms of hexagonal-close-packed-structured magnesium alloy during cyclic loading.« less
NASA Astrophysics Data System (ADS)
Ulvestad, Andrew
Nanostructured devices promise to help solve grand challenges of our time, including renewable energy generation, storage, and mitigating climate change. Their power lies in the particular influence of the surface on the total free energy when dimensions approach the nanoscale and it is well known that different sizes, shapes, and defects can drastically alter material properties. However, this strength represents a considerable challenge for imaging techniques that can be limited in terms of sample environments, average over large ensembles of particles, and/or lack adequate spatiotemporal resolution for studying the relevant physical processes. The focus of this thesis is the development of in situ coherent X-ray diffractive imaging (CXDI) and its application in imaging strain evolution in battery cathode nanoparticles. Using in situ CXDI, the compressive/tensile strain field in the pristine state is revealed, and found to be linked to a particular concentration of strain inducing Jahn-Teller ions. The evolution of strain during the first charge/discharge cycle shows that the cathode nanoparticle exhibits phase separation. Using the 3D strain field, the strain field energy is calculated and shows interesting hysteresis between charge and discharge. Strain evolution during a disconnection event, in which the cathode nanoparticle is no longer able to exchange electrons and ions with its environment, reveals the formation of a poorly conducting interphase layer. Finally, strain fields were used to study dislocation dynamics in battery nanoparticles. Using the full 3D information, the dislocation line structure is mapped and shown to move in response to charge transfer. The dislocation is used as a way to probe the local material properties and it is discovered that the material enters an ``auxetic", or negative Poisson's ratio, regime.
Evolution of the Deformation Behavior of Sn-Rich Solders during Cyclic Fatigue
NASA Astrophysics Data System (ADS)
Wentlent, Luke Arthur
Continuous developments in the electronics industry have provided a critical need for a quantitative, fundamental understanding of the behavior of SnAgCu (SAC) solders in both isothermal and thermal fatigue conditions. This study examines the damage behavior of Sn-based solders in a constant amplitude and variable amplitude environment. In addition, damage properties are correlated with crystal orientation and slip behavior. Select solder joints were continuously characterized and tested repeatedly in order to eliminate the joint to joint variation due to the anisotropy of beta-Sn. Characterization was partitioned into three different categories: effective properties and slip behavior, creep mechanisms and crystal morphology development, and atomic behavior and evolution. Active slip systems were correlated with measured properties. Characterization of the mechanical behavior was performed by the calculation and extrapolation of the elastic modulus, work, effective stiffness, Schmid factors, and time-dependent plasticity (creep). Electron microscopy based characterization methods included Scanning Electron Microscopy (SEM), Electron Backscattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM). Testing showed a clear evolution of the steady-state creep mechanism when the cycling amplitudes were varied, from dislocation controlled to diffusion controlled creep. Dislocation behavior was examined and shown to evolve differently in single amplitude vs. variable amplitude testing. Finally, the mechanism of the recrystallization behavior of the beta-Sn was observed. This work fills a gap in the literature, providing a systematic study which identifies how the damage behavior in Sn-alloys depends upon the previous damage. A link is made between the observed creep behavior and the dislocation observations, providing a unified picture. Information developed in this work lays a stepping stone to future fundamental analyses as well as clarifying aspects of the mechanistic behavior of Sn and Sn-based alloys.
NASA Astrophysics Data System (ADS)
Bhattacharjee, S.; Dhar, S.; Acharyya, S. K.
2017-07-01
The primary and secondary stages of the uniaxial ratcheting curve for the C-Mn steel SA333 have been investigated. Stress controlled uniaxial ratcheting experiments were conducted with different mean stresses and stress amplitudes to obtain curves showing the evolution of ratcheting strain with number of cycles. In stage-I of the ratcheting curve, a large accumulation of ratcheting strain occurs, but at a decreasing rate. In contrast, in stage-II a smaller accumulation of ratcheting strain is found and the ratcheting rate becomes almost constant. Transmission electron microscope observations reveal that no specific dislocation structures are developed during the early stages of ratcheting. Rather, compared with the case of low cycle fatigue, it is observed that sub-cell formation is delayed in the case of ratcheting. The increase in dislocation density as a result of the ratcheting strain is obtained using the Orowan equation. The ratcheting strain is obtained from the shift of the plastic strain memory surface. The dislocation rearrangement is incorporated in a functional form of dislocation density, which is used to calibrate the parameters of a kinematic hardening law. The observations are formulated in a material model, plugged into the ABAQUS finite element (FE) platform as a user material subroutine. Finally the FE-simulated ratcheting curves are compared with the experimental curves.
The Structure of Coronal Loops
NASA Technical Reports Server (NTRS)
Antiochos, Spiro K.
2009-01-01
It is widely believed that the simple coronal loops observed by XUV imagers, such as EIT, TRACE, or XRT, actually have a complex internal structure consisting of many (perhaps hundreds) of unresolved, interwoven "strands". According to the nanoflare model, photospheric motions tangle the strands, causing them to reconnect and release the energy required to produce the observed loop plasma. Although the strands, themselves, are unresolved by present-generation imagers, there is compelling evidence for their existence and for the nanoflare model from analysis of loop intensities and temporal evolution. A problem with this scenario is that, although reconnection can eliminate some of the strand tangles, it cannot destroy helicity, which should eventually build up to observable scales. we consider, therefore, the injection and evolution of helicity by the nanoflare process and its implications for the observed structure of loops and the large-scale corona. we argue that helicity does survive and build up to observable levels, but on spatial and temporal scales larger than those of coronal loops. we discuss the implications of these results for coronal loops and the corona, in general .
NASA Astrophysics Data System (ADS)
Cordier, P.; Goryaeva, A.; Carrez, P.
2016-12-01
Dislocation motion in crystalline materials represents one of the most efficient mechanisms to produce plastic shear, the key mechanism for CPO development. Previous atomistic simulations show that MgSiO3 ppv is characterized by remarkably low lattice friction opposed to the glide of straight [100] screw dislocations in (010), while glide in (001) requires one order of magnitude larger stress values [1]. At finite temperature, dislocation glide occurs through nucleation and propagation of kink-pairs, i.e. dislocation does not move as a straight line, but partly bows out over the Peierls potential. We propose a theoretical study of a kink-pair formation mechanism for [100] screw dislocations in MgSiO3 ppv employing the line tension (LT) model [2] in conjunction with ab-initio atomic-scale modeling. The dislocation line tension, which plays a key role in dislocation dynamics, is computed at atomic scale as the energy increase resulting from individual atomic displacements due to the nucleation of a bow out. The estimated kink-pair formation enthalpy gives an access to evolution of critical resolved shear stress (CRSS) with temperature. Our results clearly demonstrate that at the lower mantle conditions, lattice friction in ppv vanishes for temperatures above ca. 600 K, i.e. ppv deforms in the athermal regime in contrast to the high-lattice friction bridgmanite [3]. Moreover, in the Earth's mantle, high-pressure Mg-ppv can be expected to be as ductile as MgO. Our simulations demonstrate that ppv contributes to a weak layer at the base of the mantle which is likely to promote alignment of (010) planes. In addition to that, we show that the high mobility of [100] dislocations results in a decrease of the apparent shear modulus (up to 15%) which contributes to a decrease of the shear wave velocity of about 7% and suggest that ppv induces energy dissipation and strong seismic attenuation in the D" layer. References[1] Goryaeva A, Carrez Ph & Cordier P (2015) Modeling defects and plasticity in MgSiO3 post-perovskite: Part 2 - screw and edge [100] dislocations. Phys. Chem. Miner. 45:793-803 [2] Seeger A (1984) in "Dislocations", CNRS, Paris, p. 141. [3] Kraych A, Carrez Ph & Cordier P (2016) On dislocation glide in MgSiO3 bridgmanite at high pressure and high-temperature. Earth Planet. Sci. Lett. submitted.
Finite element approximation of the fields of bulk and interfacial line defects
NASA Astrophysics Data System (ADS)
Zhang, Chiqun; Acharya, Amit; Puri, Saurabh
2018-05-01
A generalized disclination (g.disclination) theory (Acharya and Fressengeas, 2015) has been recently introduced that goes beyond treating standard translational and rotational Volterra defects in a continuously distributed defects approach; it is capable of treating the kinematics and dynamics of terminating lines of elastic strain and rotation discontinuities. In this work, a numerical method is developed to solve for the stress and distortion fields of g.disclination systems. Problems of small and finite deformation theory are considered. The fields of a single disclination, a single dislocation treated as a disclination dipole, a tilt grain boundary, a misfitting grain boundary with disconnections, a through twin boundary, a terminating twin boundary, a through grain boundary, a star disclination/penta-twin, a disclination loop (with twist and wedge segments), and a plate, a lenticular, and a needle inclusion are approximated. It is demonstrated that while the far-field topological identity of a dislocation of appropriate strength and a disclination-dipole plus a slip dislocation comprising a disconnection are the same, the latter microstructure is energetically favorable. This underscores the complementary importance of all of topology, geometry, and energetics in understanding defect mechanics. It is established that finite element approximations of fields of interfacial and bulk line defects can be achieved in a systematic and routine manner, thus contributing to the study of intricate defect microstructures in the scientific understanding and predictive design of materials. Our work also represents one systematic way of studying the interaction of (g.)disclinations and dislocations as topological defects, a subject of considerable subtlety and conceptual importance (Aharoni et al., 2017; Mermin, 1979).
Muhammed, M. M.; Roldan, M. A.; Yamashita, Y.; Sahonta, S.-L.; Ajia, I. A.; Iizuka, K.; Kuramata, A.; Humphreys, C. J.; Roqan, I. S.
2016-01-01
We demonstrate the high structural and optical properties of InxGa1−xN epilayers (0 ≤ x ≤ 23) grown on conductive and transparent (01)-oriented β-Ga2O3 substrates using a low-temperature GaN buffer layer rather than AlN buffer layer, which enhances the quality and stability of the crystals compared to those grown on (100)-oriented β-Ga2O3. Raman maps show that the 2″ wafer is relaxed and uniform. Transmission electron microscopy (TEM) reveals that the dislocation density reduces considerably (~4.8 × 107 cm−2) at the grain centers. High-resolution TEM analysis demonstrates that most dislocations emerge at an angle with respect to the c-axis, whereas dislocations of the opposite phase form a loop and annihilate each other. The dislocation behavior is due to irregular (01) β-Ga2O3 surface at the interface and distorted buffer layer, followed by relaxed GaN epilayer. Photoluminescence results confirm high optical quality and time-resolved spectroscopy shows that the recombination is governed by bound excitons. We find that a low root-mean-square average (≤1.5 nm) of InxGa1−xN epilayers can be achieved with high optical quality of InxGa1−xN epilayers. We reveal that (01)-oriented β-Ga2O3 substrate has a strong potential for use in large-scale high-quality vertical light emitting device design. PMID:27412372
Muhammed, M M; Roldan, M A; Yamashita, Y; Sahonta, S-L; Ajia, I A; Iizuka, K; Kuramata, A; Humphreys, C J; Roqan, I S
2016-07-14
We demonstrate the high structural and optical properties of InxGa1-xN epilayers (0 ≤ x ≤ 23) grown on conductive and transparent (01)-oriented β-Ga2O3 substrates using a low-temperature GaN buffer layer rather than AlN buffer layer, which enhances the quality and stability of the crystals compared to those grown on (100)-oriented β-Ga2O3. Raman maps show that the 2″ wafer is relaxed and uniform. Transmission electron microscopy (TEM) reveals that the dislocation density reduces considerably (~4.8 × 10(7) cm(-2)) at the grain centers. High-resolution TEM analysis demonstrates that most dislocations emerge at an angle with respect to the c-axis, whereas dislocations of the opposite phase form a loop and annihilate each other. The dislocation behavior is due to irregular (01) β-Ga2O3 surface at the interface and distorted buffer layer, followed by relaxed GaN epilayer. Photoluminescence results confirm high optical quality and time-resolved spectroscopy shows that the recombination is governed by bound excitons. We find that a low root-mean-square average (≤1.5 nm) of InxGa1-xN epilayers can be achieved with high optical quality of InxGa1-xN epilayers. We reveal that (01)-oriented β-Ga2O3 substrate has a strong potential for use in large-scale high-quality vertical light emitting device design.
Experiments, Theory, and Simulation on the Evolution of Fabric in Granular Materials
1992-07-27
Evolution of Fabric in Granular- Materials "I S ELECTE AU 27 199Z A 60 0 1C cb t H" Thi f, : :,ent h,- beo:n approved t f,:,z p, L~i- an-. .,!,’c d ...Hall 6.1102F Ithaca, New York 14853-1503 SPONSORING/MOYITORI G AGENCY NAME( S ) AND ADDRESS(ES) 10. SPONSORING/MONITORING LFOSR / / V . AGENCY REPORT...else loop j (1,jgp) xvel(l,j) = svel xvel(igp,j) = - s -vel end-loop end .if end ;--- analysis function --- def analyse d -vol = 0.0 loop i (1,izones
Thermodynamic and kinetic modeling of Mn-Ni-Si precipitates in low-Cu reactor pressure vessel steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ke, Huibin; Wells, Peter; Edmondson, Philip D.
Formation of large volume fractions of Mn-Ni-Si precipitates (MNSPs) causes excess irradiation embrittlement of reactor pressure vessel (RPV) steels at high, extended-life fluences. Thus, a new and unique, semi-empirical cluster dynamics model was developed to study the evolution of MNSPs in low-Cu RPV steels. The model is based on CALPHAD thermodynamics and radiation enhanced diffusion kinetics. The thermodynamics dictates the compositional and temperature dependence of the free energy reductions that drive precipitation. The model treats both homogeneous and heterogeneous nucleation, where the latter occurs on cascade damage, like dislocation loops. The model has only four adjustable parameters that were fitmore » to an atom probe tomography (APT) database. The model predictions are in semi-quantitative agreement with systematic Mn, Ni and Si composition variations in alloys characterized by APT, including a sensitivity to local tip-to-tip variations even in the same steel. The model predicts that heterogeneous nucleation plays a critical role in MNSP formation in lower alloy Ni contents. Single variable assessments of compositional effects show that Ni plays a dominant role, while even small variations in irradiation temperature can have a large effect on the MNSP evolution. Within typical RPV steel ranges, Mn and Si have smaller effects. Furthermore, the delayed but then rapid growth of MNSPs to large volume fractions at high fluence is well predicted by the model. For purposes of illustration, the effect of MNSPs on transition temperature shifts are presented based on well-established microstructure-property and property-property models.« less
Thermodynamic and kinetic modeling of Mn-Ni-Si precipitates in low-Cu reactor pressure vessel steels
Ke, Huibin; Wells, Peter; Edmondson, Philip D.; ...
2017-07-12
Formation of large volume fractions of Mn-Ni-Si precipitates (MNSPs) causes excess irradiation embrittlement of reactor pressure vessel (RPV) steels at high, extended-life fluences. Thus, a new and unique, semi-empirical cluster dynamics model was developed to study the evolution of MNSPs in low-Cu RPV steels. The model is based on CALPHAD thermodynamics and radiation enhanced diffusion kinetics. The thermodynamics dictates the compositional and temperature dependence of the free energy reductions that drive precipitation. The model treats both homogeneous and heterogeneous nucleation, where the latter occurs on cascade damage, like dislocation loops. The model has only four adjustable parameters that were fitmore » to an atom probe tomography (APT) database. The model predictions are in semi-quantitative agreement with systematic Mn, Ni and Si composition variations in alloys characterized by APT, including a sensitivity to local tip-to-tip variations even in the same steel. The model predicts that heterogeneous nucleation plays a critical role in MNSP formation in lower alloy Ni contents. Single variable assessments of compositional effects show that Ni plays a dominant role, while even small variations in irradiation temperature can have a large effect on the MNSP evolution. Within typical RPV steel ranges, Mn and Si have smaller effects. Furthermore, the delayed but then rapid growth of MNSPs to large volume fractions at high fluence is well predicted by the model. For purposes of illustration, the effect of MNSPs on transition temperature shifts are presented based on well-established microstructure-property and property-property models.« less
Metal viscoplasticity with two-temperature thermodynamics and two dislocation densities
NASA Astrophysics Data System (ADS)
Roy Chowdhury, Shubhankar; Kar, Gurudas; Roy, Debasish; Reddy, J. N.
2018-03-01
Posed within the two-temperature theory of non-equilibrium thermodynamics, we propose a model for thermoviscoplastic deformation in metals. We incorporate the dynamics of dislocation densities-mobile and forest—that play the role of internal state variables in the formulation. The description based on two temperatures appears naturally when one recognizes that the thermodynamic system undergoing viscoplastic deformation is composed of two weakly interacting subsystems, viz. a kinetic-vibrational subsystem of the vibrating atomic lattices and a configurational subsystem of the slower degrees of freedom relating to defect motion, each with its own temperature. Starting with a basic model that involves only homogeneous deformation, a three-dimensional model for inhomogeneous viscoplasticity applicable to finite deformation is charted out in an overstress driven viscoplastic deformation framework. The model shows how the coupled evolutions of mobile and forest dislocation densities, which are critically influenced by the dynamics of configurational temperature, govern the strength and ductility of the metal. Unlike most contemporary models, the current proposal also affords a prediction of certain finer details as observed in the experimental data on stress-strain behaviour of metals and this in turn enhances the understanding of the evolving and interacting dislocation densities.
Modeling the Role of Dislocation Substructure During Class M and Exponential Creep. Revised
NASA Technical Reports Server (NTRS)
Raj, S. V.; Iskovitz, Ilana Seiden; Freed, A. D.
1995-01-01
The different substructures that form in the power-law and exponential creep regimes for single phase crystalline materials under various conditions of stress, temperature and strain are reviewed. The microstructure is correlated both qualitatively and quantitatively with power-law and exponential creep as well as with steady state and non-steady state deformation behavior. These observations suggest that creep is influenced by a complex interaction between several elements of the microstructure, such as dislocations, cells and subgrains. The stability of the creep substructure is examined in both of these creep regimes during stress and temperature change experiments. These observations are rationalized on the basis of a phenomenological model, where normal primary creep is interpreted as a series of constant structure exponential creep rate-stress relationships. The implications of this viewpoint on the magnitude of the stress exponent and steady state behavior are discussed. A theory is developed to predict the macroscopic creep behavior of a single phase material using quantitative microstructural data. In this technique the thermally activated deformation mechanisms proposed by dislocation physics are interlinked with a previously developed multiphase, three-dimensional. dislocation substructure creep model. This procedure leads to several coupled differential equations interrelating macroscopic creep plasticity with microstructural evolution.
