Sample records for disordered organic material

  1. Real-Time Observation of Order-Disorder Transformation of Organic Cations Induced Phase Transition and Anomalous Photoluminescence in Hybrid Perovskites.

    PubMed

    Yang, Bin; Ming, Wenmei; Du, Mao-Hua; Keum, Jong K; Puretzky, Alexander A; Rouleau, Christopher M; Huang, Jinsong; Geohegan, David B; Wang, Xiaoping; Xiao, Kai

    2018-05-01

    A fundamental understanding of the interplay between the microscopic structure and macroscopic optoelectronic properties of organic-inorganic hybrid perovskite materials is essential to design new materials and improve device performance. However, how exactly the organic cations affect the structural phase transition and optoelectronic properties of the materials is not well understood. Here, real-time, in situ temperature-dependent neutron/X-ray diffraction and photoluminescence (PL) measurements reveal a transformation of the organic cation CH 3 NH 3 + from order to disorder with increasing temperature in CH 3 NH 3 PbBr 3 perovskites. The molecular-level order-to-disorder transformation of CH 3 NH 3 + not only leads to an anomalous increase in PL intensity, but also results in a multidomain to single-domain structural transition. This discovery establishes the important role that organic cation ordering has in dictating structural order and anomalous optoelectronic phenomenon in hybrid perovskites. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Influence of disorder on transfer characteristics of organic electrochemical transistors

    NASA Astrophysics Data System (ADS)

    Friedlein, Jacob T.; Rivnay, Jonathan; Dunlap, David H.; McCulloch, Iain; Shaheen, Sean E.; McLeod, Robert R.; Malliaras, George G.

    2017-07-01

    Organic electrochemical transistors (OECTs) are receiving a great deal of attention as transducers of biological signals due to their high transconductance. A ubiquitous property of these devices is the non-monotonic dependence of transconductance on gate voltage. However, this behavior is not described by existing models. Using OECTs made of materials with different chemical and electrical properties, we show that this behavior arises from the influence of disorder on the electronic transport properties of the organic semiconductor and occurs even in the absence of contact resistance. These results imply that the non-monotonic transconductance is an intrinsic property of OECTs and cannot be eliminated by device design or contact engineering. Finally, we present a model based on the physics of electronic conduction in disordered materials. This model fits experimental transconductance curves and describes strategies for rational material design to improve OECT performance in sensing applications.

  3. Three-dimensional structure of human lamellar bone: the presence of two different materials and new insights into the hierarchical organization.

    PubMed

    Reznikov, Natalie; Shahar, Ron; Weiner, Steve

    2014-02-01

    Lamellar bone is the most common bone type in humans. The predominant components of individual lamellae are plywood-like arrays of mineralized collagen fibrils aligned in different directions. Using a dual-beam electron microscope and the Serial Surface View (SSV) method we previously identified a small, but significantly different layer in rat lamellar bone, namely a disordered layer with collagen fibrils showing little or no preferred orientation. Here we present a 3D structural analysis of 12 SSV volumes (25 complete lamellae) from femora of 3 differently aged human individuals. We identify the ordered and disordered motifs in human bone as in the rat, with several significant differences. The ordered motif shows two major preferred orientations, perpendicular to the long axis of the bone, and aligned within 10-20° of the long axis, as well as fanning arrays. At a higher organizational level, arrays of ordered collagen fibrils are organized into 'rods' around 2 to 3μm in diameter, and the long axes of these 'rods' are parallel to the lamellar boundaries. Human bone also contains a disordered component that envelopes the rods and fills in the spaces between them. The disordered motif is especially well-defined between adjacent layers of rods. The disordered motif and its interfibrillar substance stain heavily with osmium tetroxide and Alcian blue indicating the presence of another organic component in addition to collagen. The canalicular network is confined to the disordered material, along with voids and individual collagen fibrils, some of which are also aligned more or less perpendicular to the lamellar boundaries. The organization of the ordered fibril arrays into rods enveloped in the continuous disordered structure was not observed in rat lamellar bone. We thus conclude that human lamellar bone is comprised of two distinct materials, an ordered material and a disordered material, and contains an additional hierarchical level of organization composed of arrays of ordered collagen fibrils, referred to as rods. This new structural information on human lamellar bone will improve our understanding of structure-mechanical function relations, mechanisms of mechano-sensing and the characterizations of bone pathologies. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Social and Psychological Aspects of Genetic Disorders: A Selected Bibliography.

    ERIC Educational Resources Information Center

    National Center for Education in Maternal and Child Health, Washington, DC.

    The scope of this bibliography encompasses the social and psychological aspects of genetic disorders. The bibliography lists selected English-language articles and books from the professional literature along with audiovisual materials produced by both voluntary organizations and professional filmmakers. The entries are organized by the following…

  5. QM/QM approach to model energy disorder in amorphous organic semiconductors.

    PubMed

    Friederich, Pascal; Meded, Velimir; Symalla, Franz; Elstner, Marcus; Wenzel, Wolfgang

    2015-02-10

    It is an outstanding challenge to model the electronic properties of organic amorphous materials utilized in organic electronics. Computation of the charge carrier mobility is a challenging problem as it requires integration of morphological and electronic degrees of freedom in a coherent methodology and depends strongly on the distribution of polaron energies in the system. Here we represent a QM/QM model to compute the polaron energies combining density functional methods for molecules in the vicinity of the polaron with computationally efficient density functional based tight binding methods in the rest of the environment. For seven widely used amorphous organic semiconductor materials, we show that the calculations are accelerated up to 1 order of magnitude without any loss in accuracy. Considering that the quantum chemical step is the efficiency bottleneck of a workflow to model the carrier mobility, these results are an important step toward accurate and efficient disordered organic semiconductors simulations, a prerequisite for accelerated materials screening and consequent component optimization in the organic electronics industry.

  6. Interplay between defects, disorder and flexibility in metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Bennett, Thomas D.; Cheetham, Anthony K.; Fuchs, Alain H.; Coudert, François-Xavier

    2017-01-01

    Metal-organic frameworks are a novel family of chemically diverse materials, which are of interest across engineering, physics, chemistry, biology and medicine-based disciplines. Since the development of the field in its current form more than two decades ago, priority has been placed on the synthesis of new structures. However, more recently, a clear trend has emerged in shifting the emphasis from material design to exploring the chemical and physical properties of structures already known. In particular, although such nanoporous materials were traditionally seen as rigid crystalline structures, there is growing evidence that large-scale flexibility, the presence of defects and long-range disorder are not the exception in metal-organic frameworks, but the rule. Here we offer some perspective into how these concepts are perhaps inescapably intertwined, highlight recent advances in our understanding and discuss how a consideration of the interfaces between them may lead to enhancements of the materials' functionalities.

  7. The Dual Role of Disorder on the Dissociation of Interfacial Charge Transfer Excitons

    NASA Astrophysics Data System (ADS)

    Shi, Liang; Lee, Chee-Kong; Willard, Adam

    In organic-based photovoltaics (OPV), dissociation of neutral photo-excitations (i.e., Frenkel excitons) into free charge carriers requires the excitons to overcome binding energy that can significantly exceed thermal energies. The inability of bound charges to overcome this large binding energy has been implicated as a primary source of efficiency loss in OPVs. Despite the potential impact on the performance of organic solar cells much remains to be understood about the microscopic mechanism of exciton dissociation in OPV materials. Here we explore the role of static molecular disorder in mediating this charge dissociation process. Using a simple lattice model of exciton dynamics we demonstrate that random spatial variations in the energetic landscape can mitigate the effects of the exciton binding energy by lowering the free energy barrier. By considering the competition between this thermodynamic effect and the disorder-induced slowing of dissociation kinetics we demonstrate that exciton dissociation yields are expected to depend non-monotonically on the degree of static disorder. We conclude that a certain amount of molecular-scale disorder is desirable in order to optimize the performance of organic photovoltaic materials.

  8. Precisely cyclic sand: self-organization of periodically sheared frictional grains.

    PubMed

    Royer, John R; Chaikin, Paul M

    2015-01-06

    The disordered static structure and chaotic dynamics of frictional granular matter has occupied scientists for centuries, yet there are few organizational principles or guiding rules for this highly hysteretic, dissipative material. We show that cyclic shear of a granular material leads to dynamic self-organization into several phases with different spatial and temporal order. Using numerical simulations, we present a phase diagram in strain-friction space that shows chaotic dispersion, crystal formation, vortex patterns, and most unusually a disordered phase in which each particle precisely retraces its unique path. However, the system is not reversible. Rather, the trajectory of each particle, and the entire frictional, many-degrees-of-freedom system, organizes itself into a limit cycle absorbing state. Of particular note is that fact that the cyclic states are spatially disordered, whereas the ordered states are chaotic.

  9. Precisely cyclic sand: Self-organization of periodically sheared frictional grains

    PubMed Central

    Royer, John R.; Chaikin, Paul M.

    2015-01-01

    The disordered static structure and chaotic dynamics of frictional granular matter has occupied scientists for centuries, yet there are few organizational principles or guiding rules for this highly hysteretic, dissipative material. We show that cyclic shear of a granular material leads to dynamic self-organization into several phases with different spatial and temporal order. Using numerical simulations, we present a phase diagram in strain–friction space that shows chaotic dispersion, crystal formation, vortex patterns, and most unusually a disordered phase in which each particle precisely retraces its unique path. However, the system is not reversible. Rather, the trajectory of each particle, and the entire frictional, many–degrees-of-freedom system, organizes itself into a limit cycle absorbing state. Of particular note is that fact that the cyclic states are spatially disordered, whereas the ordered states are chaotic. PMID:25538298

  10. Reformulated space-charge-limited current model and its application to disordered organic systems

    NASA Astrophysics Data System (ADS)

    Woellner, Cristiano F.; Freire, José A.

    2011-02-01

    We have reformulated a traditional model used to describe the current-voltage dependence of low mobility materials sandwiched between planar electrodes by using the quasi-electrochemical potential as the fundamental variable instead of the local electric field or the local charge carrier density. This allows the material density-of-states to enter explicitly in the equations and dispenses with the need to assume a particular type of contact. The diffusion current is included and as a consequence the current-voltage dependence obtained covers, with increasing bias, the diffusion limited current, the space-charge limited current, and the injection limited current regimes. The generalized Einstein relation and the field and density dependent mobility are naturally incorporated into the formalism; these two points being of particular relevance for disordered organic semiconductors. The reformulated model can be applied to any material where the carrier density and the mobility may be written as a function of the quasi-electrochemical potential. We applied it to the textbook example of a nondegenerate, constant mobility material and showed how a single dimensionless parameter determines the form of the I(V) curve. We obtained integral expressions for the carrier density and for the mobility as a function of the quasi-electrochemical potential for a Gaussianly disordered organic material and found the general form of the I(V) curve for such materials over the full range of bias, showing how the energetic disorder alone can give rise, in the space-charge limited current regime, to an I∝Vn dependence with an exponent n larger than 2.

  11. Modeling charge transport in organic photovoltaic materials.

    PubMed

    Nelson, Jenny; Kwiatkowski, Joe J; Kirkpatrick, James; Frost, Jarvist M

    2009-11-17

    The performance of an organic photovoltaic cell depends critically on the mobility of charge carriers within the constituent molecular semiconductor materials. However, a complex combination of phenomena that span a range of length and time scales control charge transport in disordered organic semiconductors. As a result, it is difficult to rationalize charge transport properties in terms of material parameters. Until now, efforts to improve charge mobilities in molecular semiconductors have proceeded largely by trial and error rather than through systematic design. However, recent developments have enabled the first predictive simulation studies of charge transport in disordered organic semiconductors. This Account describes a set of computational methods, specifically molecular modeling methods, to simulate molecular packing, quantum chemical calculations of charge transfer rates, and Monte Carlo simulations of charge transport. Using case studies, we show how this combination of methods can reproduce experimental mobilities with few or no fitting parameters. Although currently applied to material systems of high symmetry or well-defined structure, further developments of this approach could address more complex systems such anisotropic or multicomponent solids and conjugated polymers. Even with an approximate treatment of packing disorder, these computational methods simulate experimental mobilities within an order of magnitude at high electric fields. We can both reproduce the relative values of electron and hole mobility in a conjugated small molecule and rationalize those values based on the symmetry of frontier orbitals. Using fully atomistic molecular dynamics simulations of molecular packing, we can quantitatively replicate vertical charge transport along stacks of discotic liquid crystals which vary only in the structure of their side chains. We can reproduce the trends in mobility with molecular weight for self-organizing polymers using a cheap, coarse-grained structural simulation method. Finally, we quantitatively reproduce the field-effect mobility in disordered C60 films. On the basis of these results, we conclude that all of the necessary building blocks are in place for the predictive simulation of charge transport in macromolecular electronic materials and that such methods can be used as a tool toward the future rational design of functional organic electronic materials.

  12. Thermoelectric transport properties of high mobility organic semiconductors

    NASA Astrophysics Data System (ADS)

    Venkateshvaran, Deepak; Broch, Katharina; Warwick, Chris N.; Sirringhaus, Henning

    2016-09-01

    Transport in organic semiconductors has traditionally been investigated using measurements of the temperature and gate voltage dependent mobility of charge carriers within the channel of organic field-effect transistors (OFETs). In such measurements, the behavior of charge carrier mobility with temperature and gate voltage, studied together with carrier activation energies, provide a metric to quantify the extent of disorder within these van der Waals bonded materials. In addition to the mobility and activation energy, another potent but often-overlooked transport coefficient useful in understanding disorder is the Seebeck coefficient (also known as thermoelectric power). Fundamentally, the Seebeck coefficient represents the entropy per charge carrier in the solid state, and thus proves powerful in distinguishing materials in which charge carriers move freely from those where a high degree of disorder causes the induced carriers to remain trapped. This paper briefly covers the recent highlights in the field of organic thermoelectrics, showing how significant strides have been made both from an applied standpoint as well as from a viewpoint of fundamental thermoelectric transport physics. It shall be illustrated how thermoelectric transport parameters in organic semiconductors can be tuned over a significant range, and how this tunability facilitates an enhanced performance for heat-to-electricity conversion as well as quantifies energetic disorder and the nature of the density of states (DOS). The work of the authors shall be spotlighted in this context, illustrating how Seebeck coefficient measurements in the polymer indacenodithiophene-co-benzothiadiazole (IDTBT) known for its ultra-low degree of torsion within the polymer backbone, has a trend consistent with low disorder. 1 Finally, using examples of the small molecules C8-BTBT and C10-DNTT, it shall be discussed how the Seebeck coefficient can aid the estimation of the density and distribution of trap states within these materials. 2, 3

  13. Effect of processing history on the surface interfacial properties of budesonide in carrier-based dry-powder inhalers.

    PubMed

    Shur, Jagdeep; Pitchayajittipong, Chonladda; Rogueda, Philippe; Price, Robert

    2013-08-01

    Influence of air-jet micronization, post-micronization conditioning and storage on the surface properties of budesonide in dry-powder inhaler formulations was investigated. Crystalline budesonide was air jet-micronized and conditioned using organic vapor. Particle engineering was also used to fabricate respirable particles of budesonide. Surface imaging by atomic force microscopy suggested that micronized material possessed process-induced surface disorder, which relaxed upon conditioning with organic vapor. Particle engineered material was devoid of such surface disorder. Surface interfacial properties of all batches were different and correlated to in vitro fine particle delivery. The surface properties and in vitro performance of the conditioned material changed upon storage of the budesonide at 44% relative humidity and 25°C, while the micronized and particle-engineered material remained stable. These data suggest that processing conditions of budesonide affected the surface properties of the material, which was demonstrated to have direct affect on dry-powder inhaler formulation performance.

  14. A Study of Charge Transport: Correlated Energetic Disorder in Organic Semiconductors, and the Fragment Hamiltonian

    NASA Astrophysics Data System (ADS)

    Allen, Jonathan Robert

    This dissertation details work done on two different descriptions of charge transport. The first topic is energetic disorder in organic semiconductors, and its effect on charge transport. This is motivated primarily by solar cells, which can be broadly classified as either inorganic or organic. The inorganic class of solar cells is older, and more well-developed, with the most common type being constructed from crystalline silicon. The large silicon crystals required for these cells are expensive to manufacture, which gave rise to interest in photovoltaic cells made from much less costly organic polymers. These organic materials are also less efficient than their silicon counterparts, due to a large degree of spatial and energetic disorder. In this document, the sources and structure of energetic disorder in organic semiconductors are explored, with an emphasis on spatial correlations in energetic disorder. In order for an organic photovoltaic device to function, there must be photogeneration of an exciton (a bound electron-hole pair), exciton transport, exciton dissociation, and transport of the individual charges to their respective terminals. In the case of this thesis, the main focus is exciton dissociation. The effects of correlation on exciton dissociation are examined through computer simulation, and compared to the theory and simulations of previous researchers. We conclude that energetic disorder in organic semiconductors is spatially correlated, and that this correlation improves the ability of excitons to dissociate. The second topic of this dissertation is the Fragment Hamiltonian model. This is a model currently in development as a means of describing charge transport across a range of systems. Currently there are many different systems which exhibit various charge transport behaviors, which are described by several different models. The overarching goal of the Fragment Hamiltonian model is to construct a description of charge transport which accurately describes the behavior of multiple different materials (i.e. metallic conductors or ceramic insulators) in the appropriate limits. The Fragment Hamiltonian model is explored in the context of the tight-binding model, and properties such as the conductivity of several different systems are deduced.

  15. Short-pulse laser interactions with disordered materials and liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.

    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regimemore » in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.« less

  16. Hole mobility in various transition-metal-oxides doped organic semiconductor films

    NASA Astrophysics Data System (ADS)

    Yoo, Seung-Jun; Lee, Jeong-Hwan; Kim, Jae-Min; Kim, Jang-Joo

    2017-01-01

    Hole mobility in various p-doped organic semiconductors possessing different energetic disorder parameters in low-to-moderate doping range is reported. The hole mobility is reduced by orders of magnitude and converged to 10-7-10-6 cm2/Vs at a doping concentration of 5 mol. % for all the materials, even though the pristine organic films possess orders of magnitude of different mobilities from 10-5 to 10-3 cm2/Vs. These results indicate that the ionized dopants behave as traps for generated carriers to reduce the mobility. Further increase in the doping concentration either increases or decreases the mobility depending on the energetic disorder parameters of the organic films. These phenomena are interpreted based on the Coulomb trap depth of the ionized dopants and energetic disorder of the host layers.

  17. Tracing Single Electrons in a Disordered Polymer Film at Room Temperature.

    PubMed

    Wilma, Kevin; Issac, Abey; Chen, Zhijian; Würthner, Frank; Hildner, Richard; Köhler, Jürgen

    2016-04-21

    The transport of charges lies at the heart of essentially all modern (opto-) electronic devices. Although inorganic semiconductors built the basis for current technologies, organic materials have become increasingly important in recent years. However, organic matter is often highly disordered, which directly impacts the charge carrier dynamics. To understand and optimize device performance, detailed knowledge of the transport mechanisms of charge carriers in disordered matter is therefore of crucial importance. Here we report on the observation of the motion of single electrons within a disordered polymer film at room temperature, using single organic chromophores as probe molecules. The migration of a single electron gives rise to a varying electric field in its vicinity, which is registered via a shift of the emission spectra (Stark shift) of a chromophore. The spectral shifts allow us to determine the electron mobility and reveal for each nanoenvironment a distinct number of different possible electron-transfer pathways within the rugged energy landscape of the disordered polymer matrix.

  18. Hyperuniform materials made with microfluidics

    NASA Astrophysics Data System (ADS)

    Yazhgur, Pavel; Ricouvier, Joshua; Pierrat, Romain; Carminati, RéMi; Tabeling, Patrick

    Hyperuniform materials, being disordered systems with suppressed long-scale fluctuations, now attract a significant scientific interest, especially due to their potential applications for disordered photonic materials production. In our project we study a jammed packing of oil droplets in water. The droplets are produced in a PDMS microfluidic chip and directly assembled in a microfluidic channel. By varying the fluid pressures we manage to sharply control the droplet production and thereby govern the structural properties of the obtained material. The pseudo-2D (a monolayer of droplets) and 3D systems are investigated. Our results show that at appropriate experimental conditions droplets self-organize in hyperuniform patterns. Our electromagnetic simulations also show that the obtained material can be transparent while staying optically dense. As far as we know, the proposed material is one of the first examples of experimentally made hyperuniform materials. We hope that our studies will help to establish a new way of disordered photonic materials production. The Microflusa project receives funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 664823.

  19. Exploring the energy landscape of the charge transport levels in organic semiconductors at the molecular scale.

    PubMed

    Cornil, J; Verlaak, S; Martinelli, N; Mityashin, A; Olivier, Y; Van Regemorter, T; D'Avino, G; Muccioli, L; Zannoni, C; Castet, F; Beljonne, D; Heremans, P

    2013-02-19

    The extraordinary semiconducting properties of conjugated organic materials continue to attract attention across disciplines including materials science, engineering, chemistry, and physics, particularly with application to organic electronics. Such materials are used as active components in light-emitting diodes, field-effect transistors, or photovoltaic cells, as a substitute for (mostly Si-based) inorganic semiconducting materials. Many strategies developed for inorganic semiconductor device building (doping, p-n junctions, etc.) have been attempted, often successfully, with organics, even though the key electronic and photophysical properties of organic thin films are fundamentally different from those of their bulk inorganic counterparts. In particular, organic materials consist of individual units (molecules or conjugated segments) that are coupled by weak intermolecular forces. The flexibility of organic synthesis has allowed the development of more efficient opto-electronic devices including impressive improvements in quantum yields for charge generation in organic solar cells and in light emission in electroluminescent displays. Nonetheless, a number of fundamental questions regarding the working principles of these devices remain that preclude their full optimization. For example, the role of intermolecular interactions in driving the geometric and electronic structures of solid-state conjugated materials, though ubiquitous in organic electronic devices, has long been overlooked, especially when it comes to these interfaces with other (in)organic materials or metals. Because they are soft and in most cases disordered, conjugated organic materials support localized electrons or holes associated with local geometric distortions, also known as polarons, as primary charge carriers. The spatial localization of excess charges in organics together with low dielectric constant (ε) entails very large electrostatic effects. It is therefore not obvious how these strongly interacting electron-hole pairs can potentially escape from their Coulomb well, a process that is at the heart of photoconversion or molecular doping. Yet they do, with near-quantitative yield in some cases. Limited screening by the low dielectric medium in organic materials leads to subtle static and dynamic electronic polarization effects that strongly impact the energy landscape for charges, which offers a rationale for this apparent inconsistency. In this Account, we use different theoretical approaches to predict the energy landscape of charge carriers at the molecular level and review a few case studies highlighting the role of electrostatic interactions in conjugated organic molecules. We describe the pros and cons of different theoretical approaches that provide access to the energy landscape defining the motion of charge carriers. We illustrate the applications of these approaches through selected examples involving OFETs, OLEDs, and solar cells. The three selected examples collectively show that energetic disorder governs device performances and highlights the relevance of theoretical tools to probe energy landscapes in molecular assemblies.

  20. Critical Behavior of Transport and Mechanical Properties in Particulate Dispersions and Granular Media

    DTIC Science & Technology

    1988-07-29

    ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION University of Southern 1 (i aplicable ) It California I J R 6c. ADDRESS (City, State...Materials Based on the Theory of "Compound Mobilized Planes" (CMP) and "Spatial Mobilized Planes" (SMP), in Vol. II of Advances in the Mechanics and the Flow...of Disordered and Reinforced Materials", M. S. Thesis , M. D. Stephens, Department of Chemical Engineering, May 1988, , 13 UNIVERSITY OF SOUTHERN

  1. Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics.

    PubMed

    Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Jaung, Jae Yun; Kim, Yong-Hoon; Park, Sung Kyu

    2015-09-28

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.

  2. Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics

    NASA Astrophysics Data System (ADS)

    Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Yun Jaung, Jae; Kim, Yong-Hoon; Kyu Park, Sung

    2015-09-01

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.

  3. Open problems in active chaotic flows: Competition between chaos and order in granular materials.

    PubMed

    Ottino, J. M.; Khakhar, D. V.

    2002-06-01

    There are many systems where interaction among the elementary building blocks-no matter how well understood-does not even give a glimpse of the behavior of the global system itself. Characteristic for these systems is the ability to display structure without any external organizing principle being applied. They self-organize as a consequence of synthesis and collective phenomena and the behavior cannot be understood in terms of the systems' constitutive elements alone. A simple example is flowing granular materials, i.e., systems composed of particles or grains. How the grains interact with each other is reasonably well understood; as to how particles move, the governing law is Newton's second law. There are no surprises at this level. However, when the particles are many and the material is vibrated or tumbled, surprising behavior emerges. Systems self-organize in complex patterns that cannot be deduced from the behavior of the particles alone. Self-organization is often the result of competing effects; flowing granular matter displays both mixing and segregation. Small differences in either size or density lead to flow-induced segregation and order; similar to fluids, noncohesive granular materials can display chaotic mixing and disorder. Competition gives rise to a wealth of experimental outcomes. Equilibrium structures, obtained experimentally in quasi-two-dimensional systems, display organization in the presence of disorder, and are captured by a continuum flow model incorporating collisional diffusion and density-driven segregation. Several open issues remain to be addressed. These include analysis of segregating chaotic systems from a dynamical systems viewpoint, and understanding three-dimensional systems and wet granular systems (slurries). General aspects of the competition between chaos-enhanced mixing and properties-induced de-mixing go beyond granular materials and may offer a paradigm for other kinds of physical systems. (c) 2002 American Institute of Physics.

  4. 25th Anniversary Article: Organic Field-Effect Transistors: The Path Beyond Amorphous Silicon

    PubMed Central

    Sirringhaus, Henning

    2014-01-01

    Over the past 25 years, organic field-effect transistors (OFETs) have witnessed impressive improvements in materials performance by 3–4 orders of magnitude, and many of the key materials discoveries have been published in Advanced Materials. This includes some of the most recent demonstrations of organic field-effect transistors with performance that clearly exceeds that of benchmark amorphous silicon-based devices. In this article, state-of-the-art in OFETs are reviewed in light of requirements for demanding future applications, in particular active-matrix addressing for flexible organic light-emitting diode (OLED) displays. An overview is provided over both small molecule and conjugated polymer materials for which field-effect mobilities exceeding > 1 cm2 V–1 s–1 have been reported. Current understanding is also reviewed of their charge transport physics that allows reaching such unexpectedly high mobilities in these weakly van der Waals bonded and structurally comparatively disordered materials with a view towards understanding the potential for further improvement in performance in the future. PMID:24443057

  5. Spin diffusion in disordered organic semiconductors

    NASA Astrophysics Data System (ADS)

    Li, Ling; Gao, Nan; Lu, Nianduan; Liu, Ming; Bässler, Heinz

    2015-12-01

    An analytical theory for spin diffusion in disordered organic semiconductors is derived. It is based on percolation theory and variable range hopping in a disordered energy landscape with a Gaussian density of states. It describes universally the dependence of the spin diffusion on temperature, carrier density, material disorder, magnetic field, and electric field at the arbitrary magnitude of the Hubbard energy of charge pairs. It is found that, compared to the spin transport carried by carriers hopping, the spin exchange will hinder the spin diffusion process at low carrier density, even under the condition of a weak electric field. Importantly, under the influence of a bias voltage, anomalous spreading of the spin packet will lead to an abnormal temperature dependence of the spin diffusion coefficient and diffusion length. This explains the recent experimental data for spin diffusion length observed in Alq3.

  6. Single-molecule spectroscopy for plastic electronics: materials analysis from the bottom-up.

    PubMed

    Lupton, John M

    2010-04-18

    pi-conjugated polymers find a range of applications in electronic devices. These materials are generally highly disordered in terms of chain length and chain conformation, besides being influenced by a variety of chemical and physical defects. Although this characteristic can be of benefit in certain device applications, disorder severely complicates materials analysis. Accurate analytical techniques are, however, crucial to optimising synthetic procedures and assessing overall material purity. Fortunately, single-molecule spectroscopic techniques have emerged as an unlikely but uniquely powerful approach to unraveling intrinsic material properties from the bottom up. Building on the success of such techniques in the life sciences, single-molecule spectroscopy is finding increasing applicability in materials science, effectively enabling the dissection of the bulk down to the level of the individual molecular constituent. This article reviews recent progress in single molecule spectroscopy of conjugated polymers as used in organic electronics.

  7. Universal Disorder in Organic Semiconductors Due to Fluctuations in Space Charge

    NASA Astrophysics Data System (ADS)

    Wu, Tzu-Cheng

    This thesis concerns the study of charge transport in organic semiconductors. These materials are widely used as thin-film photoconductors in copiers and laser printers, and for their electroluminescent properties in organic light-emitting diodes. Much contemporary research is directed towards improving the efficiency of organic photovoltaic devices, which is limited to a large extent by the spatial and energetic disorder that hinders the charge mobility. One contribution to energetic disorder arises from the strong Coulomb interactions between injected charges with one another, but to date this has been largely ignored. We present a mean-field model for the effect of mutual interactions between injected charges hopping from site to site in an organic semiconductor. Our starting point is a modified Fröhlich Hamiltonian in which the charge is linearly coupled to the amplitudes of a wide band of dispersionless plasma modes having a Lorentzian distribution of frequencies. We show that in most applications of interest the hopping rates are fast enough while the plasma frequencies are low enough that random thermal fluctuations in the plasma density give rise to an energetically disordered landscape that is effectively stationary for many thousands of hops. Moreover, the distribution of site energies is Gaussian, and the energy-energy correlation function decays inversely with distance; as such, it can be argued that this disorder contributes to the Poole-Frenkel field dependence seen in a wide variety of experiments. Remarkably, the energetic disorder is universal; although it is caused by the fluctuations in the charge density, it is independent of the charge concentration.

  8. Development of new oganic-based magments for spintronics

    NASA Astrophysics Data System (ADS)

    Lu, Yu

    Organic-based magnets are an emerging research area. The chemical tailorability, all benefits of organic materials as well as potential use in organic spintronics make them an important supplement to traditional metal/metal oxide magnets. This dissertation focused on development of new organic-based magnets, which is composed of three parts. In the first part, a new high Curie temperature (Tc ˜ 145 K) organic-based magnet with composition of vanadium ethyl tricyanoethlyenecarboxylate (V[ETCEC]1.3•0.3 CH2Cl2) is prepared via a reaction of V(CO)6 and ETCEC in CH2Cl2. Temperature-, field-, and frequency-dependent measurements of the magnetization reveal complex magnetic behavior with a magnetic transition into a more disordered state. Since ethyl tricyanoethlyenecarboxylate (ETCEC) holds the structure similarity with tetracyanoethylene (TCNE) and methyl tricyanoethylenecarboxylate (MeTCEC), the comparison is made among these materials, which indicates the effects of steric hindrance and electron negativity on magnetic properties. Application of the random anisotropy model (RMA) shows that this disordered state is different from the correlated spin glass (CSG) phase observed in analogous organic-based magnets V[MeTCEC]x and V[TCNE]x synthesized in CH2Cl2. This suggests that V[ETCEC]x is less disordered than its analogues, which can be attributed to the slower reaction rate. In the second part, I will present the first successful attempt at ligand modification in chemical vapor deposition (CVD) prepared thin film by replacing a single cyano group on TCNE with an ester on ETCEC and MeTCEC. The resulting films have magnetic ordering temperature of ˜175 K and ˜300 K respectively, providing the first viable complement to V[TCNE]2 and opening the door to an entire class of all-organic magnetic heterostructures. These heterostructures will retain the central benefits demonstrated in other areas of organic electronics such as low cost, low deposition temperature and conformal deposition, while incorporating key magnetic based functionality such as non-volatile memory, magnetic sensing and applications in high frequency magnetoelectronics. The structures, magnetic and electronic properties of these materials are characterized by a combination of various instruments. The last part of this dissertation will focus on the progress that have been made during my PhD study toward the application of organic-based magnets, including encapsulation of these materials to protect them from degradation, optimization of growth conditions to achieve high quality films with super-narrow ferromagentic resonance (FMR) signal (˜1 G) and application of thin film V[TCNE]x as a spin injector/detector in spin-valves.

  9. Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics

    PubMed Central

    Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Yun Jaung, Jae; Kim, Yong-Hoon; Kyu Park, Sung

    2015-01-01

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics. PMID:26411932

  10. Scalable sub-micron patterning of organic materials toward high density soft electronics

    DOE PAGES

    Kim, Jaekyun; Kim, Myung -Gil; Kim, Jaehyun; ...

    2015-09-28

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. Inmore » this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. As a result, the successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.« less

  11. Modeling space-charge-limited current transport in spatially disordered organic semiconductors

    NASA Astrophysics Data System (ADS)

    Zubair, M.; Ang, Y. S.; Ang, L. K.

    Charge transport properties in organic semiconductors are determined by two kinds of microscopic disorder, namely energetic disorder and the spatial disorder. It is demonstrated that the thickness dependence of space-charge limited current (SCLC) can be related to spatial disorder within the framework of fractional-dimensional space. We present a modified Mott-Gurney (MG) law in different regimes to model the varying thickness dependence in such spatially disordered materials. We analyze multiple experimental results from literature where thickness dependence of SCLC shows that the classical MG law might lead to less accurate extraction of mobility parameter, whereas the modified MG law would be a better choice in such devices. Experimental SCLC measurement in a PPV-based structure was previously modeled using a carrier-density dependent model which contradicts with a recent experiment that confirms a carrier-density independent mobility originating from the disordered morphology of the polymer. Here, this is reconciled by the modified MG law which intrinsically takes into account the effect of spatial disorder without the need of using a carrier-density dependent model. This work is supported by Singapore Temasek Laboratories (TL) Seed Grant (IGDS S16 02 05 1).

  12. Health Occupations Education: Medical Assistant.

    ERIC Educational Resources Information Center

    Sloan, Jamee Reid

    These medical assistant instructional materials include 28 instructional units organized into sections covering orientation; anatomy and physiology, related disorders, disease, and skills; office practices; and clinical practices. Each unit includes eight basic components: performance objectives, suggested activities for teachers, information…

  13. 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon.

    PubMed

    Sirringhaus, Henning

    2014-03-05

    Over the past 25 years, organic field-effect transistors (OFETs) have witnessed impressive improvements in materials performance by 3-4 orders of magnitude, and many of the key materials discoveries have been published in Advanced Materials. This includes some of the most recent demonstrations of organic field-effect transistors with performance that clearly exceeds that of benchmark amorphous silicon-based devices. In this article, state-of-the-art in OFETs are reviewed in light of requirements for demanding future applications, in particular active-matrix addressing for flexible organic light-emitting diode (OLED) displays. An overview is provided over both small molecule and conjugated polymer materials for which field-effect mobilities exceeding > 1 cm(2) V(-1) s(-1) have been reported. Current understanding is also reviewed of their charge transport physics that allows reaching such unexpectedly high mobilities in these weakly van der Waals bonded and structurally comparatively disordered materials with a view towards understanding the potential for further improvement in performance in the future. © 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Predictors of Response and Mechanisms of Change in an Organizational Skills Intervention for Students with ADHD

    PubMed Central

    Becker, Stephen P.; Epstein, Jeffery N.; Vaughn, Aaron J.; Girio-Herrera, Erin

    2013-01-01

    The purpose of the study was to evaluate predictors of response and mechanisms of change for the Homework, Organization, and Planning Skills (HOPS) intervention for middle school students with Attention-Deficit/Hyperactivity Disorder (ADHD). Twenty-three middle school students with ADHD (grades 6–8) received the HOPS intervention implemented by school mental health providers and made significant improvements in parent-rated materials organization and planning skills, impairment due to organizational skills problems, and homework problems. Predictors of response examined included demographic and child characteristics, such as gender, ethnicity, intelligence, ADHD and ODD symptom severity, and ADHD medication use. Mechanisms of change examined included the therapeutic alliance and adoption of the organization and planning skills taught during the HOPS intervention. Participant implementation of the HOPS binder materials organization system and the therapeutic alliance as rated by the student significantly predicted post-intervention outcomes after controlling for pre-intervention severity. Adoption of the binder materials organization system predicted parent-rated improvements in organization, planning, and homework problems above and beyond the impact of the therapeutic alliance. These findings demonstrate the importance of teaching students with ADHD to use a structured binder organization system for organizing and filing homework and classwork materials and for transferring work to and from school. PMID:24319323

  15. Spectral reflectance properties of carbon-bearing materials

    NASA Technical Reports Server (NTRS)

    Cloutis, Edward A.; Gaffey, Michael J.; Moslow, Thomas F.

    1994-01-01

    The 0.3-2.6 micrometers spectral reflectance properties of carbon polymorphs (graphite, carbon black, diamond), carbides (silicon carbide, cementite), and macromolecular organic-bearing materials (coal, coal tar extract, oil sand, oil shale) are found to vary from sample to sample and among groups. The carbon polymorphs are readily distinguishable on the basis of their visible-near infrared spectral slopes and shapes. The spectra of macromolecular organic-bearing materials show increases in reflectance toward longer wavelengths, exceeding the reflectance rise of more carbon-rich materials. Reflectance spectra of carbonaceous materials are affected by the crystal structure, composition, and degree of order/disorder of the samples. The characteristic spectral properties can potentially be exploited to identify individual carbonaceous grains in meteorites (as separates or in situ) or to conduct remote sensing geothermometry and identification of carbonaceous phases on asteroids.

  16. Observation of hole hopping via dopant in MoOx-doped organic semiconductors: Mechanism analysis and application for high performance organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Qiao, Xianfeng; Chen, Jiangshan; Li, Xinglin; Ma, Dongge

    2010-05-01

    Conduction mechanism in molybdenum trioxide (MoOx)-doped hole- and electron-type organic semiconductors is investigated. The used hole-transporting materials are N ,N'-diphenyl-N ,N'-bis(1-naphthylphenyl)-1, 1'-biphen4, 4'-diamine, 4',4″-tri(N-carbazolyl)triphenylamine, 4, 4'-N,N-dicarbazole-biphenyl, and pentacene and the used electron-transporting material is (8-quinolinolato) aluminum (Alq3). It can be seen that the hole conductivity is significantly enhanced upon MoOx doping, and more importantly, dominant hole current could be realized in a typical electron-transport material Alq3 by doping MoOx. Hence, high efficiency organic light-emitting devices can also be achieved even using MoOx-doped Alq3 film as hole transporting layer. The mechanism investigation indicates that the MoOx plays an important role in the hole transport. It is showed that the MoOx serves as the hole hopping sites, whereas the used organic materials serve as the transport medium and determine the magnitude of transport current. Furthermore, it is found that doping MoOx into the organic materials also reduces the energy and position disorders of the doped organic films, which are well demonstrated by the study on transport characteristics of the doped films at various temperatures.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jaekyun; Kim, Myung -Gil; Kim, Jaehyun

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. Inmore » this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. As a result, the successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.« less

  18. Disorder induced spin coherence in polyfluorene thin film semiconductors

    NASA Astrophysics Data System (ADS)

    Miller, Richard G.; van Schooten, Kipp; Malissa, Hans; Waters, David P.; Lupton, John M.; Boehme, Christoph

    2014-03-01

    Charge carrier spins in polymeric organic semiconductors significantly influence magneto-optoelectronic properties of these materials. In particular, spin relaxation times influence magnetoresistance and electroluminescence. We have studied the role of structural and electronic disorder in polaron spin-relaxation times. As a model polymer, we used polyfluorene, which can exist in two distinct morphologies: an amorphous (glassy) and an ordered (beta) phase. The phases can be controlled in thin films by preparation parameters and verified by photoluminescence spectroscopy. We conducted pulsed electrically detected magnetic resonance (pEDMR) measurements to determine spin-dephasing times by transient current measurements under bipolar charge carrier injection conditions and a forward bias. The measurements showed that, contrary to intuition, spin-dephasing times increase with material disorder. We attribute this behavior to a reduction in hyperfine field strength for carriers in the glassy phase due to increased structural disorder in the hydrogenated side chains, leading to longer spin coherence times. We acknowledge support by the Department of Energy, Office of Basic Energy Sciences under Award #DE-SC0000909.

  19. Common Soft Tissue Musculoskeletal Pain Disorders.

    PubMed

    Hubbard, Matthew J; Hildebrand, Bernard A; Battafarano, Monica M; Battafarano, Daniel F

    2018-06-01

    Soft tissue musculoskeletal pain disorders are common in the primary care setting. Early recognition and diagnosis of these syndromes minimizes patient pain and disability. This article gives a brief overview of the most common soft tissue musculoskeletal pain syndromes. The authors used a regional approach to organize the material, as providers will encounter these syndromes with complaints of pain referring to an anatomic location. The covered disorders include myofascial pain syndrome, rotator cuff tendinopathy, bicipital tendinopathy, subacromial bursitis, olecranon bursitis, epicondylitis, De Quervain disease, trigger finger, trochanteric bursitis, knee bursitis, pes anserine bursitis, Baker cyst, plantar fasciitis, and Achilles tendinopathy. Published by Elsevier Inc.

  20. Incidence of Otolaryngological Symptoms in Patients with Temporomandibular Joint Dysfunctions

    PubMed Central

    Ferendiuk, E.; Zajdel, K.

    2014-01-01

    The functional disorders of the masticatory organ are the third stomatological disease to be considered a populational disease due to its chronicity and widespread prevalence. Otolaryngological symptoms are a less common group of dysfunction symptoms, including sudden hearing impairment or loss, ear plugging sensation and earache, sore and burning throat, difficulties in swallowing, tinnitus, and vertigo. The diagnostic and therapeutic problems encountered in patients with the functional disorders of the masticatory organ triggered our interest in conducting retrospective studies with the objective of assessing the incidence of otolaryngological symptoms in patients subjected to prosthetic treatment of the functional disorders of masticatory organ on the basis of the analysis of medical documentation containing data collected in medical interviews. Material and Methods. Retrospective study was conducted by analyzing the results of medical interviews of 1208 patients, who had reported for prosthetic treatment at the Functional Disorders Clinic of the Department of Dental Prosthetics of Jagiellonian University Medical College in Cracow between 2008 and March 14, 2014. Results. Otolaryngological symptoms were observed in 141 patients. The most common symptoms in the study group were earache and sudden hearing impairment; no cases of sudden hearing loss were experienced. PMID:25050373

  1. The theoretical current-voltage dependence of a non-degenerate disordered organic material obtained with conductive atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Woellner, Cristiano F.; Freire, José A.; Guide, Michele; Nguyen, Thuc-Quyen

    2011-08-01

    We develop a simple continuum model for the current voltage characteristics of a material as measured by the conducting atomic force microscopy, including space charge effects. We address the effect of the point contact on the magnitude of the current and on the transition voltages between the different current regimes by comparing these with the corresponding expressions obtained with planar electrodes.

  2. [Organic and psychogenic causes of psychopathology: co-construction between the brain and culture].

    PubMed

    Kanba, Shigenobu

    2014-01-01

    Rather than attempting to reduce findings to fit a particular standard of explanation, understanding into mental diseases should abandon the dichotomy between organic and psychogenic causes and instead investigate what can be explained at each level from genes, materials, cells and circuits across the spheres of psychology, society and culture, and focus on how findings can be clinically applied. Using this "pluralistic" approach, the author attempts herein to deepen understanding of mental disorders as diseases of mentality. The author depicts the process and significance of mental disorders and introduces the concept of "cultural affordance" while touching on a pathogenic framework comprising both organic and psychogenic causes, namely "culture" and "the brain". This approach has been little considered to date during psychopathological research when attempting to understand disease state and implement clinical application.

  3. Simulation of loss mechanisms in organic solar cells: A description of the mesoscopic Monte Carlo technique and an evaluation of the first reaction method.

    PubMed

    Groves, Chris; Kimber, Robin G E; Walker, Alison B

    2010-10-14

    In this letter we evaluate the accuracy of the first reaction method (FRM) as commonly used to reduce the computational complexity of mesoscale Monte Carlo simulations of geminate recombination and the performance of organic photovoltaic devices. A wide range of carrier mobilities, degrees of energetic disorder, and applied electric field are considered. For the ranges of energetic disorder relevant for most polyfluorene, polythiophene, and alkoxy poly(phenylene vinylene) materials used in organic photovoltaics, the geminate separation efficiency predicted by the FRM agrees with the exact model to better than 2%. We additionally comment on the effects of equilibration on low-field geminate separation efficiency, and in doing so emphasize the importance of the energy at which geminate carriers are created upon their subsequent behavior.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talin, Albert Alec; Jones, Reese E.; Spataru, Dan Catalin

    Metal organic frameworks (MOFs) are extended, nanoporous crystalline compounds consisting of metal ions interconnected by organic ligands. Their synthetic versatility suggest a disruptive class of opto - electronic materials with a high degree of electrical tunability and without the property - degrading disorder of organic conductors. In this project we determined the factors controlling charge and energy transport in MOFs and evaluated their potential for thermoelectric energy conversion. Two strategies for a chieving electronic conductivity in MOFs were explored: 1) using redox active 'guest' molecules introduced into the pores to dope the framework via charge - transfer coupling (Guest@MOF), 2)more » metal organic graphene analogs (MOGs) with dispersive band structur es arising from strong electronic overlap between the MOG metal ions and its coordinating linker groups. Inkjet deposition methods were developed to facilitate integration of the guest@MOF and MOG materials into practical devices.« less

  5. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain.

    PubMed

    Mattsson, Karin; Johnson, Elyse V; Malmendal, Anders; Linse, Sara; Hansson, Lars-Anders; Cedervall, Tommy

    2017-09-13

    The tremendous increases in production of plastic materials has led to an accumulation of plastic pollution worldwide. Many studies have addressed the physical effects of large-sized plastics on organisms, whereas few have focused on plastic nanoparticles, despite their distinct chemical, physical and mechanical properties. Hence our understanding of their effects on ecosystem function, behaviour and metabolism of organisms remains elusive. Here we demonstrate that plastic nanoparticles reduce survival of aquatic zooplankton and penetrate the blood-to-brain barrier in fish and cause behavioural disorders. Hence, for the first time, we uncover direct interactions between plastic nanoparticles and brain tissue, which is the likely mechanism behind the observed behavioural disorders in the top consumer. In a broader perspective, our findings demonstrate that plastic nanoparticles are transferred up through a food chain, enter the brain of the top consumer and affect its behaviour, thereby severely disrupting the function of natural ecosystems.

  6. Incorporating Decoherence in the Dynamic Disorder Model of Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Si, Wei; Yao, Yao; Wu, Chang-Qin

    2014-03-01

    The transport phenomena in crystalline organic semiconductors, such as pentacene, have drawn much attention recently, where the electron-phonon interaction plays a crucial role. An important advance is the dynamic disorder model proposed by Troisi et. al., which is successful in determining the carrier mobility and explaining the optical conductivity measurements. In this work, we aim to incorporate the decoherence effects in the dynamic disorder model, which is essential for the self-consistent description of the carrier dynamics. The method is based on the energy-based decoherence correction widely used in the surface hopping algorithm. The resulting dynamics shows a diffusion process of wave packets with finite localization length, which scales with the decoherence time. In addition, the calculated mobility decreases with increasing temperature. Thus the method could describe a band-like transport based on localized states, which is the type of transport anticipated in these materials.

  7. An outbreak of illness among aerospace workers.

    PubMed Central

    Sparks, P. J.; Simon, G. E.; Katon, W. J.; Altman, L. C.; Ayars, G. H.; Johnson, R. L.

    1990-01-01

    A multispecialty panel of physicians evaluated a case series of 53 composite-materials workers in a large aircraft manufacturing facility who filed workers' compensation claims for illness labeled by the media as the "aerospace syndrome." Possible skin and respiratory tract exposures included formaldehyde, phenol, particulates, epoxy resins, and trace organic solvents, but measured concentrations were well below all regulatory and consensus standards. Most workers had histories of transient skin or respiratory tract irritation consistent with the known potential toxicity of these materials. None of the workers tested had immunoglobulin IgG or IgE antibodies to human serum albumin complexed with formaldehyde. A majority (74%) met DSM-III-R [Diagnostic and Statistical Manual of Mental Disorders, 3rd edition, revised] criteria for major depression, panic disorder, or both. Most of these psychiatric disorders were of a recent onset, correlating in time with the use of phenol- and formaldehyde-impregnated composite material. Psychosocial factors were thought to have played a major role in the high prevalence of illness in this group and should be evaluated directly in well-controlled epidemiologic studies of similar crisis-building situations in the future. PMID:2098006

  8. Disordered organic electronic materials based on non-benzenoid 1,6-methano[10]annulene rings

    DOEpatents

    Tovar, John D; Streifel, Benjamin C; Peart, Patricia A

    2014-10-07

    Conjugated polymers and small molecules including the nonplanar aromatic 1,6-methano[10]annulene ring structure along with aromatic subunits, such as diketopyrrolopyrrole, and 2,1,3-benzothiadiazole, substituted with alkyl chains in a "Tail In," "Tail Out," or "No Tail" regiochemistry are disclosed.

  9. Subdiffusive exciton transport in quantum dot solids.

    PubMed

    Akselrod, Gleb M; Prins, Ferry; Poulikakos, Lisa V; Lee, Elizabeth M Y; Weidman, Mark C; Mork, A Jolene; Willard, Adam P; Bulović, Vladimir; Tisdale, William A

    2014-06-11

    Colloidal quantum dots (QDs) are promising materials for use in solar cells, light-emitting diodes, lasers, and photodetectors, but the mechanism and length of exciton transport in QD materials is not well understood. We use time-resolved optical microscopy to spatially visualize exciton transport in CdSe/ZnCdS core/shell QD assemblies. We find that the exciton diffusion length, which exceeds 30 nm in some cases, can be tuned by adjusting the inorganic shell thickness and organic ligand length, offering a powerful strategy for controlling exciton movement. Moreover, we show experimentally and through kinetic Monte Carlo simulations that exciton diffusion in QD solids does not occur by a random-walk process; instead, energetic disorder within the inhomogeneously broadened ensemble causes the exciton diffusivity to decrease over time. These findings reveal new insights into exciton dynamics in disordered systems and demonstrate the flexibility of QD materials for photonic and optoelectronic applications.

  10. Human swallowing simulation based on videofluorography images using Hamiltonian MPS method

    NASA Astrophysics Data System (ADS)

    Kikuchi, Takahiro; Michiwaki, Yukihiro; Kamiya, Tetsu; Toyama, Yoshio; Tamai, Tasuku; Koshizuka, Seiichi

    2015-09-01

    In developed nations, swallowing disorders and aspiration pneumonia have become serious problems. We developed a method to simulate the behavior of the organs involved in swallowing to clarify the mechanisms of swallowing and aspiration. The shape model is based on anatomically realistic geometry, and the motion model utilizes forced displacements based on realistic dynamic images to reflect the mechanisms of human swallowing. The soft tissue organs are modeled as nonlinear elastic material using the Hamiltonian MPS method. This method allows for stable simulation of the complex swallowing movement. A penalty method using metaballs is employed to simulate contact between organ walls and smooth sliding along the walls. We performed four numerical simulations under different analysis conditions to represent four cases of swallowing, including a healthy volunteer and a patient with a swallowing disorder. The simulation results were compared to examine the epiglottic downfolding mechanism, which strongly influences the risk of aspiration.

  11. Charge transport in liquid crystalline smectic and discotic organic semiconductors: New results and experimental methodologies

    NASA Astrophysics Data System (ADS)

    Paul, Sanjoy

    Organic electronics offer the possibility of producing low cost, flexible, and large area electronics. Organic semiconductors (OSCs) (organic polymers and crystals), used in organic electronics, are promising materials for novel optical and electronic devices such as organic light emitting diodes, organic field effect transistors, organic sensors, and organic photovoltaics (OPVs). OSCs are composed of molecules weakly held together via van der Walls forces rather than covalent bonds as in the case of inorganic semiconductors such as Si. The combined effect of small wave function overlap, spatial and energetic disorder in organic semiconducting materials lead to localization of charge carriers and, in many cases, hopping conduction. OSCs also differ from conventional semiconductors in that charges photogeneration (e.g., in OPVs) proceeds via the production, diffusion, and dissociation of excitons. Liquid crystalline OSCs (LCOSCs) are semiconductors with phases intermediate between the highly ordered crystalline and completely disordered liquid phases. These materials offer many advantages including facile alignment and the opportunity to study the effects of differing intermolecular geometries on transfer integrals, disorder-induced trapping, charge mobilities, and photogeneration efficiency. In this dissertation work, we explored the photogeneration and charge transport mechanisms in a few model smectic and discotic LCs to better understand the governing principles of photogeneration and charge transport using conventional and novel methods based on the pulsed laser time-of-flight charge carrier transport technique. Four major interrelated topics were considered in this research. First, a sample of smectic LC was aligned in order to compare the resulting hole mobility to that of an unaligned sample, with the aim of understanding how the intermolecular alignment over large length scales affects the hopping probability. The role of the polarization of the photogenerating light was also explored in the context of these anisotropic systems. Next, the photogeneration and charge transport was investigated as a function of temperature, electric field, the wavelength and intensity of photogenerating light. Different exciton dissociation interfaces between the electrode and the LC to probe the details of the mechanism of excitonic dissociation (e.g., surface mediated generation vs. exciton-exciton fusion) were explored. Next, we have also developed a new method of spatially resolving the photogeneration and transport mechanisms in inhomogeneous OSCs called "scanning time of flight microscopy (STOFm)" which simultaneously obtains 2d images of transport coefficients and polarized transmittance. The STOFm was extensively used to study charge transport in various structured semiconductors: smectics, discotics, as well as in phase separated LC/polymer structures. Finally, this work involves characterization and analysis of transport in a number of new phenyl-naphthalene LC OSCs.

  12. Structural Characterization and Impedance Spectroscopy of Substituted, Fused-Ring Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Shaw, Charles Michael

    Organic materials present a number of advantages over silicon that make them ideal candidates for modest performance devices like active matrix backplanes and RFID tags. The work detailed here describes both structural characterization of promising new materials, as well as the adaptation of impedance spectroscopy techniques to the study of organic transistors. Unit cells and solution casting behavior for dioctyl- and didodecyl-pentathienoacene are presented. Dioctyl pentathienoacene has an orthorhombic lattice with parameters a = 1.15 nm, b = 0.43 nm and c = 3.05 nm. Didodecyl pentathienoacene has an monoclinic lattice with parameters gamma = 92.2°, a = 1.10 urn, b = 0.42 nm and c = 3.89 nm. Additionally, thermotropic phase behavior is detailed. Both materials exhibit a "side chain melting" transition---characterized by a dramatic unit cell contraction of more than 20%---and smectic C liquid crystal phases. The side chain melting transition shows similarity to phase transitions elicited by exposing these materials to high energy electron flux. In both cases, disorder in the substitutions results in new phases for these materials. Dioctyl-pentathienoacene also exhibits a unique phase, which is intermediately ordered and shows a threefold increase in critical dose over the as-cast phase. Impedance spectroscopy of triisopropylsilyl pentacene transistors suggests these devices are well fit by a Voigt model equivalent circuit. The gate bias dependent resistor represents the channel conductance and the capacitor represents the drain-gate and source-gate capacitances. This in turn suggests that conduction occurs through delocalized states available in ordered regions, with disordered regions contributing localized, immobile states. Impedance spectroscopy of poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) shows similar behavior. The use of variable temperature impedance spectroscopy is also demonstrated. This technique is used to measure the reduction in trap energy---from 200 meV to 140 meV---produced by annealing the material in its liquid crystal phase.

  13. Tissue engineering, stem cells and cloning: current concepts and changing trends.

    PubMed

    Atala, Anthony

    2005-07-01

    Organ damage or loss can occur from congenital disorders, cancer, trauma, infection, inflammation, iatrogenic injuries or other conditions and often necessitates reconstruction or replacement. Replacement may take the form of organ transplant. At present, there is a severe shortage of donor organs that is worsening with the aging of the population. Tissue engineering follows the principles of cell transplantation, materials science and engineering towards the development of biological substitutes that can restore and maintain normal tissue function. Therapeutic cloning involves the introduction of a nucleus from a donor cell into an enucleated oocyte to generate embryonic stem cell lines whose genetic material is identical to that of its source. These autologous stem cells have the potential to become almost any type of cell in the adult body, and thus would be useful in tissue and organ replacement applications. This paper reviews recent advances in stem cell research and regenerative medicine, and describes the clinical applications of these technologies as novel therapies for tissue or organ loss.

  14. Unusual Thermoelectric Behavior Indicating a Hopping to Bandlike Transport Transition in Pentacene

    NASA Astrophysics Data System (ADS)

    Germs, W. Chr.; Guo, K.; Janssen, R. A. J.; Kemerink, M.

    2012-07-01

    An unusual increase in the Seebeck coefficient with increasing charge carrier density is observed in pentacene thin film transistors. This behavior is interpreted as being due to a transition from hopping transport in static localized states to bandlike transport, occurring at temperatures below ˜250K. Such a transition can be expected for organic materials in which both static energetic disorder and dynamic positional disorder are important. While clearly visible in the temperature and density dependent Seebeck coefficient, the transition hardly shows up in the charge carrier mobility.

  15. Molecular characterization of organic electronic films.

    PubMed

    DeLongchamp, Dean M; Kline, R Joseph; Fischer, Daniel A; Richter, Lee J; Toney, Michael F

    2011-01-18

    Organic electronics have emerged as a viable competitor to amorphous silicon for the active layer in low-cost electronics. The critical performance of organic electronic materials is closely related to their morphology and molecular packing. Unlike their inorganic counterparts, polymers combine complex repeat unit structure and crystalline disorder. This combination prevents any single technique from being able to uniquely solve the packing arrangement of the molecules. Here, a general methodology for combining multiple, complementary techniques that provide accurate unit cell dimensions and molecular orientation is described. The combination of measurements results in a nearly complete picture of the organic film morphology. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Functional metabolite assemblies—a review

    NASA Astrophysics Data System (ADS)

    Aizen, Ruth; Tao, Kai; Rencus-Lazar, Sigal; Gazit, Ehud

    2018-05-01

    Metabolites are essential for the normal operation of cells and fulfill various physiological functions. It was recently found that in several metabolic disorders, the associated metabolites could self-assemble to generate amyloid-like structures, similar to canonical protein amyloids that have a role in neurodegenerative disorders. Yet, assemblies with typical amyloid characteristics are also known to have physiological function. In addition, many non-natural proteins and peptides presenting amyloidal properties have been used for the fabrication of functional nanomaterials. Similarly, functional metabolite assemblies are also found in nature, demonstrating various physiological roles. A notable example is the structural color formed by guanine crystals or fluorescent crystals in feline eyes responsible for enhanced night vision. Moreover, some metabolites have been used for the in vitro fabrication of functional materials, such as glycine crystals presenting remarkable piezoelectric properties or indigo films used to assemble organic semi-conductive electronic devices. Therefore, we believe that the study of metabolite assemblies is not only important in order to understand their role in normal physiology and in pathology, but also paves a new route in exploring the fabrication of organic, bio-compatible materials.

  17. Topologically protected excitons in porphyrin thin films

    NASA Astrophysics Data System (ADS)

    Yuen-Zhou, Joel; Saikin, Semion K.; Yao, Norman Y.; Aspuru-Guzik, Alán

    2014-11-01

    The control of exciton transport in organic materials is of fundamental importance for the development of efficient light-harvesting systems. This transport is easily deteriorated by traps in the disordered energy landscape. Here, we propose and analyse a system that supports topological Frenkel exciton edge states. Backscattering of these chiral Frenkel excitons is prohibited by symmetry, ensuring that the transport properties of such a system are robust against disorder. To implement our idea, we propose a two-dimensional periodic array of tilted porphyrins interacting with a homogeneous magnetic field. This field serves to break time-reversal symmetry and results in lattice fluxes that mimic the Aharonov-Bohm phase acquired by electrons. Our proposal is the first blueprint for realizing topological phases of matter in molecular aggregates and suggests a paradigm for engineering novel excitonic materials.

  18. Topologically protected excitons in porphyrin thin films.

    PubMed

    Yuen-Zhou, Joel; Saikin, Semion K; Yao, Norman Y; Aspuru-Guzik, Alán

    2014-11-01

    The control of exciton transport in organic materials is of fundamental importance for the development of efficient light-harvesting systems. This transport is easily deteriorated by traps in the disordered energy landscape. Here, we propose and analyse a system that supports topological Frenkel exciton edge states. Backscattering of these chiral Frenkel excitons is prohibited by symmetry, ensuring that the transport properties of such a system are robust against disorder. To implement our idea, we propose a two-dimensional periodic array of tilted porphyrins interacting with a homogeneous magnetic field. This field serves to break time-reversal symmetry and results in lattice fluxes that mimic the Aharonov-Bohm phase acquired by electrons. Our proposal is the first blueprint for realizing topological phases of matter in molecular aggregates and suggests a paradigm for engineering novel excitonic materials.

  19. Infrared vibrational nanocrystallography and nanoimaging

    PubMed Central

    Muller, Eric A.; Pollard, Benjamin; Bechtel, Hans A.; van Blerkom, Peter; Raschke, Markus B.

    2016-01-01

    Molecular solids and polymers can form low-symmetry crystal structures that exhibit anisotropic electron and ion mobility in engineered devices or biological systems. The distribution of molecular orientation and disorder then controls the macroscopic material response, yet it is difficult to image with conventional techniques on the nanoscale. We demonstrated a new form of optical nanocrystallography that combines scattering-type scanning near-field optical microscopy with both optical antenna and tip-selective infrared vibrational spectroscopy. From the symmetry-selective probing of molecular bond orientation with nanometer spatial resolution, we determined crystalline phases and orientation in aggregates and films of the organic electronic material perylenetetracarboxylic dianhydride. Mapping disorder within and between individual nanoscale domains, the correlative hybrid imaging of nanoscale heterogeneity provides insight into defect formation and propagation during growth in functional molecular solids. PMID:27730212

  20. Conjugated block copolymers as model materials to examine charge transfer in donor-acceptor systems

    NASA Astrophysics Data System (ADS)

    Gomez, Enrique; Aplan, Melissa; Lee, Youngmin

    Weak intermolecular interactions and disorder at junctions of different organic materials limit the performance and stability of organic interfaces and hence the applicability of organic semiconductors to electronic devices. The lack of control of interfacial structure has also prevented studies of how driving forces promote charge photogeneration, leading to conflicting hypotheses in the organic photovoltaic literature. Our approach has focused on utilizing block copolymer architectures -where critical interfaces are controlled and stabilized by covalent bonds- to provide the hierarchical structure needed for high-performance organic electronics from self-assembled soft materials. For example, we have demonstrated control of donor-acceptor heterojunctions through microphase-separated conjugated block copolymers to achieve 3% power conversion efficiencies in non-fullerene photovoltaics. Furthermore, incorporating the donor-acceptor interface within the molecular structure facilitates studies of charge transfer processes. Conjugated block copolymers enable studies of the driving force needed for exciton dissociation to charge transfer states, which must be large to maximize charge photogeneration but must be minimized to prevent losses in photovoltage in solar cell devices. Our work has systematically varied the chemical structure, energetics, and dielectric constant to perturb charge transfer. As a consequence, we predict a minimum dielectric constant needed to minimize the driving force and therefore simultaneously maximize photocurrent and photovoltage in organic photovoltaic devices.