NASA Astrophysics Data System (ADS)
Nikitina, E. N.; Glezer, A. M.; Ivanov, Yu. F.; Aksenova, K. V.; Gromov, V. E.; Kazimirov, S. A.
2017-10-01
The evolution of the phase composition and the imperfect substructure of the 30Kh2N2MFA bainitic structural steel subjected to compressive deformation by 36% is quantitatively analyzed. It is shown that deformation is accompanied by an increase in the scalar dislocation density, a decrease in the longitudinal fragment sizes, an increase in the number of stress concentrators, the dissolution of cementite particles, and the transformation of retained austenite.
A continuum dislocation dynamics framework for plasticity of polycrystalline materials
NASA Astrophysics Data System (ADS)
Askari, Hesam Aldin
The objective of this research is to investigate the mechanical response of polycrystals in different settings to identify the mechanisms that give rise to specific response observed in the deformation process. Particularly the large deformation of magnesium alloys and yield properties of copper in small scales are investigated. We develop a continuum dislocation dynamics framework based on dislocation mechanisms and interaction laws and implement this formulation in a viscoplastic self-consistent scheme to obtain the mechanical response in a polycrystalline system. The versatility of this method allows various applications in the study of problems involving large deformation, study of microstructure and its evolution, superplasticity, study of size effect in polycrystals and stochastic plasticity. The findings from the numerical solution are compared to the experimental results to validate the simulation results. We apply this framework to study the deformation mechanisms in magnesium alloys at moderate to fast strain rates and room temperature to 450 °C. Experiments for the same range of strain rates and temperatures were carried out to obtain the mechanical and material properties, and to compare with the numerical results. The numerical approach for magnesium is divided into four main steps; 1) room temperature unidirectional loading 2) high temperature deformation without grain boundary sliding 3) high temperature with grain boundary sliding mechanism 4) room temperature cyclic loading. We demonstrate the capability of our modeling approach in prediction of mechanical properties and texture evolution and discuss the improvement obtained by using the continuum dislocation dynamics method. The framework was also applied to nano-sized copper polycrystals to study the yield properties at small scales and address the observed yield scatter. By combining our developed method with a Monte Carlo simulation approach, the stochastic plasticity at small length scales was studied and the sources of the uncertainty in the polycrystalline structure are discussed. Our results suggest that the stochastic response is mainly because of a) stochastic plasticity due to dislocation substructure inside crystals and b) the microstructure of the polycrystalline material. The extent of the uncertainty is correlated to the "effective cell length" in the sampling procedure whether using simulations and experimental approach.
NASA Astrophysics Data System (ADS)
Song, Peng; Morrall, Daniel; Zhang, Zhexian; Yabuuchi, Kiyohiro; Kimura, Akihiko
2018-04-01
In order to investigate the effects of oxide particles on radiation response such as hardness change and microstructural evolution, three types of oxide dispersion strengthened (ODS) ferritic steels (named Y-Ti-ODS, Y-Al-ODS and Y-Al-Zr-ODS), mostly strengthened by Y-Ti-O, Y-Al-O and Y-Zr-O dispersoids, respectively, were simultaneously irradiated with iron and helium ions at 550 °C up to a damage of 30 dpa and a corresponding helium (He) concentration of ∼3500 appm to a depth of 1000-1300 nm. A single iron ion beam irradiation was also performed for reference. Transmission electron microscopy revealed that after the dual ion irradiation helium bubbles of 2.8, 6.6 and 4.5 nm in mean diameter with the corresponding number densities of 1.1 × 1023, 2.7 × 1022 and 3.6 × 1022 m-3 were observed in Y-Ti-ODS, Y-Al-ODS and Y-Al-Zr-ODS, respectively, while no such bubbles were observed after single ion irradiation. About 80% of intragranular He bubbles were adjacent to oxide particles in the ODS ferritic steels. Although the high number density He bubbles were observed in the ODS steels, the void swelling in Y-Ti-ODS, Y-Al-ODS and Y-Al-Zr-ODS was still small and estimated to be 0.13%, 0.53% and 0.20%, respectively. The excellent swelling resistance is dominantly attributed to the high sink strength of oxide particles that depends on the morphology of particle dispersion rather than the crystal structure of the particles. In contrast, no dislocation loops were produced in any of the irradiated steels. Nanoindentation measurements showed that no irradiation hardening but softening was found in the ODS ferritic steels, which was probably due to irradiation induced dislocation recovery. The helium bubbles in high number density never contributed to the irradiation hardening of the ODS steels at these irradiation conditions.
Hardware Evolution of Control Electronics
NASA Technical Reports Server (NTRS)
Gwaltney, David; Steincamp, Jim; Corder, Eric; King, Ken; Ferguson, M. I.; Dutton, Ken
2003-01-01
The evolution of closed-loop motor speed controllers implemented on the JPL FPTA2 is presented. The response of evolved controller to sinusoidal commands, controller reconfiguration for fault tolerance,and hardware evolution are described.
Zhang, Lei; Zhou, Xin; Qi, Ji; Zeng, Yan; Zhang, Shaoqun; Liu, Gang; Ping, Ruiyue; Li, Yikai; Fu, Shijie
2018-01-01
Acromioclavicular dislocation (ACD) is a common injury. According to the Rockwood classification, ACD is classified into six types (type I–VI); however, for type III injuries, it remains controversial whether or not operative treatment should be applied. Numerous studies have advocated early surgical treatment to ensure early rehabilitation activities. Thus, the present study aimed to investigate a modified closed-loop double-endobutton technique (MCDT), that may be used to repair Rockwood type III ACD. In the current study, 61 patients with Rockwood type III ACD were enrolled during a period of 5 years at the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University. Patients were divided into three groups according to the surgical method used, the MCDT group (n=20), the common closed-loop double-endobutton technique (CCDT) group (n=21), and the clavicular hook plate fixation (CHPF) group (n=20). Preoperative and intraoperative information were recorded. Furthermore, the functional scores of injured shoulder were evaluated prior to surgery and following surgery with a 1-year follow-up. Among the three groups, postoperative functional scores were significantly more improved compared with those prior to surgery (P<0.05), and no significant difference was observed regarding the coracoclavicular interval with the 1-year follow-up (P>0.05). Postoperative functional scores in the MCDT and CCDT groups were significantly more improved compared those in the CHPF group (P<0.05). In addition, the duration of surgery in the MCDT group was significantly shorter compared with that in the CCDT group (P<0.05). Furthermore, compared with the CHPF group, the incision length was significantly shorter with reduced hemorrhage in the MCDT group (P<0.05). In conclusion, the results of the current study suggest that MCDT is more simple, convenient and efficient compared with CCDT, and is worth popularizing. PMID:29399102
Evolution of ion damage at 773K in Ni- containing concentrated solid-solution alloys
Shi, Shi; He, Mo-Rigen; Jin, Ke; ...
2018-01-10
Quantitative analysis of the impact of the compositional complexity in a series of Ni-containing concentrated solid-solution alloys, Ni, NiCo, NiFe, NiCoCr, NiCoFeCr, NiCoFeCrMn and NiCoFeCrPd, on the evolution of defects produced by 1 MeV Kr ion irradiation at 773 K is reported in this paper. The dynamics of the evolution of the damage structure during irradiation to a dose of 2 displacements per atom were observed directly by performing the ion irradiations in electron transparent foils in a transmission electron microscope coupled to an ion accelerator. The defect evolution was assessed through measurement of the defect density, defect size andmore » fraction of perfect and Frank loops. These three parameters were dependent on the alloying element as well as the number of elements. The population of loops was sensitive to the ion dose and alloy composition as faulted Frank loops were observed to unfault to perfect loops with increasing ion dose. Finally, these dependences are explained in terms of the influence of each element on the lifetime of the displacement cascade as well as on defect formation and migration energies.« less
Evolution of ion damage at 773K in Ni- containing concentrated solid-solution alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Shi; He, Mo-Rigen; Jin, Ke
Quantitative analysis of the impact of the compositional complexity in a series of Ni-containing concentrated solid-solution alloys, Ni, NiCo, NiFe, NiCoCr, NiCoFeCr, NiCoFeCrMn and NiCoFeCrPd, on the evolution of defects produced by 1 MeV Kr ion irradiation at 773 K is reported in this paper. The dynamics of the evolution of the damage structure during irradiation to a dose of 2 displacements per atom were observed directly by performing the ion irradiations in electron transparent foils in a transmission electron microscope coupled to an ion accelerator. The defect evolution was assessed through measurement of the defect density, defect size andmore » fraction of perfect and Frank loops. These three parameters were dependent on the alloying element as well as the number of elements. The population of loops was sensitive to the ion dose and alloy composition as faulted Frank loops were observed to unfault to perfect loops with increasing ion dose. Finally, these dependences are explained in terms of the influence of each element on the lifetime of the displacement cascade as well as on defect formation and migration energies.« less
Radiation tolerance of neutron-irradiated model Fe-Cr-Al alloys
Field, Kevin G.; Hu, Xunxiang; Littrell, Kenneth C.; ...
2015-07-14
The Fe Cr Al alloy system has the potential to form an important class of enhanced accident-tolerant cladding materials in the nuclear power industry owing to the alloy system's higher oxidation resistance in high-temperature steam environments compared with traditional zirconium-based alloys. However, radiation tolerance of Fe Cr Al alloys has not been fully established. In this study, a series of Fe Cr Al alloys with 10 18 wt % Cr and 2.9 4.9 wt % Al were neutron irradiated at 382 C to 1.8 dpa to investigate the irradiation-induced microstructural and mechanical property evolution as a function of alloy composition.more » Dislocation loops with Burgers vector of a/2 111 and a 100 were detected and quantified. Results indicate precipitation of Cr-rich is primarily dependent on the bulk chromium composition. Mechanical testing of sub-size-irradiated tensile specimens indicates the hardening response seen after irradiation is dependent on the bulk chromium composition. Furthermore, a structure property relationship was developed; it indicated that the change in yield strength after irradiation is caused by the formation of these radiation-induced defects and is dominated by the large number density of Cr-rich α' precipitates at sufficiently high chromium contents after irradiation.« less
NASA Astrophysics Data System (ADS)
Hug, E.; Prasath Babu, R.; Monnet, I.; Etienne, A.; Moisy, F.; Pralong, V.; Enikeev, N.; Abramova, M.; Sauvage, X.; Radiguet, B.
2017-01-01
The influence of grain size and irradiation defects on the mechanical behavior and the corrosion resistance of a 316 stainless steel have been investigated. Nanostructured samples were obtained by severe plastic deformation using high pressure torsion. Both coarse grain and nanostructured samples were irradiated with 10 MeV 56Fe5+ ions. Microstructures were characterized using transmission electron microscopy and atom probe tomography. Surface mechanical properties were evaluated thanks to hardness measurements and the corrosion resistance was studied in chloride environment. Nanostructuration by high pressure torsion followed by annealing leads to enrichment in chromium at grain boundaries. However, irradiation of nanostructured samples implies a chromium depletion of the same order than depicted in coarse grain specimens but without metallurgical damage like segregated dislocation loops or clusters. Potentiodynamic polarization tests highlight a definitive deterioration of the corrosion resistance of coarse grain steel with irradiation. Downsizing the grain to a few hundred of nanometers enhances the corrosion resistance of irradiated samples, despite the fact that the hardness of nanocrystalline austenitic steel is only weakly affected by irradiation. These new experimental results are discussed in the basis of couplings between mechanical and electrical properties of the passivated layer thanks to impedance spectroscopy measurements, hardness properties of the surfaces and local microstructure evolutions.
Dose dependence of helium bubble formation in nano-engineered SiC at 700 °C
Chen, Chien -Hung; Zhang, Yanwen; Wang, Yongqiang; ...
2016-02-03
Knowledge of radiation-induced helium bubble nucleation and growth in SiC is essential for applications in fusion and fission environments. Here we report the evolution of microstructure in nano-engineered (NE) 3C SiC, pre-implanted with helium, under heavy ion irradiation at 700 °C up to doses of 30 displacements per atom (dpa). Elastic recoil detection analysis confirms that the as-implanted helium depth profile does not change under irradiation to 30 dpa at 700 °C. While the helium bubble size distribution becomes narrower with increasing dose, the average size of bubbles remains unchanged and the density of bubbles increases somewhat with dose. Thesemore » results are consistent with a long helium bubble incubation process under continued irradiation at 700 °C up to 30 dpa, similar to that reported under dual and triple beam irradiation at much higher temperatures. The formation of bubbles at this low temperature is enhanced by the nano-layered stacking fault structure in the NE SiC, which enhances point defect mobility parallel to the stacking faults. Here, this stacking fault structure is stable at 700 °C up to 30 dpa and suppresses the formation of dislocation loops normally observed under these irradiation conditions.« less
Absence of dynamic strain aging in an additively manufactured nickel-base superalloy.
Beese, Allison M; Wang, Zhuqing; Stoica, Alexandru D; Ma, Dong
2018-05-25
Dynamic strain aging (DSA), observed macroscopically as serrated plastic flow, has long been seen in nickel-base superalloys when plastically deformed at elevated temperatures. Here we report the absence of DSA in Inconel 625 made by additive manufacturing (AM) at temperatures and strain rates where DSA is present in its conventionally processed counterpart. This absence is attributed to the unique AM microstructure of finely dispersed secondary phases (carbides, N-rich phases, and Laves phase) and textured grains. Based on experimental observations, we propose a dislocation-arrest model to elucidate the criterion for DSA to occur or to be absent as a competition between dislocation pipe diffusion and carbide-carbon reactions. With in situ neutron diffraction studies of lattice strain evolution, our findings provide a new perspective for mesoscale understanding of dislocation-solute interactions and their impact on work-hardening behaviors in high-temperature alloys, and have important implications for tailoring thermomechanical properties by microstructure control via AM.
NASA Astrophysics Data System (ADS)
Kim, I.-S.; Hunn, J. D.; Hashimoto, N.; Larson^1, D. L.; Maziasz, P. J.; Miyahara, K.; Lee, E. H.
2000-08-01
In an attempt to explore the potential of oxide dispersion strengthened (ODS) ferritic steels for fission and fusion structural materials applications, a set of ODS steels with varying oxide particle dispersion were irradiated at 650°C, using 3.2 MeV Fe + and 330 keV He + ions simultaneously. The void formation mechanisms in these ODS steels were studied by juxtaposing the response of a 9Cr-2WVTa ferritic/martensitic steel and solution annealed AISI 316LN austenitic stainless steel under the same irradiation conditions. The results showed that void formation was suppressed progressively by introducing and retaining a higher dislocation density and finer precipitate particles. Theoretical analyses suggest that the delayed onset of void formation in ODS steels stems from the enhanced point defect recombination in the high density dislocation microstructure, lower dislocation bias due to oxide particle pinning, and a very fine dispersion of helium bubbles caused by trapping helium atoms at the particle-matrix interfaces.
Shock compression of [001] single crystal silicon
Zhao, S.; Remington, B.; Hahn, E. N.; ...
2016-03-14
Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent withmore » dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Furthermore, application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.« less
Interacting effects of strengthening and twin boundary migration in nanotwinned materials
NASA Astrophysics Data System (ADS)
Joshi, Kartikey; Joshi, Shailendra P.
Twin boundaries play a governing role in the mechanical characteristics of nanotwinned materials. They act as yield strengthening agents by offering resistance to non-coplanar dislocation slip. Twin boundary migration may cause yield softening while also enhancing the strain hardening response. In this work, we investigate the interaction between strengthening and twin boundary migration mechanisms by developing a length-scale dependent crystal plasticity framework for face-centered-cubic nanotwinned materials. The crystal plasticity model incorporates strengthening mechanisms due to dislocation pile-up via slip and slip-rate gradients and twin boundary migration via source-based twin partial nucleation and lattice dislocation-twin boundary interaction. The coupled effect of the load orientation and initial twin size on the speed of twin boundary is discussed and an expression for the same is proposed in terms of relevant material parameters. The efficacy of finite element simulations and the analytical expression in predicting evolution of nanotwinned microstructures comprising size and spatial distributions of twins is demonstrated.
Shock compression of [001] single crystal silicon
NASA Astrophysics Data System (ADS)
Zhao, S.; Hahn, E. N.; Kad, B.; Remington, B. A.; Bringa, E. M.; Meyers, M. A.
2016-05-01
Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent with dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.
Deformation mechanisms of NiAl cyclicly deformed near the brittle-to-ductile transition temperature
NASA Technical Reports Server (NTRS)
Cullers, Cheryl L.; Antolovich, Stephen D.
1993-01-01
The intermetallic compound NiAl is one of many advanced materials which is being scrutinized for possible use in high temperature, structural applications. Stoichiometric NiAl has a high melting temperature, excellent oxidation resistance, and good thermal conductivity. Past research has concentrated on improving monotonic properties. The encouraging results obtained on binary and micro-alloyed NiAl over the past ten years have led to the broadening of NiAl experimental programs. The purpose of this research project was to determine the low cycle fatigue properties and dislocation mechanisms of stoichiometric NiAl at temperatures near the monotonic brittle-to-ductile transition. The fatigue properties were found to change only slightly in the temperature range of 600 to 700 K; a temperature range over which monotonic ductility and fracture strength increase markedly. The shape of the cyclic hardening curves coincided with the changes observed in the dislocation structures. The evolution of dislocation structures did not appear to change with temperature.
NASA Astrophysics Data System (ADS)
Yu, Hao; Zhou, Tao
The heat treatment during manufacturing process of induction bend pipe had been simulated. The evolutions of ferrite, M/A island and substructure after tempering at 500 700 °C were characterized by means of optical microscopy, positron annihilation technique, SEM, TEM, XRD and EBSD. The mechanical performance was evaluated by tensile test, Charpy V-notch impact test (-20 °C) and Vickers hardness test (10 kgf). Microstructure observations showed that fine and homogenous M/A islands as well as dislocation packages in quasi-polygonal ferrite matrix after tempering at 600 650 °C generated optimal combination of strength and toughness. After tempering at 700 °C, the yield strength decreased dramatically. EBSD analysis indicated that the effective grain size diminished with the tempering temperature increasing. It could cause more energy cost during microcrack propagation process with subsequent improvement in impact toughness. Dislocation analysis suggested that the decrease and pile-up of dislocation benefited the combination of strength and toughness.
In Vitro Evolution and Affinity-Maturation with Coliphage Qβ Display
Skamel, Claudia; Aller, Stephen G.; Bopda Waffo, Alain
2014-01-01
The Escherichia coli bacteriophage, Qβ (Coliphage Qβ), offers a favorable alternative to M13 for in vitro evolution of displayed peptides and proteins due to high mutagenesis rates in Qβ RNA replication that better simulate the affinity maturation processes of the immune response. We describe a benchtop in vitro evolution system using Qβ display of the VP1 G-H loop peptide of foot-and-mouth disease virus (FMDV). DNA encoding the G-H loop was fused to the A1 minor coat protein of Qβ resulting in a replication-competent hybrid phage that efficiently displayed the FMDV peptide. The surface-localized FMDV VP1 G-H loop cross-reacted with the anti-FMDV monoclonal antibody (mAb) SD6 and was found to decorate the corners of the Qβ icosahedral shell by electron microscopy. Evolution of Qβ-displayed peptides, starting from fully degenerate coding sequences corresponding to the immunodominant region of VP1, allowed rapid in vitro affinity maturation to SD6 mAb. Qβ selected under evolutionary pressure revealed a non-canonical, but essential epitope for mAb SD6 recognition consisting of an Arg-Gly tandem pair. Finally, the selected hybrid phages induced polyclonal antibodies in guinea pigs with good affinity to both FMDV and hybrid Qβ-G-H loop, validating the requirement of the tandem pair epitope. Qβ-display emerges as a novel framework for rapid in vitro evolution with affinity-maturation to molecular targets. PMID:25393763
Deformation mechanisms and grain size evolution in the Bohemian granulites - a computational study
NASA Astrophysics Data System (ADS)
Maierova, Petra; Lexa, Ondrej; Jeřábek, Petr; Franěk, Jan; Schulmann, Karel
2015-04-01
A dominant deformation mechanism in crustal rocks (e.g., dislocation and diffusion creep, grain boundary sliding, solution-precipitation) depends on many parameters such as temperature, major minerals, differential stress, strain rate and grain size. An exemplary sequence of deformation mechanisms was identified in the largest felsic granulite massifs in the southern Moldanubian domain (Bohemian Massif, central European Variscides). These massifs were interpreted to result from collision-related forced diapiric ascent of lower crust and its subsequent lateral spreading at mid-crustal levels. Three types of microstructures were distinguished. The oldest relict microstructure (S1) with large grains (>1000 μm) of feldspar deformed probably by dislocation creep at peak HT eclogite facies conditions. Subsequently at HP granulite-facies conditions, chemically- and deformation- induced recrystallization of feldspar porphyroclasts led to development of a fine-grained microstructure (S2, ~50 μm grain size) indicating deformation via diffusion creep, probably assisted by melt-enhanced grain-boundary sliding. This microstructure was associated with flow in the lower crust and/or its diapiric ascent. The latest microstructure (S3, ~100 μm grain size) is related to the final lateral spreading of retrograde granulites, and shows deformation by dislocation creep at amphibolite-facies conditions. The S2-S3 switch and coarsening was interpreted to be related with a significant decrease in strain rate. From this microstructural sequence it appears that it is the grain size that is critically linked with specific mechanical behavior of these rocks. Thus in this study, we focused on the interplay between grain size and deformation with the aim to numerically simulate and reinterpret the observed microstructural sequence. We tested several different mathematical descriptions of the grain size evolution, each of which gave qualitatively different results. We selected the two most elaborated and at the same time the most promising descriptions: thermodynamics-based models with and without Zener pinning. For conditions compatible with the S1 and S2 microstructures (~800 °C and strain rate ~10-13 s-1), the calculated stable grain sizes are ~30 μm and >300 μm in the models with and without Zener pinning, respectively. This is in agreement with the contrasting grain sizes associated with S1 and S2 microstructures implying that mainly chemically induced recrystallization of S1 feldspar porphyroclasts must had played a fundamental role in the transition into the diffusion creep. The model with pinning also explains only minor changes of mean grain size associated with S2 microstructure. The S2-S3 switch from the diffusion to dislocation creep is difficult to explain when assuming reasonable temperature and strain rate (or stress). However, a simple incorporation of the effect of melt solidification into the model with pinning can mimic this observed switch. Besides the above mentioned simple models with prescribed temperature and strain rate, we implemented the grain size evolution laws into in a 2D thermo-mechanical model setup, where stress, strain rate and temperature evolve in a more natural manner. This setup simulates a collisional evolution of an orogenic root with anomalous lower crust. The lower-crustal material is a source region for diapirs and it deforms via a combination of dislocation and grain-size-sensitive creeps. We tested the influence of selected parameters in the flow laws and in the grain-size evolution laws on the shape and other characteristics of the growing diapirs. The outputs of our simulations were then compared with the geological record from the Moldanubian granulite massifs.
N -loop running should be combined with N -loop matching
NASA Astrophysics Data System (ADS)
Braathen, Johannes; Goodsell, Mark D.; Krauss, Manuel E.; Opferkuch, Toby; Staub, Florian
2018-01-01
We investigate the high-scale behavior of Higgs sectors beyond the Standard Model, pointing out that the proper matching of the quartic couplings before applying the renormalization group equations (RGEs) is of crucial importance for reliable predictions at larger energy scales. In particular, the common practice of leading-order parameters in the RGE evolution is insufficient to make precise statements on a given model's UV behavior, typically resulting in uncertainties of many orders of magnitude. We argue that, before applying N -loop RGEs, a matching should even be performed at N -loop order in contrast to common lore. We show both analytical and numerical results where the impact is sizable for three minimal extensions of the Standard Model: a singlet extension, a second Higgs doublet and finally vector-like quarks. We highlight that the known two-loop RGEs tend to moderate the running of their one-loop counterparts, typically delaying the appearance of Landau poles. For the addition of vector-like quarks we show that the complete two-loop matching and RGE evolution hints at a stabilization of the electroweak vacuum at high energies, in contrast to results in the literature.
Modification of the crystal structure of gadolinium gallium garnet by helium ion irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostafiychuk, B. K.; Yaremiy, I. P., E-mail: yaremiy@rambler.ru; Yaremiy, S. I.
2013-12-15
The structure of gadolinium gallium garnet (GGG) single crystals before and after implantation by He{sup +} ions has been investigated using high-resolution X-ray diffraction methods and the generalized dynamic theory of X-ray scattering. The main types of growth defects in GGG single crystals and radiation-induced defects in the ion-implanted layer have been determined. It is established that the concentration of dislocation loops in the GGG surface layer modified by ion implantation increases and their radius decreases with an increase in the implantation dose.
NASA Astrophysics Data System (ADS)
Wang, Zining; Li, Jia; Fang, QiHong; Liu, Bin; Zhang, Liangchi
2017-09-01
The mechanical behaviors and deformation mechanisms of scratched AlCrCuFeNi high entropy alloys (HEAs) have been studied by molecular dynamics (MD) simulations, in terms of the scratching forces, atomic strain, atomic displacement, microstructural evolution and dislocation density. The results show that the larger tangential and normal forces and higher friction coefficient take place in AlCrCuFeNi HEA due to its outstanding strength and hardness, and high adhesion and fracture toughness over the pure metal materials. Moreover, the stacking fault energy (SFE) in HEA increases the probability to initiate dislocation and twinning, which is conducive to the formation of complex deformation modes. Compared to the single element metal workpieces, the segregation potency of solutes into twinning boundary (TB) is raised due to the decreasing segregation energy of TB, resulting in the stronger solute effects on improving twinning properties for HEA workpiece. The higher dislocation density and the more activated slipping planes lead to the outstanding plasticity of AlCrCuFeNi HEA. The solute atoms as barriers to hinder the motion of dislocation and the severe lattice distortion to suppress the free slipping of dislocation are significantly stronger obstacles to strengthen HEA. The excellent comprehensive scratching properties of the bulk AlCrCuFeNi HEAs are associated with the combined effects of multiple strengthening mechanisms, such as dislocation strengthening, deformation twinning strengthening as well as solute strengthening. This work provides a basis for further understanding and tailoring SFE in mechanical properties and deformation mechanism of HEAs, which maybe facilitate the design and preparation of new HEAs with high performance.
Defect reduction in Si-doped Al{sub 0.45}Ga{sub 0.55}N films by SiN{sub x} interlayer method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang; Chen, Shengchang; Kong, Man
2014-01-28
The dislocation density in AlGaN epitaxial layers with Al content as high as 45% grown on sapphire substrates has been effectively reduced by introducing an in-situ deposited SiN{sub x} nanomask layer in this study. By closely monitoring the evolution of numerous material properties, such as surface morphology, dislocation density, photoluminescence, strain states, and electron mobility of the Si-Al{sub 0.45}Ga{sub 0.55}N layers as the functions of SiN{sub x} interlayer growth time, the surface coverage fraction of SiN{sub x} is found to be a crucial factor determining the strain states and dislocation density. The dependence of the strain states and the dislocationmore » density on the surface coverage fraction of SiN{sub x} nanomask supports the very different growth models of Al-rich AlGaN on SiN{sub x} interlayer due to the reduced nucleation selectivity compared with the GaN counterpart. Compared with GaN, which can only nucleate at open pores of SiN{sub x} nanomask, Al-rich AlGaN can simultaneously nucleate at both open pores and SiN{sub x} covered areas. Dislocations will annihilate at the openings due to the 3D growth initiated on the opening area, while 2D growth mode is preserved on SiN{sub x} and the threading dislocations are also preserved. During the following growth process, lateral overgrowth will proceed from the Al{sub 0.45}Ga{sub 0.55}N islands on the openings towards the regions covered by SiN{sub x}, relaxing the compressive strain and bending the dislocations at the same time.« less
Fractal nature of aluminum alloys substructures under creep and its implications
NASA Astrophysics Data System (ADS)
Fernández, R.; Bruno, G.; González-Doncel, G.
2018-04-01
The present work offers an explanation for the variation of the power-law stress exponent, n, with the stress σ normalized to the shear modulus G in aluminum alloys. The approach is based on the assumption that the dislocation structure generated with deformation has a fractal nature. It fully explains the evolution of n with σ/G even beyond the so-called power law breakdown region. Creep data from commercially pure Al99.8%, Al-3.85%Mg, and ingot AA6061 alloy tested at different temperatures and stresses are used to validate the proposed ideas. Finally, it is also shown that the fractal description of the dislocation structure agrees well with current knowledge.
Time-dependent stress concentration and microcrack nucleation in TiAl
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, M.H.
1995-07-01
Localized stress evolution associated with the interaction of slip or twinning with an interface is treated by means of a superposition of the {open_quotes}internal loading{close_quotes} of a crystalline subsystem by dynamic dislocation pile-up and the stress relaxation by climb of interfacial dislocations. The peak value of a stress concentration factor depends on both the angular function that includes the effect of mode mixity and the ratio of characteristic times for stress relaxation and internal loading. The available experimental data on orientation and strain-rate dependences of interfacial fracture mode in polysynthetically twinned TiAl crystals are discussed in view of the theoreticalmore » concepts presented in this paper.« less
Anomalous Annealing Response of Directed Energy Deposited Type 304L Austenitic Stainless Steel
NASA Astrophysics Data System (ADS)
Smith, Thale R.; Sugar, Joshua D.; Schoenung, Julie M.; San Marchi, Chris
2018-03-01
Directed energy deposited (DED) and forged austenitic stainless steels possess dissimilar microstructures but can exhibit similar mechanical properties. In this study, annealing was used to evolve the microstructure of both conventional wrought and DED type 304L austenitic stainless steels, and significant differences were observed. In particular, the density of geometrically necessary dislocations and hardness were used to probe the evolution of the microstructure and properties. Forged type 304L exhibited the expected decrease in measured dislocation density and hardness as a function of annealing temperature. The more complex microstructure-property relationship observed in the DED type 304L material is attributed to compositional heterogeneities in the solidification microstructure.
NASA Astrophysics Data System (ADS)
Li, Xuechen; Geng, Jinling; Jia, Pengying; Zhang, Panpan; Zhang, Qi; Li, Yaru
2017-11-01
Excited by an alternating current voltage, a patterned discharge and a diffuse discharge are generated in a needle to liquid configuration. Using an intensified charge-coupled device (ICCD), temporal evolution of the discharge between the two electrodes is investigated for the diffuse mode and the patterned mode, respectively. For the diffuse mode, the positive discharge is in a glow regime, and the negative discharge is in a Townsend discharge regime. For the patterned mode, the discharge always belongs to the Townsend discharge regime. Moreover, in the patterned mode, various patterns including the single loop, single loop with the surrounding corona, triple loops, and concentric loops with a central spot are observed on the water surface with the increasing positive peak-value of the applied voltage (Upp). Temporally resolved images of the loop-patterns are captured on the water surface. From the electrical measurements and the ICCD imaging, it is found that the loop pattern emerges after the discharge bridges the two electrodes. Then, it begins to evolve and finally degenerates with the decrease in the discharge current. The pattern does not disappear until the discharge quenches. Formation of the loop-patterns is attributed to the role of negative ions.
Graph Structured Program Evolution: Evolution of Loop Structures
NASA Astrophysics Data System (ADS)
Shirakawa, Shinichi; Nagao, Tomoharu
Recently, numerous automatic programming techniques have been developed and applied in various fields. A typical example is genetic programming (GP), and various extensions and representations of GP have been proposed thus far. Complex programs and hand-written programs, however, may contain several loops and handle multiple data types. In this chapter, we propose a new method called Graph Structured Program Evolution (GRAPE). The representation of GRAPE is a graph structure; therefore, it can represent branches and loops using this structure. Each programis constructed as an arbitrary directed graph of nodes and a data set. The GRAPE program handles multiple data types using the data set for each type, and the genotype of GRAPE takes the form of a linear string of integers. We apply GRAPE to three test problems, factorial, exponentiation, and list sorting, and demonstrate that the optimum solution in each problem is obtained by the GRAPE system.
Superconducting cosmic string loops as sources for fast radio bursts
NASA Astrophysics Data System (ADS)
Cao, Xiao-Feng; Yu, Yun-Wei
2018-01-01
The cusp burst radiation of superconducting cosmic string (SCS) loops is thought to be a possible origin of observed fast radio bursts with the model-predicted radiation spectrum and the redshift- and energy-dependent event rate, we fit the observational redshift and energy distributions of 21 Parkes fast radio bursts and constrain the model parameters. It is found that the model can basically be consistent with the observations, if the current on the SCS loops has a present value of ˜1016μ179 /10 esu s-1 and evolves with redshift as an empirical power law ˜(1 +z )-1.3 , where μ17=μ /1017 g cm-1 is the string tension. This current evolution may provide a clue to probe the evolution of the cosmic magnetic fields and the gathering of the SCS loops to galaxy clusters.
NASA Astrophysics Data System (ADS)
Rosa, Barbara L. T.; Marçal, Lucas A. B.; Ribeiro Andrade, Rodrigo; Dornellas Pinto, Luciana; Rodrigues, Wagner N.; Lustoza Souza, Patrícia; Pamplona Pires, Mauricio; Wagner Nunes, Ricardo; Malachias, Angelo
2017-07-01
In this work we attempt to directly observe anisotropic partial relaxation of epitaxial InAs islands using transmission electron microscopy (TEM) and synchrotron x-ray diffraction on a 15 nm thick InAs:GaAs nanomembrane. We show that under such conditions TEM provides improved real-space statistics, allowing the observation of partial relaxation processes that were not previously detected by other techniques or by usual TEM cross section images. Besides the fully coherent and fully relaxed islands that are known to exist above previously established critical thickness, we prove the existence of partially relaxed islands, where incomplete 60° half-loop misfit dislocations lead to a lattice relaxation along one of the <110> directions, keeping a strained lattice in the perpendicular direction. Although individual defects cannot be directly observed, their implications to the resulting island registry are identified and discussed within the frame of half-loops propagations.
Rosa, Barbara L T; Marçal, Lucas A B; Andrade, Rodrigo Ribeiro; Pinto, Luciana Dornellas; Rodrigues, Wagner N; Souza, Patrícia Lustoza; Pires, Mauricio Pamplona; Nunes, Ricardo Wagner; Malachias, Angelo
2017-07-28
In this work we attempt to directly observe anisotropic partial relaxation of epitaxial InAs islands using transmission electron microscopy (TEM) and synchrotron x-ray diffraction on a 15 nm thick InAs:GaAs nanomembrane. We show that under such conditions TEM provides improved real-space statistics, allowing the observation of partial relaxation processes that were not previously detected by other techniques or by usual TEM cross section images. Besides the fully coherent and fully relaxed islands that are known to exist above previously established critical thickness, we prove the existence of partially relaxed islands, where incomplete 60° half-loop misfit dislocations lead to a lattice relaxation along one of the 〈110〉 directions, keeping a strained lattice in the perpendicular direction. Although individual defects cannot be directly observed, their implications to the resulting island registry are identified and discussed within the frame of half-loops propagations.
NASA Astrophysics Data System (ADS)
Terentyev, D.; Hafez Haghighat, S. M.; Schäublin, R.
2010-03-01
Molecular dynamics (MD) simulations were carried out to study the interaction between nanometric Cr precipitates and a 1/2 ⟨111⟩{110} edge dislocation (ED) in pure Fe and Fe-9 at. % Cr (Fe-9Cr) random alloy. The aim of this work is to estimate the variation in the pinning strength of the Cr precipitate as a function of temperature, its chemical composition and the matrix composition in which the precipitate is embedded. The dislocation was observed to shear Cr precipitates rather than by-pass via the formation of the Orowan loop, even though a pronounced screw dipole was emerged in the reactions with the precipitates of size larger than 4.5 nm. The screw arms of the formed dipole were not observed to climb thus no point defects were left inside the sheared precipitates, irrespective of simulation temperature. Both Cr solution and Cr precipitates, embedded in the Fe-9Cr matrix, were seen to contribute to the flow stress. The decrease in the flow stress with temperature in the alloy containing Cr precipitates is, therefore, related to the simultaneous change in the matrix friction stress, precipitate resistance, and dislocation flexibility. Critical stress estimated from MD simulations was seen to have a strong dependence on the precipitate composition. If the latter decreases from 95% down to 80%, the corresponding critical stress decreases almost as twice. The results presented here suggest a significant contribution to the flow stress due to the α -α' separation, at least for EDs. The obtained data can be used to validate and to parameterize dislocation dynamics models, where the temperature dependence of the obstacle strength is an essential input data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhangwei; Baker, Ian; Guo, Wei
We investigated the effects of cold rolling followed by annealing on the mechanical properties and dislocation substructure evolution of undoped and 1.1 at. % carbon-doped Fe 40.4Ni 11.3Mn 34.8Al 7.5Cr 6 high entropy alloys (HEAs). X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atom probe tomography (APT) were employed to characterize the microstructures. The as-cast HEAs were coarse-grained and single phase f.c.c., whereas the thermo-mechanical treatment caused recrystallization (to fine grain sizes) and precipitation (a B2 phase for the undoped HEA; and a B2 phase, and M 23C 6 and M 7C 3 carbides for the C-dopedmore » HEA). Carbon, which was found to have segregated to the grain boundaries using APT, retarded recrystallization. The reduction in grain size resulted in a sharp increase in strength, while the precipitation, which produced only a small increase in strength, probably accounted for the small decrease in ductility for both undoped and C-doped HEAs. For both undoped and C-doped HEAs, the smaller grain-sized material initially exhibited higher strain hardening than the coarse-grained material but showed a much lower strain hardening at large tensile strains. Wavy slip in the undoped HEAs and planar slip in C-doped HEAs were found at the early stages of deformation irrespective of grain size. At higher strains, dislocation cell structures formed in the 19 μm grain-sized undoped HEA, while microbands formed in the 23 μm grain-sized C-doped HEA. Conversely, localized dislocation clusters were found in both HEAs at the finest grain sizes (5 μm). The inhibition of grain subdivision by the grain boundaries and precipitates lead to the transformation from regular dislocation configurations consisting of dislocation-cells and microbands to irregular dislocation configurations consisting of localized dislocation clusters, which further account for the decrease in ductility. Our investigation of the formation mechanism and strain hardening of dislocation cells and microbands could benefit future structural material design.« less
NLO evolution of 3-quark Wilson loop operator
Balitsky, I.; Grabovsky, A. V.