  1. Interface Energetics and Chemical Doping of Organic Electronic Materials

    NASA Astrophysics Data System (ADS)

    Kahn, Antoine

    2014-03-01

    The energetics of organic semiconductors and their interfaces are central to the performance of organic thin film devices. The relative positions of charge transport states across the many interfaces of multi-layer OLEDs, OPV cells and OFETs determine in great part the efficiency and lifetime of these devices. New experiments are presented here, that look in detail at the position of these transport states and associated gap states and electronic traps that tail into the energy gap of organic molecular (e.g. pentacene) or polymer (P3HT, PBDTTT-C) semiconductors, and which directly affect carrier mobility in these materials. Disorder, sometime caused by simple exposure to an inert gas, impurities and defects are at the origin of these electronic gap states. Recent efforts in chemical doping in organic semiconductors aimed at mitigating the impact of electronic gap states are described. An overview of the reducing or oxidizing power of several n- and p-type dopants for vacuum- or solution-processed films, and their effect on the electronic structure and conductivity of both vacuum- and solution-processed organic semiconductor films is given. Finally, the filling (compensation) of active gap states via doping is investigated on the electron-transport materials C60 and P(NDI2OD-T2) , and the hole-transport polymer PBDTTT-C.

  2. Range and energetics of charge hopping in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Abdalla, Hassan; Zuo, Guangzheng; Kemerink, Martijn

    2017-12-01

    The recent upswing in attention for the thermoelectric properties of organic semiconductors (OSCs) adds urgency to the need for a quantitative description of the range and energetics of hopping transport in organic semiconductors under relevant circumstances, i.e., around room temperature (RT). In particular, the degree to which hops beyond the nearest neighbor must be accounted for at RT is still largely unknown. Here, measurements of charge and energy transport in doped OSCs are combined with analytical modeling to reach the univocal conclusion that variable-range hopping is the proper description in a large class of disordered OSC at RT. To obtain quantitative agreement with experiment, one needs to account for the modification of the density of states by ionized dopants. These Coulomb interactions give rise to a deep tail of trap states that is independent of the material's initial energetic disorder. Insertion of this effect into a classical Mott-type variable-range hopping model allows one to give a quantitative description of temperature-dependent conductivity and thermopower measurements on a wide range of disordered OSCs. In particular, the model explains the commonly observed quasiuniversal power-law relation between the Seebeck coefficient and the conductivity.

  3. Introducing correlations into carrier transport simulations of disordered materials through seeded nucleation: impact on density of states, carrier mobility, and carrier statistics

    NASA Astrophysics Data System (ADS)

    Brown, J. S.; Shaheen, S. E.

    2018-04-01

    Disorder in organic semiconductors has made it challenging to achieve performance gains; this is a result of the many competing and often nuanced mechanisms effecting charge transport. In this article, we attempt to illuminate one of these mechanisms in the hopes of aiding experimentalists in exceeding current performance thresholds. Using a heuristic exponential function, energetic correlation has been added to the Gaussian disorder model (GDM). The new model is grounded in the concept that energetic correlations can arise in materials without strong dipoles or dopants, but may be a result of an incomplete crystal formation process. The proposed correlation has been used to explain the exponential tail states often observed in these materials; it is also better able to capture the carrier mobility field dependence, commonly known as the Poole-Frenkel dependence, when compared to the GDM. Investigation of simulated current transients shows that the exponential tail states do not necessitate Montroll and Scher fits. Montroll and Scher fits occur in the form of two distinct power law curves that share a common constant in their exponent; they are clearly observed as linear lines when the current transient is plotted using a log-log scale. Typically, these fits have been found appropriate for describing amorphous silicon and other disordered materials which display exponential tail states. Furthermore, we observe the proposed correlation function leads to domains of energetically similar sites separated by boundaries where the site energies exhibit stochastic deviation. These boundary sites are found to be the source of the extended exponential tail states, and are responsible for high charge visitation frequency, which may be associated with the molecular turnover number and ultimately the material stability.

  4. Introducing correlations into carrier transport simulations of disordered materials through seeded nucleation: impact on density of states, carrier mobility, and carrier statistics.

    PubMed

    Brown, J S; Shaheen, S E

    2018-04-04

    Disorder in organic semiconductors has made it challenging to achieve performance gains; this is a result of the many competing and often nuanced mechanisms effecting charge transport. In this article, we attempt to illuminate one of these mechanisms in the hopes of aiding experimentalists in exceeding current performance thresholds. Using a heuristic exponential function, energetic correlation has been added to the Gaussian disorder model (GDM). The new model is grounded in the concept that energetic correlations can arise in materials without strong dipoles or dopants, but may be a result of an incomplete crystal formation process. The proposed correlation has been used to explain the exponential tail states often observed in these materials; it is also better able to capture the carrier mobility field dependence, commonly known as the Poole-Frenkel dependence, when compared to the GDM. Investigation of simulated current transients shows that the exponential tail states do not necessitate Montroll and Scher fits. Montroll and Scher fits occur in the form of two distinct power law curves that share a common constant in their exponent; they are clearly observed as linear lines when the current transient is plotted using a log-log scale. Typically, these fits have been found appropriate for describing amorphous silicon and other disordered materials which display exponential tail states. Furthermore, we observe the proposed correlation function leads to domains of energetically similar sites separated by boundaries where the site energies exhibit stochastic deviation. These boundary sites are found to be the source of the extended exponential tail states, and are responsible for high charge visitation frequency, which may be associated with the molecular turnover number and ultimately the material stability.

  5. Intranasal Inhalations of Bioactive Factors Produced by M2 Macrophages in Patients With Organic Brain Syndrome

    ClinicalTrials.gov

    2017-11-06

    Organic Brain Syndrome, Nonpsychotic; Neurocognitive Disorders; Mental Disorder, Organic; Delirium, Dementia, Amnestic, Cognitive Disorders; Nonpsychotic Organic Brain Syndrome; Organic Mental Disorder; Encephalopathy, Post-Traumatic, Chronic; Encephalopathy, Ischemic; Brain Ischemia

  6. Ordered macro-microporous metal-organic framework single crystals

    NASA Astrophysics Data System (ADS)

    Shen, Kui; Zhang, Lei; Chen, Xiaodong; Liu, Lingmei; Zhang, Daliang; Han, Yu; Chen, Junying; Long, Jilan; Luque, Rafael; Li, Yingwei; Chen, Banglin

    2018-01-01

    We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional–ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent–induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.

  7. The Effect of Correlated Energetic Disorder on Charge Transport in Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Allen, Jonathan; Röding, Sebastian; Cherqui, Charles; Dunlap, David

    2012-10-01

    In their 1995 paper describing a Monte Carlo simulation for dissociation of an electron-hole pair in the presence of Gaussian energetic disorder, Albrect and Bäassler reported a surprising result. They found that increasing the width σ of the energetic disorder increases the quantum yield φ. They attributed this behavior to the tendency for energy fluctuations to compete against the Coulombic pair attraction, driving the electron-hole pair apart at short distances where, without disorder, recombination would be almost certain. We have expanded upon this notion, and introduced spatial correlation into the energetic disorder. By correlating the energetic disorder, we have demonstrated even larger quantum yields in simulation, attributable to the tendency of correlation to drive the charges further apart spatially than merely random disorder. Our results generally support the findings of Greenham et al. in that a larger correlation radius gives a larger quantum yield. In addition to larger quantum yield, we believe that correlated disorder could be used to create pathways for charge transport within a material, allowing the charge carrier behavior to be tuned.

  8. Uncovering the Local Magnesium Environment in the Metal–Organic Framework Mg 2 (dobpdc) Using 25 Mg NMR Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jun; Blaakmeer, E. S. Merijn; Lipton, Andrew S.

    The incorporation of N,N'-dimethylethylenediamine into an expanded MOF-74 framework has yielded a material (mmen-Mg2(dobpdc)) exhibiting “step-shaped” CO2 adsorption isotherms. The coordination of mmen at the Mg open metal center is essential for the unique cooperative adsorption mechanism elucidated for this material. Despite its importance for carbon capture, there is as yet no experimental structure determination available for the underlying metal– organic framework Mg2(dobpdc). Our 25Mg solid-state NMR data unravel the local Mg environments in several Mg2(dobpdc) samples, unambiguously confirming the formation of fivecoordinate Mg centers in the activated material and six-coordinate Mg centers in the solvent- or diamine-loaded samples, suchmore » as mmen-Mg2(dobpdc). A fraction of the Mg centers are locally disordered due to the framework deformation accompanied by the guest distributions and dynamics.« less

  9. Calculation of rates of exciton dissociation into hot charge-transfer states in model organic photovoltaic interfaces

    NASA Astrophysics Data System (ADS)

    Vázquez, Héctor; Troisi, Alessandro

    2013-11-01

    We investigate the process of exciton dissociation in ordered and disordered model donor/acceptor systems and describe a method to calculate exciton dissociation rates. We consider a one-dimensional system with Frenkel states in the donor material and states where charge transfer has taken place between donor and acceptor. We introduce a Green's function approach to calculate the generation rates of charge-transfer states. For disorder in the Frenkel states we find a clear exponential dependence of charge dissociation rates with exciton-interface distance, with a distance decay constant β that increases linearly with the amount of disorder. Disorder in the parameters that describe (final) charge-transfer states has little effect on the rates. Exciton dissociation invariably leads to partially separated charges. In all cases final states are “hot” charge-transfer states, with electron and hole located far from the interface.

  10. Keep calm and carry on: Mental disorder is not more "organic" than any other medical condition.

    PubMed

    Micoulaud-Franchi, J A; Quiles, C; Masson, M

    2017-10-01

    Psychiatry as a discipline should no longer be grounded in the dualistic opposition between organic and mental disorders. This non-dualistic position refusing the partition along functional versus organic lines is in line with Jean Delay, and with Robert Spitzer who wanted to include in the definition of mental disorder discussed by the DSM-III task force the statement that "mental disorders are a subset of medical disorders". However, it is interesting to note that Spitzer and colleagues ingeniously introduced the definition of "mental disorder" in the DSM-III in the following statement: "there is no satisfactory definition that specifies precise boundaries for the concept "mental disorder" (also true for such concepts as physical disorder and mental and physical health)". Indeed, as for "mental disorders", it is as difficult to define what they are as it is to define what constitutes a "physical disorder". The problem is not the words "mental" or "organic" but the word "disorder". In this line, Wakefield has proposed a useful "harmful dysfunction" analysis of mental disorder. They raise the issue of the dualistic opposition between organic and mental disorders, and situate the debate rather between the biological/physiological and the social. The paper provides a brief analysis of this shift on the question of what is a mental disorder, and demonstrates that a mental disorder is not more "organic" than any other medical condition. While establishing a dichotomy between organic and psychiatry is no longer intellectually tenable, the solution is not to reduce psychiatric and non-psychiatric disorders to the level of "organic disorders" but rather to continue to adopt both a critical and clinically pertinent approach to what constitutes a "disorder" in medicine. Copyright © 2017 L'Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.

  11. Photovoltaic concepts inspired by coherence effects in photosynthetic systems

    NASA Astrophysics Data System (ADS)

    Brédas, Jean-Luc; Sargent, Edward H.; Scholes, Gregory D.

    2017-01-01

    The past decade has seen rapid advances in our understanding of how coherent and vibronic phenomena in biological photosynthetic systems aid in the efficient transport of energy from light-harvesting antennas to photosynthetic reaction centres. Such coherence effects suggest strategies to increase transport lengths even in the presence of structural disorder. Here we explore how these principles could be exploited in making improved solar cells. We investigate in depth the case of organic materials, systems in which energy and charge transport stand to be improved by overcoming challenges that arise from the effects of static and dynamic disorder -- structural and energetic -- and from inherently strong electron-vibration couplings. We discuss how solar-cell device architectures can evolve to use coherence-exploiting materials, and we speculate as to the prospects for a coherent energy conversion system. We conclude with a survey of the impacts of coherence and bioinspiration on diverse solar-energy harvesting solutions, including artificial photosynthetic systems.

  12. Treatment of Oral Mucosal Lesions Associated With Overlapping Psychodermatologic Disorders.

    PubMed

    Alfaris, Sausan; France, Katherine; Sollecito, Thomas P; Stoopler, Eric T

    2018-04-01

    Delusional infestations are psychodermatologic disorders in which those affected have a false belief they are infested by parasites and/or "growing" inanimate objects from cutaneous surfaces. Individuals with delusional parasitosis (DP) believe parasites, bacteria, worms, mites, or other living organisms are the source of cutaneous symptoms, while those with Morgellons disease (MD) attribute their symptoms to growth of small fibers or inorganic material. In both DP and MD, self-inflicted, non-healing cutaneous lesions caused by scratching at the affected areas to alleviate symptoms are commonly observed. This report describes a case of oral mucosal lesions in a patient demonstrating overlapping symptoms of DP and MD. It is important for oral healthcare providers to recognize oral signs and symptoms that may be associated with psychodermatologic disorders.

  13. Genetic autonomic disorders.

    PubMed

    Axelrod, Felicia B

    2013-03-01

    Genetic disorders affecting the autonomic nervous system can result in abnormal development of the nervous system or they can be caused by neurotransmitter imbalance, an ion-channel disturbance or by storage of deleterious material. The symptoms indicating autonomic dysfunction, however, will depend upon whether the genetic lesion has disrupted peripheral or central autonomic centers or both. Because the autonomic nervous system is pervasive and affects every organ system in the body, autonomic dysfunction will result in impaired homeostasis and symptoms will vary. The possibility of genetic confirmation by molecular testing for specific diagnosis is increasing but treatments tend to remain only supportive and directed toward particular symptoms. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Monte Carlo simulation based on dynamic disorder model in organic semiconductors: From coherent to incoherent transport

    NASA Astrophysics Data System (ADS)

    Yao, Yao; Si, Wei; Hou, Xiaoyuan; Wu, Chang-Qin

    2012-06-01

    The dynamic disorder model for charge carrier transport in organic semiconductors has been extensively studied in recent years. Although it is successful on determining the value of bandlike mobility in the organic crystalline materials, the incoherent hopping, the typical transport characteristic in amorphous molecular semiconductors, cannot be described. In this work, the decoherence process is taken into account via a phenomenological parameter, say, decoherence time, and the projective and Monte Carlo method are applied for this model to determine the waiting time and thus the diffusion coefficient. It is obtained that the type of transport is changed from coherent to incoherent with a sufficiently short decoherence time, which indicates the essential role of decoherence time in determining the type of transport in organics. We have also discussed the spatial extent of carriers for different decoherence time, and the transition from delocalization (carrier resides in about 10 molecules) to localization is observed. Based on the experimental results of spatial extent, we estimate that the decoherence time in pentacene has the order of 1 ps. Furthermore, the dependence of diffusion coefficient on decoherence time is also investigated, and corresponding experiments are discussed.

  15. Monte Carlo simulation based on dynamic disorder model in organic semiconductors: from coherent to incoherent transport.

    PubMed

    Yao, Yao; Si, Wei; Hou, Xiaoyuan; Wu, Chang-Qin

    2012-06-21

    The dynamic disorder model for charge carrier transport in organic semiconductors has been extensively studied in recent years. Although it is successful on determining the value of bandlike mobility in the organic crystalline materials, the incoherent hopping, the typical transport characteristic in amorphous molecular semiconductors, cannot be described. In this work, the decoherence process is taken into account via a phenomenological parameter, say, decoherence time, and the projective and Monte Carlo method are applied for this model to determine the waiting time and thus the diffusion coefficient. It is obtained that the type of transport is changed from coherent to incoherent with a sufficiently short decoherence time, which indicates the essential role of decoherence time in determining the type of transport in organics. We have also discussed the spatial extent of carriers for different decoherence time, and the transition from delocalization (carrier resides in about 10 molecules) to localization is observed. Based on the experimental results of spatial extent, we estimate that the decoherence time in pentacene has the order of 1 ps. Furthermore, the dependence of diffusion coefficient on decoherence time is also investigated, and corresponding experiments are discussed.

  16. Single-crystal charge transfer interfaces for efficient photonic devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alves, Helena; Pinto, Rui M.; Maçôas, Ermelinda M. S.; Baleizão, Carlos; Santos, Isabel C.

    2016-09-01

    Organic semiconductors have unique optical, mechanical and electronic properties that can be combined with customized chemical functionality. In the crystalline form, determinant features for electronic applications such as molecular purity, the charge mobility or the exciton diffusion length, reveal a superior performance when compared with materials in a more disordered form. Combining crystals of two different conjugated materials as even enable a new 2D electronic system. However, the use of organic single crystals in devices is still limited to a few applications, such as field-effect transistors. In 2013, we presented the first system composed of single-crystal charge transfer interfaces presenting photoconductivity behaviour. The system composed of rubrene and TCNQ has a responsivity reaching 1 A/W, corresponding to an external quantum efficiency of nearly 100%. A similar approach, with a hybrid structure of a PCBM film and rubrene single crystal also presents high responsivity and the possibility to extract excitons generated in acceptor materials. This strategy led to an extended action towards the near IR. By adequate material design and structural organisation of perylediimides, we demonstrate that is possible to improve exciton diffusion efficiency. More recently, we have successfully used the concept of charge transfer interfaces in phototransistors. These results open the possibility of using organic single-crystal interfaces in photonic applications.

  17. Bioinformatics analysis of disordered proteins in prokaryotes.

    PubMed

    Pavlović-Lažetić, Gordana M; Mitić, Nenad S; Kovačević, Jovana J; Obradović, Zoran; Malkov, Saša N; Beljanski, Miloš V

    2011-03-02

    A significant number of proteins have been shown to be intrinsically disordered, meaning that they lack a fixed 3 D structure or contain regions that do not posses a well defined 3 D structure. It has also been proven that a protein's disorder content is related to its function. We have performed an exhaustive analysis and comparison of the disorder content of proteins from prokaryotic organisms (i.e., superkingdoms Archaea and Bacteria) with respect to functional categories they belong to, i.e., Clusters of Orthologous Groups of proteins (COGs) and groups of COGs-Cellular processes (Cp), Information storage and processing (Isp), Metabolism (Me) and Poorly characterized (Pc). We also analyzed the disorder content of proteins with respect to various genomic, metabolic and ecological characteristics of the organism they belong to. We used correlations and association rule mining in order to identify the most confident associations between specific modalities of the characteristics considered and disorder content. Bacteria are shown to have a somewhat higher level of protein disorder than archaea, except for proteins in the Me functional group. It is demonstrated that the Isp and Cp functional groups in particular (L-repair function and N-cell motility and secretion COGs of proteins in specific) possess the highest disorder content, while Me proteins, in general, posses the lowest. Disorder fractions have been confirmed to have the lowest level for the so-called order-promoting amino acids and the highest level for the so-called disorder promoters. For each pair of organism characteristics, specific modalities are identified with the maximum disorder proteins in the corresponding organisms, e.g., high genome size-high GC content organisms, facultative anaerobic-low GC content organisms, aerobic-high genome size organisms, etc. Maximum disorder in archaea is observed for high GC content-low genome size organisms, high GC content-facultative anaerobic or aquatic or mesophilic organisms, etc. Maximum disorder in bacteria is observed for high GC content-high genome size organisms, high genome size-aerobic organisms, etc. Some of the most reliable association rules mined establish relationships between high GC content and high protein disorder, medium GC content and both medium and low protein disorder, anaerobic organisms and medium protein disorder, Gammaproteobacteria and low protein disorder, etc. A web site Prokaryote Disorder Database has been designed and implemented at the address http://bioinfo.matf.bg.ac.rs/disorder, which contains complete results of the analysis of protein disorder performed for 296 prokaryotic completely sequenced genomes. Exhaustive disorder analysis has been performed by functional classes of proteins, for a larger dataset of prokaryotic organisms than previously done. Results obtained are well correlated to those previously published, with some extension in the range of disorder level and clear distinction between functional classes of proteins. Wide correlation and association analysis between protein disorder and genomic and ecological characteristics has been performed for the first time. The results obtained give insight into multi-relationships among the characteristics and protein disorder. Such analysis provides for better understanding of the evolutionary process and may be useful for taxon determination. The main drawback of the approach is the fact that the disorder considered has been predicted and not experimentally established.

  18. Charge transport in organic semiconductors.

    PubMed

    Bässler, Heinz; Köhler, Anna

    2012-01-01

    Modern optoelectronic devices, such as light-emitting diodes, field-effect transistors and organic solar cells require well controlled motion of charges for their efficient operation. The understanding of the processes that determine charge transport is therefore of paramount importance for designing materials with improved structure-property relationships. Before discussing different regimes of charge transport in organic semiconductors, we present a brief introduction into the conceptual framework in which we interpret the relevant photophysical processes. That is, we compare a molecular picture of electronic excitations against the Su-Schrieffer-Heeger semiconductor band model. After a brief description of experimental techniques needed to measure charge mobilities, we then elaborate on the parameters controlling charge transport in technologically relevant materials. Thus, we consider the influences of electronic coupling between molecular units, disorder, polaronic effects and space charge. A particular focus is given to the recent progress made in understanding charge transport on short time scales and short length scales. The mechanism for charge injection is briefly addressed towards the end of this chapter.

  19. Design rules for charge-transport efficient host materials for phosphorescent organic light-emitting diodes.

    PubMed

    May, Falk; Al-Helwi, Mustapha; Baumeier, Björn; Kowalsky, Wolfgang; Fuchs, Evelyn; Lennartz, Christian; Andrienko, Denis

    2012-08-22

    The use of blue phosphorescent emitters in organic light-emitting diodes (OLEDs) imposes demanding requirements on a host material. Among these are large triplet energies, the alignment of levels with respect to the emitter, the ability to form and sustain amorphous order, material processability, and an adequate charge carrier mobility. A possible design strategy is to choose a π-conjugated core with a high triplet level and to fulfill the other requirements by using suitable substituents. Bulky substituents, however, induce large spatial separations between conjugated cores, can substantially reduce intermolecular electronic couplings, and decrease the charge mobility of the host. In this work we analyze charge transport in amorphous 2,8-bis(triphenylsilyl)dibenzofuran, an electron-transporting material synthesized to serve as a host in deep-blue OLEDs. We show that mesomeric effects delocalize the frontier orbitals over the substituents recovering strong electronic couplings and lowering reorganization energies, especially for electrons, while keeping energetic disorder small. Admittance spectroscopy measurements reveal that the material has indeed a high electron mobility and a small Poole-Frenkel slope, supporting our conclusions. By linking electronic structure, molecular packing, and mobility, we provide a pathway to the rational design of hosts with high charge mobilities.

  20. Bioinformatics analysis of disordered proteins in prokaryotes

    PubMed Central

    2011-01-01

    Background A significant number of proteins have been shown to be intrinsically disordered, meaning that they lack a fixed 3 D structure or contain regions that do not posses a well defined 3 D structure. It has also been proven that a protein's disorder content is related to its function. We have performed an exhaustive analysis and comparison of the disorder content of proteins from prokaryotic organisms (i.e., superkingdoms Archaea and Bacteria) with respect to functional categories they belong to, i.e., Clusters of Orthologous Groups of proteins (COGs) and groups of COGs-Cellular processes (Cp), Information storage and processing (Isp), Metabolism (Me) and Poorly characterized (Pc). We also analyzed the disorder content of proteins with respect to various genomic, metabolic and ecological characteristics of the organism they belong to. We used correlations and association rule mining in order to identify the most confident associations between specific modalities of the characteristics considered and disorder content. Results Bacteria are shown to have a somewhat higher level of protein disorder than archaea, except for proteins in the Me functional group. It is demonstrated that the Isp and Cp functional groups in particular (L-repair function and N-cell motility and secretion COGs of proteins in specific) possess the highest disorder content, while Me proteins, in general, posses the lowest. Disorder fractions have been confirmed to have the lowest level for the so-called order-promoting amino acids and the highest level for the so-called disorder promoters. For each pair of organism characteristics, specific modalities are identified with the maximum disorder proteins in the corresponding organisms, e.g., high genome size-high GC content organisms, facultative anaerobic-low GC content organisms, aerobic-high genome size organisms, etc. Maximum disorder in archaea is observed for high GC content-low genome size organisms, high GC content-facultative anaerobic or aquatic or mesophilic organisms, etc. Maximum disorder in bacteria is observed for high GC content-high genome size organisms, high genome size-aerobic organisms, etc. Some of the most reliable association rules mined establish relationships between high GC content and high protein disorder, medium GC content and both medium and low protein disorder, anaerobic organisms and medium protein disorder, Gammaproteobacteria and low protein disorder, etc. A web site Prokaryote Disorder Database has been designed and implemented at the address http://bioinfo.matf.bg.ac.rs/disorder, which contains complete results of the analysis of protein disorder performed for 296 prokaryotic completely sequenced genomes. Conclusions Exhaustive disorder analysis has been performed by functional classes of proteins, for a larger dataset of prokaryotic organisms than previously done. Results obtained are well correlated to those previously published, with some extension in the range of disorder level and clear distinction between functional classes of proteins. Wide correlation and association analysis between protein disorder and genomic and ecological characteristics has been performed for the first time. The results obtained give insight into multi-relationships among the characteristics and protein disorder. Such analysis provides for better understanding of the evolutionary process and may be useful for taxon determination. The main drawback of the approach is the fact that the disorder considered has been predicted and not experimentally established. PMID:21366926

  1. Active Iron Sites of Disordered Mesoporous Silica Catalyst FeKIL-2 in the Oxidation of Volatile Organic Compounds (VOC)

    PubMed Central

    Rangus, Mojca; Mazaj, Matjaž; Dražić, Goran; Popova, Margarita; Tušar, Nataša Novak

    2014-01-01

    Iron-functionalized disordered mesoporous silica (FeKIL-2) is a promising, environmentally friendly, cost-effective and highly efficient catalyst for the elimination of volatile organic compounds (VOCs) from polluted air via catalytic oxidation. In this study, we investigated the type of catalytically active iron sites for different iron concentrations in FeKIL-2 catalysts using advanced characterization of the local environment of iron atoms by a combination of X-ray Absorption Spectroscopy Techniques (XANES, EXAFS) and Atomic-Resolution Scanning Transmission Electron Microscopy (AR STEM). We found that the molar ratio Fe/Si ≤ 0.01 leads to the formation of stable, mostly isolated Fe3+ sites in the silica matrix, while higher iron content Fe/Si > 0.01 leads to the formation of oligonuclear iron clusters. STEM imaging and EELS techniques confirmed the existence of these clusters. Their size ranges from one to a few nanometers, and they are unevenly distributed throughout the material. The size of the clusters was also found to be similar, regardless of the nominal concentration of iron (Fe/Si = 0.02 and Fe/Si = 0.05). From the results obtained from sample characterization and model catalytic tests, we established that the enhanced activity of FeKIL-2 with the optimal Fe/Si = 0.01 ratio can be attributed to: (1) the optimal concentration of stable isolated Fe3+ in the silica support; and (2) accelerated diffusion of the reactants in disordered mesoporous silica (FeKIL-2) when compared to ordered mesoporous silica materials (FeSBA-15, FeMCM-41). PMID:28788674

  2. Chemistry of Covalent Organic Frameworks.

    PubMed

    Waller, Peter J; Gándara, Felipe; Yaghi, Omar M

    2015-12-15

    Linking organic molecules by covalent bonds into extended solids typically generates amorphous, disordered materials. The ability to develop strategies for obtaining crystals of such solids is of interest because it opens the way for precise control of the geometry and functionality of the extended structure, and the stereochemical orientation of its constituents. Covalent organic frameworks (COFs) are a new class of porous covalent organic structures whose backbone is composed entirely of light elements (B, C, N, O, Si) that represent a successful demonstration of how crystalline materials of covalent solids can be achieved. COFs are made by combination of organic building units covalently linked into extended structures to make crystalline materials. The attainment of crystals is done by several techniques in which a balance is struck between the thermodynamic reversibility of the linking reactions and their kinetics. This success has led to the expansion of COF materials to include organic units linked by these strong covalent bonds: B-O, C-N, B-N, and B-O-Si. Since the organic constituents of COFs, when linked, do not undergo significant change in their overall geometry, it has been possible to predict the structures of the resulting COFs, and this advantage has facilitated their characterization using powder X-ray diffraction (PXRD) techniques. It has also allowed for the synthesis of COF structures by design and for their formation with the desired composition, pore size, and aperture. In practice, the modeled PXRD pattern for a given expected COF is compared with the experimental one, and depending on the quality of the match, this is used as a starting point for solving and then refining the crystal structure of the target COF. These characteristics make COFs an attractive class of new porous materials. Accordingly, they have been used as gas storage materials for energy applications, solid supports for catalysis, and optoelectronic devices. A large and growing library of linkers amenable to the synthesis of COFs is now available, and new COFs and topologies made by reticular synthesis are being reported. Much research is also directed toward the development of new methods of linking organic building units to generate other crystalline COFs. These efforts promise not only new COF chemistry and materials, but also the chance to extend the precision of molecular covalent chemistry to extended solids.

  3. Differential relations of executive functioning to borderline personality disorder presentations in adolescents.

    PubMed

    Kalpakci, Allison; Ha, Carolyn; Sharp, Carla

    2018-05-01

    Borderline personality disorder (BPD) in adolescents is highly complex and heterogeneous. Within the disorder, research has suggested the existence of at least two subgroups: one with predominantly internalizing psychopathology features and one with predominantly externalizing psychopathology features. One process that may differentiate these groups is executive functioning (EF), given that poor EF is linked to externalizing psychopathology. Against this background, the current study used a multi-informant approach to examine whether adolescent patients with predominantly externalizing BPD presentations experience greater deficits in EF than adolescent patients with predominantly internalizing presentations. The sample included inpatient adolescents ages 12-17 (M = 15.26; SD = 1.51). Analyses revealed that multiple EF domains distinguished the BPD subgroups. More specifically, adolescents with externalizing presentations exhibited greater difficulties in broad domains related to global executive functioning, metacognition and behavioural regulation and specific domains related to inhibitory control, working memory, planning/organizing, monitoring and organization of materials. While this study is the first to examine EF and adolescent BPD in the context of internalizing and externalizing psychopathology, alternative approaches to examining this question are discussed. Copyright © 2018 John Wiley & Sons, Ltd. Copyright © 2018 John Wiley & Sons, Ltd.

  4. Controlling Molecular Doping in Organic Semiconductors.

    PubMed

    Jacobs, Ian E; Moulé, Adam J

    2017-11-01

    The field of organic electronics thrives on the hope of enabling low-cost, solution-processed electronic devices with mechanical, optoelectronic, and chemical properties not available from inorganic semiconductors. A key to the success of these aspirations is the ability to controllably dope organic semiconductors with high spatial resolution. Here, recent progress in molecular doping of organic semiconductors is summarized, with an emphasis on solution-processed p-type doped polymeric semiconductors. Highlighted topics include how solution-processing techniques can control the distribution, diffusion, and density of dopants within the organic semiconductor, and, in turn, affect the electronic properties of the material. Research in these areas has recently intensified, thanks to advances in chemical synthesis, improved understanding of charged states in organic materials, and a focus on relating fabrication techniques to morphology. Significant disorder in these systems, along with complex interactions between doping and film morphology, is often responsible for charge trapping and low doping efficiency. However, the strong coupling between doping, solubility, and morphology can be harnessed to control crystallinity, create doping gradients, and pattern polymers. These breakthroughs suggest a role for molecular doping not only in device function but also in fabrication-applications beyond those directly analogous to inorganic doping. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Chromosome Disorder Outreach

    MedlinePlus

    ... Chromosome Disorder Outreach, Inc is a non-profit organization. Founded, supported, and run by parents just like ... Chromosome Disorder Outreach, Inc, a 501c non-profit organization. CDO is a 501C3 non-profit organization. FL ...