2015-01-07
It is well known that high-energy scattering of a meson from some hadronic target can be described by the interaction of that target with a color dipole formed by two Wilson lines corresponding to fast quark-antiquark pair. Moreover, the energy dependence of the scattering amplitude is governed by the evolution equation of this color dipole with respect to rapidity. Similarly, the energy dependence of scattering of a baryon can be described in terms of evolution of a three-Wilson-lines operator with respect to the rapidity of the Wilson lines. We calculate the evolution of the 3-quark Wilson loop operator in themore » next-to-leading order (NLO) and present a quasi-conformal evolution equation for a composite 3-Wilson-lines operator. Thus we also obtain the linearized version of that evolution equation describing the amplitude of the odderon exchange at high energies.« less
NASA Astrophysics Data System (ADS)
Hustedt, C. J.; Lambert, P. K.; Kannan, V.; Huskins-Retzlaff, E. L.; Casem, D. T.; Tate, M. W.; Philipp, H. T.; Woll, A. R.; Purohit, P.; Weiss, J. T.; Gruner, S. M.; Ramesh, K. T.; Hufnagel, T. C.
2018-04-01
We report in situ time-resolved measurements of the dynamic evolution of the volume fraction of extension twins in polycrystalline pure magnesium and in the AZ31B magnesium alloy, using synchrotron x-ray diffraction during compressive loading at high strain rates. The dynamic evolution of the twinning volume fraction leads to a dynamic evolution of the texture. Although both the pure metal and the alloy had similar initial textures, we observe that the evolution of texture is slower in the alloy. We also measured the evolution of the lattice strains in each material during deformation which, together with the twin volume fractions, allows us to place some constraints on the relative contributions of dislocation-based slip and deformation twinning to the overall plastic deformation during the dynamic deformations.
NASA Astrophysics Data System (ADS)
Lodh, Arijit; Tak, Tawqeer Nasir; Prakash, Aditya; Guruprasad, P. J.; Hutchinson, Christopher; Samajdar, Indradev
2017-11-01
Interrupted tensile tests were coupled with ex situ measurements of residual stress and microtexture. The residual stress quantification involved measurements of six independent Laue spots and conversion of the interplanar spacings to the residual stress tensor. A clear orientation-dependent residual stress evolution emerged from the experiments and the numerical simulations. For the orientations undergoing negligible changes in ρ GND (density of geometrically necessary dislocation), the residual stress developments appeared to be governed by the elastic stiffness of the grain clusters. For the others, the evolution of the residual stress and ρ GND exhibited a clear orientation-dependent scaling.
3D Studies of the Solar Corona and its Evolution with SOHO/EIT
NASA Astrophysics Data System (ADS)
Portier-Fozzani, F.
This thesis deals with 3D evolution of coronal structures based upon the ultraviolet telescope of SOHO : EIT. Anaglyphs and incertainties on a complete stereovision reconstruction are described. Stereoscopic methods for loop reconstruction were successfully made to find 3D parameters. With dynamical stereoscopy, physical conditions were derived for 30 loops of temperature around 1MK. A method which is able to derive twist variation were also built. Emerging loops were found highly twisted and they detwist as they grow. According to helicity conservation, this correspond to a transfert of twist into expansion. Long time twist evolution of magnetic flux tubes are followed in relation with flares as relaxation. Interaction between magnetic field lines were analysed. An example of reconnection between open and closed field line were observed. Other interactions were found with multi-wavelength observations : coronal holes borders (and thus CH) are better defined when an active region nearby is growing. Other imaging techniques were used to better take profit as possible of SOHO/EIT. A multiscale vision model (MVM) was applied with success to show small coronal structures evolutions hidden by the noise level.
Slipping magnetic reconnection during an X-class solar flare observed by SDO/AIA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudík, J.; Del Zanna, G.; Mason, H. E.
2014-04-01
We present SDO/AIA observations of an eruptive X-class flare of 2012 July 12, and compare its evolution with the predictions of a three-dimensional (3D) numerical simulation. We focus on the dynamics of flare loops that are seen to undergo slipping reconnection during the flare. In the Atmospheric Imaging Assembly (AIA) 131 Å observations, lower parts of 10 MK flare loops exhibit an apparent motion with velocities of several tens of km s{sup –1} along the developing flare ribbons. In the early stages of the flare, flare ribbons consist of compact, localized bright transition-region emission from the footpoints of the flaremore » loops. A differential emission measure analysis shows that the flare loops have temperatures up to the formation of Fe XXIV. A series of very long, S-shaped loops erupt, leading to a coronal mass ejection observed by STEREO. The observed dynamics are compared with the evolution of magnetic structures in the 'standard solar flare model in 3D.' This model matches the observations well, reproducing the apparently slipping flare loops, S-shaped erupting loops, and the evolution of flare ribbons. All of these processes are explained via 3D reconnection mechanisms resulting from the expansion of a torus-unstable flux rope. The AIA observations and the numerical model are complemented by radio observations showing a noise storm in the metric range. Dm-drifting pulsation structures occurring during the eruption indicate plasmoid ejection and enhancement of the reconnection rate. The bursty nature of radio emission shows that the slipping reconnection is still intermittent, although it is observed to persist for more than an hour.« less
Hofmann, Felix; Harder, Ross J.; Liu, Wenjun; ...
2018-05-11
Here, this study presents a detailed examination of the lattice distortions introduced by glancing incidence Focussed Ion Beam (FIB) milling. Using non-destructive multi-reflection Bragg coherent X-ray diffraction we probe damage formation in an initially pristine gold micro-crystal following several stages of FIB milling. These experiments allow access to the full lattice strain tensor in the micro-crystal with ~25 nm 3D spatial resolution, enabling a nano-scale analysis of residual lattice strains and defects formed. Our results show that 30 keV glancing incidence milling produces fewer large defects than normal incidence milling at the same energy. However the resulting residual lattice strainsmore » have similar magnitude and extend up to ~50 nm into the sample. At the edges of the milled surface, where the ion-beam tails impact the sample at near-normal incidence, large dislocation loops with a range of Burgers vectors are formed. Further glancing incidence FIB polishing with 5 keV ion energy removes these dislocation loops and reduces the lattice strains caused by higher energy FIB milling. However, even at the lower ion energy, damage-induced lattice strains are present within a ~20 nm thick surface layer. These results highlight the need for careful consideration and management of FIB damage. They also show that low-energy FIB-milling is an effective tool for removing FIB-milling induced lattice strains. This is important for the preparation of micro-mechanical test specimens and strain microscopy samples.« less
NASA Astrophysics Data System (ADS)
Mazey, D. J.; Hanks, W.; Lurcook, O. K.
1990-09-01
Five martensitic, nominally 9 and 11% Cr-W-V-Mn-Ta stainless steels which have been developed as low-activation alloys for fusion-reactor structural applications have been irradiated with 52 MeV Cr 6+ ions to 20 dpa at 475°C in the Harwell Variable Energy Cyclotron (VEC). Four of the alloys contained additions of 0.1 wt% Ta and these had been shown in prior tests to have mechanical properties comparable with the conventional FV 448 alloy. Examinations by TEM showed that irradiation-induced precipitates were present on a fine-scale in all of the alloys. These comprised Cr-rich lath-like defects in the 9Cr, Ta-free alloy; small Cr-rich particles in the 9Cr-3W-0.1Ta alloy and Cr-rich planar precipitates in the remaining alloys. Little or no irradiation-induced cavitation was observed. The other important irradiation-induced response was in the dislocation structure in the Ta-containing alloys which comprised an extensive rafted array of elongated a <100> type dislocation loops having major axes aligned in <100> directions. A significant fraction of the presumed a <100> loops contained stacking-fault fringes and analysis suggested that these were Cr 2N or Fe 4N nitride phase which it is known can form on {001} habit planes. Such nitrides are observed frequently under thermal-annealing conditions in ferritic steels, but less frequently under irradiation. Their formation in relation to the void swelling resistance of ferritic-martensitic alloys is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofmann, Felix; Harder, Ross J.; Liu, Wenjun
Here, this study presents a detailed examination of the lattice distortions introduced by glancing incidence Focussed Ion Beam (FIB) milling. Using non-destructive multi-reflection Bragg coherent X-ray diffraction we probe damage formation in an initially pristine gold micro-crystal following several stages of FIB milling. These experiments allow access to the full lattice strain tensor in the micro-crystal with ~25 nm 3D spatial resolution, enabling a nano-scale analysis of residual lattice strains and defects formed. Our results show that 30 keV glancing incidence milling produces fewer large defects than normal incidence milling at the same energy. However the resulting residual lattice strainsmore » have similar magnitude and extend up to ~50 nm into the sample. At the edges of the milled surface, where the ion-beam tails impact the sample at near-normal incidence, large dislocation loops with a range of Burgers vectors are formed. Further glancing incidence FIB polishing with 5 keV ion energy removes these dislocation loops and reduces the lattice strains caused by higher energy FIB milling. However, even at the lower ion energy, damage-induced lattice strains are present within a ~20 nm thick surface layer. These results highlight the need for careful consideration and management of FIB damage. They also show that low-energy FIB-milling is an effective tool for removing FIB-milling induced lattice strains. This is important for the preparation of micro-mechanical test specimens and strain microscopy samples.« less
NASA Astrophysics Data System (ADS)
Zhou, Xiao; Liu, Qiang; Liu, Ruirui; Zhou, Haitao
2018-06-01
The mechanical properties and microstructure evolution of Mg-8Li-3Al-1Y alloy undergoing different rolling processes were systematically investigated. X-ray diffraction, optical microscope, scanning electron microscopy, transmission electron microscopy as well as electron backscattered diffraction were used for tracking the microstructure evolution. Tensile testing was employed to characterize the mechanical properties. After hot rolling, the MgLi2Al precipitated in β-Li matrix due to the transformation reaction: β-Li → β-Li + MgLi2Al + α-Mg. As for the alloy subjected to annealed hot rolling, β-Li phase was clearly recrystallized while recrystallization rarely occurred in α-Mg phase. With regard to the microstructure undergoing cold rolling, plenty of dislocations and dislocation walls were easily observed. In addition, the microstructure of alloys subjected to annealed cold rolling revealed the formation of new fresh α-Mg grains in β-Li phase due to the precipitation reaction. The mechanical properties and fracture modes of Mg-8Li-3Al-1Y alloys can be effectively tuned by different rolling processes.
NASA Astrophysics Data System (ADS)
Szombathelyi, V.; Krallics, Gy
2014-08-01
The effect of the deformation processes on yield stress, Vickers microhardness and dislocation density were investigated using commercial purity (A1050) and alloyed aluminum (Al 6082). For the evolution of the dislocation density X-ray line profile analysis was used. In the large plastic strain range the variation of mechanical and microstructure evolution of A1050 and of Al 6082 processed by equal channel angular pressing are investigated using route BC and route C. In the plastic strain range up to 3 plane strain compression test was used to evaluate mechanical properties. The hardness and the yield stress showed a sharp increase after the first pass. In the case of A1050 it was found that the two examined routes has not resulted difference in the flow stress. In the case of Al 6082 the effect of the routes on the yield stress is significant. The present results showed that in the comparable plastic strain range higher yield stress values can be achieved by plane strain compression test than by ECAP.
Critical Issues on Materials for Gen-IV Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caro, M; Marian, J; Martinez, E
2009-02-27
Within the LDRD on 'Critical Issues on Materials for Gen-IV Reactors' basic thermodynamics of the Fe-Cr alloy and accurate atomistic modeling were used to help develop the capability to predict hardening, swelling and embrittlement using the paradigm of Multiscale Materials Modeling. Approaches at atomistic and mesoscale levels were linked to build-up the first steps in an integrated modeling platform that seeks to relate in a near-term effort dislocation dynamics to polycrystal plasticity. The requirements originated in the reactor systems under consideration today for future sources of nuclear energy. These requirements are beyond the present day performance of nuclear materials andmore » calls for the development of new, high temperature, radiation resistant materials. Fe-Cr alloys with 9-12% Cr content are the base matrix of advanced ferritic/martensitic (FM) steels envisaged as fuel cladding and structural components of Gen-IV reactors. Predictive tools are needed to calculate structural and mechanical properties of these steels. This project represents a contribution in that direction. The synergy between the continuous progress of parallel computing and the spectacular advances in the theoretical framework that describes materials have lead to a significant advance in our comprehension of materials properties and their mechanical behavior. We took this progress to our advantage and within this LDRD were able to provide a detailed physical understanding of iron-chromium alloys microstructural behavior. By combining ab-initio simulations, many-body interatomic potential development, and mesoscale dislocation dynamics we were able to describe their microstructure evolution. For the first time in the case of Fe-Cr alloys, atomistic and mesoscale were merged and the first steps taken towards incorporating ordering and precipitation effects into dislocation dynamics (DD) simulations. Molecular dynamics (MD) studies of the transport of self-interstitial, vacancy and point defect clusters in concentrated Fe-Cr alloys were performed for future diffusion data calculations. A recently developed parallel MC code with displacement allowed us to predict the evolution of the defect microstructures, local chemistry changes, grain boundary segregation and precipitation resulting from radiation enhanced diffusion. We showed that grain boundaries, dislocations and free surfaces are not preferential for alpha-prime precipitation, and explained experimental observations of short-range order (SRO) in Fe-rich FeCr alloys. Our atomistic studies of dislocation hardening allowed us to obtain dislocation mobility functions for BCC pure iron and Fe-Cr and determine for FCC metals the dislocation interaction with precipitates with a description to be used in Dislocation Dynamic (DD) codes. A Synchronous parallel Kinetic Monte Carlo code was developed and tested which promises to expand the range of applicability of kMC simulations. This LDRD furthered the limits of the available science on the thermodynamic and mechanic behavior of metallic alloys and extended the application of physically-based multiscale materials modeling to cases of severe temperature and neutron fluence conditions in advanced future nuclear reactors. The report is organized as follows: after a brief introduction, we present the research activities, and results obtained. We give recommendations on future LLNL activities that may contribute to the progress in this area, together with examples of possible research lines to be supported.« less
Thermal waves or beam heating in the 1980, November 5 flare
NASA Technical Reports Server (NTRS)
Smith, Dean F.
1986-01-01
Observations of the temporal evolution of loop BC in soft X rays in the November 5, 1980 flare are reviewed. Calculations are performed to model this evolution. The most consistent interpretation involving a minimum account of energy is the following. Thermal heating near B gives rise to a conduction front which moves out along the loop uninhibited for about 27 s. Beam heating near C gives rise to a second conduction front which moves in the opposite direction and prevents any energy reaching C by thermal conduction from B. Thus both thermal waves and beam heating are required to explain the observed evolution.
NASA Astrophysics Data System (ADS)
Betta, R. M.; Peres, G.; Reale, F.; Serio, S.
2001-12-01
We revisit a well-studied solar flare whose X-ray emission originating from a simple loop structure was observed by most of the instruments on board SMM on November 12, 1980. The X-ray emission of this flare, as observed with the XRP, was successfully modeled previously. Here we include a detailed modeling of the transition region and we compare the hydrodynamic results with the UVSP observations in two EUV lines, measured in areas smaller than the XRP rasters, covering only some portions of the flaring loop (the top and the foot-points). The single loop hydrodynamic model, which fits well the evolution of coronal lines (those observed with the XRP and the Fe XXI 1354.1 Å line observed with the UVSP) fails to model the flux level and evolution of the O V 1371.3 Åline.
Sensitivity of polycrystal plasticity to slip system kinematic hardening laws for Al 7075-T6
Hennessey, Conor; Castelluccio, Gustavo M.; McDowell, David L.
2017-02-01
The prediction of formation and early growth of microstructurally small fatigue cracks requires use of constitutive models that accurately estimate local states of stress, strain, and cyclic plastic strain. However, few research efforts have attempted to systematically consider the sensitivity of overall cyclic stress-strain hysteresis and higher order mean stress relaxation and plastic strain ratcheting responses introduced by the slip system back-stress formulation in crystal plasticity, even for face centered cubic (FCC) crystal systems. This paper explores the performance of two slip system level kinematic hardening models using a finite element crystal plasticity implementation as a User Material Subroutine (UMAT)more » within ABAQUS, with fully implicit numerical integration. The two kinematic hardening formulations aim to reproduce the cyclic deformation of polycrystalline Al 7075-T6 in terms of both macroscopic cyclic stress-strain hysteresis loop shape, as well as ratcheting and mean stress relaxation under strain- or stress-controlled loading with mean strain or stress, respectively. The first formulation is an Armstrong-Frederick type hardening-dynamic recovery law for evolution of the back stress. This approach is capable of reproducing observed deformation under completely reversed uniaxial loading conditions, but overpredicts the rate of cyclic ratcheting and associated mean stress relaxation. The second formulation corresponds to a multiple back stress Ohno-Wang type hardening law with nonlinear dynamic recovery. The adoption of this back stress evolution law greatly improves the capability to model experimental results for polycrystalline specimens subjected to cycling with mean stress or strain. As a result, the relation of such nonlinear dynamic recovery effects are related to slip system interactions with dislocation substructures.« less
Sensitivity of polycrystal plasticity to slip system kinematic hardening laws for Al 7075-T6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hennessey, Conor; Castelluccio, Gustavo M.; McDowell, David L.