  6. Assessment of dementia in nursing home residents by nurses and assistants: criteria validity and determinants.

    PubMed

    Sørensen, L; Foldspang, A; Gulmann, N C; Munk-Jørgensen, P

    2001-06-01

    To describe the criterion validity of nursing home staff's assessment of organic disorder compared with ICD-10 criteria, and to identify determinants of staff assessment of organic disorder. Two hundred and eighty-eight residents were diagnosed using the GMS-AGECAT. Nursing staff members were interviewed about the residents' activities of Daily Living, behavioural problems, orientation in surroundings and communication skills, and asked if the resident had an organic disorder. Multiple logistic regression was used to select the items that most strongly determined staff assessment of organic disorder. Sixty-two per cent of the residents were diagnosed by GMS-AGECAT as having organic disorder, 78% of these were correctly identified by the staff. Whether analysed among residents with or without organic disorder, or in the total group of residents, the staff assessment of the presence of organic disorder depended on a limited set of behavioural characteristics of the resident, namely 'going to the toilet in inappropriate places', 'saying things that do not make sense' and impairment in orientation. Staff comprehension of organic disorder resulted in over- as well as under-labelling of residents, a tendency that will affect communication with medical personnel and may lead to inadequate or wrong medical treatment and to negative performance as well as negative role expectations in everyday life in nursing homes.

  7. Conformation and dynamics of the ligand shell of a water-soluble Au102 nanoparticle.

    PubMed

    Salorinne, Kirsi; Malola, Sami; Wong, O Andrea; Rithner, Christopher D; Chen, Xi; Ackerson, Christopher J; Häkkinen, Hannu

    2016-01-21

    Inorganic nanoparticles, stabilized by a passivating layer of organic molecules, form a versatile class of nanostructured materials with potential applications in material chemistry, nanoscale physics, nanomedicine and structural biology. While the structure of the nanoparticle core is often known to atomic precision, gaining precise structural and dynamical information on the organic layer poses a major challenge. Here we report a full assignment of (1)H and (13)C NMR shifts to all ligands of a water-soluble, atomically precise, 102-atom gold nanoparticle stabilized by 44 para-mercaptobenzoic acid ligands in solution, by using a combination of multidimensional NMR methods, density functional theory calculations and molecular dynamics simulations. Molecular dynamics simulations augment the data by giving information about the ligand disorder and visualization of possible distinct ligand conformations of the most dynamic ligands. The method demonstrated here opens a way to controllable strategies for functionalization of ligated nanoparticles for applications.

  8. Template synthesis of hollow MoS2-carbon nanocomposites using microporous organic polymers and their lithium storage properties.

    PubMed

    Jin, Jaewon; Kim, Bolyong; Kim, Mincheol; Park, Nojin; Kang, Sungah; Lee, Sang Moon; Kim, Hae Jin; Son, Seung Uk

    2015-07-14

    This work shows that hollow and microporous organic polymers (H-MOPs) are good templating materials for the synthesis of inorganic material-carbon nanocomposites. The precursor compound, (NH4)2MoS4, was incorporated into H-MOPs. Heat treatment under argon resulted in the formation of hollow MoS2-carbon nanocomposites (MSC). According to microscopic analysis, the MoS2 in the MSC has a layered structure with an elongated interlayer distance. The MSC showed high reversible discharge capacities up to 802 mA h g(-1) after 30 cycles and excellent rate performance for lithium ion batteries. The promising electrochemical performance of the MSC is attributed to the very thin and disordered nature of MoS2 in the carbon skeleton. The role of chemical components of the MSC in the electrochemical process was suggested.

  9. Conformation and dynamics of the ligand shell of a water-soluble Au102 nanoparticle

    PubMed Central

    Salorinne, Kirsi; Malola, Sami; Wong, O. Andrea; Rithner, Christopher D.; Chen, Xi; Ackerson, Christopher J.; Häkkinen, Hannu

    2016-01-01

    Inorganic nanoparticles, stabilized by a passivating layer of organic molecules, form a versatile class of nanostructured materials with potential applications in material chemistry, nanoscale physics, nanomedicine and structural biology. While the structure of the nanoparticle core is often known to atomic precision, gaining precise structural and dynamical information on the organic layer poses a major challenge. Here we report a full assignment of 1H and 13C NMR shifts to all ligands of a water-soluble, atomically precise, 102-atom gold nanoparticle stabilized by 44 para-mercaptobenzoic acid ligands in solution, by using a combination of multidimensional NMR methods, density functional theory calculations and molecular dynamics simulations. Molecular dynamics simulations augment the data by giving information about the ligand disorder and visualization of possible distinct ligand conformations of the most dynamic ligands. The method demonstrated here opens a way to controllable strategies for functionalization of ligated nanoparticles for applications. PMID:26791253

  10. Soluble fullerene derivatives: The effect of electronic structure on transistor performance and air stability

    NASA Astrophysics Data System (ADS)

    Ball, James M.; Bouwer, Ricardo K. M.; Kooistra, Floris B.; Frost, Jarvist M.; Qi, Yabing; Domingo, Ester Buchaca; Smith, Jeremy; de Leeuw, Dago M.; Hummelen, Jan C.; Nelson, Jenny; Kahn, Antoine; Stingelin, Natalie; Bradley, Donal D. C.; Anthopoulos, Thomas D.

    2011-07-01

    The family of soluble fullerene derivatives comprises a widely studied group of electron transporting molecules for use in organic electronic and optoelectronic devices. For electronic applications, electron transporting (n-channel) materials are required for implementation into organic complementary logic circuit architectures. To date, few soluble candidate materials have been studied that fulfill the stringent requirements of high carrier mobility and air stability. Here we present a study of three soluble fullerenes with varying electron affinity to assess the impact of electronic structure on device performance and air stability. Through theoretical and experimental analysis of the electronic structure, characterization of thin-film structure, and characterization of transistor device properties we find that the air stability of the present series of fullerenes not only depends on the absolute electron affinity of the semiconductor but also on the disorder within the thin-film.

  11. Disorder-induced stiffness degradation of highly disordered porous materials

    NASA Astrophysics Data System (ADS)

    Laubie, Hadrien; Monfared, Siavash; Radjaï, Farhang; Pellenq, Roland; Ulm, Franz-Josef

    2017-09-01

    The effective mechanical behavior of multiphase solid materials is generally modeled by means of homogenization techniques that account for phase volume fractions and elastic moduli without considering the spatial distribution of the different phases. By means of extensive numerical simulations of randomly generated porous materials using the lattice element method, the role of local textural properties on the effective elastic properties of disordered porous materials is investigated and compared with different continuum micromechanics-based models. It is found that the pronounced disorder-induced stiffness degradation originates from stress concentrations around pore clusters in highly disordered porous materials. We identify a single disorder parameter, φsa, which combines a measure of the spatial disorder of pores (the clustering index, sa) with the pore volume fraction (the porosity, φ) to scale the disorder-induced stiffness degradation. Thus, we conclude that the classical continuum micromechanics models with one spherical pore phase, due to their underlying homogeneity assumption fall short of addressing the clustering effect, unless additional texture information is introduced, e.g. in form of the shift of the percolation threshold with disorder, or other functional relations between volume fractions and spatial disorder; as illustrated herein for a differential scheme model representative of a two-phase (solid-pore) composite model material.

  12. Stable biexcitons in two-dimensional metal-halide perovskites with strong dynamic lattice disorder

    NASA Astrophysics Data System (ADS)

    Thouin, Félix; Neutzner, Stefanie; Cortecchia, Daniele; Dragomir, Vlad Alexandru; Soci, Cesare; Salim, Teddy; Lam, Yeng Ming; Leonelli, Richard; Petrozza, Annamaria; Kandada, Ajay Ram Srimath; Silva, Carlos

    2018-03-01

    With strongly bound and stable excitons at room temperature, single-layer, two-dimensional organic-inorganic hybrid perovskites are viable semiconductors for light-emitting quantum optoelectronics applications. In such a technological context, it is imperative to comprehensively explore all the factors—chemical, electronic, and structural—that govern strong multiexciton correlations. Here, by means of two-dimensional coherent spectroscopy, we examine excitonic many-body effects in pure, single-layer (PEA) 2PbI4 (PEA = phenylethylammonium). We determine the binding energy of biexcitons—correlated two-electron, two-hole quasiparticles—to be 44 ±5 meV at room temperature. The extraordinarily high values are similar to those reported in other strongly excitonic two-dimensional materials such as transition-metal dichalcogenides. Importantly, we show that this binding energy increases by ˜25 % upon cooling to 5 K. Our work highlights the importance of multiexciton correlations in this class of technologically promising, solution-processable materials, in spite of the strong effects of lattice fluctuations and dynamic disorder.

  13. Nonequilibrium transport of charge carriers and transient electroluminescence in organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Nikitenko, V. R.; von Seggern, H.

    2007-11-01

    An analytic theory of nonequilibrium hopping charge transport in disordered organic materials includes quasiequilibrium (normal) and extremely nonequilibrium (dispersive) regimes as limiting cases at long and short times, respectively. In the intermediate interval of time quasiequilibrium value of mobility is nearly established while the coefficient of field-assisted diffusion continues to increase (quasidispersive regime). Therefore, normalized time dependencies of transient current in time-of-flight (TOF) conditions are practically independent of field strength and sample thickness, in good agreement both with data of TOF experiments for molecularly doped polymers and results of numerical simulations of Gaussian disorder model. An analytic model of transient electroluminescence (TEL) is developed on the base of the mentioned theory. Strong asymmetry of mobilities is presumed. In analogy with TOF transients, dispersion parameter of normalized TEL intensity is anomalously large and almost field independent in the quasidispersive regime of transport. The method for determination of mobility from TEL data is proposed.

  14. Quantum Mechanical Calculations of Free Energy and Open-Circuit Voltage in Lattice Modeled Organic Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Lankevich, Vladimir; Bittner, Eric

    In organic photovoltaic devices (OPVs), initially bound electron and hole can take many different paths to dissociate and become free charge carriers. This leads to the increase in their density of states and therefore increase in the entropy of the system. Accurate description of the energy barriers that charges have to overcome, therefore requires calculation of the free energy. Free energy of an OPV is directly related to its open-circuit voltage and depends only on few important parameters such as average life-time of a charge-transfer state, average energy of the charge-transfer state and energetic disorder in the system. We extend these ideas to the quantum mechanical simulations of the dissociation in the lattice modeled bulk-heterojunction system. We observe average excitonic and free energies that agree with theoretical predictions and the number of experimental results from previous studies. We study effects of the energy disorder and importance of the dimensionality and morphology in materials such as polymer-fullerene blends.

  15. On the origin of electrical conductivity in the bio-electronic material melanin

    NASA Astrophysics Data System (ADS)

    Bernardus Mostert, A.; Powell, Ben J.; Gentle, Ian R.; Meredith, Paul

    2012-02-01

    The skin pigment melanin is one of a few bio-macromolecules that display electrical and photo-conductivity in the solid-state. A model for melanin charge transport based on amorphous semiconductivity has been widely accepted for 40 years. In this letter, we show that a central pillar in support of this hypothesis, namely experimental agreement with a hydrated dielectric model, is an artefact related to measurement geometry and non-equilibrium behaviour. Our results cast significant doubt on the validity of the amorphous semiconductor model and are a reminder of the difficulties of electrical measurements on low conductivity, disordered organic materials.

  16. Molecular Fingerprints in the Electronic Properties of Crystalline Organic Semiconductors: From Experiment to Theory

    NASA Astrophysics Data System (ADS)

    Ciuchi, S.; Hatch, R. C.; Höchst, H.; Faber, C.; Blase, X.; Fratini, S.

    2012-06-01

    By comparing photoemission spectroscopy with a nonperturbative dynamical mean field theory extension to many-body ab initio calculations, we show in the prominent case of pentacene crystals that an excellent agreement with experiment for the bandwidth, dispersion, and lifetime of the hole carrier bands can be achieved in organic semiconductors, provided that one properly accounts for the coupling to molecular vibrational modes and the presence of disorder. Our findings rationalize the growing experimental evidence that even the best band structure theories based on a many-body treatment of electronic interactions cannot reproduce the experimental photoemission data in this important class of materials.

  17. Suppressing molecular vibrations in organic semiconductors by inducing strain

    PubMed Central

    Kubo, Takayoshi; Häusermann, Roger; Tsurumi, Junto; Soeda, Junshi; Okada, Yugo; Yamashita, Yu; Akamatsu, Norihisa; Shishido, Atsushi; Mitsui, Chikahiko; Okamoto, Toshihiro; Yanagisawa, Susumu; Matsui, Hiroyuki; Takeya, Jun

    2016-01-01

    Organic molecular semiconductors are solution processable, enabling the growth of large-area single-crystal semiconductors. Improving the performance of organic semiconductor devices by increasing the charge mobility is an ongoing quest, which calls for novel molecular and material design, and improved processing conditions. Here we show a method to increase the charge mobility in organic single-crystal field-effect transistors, by taking advantage of the inherent softness of organic semiconductors. We compress the crystal lattice uniaxially by bending the flexible devices, leading to an improved charge transport. The mobility increases from 9.7 to 16.5 cm2 V−1 s−1 by 70% under 3% strain. In-depth analysis indicates that compressing the crystal structure directly restricts the vibration of the molecules, thus suppresses dynamic disorder, a unique mechanism in organic semiconductors. Since strain can be easily induced during the fabrication process, we expect our method to be exploited to build high-performance organic devices. PMID:27040501

  18. Suppressing molecular vibrations in organic semiconductors by inducing strain.

    PubMed

    Kubo, Takayoshi; Häusermann, Roger; Tsurumi, Junto; Soeda, Junshi; Okada, Yugo; Yamashita, Yu; Akamatsu, Norihisa; Shishido, Atsushi; Mitsui, Chikahiko; Okamoto, Toshihiro; Yanagisawa, Susumu; Matsui, Hiroyuki; Takeya, Jun

    2016-04-04

    Organic molecular semiconductors are solution processable, enabling the growth of large-area single-crystal semiconductors. Improving the performance of organic semiconductor devices by increasing the charge mobility is an ongoing quest, which calls for novel molecular and material design, and improved processing conditions. Here we show a method to increase the charge mobility in organic single-crystal field-effect transistors, by taking advantage of the inherent softness of organic semiconductors. We compress the crystal lattice uniaxially by bending the flexible devices, leading to an improved charge transport. The mobility increases from 9.7 to 16.5 cm(2) V(-1) s(-1) by 70% under 3% strain. In-depth analysis indicates that compressing the crystal structure directly restricts the vibration of the molecules, thus suppresses dynamic disorder, a unique mechanism in organic semiconductors. Since strain can be easily induced during the fabrication process, we expect our method to be exploited to build high-performance organic devices.

  19. Differential pattern of semantic memory organization between bipolar I and II disorders.

    PubMed

    Chang, Jae Seung; Choi, Sungwon; Ha, Kyooseob; Ha, Tae Hyon; Cho, Hyun Sang; Choi, Jung Eun; Cha, Boseok; Moon, Eunsoo

    2011-06-01

    Semantic cognition is one of the key factors in psychosocial functioning. The aim of this study was to explore the differences in pattern of semantic memory organization between euthymic patients with bipolar I and II disorders using the category fluency task. Study participants included 23 euthymic subjects with bipolar I disorder, 23 matched euthymic subjects with bipolar II disorder and 23 matched control subjects. All participants were assessed for verbal learning, recall, learning strategies, and fluency. The combined methods of hierarchical clustering and multidimensional scaling were used to compare the pattern of semantic memory organization among the three groups. Quantitative measures of verbal learning, recall, learning strategies, and fluency did not differ between the three groups. A two-cluster structure of semantic memory organization was identified for the three groups. Semantic structure was more disorganized in the bipolar I disorder group compared to the bipolar II disorder. In addition, patients with bipolar II disorder used less elaborate strategies of semantic memory organization than those of controls. Compared to healthy controls, strategies for categorization in semantic memory appear to be less knowledge-based in patients with bipolar disorders. A differential pattern of semantic memory organization between bipolar I and II disorders indicates a higher risk of cognitive abnormalities in patients with bipolar I disorder compared to patients with bipolar II disorder. Exploring qualitative nature of neuropsychological domains may provide an explanatory insight into the characteristic behaviors of patients with bipolar disorders. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Effective media properties of hyperuniform disordered composite materials

    PubMed Central

    Sheng, Xin-Qing

    2017-01-01

    The design challenge of new functional composite materials consisting of multiphase materials has attracted an increasing interest in recent years. In particular, understanding the role of distributions of ordered and disordered particles in a host media is scientifically and technologically important for designing novel materials and devices with superior spectral and angular properties. In this work, the effective medium property of disordered composite materials consisting of hyperuniformly distributed hard particles at different filling fractions is investigated. To accurately extract effective permittivity of a disordered composite material, a full-wave finite element method and the transmission line theory are used. Numerical results show that the theory of hyperuniformity can be conveniently used to design disordered composite materials with good accuracy compared with those materials with randomly dispersed particles. Furthermore, we demonstrate that a Luneburg lens based on the proposed hyperuniform media has superior radiation properties in comparison with previously reported metamaterial designs and it may open up a new avenue in electromagnetic materials-by-design. PMID:28982118

  1. A Multipronged, Adaptive Approach for the Recruitment of Diverse Community-Residing Elders with Memory Impairment: The MIND at Home Experience.

    PubMed

    Samus, Quincy M; Amjad, Halima; Johnston, Deirdre; Black, Betty S; Bartels, Stephen J; Lyketsos, Constantine G

    2015-07-01

    To provide a critical review of a multipronged recruitment approach used to identify, recruit, and enroll a diverse community-based sample of persons with memory disorders into an 18-month randomized, controlled dementia care coordination trial. Descriptive analysis of a recruitment approach comprised five strategies: community liaison ("gatekeepers") method, letters sent from trusted community organizations, display and distribution of study materials in the community, research registries, and general community outreach and engagement activities. Participants were 55 community organizations and 63 staff of community organizations in Baltimore, Maryland. Participant referral sources, eligibility, enrollment status, demographics, and loss to follow-up were tracked in a relational access database. In total, 1,275 referrals were received and 303 socioeconomically, cognitively, and racially diverse community-dwelling persons with cognitive disorders were enrolled. Most referrals came from letters sent from community organizations directly to clients on the study's behalf (39%) and referrals from community liaison organizations (29%). African American/black enrollees were most likely to come from community liaison organizations. A multipronged, adaptive approach led to the successful recruitment of diverse community-residing elders with memory impairment for an intervention trial. Key factors for success included using a range of evidence-supported outreach strategies, forming key strategic community partnerships, seeking regular stakeholder input through all research phases, and obtaining "buy-in" from community stakeholders by aligning study objectives with perceived unmet community needs. Copyright © 2015 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  2. The Associations between Self-Reported Exposure to the Chernobyl Nuclear Disaster Zone and Mental Health Disorders in Ukraine.

    PubMed

    Bolt, Matthew A; Helming, Luralyn M; Tintle, Nathan L

    2018-01-01

    In 1986, Reactor 4 of the Chernobyl nuclear power plant near Pripyat, Ukraine exploded, releasing highly-radioactive materials into the surrounding environment. Although the physical effects of the disaster have been well-documented, a limited amount of research has been conducted on association of the disaster with long-term, clinically-diagnosable mental health disorders. According to the diathesis-stress model, the stress of potential and unknown exposure to radioactive materials and the ensuing changes to ones life or environment due to the disaster might lead those with previous vulnerabilities to fall into a poor state of mental health. Previous studies of this disaster have found elevated symptoms of stress, substance abuse, anxiety, and depression in exposed populations, though often at a subclinical level. With data from The World Mental Health Composite International Diagnostic Interview, a cross-sectional large mental health survey conducted in Ukraine by the World Health Organization, the mental health of Ukrainians was modeled with multivariable logistic regression techniques to determine if any long-term mental health disorders were association with reporting having lived in the zone affected by the Chernobyl nuclear disaster. Common classes of psychiatric disorders were examined as well as self-report ratings of physical and mental health. Reporting that one lived in the Chernobyl-affected disaster zone was associated with a higher rate of alcohol disorders among men and higher rates of intermittent explosive disorders among women in a prevalence model. Subjects who lived in the disaster zone also had lower ratings of personal physical and mental health when compared to controls. Stress resulting from disaster exposure, whether or not such exposure actually occurred or was merely feared, and ensuing changes in life circumstances is associated with increased rates of mental health disorders. Professionals assisting populations that are coping with the consequences of disaster should be aware of possible increases in psychiatric disorders as well as poorer perceptions regarding personal physical and mental health.

  3. 'Universal' microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity.

    PubMed

    Fritsch, Andreas; Hellmich, Christian

    2007-02-21

    Bone materials are characterized by an astonishing variability and diversity. Still, because of 'architectural constraints' due to once chosen material constituents and their physical interaction, the fundamental hierarchical organization or basic building plans of bone materials remain largely unchanged during biological evolution. Such universal patterns of microstructural organization govern the mechanical interaction of the elementary components of bone (hydroxyapatite, collagen, water; with directly measurable tissue-independent elastic properties), which are here quantified through a multiscale homogenization scheme delivering effective elastic properties of bone materials: at a scale of 10nm, long cylindrical collagen molecules, attached to each other at their ends by approximately 1.5nm long crosslinks and hosting intermolecular water inbetween, form a contiguous matrix called wet collagen. At a scale of several hundred nanometers, wet collagen and mineral crystal agglomerations interpenetrate each other, forming the mineralized fibril. At a scale of 5-10microm, the extracellular solid bone matrix is represented as collagen fibril inclusions embedded in a foam of largely disordered (extrafibrillar) mineral crystals. At a scale above the ultrastructure, where lacunae are embedded in extracellular bone matrix, the extravascular bone material is observed. Model estimates predicted from tissue-specific composition data gained from a multitude of chemical and physical tests agree remarkably well with corresponding acoustic stiffness experiments across a variety of cortical and trabecular, extracellular and extravascular materials. Besides from reconciling the well-documented, seemingly opposed concepts of 'mineral-reinforced collagen matrix' and 'collagen-reinforced mineral matrix' for bone ultrastructure, this approach opens new possibilities in the exploitation of computer tomographic data for nano-to-macro mechanics of bone organs.

  4. Disordered anodes for Ni-metal rechargeable battery

    DOEpatents

    Young, Kwo-hsiung; Wang, Lixin; Mays, William C.

    2016-11-22

    An electrochemical cell is provided that includes a structurally and compositionally disordered electrochemically active alloy material as an anode active material with unexpected capacity against a nickel hydroxide based cathode active material. The disordered metal hydroxide alloy includes three or more transition metal elements and is formed in such a way so as to produce the necessary disorder in the overall system. When an anode active material includes nickel as a predominant, the resulting cells represent the first demonstration of a functional Ni/Ni cell.

  5. An historical view of the pineal gland and mental disorders.

    PubMed

    López-Muñoz, F; Molina, J D; Rubio, G; Alamo, C

    2011-08-01

    Since Classical Antiquity numerous authors have linked the origin of some mental disorders to physical and functional changes in the pineal gland because of its attributed role in humans as the connection between the material and the spiritual world. The pineal organ was seen as a valve-like structure that regulated the flow of animal spirits through the ventricular system, a hypothesis that took on more vigour during the Middle Ages and the Renaissance. The framework for this theory was "the three cells of the brain", in which the pineal gland was even called the "appendix of thought". The pineal gland could also be associated with the boom, during this period, of certain legends about the "stone of folly". But the most relevant psychopathological role of this organ arrived with Descartes, who proposed that it was the seat of the human soul and controlled communications between the physical body and its surroundings, including emotions. After a period of decline during which it was considered as a mere vestigial remnant of evolution, the link between the pineal gland and psychiatric disorders was definitively highlighted in the 20th century, first with the use of glandular extracts in patients with mental deficiency, and finally with the discovery of melatonin in 1958. The physiological properties of melatonin reawakened interest in the relationship between the pineal gland and mental disorders, fundamentally the affective and sleep disorders, which culminated in the development of new pharmacological agents acting through melatonergic receptors (ramelteon and agomelatine). Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. A demonstration of an affinity between pyrite and organic matter in a hydrothermal setting

    PubMed Central

    2011-01-01

    One of the key-principles of the iron-sulphur world theory is to bring organic molecules close enough to interact with each other, using the surface of pyrite as a substrate in a hydrothermal setting. The present paper explores the relationship of pyrite and organic matter in a hydrothermal setting from the geological record; in hydrothermal calcite veins from Carboniferous limestones in central Ireland. Here, the organic matter is accumulated as coatings around, and through, pyrite grains. Most of the pyrite grains are euhedral-subhedral crystals, ranging in size from ca 0.1-0.5 mm in diameter, and they are scattered throughout the matrix of the vein calcite. The organic matter was deposited from a hydrothermal fluid at a temperature of at least 200°C, and gives a Raman signature of disordered carbon. This study points to an example from a hydrothermal setting in the geological record, demonstrating that pyrite can have a high potential for the concentration and accumulation of organic materials. PMID:21299877

  7. General method for the synthesis of hierarchical nanocrystal-based mesoporous materials.

    PubMed

    Rauda, Iris E; Buonsanti, Raffaella; Saldarriaga-Lopez, Laura C; Benjauthrit, Kanokraj; Schelhas, Laura T; Stefik, Morgan; Augustyn, Veronica; Ko, Jesse; Dunn, Bruce; Wiesner, Ulrich; Milliron, Delia J; Tolbert, Sarah H

    2012-07-24

    Block copolymer templating of inorganic materials is a robust method for the production of nanoporous materials. The method is limited, however, by the fact that the molecular inorganic precursors commonly used generally form amorphous porous materials that often cannot be crystallized with retention of porosity. To overcome this issue, here we present a general method for the production of templated mesoporous materials from preformed nanocrystal building blocks. The work takes advantage of recent synthetic advances that allow organic ligands to be stripped off of the surface of nanocrystals to produce soluble, charge-stabilized colloids. Nanocrystals then undergo evaporation-induced co-assembly with amphiphilic diblock copolymers to form a nanostructured inorganic/organic composite. Thermal degradation of the polymer template results in nanocrystal-based mesoporous materials. Here, we show that this method can be applied to nanocrystals with a broad range of compositions and sizes, and that assembly of nanocrystals can be carried out using a broad family of polymer templates. The resultant materials show disordered but homogeneous mesoporosity that can be tuned through the choice of template. The materials also show significant microporosity, formed by the agglomerated nanocrystals, and this porosity can be tuned by the nanocrystal size. We demonstrate through careful selection of the synthetic components that specifically designed nanostructured materials can be constructed. Because of the combination of open and interconnected porosity, high surface area, and compositional tunability, these materials are likely to find uses in a broad range of applications. For example, enhanced charge storage kinetics in nanoporous Mn(3)O(4) is demonstrated here.

  8. Identifying Personality Disorders that are Security Risks: Field Test Results

    DTIC Science & Technology

    2011-09-01

    clinical personality disorders, namely psychopathy, malignant narcissism , and borderline personality organization, can increase the likelihood of...ratings indicated that three personality disorders, psychopathy, malignant narcissism , and borderline personality organization, were associated with...certain clinical personality disorders and unreliable and unsafe behavior in the workplace, disorders such as psychopathy and malignant narcissism

  9. Neurocognitive disorder

    MedlinePlus

    Organic mental disorder (OMS); Organic brain syndrome ... Beck BJ, Tompkins KJ. Mental disorders due to another medical condition. In: Stern TA, Fava M, Wilens TE, Rosenbaum JF, eds. Massachusetts General Hospital Comprehensive Clinical ...

  10. Dissatisfaction with work as a risk factor of musculoskeletal complaints among foresters in Poland.

    PubMed

    Lachowski, Stanisław; Choina, Piotr; Florek-Łuszczki, Magdalena; Goździewska, Małgorzata; Jezior, Jagoda

    2017-12-23

    Researchers indicate an important relationship between the level of job satisfaction and the state of health of the employees. Some elements of work related with its character, organization, and interpersonal relationships may evoke strong stress, manifested by, among others, an increased musculoskeletal tension which, in turn, may lead to permanent dysfunction of this system. The objective of the study was analysis of the relationship between the level of job satisfaction and occurrence of musculoskeletal disorders among employees of the State Forests. The research material was collected using two instruments: the modified Nordic Questionnaire for assessment of musculoskeletal disorders, and a questionnaire concerning job satisfaction. The study was conducted in a group of 396 employees of the State Forests from 8 regions of Poland. The results of analysis confirmed a significant relationship between job satisfaction and the occurrence of musculoskeletal disorders. The lower the level of job satisfaction, the more frequent the experiencing of musculoskeletal disorders. Low level of job satisfaction is a risk factor for the occurrence of musculoskeletal disorders. Shaping of work conditions, which are the source of job satisfaction, should be considered as one of the main elements of prevention of musculoskeletal complaints.

  11. Crystalline Nanoporous Frameworks: a Nanolaboratory for Probing Excitonic Device Concepts.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allendorf, Mark D.; Azoulay, Jason; Ford, Alexandra Caroline

    2014-09-01

    Electro-optical organic materials hold great promise for the development of high-efficiency devices based on exciton formation and dissociation, such as organic photovoltaics (OPV) and organic light-emitting devices (OLEDs). However, the external quantum efficiency (EQE) of both OPV and OLEDs must be improved to make these technologies economical. Efficiency rolloff in OLEDs and inability to control morphology at key OPV interfaces both reduce EQE. Only by creating materials that allow manipulation and control of the intimate assembly and communication between various nanoscale excitonic components can we hope to first understand and then engineer the system to allow these materials to reachmore » their potential. The aims of this proposal are to: 1) develop a paradigm-changing platform for probing excitonic processes composed of Crystalline Nanoporous Frameworks (CNFs) infiltrated with secondary materials (such as a complimentary semiconductor); 2) use them to probe fundamental aspects of excitonic processes; and 3) create prototype OPVs and OLEDs using infiltrated CNF as active device components. These functional platforms will allow detailed control of key interactions at the nanoscale, overcoming the disorder and limited synthetic control inherent in conventional organic materials. CNFs are revolutionary inorganic-organic hybrid materials boasting unmatched synthetic flexibility that allow tuning of chemical, geometric, electrical, and light absorption/generation properties. For example, bandgap engineering is feasible and polyaromatic linkers provide tunable photon antennae; rigid 1-5 nm pores provide an oriented, intimate host for triplet emitters (to improve light emission in OLEDs) or secondary semiconducting polymers (creating a charge-separation interface in OPV). These atomically engineered, ordered structures will enable critical fundamental questions to be answered concerning charge transport, nanoscale interfaces, and exciton behavior that are inaccessible in disordered systems. Implementing this concept also creates entirely new dimensions for device fabrication that could both improve performance, increase durability, and reduce costs with unprecedented control of over properties. This report summarizes the key results of this project and is divided into sections based on publications that resulted from the work. We begin in Section 2 with an investigation of light harvesting and energy transfer in a MOF infiltrated with donor and acceptor molecules of the type typically used in OPV devices (thiophenes and fullerenes, respectively). The results show that MOFs can provide multiple functions: as a light harvester, as a stabilizer and organizer or the infiltrated molecules, and as a facilitator of energy transfer. Section 3 describes computational design of MOF linker groups to accomplish light harvesting in the visible and facilitate charge separation and transport. The predictions were validated by UV-visible absorption spectroscopy, demonstrating that rational design of MOFs for light-harvesting purposes is feasible. Section 4 extends the infiltration concept discussed in Section to, which we now designate as "Molecule@MOF" to create an electrically conducting framework. The tailorability and high conductivity of this material are unprecedented, meriting publication in the journal Science and spawning several Technical Advances. Section 5 discusses processes we developed for depositing MOFs as thin films on substrates, a critical enabling technology for fabricating MOF-based electronic devices. Finally, in Section 6 we summarize results showing that a MOF thin film can be used as a sensitizer in a DSSC, demonstrating that MOFs can serve as active layers in excitonic devices. Overall, this project provides several crucial proofs-of- concept that the potential of MOFs for use in optoelectronic devices that we predicted several years ago [ 3 ] can be realized in practice.« less

  12. What Specific Facets of Executive Function are Associated with Academic Functioning in Youth with Attention-Deficit/Hyperactivity Disorder?

    PubMed Central

    Langberg, Joshua M.; Dvorsky, Melissa R.; Evans, Steven W.

    2013-01-01

    The purpose of the study was to evaluate the relation between ratings of Executive Function (EF) and academic functioning in a sample of 94 middle-school-aged youth with Attention-Deficit/Hyperactivity Disorder (ADHD; Mage = 11.9; 78% male; 21% minority). This study builds on prior work by evaluating associations between multiple specific aspects of EF (e.g., working memory, inhibition, and planning and organization) as rated by both parents and teachers on the Behavior Rating Inventory of Executive Function (BRIEF), with multiple academic outcomes, including school grades and homework problems. Further, this study examined the relationship between EF and academic outcomes above and beyond ADHD symptoms and controlled for a number of potentially important covariates, including intelligence and achievement scores. The EF Planning and Organization subscale as rated by both parents and teachers predicted school grades above and beyond symptoms of ADHD and relevant covariates. Parent ratings of youth’s ability to transition effectively between tasks/situations (Shift subscale) also predicted school grades. Parent-rated symptoms of inattention, hyperactivity/impulsivity, and planning and organization abilities were significant in the final model predicting homework problems. In contrast, only symptoms of inattention and the Organization of Materials subscale from the BRIEF were significant in the teacher model predicting homework problems. Organization and planning abilities are highly important aspects academic functioning for middle-school-aged youth with ADHD. Implications of these findings for the measurement of EF, and organization and planning abilities in particular, are discussed along with potential implications for intervention. PMID:23640285

  13. Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes

    NASA Astrophysics Data System (ADS)

    Armin, Ardalan; Jansen-van Vuuren, Ross D.; Kopidakis, Nikos; Burn, Paul L.; Meredith, Paul

    2015-02-01

    Spectrally selective light detection is vital for full-colour and near-infrared (NIR) imaging and machine vision. This is not possible with traditional broadband-absorbing inorganic semiconductors without input filtering, and is yet to be achieved for narrowband absorbing organic semiconductors. We demonstrate the first sub-100 nm full-width-at-half-maximum visible-blind red and NIR photodetectors with state-of-the-art performance across critical response metrics. These devices are based on organic photodiodes with optically thick junctions. Paradoxically, we use broadband-absorbing organic semiconductors and utilize the electro-optical properties of the junction to create the narrowest NIR-band photoresponses yet demonstrated. In this context, these photodiodes outperform the encumbent technology (input filtered inorganic semiconductor diodes) and emerging technologies such as narrow absorber organic semiconductors or quantum nanocrystals. The design concept allows for response tuning and is generic for other spectral windows. Furthermore, it is material-agnostic and applicable to other disordered and polycrystalline semiconductors.

  14. Strain effects on the work function of an organic semiconductor

    PubMed Central

    Wu, Yanfei; Chew, Annabel R.; Rojas, Geoffrey A.; Sini, Gjergji; Haugstad, Greg; Belianinov, Alex; Kalinin, Sergei V.; Li, Hong; Risko, Chad; Brédas, Jean-Luc; Salleo, Alberto; Frisbie, C. Daniel

    2016-01-01

    Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively with density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ∼0.05% tensile strain along the rubrene π-stacking direction. The results provide the first concrete link between mechanical strain and WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder in soft organic electronic materials. PMID:26831362

  15. Strain effects on the work function of an organic semiconductor

    NASA Astrophysics Data System (ADS)

    Wu, Yanfei; Chew, Annabel R.; Rojas, Geoffrey A.; Sini, Gjergji; Haugstad, Greg; Belianinov, Alex; Kalinin, Sergei V.; Li, Hong; Risko, Chad; Brédas, Jean-Luc; Salleo, Alberto; Frisbie, C. Daniel

    2016-02-01

    Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively with density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ~0.05% tensile strain along the rubrene π-stacking direction. The results provide the first concrete link between mechanical strain and WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder in soft organic electronic materials.

  16. Strain effects on the work function of an organic semiconductor.

    PubMed

    Wu, Yanfei; Chew, Annabel R; Rojas, Geoffrey A; Sini, Gjergji; Haugstad, Greg; Belianinov, Alex; Kalinin, Sergei V; Li, Hong; Risko, Chad; Brédas, Jean-Luc; Salleo, Alberto; Frisbie, C Daniel

    2016-02-01

    Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively with density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ∼0.05% tensile strain along the rubrene π-stacking direction. The results provide the first concrete link between mechanical strain and WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder in soft organic electronic materials.

  17. Strain effects on the work function of an organic semiconductor

    DOE PAGES

    Wu, Yanfei; Chew, Annabel R.; Rojas, Geoffrey A.; ...

    2016-02-01

    Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding the electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively withmore » density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ~0.05% tensile strain along the rubrene -stacking direction. The results provide the first concrete link between mechanical strain and the WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder (charge traps) in soft organic electronic materials.« less

  18. Is magnetite a universal memory molecule?

    PubMed

    Størmer, Fredrik C

    2014-11-01

    Human stem cells possess memory, and consequently all living human cells must have a memory system. How memory is stored in cells and organisms is an open question. Magnetite is perhaps the best candidate to be a universal memory molecule. Magnetite may give us a clue, because it is the Earth's most distributed and important magnetic material. It is found in living organisms with no known functions except for involvement in navigation in some organisms. In humans magnetite is found in the brain, heart, liver and spleen. Humans suffer from memory dysfunctions in many cases when iron is out of balance. Anomalous concentrations of magnetite is known to be associated with a neurodegenerative disorder like Alzheimer's disease. Due to the rapid speed and accuracy of our brain, memory and its functions must be governed by quantum mechanics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. ACBC to Balcite: Bioinspired Synthesis of a Highly Substituted High-Temperature Phase from an Amorphous Precursor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whittaker, Michael L.; Joester, Derk

    2017-04-28

    Energy-efficient synthesis of materials locked in compositional and structural states far from equilibrium remains a challenging goal, yet biomineralizing organisms routinely assemble such materials with sophisticated designs and advanced functional properties, often using amorphous precursors. However, incorporation of organics limits the useful temperature range of these materials. Herein, the bioinspired synthesis of a highly supersaturated calcite (Ca0.5Ba0.5CO3) called balcite is reported, at mild conditions and using an amorphous calcium–barium carbonate (ACBC) (Ca1- x Ba x CO3·1.2H2O) precursor. Balcite not only contains 50 times more barium than the solubility limit in calcite but also displays the rotational disorder on carbonate sitesmore » that is typical for high-temperature calcite. It is significantly harder (30%) and less stiff than calcite, and retains these properties after heating to elevated temperatures. Analysis of balcite local order suggests that it may require the formation of the ACBC precursor and could therefore be an example of nonclassical nucleation. These findings demonstrate that amorphous precursor pathways are powerfully enabling and provide unprecedented access to materials far from equilibrium, including high-temperature modifications by room-temperature synthesis.« less

  20. High-performance organic light-emitting diodes comprising ultrastable glass layers

    PubMed Central

    Rodríguez-Viejo, Javier

    2018-01-01

    Organic light-emitting diodes (OLEDs) are one of the key solid-state light sources for various applications including small and large displays, automotive lighting, solid-state lighting, and signage. For any given commercial application, OLEDs need to perform at their best, which is judged by their device efficiency and operational stability. We present OLEDs that comprise functional layers fabricated as ultrastable glasses, which represent the thermodynamically most favorable and, thus, stable molecular conformation achievable nowadays in disordered solids. For both external quantum efficiencies and LT70 lifetimes, OLEDs with four different phosphorescent emitters show >15% enhancements over their respective reference devices. The only difference to the latter is the growth condition used for ultrastable glass layers that is optimal at about 85% of the materials’ glass transition temperature. These improvements are achieved through neither material refinements nor device architecture optimization, suggesting a general applicability of this concept to maximize the OLED performance, no matter which specific materials are used. PMID:29806029

  1. Disorder-induced localization in crystalline phase-change materials.

    PubMed

    Siegrist, T; Jost, P; Volker, H; Woda, M; Merkelbach, P; Schlockermann, C; Wuttig, M

    2011-03-01

    Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a metal-insulator transition without a structural change are therefore of interest. Mechanisms leading to metal-insulator transition include electron correlation (Mott transition) or disorder (Anderson localization), but a clear distinction is difficult. Here we report on a metal-insulator transition on increasing annealing temperature for a group of crystalline phase-change materials, where the metal-insulator transition is due to strong disorder usually associated only with amorphous solids. With pronounced disorder but weak electron correlation, these phase-change materials form an unparalleled quantum state of matter. Their universal electronic behaviour seems to be at the origin of the remarkable reproducibility of the resistance switching that is crucial to their applications in non-volatile-memory devices. Controlling the degree of disorder in crystalline phase-change materials might enable multilevel resistance states in upcoming storage devices.

  2. Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiaoyang

    2014-12-10

    The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering. Organic semiconductors are emerging as viable materials for low-cost electronics and optoelectronics, such as organic photovoltaics (OPV), organic field effect transistors (OFETs), and organic light emitting diodes (OLEDs). Despite extensive studies spanning many decades, a clear understanding of the nature of charge carriers in organic semiconductors is still lacking. It is generally appreciated that polaron formation and charge carrier trapping are two hallmarks associatedmore » with electrical transport in organic semiconductors; the former results from the low dielectric constants and weak intermolecular electronic overlap while the latter can be attributed to the prevalence of structural disorder. These properties have lead to the common observation of low charge carrier mobilities, e.g., in the range of 10-5 - 10-3 cm2/Vs, particularly at low carrier concentrations. However, there is also growing evidence that charge carrier mobility approaching those of inorganic semiconductors and metals can exist in some crystalline organic semiconductors, such as pentacene, tetracene and rubrene. A particularly striking example is single crystal rubrene (Figure 1), in which hole mobilities well above 10 cm2/Vs have been observed in OFETs operating at room temperature. Temperature dependent transport and spectroscopic measurements both revealed evidence of free carriers in rubrene. Outstanding questions are: what are the structural features and physical properties that make rubrene so unique? How do we establish fundamental design principles for the development of other organic semiconductors of high mobility? These questions are critically important but not comprehensive, as the nature of charge carriers is known to evolve as the carrier concentration increases, due to the presence of intrinsic disorder in organic semiconductors. Thus, a complementary question is: how does the nature of charge transport change as a function of carrier concentration?« less

  3. Temperature-dependent vibrational spectroscopy to study order-disorder transitions in charge transfer complexes

    NASA Astrophysics Data System (ADS)

    Isaac, Rohan; Goetz, Katelyn P.; Roberts, Drew; Jurchescu, Oana D.; McNeil, L. E.

    2018-02-01

    Charge-transfer (CT) complexes are a promising class of materials for the semiconductor industry because of their versatile properties. This class of compounds shows a variety of phase transitions, which are of interest because of their potential impact on the electronic characteristics. Here temperature-dependent vibrational spectroscopy is used to study structural phase transitions in a set of organic CT complexes. Splitting and broadening of infrared-active phonons in the complex formed between pyrene and pyromellitic dianhydride (PMDA) confirm the structural transition is of the order-disorder type and complement previous x-ray diffraction (XRD) results. We show that this technique is a powerful tool to characterize transitions, and apply it to a range of binary CT complexes composed of polyaromatic hyrdocarbons (anthracene, perylene, phenanthrene, pyrene, and stilbene) and PMDA. We extend the understanding of transitions in perylene-PMDA and pyrene-PMDA, and show that there are no order-disorder transitions present in anthracene-PMDA, stilbene-PMDA and phenanthrene-PMDA in the temperature range investigated here.

  4. Taking Advantage of Disorder: Small-Molecule Organic Glasses for Radiation Detection and Particle Discrimination

    DOE PAGES

    Carlson, Joseph S.; Marleau, Peter; Zarkesh, Ryan A.; ...

    2017-06-20

    A series of fluorescent silyl-fluorene molecules were synthesized and studied with respect to their photophysical properties and response toward ionizing neutron and gamma-ray radiation. Optically transparent and stable organic glasses were prepared from these materials using a bulk melt-casting procedure. The prepared organic glass monoliths provided fluorescence quantum yields and radiation detection properties exceeding the highest-performing benchmark materials such as solution-grown trans-stilbene crystals. Co-melts based on blends of two different glass-forming compounds were prepared with the goal of enhancing the stability of the amorphous state. Accelerated aging experiments on co-melt mixtures ranging from 0% to 100% of each component indicatedmore » improved resistance to recrystallization in the glass blends, able to remain fully amorphous for >1 month at 60 °C. Secondary dopants comprising singlet fluorophores or iridium organometallic compounds provided further improved detection efficiency, as evaluated by light yield and neutron/gamma particle discrimination measurements. As a result, optimized singlet and triplet doping levels were determined to be 0.05 wt % 1,4-bis(2-methylstyryl)benzene singlet fluorophore and 0.28 wt % Ir 3+, respectively.« less

  5. Taking Advantage of Disorder: Small-Molecule Organic Glasses for Radiation Detection and Particle Discrimination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Joseph S.; Marleau, Peter; Zarkesh, Ryan A.

    A series of fluorescent silyl-fluorene molecules were synthesized and studied with respect to their photophysical properties and response toward ionizing neutron and gamma-ray radiation. Optically transparent and stable organic glasses were prepared from these materials using a bulk melt-casting procedure. The prepared organic glass monoliths provided fluorescence quantum yields and radiation detection properties exceeding the highest-performing benchmark materials such as solution-grown trans-stilbene crystals. Co-melts based on blends of two different glass-forming compounds were prepared with the goal of enhancing the stability of the amorphous state. Accelerated aging experiments on co-melt mixtures ranging from 0% to 100% of each component indicatedmore » improved resistance to recrystallization in the glass blends, able to remain fully amorphous for >1 month at 60 °C. Secondary dopants comprising singlet fluorophores or iridium organometallic compounds provided further improved detection efficiency, as evaluated by light yield and neutron/gamma particle discrimination measurements. As a result, optimized singlet and triplet doping levels were determined to be 0.05 wt % 1,4-bis(2-methylstyryl)benzene singlet fluorophore and 0.28 wt % Ir 3+, respectively.« less

  6. Four-wave mixing response of solution-processed CH3NH3PbI3 thin films

    NASA Astrophysics Data System (ADS)

    March, Samuel A.; Riley, Drew B.; Clegg, Charlotte; Webber, Daniel; Todd, Seth; Hill, Ian G.; Hall, Kimberley C.

    2017-02-01

    The interest in perovskite-based solar cell absorber materials has skyrocketed in recent years due to the rapid rise in solar cell efficiency and the potential for cost reductions tied to solution-processed device fabrication. Due to complications associated with the presence of strong static and dynamic disorder in these organic-inorganic materials, the fundamental photophysical behavior of photo-excited charge carriers remains unclear. We apply four-wave mixing spectroscopy to study the charge carrier dynamics in CH3NH3PbI3 thin films. Our experiments reveal two discrete optical transitions below the band gap of the semiconductor with binding energies of 13 meV and 29 meV, attributed to free and defect-bound excitons respectively.

  7. Kinetically controlled transition from disordered aggregates to ordered lattices of a computationally designed peptide sequence.

    NASA Astrophysics Data System (ADS)

    Tian, Yu; Zhang, Huixi; Kiick, Kristi; Saven, Jeffrey; Pochan, Darrin

    Peptides with well-defined secondary-structures have the ability to exhibit specific, local shapes, which enables the design of complex nanostructures through intermolecular assembly. Our computationally designed coiled-coil homotetrameric peptide building block can self-assemble into 2-D nanomaterial lattices with predetermined symmetries by control of the coiled-coil bundle exterior amino acid residues. And the assemblies can be controlled kinetically. Firstly, the solution pH influences the assembly by affecting the external charged state of peptide bundles which can lead the bundles to be either repulsive or attractive to each other. At room temperature when peptides are under the least charged pH conditions, disordered aggregates are formed that slowly transformed into the desired 2-D lattice structures over long periods of time (weeks). Around neutral pH, even subtle charge differences that come from small pH changes can have an influence on the thickness of afterwards formed plates. Secondly, the solution temperature can largely eliminate the formation of disordered aggregates and accelerate the assembling of matured, desired nanomaterial plates by providing extra energy for the organization process of assembly building blocks. The ability to control the assembly process kinetically makes our peptide plate assemblies very promising templates for further applications to develop inorganic-organic hybrid materials. Funding acknowledged from NSF DMREF program under awards DMR-1234161 and DMR-1235084.

  8. Interfacial disorder drives charge separation in molecular semiconductors

    NASA Astrophysics Data System (ADS)

    Willard, Adam

    One of the fundamental microscopic processes in photocurrent generation is the dissociation of neutral photo-excitations (i.e., Frenkel excitons) into free charge carriers (i.e., electrons and holes). This process requires the physical separation of oppositely charged electrons and holes, which are held to together by an attractive electrostatic binding energy. In traditional inorganic-based photovoltaic (PV) materials, this binding energy is generally small and easily overcome, however, in organic-based PVs (OPVs) the exciton binding energy can significantly exceed thermal energies. The inability of bound charges to overcome this large binding energy has been implicated as a primary source of efficiency loss in OPVs. Here I present results from our recent efforts to explore the role of static molecular disorder in mediating this process. Using a simple lattice model of exciton dynamics we demonstrate that random spatial variations in the energetic landscape can mitigate the attractive Coulomb interaction between electrons and holes. We show that this effect manifests as a reduction in the free energy barrier for exciton dissociation that grows more pronounced with increasing disorder. By considering the competition between this thermodynamic effect and the disorder-induced slowing of dissociation kinetics we demonstrate that exciton dissociation yields are expected to depend non-monotonically on the degree of static disorder.

  9. Distinction of disorder, classical and quantum vibrational contributions to atomic mean-square amplitudes in dielectric pentachloronitrobenzene

    NASA Astrophysics Data System (ADS)

    Cole, Jacqueline M.; Bürgi, Hans-Beat; McIntyre, Garry J.

    2011-06-01

    The solid-state molecular disorder of pentachloronitrobenzene (PCNB) and its role in causing anomalous dielectric properties are investigated. Normal coordinate analysis (NCA) of atomic mean-square displacement parameters (ADPs) is employed to distinguish disorder contributions from classical and quantum-mechanical vibrational contributions. The analysis relies on multitemperature (5-295 K) single-crystal neutron-diffraction data. Vibrational frequencies extracted from the temperature dependence of the ADPs are in good agreement with THz spectroscopic data. Aspects of the static disorder revealed by this work, primarily tilting and displacement of the molecules, are compared with corresponding results from previous, much more in-depth and time-consuming Monte Carlo simulations; their salient findings are reproduced by this work, demonstrating that the faster NCA approach provides reliable constraints for the interpretation of diffuse scattering. The dielectric properties of PCNB can thus be rationalized by an interpretation of the temperature-dependent ADPs in terms of thermal motion and molecular disorder. The use of atomic displacement parameters in the NCA approach is nonetheless hostage to reliable neutron data. The success of this study demonstrates that state-of-the-art single-crystal Laue neutron diffraction affords sufficiently fast the accurate data for this type of study. In general terms, the validation of this work opens up the field for numerous studies of solid-state molecular disorder in organic materials.

  10. Environmental Pressure May Change the Composition Protein Disorder in Prokaryotes

    PubMed Central

    Vicedo, Esmeralda; Schlessinger, Avner; Rost, Burkhard

    2015-01-01

    Many prokaryotic organisms have adapted to incredibly extreme habitats. The genomes of such extremophiles differ from their non-extremophile relatives. For example, some proteins in thermophiles sustain high temperatures by being more compact than homologs in non-extremophiles. Conversely, some proteins have increased volumes to compensate for freezing effects in psychrophiles that survive in the cold. Here, we revealed that some differences in organisms surviving in extreme habitats correlate with a simple single feature, namely the fraction of proteins predicted to have long disordered regions. We predicted disorder with different methods for 46 completely sequenced organisms from diverse habitats and found a correlation between protein disorder and the extremity of the environment. More specifically, the overall percentage of proteins with long disordered regions tended to be more similar between organisms of similar habitats than between organisms of similar taxonomy. For example, predictions tended to detect substantially more proteins with long disordered regions in prokaryotic halophiles (survive high salt) than in their taxonomic neighbors. Another peculiar environment is that of high radiation survived, e.g. by Deinococcus radiodurans. The relatively high fraction of disorder predicted in this extremophile might provide a shield against mutations. Although our analysis fails to establish causation, the observed correlation between such a simplistic, coarse-grained, microscopic molecular feature (disorder content) and a macroscopic variable (habitat) remains stunning. PMID:26252577

  11. Phonon bottleneck identification in disordered nanoporous materials

    NASA Astrophysics Data System (ADS)

    Romano, Giuseppe; Grossman, Jeffrey C.

    2017-09-01

    Nanoporous materials are a promising platform for thermoelectrics in that they offer high thermal conductivity tunability while preserving good electrical properties, a crucial requirement for high-efficiency thermal energy conversion. Understanding the impact of the pore arrangement on thermal transport is pivotal to engineering realistic materials, where pore disorder is unavoidable. Although there has been considerable progress in modeling thermal size effects in nanostructures, it has remained a challenge to screen such materials over a large phase space due to the slow simulation time required for accurate results. We use density functional theory in connection with the Boltzmann transport equation to perform calculations of thermal conductivity in disordered porous materials. By leveraging graph theory and regressive analysis, we identify the set of pores representing the phonon bottleneck and obtain a descriptor for thermal transport, based on the sum of the pore-pore distances between such pores. This approach provide a simple tool to estimate phonon suppression in realistic porous materials for thermoelectric applications and enhance our understanding of heat transport in disordered materials.

  12. Photocarrier drift distance in organic solar cells and photodetectors

    PubMed Central

    Stolterfoht, Martin; Armin, Ardalan; Philippa, Bronson; White, Ronald D.; Burn, Paul L.; Meredith, Paul; Juška, Gytis; Pivrikas, Almantas

    2015-01-01

    Light harvesting systems based upon disordered materials are not only widespread in nature, but are also increasingly prevalent in solar cells and photodetectors. Examples include organic semiconductors, which typically possess low charge carrier mobilities and Langevin-type recombination dynamics – both of which negatively impact the device performance. It is accepted wisdom that the “drift distance” (i.e., the distance a photocarrier drifts before recombination) is defined by the mobility-lifetime product in solar cells. We demonstrate that this traditional figure of merit is inadequate for describing the charge transport physics of organic light harvesting systems. It is experimentally shown that the onset of the photocarrier recombination is determined by the electrode charge and we propose the mobility-recombination coefficient product as an alternative figure of merit. The implications of these findings are relevant to a wide range of light harvesting systems and will necessitate a rethink of the critical parameters of charge transport. PMID:25919439

  13. [Conversion disorder : functional neuroimaging and neurobiological mechanisms].

    PubMed

    Lejeune, J; Piette, C; Salmon, E; Scantamburlo, G

    2017-04-01

    Conversion disorder is a psychiatric disorder often encountered in neurology services. This condition without organic lesions was and still is sometimes referred as an imaginary illness or feigning. However, the absence of organic lesions does not exclude the possibility of cerebral dysfunction. The etiologic mechanisms underlying this disorder remain uncertain even today.The advent of cognitive and functional imaging opens up a field of exploration for psychiatry in understanding the neurobiological mechanisms underlying mental disorders and especially the conversion disorder. This article reports several neuroimaging studies of conversion disorder and attempts to generate hypotheses about neurobiological mechanisms.

  14. Mood Disorders

    MedlinePlus

    ... disorder; dysthymic disorder (a chronic, mild depression); and bipolar disorder (also called manic depression). Major depressive disorder is, ... to the World Health Organization. YESTERDAY Depression and bipolar disorder weren’t considered distinct brain illnesses, and distinct ...

  15. Twelve-month prevalence and treatment gap for common mental disorders: Findings from a large-scale epidemiological survey in India

    PubMed Central

    Sagar, Rajesh; Pattanayak, Raman Deep; Chandrasekaran, R.; Chaudhury, Pranit K.; Deswal, Balbir S.; Lenin Singh, R. K.; Malhotra, Savita; Nizamie, S. Haque; Panchal, Bharat N.; Sudhakar, T. P.; Trivedi, J. K.; Varghese, Mathew; Prasad, Jagdish; Chatterji, Somnath

    2017-01-01

    Background: Common mental disorders, such as mood, anxiety, and substance use disorders, are significant contributors to disability globally, including India. Available research is, however, limited by methodological issues and heterogeneities. Aim: The present paper focuses on the 12-month prevalence and 12-month treatment for anxiety, mood, and substance use disorders in India. Materials and Methods: As part of the World Health Organization World Mental Health (WMH) Survey Initiative, in India, the study was conducted at eleven sites. However, the current study focuses on the household sample of 24,371 adults (≥18 years) of eight districts of different states, covering rural and urban areas. Respondents were interviewed face-to-face using the WMH Composite International Diagnostic Interview after translation and country-specific adaptations. Diagnoses were generated as per the International Classification of Diseases, 10th edition, Diagnostic Criteria for Research. Results: Nearly 49.3% of the sample included males. The 12-month prevalence of common mental disorders was 5.52% - anxiety disorders (3.41%), mood disorders (1.44%), and substance use disorders (1.18%). Females had a relatively higher prevalence of anxiety and mood disorders, and lower prevalence of substance use disorders than males. The 12-month treatment for people with common mental disorders was 5.09% (range 1.66%–11.55% for individual disorders). The survey revealed a huge treatment gap of 95%, with only 5 out of 100 individuals with common mental disorders receiving any treatment over the past year. Conclusion: The survey provides valuable data to understand the mental health needs and treatment gaps in the Indian population. Despite the 12-month prevalence study being restricted to selected mental disorders, these estimates are likely to be conservative due to under-reporting or inadequate detection due to cultural factors. PMID:28529360

  16. Effectiveness and Cost-effectiveness of School-based Dissemination Strategies of an Internet-based Program for the Prevention and Early Intervention in Eating Disorders: A Randomized Trial.

    PubMed

    Moessner, Markus; Minarik, Carla; Ozer, Fikret; Bauer, Stephanie

    2016-04-01

    Only little is known about costs and effects (i.e., success) of dissemination strategies, although cost-effective dissemination strategies are crucial for the transfer of interventions into routine care. This study investigates the effects and cost-effectiveness of five school-based dissemination strategies for an Internet-based intervention for the prevention and early intervention of eating disorders. Three-hundred ninety-five schools were randomly assigned to one of five dissemination strategies. Strategies varied with respect to intensity from only sending advertisement materials and asking the school to distribute them among students to organizing presentations and workshops at schools. Effects were defined as the number of page visits, the number of screenings conducted, and the number of registrations to the Internet-based intervention. More expensive strategies proved to be more cost-effective. Cost per page visit ranged from 2.83€ (introductory presentation plus workshop) to 20.37€ (dissemination by student representatives/peers). Costs per screening ranged from 3.30€ (introductory presentation plus workshop) to 75.66€ (dissemination by student representatives/peers), and costs per registration ranged from 6.86€ (introductory presentation plus workshop) to 431.10€ (advertisement materials only). Dissemination of an Internet-based intervention for prevention and early intervention is challenging and expensive. More intense, expensive strategies with personal contact proved to be more cost-effective. The combination of an introductory presentation on eating disorders and a workshop in the high school was most effective and had the best cost-effectiveness ratio. The sole distribution of advertisement materials attracted hardly any participants to the Internet-based program.

  17. [The efficacy and tolerability of pericyazine in the treatment of patients with schizotypal disorder, organic personality disorders and pathocharacterological changes within personality disorders].

    PubMed

    Danilov, D S

    To assess the efficacy and tolerability of pericyazine in the treatment of patients with mental disorders manifesting with psychopathic-like symptoms and correction of pathocharacterological disorders in patients with personality disorders during the short-term admission to the hospital or the long-term outpatient treatment. Sixty-three patients with schizotypal personality disorder and organic personality disorder with psychopathic-like symptoms and pathocharacterological changes within the diagnosis of dissocial personality disorder and borderline personality disorder were examined. Patients received pericyazine during the short-term admission to the hospital (6 weeks) or the long-term outpatient treatment (6 month). Efficacy, tolerability and compliance were assessed in the study. Treatment with pricyazine was effective in all patients. The improvement was seen in patients with organic personality disorders and patients with personality disorders (psychopathy). The maximal effect was observed in inpatients and this effect remained during outpatient treatment. The improvement of mental state of patients with schizotypal personality disorder achieved during inpatient treatment with pericyazine continued during the long-term outpatient treatment. Side-effects were restricted to extrapyramidal symptoms, the frequency of metabolic syndrome was low. During outpatient treatment, the compliance was higher if the patient was managed by the same psychiatrist during inpatient- and outpatient treatment.

  18. Organic Determinants of Learning and Behavioral Disorders.

    ERIC Educational Resources Information Center

    Philpott, William H.; And Others

    Theories regarding organic determinants of learning and behavior disorders are reviewed historically. Cases illustrating how a bio-ecologic examination can isolate the substances to which a person reacts and some of the reasons for those reactions are presented; and the role of various disorders in relation to the central nervous system is…

  19. Associations between the social organization of communities and psychiatric disorders in rural Asia.

    PubMed

    Axinn, William G; Ghimire, Dirgha J; Williams, Nathalie E; Scott, Kate M

    2015-10-01

    We provide rare evidence of factors producing psychiatric variation in a general population sample from rural South Asia. The setting is particularly useful for demonstrating that variations in the social organization of communities, often difficult to observe in rich countries, are associated with important variations in mental health. Clinically validated survey measures are used to document variation in psychiatric disorders among 401 adults. This sample is chosen from a systematic sample of the general population of rural Nepal, in a community-level-controlled comparison design. Multilevel logistic regression is used to estimate multivariate models of the association between community-level nonfamily social organization and individual-level psychiatric disorders. Schools, markets, health services and social support groups each substantially reduce the odds of depression, post-traumatic stress disorder (PTSD), intermittent explosive disorder and anxiety disorders. Associations between schools, health services and social support groups and depression are statistically significant and independent of each other. The association between access to markets and PTSD is statistically significant and independent of other social organization and support groups. Community integration of some nonfamily social organizations promotes mental health in ways that may go unobserved in settings with many such organizations. More research on the mechanisms producing these associations is likely to reveal potential avenues for public policy and programs to improve mental health in the general population.

  20. Associations between the Social Organization of Communities and Psychiatric Disorders in Rural Asia

    PubMed Central

    Axinn, William G.; Ghimire, Dirgha J.; Williams, Nathalie E.; Scott, Kate M.

    2015-01-01

    Purpose We provide rare evidence of factors producing psychiatric variation in a general population sample from rural South Asia. The setting is particularly useful for demonstrating that variations in the social organization of communities, often difficult to observe in rich countries, are associated with important variations in mental health. Methods Clinically validated survey measures are used to document variation in psychiatric disorders among 401 adults. This sample is chosen from a systematic sample of the general population of rural Nepal, in a community-level controlled comparison design. Multilevel logistic regression is used to estimate multivariate models of the association between community-level nonfamily social organization and individual-level psychiatric disorders. Results Schools, markets, health services and social support groups each substantially reduce the odds of depression, post-traumatic stress disorder (PTSD), intermittent explosive disorder (IED) and anxiety disorders. Associations between schools, health services and social support groups and depression are statistically significant and independent of each other. The association between access to markets and PTSD is statistically significant and independent of other social organization and support groups. Conclusions Community integration of some nonfamily social organizations promotes mental health in ways that may go unobserved in settings with many such organizations. More research on the mechanisms producing these associations is likely to reveal potential avenues for public policy and programs to improve mental health in the general population. PMID:25796491

  1. Cardiomyopathy

    MedlinePlus

    ... to grow in the heart and other organs (sarcoidosis) A disorder that causes the buildup of abnormal ... to grow in the heart and other organs (sarcoidosis), or connective tissue disorders Complications Cardiomyopathy can lead ...