The prediction of formation and early growth of microstructurally small fatigue cracks requires use of constitutive models that accurately estimate local states of stress, strain, and cyclic plastic strain. However, few research efforts have attempted to systematically consider the sensitivity of overall cyclic stress-strain hysteresis and higher order mean stress relaxation and plastic strain ratcheting responses introduced by the slip system back-stress formulation in crystal plasticity, even for face centered cubic (FCC) crystal systems. This paper explores the performance of two slip system level kinematic hardening models using a finite element crystal plasticity implementation as a User Material Subroutine (UMAT)more » within ABAQUS, with fully implicit numerical integration. The two kinematic hardening formulations aim to reproduce the cyclic deformation of polycrystalline Al 7075-T6 in terms of both macroscopic cyclic stress-strain hysteresis loop shape, as well as ratcheting and mean stress relaxation under strain- or stress-controlled loading with mean strain or stress, respectively. The first formulation is an Armstrong-Frederick type hardening-dynamic recovery law for evolution of the back stress. This approach is capable of reproducing observed deformation under completely reversed uniaxial loading conditions, but overpredicts the rate of cyclic ratcheting and associated mean stress relaxation. The second formulation corresponds to a multiple back stress Ohno-Wang type hardening law with nonlinear dynamic recovery. The adoption of this back stress evolution law greatly improves the capability to model experimental results for polycrystalline specimens subjected to cycling with mean stress or strain. As a result, the relation of such nonlinear dynamic recovery effects are related to slip system interactions with dislocation substructures.« less
EBSD in Antarctic and Greenland Ice
NASA Astrophysics Data System (ADS)
Weikusat, Ilka; Kuiper, Ernst-Jan; Pennock, Gill; Sepp, Kipfstuhl; Drury, Martyn
2017-04-01
Ice, particularly the extensive amounts found in the polar ice sheets, impacts directly on the global climate by changing the albedo and indirectly by supplying an enormous water reservoir that affects sea level change. The discharge of material into the oceans is partly controlled by the melt excess over snow accumulation, partly by the dynamic flow of ice. In addition to sliding over bedrock, an ice body deforms gravitationally under its own weight. In order to improve our description of this flow, ice microstructure studies are needed that elucidate the dominant deformation and recrystallization mechanisms involved. Deformation of hexagonal ice is highly anisotropic: ice is easily sheared in the basal plane and is about two orders of magnitude harder parallel to the c-axis. As dislocation creep is the dominant deformation mechanism in polar ice this strong anisotropy needs to be understood in terms of dislocation activity. The high anisotropy of the ice crystal is usually ascribed to a particular behaviour of dislocations in ice, namely the extension of dislocations into partials on the basal plane. Analysis of EBSD data can help our understanding of dislocation activity by characterizing subgrain boundary types thus providing a tool for comprehensive dislocation characterization in polar ice. Cryo-EBSD microstructure in combination with light microscopy measurements from ice core material from Antarctica (EPICA-DML deep ice core) and Greenland (NEEM deep ice core) are presented and interpreted regarding substructure identification and characterization. We examined one depth for each ice core (EDML: 656 m, NEEM: 719 m) to obtain the first comparison of slip system activity from the two ice sheets. The subgrain boundary to grain boundary threshold misorientation was taken to be 3-5° (Weikusat et al. 2011). EBSD analyses suggest that a large portion of edge dislocations with slip systems basal gliding on the basal plane were indeed involved in forming subgrain boundaries. However, an almost equal number of tilt subgrain boundaries were measured, involving dislocations gliding on non-basal planes (prism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiang; Mo, Kun; Miao, Yinbin
The nickel-base Alloy 617 has been considered as the lead candidate structural material for the intermediate heat exchanger (IHX) of the Very-High-Temperature Reactor (VHTR). In order to assess the long-term performance of Alloy 617, thermal aging experiments up to 10,000 h in duration were performed at 1000 degrees C. Subsequently, in-situ synchrotron wide-angle X-ray scattering (WAXS) tensile tests were carried out at ambient temperature. M23C6 carbides were identified as the primary precipitates, while a smaller amount of M6C was also observed. The aging effects were quantified in several aspects: (1) macroscopic tensile properties, (2) volume fraction of the M23C6 Phase,more » (3) the lattice strain evolution of both the matrix and the M23C6 precipitates, and (4) the dislocation density evolution during plastic deformation. The property-microstructure relationship is described with a focus on the evolution of the M23C6 phase. For aging up to 3000 h, the yield strength (YS) and ultimate tensile strength (UTS) showed little variation, with average values being 454 MPa and 787 MPa, respectively. At 10,000 h, the YS and UTS reduced to 380 MPa and 720 MPa, respectively. The reduction in YS and UTS is mainly due to the coarsening of the M23C6 Precipitates. After long term aging, the volume fraction of the M23C6 phase reached a plateau and its maximum internal stress was reduced, implying that under large internal stresses the carbides were more susceptible to fracture or decohesion from the matrix. Finally, the calculated dislocation densities were in good agreement with transmission electron microscopy (TEM) measurements. The square roots of the dislocation densities and the true stresses displayed typical linear behavior and no significant change was observed in the alloys in different aging conditions.« less
Modelling Thin Film Microbending: A Comparative Study of Three Different Approaches
NASA Astrophysics Data System (ADS)
Aifantis, Katerina E.; Nikitas, Nikos; Zaiser, Michael
2011-09-01
Constitutive models which describe crystal microplasticity in a continuum framework can be envisaged as average representations of the dynamics of dislocation systems. Thus, their performance needs to be assessed not only by their ability to correctly represent stress-strain characteristics on the specimen scale but also by their ability to correctly represent the evolution of internal stress and strain patterns. In the present comparative study we consider the bending of a free-standing thin film. We compare the results of 3D DDD simulations with those obtained from a simple 1D gradient plasticity model and a more complex dislocation-based continuum model. Both models correctly reproduce the nontrivial strain patterns predicted by DDD for the microbending problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohutova, P.; Verwichte, E., E-mail: p.kohutova@warwick.ac.uk
Coronal rain composed of cool plasma condensations falling from coronal heights along magnetic field lines is a phenomenon occurring mainly in active region coronal loops. Recent high-resolution observations have shown that coronal rain is much more common than previously thought, suggesting its important role in the chromosphere-corona mass cycle. We present the analysis of MHD oscillations and kinematics of the coronal rain observed in chromospheric and transition region lines by the Interface Region Imaging Spectrograph (IRIS) , the Hinode Solar Optical Telescope (SOT), and the Solar Dynamics Observatory ( SDO) Atmospheric Imaging Assembly (AIA). Two different regimes of transverse oscillationsmore » traced by the rain are detected: small-scale persistent oscillations driven by a continuously operating process and localized large-scale oscillations excited by a transient mechanism. The plasma condensations are found to move with speeds ranging from few km s{sup −1} up to 180 km s{sup −1} and with accelerations largely below the free-fall rate, likely explained by pressure effects and the ponderomotive force resulting from the loop oscillations. The observed evolution of the emission in individual SDO /AIA bandpasses is found to exhibit clear signatures of a gradual cooling of the plasma at the loop top. We determine the temperature evolution of the coronal loop plasma using regularized inversion to recover the differential emission measure (DEM) and by forward modeling the emission intensities in the SDO /AIA bandpasses using a two-component synthetic DEM model. The inferred evolution of the temperature and density of the plasma near the apex is consistent with the limit cycle model and suggests the loop is going through a sequence of periodically repeating heating-condensation cycles.« less
Chemical and morphological characterization of III-V strained layered heterostructures
NASA Astrophysics Data System (ADS)
Gray, Allen Lindsay
This dissertation describes investigations into the chemical and morphological characterization of III-V strained layered heterostructures by high-resolution x-ray diffraction. The purpose of this work is two-fold. The first was to use high-resolution x-ray diffraction coupled with transmission electron microscopy to characterize structurally a quaternary AlGaAsSb/InGaAsSb multiple quantum well heterostructure laser device. A method for uniquely determining the chemical composition of the strain quaternary quantum well, information previously thought to be unattainable using high resolution x-ray diffraction is thoroughly described. The misconception that high-resolution x-ray diffraction can separately find the well and barrier thickness of a multi-quantum well from the pendellosung fringe spacing is corrected, and thus the need for transmission electron microscopy is motivated. Computer simulations show that the key in finding the well composition is the intensity of the -3rd order satellite peaks in the diffraction pattern. The second part of this work addresses the evolution of strain relief in metastable multi-period InGaAs/GaAs multi-layered structures by high-resolution x-ray reciprocal space maps. Results are accompanied by transmission electron and differential contrast microscopy. The evolution of strain relief is tracked from a coherent "pseudomorphic" growth to a dislocated state as a function of period number by examining the x-ray diffuse scatter emanating from the average composition (zeroth-order) of the multi-layer. Relaxation is determined from the relative positions of the substrate with respect to the zeroth-order peak. For the low period number, the diffuse scatter from the multi-layer structure region arises from periodic, coherent crystallites. For the intermediate period number, the displacement fields around the multi-layer structure region transition to random coherent crystallites. At the higher period number, displacement fields of overlapping dislocations from relaxation of the random crystallites cause the initial stages of relaxation of the multi-layer structure. At the highest period number studied, relaxation of the multi-layer structure becomes bi-modal characterized by overlapping dislocations caused by mosaic block relaxation and periodically spaced misfit dislocations formed by 60°-type dislocations. The relaxation of the multi-layer structure has an exponential dependence on the diffuse scatter length-scale, which is shown to be a sensitive measure of the onset of relaxation.
NASA Astrophysics Data System (ADS)
Jung, H.; Park, M.
2017-12-01
Large-scale emplaced peridotite bodies may provide insights into plastic deformation process and tectonic evolution in the mantle shear zone. Due to the complexity of deformation microstructures and processes in natural mantle rocks, the evolution of pre-existing olivine fabrics is still not well understood. In this study, we examine well-preserved transitional characteristics of microstructures and olivine fabrics developed in a mantle shear zone from the Yugu peridotite body, the Gyeonggi Massif, Korean Peninsula. The Yugu peridotite body predominantly comprises spinel harzburgite together with minor lherzolite, dunite, and clinopyroxenite. We classified highly deformed peridotites into four textural types based on their microstructural characteristics: proto-mylonite; proto-mylonite to mylonite transition; mylonite; and ultra-mylonite. Olivine fabrics changed from A-type (proto-mylonite) via D-type (mylonite) to E-type (ultra-mylonite). Olivine fabric transition is interpreted as occurring under hydrous conditions at low temperature and high strain, because of characteristics such as Ti-clinohumite defects (and serpentine) and fluid inclusion trails in olivine, and a hydrous mineral (pargasite) in the matrix, especially in the ultra-mylonitic peridotites. Even though the ultra-mylonitic peridotites contained extremely small (24-30 μm) olivine neoblasts, the olivine fabrics showed a distinct (E-type) pattern rather than a random one. Analysis of the lattice preferred orientation strength, dislocation microstructures, recrystallized grain-size, and deformation mechanism maps of olivine suggest that the proto-mylonitic, mylonitic, and ultra-mylonitic peridotites were deformed by dislocation creep (A-type), DisGBS (D-type), and combination of dislocation and diffusion creep (E-type), respectively.
NASA Astrophysics Data System (ADS)
Yang, Hui; Li, Zhenhuan; Huang, Minsheng
2014-12-01
Unlike common single crystals, the nickel-based single crystal superalloy shows surprisingly anomalous flow strength (i.e. with the increase of temperature, the yield strength first increases to a peak value and then decreases) and tension-compression (TC) asymmetry. A comprehensive three-dimensional discrete dislocation dynamics (3D-DDD) procedure was developed to model these abnormal mechanical properties. For this purpose, a series of complicated dynamic evolution details of Kear-Wilsdorf (KW) locks, which are closely related to the flow strength anomaly and TC asymmetry, were incorporated into this 3D-DDD framework. Moreover, the activation of the cubic slip system, which is the origin of the decrease in yield strength with increasing temperature at relatively high temperatures, was especially taken into account by introducing a competition criterion between the unlocking of the KW locks and the activation of the cubic slip system. To test our framework, a series of 3D-DDD simulations were performed on a representative volume cell model with a cuboidal Ni3Al precipitate phase embedded in a nickel matrix. Results show that the present 3D-DDD procedure can successfully capture the dynamic evolution of KW locks, the flow strength anomaly and TC asymmetry. Then, the underlying dislocation mechanisms leading to these abnormal mechanical responses were investigated and discussed in detail. Finally, a cyclic deformation of the nickel-based single crystal superalloy was modeled by using the present DDD model, with a special focus on the influence of KW locks on the Bauschinger effect and cyclic softening.
Discrete Dislocation Modeling of Fatigue
NASA Astrophysics Data System (ADS)
Needleman, Alan
2004-03-01
In joint work with V.S. Deshpande of Cambridge University and E. Van der Giessen of the University of Groningen a framework has been developed for the analysis of crack growth under cyclic loading conditions where plastic flow arises from the motion of large numbers of discrete dislocations and the fracture properties are embedded in a cohesive surface constitutive relation. The material model is independent of the presence of a crack and the only distinction between an analysis of monotonic crack growth and fatigue crack growth is that in fatigue the remote loading is specified to be an oscillating function of time. Thus, a basic question is: within this framework, do cracks grow at a lower driving force under cyclic loading than under monotonic loading, and if so, what features of fatigue crack growth emerge? Fatigue does emerge from the calculations as a consequence of the evolution of internal stresses associated with the irreversibility of the dislocation motion. A fatigue threshold, Paris law behavior, striations and the accelerated growth of short cracks are outcomes of the simulations. Also, scaling predictions obtained for the fatigue threshold and the fatigue crack growth rate are discussed.
Thermal desorption behavior of helium in aged titanium tritide films
NASA Astrophysics Data System (ADS)
Cheng, G. J.; Shi, L. Q.; Zhou, X. S.; Liang, J. H.; Wang, W. D.; Long, X. G.; Yang, B. F.; Peng, S. M.
2015-11-01
The desorption behavior of helium in TiT(1.5∼1.8)-x3Hex film samples (x = 0.0022-0.22) was investigated by thermal desorption technique in vacuum condition in this paper. The thermal helium desorption spectrometry (THDS) of aging titanium tritide films prepared by electron beam evaporation revealed that, depending on the decayed 3He concentration in the samples, there are more than four states of helium existing in the films. The divided four zones in THDS based on helium states represent respectively: (1) the mobile single helium atoms with low activation energy in all aging samples resulted from the interstitial sites or dissociated from interstitial clusters, loops and dislocations, (2) helium bubbles inside the grain lattices, (3) helium bubbles in the grain boundaries and interconnected networks of dislocations in the helium concentration of 3Hegen/Ti > 0.0094, and (4) helium bubbles near or linked to the film surface by interconnected channel for later aging stage with 3Hegen/Ti > 0.18. The proportion of helium desorption in each zone was estimated, and dissociated energies of helium for different trapping states were given.
NASA Astrophysics Data System (ADS)
Bergner, F.; Pareige, C.; Hernández-Mayoral, M.; Malerba, L.; Heintze, C.
2014-05-01
An attempt is made to quantify the contributions of different types of defect-solute clusters to the total irradiation-induced yield stress increase in neutron-irradiated (300 °C, 0.6 dpa), industrial-purity Fe-Cr model alloys (target Cr contents of 2.5, 5, 9 and 12 at.% Cr). Former work based on the application of transmission electron microscopy, atom probe tomography, and small-angle neutron scattering revealed the formation of dislocation loops, NiSiPCr-enriched clusters and α‧-phase particles, which act as obstacles to dislocation glide. The values of the dimensionless obstacle strength are estimated in the framework of a three-feature dispersed-barrier hardening model. Special attention is paid to the effect of measuring errors, experimental details and model details on the estimates. The three families of obstacles and the hardening model are well capable of reproducing the observed yield stress increase as a function of Cr content, suggesting that the nanostructural features identified experimentally are the main, if not the only, causes of irradiation hardening in these model alloys.
Kuwan; Tsukamoto; Taki; Horibuchi; Oki; Kawaguchi; Shibata; Sawaki; Hiramatsu
2000-01-01
Cross-sectional transmission electron microscope (TEM) observation was performed for selectively grown gallium nitride (GaN) in order to examine the dependence of GaN microstructure on the growth conditions. The GaN films were grown by hydride vapour phase epitaxy (HVPE) or metalorganic vapour phase epitaxy (MOVPE) on GaN covered with a patterned mask. Thin foil specimens for TEM observation were prepared with focused ion beam (FIB) machining apparatus. It was demonstrated that the c-axis of GaN grown over the terrace of the mask tilts towards the centre of the terrace when the GaN is grown in a carrier gas of N2. The wider terrace results in a larger tilting angle if other growth conditions are identical. The tilting is attributed to 'horizontal dislocations' (HDs) generated during the overgrowth of GaN on the mask terrace. The HDs in HVPE-GaN have a semi-loop shape and are tangled with one another, while those in MOVPE-GaN are straight and lined up to form low-angle grain boundaries.
Huhn, S L; Wolf, A L; Ecklund, J
1991-12-01
Cervical instability secondary to fracture/dislocation or traumatic subluxation involving the posterior elements may be treated by a variety of fusion techniques. The rigidity of the stainless steel wires used in posterior cervical fusions often leads to difficulty with insertion, adequate tension, and conformation of the graft construct. This report describes a technique of posterior cervical fusion employing a wire system using flexible stainless steel cables. The wire consists of a flexible, 49-strand, stainless steel cable connected on one end to a short, malleable, blunt leader with the opposite end connected to a small islet. The cable may be used in occipitocervical, atlantoaxial, facet-to-spinous process, and interspinous fusion techniques. The cable loop is secured by using a tension/crimper device that sets the desired tension in the cable. In addition to superior biomechanical strength, the flexibility of the cable allows greater ease of insertion and tension adjustment. In terms of direct operative instrumentation in posterior cervical arthrodesis, involving both the upper and lower cervical spine, the cable system appears to be a safe and efficient alternative to monofilament wires.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Fuping, E-mail: fpyuan@lnm.imech.ac.cn; Wu, Xiaolei, E-mail: xlwu@imech.ac.cn
2014-12-15
A series of large-scale molecular dynamics simulations were conducted to investigate the scaling laws and the related atomistic deformation mechanisms of Cu monocrystal samples containing randomly placed nanovoids under adiabatic uniaxial strain compression. At onset of yielding, plastic deformation is accommodated by dislocations emitted from void surfaces as shear loops. The collapse of voids are observed by continuous emissions of dislocations from void surfaces and their interactions with further plastic deformation. The simulation results also suggest that the effect modulus, the yield stress and the energy aborption density of samples under uniaxial strain are linearly proportional to the relative densitymore » ρ. Moreover, the yield stress, the average flow stress and the energy aborption density of samples with the same relative density show a strong dependence on the void diameter d, expressed by exponential relations with decay coefficients much higher than -1/2. The corresponding atomistic mechanisms for scaling laws of the relative density and the void diameter were also presented. The present results should provide insights for understanding deformation mechanisms of nanoporous metals under extreme conditions.« less
NASA Astrophysics Data System (ADS)
Hahm, J.; Sibener, S. J.
2001-03-01
Time-sequenced atomic force microscopy (AFM) studies of ultrathin films of cylinder-forming polystyrene-block-polymethylmethacrylate (PS-b-PMMA) copolymer are presented which delineate thin film mobility kinetics and the morphological changes which occur in microphase-separated films as a function of annealing temperature. Of particular interest are defect mobilities in the single layer (L thick) region, as well as the interfacial morphological changes which occur between L thick and adjacent 3L/2 thick layers, i.e., structural changes which occur during multilayer evolution. These measurements have revealed the dominant pathways by which disclinations and dislocations transform, annihilate, and topologically evolve during thermal annealing of such films. Mathematical combining equations are given to better explain such defect transformations and show the topological outcomes which result from defect-defect encounters. We also report a collective, Arrhenius-type flow of defects in localized L thick regions of the film; these are characterized by an activation energy of 377 kJ/mol. These measurements represent the first direct investigation of time-lapse interfacial morphological changes including associated defect evolution pathways for polymeric ultrathin films. Such observations will facilitate a more thorough and predictive understanding of diblock copolymer thin film dynamics, which in turn will further enable the utilization of these nanoscale phase-separated materials in a range of physical and chemical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Bite; Muralidharan, Govindarajan; Kurumaddali, Nalini Kanth
2014-01-01
Understanding the reliability of eutectic Sn-3.5Ag lead-free solders in high temperature packaging applications is of significant interest in power electronics for the next generation electric grid. Large area (2.5mm 2.5mm) Sn-3.5Ag solder joints between silicon dies and direct bonded copper substrates were thermally cycled between 5 C and 200 C. Sn crystal orientation and microstructure evolution during thermal cycling were characterized by electron backscatter diffraction (EBSD) in scanning electron microscope (SEM). Comparisons are made between observed initial texture and microstructure and its evolution during thermal cycling. Gradual lattice rotation and grain boundary misorientation evolution suggested the continuous recrystallization mechanism. Recrystallizationmore » behavior was correlated with dislocation slip activities.« less
The evolution of machining-induced surface of single-crystal FCC copper via nanoindentation
NASA Astrophysics Data System (ADS)
Zhang, Lin; Huang, Hu; Zhao, Hongwei; Ma, Zhichao; Yang, Yihan; Hu, Xiaoli
2013-05-01
The physical properties of the machining-induced new surface depend on the performance of the initial defect surface and deformed layer in the subsurface of the bulk material. In this paper, three-dimensional molecular dynamics simulations of nanoindentation are preformed on the single-point diamond turning surface of single-crystal copper comparing with that of pristine single-crystal face-centered cubic copper. The simulation results indicate that the nucleation of dislocations in the nanoindentation test on the machining-induced surface and pristine single-crystal copper is different. The dislocation embryos are gradually developed from the sites of homogeneous random nucleation around the indenter in the pristine single-crystal specimen, while the dislocation embryos derived from the vacancy-related defects are distributed in the damage layer of the subsurface beneath the machining-induced surface. The results show that the hardness of the machining-induced surface is softer than that of pristine single-crystal copper. Then, the nanocutting simulations are performed along different crystal orientations on the same crystal surface. It is shown that the crystal orientation directly influences the dislocation formation and distribution of the machining-induced surface. The crystal orientation of nanocutting is further verified to affect both residual defect generations and their propagation directions which are important in assessing the change of mechanical properties, such as hardness and Young's modulus, after nanocutting process.
Wang, Zhangwei; Baker, Ian; Guo, Wei; ...
2017-03-01
We investigated the effects of cold rolling followed by annealing on the mechanical properties and dislocation substructure evolution of undoped and 1.1 at. % carbon-doped Fe 40.4Ni 11.3Mn 34.8Al 7.5Cr 6 high entropy alloys (HEAs). X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atom probe tomography (APT) were employed to characterize the microstructures. The as-cast HEAs were coarse-grained and single phase f.c.c., whereas the thermo-mechanical treatment caused recrystallization (to fine grain sizes) and precipitation (a B2 phase for the undoped HEA; and a B2 phase, and M 23C 6 and M 7C 3 carbides for the C-dopedmore » HEA). Carbon, which was found to have segregated to the grain boundaries using APT, retarded recrystallization. The reduction in grain size resulted in a sharp increase in strength, while the precipitation, which produced only a small increase in strength, probably accounted for the small decrease in ductility for both undoped and C-doped HEAs. For both undoped and C-doped HEAs, the smaller grain-sized material initially exhibited higher strain hardening than the coarse-grained material but showed a much lower strain hardening at large tensile strains. Wavy slip in the undoped HEAs and planar slip in C-doped HEAs were found at the early stages of deformation irrespective of grain size. At higher strains, dislocation cell structures formed in the 19 μm grain-sized undoped HEA, while microbands formed in the 23 μm grain-sized C-doped HEA. Conversely, localized dislocation clusters were found in both HEAs at the finest grain sizes (5 μm). The inhibition of grain subdivision by the grain boundaries and precipitates lead to the transformation from regular dislocation configurations consisting of dislocation-cells and microbands to irregular dislocation configurations consisting of localized dislocation clusters, which further account for the decrease in ductility. Our investigation of the formation mechanism and strain hardening of dislocation cells and microbands could benefit future structural material design.« less
Two-phase Heating in Flaring Loops
NASA Astrophysics Data System (ADS)
Zhu, Chunming; Qiu, Jiong; Longcope, Dana W.
2018-03-01
We analyze and model a C5.7 two-ribbon solar flare observed by the Solar Dynamics Observatory, Hinode, and GOES on 2011 December 26. The flare is made of many loops formed and heated successively over one and half hours, and their footpoints are brightened in the UV 1600 Å before enhanced soft X-ray and EUV missions are observed in flare loops. Assuming that anchored at each brightened UV pixel is a half flaring loop, we identify more than 6700 half flaring loops, and infer the heating rate of each loop from the UV light curve at the footpoint. In each half loop, the heating rate consists of two phases: intense impulsive heating followed by a low-rate heating that is persistent for more than 20 minutes. Using these heating rates, we simulate the evolution of their coronal temperatures and densities with the model of the “enthalpy-based thermal evolution of loops.” In the model, suppression of thermal conduction is also considered. This model successfully reproduces total soft X-ray and EUV light curves observed in 15 passbands by four instruments GOES, AIA, XRT, and EVE. In this flare, a total energy of 4.9 × 1030 erg is required to heat the corona, around 40% of this energy is in the slow-heating phase. About two-fifths of the total energy used to heat the corona is radiated by the coronal plasmas, and the other three fifth transported to the lower atmosphere by thermal conduction.
Yun, Anthony J; Lee, Patrick Y; Doux, John D
2006-01-01
A network constitutes an abstract description of the relationships among entities, respectively termed links and nodes. If a power law describes the probability distribution of the number of links per node, the network is said to be scale-free. Scale-free networks feature link clustering around certain hubs based on preferential attachments that emerge due either to merit or legacy. Biologic systems ranging from sub-atomic to ecosystems represent scale-free networks in which energy efficiency forms the basis of preferential attachments. This paradigm engenders a novel scale-free network theory of evolution based on energy efficiency. As environmental flux induces fitness dislocations and compels a new meritocracy, new merit-based hubs emerge, previously merit-based hubs become legacy hubs, and network recalibration occurs to achieve system optimization. To date, Darwinian evolution, characterized by innovation sampling, variation, and selection through filtered termination, has enabled biologic progress through optimization of energy efficiency. However, as humans remodel their environment, increasing the level of unanticipated fitness dislocations and inducing evolutionary stress, the tendency of networks to exhibit inertia and retain legacy hubs engender maladaptations. Many modern diseases may fundamentally derive from these evolutionary displacements. Death itself may constitute a programmed adaptation, terminating individuals who represent legacy hubs and recalibrating the network. As memes replace genes as the basis of innovation, death itself has become a legacy hub. Post-Darwinian evolution may favor indefinite persistence to optimize energy efficiency. We describe strategies to reprogram or decommission legacy hubs that participate in human disease and death.
Stress and Microstructure Evolution during Transient Creep of Olivine at 1000 and 1200 °C
NASA Astrophysics Data System (ADS)
Thieme, M.; Demouchy, S. A.; Mainprice, D.; Barou, F.; Cordier, P.
2017-12-01
As the major constituent of Earth's upper mantle, olivine largely determines its physical properties. In the past, deformation experiments were usually run until steady state or to a common value of finite strain. Additionally, few studies were performed on polycrystalline aggregates at low to intermediate temperatures (<1100 °C). For the first time, we study the mechanical response and correlated microstructure as a function of incremental finite strains. Deformation experiments were conducted in uniaxial compression in an internally heated gas-medium deformation apparatus at temperatures of 1000 and 1200 °C, at strain rates of 10-5s-1 and under 300 MPa of confining pressure. Sample volumes are large with > 1.2 cm3. Finite strains range from 0.1 to 8.6 % and corresponding differential stresses range from 71 to 1073 MPa. Deformed samples were characterized by high resolution electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). EBSD maps with step sizes as low as 0.05 µm were aquired for the first time without introducing artifacts. The grain size ranges from 1.8 to 2.3 µm, with no significant change in between samples. Likewise, the texture and texture strength (J- and BA-index), grain shape and aspect ratio, density of geometrically necessary dislocations, grain orientation spread, subgrain boundary spacing and misorientation do not change significantly as a function of finite strain or temperature. The dislocation distribution is highly heterogeneous, with some grains remaining dislocation free. TEM shows grain boundaries acting as low activity sites for dislocation nucleation. Even during early mechanical steady state, plasticity seems not to affect grains in unfavorable orientations. We find no confirmation of dislocation entanglements or increasing dislocation densities being the reason for strain hardening during transient creep. This suggests other, yet not understood, mechanisms affecting the strength of deformed olivine. Futhermore, we will map disclinations (rotational topological defects) to estimate their contribution to the transient deformation regime.
NASA Technical Reports Server (NTRS)
Kwon, Ryun Young; Chae, Jongchul; Davila, Joseph M.; Zhang, Jie; Moon, Yong-Jae; Poomvises, Watanachak; Jones, Shaela I.
2012-01-01
We unveil the three-dimensional structure of quiet-Sun EUV bright points and their temporal evolution by applying a triangulation method to time series of images taken by SECCHI/EUVI on board the STEREO twin spacecraft. For this study we examine the heights and lengths as the components of the three-dimensional structure of EUV bright points and their temporal evolutions. Among them we present three bright points which show three distinct changes in the height and length: decreasing, increasing, and steady. We show that the three distinct changes are consistent with the motions (converging, diverging, and shearing, respectively) of their photospheric magnetic flux concentrations. Both growth and shrinkage of the magnetic fluxes occur during their lifetimes and they are dominant in the initial and later phases, respectively. They are all multi-temperature loop systems which have hot loops (approx. 10(exp 6.2) K) overlying cooler ones (approx 10(exp 6.0) K) with cool legs (approx 10(exp 4.9) K) during their whole evolutionary histories. Our results imply that the multi-thermal loop system is a general character of EUV bright points. We conclude that EUV bright points are flaring loops formed by magnetic reconnection and their geometry may represent the reconnected magnetic field lines rather than the separator field lines.
NASA Astrophysics Data System (ADS)
Zhang, Liang; Lu, Cheng; Tieu, Kiet; Zhao, Xing; Pei, Linqing
2015-04-01
Grain boundaries (GBs) are important microstructure features and can significantly affect the properties of nanocrystalline materials. Molecular dynamics simulation was carried out in this study to investigate the shear response and deformation mechanisms of symmetric and asymmetric Σ11<1 1 0> tilt GBs in copper bicrystals. Different deformation mechanisms were reported, depending on GB inclination angles and equilibrium GB structures, including GB migration coupled to shear deformation, GB sliding caused by local atomic shuffling, and dislocation nucleation from GB. The simulation showed that migrating Σ11(1 1 3) GB under shear can be regarded as sliding of GB dislocations and their combination along the boundary plane. A non-planar structure with dissociated intrinsic stacking faults was prevalent in Σ11 asymmetric GBs of Cu. This type of structure can significantly increase the ductility of bicrystal models under shear deformation. A grain boundary can be a source of dislocation and migrate itself at different stress levels. The intrinsic free volume involved in the grain boundary area was correlated with dislocation nucleation and GB sliding, while the dislocation nucleation mechanism can be different for a grain boundary due to its different equilibrium structures.Grain boundaries (GBs) are important microstructure features and can significantly affect the properties of nanocrystalline materials. Molecular dynamics simulation was carried out in this study to investigate the shear response and deformation mechanisms of symmetric and asymmetric Σ11<1 1 0> tilt GBs in copper bicrystals. Different deformation mechanisms were reported, depending on GB inclination angles and equilibrium GB structures, including GB migration coupled to shear deformation, GB sliding caused by local atomic shuffling, and dislocation nucleation from GB. The simulation showed that migrating Σ11(1 1 3) GB under shear can be regarded as sliding of GB dislocations and their combination along the boundary plane. A non-planar structure with dissociated intrinsic stacking faults was prevalent in Σ11 asymmetric GBs of Cu. This type of structure can significantly increase the ductility of bicrystal models under shear deformation. A grain boundary can be a source of dislocation and migrate itself at different stress levels. The intrinsic free volume involved in the grain boundary area was correlated with dislocation nucleation and GB sliding, while the dislocation nucleation mechanism can be different for a grain boundary due to its different equilibrium structures. Electronic supplementary information (ESI) available: Movies show the evolution of different grain boundaries under shear deformation: S-0, S-54.74, S-70.53-A, S-70.53-B, S-90. See DOI: 10.1039/c4nr07496c
Physical and mechanical metallurgy of high purity Nb accelerator cavities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, N. T.; Bieler, T. R.; Pourgoghart , F.
2010-01-01
In the past decade, high Q values have been achieved in high purity Nb superconducting radio frequency (SRF) cavities. Fundamental understanding of the physical metallurgy of Nb that enables these achievements is beginning to reveal what challenges remain to establish reproducible and cost-effective production of high performance SRF cavities. Recent studies of dislocation substructure development and effects of recrystallization arising from welding and heat treatments and their correlations with cavity performance are considered. With better fundamental understanding of the effects of dislocation substructure evolution and recrystallization on electron and phonon conduction, as well as the interior and surface states, itmore » will be possible to design optimal processing paths for cost-effective performance using approaches such as hydroforming, which minimizes or eliminates welds in a cavity.« less
Physical and mechanical metallurgy of high purity Nb for accelerator cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bieler, T. R.; Wright, N. T.; Pourboghrat, F.
2010-01-01
In the past decade, high Q values have been achieved in high purity Nb superconducting radio frequency (SRF) cavities. Fundamental understanding of the physical metallurgy of Nb that enables these achievements is beginning to reveal what challenges remain to establish reproducible and cost-effective production of high performance SRF cavities. Recent studies of dislocation substructure development and effects of recrystallization arising from welding and heat treatments and their correlations with cavity performance are considered. With better fundamental understanding of the effects of dislocation substructure evolution and recrystallization on electron and phonon conduction, as well as the interior and surface states, itmore » will be possible to design optimal processing paths for cost-effective performance using approaches such as hydroforming, which minimizes or eliminates welds in a cavity.« less
NASA Astrophysics Data System (ADS)
Huang, Shiquan; Yi, Youping; Li, Pengchuan
2011-05-01
In recent years, multi-scale simulation technique of metal forming is gaining significant attention for prediction of the whole deformation process and microstructure evolution of product. The advances of numerical simulation at macro-scale level on metal forming are remarkable and the commercial FEM software, such as Deform2D/3D, has found a wide application in the fields of metal forming. However, the simulation method of multi-scale has little application due to the non-linearity of microstructure evolution during forming and the difficulty of modeling at the micro-scale level. This work deals with the modeling of microstructure evolution and a new method of multi-scale simulation in forging process. The aviation material 7050 aluminum alloy has been used as example for modeling of microstructure evolution. The corresponding thermal simulated experiment has been performed on Gleeble 1500 machine. The tested specimens have been analyzed for modeling of dislocation density, nucleation and growth of recrystallization(DRX). The source program using cellular automaton (CA) method has been developed to simulate the grain nucleation and growth, in which the change of grain topology structure caused by the metal deformation was considered. The physical fields at macro-scale level such as temperature field, stress and strain fields, which can be obtained by commercial software Deform 3D, are coupled with the deformed storage energy at micro-scale level by dislocation model to realize the multi-scale simulation. This method was explained by forging process simulation of the aircraft wheel hub forging. Coupled the results of Deform 3D with CA results, the forging deformation progress and the microstructure evolution at any point of forging could be simulated. For verifying the efficiency of simulation, experiments of aircraft wheel hub forging have been done in the laboratory and the comparison of simulation and experiment result has been discussed in details.
Structures and optical properties of \\text{H}_{2}^{+} -implanted GaN epi-layers
NASA Astrophysics Data System (ADS)
Li, B. S.; Wang, Z. G.
2015-06-01
The implantation damage build-up and optical properties of GaN epitaxial films under \\text{H}2+ ion implantation have been investigated by a combination of Rutherford backscattering in channeling geometry, Raman spectroscopy, UV-visible spectroscopy and transmission electron microscopy. GaN epitaxial films were implanted with 134 keV \\text{H}2+ ions to doses ranging from 3.75 × 1016 to 1.75 × 1017 \\text{H}2+ cm-2 at room temperature or the same dose of 1.5 × 1017 \\text{H}2+ cm-2 at room temperature, 573 and 723 K. The dependence of lattice disorder induced by \\text{H}2+ -implantation on the ion dose can be divided into a three-step damage process. A strong influence of the H concentration on the defect accumulation is discussed. The decrease in relative Ga disorder induced by \\text{H}2+ -implantation is linear with increasing implantation temperature. The absorption coefficient of GaN epitaxial films increases with increasing ion dose, leading to the decrease in Raman scattering spectra of Ga-N vibration. With increasing implantation doses up to 5 × 1016 \\text{H}2+ cm-2, nanoscale hydrogen bubbles are observed in the H deposition peak region. Interstitial-type dislocation loops are observed in the damaged layer located near the damage peak region, and the geometry of the dislocation loops produced by H implantation is analyzed. The surface layer is almost free of lattice disorder induced by \\text{H}2+ -implantation.