  2. Phase behavior and transitions of self-assembling nano-structured materials

    NASA Astrophysics Data System (ADS)

    Duan, Hu

    Homologous series of supramolecular nanostructures have been investigated by a combination of transmission electron microscopy (TEM), electron diffraction (ED), thermal polarized optical microscopy and X-ray diffraction (XRD). Materials include amphiphilic oligomers and polymer such as charged complexes, dipeptide dendrons semi-fluorinated dendron and polyethyleneimines. Upon microphase separation, they self-assemble into either cylindrical or spherical shapes, which co-organize into a 2D P6mm hexagonal columnar phase or 3D Pm 3¯ n and Im 3¯ m cubic phases. Correlation between the phase selection and molecular architecture is established accordingly. The order-disorder transition (ODT) is explored by rheometry and rheo-optical microscopy in a model polymeric compound poly(N-[3,4-bis(n-dodecan-1-yloxy)benzoyl]ethyleneimine). Shear alignment of the hexagonal columnar liquid crystalline phase along the velocity direction at low temperature and shear disordering in the vicinity of the ODT were observed. After cessation of shear, transformation back to the stable columnar phase follows a row-nucleation mechanism. The order-order transition process is explored in a monodendron that exhibits a hexagonal columnar and a weakly birefringent mesophase. Polarized DIC microscopy strongly supports an epitaxial relationship between them.

  3. Psychiatric emergencies (part II): psychiatric disorders coexisting with organic diseases.

    PubMed

    Testa, A; Giannuzzi, R; Sollazzo, F; Petrongolo, L; Bernardini, L; Dain, S

    2013-02-01

    In this Part II psychiatric disorders coexisting with organic diseases are discussed. "Comorbidity phenomenon" defines the not univocal interrelation between medical illnesses and psychiatric disorders, each other negatively influencing morbidity and mortality. Most severe psychiatric disorders, such as schizophrenia, bipolar disorder and depression, show increased prevalence of cardiovascular disease, related to poverty, use of psychotropic medication, and higher rate of preventable risk factors such as smoking, addiction, poor diet and lack of exercise. Moreover, psychiatric and organic disorders can develop together in different conditions of toxic substance and prescription drug use or abuse, especially in the emergency setting population. Different combinations with mutual interaction of psychiatric disorders and substance use disorders are defined by the so called "dual diagnosis". The hypotheses that attempt to explain the psychiatric disorders and substance abuse relationship are examined: (1) common risk factors; (2) psychiatric disorders precipitated by substance use; (3) psychiatric disorders precipitating substance use (self-medication hypothesis); and (4) synergistic interaction. Diagnostic and therapeutic difficulty concerning the problem of dual diagnosis, and legal implications, are also discussed. Substance induced psychiatric and organic symptoms can occur both in the intoxication and withdrawal state. Since ancient history, humans selected indigene psychotropic plants for recreational, medicinal, doping or spiritual purpose. After the isolation of active principles or their chemical synthesis, higher blood concentrations reached predispose to substance use, abuse and dependence. Abuse substances have specific molecular targets and very different acute mechanisms of action, mainly involving dopaminergic and serotoninergic systems, but finally converging on the brain's reward pathways, increasing dopamine in nucleus accumbens. The most common substances producing an addiction status may be assembled in depressants (alcohol, benzodiazepines, opiates), stimulants (cocaine, amphetamines, nicotine, caffeine, modafinil), hallucinogens (mescaline, LSD, ecstasy) and other substances (cannabis, dissociatives, inhalants). Anxiety disorders can occur in intoxication by stimulants, as well as in withdrawal syndrome, both by stimulants and sedatives. Substance induced mood disorders and psychotic symptoms are as much frequent conditions in ED, and the recognition of associated organic symptoms may allow to achieve diagnosis. Finally, psychiatric and organic symptoms may be caused by prescription and doping medications, either as a direct effect or after withdrawal. Adverse drug reactions can be divided in type A, dose dependent and predictable, including psychotropic drugs and hormones; and type B, dose independent and unpredictable, usually including non psychotropic drugs, more commonly included being cardiovascular, antibiotics, anti-inflammatory and antineoplastic medications.

  4. Phase transition in organic-inorganic perovskite (C9H19NH3)2 PbI2Br2 of long-chain alkylammonium

    NASA Astrophysics Data System (ADS)

    Abid, H.; Trigui, A.; Mlayah, A.; Hlil, E. K.; Abid, Y.

    2012-01-01

    Single perovskite slab alkylammonium lead iodides bromides (C9H19NH3)2PbI2Br2 is a new member of the family of hybrid organic-inorganic perovskite compounds. It exhibits a single structural phase transition with changes in the conformation of alkylammonium chains below room temperature. Differential scanning calorimetry (DSC), powder X-ray diffraction and FT-Raman spectroscopy were used to investigate this phase transition. These changes were characterized by a decreased conformational disorder of the methylene units of the alkyl chains. Phase transition was examined in light of the interesting optical properties of this material, as well as the relevance of this system as models for phase transitions in lipid bilayers.

  5. Neurocognitive disorders: cluster 1 of the proposed meta-structure for DSM-V and ICD-11.

    PubMed

    Sachdev, P; Andrews, G; Hobbs, M J; Sunderland, M; Anderson, T M

    2009-12-01

    In an effort to group mental disorders on the basis of aetiology, five clusters have been proposed. In this paper, we consider the validity of the first cluster, neurocognitive disorders, within this proposal. These disorders are categorized as 'Dementia, Delirium, and Amnestic and Other Cognitive Disorders' in DSM-IV and 'Organic, including Symptomatic Mental Disorders' in ICD-10. We reviewed the literature in relation to 11 validating criteria proposed by a Study Group of the DSM-V Task Force as applied to the cluster of neurocognitive disorders. 'Neurocognitive' replaces the previous terms 'cognitive' and 'organic' used in DSM-IV and ICD-10 respectively as the descriptor for disorders in this cluster. Although cognitive/organic problems are present in other disorders, this cluster distinguishes itself by the demonstrable neural substrate abnormalities and the salience of cognitive symptoms and deficits. Shared biomarkers, co-morbidity and course offer less persuasive evidence for a valid cluster of neurocognitive disorders. The occurrence of these disorders subsequent to normal brain development sets this cluster apart from neurodevelopmental disorders. The aetiology of the disorders is varied, but the neurobiological underpinnings are better understood than for mental disorders in any other cluster. Neurocognitive disorders meet some of the salient criteria proposed by the Study Group of the DSM-V Task Force to suggest a classification cluster. Further developments in the aetiopathogenesis of these disorders will enhance the clinical utility of this cluster.

  6. Bulk heterojunction morphology of polymer:fullerene blends revealed by ultrafast spectroscopy

    PubMed Central

    Serbenta, Almis; Kozlov, Oleg V.; Portale, Giuseppe; van Loosdrecht, Paul H. M.; Pshenichnikov, Maxim S.

    2016-01-01

    Morphology of organic photovoltaic bulk heterojunctions (BHJs) – a nanoscale texture of the donor and acceptor phases – is one of the key factors influencing efficiency of organic solar cells. Detailed knowledge of the morphology is hampered by the fact that it is notoriously difficult to investigate by microscopic methods. Here we all-optically track the exciton harvesting dynamics in the fullerene acceptor phase from which subdivision of the fullerene domain sizes into the mixed phase (2–15 nm) and large (>50 nm) domains is readily obtained via the Monte-Carlo simulations. These results were independently confirmed by a combination of X-ray scattering, electron and atomic-force microscopies, and time-resolved photoluminescence spectroscopy. In the large domains, the excitons are lost due to the high energy disorder while in the ordered materials the excitons are harvested with high efficiency even from the domains as large as 100 nm due to the absence of low-energy traps. Therefore, optimizing of blend nanomorphology together with increasing the material order are deemed as winning strategies in the exciton harvesting optimization. PMID:27824085

  7. Temperature-Triggered Dielectric-Optical Duple Switch Based on an Organic-Inorganic Hybrid Phase Transition Crystal: [C5N2H16]2SbBr5.

    PubMed

    Mao, Chen-Yu; Liao, Wei-Qiang; Wang, Zhong-Xia; Zafar, Zainab; Li, Peng-Fei; Lv, Xing-Hui; Fu, Da-Wei

    2016-08-01

    Molecular optical-electrical duple switches (switch "ON" and "OFF" bistable states) represent a class of highly desirable intelligent materials because of their sensitive switchable physical and/or chemical responses, simple and environmentally friendly processing, light weights, and mechanical flexibility. In the current work, the phase transition of 1 (general formula R2MX5, [C5N2H16]2[SbBr5]) can be triggered by the order-disorder transition of the organic cations at 278.3 K. The temperature-induced phase transition causes novel bistable optical-electrical duple characteristics, which indicates that 1 might be an excellent candidate for a potential switchable optical-electrical (fluorescence/dielectric) material. In the dielectric measurements, remarkable bistable dielectric responses were detected, accompanied by striking anisotropy along various crystallographic axes. For the intriguing fluorescence emission spectra, the intensity and position changed significantly with the occurrence of the structural phase transition. We believe that these findings might further promote the application of halogenoantimonates(III) and halogenobismuthates(III) in the field of optoelectronic multifunctional devices.

  8. Crystallography, chemistry and structural disorder in the new high-Tc Bi-Ca-Sr-Cu-O superconductor

    NASA Technical Reports Server (NTRS)

    Veblen, D. R.; Heaney, P. J.; Angel, R. J.; Finger, L. W.; Hazen, R. M.

    1988-01-01

    Diffraction experiments are reported which indicate that the new Bi-Ca-Sr-Cu-O layer-structure superconductor possesses a primitive orthorhombic unit cell with probable space group Pnnn. The material exhibits severe structural disorder which is primarily related to stacking within the layers. The apparent orthorhombic structure is an average resulting from orthorhombic material mixed with monoclinic domains in two twinned orientations. Two distinct types of structural disorder that are common in materials synthesized to date are also described. This disorder complicates the crystallographic analysis and suggests that X-ray and neutron diffraction methods may yield only an average structure.

  9. Efficient encapsulation of proteins with random copolymers.

    PubMed

    Nguyen, Trung Dac; Qiao, Baofu; Olvera de la Cruz, Monica

    2018-06-12

    Membraneless organelles are aggregates of disordered proteins that form spontaneously to promote specific cellular functions in vivo. The possibility of synthesizing membraneless organelles out of cells will therefore enable fabrication of protein-based materials with functions inherent to biological matter. Since random copolymers contain various compositions and sequences of solvophobic and solvophilic groups, they are expected to function in nonbiological media similarly to a set of disordered proteins in membraneless organelles. Interestingly, the internal environment of these organelles has been noted to behave more like an organic solvent than like water. Therefore, an adsorbed layer of random copolymers that mimics the function of disordered proteins could, in principle, protect and enhance the proteins' enzymatic activity even in organic solvents, which are ideal when the products and/or the reactants have limited solubility in aqueous media. Here, we demonstrate via multiscale simulations that random copolymers efficiently incorporate proteins into different solvents with the potential to optimize their enzymatic activity. We investigate the key factors that govern the ability of random copolymers to encapsulate proteins, including the adsorption energy, copolymer average composition, and solvent selectivity. The adsorbed polymer chains have remarkably similar sequences, indicating that the proteins are able to select certain sequences that best reduce their exposure to the solvent. We also find that the protein surface coverage decreases when the fluctuation in the average distance between the protein adsorption sites increases. The results herein set the stage for computational design of random copolymers for stabilizing and delivering proteins across multiple media.

  10. Physical properties of organic fullerene cocrystals

    NASA Astrophysics Data System (ADS)

    Macovez, Roberto

    2017-12-01

    The basic facts and fundamental properties of binary fullerene cocrystals are reviewed, focusing especially on solvates and salts of Buckminsterfullerene (C60), and hydrates of hydrophilic C60 derivatives. The examined properties include the lattice structure and the presence of orientational disorder and/or rotational dynamics (of both fullerenes and cocrystallizing moieties), thermodynamic properties such as decomposition enthalpies, and charge transport properties. Both thermodynamic properties and molecular orientational disorder shed light on the extent of intermolecular interactions in these binary solid-state systems. Comparison is carried out also with pristine fullerite and with the solid phases of functionalized C60. Interesting experimental findings on binary fullerene cocrystals include the simultaneous occurrence of rotations of both constituent molecular species, crystal morphologies reminiscent of quasi-crystalline behaviour, the observation of proton conduction in hydrate solids of hydrophilic fullerene derivatives, and the production of super-hard carbon materials by application of high pressures on solvated fullerene crystals.

  11. Best practices for preventing musculoskeletal disorders in masonry: stakeholder perspectives.

    PubMed

    Entzel, Pamela; Albers, Jim; Welch, Laura

    2007-09-01

    Brick masons and mason tenders report a high prevalence of work-related musculoskeletal disorders (WMSDs), many of which can be prevented with changes in materials, work equipment or work practices. To explore the use of "best practices" in the masonry industry, NIOSH organized a 2-day meeting of masonry stakeholders. Attendees included 30 industry representatives, 5 health and safety researchers, 4 health/safety specialists, 2 ergonomic consultants, and 2 representatives of state workers' compensation programs. Small groups discussed ergonomic interventions currently utilized in the masonry industry, including factors affecting intervention implementation and ways to promote diffusion of interventions. Meeting participants also identified various barriers to intervention implementation, including business considerations, quality concerns, design issues, supply problems, jobsite conditions and management practices that can slow or limit intervention diffusion. To be successful, future diffusion efforts must not only raise awareness of available solutions but also address these practical concerns.

  12. PREFACE: 14th International Conference on Transport in Interacting Disordered Systems (TIDS-14)

    NASA Astrophysics Data System (ADS)

    Frydman, Aviad

    2012-07-01

    The '14th Transport in interacting disordered systems - TIDS14' conference took place during 5-8 September 2011 in Acre Israel. The conference was a continuation of the biennial meeting traditionally called HRP (hopping and related phenomena) and later named TIDS (transport in interacting disordered systems). Previous conferences took place in Trieste (1985), Bratislava (1987), Chapel Hill (1989), Marburg (1991), Glasgow (1993), Jerusalem (1995), Rackeve (1997), Murcia (1999), Shefayim (2001), Trieste (2003), Egmond, aan Zee (2005), Marburg (2007) and Rackeve (2009). Central to these conferences are systems that are characterized by a large degree of disorder and hence they lack translational symmetry. In such systems interactions are usually very important. Dramatic differences in the behavior of crystalline solids and the 'disordered' systems are possible. Some examples of the latter are amorphous materials, polymer aggregates, materials whose properties are governed by impurities, granular systems and biological systems. This conference series is notable for the pleasant atmosphere and fruitful exchange of ideas between theoreticians and experimentalists in these areas. This tradition was also maintained in the conference in Israel. Specific topics of TIDS14 included: hopping, electron and Coulomb glasses, Anderson localization and many body localization, noise, magneto-transport, metal-insulator and superconductor-insulator transition, transport through low dimensional and nanostructures, quantum coherence, interference and dephasing and other related topics. Over sixty scientists from fourteen countries participated in the conference and presented papers either as oral presentations or as posters in two sessions that took place during the conference. Many of these papers are included in these proceedings. I would like to thank all the conference participants for the interesting presentations, debates and discussions that created a stimulating but pleasant environment. Also, I thank the other members of the local organizing committee Tal Havdala and Shachaf Poran from Bar Ilan University and the members of the international advisory committee. I gratefully acknowledge support from the Israel Science foundation and from Bar Ilan University. Aviad Frydman Conference chairman Bar Ilan University

  13. Coulomb disorder in three-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Skinner, Brian

    2015-03-01

    In three-dimensional materials with a Dirac spectrum, weak short-ranged disorder is essentially irrelevant near the Dirac point. This is manifestly not the case for Coulomb disorder, where the long-ranged nature of the potential produced by charged impurities implies large fluctuations of the disorder potential even when impurities are sparse, and these fluctuations are screened by the formation of electron/hole puddles. Here I outline a theory of such nonlinear screening of Coulomb disorder in three-dimensional Dirac systems, and present results for the typical magnitude of the disorder potential, the corresponding density of states, and the size and density of electron/hole puddles. The resulting conductivity is also discussed.

  14. Functional speech disorders: clinical manifestations, diagnosis, and management.

    PubMed

    Duffy, J R

    2016-01-01

    Acquired psychogenic or functional speech disorders are a subtype of functional neurologic disorders. They can mimic organic speech disorders and, although any aspect of speech production can be affected, they manifest most often as dysphonia, stuttering, or prosodic abnormalities. This chapter reviews the prevalence of functional speech disorders, the spectrum of their primary clinical characteristics, and the clues that help distinguish them from organic neurologic diseases affecting the sensorimotor networks involved in speech production. Diagnosis of a speech disorder as functional can be supported by sometimes rapidly achieved positive outcomes of symptomatic speech therapy. The general principles of such therapy are reviewed. © 2016 Elsevier B.V. All rights reserved.

  15. Failure of disordered materials as a depinning transition

    NASA Astrophysics Data System (ADS)

    Ponson, Laurent

    2010-03-01

    Crack propagation is the fundamental process leading to material failure. However, its dynamics is far from being fully understood. In this work, we investigate both experimentally and theoretically the far-from-equilibrium propagation of a crack within a disordered brittle material. At first, we focus on the average dynamics of a crack, and study the variations of its growth velocity v with respect to the external driving force G [1]. Carefully measured on a brittle rock, these variations are shown to display two regimes: above a given threshold Gc, the velocity evolves as a power law v ˜(G- Gc)^0.8, while at low driving force, its variations are well described by a sub-critical creep law, characteristic of a thermally activated crack propagation. Extending the continuum theory of Fracture Mechanics to inhomogeneous media, we show that this behavior is reminiscent of a dynamical critical transition: critical failure occurs when the driving force is sufficiently large to depin the crack front from the material heterogeneities. Another way to reveal such a transition is to investigate the fluctuations of crack velocity [2]. Considering a crack at the heterogeneous interface between two elastic solids, we predict that its propagation occurs through sudden jumps, with power law distributed sizes and durations. These predictions compare quantitatively well with recent direct observations of interfacial crack propagation [3]. Such an interpretation of material failure opens new perspectives in the field of Engineering and Applied Science that will be finally discussed. [4pt] [1] L. Ponson, Depinning transition in failure of inhomogeneous brittle materials, Phys. Rev. Lett. 103, 055501 (2009). [0pt] [2] D. Bonamy, S. Santucci and L. Ponson, Crackling dynamics in material failure as a signature of a self-organized dynamic phase transition, Phys. Rev. Lett. 101, 045501 (2008). [0pt] [3] K.J. Måløy, S. Santucci, J. Schmittbuhl and R. Toussaint, Local waiting time fluctuations along a randomly pinned crack front, Phys. Rev. Lett. 96, 045501 (2006).

  16. Food and Natural Materials Target Mechanisms to Effectively Regulate Allergic Responses.

    PubMed

    Shin, Hee Soon; Shon, Dong-Hwa

    2015-01-01

    An immune hypersensitivity disorder called allergy is caused by diverse allergens entering the body via skin contact, injection, ingestion, and/or inhalation. These allergic responses may develop into allergic disorders, including inflammations such as atopic dermatitis, asthma, anaphylaxis, food allergies, and allergic rhinitis. Several drugs have been developed to treat these allergic disorders; however, long-term intake of these drugs could have adverse effects. As an alternative to these medicines, food and natural materials that ameliorate allergic disorder symptoms without producing any side effects can be consumed. Food and natural materials can effectively regulate successive allergic responses in an allergic chain-reaction mechanism in the following ways: [1] Inhibition of allergen permeation via paracellular diffusion into epithelial cells, [2] suppression of type 2 T-helper (Th) cell-related cytokine production by regulating Th1/Th2 balance, [3] inhibition of pathogenic effector CD4(+) T cell differentiation by inducing regulatory T cells (Treg), and [4] inhibition of degranulation in mast cells. The immunomodulatory effects of food and natural materials on each target mechanism were scientifically verified and shown to alleviate allergic disorder symptoms. Furthermore, consumption of certain food and natural materials such as fenugreek, skullcap, chitin/chitosan, and cheonggukjang as anti-allergics have merits such as safety (no adverse side effects), multiple suppressive effects (as a mixture would contain various components that are active against allergic responses), and ease of consumption when required. These merits and anti-allergic properties of food and natural materials help control various allergic disorders.

  17. The Organization and Anatomy of Narrative Comprehension and Expression in Lewy Body Spectrum Disorders

    PubMed Central

    Ash, Sharon; Xie, Sharon; Gross, Rachel Goldmann; Dreyfuss, Michael; Boller, Ashley; Camp, Emily; Morgan, Brianna; O’Shea, Jessica; Grossman, Murray

    2012-01-01

    Objective Patients with Lewy body spectrum disorders (LBSD) such as Parkinson’s disease (PD), Parkinson’s disease with dementia (PDD), and dementia with Lewy bodies (DLB) exhibit deficits in both narrative comprehension and narrative expression. The present research examines the hypothesis that these impairments are due to a material-neutral deficit in organizational executive resources rather than to impairments of language per se. We predicted that comprehension and expression of narrative would be similarly affected and that deficits in both expression and comprehension of narrative would be related to the same anatomic distribution of prefrontal disease. Method We examined 29 LBSD patients and 26 healthy seniors on their comprehension and expression of narrative discourse. For comprehension, we measured accuracy and latency in judging events with high and low associativity from familiar scripts such as “going fishing.” The expression task involved maintaining the connectedness of events while narrating a story from a wordless picture book. Results LBSD patients were impaired on measures of narrative organization during both comprehension and expression relative to healthy seniors. Measures of organization during narrative expression and comprehension were significantly correlated with each other. These measures both correlated with executive measures but not with neuropsychological measures of lexical semantics or grammar. Voxel-based morphometry revealed overlapping regressions relating frontal atrophy to narrative comprehension, narrative expression, and measures of executive control. Conclusions Difficulty with narrative discourse in LBSD stems in part from a deficit of organization common to comprehension and expression. This deficit is related to prefrontal cortical atrophy in LBSD. PMID:22309984

  18. Order-disorder structural phase transition and magnetocaloric effect in organic-inorganic halide hybrid (C2H5NH3)2CoCl4

    NASA Astrophysics Data System (ADS)

    Sen, Abhijit; Roy, Soumyabrata; Peter, Sebastian C.; Paul, Arpita; Waghmare, Umesh V.; Sundaresan, A.

    2018-02-01

    We report a detailed experimental and theoretical investigation of structural, optical, magnetic and magnetothermal properties of single crystals of a new organic-inorganic hybrid (C2H5NH3)2CoCl4. Grown by slow evaporation method at room temperature, the compound crystallizes in centrosymmetric orthorhombic structure (Pnma) which undergoes a reversible phase transition at 235/241 K (cooling/heating) to noncentrosymmetric P212121 space group symmetry associated with order-disorder transformation of carbon atoms of the ammonium cations as well as molecular rearrangement. Electronic absorption spectra of the compound are typical of geometrically distorted [CoCl4]2- tetrahedra having spin-orbit coupling effect. The isolated nature of [CoCl4]2- tetrahedra in the crystal reflect in paramagnetic behaviour of the compound. Interestingly, field induced spin flipping behaviour is observed at low temperature. First principles density functional calculations reveal weak magnetic interaction among cobalt spins with ferromagnetic state being the ground state. The entropy change associated with the spin flipping has been experimentally estimated by magnetic and heat capacity measurements which has a maximum value of 16 J Kg-1 K-1 at 2.5 K under 7 T magnetic field. To the best of our knowledge, this is the first report on magnetocaloric effect observed in an organic-inorganic halide compound. The estimated value is sizable and is comparable to that of well-known transition metal molecular cluster magnets Mn12 or Fe14. The overall findings promise to enlighten new routes to design and constitute multifunctional organic-inorganic halide materials.

  19. Overlap between functional abdominal pain disorders and organic diseases in children.

    PubMed

    Langshaw, A H; Rosen, J M; Pensabene, L; Borrelli, O; Salvatore, S; Thapar, N; Concolino, D; Saps, M

    2018-04-02

    Functional abdominal pain disorders are highly prevalent in children. These disorders can be present in isolation or combined with organic diseases, such as celiac disease and inflammatory bowel diseases. Intestinal inflammation (infectious and non-infectious) predisposes children to the development of visceral hypersensitivity that can manifest as functional abdominal pain disorders, including irritable bowel syndrome. The new onset of irritable bowel syndrome symptoms in a patient with an underlying organic disease, such as inflammatory bowel disease, is clinically challenging, given that the same symptomatology may represent a flare-up of the inflammatory bowel disease or an overlapping functional abdominal pain disorder. Similarly, irritable bowel syndrome symptoms in a child previously diagnosed with celiac disease may occur due to poorly controlled celiac disease or the overlap with a functional abdominal pain disorder. There is little research on the overlap of functional abdominal disorders with organic diseases in children. Studies suggest that the overlap between functional abdominal pain disorders and inflammatory bowel disease is more common in adults than in children. The causes for these differences in prevalence are unknown. Only a handful of studies have been published on the overlap between celiac disease and functional abdominal pain disorders in children. The present article provides a review of the literature on the overlap between celiac disease, inflammatory bowel disease, and functional abdominal pain disorders in children and establish comparisons with studies conducted on adults. Copyright © 2018 Asociación Mexicana de Gastroenterología. Publicado por Masson Doyma México S.A. All rights reserved.

  20. [Time-organization of EEG patterns' structure in anxiety and phobic disorders].

    PubMed

    Sviatogor, I A; Mokhovikova, I A

    2005-01-01

    Thirty-five patients, aged 19-48 years (mean age 38 years) with anxiety and phobic disorders were examined. According to ICD-10 criteria--social phobia (F40.1), panic disorder (F41.0), somatoform autonomic dysfunction (F45.3) were diagnosed. Using electroencephalography data, qualitative and quantitative characteristics of the time- and spatial-organization of brain EEG activity in anxiety and phobic disorders of different severity were established. It were determined 4 types of wave interactions between EEG components, which reflected a different extent of the regulatory mechanisms lesions: 2 structures with one core component (alpha or beta), a structure with two core components and a non-organized structure.

  1. Subpersonalities with dreaming functions in a patient with multiple personalities.

    PubMed

    Salley, R D

    1988-02-01

    A case report of the hypnotherapy and unusual dream work of a patient with multiple personality disorder is described. Two of his 13 personalities claimed a dream production function. These personalities claimed the ability to organize and create dreams in order to communicate with the host personality. In the course of therapy, clinical data are described that tend to support this claim. The data of this case are then briefly applied to some current models of dream function. Some dream theories with an information-processing and reprogramming emphasis are particularly supported by this case material.

  2. Determination of diffusion coefficient in disordered organic semiconductors

    NASA Astrophysics Data System (ADS)

    Rani, Varsha; Sharma, Akanksha; Ghosh, Subhasis

    2016-05-01

    Charge carrier transport in organic semiconductors is dominated by positional and energetic disorder in Gaussian density of states (GDOS) and is characterized by hopping through localized states. Due to the immobilization of charge carriers in these localized states, significant non-uniform carrier distribution exists, resulting diffusive transport. A simple, nevertheless powerful technique to determine diffusion coefficient D in disordered organic semiconductors has been presented. Diffusion coefficients of charge carriers in two technologically important organic molecular semiconductors, Pentacene and copper phthalocyanine (CuPc) have been measured from current-voltage (J-V) characteristics of Al/Pentacene/Au and Al/CuPc/Au based Schottky diodes. Ideality factor g and carrier mobility μ have been calculated from the exponential and space charge limited region respectively of J-V characteristics. Classical Einstein relation is not valid in organic semiconductors due to energetic disorders in DOS. Using generalized Einstein relation, diffusion coefficients have been obtained to be 1.31×10-6 and 1.73×10-7 cm2/s for Pentacene and CuPc respectively.

  3. Respiratory Proteomics Today: Are Technological Advances for the Identification of Biomarker Signatures Catching up with Their Promise? A Critical Review of the Literature in the Decade 2004-2013.

    PubMed

    Viglio, Simona; Stolk, Jan; Iadarola, Paolo; Giuliano, Serena; Luisetti, Maurizio; Salvini, Roberta; Fumagalli, Marco; Bardoni, Anna

    2014-01-22

    To improve the knowledge on a variety of severe disorders, research has moved from the analysis of individual proteins to the investigation of all proteins expressed by a tissue/organism. This global proteomic approach could prove very useful: (i) for investigating the biochemical pathways involved in disease; (ii) for generating hypotheses; or (iii) as a tool for the identification of proteins differentially expressed in response to the disease state. Proteomics has not been used yet in the field of respiratory research as extensively as in other fields, only a few reproducible and clinically applicable molecular markers, which can assist in diagnosis, having been currently identified. The continuous advances in both instrumentation and methodology, which enable sensitive and quantitative proteomic analyses in much smaller amounts of biological material than before, will hopefully promote the identification of new candidate biomarkers in this area. The aim of this report is to critically review the application over the decade 2004-2013 of very sophisticated technologies to the study of respiratory disorders. The observed changes in protein expression profiles from tissues/fluids of patients affected by pulmonary disorders opens the route for the identification of novel pathological mediators of these disorders.

  4. Genetic basis of human left-right asymmetry disorders.

    PubMed

    Deng, Hao; Xia, Hong; Deng, Sheng

    2015-01-27

    Humans and other vertebrates exhibit left-right (LR) asymmetric arrangement of the internal organs, and failure to establish normal LR asymmetry leads to internal laterality disorders, including situs inversus and heterotaxy. Situs inversus is complete mirror-imaged arrangement of the internal organs along LR axis, whereas heterotaxy is abnormal arrangement of the internal thoraco-abdominal organs across LR axis of the body, most of which are associated with complex cardiovascular malformations. Both disorders are genetically heterogeneous with reduced penetrance, presumably because of monogenic, polygenic or multifactorial causes. Research in genetics of LR asymmetry disorders has been extremely prolific over the past 17 years, and a series of loci and disease genes involved in situs inversus and heterotaxy have been described. The review highlights the classification, chromosomal abnormalities, pathogenic genes and the possible mechanism of human LR asymmetry disorders.

  5. Impurity-induced disorder in III-nitride materials and devices

    DOEpatents

    Wierer, Jr., Jonathan J; Allerman, Andrew A

    2014-11-25

    A method for impurity-induced disordering in III-nitride materials comprises growing a III-nitride heterostructure at a growth temperature and doping the heterostructure layers with a dopant during or after the growth of the heterostructure and post-growth annealing of the heterostructure. The post-growth annealing temperature can be sufficiently high to induce disorder of the heterostructure layer interfaces.