Simulation of the zero-temperature behavior of a three-dimensional elastic medium
NASA Astrophysics Data System (ADS)
McNamara, David; Middleton, A. Alan; Zeng, Chen
1999-10-01
We have performed numerical simulation of a three-dimensional elastic medium, with scalar displacements, subject to quenched disorder. In the absence of topological defects this system is equivalent to a (3+1)-dimensional interface subject to a periodic pinning potential. We have applied an efficient combinatorial optimization algorithm to generate exact ground states for this interface representation. Our results indicate that this Bragg glass is characterized by power law divergences in the structure factor S(k)~Ak-3. We have found numerically consistent values of the coefficient A for two lattice discretizations of the medium, supporting universality for A in the isotropic systems considered here. We also examine the response of the ground state to the change in boundary conditions that corresponds to introducing a single dislocation loop encircling the system. The rearrangement of the ground state caused by this change is equivalent to the domain wall of elastic deformations which span the dislocation loop. Our results indicate that these domain walls are highly convoluted, with a fractal dimension df=2.60(5). We also discuss the implications of the domain wall energetics for the stability of the Bragg glass phase. Elastic excitations similar to these domain walls arise when the pinning potential is slightly perturbed. As in other disordered systems, perturbations of relative strength δ introduce a new length scale L*~δ-1/ζ beyond which the perturbed ground state becomes uncorrelated with the reference (unperturbed) ground state. We have performed a scaling analysis of the response of the ground state to the perturbations and obtain ζ=0.385(40). This value is consistent with the scaling relation ζ=df/2-θ, where θ characterizes the scaling of the energy fluctuations of low energy excitations.
Static Recovery Modeling of Dislocation Density in a Cold Rolled Clad Aluminum Alloy
NASA Astrophysics Data System (ADS)
Penlington, Alex
Clad alloys feature one or more different alloys bonded to the outside of a core alloy, with non-equilibrium, interalloy interfaces. There is limited understanding of the recovery and recrystallization behaviour of cold rolled clad aluminum alloys. In order to optimize the properties of such alloys, new heat treatment processes may be required that differ from what is used for the monolithic alloys. This study examines the recovery behaviour of a cold rolled Novelis Fusion(TM) alloy containing an AA6XXX core with an AA3003 cladding on one side. The bond between alloys appears microscopically discrete and continuous, but has a 30 microm wide chemical gradient. The as-deformed structure at the interalloy region consists of pancaked sub-grains with dislocations at the misorientation boundaries and a lower density organized within the more open interiors. X-ray line broadening was used to extract the dislocation density from the interalloy region and an equivalently deformed AA6XXX following static annealing using a modified Williamson-Hall analysis. This analysis assumed that Gaussian broadening contributions in a pseudo-Voigt function corresponded only to strain from dislocations. The kinetics of the dislocation density evolution to recrystallization were studied isothermally at 2 minute intervals, and isochronally at 175 and 205°C. The data fit the Nes model, in which the interalloy region recovered faster than AA6XXX at 175°C, but was slower at 205°C. This was most likely caused by change in texture and chemistry within this region such as over-aging of AA6XXX . Simulation of a continuous annealing and self homogenization process both with and without pre-recovery indicates a detectable, though small change in the texture and grain size in the interalloy region.
Evolution of mechanical properties of ultrafine grained 1050 alloy annealing with electric current
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Yiheng; He, Lizi, E-mail: helizi@epm.neu.edu.cn; Zhang, Lin
2016-03-15
The tensile properties and microstructures of 1050 aluminum alloy prepared by equal channel angular pressing at cryogenic temperature (cryoECAP) after electric current annealing at 90–210 °C for 3 h were investigated by tensile test, electron back scattering diffraction (EBSD) and transmission electron microscopy (TEM). An unexpected annealing-induced strengthening phenomenon occurs at 90–210 °C, due to a significant decrease in the density of mobile dislocations after annealing, and thus a higher yield stress is required to nucleate alternative dislocation sources during tensile test. The electric current can enhance the motion of dislocations, lead to a lower dislocation density at 90–150 °C,more » and thus shift the peak annealing temperature from 150 °C to 120 °C. Moreover, the electric current can promote the migration of grain boundaries at 150–210 °C, result in a larger grain size at 150 °C and 210 °C, and thus causes a lower yield stress. The sample annealed with electric current has a lower uniform elongation at 90–120 °C, and the deviation in the uniform elongation between samples annealed without and with electric current becomes smaller at 150–210 °C. - Highlights: • An unexpected annealing-induced strengthening phenomenon occurs at 90–210 °C. • The d. c. current can enhance the motion of dislocations at 90–150 °C, and thus shift the peak annealing temperature from 150 °C to 120 °C. • The d. c. current can promote the grain growth at 150–210 °C, and thus cause a lower yield stress. • The DC annealed sample has a lower uniform elongation at 90–120 °C.« less
A detailed investigation of the strain hardening response of aluminum alloyed Hadfield steel
NASA Astrophysics Data System (ADS)
Canadinc, Demircan
The unusual strain hardening response exhibited by Hadfield steel single and polycrystals under tensile loading was investigated. Hadfield steel, which deforms plastically through the competing mechanisms slip and twinning, was alloyed with aluminum in order to suppress twinning and study the role of slip only. To avoid complications due to a grained structure, only single crystals of the aluminum alloyed Hadfield steel were considered at the initial stage of the current study. As a result of alloying with aluminum, twinning was suppressed; however a significant increase in the strain hardening response was also present. A detailed microstructural analysis showed the presence of high-density dislocation walls that evolve in volume fraction due to plastic deformation and interaction with slip systems. The very high strain hardening rates exhibited by the aluminum alloyed Hadfield steel single crystals was attributed to the blockage of glide dislocations by the high-density dislocation walls. A crystal plasticity model was proposed, that accounts for the volume fraction evolution and rotation of the dense dislocation walls, as well as their interaction with the active slip systems. The novelty of the model lies in the simplicity of the constitutive equations that define the strain hardening, and the fact that it is based on experimental data regarding the microstructure. The success of the model was tested by its application to different crystallographic orientations, and finally the polycrystals of the aluminum alloyed Hadfield steel. Meanwhile, the capability of the model to predict texture was also observed through the rotation of the loading axis in single crystals. The ability of the model to capture the polycrystalline deformation response provides a venue for its utilization in other alloys that exhibit dislocation sheet structures.
Lattice disorder produced in GaN by He-ion implantation
NASA Astrophysics Data System (ADS)
Han, Yi; Peng, Jinxin; Li, Bingsheng; Wang, Zhiguang; Wei, Kongfang; Shen, Tielong; Sun, Jianrong; Zhang, Limin; Yao, Cunfeng; Gao, Ning; Gao, Xing; Pang, Lilong; Zhu, Yabin; Chang, Hailong; Cui, Minghuan; Luo, Peng; Sheng, Yanbin; Zhang, Hongpeng; Zhang, Li; Fang, Xuesong; Zhao, Sixiang; Jin, Jin; Huang, Yuxuan; Liu, Chao; Tai, Pengfei; Wang, Dong; He, Wenhao
2017-09-01
The lattice disorders induced by He-ion implantation in GaN epitaxial films to fluences of 2 × 1016, 5 × 1016 and 1 × 1017 cm-2 at room temperature (RT) have been investigated by a combination of Raman spectroscopy, high-resolution X-ray diffraction (HRXRD), nano-indentation, and transmission electron microscopy (TEM). The experimental results present that Raman intensity decreases with increasing fluence. Raman frequency "red shift" occurs after He-ion implantation. Strain increases with increasing fluence. The hardness of the highly damaged layer increases monotonically with increasing fluence. Microstructural results demonstrate that the width of the damage band and the number density of observed dislocation loops increases with increasing fluence. High-resolution TEM images exhibit that He-ion implantation lead to the formation of planar defects and most of the lattice defects are of interstitial-type basal loops. The relationships of Raman intensity, lattice strain, swelling and hardness with He-implantation-induced lattice disorders are discussed.
Raman and photoluminescence spectroscopy of SiGe layer evolution on Si(100) induced by dewetting
NASA Astrophysics Data System (ADS)
Shklyaev, A. A.; Volodin, V. A.; Stoffel, M.; Rinnert, H.; Vergnat, M.
2018-01-01
High temperature annealing of thick (40-100 nm) Ge layers deposited on Si(100) at ˜400 °C leads to the formation of continuous films prior to their transformation into porous-like films due to dewetting. The evolution of Si-Ge composition, lattice strain, and surface morphology caused by dewetting is analyzed using scanning electron microscopy, Raman, and photoluminescence (PL) spectroscopies. The Raman data reveal that the transformation from the continuous to porous film proceeds through strong Si-Ge interdiffusion, reducing the Ge content from 60% to about 20%, and changing the stress from compressive to tensile. We expect that Ge atoms migrate into the Si substrate occupying interstitial sites and providing thereby the compensation of the lattice mismatch. Annealing generates only one type of radiative recombination centers in SiGe resulting in a PL peak located at about 0.7 and 0.8 eV for continuous and porous film areas, respectively. Since annealing leads to the propagation of threading dislocations through the SiGe/Si interface, we can tentatively associate the observed PL peak to the well-known dislocation-related D1 band.
Hybrid Stars and Coronal Evolution
NASA Technical Reports Server (NTRS)
Mushotzky, Richard (Technical Monitor); Dupree, Andrea K.
2004-01-01
This program addresses the evolution of stellar coronas by comparing a solar-like corona in the supergiant Dra (G2 Ib-IIa) to the corona in the allegedly more evolved state of a hybrid star, TrA (K2 11-111). Because the hybrid star has a massive wind, it appears likely that the corona will be cooler and less dense as the magnetic loop structures are no longer closed. By analogy with solar coronal holes, when the topology of the magnetic field is configured with open magnetic structures, both the coronal temperature and density are lower than in atmospheres dominated by closed loops. The hybrid stars assume a pivotal role in the definition of coronal evolution, atmospheric heating processes and mechanisms to drive winds of cool stars.
Stress-dependent grain size evolution of nanocrystalline Ni-W and its impact on friction behavior
Argibay, N.; Furnish, T. A.; Boyce, B. L.; ...
2016-06-07
The friction behavior of ultra-nanocrystalline Ni-W coatings was investigated. A critical stress threshold was identified below which friction remained low, and above which a time-dependent evolution toward higher friction behavior occurred. Founded on established plasticity models we propose a correlation between surface grain size and applied stress that can be used to predict the critical stress separating the two friction regimes. Lastly, this interpretation of plasticity models suggests that macro-scale low and high friction regimes are respectively associated with the nano-scale mechanisms of grain boundary and dislocation-mediated plasticity.
On the Loop Current Penetration into the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Weisberg, Robert H.; Liu, Yonggang
2017-12-01
The Gulf of Mexico Loop Current generally intrudes some distance into the Gulf of Mexico before shedding an anticyclonic eddy and retreating back to its more direct entry to exit pathway. The control of this aperiodic process remains only partially known. Here we describe the evolution of the Loop Current throughout the era of satellite altimetry, and offer a mechanistic hypothesis on Loop Current intrusion. As a complement to the known effects of Loop Current forcing on the west Florida shelf circulation, we argue that the west Florida shelf, in turn, impacts the Loop Current evolution. A Self-Organizing Map analysis shows that anomalous northward penetrations of the Loop Current into the Gulf of Mexico occur when the eastern side of Loop Current is positioned west from the southwest corner of the west Florida shelf, whereas the more direct inflow to outflow route occurs when the eastern side of the Loop Current comes in contact with the southwest corner of the west Florida shelf. In essence, we argue that the west Florida shelf anchors the Loop Current in its direct path configuration and that farther northward penetration into the Gulf of Mexico occurs when such anchoring is released. To test of this hypothesis heuristically, we estimate that the dissipation and buoyancy work due to known Loop Current forcing of the west Florida shelf circulation (when in contact with the southwest corner) may exceed the pressure work required for the Loop Current to advance against the ambient Gulf of Mexico fluid.
NASA Astrophysics Data System (ADS)
Zheng, Feifei; Simpson, Angus R.; Zecchin, Aaron C.
2011-08-01
This paper proposes a novel optimization approach for the least cost design of looped water distribution systems (WDSs). Three distinct steps are involved in the proposed optimization approach. In the first step, the shortest-distance tree within the looped network is identified using the Dijkstra graph theory algorithm, for which an extension is proposed to find the shortest-distance tree for multisource WDSs. In the second step, a nonlinear programming (NLP) solver is employed to optimize the pipe diameters for the shortest-distance tree (chords of the shortest-distance tree are allocated the minimum allowable pipe sizes). Finally, in the third step, the original looped water network is optimized using a differential evolution (DE) algorithm seeded with diameters in the proximity of the continuous pipe sizes obtained in step two. As such, the proposed optimization approach combines the traditional deterministic optimization technique of NLP with the emerging evolutionary algorithm DE via the proposed network decomposition. The proposed methodology has been tested on four looped WDSs with the number of decision variables ranging from 21 to 454. Results obtained show the proposed approach is able to find optimal solutions with significantly less computational effort than other optimization techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Lizhen; Stoller, Roger E.; Field, Kevin G.
Extension of light water reactors' useful life will expose austenitic internal core components to irradiation damage levels beyond 100 displacements per atom (dpa), which will lead to profound microstructural evolution and consequent degradation of macroscopic properties. Microstructural evolution, including Frank loops, cavities, precipitates, and segregation at boundaries and the resultant radiation hardening in type 304 and 316 stainless steel (SS) variants, were studied in this work via experimental characterization and multiple simulation methods. Experimental data for up to 40 heats of type 304SS and 316SS variants irradiated in different reactors to 0.6–120 dpa at 275–375°C were either generated from thismore » work or collected from literature reports. These experimental data were then combined with models of Frank loop and cavity evolution, computational thermodynamics and precipitation, and ab initio and rate theory integrated radiation-induced segregation models to provide insights into microstructural evolution and degradation at higher radiation doses.« less
Tan, Lizhen; Stoller, Roger E.; Field, Kevin G.; ...
2015-12-11
Extension of light water reactors' useful life will expose austenitic internal core components to irradiation damage levels beyond 100 displacements per atom (dpa), which will lead to profound microstructural evolution and consequent degradation of macroscopic properties. Microstructural evolution, including Frank loops, cavities, precipitates, and segregation at boundaries and the resultant radiation hardening in type 304 and 316 stainless steel (SS) variants, were studied in this work via experimental characterization and multiple simulation methods. Experimental data for up to 40 heats of type 304SS and 316SS variants irradiated in different reactors to 0.6–120 dpa at 275–375°C were either generated from thismore » work or collected from literature reports. These experimental data were then combined with models of Frank loop and cavity evolution, computational thermodynamics and precipitation, and ab initio and rate theory integrated radiation-induced segregation models to provide insights into microstructural evolution and degradation at higher radiation doses.« less
Temperature evolution of a magnetic flux rope in a failed solar eruption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, H. Q.; Chen, Y.; Li, B.
2014-03-20
In this paper, we report for the first time the detailed temperature evolution process of the magnetic flux rope in a failed solar eruption. Occurring on 2013 January 05, the flux rope was impulsively accelerated to a speed of ∼400 km s{sup –1} in the first minute, then decelerated and came to a complete stop in two minutes. The failed eruption resulted in a large-size high-lying (∼100 Mm above the surface), high-temperature 'fire ball' sitting in the corona for more than two hours. The time evolution of the thermal structure of the flux rope was revealed through the differential emissionmore » measure analysis technique, which produced temperature maps using observations of the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory. The average temperature of the flux rope steadily increased from ∼5 MK to ∼10 MK during the first nine minutes of the evolution, which was much longer than the rise time (about three minutes) of the associated soft X-ray flare. We suggest that the flux rope is heated by the energy release of the continuing magnetic reconnection, different from the heating of the low-lying flare loops, which is mainly produced by the chromospheric plasma evaporation. The loop arcade overlying the flux rope was pushed up by ∼10 Mm during the attempted eruption. The pattern of the velocity variation of the loop arcade strongly suggests that the failure of the eruption was caused by the strapping effect of the overlying loop arcade.« less
Heteogeneities During Deformation of Polycrystalline Ice, Recent Advances in Cryo-EBSD Analyses
NASA Astrophysics Data System (ADS)
Journaux, B.; Montagnat, M.; Chauve, T.; Barou, F.; Tommasi, A.; Mainprice, D.
2017-12-01
Microstructural heterogeneities come into play at various scales during deformation of polycrystalline materials. In particular, intra-granular heterogeneities such as subgrain boundaries, and dislocations sub-structures play a crucial role during dynamic recrystallization (DRX) mechanisms. The latter are active in ice, minerals and metals deformed at medium to high temperature, and enable a relaxation of strain energy. They regroup nucleation of new grains and grain boundary migration, which can drastically modify the microstructure and texture (crystallographic preferred orientations) during deformation in natural conditions or in the laboratory. Since ice has a strong viscoplastic anisotropy (with dislocations gliding mostly on the basal planes of its hexagonal crystalline structure), texture play a crucial role in the response of ice deformed naturally at low strain-rate. Texture evolution along natural ice cores has been studied for a long time but the bases DRX mechanisms were, up to recently, only offered a simplistic characterization due to the lack of resolution of the classical optical based technics. Since a few years, Electron BackScattering Diffraction (EBSD) imaging has been adapted for ice study. In particular, the EBSD of Geosciences Montpellier offers an unique opportunity to explore large samples of ice (2x3 cm2), at a relatively high resolution (20 to 5 μm), and a very good indexation (> 90%). We will present an overview of the type of informations made available by this technique, from a set of torsion and compression laboratory tests performed on ice polycrystals. The strong intra-granular heterogeneities measured were Geometrically Necessary Dislocations (GNDs), analyzed by the mean of the Weighted Burgers Vectors (Wheeler et al. 2009, J. of Microscopy 233).Our results clearly point out the complexity of the mechanisms (especially nucleation), and question up to the classical paradigm of the non-existence of non-basal dislocations with a c-axis component in ice. We therefore highlight the necessity to implement viscoplastic laws that correctly integrate a minimum of this complexity in full-field or mean-field modeling approaches that aim at simulating the mechanical response and texture evolution of ice.
NASA Astrophysics Data System (ADS)
Zhang, X.; Sagiya, T.
2015-12-01
The earth's crust can be divided into the brittle upper crust and the ductile lower crust based on the deformation mechanism. Observations shows heterogeneities in the lower crust are associated with fault zones. One of the candidate mechanisms of strain concentration is shear heating in the lower crust, which is considered by theoretical studies for interplate faults [e.g. Thatcher & England 1998, Takeuchi & Fialko 2012]. On the other hand, almost no studies has been done for intraplate faults, which are generally much immature than interplate faults and characterized by their finite lengths and slow displacement rates. To understand the structural characteristics in the lower crust and its temporal evolution in a geological time scale, we conduct a 2-D numerical experiment on the intraplate strike slip fault. The lower crust is modeled as a 20km thick viscous layer overlain by rigid upper crust that has a steady relative motion across a vertical strike slip fault. Strain rate in the lower crust is assumed to be a sum of dislocation creep and diffusion creep components, each of which flows the experimental flow laws. The geothermal gradient is assumed to be 25K/km. We have tested different total velocity on the model. For intraplate fault, the total velocity is less than 1mm/yr, and for comparison, we use 30mm/yr for interplate faults. Results show that at a low slip rate condition, dislocation creep dominates in the shear zone near the intraplate fault's deeper extension while diffusion creep dominates outside the shear zone. This result is different from the case of interplate faults, where dislocation creep dominates the whole region. Because of the power law effect of dislocation creep, the effective viscosity in the shear zone under intraplate faults is much higher than that under the interplate fault, therefore, shear zone under intraplate faults will have a much higher viscosity and lower shear stress than the intraplate fault. Viscosity contract between inside and outside of the shear zone is smaller under an intraplate situation than in the interplate one, and smaller viscosity difference will result in a wider shear zone.
Studies of the Initial Stages of Epitaxial Growth of Germanium on Silicon
NASA Astrophysics Data System (ADS)
Krishnamurthy, Mohan
The epitaxial growth of ultra-thin films (< 1nm thick) of Ge on Si(100) has been studied in -situ in an Ultra High Vacuum-Scanning Transmission Electron Microscope. Ge was deposited on clean Si(100) using molecular beam techniques to study two types of growth processes, Molecular Beam Epitaxy (MBE) and Solid Phase MBE. Ge grows in the Stranski-Krastanov growth mode, forming islands after initial layer growth. This islanding transition has been studied with high spatial resolution biassed Secondary Electron Imaging and Auger spectroscopy and imaging. Ex -situ Transmission Electron Microscopy (TEM) and Reflection High Energy Diffraction (RHEED) were also used to characterize the transition. The islanding process and its subsequent evolution was monitored with the help of island size distributions, sensitive to islands above 2nm in size. The studies indicate that Ge forms islands in equilibrium with a 3 monolayer (ML) thick intermediate layer. These islands may initially grow coherently strained (dislocation free) with radii usually below 10nm under the conditions. The strain in these islands reduces the adatom sticking coefficient and strongly influences the microstructural evolution. The intermediate layer may grow metastably under certain conditions to as much as 7 ML before collapsing to its equilibrium form. The influence of three types of adatom sinks--strained islands, dislocated islands and contaminant particles have been studied. The contaminant particles are the strongest sinks, followed by dislocated islands and strained islands. Stepped (vicinal) surfaces (1^circ and 5 ^circ toward {110 }) had no significant influence possibly due to the steps being weak adatom sinks. The coarsening of Ge islands does not follow the Ostwald ripening model at the early stages and is influenced by the supersaturation in the intermediate layer and the strain in the coherent islands. A novel mechanism has been observed, where the larger (dislocated) islands grow at the expense of the unstable intermediate layer while the distribution of smaller (strained) islands is constant. This is possibly due to the lower sticking coefficient at the strained islands.
Revealing the Evolution of Non-thermal Electrons in Solar Flares Using 3D Modeling
NASA Astrophysics Data System (ADS)
Fleishman, Gregory D.; Nita, Gelu M.; Kuroda, Natsuha; Jia, Sabina; Tong, Kevin; Wen, Richard R.; Zhizhuo, Zhou
2018-05-01
Understanding non-thermal particle generation, transport, and escape in solar flares requires detailed quantification of the particle evolution in the realistic 3D domain where the flare takes place. Rather surprisingly, apart from the standard flare scenario and integral characteristics of non-thermal electrons, not much is known about the actual evolution of non-thermal electrons in the 3D spatial domain. This paper attempts to begin to remedy this situation by creating sets of evolving 3D models, the synthesized emission from which matches the evolving observed emission. Here, we investigate two contrasting flares: a dense, “coronal-thick-target” flare SOL2002-04-12T17:42, that contained a single flare loop observed in both microwaves and X-rays, and a more complex flare, SOL2015-06-22T17:50, that contained at least four distinct flaring loops needed to consistently reproduce the microwave and X-ray emission. Our analysis reveals differing evolution patterns for the non-thermal electrons in the dense and tenuous loops; however, both patterns suggest that resonant wave–particle interactions with turbulence play a central role. These results offer new constraints for theory and models of the particle acceleration and transport in solar flares.
NASA Astrophysics Data System (ADS)
Dai, Yu; Ding, Mingde
2018-04-01
Recent observations in extreme-ultraviolet (EUV) wavelengths reveal an EUV late phase in some solar flares that is characterized by a second peak in warm coronal emissions (∼3 MK) several tens of minutes to a few hours after the soft X-ray (SXR) peak. Using the model enthalpy-based thermal evolution of loops (EBTEL), we numerically probe the production of EUV late-phase solar flares. Starting from two main mechanisms of producing the EUV late phase, i.e., long-lasting cooling and secondary heating, we carry out two groups of numerical experiments to study the effects of these two processes on the emission characteristics in late-phase loops. In either of the two processes an EUV late-phase solar flare that conforms to the observational criteria can be numerically synthesized. However, the underlying hydrodynamic and thermodynamic evolutions in late-phase loops are different between the two synthetic flare cases. The late-phase peak due to a long-lasting cooling process always occurs during the radiative cooling phase, while that powered by a secondary heating is more likely to take place in the conductive cooling phase. We then propose a new method for diagnosing the two mechanisms based on the shape of EUV late-phase light curves. Moreover, from the partition of energy input, we discuss why most solar flares are not EUV late flares. Finally, by addressing some other factors that may potentially affect the loop emissions, we also discuss why the EUV late phase is mainly observed in warm coronal emissions.
Coronal loops and active region structure
NASA Technical Reports Server (NTRS)
Webb, D. F.; Zirin, H.
1981-01-01
Synoptic H-alpha Ca K, magnetograph and Skylab soft X-ray and EUV data were compared for the purpose of identifying the basic coronal magnetic structure of loops in a 'typical' active region and studying its evolution. A complex of activity in July 1973, especially McMath 12417, was emphasized. The principal results are: (1) most of the brightest loops connected the bright f plage to either the sunspot penumbra or to p satellite spots; no non-flaring X-ray loops end in umbrae; (2) short, bright loops had one or both ends in regions of emergent flux, strong field or high field gradients; (3) stable, strongly sheared loop arcades formed over filaments; (4) EFRs were always associated with compact X-ray arcades; and (5) loops connecting to other active regions had their bases in outlying plage of weak field strength in McM 417 where H-alpha fibrils marked the direction of the loops
NASA Astrophysics Data System (ADS)
Gong, Yihao; Jin, Shuoxue; Zhu, Te; Cheng, Long; Cao, Xingzhong; You, Li; Lu, Guanghong; Guo, Liping; Wang, Baoyi
2018-04-01
A large number of dislocation networks were introduced in to 316L stainless steel by cold rolling. Subsequently, low energy (40 eV) helium ions were implanted by exposing the steel to helium plasma. Thermal desorption and positron annihilation spectroscopy were used to study the behavior of helium in the presence of dislocations, with emphasis on helium self-trapping and migration behaviors. Helium desorption behaviour from different helium trapping states was measured by the thermal desorption spectroscopy. Most of the helium desorbed from the He m V n clusters, and the corresponding desorption peak is located at ~650 K. The desorption peak from helium-dislocation clusters (He m D) is at approximately 805 K. The effect of annealing on the defect evolution was investigated by positron annihilation spectroscopy. For the specimen exposed to helium plasma without displacement damage, the increment of S parameter meant the existence of helium self-trapping behavior (He m V n ). Helium atoms could diffuse two to three orders of magnitude deeper than the implantation depth calculated by SRIM. The diffusing helium atoms were gradually trapped by dislocation lines and formed He m D. Elevated temperatures enhance the self-trapping behavior and cause helium atoms to dissociate/desorb from the He m V n clusters, increasing the S parameters at 473-673 K. The gradual recovery of vacancies in the He m V n clusters decreased the S parameter above 673 K.
Kang, D.; Bieler, T. R.; Compton, C.
2015-12-16
Large grain niobium (Nb) is being investigated for fabricating superconducting radiofrequency cavities as an alternative to the traditional approach using fine grain polycrystalline Nb sheets. Past studies have identified a surface damage layer on fine grain cavities due to deep drawing and demonstrated the necessity for chemical etching on the surface. However, the origin of and depth of the damage layer are not well understood, and similar exploration on large grain cavities is lacking. In this work, electron backscatter diffraction (EBSD) was used to examine the cross sections at the equator and iris of a half cell deep drawn frommore » a large grain Nb ingot slice. The results indicate that the damage (identified by a high density of geometrically necessary dislocations) depends on crystal orientations, is different at the equator and iris, and is present through the full thickness of a half cell in some places. After electron backscatter diffraction, the specimens were heat treated at 800 °C or 1000 °C for two hours, and the same areas were reexamined. A more dramatic decrease in dislocation content was observed at the iris than the equator, where some regions exhibited no change. The specimens were then etched and examined again, to determine if the subsurface region behaved differently than the surface. As a result, little change in the dislocation substructure was observed, suggesting that the large grain microstructure is retained with a normal furnace anneal.« less
Ohuchi, Tomohiro; Kawazoe, Takaaki; Higo, Yuji; Funakoshi, Ken-ichi; Suzuki, Akio; Kikegawa, Takumi; Irifune, Tetsuo
2015-01-01
Understanding the deformation mechanisms of olivine is important for addressing the dynamic processes in Earth’s upper mantle. It has been thought that dislocation creep is the dominant mechanism because of extrapolated laboratory data on the plasticity of olivine at pressures below 0.5 GPa. However, we found that dislocation-accommodated grain boundary sliding (DisGBS), rather than dislocation creep, dominates the deformation of olivine under middle and deep upper mantle conditions. We used a deformation-DIA apparatus combined with synchrotron in situ x-ray observations to study the plasticity of olivine aggregates at pressures up to 6.7 GPa (that is, ~200-km depth) and at temperatures between 1273 and 1473 K, which is equivalent to the conditions in the middle region of the upper mantle. The creep strength of olivine deforming by DisGBS is apparently less sensitive to pressure because of the competing pressure-hardening effect of the activation volume and pressure-softening effect of water fugacity. The estimated viscosity of olivine controlled by DisGBS is independent of depth and ranges from 1019.6 to 1020.7 Pa·s throughout the asthenospheric upper mantle with a representative water content (50 to 1000 parts per million H/Si), which is consistent with geophysical viscosity profiles. Because DisGBS is a grain size–sensitive creep mechanism, the evolution of the grain size of olivine is an important process controlling the dynamics of the upper mantle. PMID:26601281
Ohuchi, Tomohiro; Kawazoe, Takaaki; Higo, Yuji; Funakoshi, Ken-Ichi; Suzuki, Akio; Kikegawa, Takumi; Irifune, Tetsuo
2015-10-01
Understanding the deformation mechanisms of olivine is important for addressing the dynamic processes in Earth's upper mantle. It has been thought that dislocation creep is the dominant mechanism because of extrapolated laboratory data on the plasticity of olivine at pressures below 0.5 GPa. However, we found that dislocation-accommodated grain boundary sliding (DisGBS), rather than dislocation creep, dominates the deformation of olivine under middle and deep upper mantle conditions. We used a deformation-DIA apparatus combined with synchrotron in situ x-ray observations to study the plasticity of olivine aggregates at pressures up to 6.7 GPa (that is, ~200-km depth) and at temperatures between 1273 and 1473 K, which is equivalent to the conditions in the middle region of the upper mantle. The creep strength of olivine deforming by DisGBS is apparently less sensitive to pressure because of the competing pressure-hardening effect of the activation volume and pressure-softening effect of water fugacity. The estimated viscosity of olivine controlled by DisGBS is independent of depth and ranges from 10(19.6) to 10(20.7) Pa·s throughout the asthenospheric upper mantle with a representative water content (50 to 1000 parts per million H/Si), which is consistent with geophysical viscosity profiles. Because DisGBS is a grain size-sensitive creep mechanism, the evolution of the grain size of olivine is an important process controlling the dynamics of the upper mantle.
Zn-dopant dependent defect evolution in GaN nanowires.
Yang, Bing; Liu, Baodan; Wang, Yujia; Zhuang, Hao; Liu, Qingyun; Yuan, Fang; Jiang, Xin
2015-10-21
Zn doped GaN nanowires with different doping levels (0, <1 at%, and 3-5 at%) have been synthesized through a chemical vapor deposition (CVD) process. The effect of Zn doping on the defect evolution, including stacking fault, dislocation, twin boundary and phase boundary, has been systematically investigated by transmission electron microscopy and first-principles calculations. Undoped GaN nanowires show a hexagonal wurtzite (WZ) structure with good crystallinity. Several kinds of twin boundaries, including (101¯3), (101¯1) and (202¯1), as well as Type I stacking faults (…ABABCBCB…), are observed in the nanowires. The increasing Zn doping level (<1 at%) induces the formation of screw dislocations featuring a predominant screw component along the radial direction of the GaN nanowires. At high Zn doping level (3-5 at%), meta-stable cubic zinc blende (ZB) domains are generated in the WZ GaN nanowires. The WZ/ZB phase boundary (…ABABACBA…) can be identified as Type II stacking faults. The density of stacking faults (both Type I and Type II) increases with increasing the Zn doping levels, which in turn leads to a rough-surface morphology in the GaN nanowires. First-principles calculations reveal that Zn doping will reduce the formation energy of both Type I and Type II stacking faults, favoring their nucleation in GaN nanowires. An understanding of the effect of Zn doping on the defect evolution provides an important method to control the microstructure and the electrical properties of p-type GaN nanowires.
Quasi-static evolution of coronal magnetic fields
NASA Technical Reports Server (NTRS)
Longcope, D. W.; Sudan, R. N.
1992-01-01
A formalism is developed to describe the purely quasi-static part of the evolution of a coronal loop driven by its footpoints. This is accomplished under assumptions of a long, thin loop. The quasi-static equations reveal the possibility for sudden 'loss of equilibrium' at which time the system evolves dynamically rather than quasi-statically. Such quasi-static crises produce high-frequency Alfven waves and, in conjunction with Alfven wave dissipation models, form a viable coronal heating mechanism. Furthermore, an approximate solution to the quasi-static equations by perturbation method verifies the development of small-scale spatial current structure.
NASA Astrophysics Data System (ADS)
Gao, Siwen; Wollgramm, Philip; Eggeler, Gunther; Ma, Anxin; Schreuer, Jürgen; Hartmaier, Alexander
2018-07-01
For the purpose of good reproduction and prediction of creep deformation of nickel-base single crystal superalloys at intermediate temperatures, a phenomenological creep model is developed, which accounts for the typical γ/γ‧ microstructure and the individual thermally activated elementary deformation processes in different phases. The internal stresses from γ/γ‧ lattice mismatch and deformation heterogeneity are introduced through an efficient method. The strain hardening, the Orowan stress, the softening effect due to dislocation climb along γ/γ‧ interfaces and the formation of < 112> dislocation ribbons, and the Kear–Wilsdorf-lock effect as key factors in the main flow rules are formulated properly. By taking the cube slip in < 110> \\{100\\} slip systems and < 112> \\{111\\} twinning mechanisms into account, the creep behavior for [110] and [111] loading directions are well captured. Without specific interaction and evolution of dislocations, the simulations of this model achieve a good agreement with experimental creep results and reproduce temperature, stress and crystallographic orientation dependences. It can also be used as the constitutive relation at material points in finite element calculations with complex boundary conditions in various components of superalloys to predict creep behavior and local stress distributions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, K.; Bai, X.; Zhang, Y.
2016-09-01
A detailed phase field model for the formation of High Burnup Structure (HBS) was developed and implemented in MARMOT. The model treats the HBS formation as an irradiation-induced recrystallization. The model takes into consideration the stored energy associated with dislocations formed under irradiation. The accumulation of radiation damage, hence, increases the system free energy and triggers recrystallization. The increase in the free energy due to the formation of new grain boundaries is offset by the reduction in the free energy by creating dislocation-free grains at the expense of the deformed grains. The model was first used to study the growthmore » of recrystallized flat and circular grains. The model reults were shown to agree well with theorrtical predictions. The case of HBS formation in UO2 was then investigated. It was found that a threshold dislocation density of (or equivalently a threshold burn-up of 33-40 GWd/t) is required for HBS formation at 1200K, which is in good agrrement with theory and experiments. In future studies, the presence of gas bubbles and their effect on the formation and evolution of HBS will be considered.« less
Verification of Loop Diagnostics
NASA Technical Reports Server (NTRS)
Winebarger, A.; Lionello, R.; Mok, Y.; Linker, J.; Mikic, Z.
2014-01-01
Many different techniques have been used to characterize the plasma in the solar corona: density-sensitive spectral line ratios are used to infer the density, the evolution of coronal structures in different passbands is used to infer the temperature evolution, and the simultaneous intensities measured in multiple passbands are used to determine the emission measure. All these analysis techniques assume that the intensity of the structures can be isolated through background subtraction. In this paper, we use simulated observations from a 3D hydrodynamic simulation of a coronal active region to verify these diagnostics. The density and temperature from the simulation are used to generate images in several passbands and spectral lines. We identify loop structures in the simulated images and calculate the loop background. We then determine the density, temperature and emission measure distribution as a function of time from the observations and compare with the true temperature and density of the loop. We find that the overall characteristics of the temperature, density, and emission measure are recovered by the analysis methods, but the details of the true temperature and density are not. For instance, the emission measure curves calculated from the simulated observations are much broader than the true emission measure distribution, though the average temperature evolution is similar. These differences are due, in part, to inadequate background subtraction, but also indicate a limitation of the analysis methods.
Unstable plastic deformation of ultrafine-grained copper at 0.5 K
NASA Astrophysics Data System (ADS)
Isaev, N. V.; Grigorova, T. V.; Shumilin, S. E.; Polishchuk, S. S.; Davydenko, O. A.
2017-12-01
We investigate the relation between the strain-hardening rate and flow instability of polycrystalline Cu-OF deformed by tension at a constant rate in a liquid 3He atmosphere. The microstructure of the ultrafine-grained crystal, obtained by the equal-channel angular hydro-extrusion method, was varied by annealing at recovery and recrystallization temperatures and was monitored by x-ray diffraction. It is shown that that the flow instability, manifesting itself as macroscopic stress serrations on the tension curve, appears at a threshold tension sufficient for activation of a dynamic recovery that leads to a decrease of the strain-hardening coefficient. We discuss the effect of grain size and the initial dislocation density on the evolution of the dislocation structure that determines the scale and the statistical properties of the flow instability in the investigated crystals at low temperature.