  6. Engineering materials properties and process technologies for electronic and energy applications

    NASA Astrophysics Data System (ADS)

    Hailey, Anna Kathryn

    In this thesis, we pushed the boundaries of knowledge toward exciting new alternatives in the fields of electronic materials and energy. In Part 1, we focused on organic semiconductors, assessing how disorder on different length scales impacts the electrical properties in organic thin-film transistors (OTFTs). We first explored the effect of disorder at the molecular scale due to the coexistence of isomers in thin films. By blending fractional quantities of syn and anti isomers of triethylsilylethynyl anthradithiophene (TES ADT), we found that the electrical properties of devices comprising the anti isomer plummet to that of syn after the addition of only 10% syn. Through single-crystal computational analysis, we determined that the addition of syn disorders the two-dimensional electronic coupling between anti molecules, thereby increasing charge trapping and decreasing mobilities in OTFTs with increasing syn concentrations in the active layers. We also elucidated the impact of disorder stemming from boundaries between crystalline superstructures in polycrystalline thin films. By measuring the electrical characteristics of OTFTs across interspherulite boundaries (ISBs) in TES ADT and rubrene thin films, we found the energy barriers for charge transport across ISBs to be more akin to those found across the boundaries between polymer crystallites than between conventional molecular-semiconductor grains. In contrast to sharp, creviced grain boundaries, ISBs presumably comprise trapped molecules that electrically connect neighboring spherulites, as polymer chains connect crystallites in polymer-semiconductor thin films. In Part 2, we turned our focus to the production of alternative liquid fuels, evaluating process designs to produce "drop-in" replacement diesel and gasoline from non-food biomass and domestic natural gas. By considering the storage of captured byproduct CO2 in nearby depleted shale-gas wells, these processes produce liquid fuels with low-to-negative lifecycle greenhouse-gas emissions. We assessed the economics of these processes under a range of effective emissions prices, finding that fuels from first-of-a-kind facilities will compete with petroleum-derived fuels when the prices of crude oil and emissions are at least 100/bbl and 250/tCO2,eq, respectively. Since "learning by doing" facilitates economic competitiveness, we estimate that fuels from future plants will compete at oil prices as low as $85/bbl without any emissions price.

  7. Similar local order in disordered fluorite and aperiodic pyrochlore structures

    DOE PAGES

    Shamblin, Jacob; Tracy, Cameron; Palomares, Raul; ...

    2017-10-01

    A major challenge to understanding the response of materials to extreme environments (e.g., nuclear fuels/waste forms and fusion materials) is to unravel the processes by which a material can incorporate atomic-scale disorder, and at the same time, remain crystalline. While it has long been known that all condensed matter, even liquids and glasses, possess short-range order, the relation between fully-ordered, disordered, and aperiodic structures over multiple length scales is not well understood. For example, when defects are introduced (via pressure or irradiation) into materials adopting the pyrochlore structure, these complex oxides either disorder over specific crystallographic sites, remaining crystalline, ormore » become aperiodic. Here we present neutron total scattering results characterizing the irradiation response of two pyrochlores, one that is known to disorder (Er2Sn2O7) and the other to amorphize (Dy2Sn2O7) under ion irradiation. The results demonstrate that in both cases, the local pyrochlore structure is transformed into similar short range configurations that are best fit by the orthorhombic weberite structure, even though the two compositions have distinctly different structures, aperiodic vs. disordered-crystalline, at longer length scales. Thus, a material's resistance to amorphization may not depend primarily on local defect formation energies, but rather on the structure's compatibility with meso-scale modulations of the local order in a way that maintains long-range periodicity.« less

  8. Hyperuniform Disordered photonic bandgap materials, from 2D to 3D, and their applications

    NASA Astrophysics Data System (ADS)

    Man, Weining; Florescu, Marian; Sahba, Shervin; Sellers, Steven

    Recently, hyperuniform disordered systems attracted increasing attention due to their unique physical properties and the potential possibilities of self-assembling them. We had introduced a class of 2D hyperuniform disordered (HUD) photonic bandgap (PBG) materials enabled by a novel constrained optimization method for engineering the material's isotropic photonic bandgap. The intrinsic isotropy in these disordered structures is an inherent advantage associated with the lack of crystalline order, offering unprecedented freedom for functional defect design impossible to achieve in photonic crystals. Beyond our previous experimental work using macroscopic samples with microwave radiation, we demonstrated functional devices based on submicron-scale planar hyperuniform disordered PBG structures further highlight their ability to serve as highly compact, flexible and energy-efficient platforms for photonic integrated circuits. We further extended the design, fabrication, and characterization of the disordered photonic system into 3D. We also identify local self-uniformity as a novel measure of a disordered network's internal structural similarity, which we found crucial for photonic band gap formation. National Science Foundations award DMR-1308084.

  9. Mitigating oxygen loss to improve the cycling performance of high capacity cation-disordered cathode materials

    DOE PAGES

    Lee, Jinhyuk; Papp, Joseph K.; Clément, Raphaële J.; ...

    2017-10-17

    Recent progress in the understanding of percolation theory points to cation-disordered lithium-excess transition metal oxides as high-capacity lithium-ion cathode materials. Nevertheless, the oxygen redox processes required for these materials to deliver high capacity can trigger oxygen loss, which leads to the formation of resistive surface layers on the cathode particles. Here, we demonstrate here that, somewhat surprisingly, fluorine can be incorporated into the bulk of disordered lithium nickel titanium molybdenum oxides using a standard solid-state method to increase the nickel content, and that this compositional modification is very effective in reducing oxygen loss, improving energy density, average voltage, and ratemore » performance. We argue that the valence reduction on the anion site, offered by fluorine incorporation, opens up significant opportunities for the design of high-capacity cation-disordered cathode materials.« less

  10. Mitigating oxygen loss to improve the cycling performance of high capacity cation-disordered cathode materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jinhyuk; Papp, Joseph K.; Clément, Raphaële J.

    Recent progress in the understanding of percolation theory points to cation-disordered lithium-excess transition metal oxides as high-capacity lithium-ion cathode materials. Nevertheless, the oxygen redox processes required for these materials to deliver high capacity can trigger oxygen loss, which leads to the formation of resistive surface layers on the cathode particles. Here, we demonstrate here that, somewhat surprisingly, fluorine can be incorporated into the bulk of disordered lithium nickel titanium molybdenum oxides using a standard solid-state method to increase the nickel content, and that this compositional modification is very effective in reducing oxygen loss, improving energy density, average voltage, and ratemore » performance. We argue that the valence reduction on the anion site, offered by fluorine incorporation, opens up significant opportunities for the design of high-capacity cation-disordered cathode materials.« less

  11. A disorder-enhanced quasi-one-dimensional superconductor

    PubMed Central

    Petrović, A. P.; Ansermet, D.; Chernyshov, D.; Hoesch, M.; Salloum, D.; Gougeon, P.; Potel, M.; Boeri, L.; Panagopoulos, C.

    2016-01-01

    A powerful approach to analysing quantum systems with dimensionality d>1 involves adding a weak coupling to an array of one-dimensional (1D) chains. The resultant quasi-1D (q1D) systems can exhibit long-range order at low temperature, but are heavily influenced by interactions and disorder due to their large anisotropies. Real q1D materials are therefore ideal candidates not only to provoke, test and refine theories of strongly correlated matter, but also to search for unusual emergent electronic phases. Here we report the unprecedented enhancement of a superconducting instability by disorder in single crystals of Na2−δMo6Se6, a q1D superconductor comprising MoSe chains weakly coupled by Na atoms. We argue that disorder-enhanced Coulomb pair-breaking (which usually destroys superconductivity) may be averted due to a screened long-range Coulomb repulsion intrinsic to disordered q1D materials. Our results illustrate the capability of disorder to tune and induce new correlated electron physics in low-dimensional materials. PMID:27448209

  12. A disorder-enhanced quasi-one-dimensional superconductor.

    PubMed

    Petrović, A P; Ansermet, D; Chernyshov, D; Hoesch, M; Salloum, D; Gougeon, P; Potel, M; Boeri, L; Panagopoulos, C

    2016-07-22

    A powerful approach to analysing quantum systems with dimensionality d>1 involves adding a weak coupling to an array of one-dimensional (1D) chains. The resultant quasi-1D (q1D) systems can exhibit long-range order at low temperature, but are heavily influenced by interactions and disorder due to their large anisotropies. Real q1D materials are therefore ideal candidates not only to provoke, test and refine theories of strongly correlated matter, but also to search for unusual emergent electronic phases. Here we report the unprecedented enhancement of a superconducting instability by disorder in single crystals of Na2-δMo6Se6, a q1D superconductor comprising MoSe chains weakly coupled by Na atoms. We argue that disorder-enhanced Coulomb pair-breaking (which usually destroys superconductivity) may be averted due to a screened long-range Coulomb repulsion intrinsic to disordered q1D materials. Our results illustrate the capability of disorder to tune and induce new correlated electron physics in low-dimensional materials.

  13. A self-consistent first-principle based approach to model carrier mobility in organic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meded, Velimir; Friederich, Pascal; Symalla, Franz

    2015-12-31

    Transport through thin organic amorphous films, utilized in OLEDs and OPVs, has been a challenge to model by using ab-initio methods. Charge carrier mobility depends strongly on the disorder strength and reorganization energy, both of which are significantly affected by the details in environment of each molecule. Here we present a multi-scale approach to describe carrier mobility in which the materials morphology is generated using DEPOSIT, a Monte Carlo based atomistic simulation approach, or, alternatively by molecular dynamics calculations performed with GROMACS. From this morphology we extract the material specific hopping rates, as well as the on-site energies using amore » fully self-consistent embedding approach to compute the electronic structure parameters, which are then used in an analytic expression for the carrier mobility. We apply this strategy to compute the carrier mobility for a set of widely studied molecules and obtain good agreement between experiment and theory varying over several orders of magnitude in the mobility without any freely adjustable parameters. The work focuses on the quantum mechanical step of the multi-scale workflow, explains the concept along with the recently published workflow optimization, which combines density functional with semi-empirical tight binding approaches. This is followed by discussion on the analytic formula and its agreement with established percolation fits as well as kinetic Monte Carlo numerical approaches. Finally, we skatch an unified multi-disciplinary approach that integrates materials science simulation and high performance computing, developed within EU project MMM@HPC.« less

  14. Organic electronics for high-resolution electrocorticography of the human brain.

    PubMed

    Khodagholy, Dion; Gelinas, Jennifer N; Zhao, Zifang; Yeh, Malcolm; Long, Michael; Greenlee, Jeremy D; Doyle, Werner; Devinsky, Orrin; Buzsáki, György

    2016-11-01

    Localizing neuronal patterns that generate pathological brain signals may assist with tissue resection and intervention strategies in patients with neurological diseases. Precise localization requires high spatiotemporal recording from populations of neurons while minimizing invasiveness and adverse events. We describe a large-scale, high-density, organic material-based, conformable neural interface device ("NeuroGrid") capable of simultaneously recording local field potentials (LFPs) and action potentials from the cortical surface. We demonstrate the feasibility and safety of intraoperative recording with NeuroGrids in anesthetized and awake subjects. Highly localized and propagating physiological and pathological LFP patterns were recorded, and correlated neural firing provided evidence about their local generation. Application of NeuroGrids to brain disorders, such as epilepsy, may improve diagnostic precision and therapeutic outcomes while reducing complications associated with invasive electrodes conventionally used to acquire high-resolution and spiking data.

  15. Liquid metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Gaillac, Romain; Pullumbi, Pluton; Beyer, Kevin A.; Chapman, Karena W.; Keen, David A.; Bennett, Thomas D.; Coudert, François-Xavier

    2017-11-01

    Metal-organic frameworks (MOFs) are a family of chemically diverse materials, with applications in a wide range of fields, covering engineering, physics, chemistry, biology and medicine. Until recently, research has focused almost entirely on crystalline structures, yet now a clear trend is emerging, shifting the emphasis onto disordered states, including `defective by design’ crystals, as well as amorphous phases such as glasses and gels. Here we introduce a strongly associated MOF liquid, obtained by melting a zeolitic imidazolate framework. We combine in situ variable temperature X-ray, ex situ neutron pair distribution function experiments, and first-principles molecular dynamics simulations to study the melting phenomenon and the nature of the liquid obtained. We demonstrate from structural, dynamical, and thermodynamical information that the chemical configuration, coordinative bonding, and porosity of the parent crystalline framework survive upon formation of the MOF liquid.

  16. Liquid metal-organic frameworks.

    PubMed

    Gaillac, Romain; Pullumbi, Pluton; Beyer, Kevin A; Chapman, Karena W; Keen, David A; Bennett, Thomas D; Coudert, François-Xavier

    2017-11-01

    Metal-organic frameworks (MOFs) are a family of chemically diverse materials, with applications in a wide range of fields, covering engineering, physics, chemistry, biology and medicine. Until recently, research has focused almost entirely on crystalline structures, yet now a clear trend is emerging, shifting the emphasis onto disordered states, including 'defective by design' crystals, as well as amorphous phases such as glasses and gels. Here we introduce a strongly associated MOF liquid, obtained by melting a zeolitic imidazolate framework. We combine in situ variable temperature X-ray, ex situ neutron pair distribution function experiments, and first-principles molecular dynamics simulations to study the melting phenomenon and the nature of the liquid obtained. We demonstrate from structural, dynamical, and thermodynamical information that the chemical configuration, coordinative bonding, and porosity of the parent crystalline framework survive upon formation of the MOF liquid.

  17. Liquid metal–organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaillac, Romain; Pullumbi, Pluton; Beyer, Kevin A.

    Metal–organic frameworks (MOFs) are a family of chemically diverse materials, with applications in a wide range of fields, covering engineering, physics, chemistry, biology and medicine. Until recently, research has focused almost entirely on crystalline structures, yet now a clear trend is emerging, shifting the emphasis onto disordered states, including ‘defective by design’ crystals, as well as amorphous phases such as glasses and gels. Here we introduce a strongly associated MOF liquid, obtained by melting a zeolitic imidazolate framework. We combine in situ variable temperature X-ray, ex situ neutron pair distribution function experiments, and first-principles molecular dynamics simulations to study themore » melting phenomenon and the nature of the liquid obtained. We demonstrate from structural, dynamical, and thermodynamical information that the chemical configuration, coordinative bonding, and porosity of the parent crystalline framework survive upon formation of the MOF liquid.« less

  18. 'Broken hospital windows': debating the theory of spreading disorder and its application to healthcare organizations.

    PubMed

    Churruca, Kate; Ellis, Louise A; Braithwaite, Jeffrey

    2018-03-22

    Research in criminology and social-psychology supports the idea that visible signs of disorder, both physical and social, may perpetuate further disorder, leading to neighborhood incivilities, petty violations, and potentially criminal behavior. This theory of 'broken windows' has now also been applied to more enclosed environments, such as organizations. This paper debates whether the premise of broken windows theory, and the concept of 'disorder', might also have utility in the context of health services. There is already a body of work on system migration, which suggests a role for violations and workarounds in normalizing unwarranted deviations from safe practices in healthcare organizations. Studies of visible disorder may be needed in healthcare, where the risks of norm violations and disorderly environments, and potential for harm to patients, are considerable. Everyday adjustments and flexibility is mostly beneficial, but in this paper, we ask: how might deviations from the norm escalate from necessary workarounds to risky violations in care settings? Does physical or social disorder in healthcare contexts perpetuate further disorder, leading to downstream effects, including increased risk of harm to patients? We advance a model of broken windows in healthcare, and a proposal to study this phenomenon.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perriot, Romain; Uberuaga, Blas P.

    We use molecular dynamics simulations to investigate the role of cation disorder on oxygen diffusion in Gd 2Zr 2O 7 (GZO) and Gd 2Ti 2O 7 (GTO) pyrochlores, a class of complex oxides which contain a structural vacancy relative to the basic fluorite structure. The introduction of disorder has distinct effects depending on the chemistry of the material, increasing the mobility of structural carriers by up to four orders of magnitude in GZO. In contrast, in GTO, there is no mobility at zero or low disorder on the ns timescale, but higher disorder liberates the otherwise immobile carriers, allowing diffusionmore » with rates comparable to GZO for the fully disordered material. Here, we show that the cation disorder enhances the diffusivity by both increasing the concentration of mobile structural carriers and their individual mobility. The disorder also influences the diffusion in materials containing intrinsic carriers, such as additional vacancies VO or oxygen interstitials OI. And while in ordered GZO and GTO the contribution of the intrinsic carriers dominates the overall diffusion of oxygen, OI in GZO contributes along with structural carriers, and the total diffusion rate can be calculated by assuming simple additive contributions from the two sources. Although the disorder in the materials with intrinsic defects usually enhances the diffusivity as in the defect-free case, in low concentrations, cation antisites AB or BA, where A = Gd and B = Zr or Ti, can act as traps for fast intrinsic defects. The trapping results in a lowering of the diffusivity, and causes a non-monotonic behavior of the diffusivity with disorder. Conversely, in the case of slow intrinsic defects, the main effect of the disorder is to liberate the structural carriers, resulting in an increase of the diffusivity regardless of the defect trapping.« less

  20. The Montreal Cognitive Assessment as a preliminary assessment tool in general psychiatry: Validity of MoCA in psychiatric patients.

    PubMed

    Gierus, J; Mosiołek, A; Koweszko, T; Wnukiewicz, P; Kozyra, O; Szulc, A

    2015-01-01

    The aim of the presented research was to obtain the initial data regarding the validity of Montreal Cognitive Assessment (MoCA) in diagnosing cognitive impairment in psychiatrically hospitalized patients. The results in MoCA obtained from 221 patients were analyzed in terms of proportional participation of patients with particular diagnosis in three result ranges. In 67 patients, additional version of the scale was also used. Comparative analysis of average results in particular diagnostic groups (organically based disorders, disorders due to psychoactive substance use, psychotic disorders, neurotic disorders and personality disorders) was also carried out, as well as an analysis of the scale's accuracy as a diagnostic test in detecting organic disorders. The reliability of the test measured with between tests correlation coefficient rho=0.92 (P=.000). Significant differences between particular diagnoses groups were detected (J-T=13736; P=.000). The cutoff points of 23 turned out to have a satisfactory sensitivity and specificity (0.82 and 0.70, respectively) in diagnosing organically based disorders. The area below the receiver operating characteristic curve (AUC=0.854; P=.000) suggests that MoCA has a satisfactory value as a classifier. The initial data suggest MoCA's high value in prediction of future diagnosis of organically based disorders. The initial results obtained in particular group of diagnoses support construct validity of the method. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Structural disorder in molecular framework materials.

    PubMed

    Cairns, Andrew B; Goodwin, Andrew L

    2013-06-21

    It is increasingly apparent that many important classes of molecular framework material exhibit a variety of interesting and useful types of structural disorder. This tutorial review summarises a number of recent efforts to understand better both the complex microscopic nature of this disorder and also how it might be implicated in useful functionalities of these materials. We draw on a number of topical examples including topologically-disordered zeolitic imidazolate frameworks (ZIFs), porous aromatic frameworks (PAFs), the phenomena of temperature-, pressure- and desorption-induced amorphisation, partial interpenetration, ferroelectric transition-metal formates, negative thermal expansion in cyanide frameworks, and the mechanics and processing of layered frameworks. We outline the various uses of pair distribution function (PDF) analysis, dielectric spectroscopy, peak-shape analysis of powder diffraction data and single-crystal diffuse scattering measurements as means of characterising disorder in these systems, and we suggest a number of opportunities for future research in the field.

  2. Synchroton and Simulations Techniques Applied to Problems in Materials Science: Catalysts and Azul Maya Pigments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chianelli, R.

    2005-01-12

    Development of synchrotron techniques for the determination of the structure of disordered, amorphous and surface materials has exploded over the past twenty years due to the increasing availability of high flux synchrotron radiation and the continuing development of increasingly powerful synchrotron techniques. These techniques are available to materials scientists who are not necessarily synchrotron scientists through interaction with effective user communities that exist at synchrotrons such as the Stanford Synchrotron Radiation Laboratory (SSRL). In this article we review the application of multiple synchrotron characterization techniques to two classes of materials defined as ''surface compounds.'' One class of surface compounds aremore » materials like MoS{sub 2-x}C{sub x} that are widely used petroleum catalysts used to improve the environmental properties of transportation fuels. These compounds may be viewed as ''sulfide supported carbides'' in their catalytically active states. The second class of ''surface compounds'' is the ''Maya Blue'' pigments that are based on technology created by the ancient Maya. These compounds are organic/inorganic ''surface complexes'' consisting of the dye indigo and palygorskite, a common clay. The identification of both surface compounds relies on the application of synchrotron techniques as described in this report.« less

  3. Electrochemical fluorination of La(2)CuO(4): a mild "chimie douce" route to superconducting oxyfluoride materials.

    PubMed

    Delville, M H; Barbut, D; Wattiaux, A; Bassat, J M; Ménétrier, M; Labrugère, C; Grenier, J C; Etourneau, J

    2009-08-17

    The fluorination of La(2)CuO(4) was achieved for the first time under normal conditions of pressure and temperature (1 MPa and 298 K) via electrochemical insertion in organic fluorinated electrolytes and led to lanthanum oxyfluorides of general formula La(2)CuO(4)F(x). Analyses showed that, underneath a very thin layer of LaF(3) (a few atomic layers), fluorine is effectively inserted in the material's structure. The fluorination strongly modifies the lanthanum environment, whereas very little modification is observed on copper, suggesting an insertion in the La(2)O(2) blocks of the structure. In all cases, fluorine insertion breaks the translation symmetry and introduces a long-distance disorder, as shown by electron spin resonance. These results highlight the efficiency of electrochemistry as a new "chimie douce" type fluorination technique for solid-state materials. Performed at room temperature, it additionally does not require any specific experimental care. The choice of the electrolytic medium is crucial with regard to the fluorine insertion rate as well as the material deterioration. Successful application of this technique to the well-known La(2)CuO(4) material provides a basis for further syntheses from other oxides.

  4. The Importance of Phonons with Negative Phase Quotient in Disordered Solids.

    PubMed

    Seyf, Hamid Reza; Lv, Wei; Rohskopf, Andrew; Henry, Asegun

    2018-02-08

    Current understanding of phonons is based on the phonon gas model (PGM), which is best rationalized for crystalline materials. However, most of the phonons/modes in disordered materials have a different character and thus may contribute to heat conduction in a fundamentally different way than is described by PGM. For the modes in crystals, which have sinusoidal character, one can separate the modes into two primary categories, namely acoustic and optical modes. However, for the modes in disordered materials, such designations may no longer rigorously apply. Nonetheless, the phase quotient (PQ) is a quantity that can be used to evaluate whether a mode more so shares a distinguishing property of acoustic vibrations manifested as a positive PQ, or a distinguishing property of an optical vibrations manifested as negative PQ. In thinking about this characteristic, there is essentially no intuition regarding the role of positive vs. negative PQ vibrational modes in disordered solids. Given this gap in understanding, herein we studied the respective contributions to thermal conductivity for several disordered solids as a function of PQ. The analysis sheds light on the importance of optical like/negative PQ modes in structurally/compositionally disordered solids, whereas in crystalline materials, the contributions of optical modes are usually small.

  5. The Long-Term Hospitalization Experience Following Military Service in the 1991 Gulf War Among Veterans Remaining on Active Duty, 1994-2004

    DTIC Science & Technology

    2008-02-13

    16.1 Other disorders of breast 259 8.7 Disorders of lipoid metabolism 69 9.8 Other disorders of male genital organs 231 7.8 Nontoxic nodular goiter 56...1192) Other diseases of blood & blood-forming organs 54 26.5 Other cellulitis & abscess 559 46.9 Diseases of white blood cells 53 26.0 Pilonidal cyst

  6. Teachers' sick leave due to mental and behavioral disorders and return to work.

    PubMed

    Silva, Amanda Aparecida; Fischer, Frida Marina

    2012-01-01

    This manuscript presents a review of the literature about medical leaves due to mental and behavioral disorders and return to work of teachers. There are scarce published manuscripts. Most articles relate with prevalence of mental disorders and factors associated with the work organization, and did not mention intervention proposals and or changes in the work organization and teaching work. Proposed actions are discussed.

  7. Spin-correlated doublet pairs as intermediate states in charge separation processes

    NASA Astrophysics Data System (ADS)

    Kraffert, Felix; Behrends, Jan

    2017-10-01

    Spin-correlated charge-carrier pairs play a crucial role as intermediate states in charge separation both in natural photosynthesis as well as in solar cells. Using transient electron paramagnetic resonance (trEPR) spectroscopy in combination with spectral simulations, we study spin-correlated polaron pairs in polymer:fullerene blends as organic solar cells materials. The semi-analytical simulations presented here are based on the well-established theoretical description of spin-correlated radical pairs in biological systems, however, explicitly considering the disordered nature of polymer:fullerene blends. The large degree of disorder leads to the fact that many different relative orientations between both polarons forming the spin-correlated pairs have to be taken into account. This has important implications for the spectra, which differ significantly from those of spin-correlated radical pairs with a fixed relative orientation. We systematically study the influence of exchange and dipolar couplings on the trEPR spectra and compare the simulation results to measured X- and Q-band trEPR spectra. Our results demonstrate that assuming dipolar couplings alone does not allow us to reproduce the experimental spectra. Due to the rather delocalised nature of polarons in conjugated organic semiconductors, a significant isotropic exchange coupling needs to be included to achieve good agreement between experiments and simulations.

  8. Intermingling and disordered logic as influences on schizophrenic 'thought disorders'.

    PubMed

    Harrow, M; Prosen, M

    1978-10-01

    A technique was devised to elicit bizarre or idiosyncratic responses from 30 young schizophrenics, who were then re-interviewed a week later to determine the reasons for each patient's idiosyncratic verbalizations. Taped interviews of the schizophrenics, scored along a series of rating scales, indicated: (1) An overt mechanism involved in bizarre schizophrenic language is a tendency to intermingle into their responses material from their current and past experiences. (2) Careful analysis suggests that the seemingly bizarre intermingled material of schizophrenics usually is close to the original "correct" topic. (3) The bizarre intermingled material is related to the patients' personal lives. (4) The intermingled material does not usually represent a failure to screen out or repress primitive drive dominated sexual or aggressive material. (5) Disordered logic was not a major factor in accounting for bizarre schizophrenic language.

  9. Comparison effect of physiotherapy with surgery on sexual function in patients with pelvic floor disorder: A randomized clinical trial

    PubMed Central

    Eftekhar, Tahereh; Sohrabi, Maryam; Haghollahi, Fedyeh; Shariat, Mamak; Miri, Elahe

    2014-01-01

    Background: Female sexual dysfunction is a common problem among general population, especially in urogynecological patient, and can lead to a decrease in quality of life and affect martial relationship. Objective: This study was compared the effect of surgical methods versus physiotherapy on sexual function in pelvic floor disorder. Materials and Methods: This randomized controlled trial was performed in Urogynecology clinic since August 2007 to December 2009 on 90 patients aged from 25-55 years with previous delivery, positive history of sexual dysfunction with stage <3 of pelvic organ prolapsed and divided in two groups. Group A (n=45) received standard rectocele repair and prineorrhaphy, group B (n=45) received physiotherapy for eight weeks twice a week (electrical stimulation, Kegel exercises). The female sexual function index (FSFI) used to evaluate the sexual function in cases before and after intervention. Frequency of variable scores (libido, orgasm, dysparunia) included without disorder, frequently good, sometimes good, very much and extreme were compared between two groups. Results: Libido and arousal were improved in both groups (p=0.007, p=0.001 respectively). Orgasm and dyspareunia were improved in group B (p=0.001). Dysparunia was more painful in group A. There was significant difference between two groups (improvement of orgasm and dysparunia in group B) (p=0.001). Conclusion: It seems that physiotherapy is an appropriate method for treatment of sexual disorder in pelvic floor disorder. Registration ID in IRCT: IRCT2013031112790N1. PMID:24799856

  10. Spinal injury - resources

    MedlinePlus

    Resources - spinal injury ... The following organizations are good resources for information on spinal injury : National Institute of Neurological Disorders and Stroke -- www.ninds.nih.gov/Disorders/All-Disorders/Spinal-Cord- ...

  11. Impact of vacancy ordering on thermal transport in crystalline phase-change materials.

    PubMed

    Siegert, K S; Lange, F R L; Sittner, E R; Volker, H; Schlockermann, C; Siegrist, T; Wuttig, M

    2015-01-01

    Controlling thermal transport in solids is of paramount importance for many applications. Often thermal management is crucial for a device's performance, as it affects both reliability and power consumption. A number of intricate concepts have been developed to address this challenge, such as diamond-like coatings to enhance the thermal conductivity or low symmetry complex super-structures to reduce it. Here, a different approach is pursued, where we explore the potential of solids with a high yet controllable degree of disorder. Recently, it has been demonstrated that an unconventionally high degree of structural disorder characterizes a number of crystalline phase-change materials (PCMs). This disorder strongly impacts electronic transport and even leads to disorder induced localization (Anderson localization). This raises the question how thermal transport is affected by such conditions. Here thermal transport in highly disordered crystalline Ge-Sb-Te (GST) based PCMs is investigated. Glass-like thermal properties are observed for several crystalline PCMs, which are attributed to strong scattering by disordered point defects. A systematic study of different compounds along the pseudo-binary line between GeTe and Sb2Te3 reveals that disordered vacancies act as point defects responsible for pronounced phonon scattering. Annealing causes a gradual ordering of the vacancies and leads to a more 'crystal-like' thermal conductivity. While both vibrational and electronic degrees of freedom are affected by disorder, the consequences differ for different stoichiometries. This opens up a pathway to tune electrical and thermal transport by controlling the degree of disorder. Materials with tailored transport properties may not only help to improve power efficiency and scaling in upcoming phase-change memories but are also of fundamental interest in the field of thermoelectric materials.

  12. Impact of vacancy ordering on thermal transport in crystalline phase-change materials

    NASA Astrophysics Data System (ADS)

    Siegert, K. S.; Lange, F. R. L.; Sittner, E. R.; Volker, H.; Schlockermann, C.; Siegrist, T.; Wuttig, M.

    2015-01-01

    Controlling thermal transport in solids is of paramount importance for many applications. Often thermal management is crucial for a device's performance, as it affects both reliability and power consumption. A number of intricate concepts have been developed to address this challenge, such as diamond-like coatings to enhance the thermal conductivity or low symmetry complex super-structures to reduce it. Here, a different approach is pursued, where we explore the potential of solids with a high yet controllable degree of disorder. Recently, it has been demonstrated that an unconventionally high degree of structural disorder characterizes a number of crystalline phase-change materials (PCMs). This disorder strongly impacts electronic transport and even leads to disorder induced localization (Anderson localization). This raises the question how thermal transport is affected by such conditions. Here thermal transport in highly disordered crystalline Ge-Sb-Te (GST) based PCMs is investigated. Glass-like thermal properties are observed for several crystalline PCMs, which are attributed to strong scattering by disordered point defects. A systematic study of different compounds along the pseudo-binary line between GeTe and Sb2Te3 reveals that disordered vacancies act as point defects responsible for pronounced phonon scattering. Annealing causes a gradual ordering of the vacancies and leads to a more ‘crystal-like’ thermal conductivity. While both vibrational and electronic degrees of freedom are affected by disorder, the consequences differ for different stoichiometries. This opens up a pathway to tune electrical and thermal transport by controlling the degree of disorder. Materials with tailored transport properties may not only help to improve power efficiency and scaling in upcoming phase-change memories but are also of fundamental interest in the field of thermoelectric materials.

  13. Evaluation of the field-effect carrier mobility in single-grain (and polycrystalline) organic semconductors

    NASA Astrophysics Data System (ADS)

    Kwok, H. L.

    2005-08-01

    Mobility in single-grain and polycrystalline organic field-effect transistors (OFETs) is of interest because it affects the performance of these devices. While reasonable values of the hole mobility has been measured in pentacene OFETs, relatively speaking, our understanding of the detailed transport mechanisms is somewhat weak and there is a lack of precise knowledge on the effects of the materials parameters such as the site spacing, the localization length, the rms width of the density of states (DOS), the escape frequency, etc. This work attempts to analyze the materials parameters of pentacene OFETs extracted from data reported in the literature. In this work, we developed a model for the mobility parameter from first principle and extracted the relevant materials parameters. According to our analyses, the transport mechanisms in the OFETs are fairly complex and the electrical properties are dominated by the properties of the trap states. As observed, the single-grain OFETs having smaller values of the rms widths of the DOS (in comparison with the polycrystalline OFETs) also had higher hole mobilities. Our results showed that increasing the gate bias could have a similar but smaller effect. Potentially, increasing the escape frequency is a more effective way to raise the hole mobility and this parameter appears to be affected by changes in the molecular structure and in the degree of "disorder".

  14. Theoretical proposal for a magnetic resonance study of charge transport in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Mkhitaryan, Vagharsh

    Charge transport in disordered organic semiconductors occurs via carrier incoherent hops in a band of localized states. In the framework of continuous-time random walk the carrier on-site waiting time distribution (WTD) is one of the basic characteristics of diffusion. Besides, WTD is fundamentally related to the density of states (DOS) of localized states, which is a key feature of a material determining the optoelectric properties. However, reliable first-principle calculations of DOS in organic materials are not yet available and experimental characterization of DOS and WTD is desirable. We theoretically study the spin dynamics of hopping carriers and propose measurement schemes directly probing WTD, based on the zero-field spin relaxation and the primary (Hahn) spin echo. The proposed schemes are possible because, as we demonstrate, the long-time behavior of the zero-field relaxation and the primary echo is determined by WTD, both for the hyperfine coupling dominated and the spin-orbit coupling dominated spin dynamics. We also examine the dispersive charge transport, which is a non-Markovian sub-diffusive process characterized by non-stationarity. We show that the proposed schemes unambiguously capture the effects of non-stationarity, e.g., the aging behavior of random walks. This work was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358.

  15. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.

    PubMed

    Weiss, Emily A

    2013-11-19

    In order to achieve efficient and reliable technology that can harness solar energy, the behavior of electrons and energy at interfaces between different types or phases of materials must be understood. Conversion of light to chemical or electrical potential in condensed phase systems requires gradients in free energy that allow the movement of energy or charge carriers and facilitate redox reactions and dissociation of photoexcited states (excitons) into free charge carriers. Such free energy gradients are present at interfaces between solid and liquid phases or between inorganic and organic materials. Nanostructured materials have a higher density of these interfaces than bulk materials. Nanostructured materials, however, have a structural and chemical complexity that does not exist in bulk materials, which presents a difficult challenge: to lower or eliminate energy barriers to electron and energy flux that inevitably result from forcing different materials to meet in a spatial region of atomic dimensions. Chemical functionalization of nanostructured materials is perhaps the most versatile and powerful strategy for controlling the potential energy landscape of their interfaces and for minimizing losses in energy conversion efficiency due to interfacial structural and electronic defects. Colloidal quantum dots are semiconductor nanocrystals synthesized with wet-chemical methods and coated in organic molecules. Chemists can use these model systems to study the effects of chemical functionalization of nanoscale organic/inorganic interfaces on the optical and electronic properties of a nanostructured material, and the behavior of electrons and energy at interfaces. The optical and electronic properties of colloidal quantum dots have an intense sensitivity to their surface chemistry, and their organic adlayers make them dispersible in solvent. This allows researchers to use high signal-to-noise solution-phase spectroscopy to study processes at interfaces. In this Account, I describe the varied roles of organic molecules in controlling the structure and properties of colloidal quantum dots. Molecules serve as surfactant that determines the mechanism and rate of nucleation and growth and the final size and surface structure of a quantum dot. Anionic surfactant in the reaction mixture allows precise control over the size of the quantum dot core but also drives cation enrichment and structural disordering of the quantum dot surface. Molecules serve as chemisorbed ligands that dictate the energetic distribution of surface states. These states can then serve as thermodynamic traps for excitonic charge carriers or couple to delocalized states of the quantum dot core to change the confinement energy of excitonic carriers. Ligands, therefore, in some cases, dramatically shift the ground state absorption and photoluminescence spectra of quantum dots. Molecules also act as protective layers that determine the probability of redox processes between quantum dots and other molecules. How much the ligand shell insulates the quantum dot from electron exchange with a molecular redox partner depends less on the length or degree of conjugation of the native ligand and more on the density and packing structure of the adlayer and the size and adsorption mode of the molecular redox partner. Control of quantum dot properties in these examples demonstrates that nanoscale interfaces, while complex, can be rationally designed to enhance or specify the functionality of a nanostructured system.

  16. Structural vs. intrinsic carriers: contrasting effects of cation chemistry and disorder on ionic conductivity in pyrochlores

    DOE PAGES

    Perriot, Romain; Uberuaga, Blas P.

    2015-04-21

    We use molecular dynamics simulations to investigate the role of cation disorder on oxygen diffusion in Gd 2Zr 2O 7 (GZO) and Gd 2Ti 2O 7 (GTO) pyrochlores, a class of complex oxides which contain a structural vacancy relative to the basic fluorite structure. The introduction of disorder has distinct effects depending on the chemistry of the material, increasing the mobility of structural carriers by up to four orders of magnitude in GZO. In contrast, in GTO, there is no mobility at zero or low disorder on the ns timescale, but higher disorder liberates the otherwise immobile carriers, allowing diffusionmore » with rates comparable to GZO for the fully disordered material. Here, we show that the cation disorder enhances the diffusivity by both increasing the concentration of mobile structural carriers and their individual mobility. The disorder also influences the diffusion in materials containing intrinsic carriers, such as additional vacancies VO or oxygen interstitials OI. And while in ordered GZO and GTO the contribution of the intrinsic carriers dominates the overall diffusion of oxygen, OI in GZO contributes along with structural carriers, and the total diffusion rate can be calculated by assuming simple additive contributions from the two sources. Although the disorder in the materials with intrinsic defects usually enhances the diffusivity as in the defect-free case, in low concentrations, cation antisites AB or BA, where A = Gd and B = Zr or Ti, can act as traps for fast intrinsic defects. The trapping results in a lowering of the diffusivity, and causes a non-monotonic behavior of the diffusivity with disorder. Conversely, in the case of slow intrinsic defects, the main effect of the disorder is to liberate the structural carriers, resulting in an increase of the diffusivity regardless of the defect trapping.« less

  17. A convenient sol-gel route for the synthesis of salicylate-titania nanocomposites having visible absorption and blue luminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitra, Atanu; Bhaumik, Asim, E-mail: msab@iacs.res.i; Nandi, Mahasweta

    2009-05-15

    Syntheses of titania-based nanomaterials by simple sol-gel route using a mixture of CTAB and salicylate as well as salicylate ions as templates have been reported. The materials are characterized by the powder X-ray diffraction (XRD), thermal analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and spectroscopic (FT IR, UV-VIS) analyses. A disordered mesoscale orientation of nanoparticles (ca. 2-4 nm) composed of TiO{sub 2}-salicylate surface complex has been obtained when 1:1 mixing ratio of CTAB and salicylate at the CTAB concentration of 0.001 M was employed as a template. All these nanocomposites exhibit a considerable red shift at the onsetsmore » of their absorption band compared to pure (organic-free) nanocrystalline TiO{sub 2} and show blue luminescence at room temperature. This assembly of nanoparticles is highly interesting in the context of visible light sensitization and nanodevice fabrication. - Graphical abstract: A new titania-salicylate nanostructure material has been synthesized, which exhibit a considerable red shift towards the visible region vis-a-vis nanocrystalline (organic-free) TiO{sub 2} and blue luminescence at room temperature.« less

  18. Effect of charge trapping on geminate recombination and polymer solar cell performance.

    PubMed

    Groves, Chris; Blakesley, James C; Greenham, Neil C

    2010-03-10

    In this letter, we examine the effect of charge trapping on geminate recombination and organic photovoltaic performance using a Monte Carlo model. We alter the degree of charge trapping by considering energetic disorder to be spatially uncorrelated or correlated. On correlating energetic disorder, and so reducing the degree of trapping, it is found that power conversion efficiency of blend and bilayer devices improves by factors of 3.1 and 2.6, respectively. These results are related to the experimental data and quantum chemical calculations for poly[9,9-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-1,4-phenylenediamine] (PFB)/poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) as well as poly(3-hexylthiophene) (P3HT)/(6,6)-phenyl-C(61)-butyric acid methyl ester (PCBM) solar cell systems. The minimization of traps at the heterojunction between electron- and hole-accepting materials, perhaps by molecular design, appears to be a promising strategy to achieve large gains in PV performance. It is also shown that macroscopically measurable quantities such as mobility and energetic disorder are not necessarily good predictors of nanoscale geminate recombination process.

  19. [Forensic Psychiatric Assessment for Organic Personality Disorders after Craniocerebral Trauma].

    PubMed

    Li, C H; Huang, L N; Zhang, M C; He, M

    2017-04-01

    To explore the occurrence and the differences of clinical manifestations of organic personality disorder with varying degrees of craniocerebral trauma. According to the International Classification of Diseases-10, 396 subjects with craniocerebral trauma caused by traffic accidents were diagnosed, and the degrees of craniocerebral trauma were graded. The personality characteristics of all patients were evaluated using the simplified Neuroticism Extraversion Openness Five-Factor Inventory (NEO-FFI). The occurrence rate of organic personality disorder was 34.6% while it was 34.9% and 49.5% in the patients with moderate and severe craniocerebral trauma, respectively, which significantly higher than that in the patients (18.7%) of mild craniocerebral trauma ( P <0.05). Compared with the patients without personality disorder, the neuroticism, extraversion and agreeableness scores all showed significantly differences ( P <0.05) in the patients of mild craniocerebral trauma with personality disorder; the neuroticism, extraversion, agreeableness and conscientiousness scores showed significantly differences ( P >0.05) in the patients of moderate and severe craniocerebral trauma with personality disorder. The agreeableness and conscientiousness scores in the patients of moderate and severe craniocerebral trauma with personality disorder were significantly lower than that of mild craniocerebral trauma, and the patients of severe craniocerebral trauma had a lower score in extraversion than in the patients of mild craniocerebral trauma. The severity of craniocerebral trauma is closely related to the incidence of organic personality disorder, and it also affects the clinical features of the latter, which provides a certain significance and help for forensic psychiatric assessment. Copyright© by the Editorial Department of Journal of Forensic Medicine

  20. Thermoelectricity in transition metal compounds: The role of spin disorder

    DOE PAGES

    Gorai, Prashun; Toberer, Eric S.; Stevanović, Vladan

    2016-11-01

    Here, at room temperature and above, most magnetic materials adopt a spin-disordered (paramagnetic) state whose electronic properties can differ significantly from their low-temperature, spin-ordered counterparts. Yet computational searches for new functional materials usually assume some type of magnetic order. In the present work, we demonstrate a methodology to incorporate spin disorder in computational searches and predict the electronic properties of the paramagnetic phase. We implement this method in a high-throughput framework to assess the potential for thermoelectric performance of 1350 transition-metal sulfides and find that all magnetic systems we identify as promising in the spin-ordered ground state cease to bemore » promising in the paramagnetic phase due to disorder-induced deterioration of the charge carrier transport properties. We also identify promising non-magnetic candidates that do not suffer from these spin disorder effects. In addition to identifying promising materials, our results offer insights into the apparent scarcity of magnetic systems among known thermoelectrics and highlight the importance of including spin disorder in computational searches.« less

  1. Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids

    PubMed Central

    Man, Weining; Florescu, Marian; Williamson, Eric Paul; He, Yingquan; Hashemizad, Seyed Reza; Leung, Brian Y. C.; Liner, Devin Robert; Torquato, Salvatore; Chaikin, Paul M.; Steinhardt, Paul J.

    2013-01-01

    Recently, disordered photonic media and random textured surfaces have attracted increasing attention as strong light diffusers with broadband and wide-angle properties. We report the experimental realization of an isotropic complete photonic band gap (PBG) in a 2D disordered dielectric structure. This structure is designed by a constrained optimization method, which combines advantages of both isotropy due to disorder and controlled scattering properties due to low-density fluctuations (hyperuniformity) and uniform local topology. Our experiments use a modular design composed of Al2O3 walls and cylinders arranged in a hyperuniform disordered network. We observe a complete PBG in the microwave region, in good agreement with theoretical simulations, and show that the intrinsic isotropy of this unique class of PBG materials enables remarkable design freedom, including the realization of waveguides with arbitrary bending angles impossible in photonic crystals. This experimental verification of a complete PBG and realization of functional defects in this unique class of materials demonstrate their potential as building blocks for precise manipulation of photons in planar optical microcircuits and has implications for disordered acoustic and electronic band gap materials. PMID:24043795

  2. Organic electronic devices with multiple solution-processed layers

    DOEpatents

    Forrest, Stephen R.; Lassiter, Brian E.; Zimmerman, Jeramy D.

    2015-08-04

    A method of fabricating a tandem organic photosensitive device involves depositing a first layer of an organic electron donor type material film by solution-processing of the organic electron donor type material dissolved in a first solvent; depositing a first layer of an organic electron acceptor type material over the first layer of the organic electron donor type material film by a dry deposition process; depositing a conductive layer over the interim stack by a dry deposition process; depositing a second layer of the organic electron donor type material over the conductive layer by solution-processing of the organic electron donor type material dissolved in a second solvent, wherein the organic electron acceptor type material and the conductive layer are insoluble in the second solvent; depositing a second layer of an organic electron acceptor type material over the second layer of the organic electron donor type material film by a dry deposition process, resulting in a stack.

  3. Dysfunctional family environments and childhood psychopathology: the role of psychiatric comorbidity.

    PubMed

    Flores, Suzielle M; Salum, Giovanni A; Manfro, Gisele G

    2014-09-01

    The study of the association between specific characteristics of family environments and different types of psychopathology may contribute to our understanding of these complex disorders and ultimately inform therapeutics. To compare the family characteristics of four groups: typically developing children; children with anxiety disorders only; children with externalizing disorders only; and children with both anxiety and externalizing disorders. This study enrolled 115 individuals from the community. Child psychiatrists made psychiatric diagnoses using a structured clinical interview. The Family Environment scale was used to evaluate six domains of family function. The group with both anxiety and externalizing disorders had higher levels of conflict in family environment and lower levels of organization when compared with typically developing children. In addition, internalizing and externalizing symptoms were positively associated with conflict and negatively with organization. Maternal depressive and anxious symptoms were also associated with higher conflict and lower organization scores. An important between-group difference in comorbid cases of anxiety and behavioral disorders suggests that children with this comorbidity are potential candidates for family interventions to address family conflicts and organizational aspects.

  4. Organic and Nonorganic Feeding Disorders.

    PubMed

    Rybak, Anna

    2015-01-01

    Feeding is one of the most important interactions between caregiver and child in the first few years of life and even later on in handicapped children. Feeding disorders can present as food refusal or low quantity of food intake due to behavioral issues or underlying organic conditions. This situation concerns mostly infants and children below 6 years of age; however, feeding problems can appear also later on in life. Feeding disorders are a concern for over 10-25% of parents of otherwise healthy children below 3 years of age, but only 1-5% of infants and toddlers suffer from severe feeding problems resulting in failure to thrive. In case of premature infants or neurologically disabled children, this rate is much higher. Feeding disorders may appear as an isolated problem, mainly due to negative behaviors during feeding, or as a concomitant disorder with an underlying organic disease or structural anomaly. The newest classification also includes the feeding style presented by the caregiver (responsive, controlling, indulgent or neglectful) as a separate cause of feeding disorders. © 2015 S. Karger AG, Basel.

  5. Institutional Narcissism, Arrogant Organization Disorder and Interruptions in Organizational Learning

    ERIC Educational Resources Information Center

    Godkin, Lynn; Allcorn, Seth

    2009-01-01

    Purpose: This article aims to present an alternative approach to diagnosing behavioral barriers to organizational learning. Design/methodology/approach: The paper juxtaposes interruptions in organizational learning with characteristics of narcissism and arrogant organization disorder. Psychoanalytically informed theory and DSM-IV criteria are…

  6. Acoustic emission study of deformation behavior of nacre

    NASA Astrophysics Data System (ADS)

    Luo, Shunfei; Luo, Hongyun; Han, Zhiyuan

    2016-02-01

    A study on the acoustic emission (AE) characteristics during deformation of nacre material was performed. We found that intermittent AE events are generated during nacre deformation. These avalanches may be attributed to microfracture events of the aragonite (CaCO3) nano-asperities and bridges during tablet sliding. These events show several critical features, such as the power-law distributions of the avalanche sizes and interval. These results suggest that the underlying fracture dynamics during nacre deformation display a self-organized criticality (SOC). The results also imply that the disorder and long-range correlation between local microfracture events may play important roles in nacre deformation.

  7. Juvenile offenders: competence to stand trial.

    PubMed

    Soulier, Matthew

    2012-12-01

    This article details the legal background and assists the reader in the preparation and practical conduct of evaluations regarding juvenile adjudicative competency. The material is presented to be useful as a guide to direct questions of competency and covers aspects of evaluation that include: legal standard for competency to stand trial, developmental immaturity, current practice in juvenile competency to stand trial, forensic evaluation of juvenile competency to stand trial, organizing the evaluation, collateral sources of information, psychiatric evaluation of juvenile adjudicative competency, assessment of mental disorder and intellectual disability, assessment of developmental status, assessment of functional abilities for adjudicative competence, and reaching the forensic opinion. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Burden of illness in functional gastrointestinal disorder--the consequences for the individual and society.

    PubMed

    Glise, H; Wiklund, I; Hallerbäck, B

    1998-01-01

    To review the consequences of functional gastrointestinal disorders (FGD), i.e. heartburn without esophagitis, dyspepsia and IBS for the individual and society. Current publications indicate that functional gastrointestinal disorders are more prevalent than organic gastrointestinal disorders in the population. Symptoms, not the organic finding per se, are most important to the individual. Functional disorders are furthermore linked to somatic symptoms, from other parts of the body, as well as to mental health. Together they constitute a large medical burden on society in terms of consultations, drug consumption and surgery. Social costs are further increased by problems at work and a considerable increase in absenteeism. Functional gastrointestinal disorders should be taken more seriously by the medical community and society, since the burden of illness seems much larger than earlier anticipated.

  9. Polar order in nanostructured organic materials

    NASA Astrophysics Data System (ADS)

    Sayar, M.; Olvera de la Cruz, M.; Stupp, S. I.

    2003-02-01

    Achiral multi-block liquid crystals are not expected to form polar domains. Recently, however, films of nanoaggregates formed by multi-block rodcoil molecules were identified as the first example of achiral single-component materials with macroscopic polar properties. By solving an Ising-like model with dipolar and asymmetric short-range interactions, we show here that polar domains are stable in films composed of aggregates as opposed to isolated molecules. Unlike classical molecular systems, these nanoaggregates have large intralayer spacings (a approx 8 nm), leading to a reduction in the repulsive dipolar interactions which oppose polar order within layers. In finite-thickness films of nanostructures, this effect enables the formation of polar domains. We compute exactly the energies of the possible structures consistent with the experiments as a function of film thickness at zero temperature (T). We also provide Monte Carlo simulations at non-zero T for a disordered hexagonal lattice that resembles the smectic-like packing in these nanofilms.

  10. Modeling organohalide perovskites for photovoltaic applications: From materials to interfaces

    NASA Astrophysics Data System (ADS)

    de Angelis, Filippo

    2015-03-01

    The field of hybrid/organic photovoltaics has been revolutionized in 2012 by the first reports of solid-state solar cells based on organohalide perovskites, now topping at 20% efficiency. First-principles modeling has been widely applied to the dye-sensitized solar cells field, and more recently to perovskite-based solar cells. The computational design and screening of new materials has played a major role in advancing the DSCs field. Suitable modeling strategies may also offer a view of the crucial heterointerfaces ruling the device operational mechanism. I will illustrate how simulation tools can be employed in the emerging field of perovskite solar cells. The performance of the proposed simulation toolbox along with the fundamental modeling strategies are presented using selected examples of relevant materials and interfaces. The main issue with hybrid perovskite modeling is to be able to accurately describe their structural, electronic and optical features. These materials show a degree of short range disorder, due to the presence of mobile organic cations embedded within the inorganic matrix, requiring to average their properties over a molecular dynamics trajectory. Due to the presence of heavy atoms (e.g. Sn and Pb) their electronic structure must take into account spin-orbit coupling (SOC) in an effective way, possibly including GW corrections. The proposed SOC-GW method constitutes the basis for tuning the materials electronic and optical properties, rationalizing experimental trends. Modeling charge generation in perovskite-sensitized TiO2 interfaces is then approached based on a SOC-DFT scheme, describing alignment of energy levels in a qualitatively correct fashion. The role of interfacial chemistry on the device performance is finally discussed. The research leading to these results has received funding from the European Union Seventh Framework Programme [FP7/2007 2013] under Grant Agreement No. 604032 of the MESO project.

  11. Resolving ultrafast exciton migration in organic solids at the nanoscale

    NASA Astrophysics Data System (ADS)

    Penwell, Samuel B.; Ginsberg, Lucas D. S.; Noriega, Rodrigo; Ginsberg, Naomi S.

    2017-11-01

    Effectiveness of molecular-based light harvesting relies on transport of excitons to charge-transfer sites. Measuring exciton migration, however, has been challenging because of the mismatch between nanoscale migration lengths and the diffraction limit. Instead of using bulk substrate quenching methods, here we define quenching boundaries all-optically with sub-diffraction resolution, thus characterizing spatiotemporal exciton migration on its native nanometre and picosecond scales. By transforming stimulated emission depletion microscopy into a time-resolved ultrafast approach, we measure a 16-nm migration length in poly(2,5-di(hexyloxy)cyanoterephthalylidene) conjugated polymer films. Combined with Monte Carlo exciton hopping simulations, we show that migration in these films is essentially diffusive because intrinsic chromophore energetic disorder is comparable to chromophore inhomogeneous broadening. Our approach will enable previously unattainable correlation of local material structure to exciton migration character, applicable not only to photovoltaic or display-destined organic semiconductors but also to explaining the quintessential exciton migration exhibited in photosynthesis.

  12. Radiation Protection Using Single-Wall Carbon Nanotube Derivatives

    NASA Technical Reports Server (NTRS)

    Tour, James M.; Lu, Meng; Lucente-Schultz, Rebecca; Leonard, Ashley; Doyle, Condell Dewayne; Kosynkin, Dimitry V.; Price, Brandi Katherine

    2011-01-01

    This invention is a means of radiation protection, or cellular oxidative stress mitigation, via a sequence of quenching radical species using nano-engineered scaffolds, specifically single-wall carbon nanotubes (SWNTs) and their derivatives. The material can be used as a means of radiation protection by reducing the number of free radicals within, or nearby, organelles, cells, tissue, organs, or living organisms, thereby reducing the risk of damage to DNA and other cellular components (i.e., RNA, mitochondria, membranes, etc.) that can lead to chronic and/or acute pathologies, including but not limited to cancer, cardiovascular disease, immuno-suppression, and disorders of the central nervous system. In addition, this innovation could be used as a prophylactic or antidote for accidental radiation exposure, during high-altitude or space travel where exposure to radiation is anticipated, or to protect from exposure from deliberate terrorist or wartime use of radiation- containing weapons.

  13. Designing ternary blend bulk heterojunction solar cells with reduced carrier recombination and a fill factor of 77%

    NASA Astrophysics Data System (ADS)

    Gasparini, Nicola; Jiao, Xuechen; Heumueller, Thomas; Baran, Derya; Matt, Gebhard J.; Fladischer, Stefanie; Spiecker, Erdmann; Ade, Harald; Brabec, Christoph J.; Ameri, Tayebeh

    2016-09-01

    In recent years the concept of ternary blend bulk heterojunction (BHJ) solar cells based on organic semiconductors has been widely used to achieve a better match to the solar irradiance spectrum, and power conversion efficiencies beyond 10% have been reported. However, the fill factor of organic solar cells is still limited by the competition between recombination and extraction of free charges. Here, we design advanced material composites leading to a high fill factor of 77% in ternary blends, thus demonstrating how the recombination thresholds can be overcome. Extending beyond the typical sensitization concept, we add a highly ordered polymer that, in addition to enhanced absorption, overcomes limits predicted by classical recombination models. An effective charge transfer from the disordered host system onto the highly ordered sensitizer effectively avoids traps of the host matrix and features an almost ideal recombination behaviour.

  14. Tracking the coherent generation of polaron pairs in conjugated polymers

    NASA Astrophysics Data System (ADS)

    de Sio, Antonietta; Troiani, Filippo; Maiuri, Margherita; Réhault, Julien; Sommer, Ephraim; Lim, James; Huelga, Susana F.; Plenio, Martin B.; Rozzi, Carlo Andrea; Cerullo, Giulio; Molinari, Elisa; Lienau, Christoph

    2016-12-01

    The optical excitation of organic semiconductors not only generates charge-neutral electron-hole pairs (excitons), but also charge-separated polaron pairs with high yield. The microscopic mechanisms underlying this charge separation have been debated for many years. Here we use ultrafast two-dimensional electronic spectroscopy to study the dynamics of polaron pair formation in a prototypical polymer thin film on a sub-20-fs time scale. We observe multi-period peak oscillations persisting for up to about 1 ps as distinct signatures of vibronic quantum coherence at room temperature. The measured two-dimensional spectra show pronounced peak splittings revealing that the elementary optical excitations of this polymer are hybridized exciton-polaron-pairs, strongly coupled to a dominant underdamped vibrational mode. Coherent vibronic coupling induces ultrafast polaron pair formation, accelerates the charge separation dynamics and makes it insensitive to disorder. These findings open up new perspectives for tailoring light-to-current conversion in organic materials.

  15. Order-disorder phase transitions and their influence on the structure and vibrational properties of new hybrid material: 2-Amino-4-methyl-3-nitropyridinium trifluoroacetate

    NASA Astrophysics Data System (ADS)

    Lorenc, J.; Bryndal, I.; Syska, W.; Wandas, M.; Marchewka, M.; Pietraszko, A.; Lis, T.; Mączka, M.; Hermanowicz, K.; Hanuza, J.

    2010-08-01

    New organic-organic salt, 2-amino-4-methyl-3-nitropyridinium trifluoroacetate, has been synthesised and characterised by FT-IR, FT-Raman, DSC and single crystal X-ray crystallography. The 2-amino-4-methyl-3-nitropyridinium trifluoroacetate undergoes a reversible phase transition at ˜162 K. The X-ray structures, vibrational spectra and quantum chemical DFT calculations (B3LYP/6-31G(d,p) approach) have been analysed for high-temperature and low-temperature modifications of the compound, which both crystallize in orthorhombic space group Pbca with two non-equivalent cations and two anions in the asymmetric unit. Their crystal and molecular structures have been compared and the role of the intermolecular interactions in these crystals has been analysed. The mechanisms of the phase transition have been proposed.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorai, Prashun; Toberer, Eric S.; Stevanović, Vladan

    Here, at room temperature and above, most magnetic materials adopt a spin-disordered (paramagnetic) state whose electronic properties can differ significantly from their low-temperature, spin-ordered counterparts. Yet computational searches for new functional materials usually assume some type of magnetic order. In the present work, we demonstrate a methodology to incorporate spin disorder in computational searches and predict the electronic properties of the paramagnetic phase. We implement this method in a high-throughput framework to assess the potential for thermoelectric performance of 1350 transition-metal sulfides and find that all magnetic systems we identify as promising in the spin-ordered ground state cease to bemore » promising in the paramagnetic phase due to disorder-induced deterioration of the charge carrier transport properties. We also identify promising non-magnetic candidates that do not suffer from these spin disorder effects. In addition to identifying promising materials, our results offer insights into the apparent scarcity of magnetic systems among known thermoelectrics and highlight the importance of including spin disorder in computational searches.« less

  17. Atypical Saccadic Scanning in Autistic Spectrum Disorder

    ERIC Educational Resources Information Center

    Benson, Valerie; Piper, Jenna; Fletcher-Watson, Sue

    2009-01-01

    Saccadic scanning was examined for typically developing (TD) adults and those with autistic spectrum disorder (ASD) during inspection of the "Repin" picture (Yarbus, A. (1967). "Eye movements and vision". New York: Plenum) under two different viewing instructions: (A) material instructions ("Estimate the material circumstances of the family"); and…

  18. Reducing dynamic disorder in small-molecule organic semiconductors by suppressing large-amplitude thermal motions

    PubMed Central

    Illig, Steffen; Eggeman, Alexander S.; Troisi, Alessandro; Jiang, Lang; Warwick, Chris; Nikolka, Mark; Schweicher, Guillaume; Yeates, Stephen G.; Henri Geerts, Yves; Anthony, John E.; Sirringhaus, Henning

    2016-01-01

    Thermal vibrations and the dynamic disorder they create can detrimentally affect the transport properties of van der Waals bonded molecular semiconductors. The low-energy nature of these vibrations makes it difficult to access them experimentally, which is why we still lack clear molecular design rules to control and reduce dynamic disorder. In this study we discuss the promising organic semiconductors rubrene, 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothio-phene and 2,9-di-decyl-dinaphtho-[2,3-b:20,30-f]-thieno-[3,2-b]-thiophene in terms of an exceptionally low degree of dynamic disorder. In particular, we analyse diffuse scattering in transmission electron microscopy, to show that small molecules that have their side chains attached along the long axis of their conjugated core are better encapsulated in their crystal structure, which helps reduce large-amplitude thermal motions. Our work provides a general strategy for the design of new classes of very high mobility organic semiconductors with a low degree of dynamic disorder. PMID:26898754

  19. Biomaterials for intervertebral disc regeneration and repair.

    PubMed

    Bowles, Robert D; Setton, Lori A

    2017-06-01

    The intervertebral disc contributes to motion, weight bearing, and flexibility of the spine, but is susceptible to damage and morphological changes that contribute to pathology with age and injury. Engineering strategies that rely upon synthetic materials or composite implants that do not interface with the biological components of the disc have not met with widespread use or desirable outcomes in the treatment of intervertebral disc pathology. Here we review bioengineering advances to treat disc disorders, using cell-supplemented materials, or acellular, biologically based materials, that provide opportunity for cell-material interactions and remodeling in the treatment of intervertebral disc disorders. While a field still in early development, bioengineering-based strategies employing novel biomaterials are emerging as promising alternatives for clinical treatment of intervertebral disc disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Molecular Motor-Induced Instabilities and Cross Linkers Determine Biopolymer Organization

    PubMed Central

    Smith, D.; Ziebert, F.; Humphrey, D.; Duggan, C.; Steinbeck, M.; Zimmermann, W.; Käs, J.

    2007-01-01

    All eukaryotic cells rely on the active self-organization of protein filaments to form a responsive intracellular cytoskeleton. The necessity of motility and reaction to stimuli additionally requires pathways that quickly and reversibly change cytoskeletal organization. While thermally driven order-disorder transitions are, from the viewpoint of physics, the most obvious method for controlling states of organization, the timescales necessary for effective cellular dynamics would require temperatures exceeding the physiologically viable temperature range. We report a mechanism whereby the molecular motor myosin II can cause near-instantaneous order-disorder transitions in reconstituted cytoskeletal actin solutions. When motor-induced filament sliding diminishes, the actin network structure rapidly and reversibly self-organizes into various assemblies. Addition of stable cross linkers was found to alter the architectures of ordered assemblies. These isothermal transitions between dynamic disorder and self-assembled ordered states illustrate that the interplay between passive crosslinking and molecular motor activity plays a substantial role in dynamic cellular organization. PMID:17604319

  1. MMPI screening scales for somatization disorder.

    PubMed

    Wetzel, R D; Brim, J; Guze, S B; Cloninger, C R; Martin, R L; Clayton, P J

    1999-08-01

    44 items on the MMPI were identified which appear to correspond to some of the symptoms in nine of the 10 groups on the Perley-Guze checklist for somatization disorder (hysteria). This list was organized into two scales, one reflecting the total number of symptoms endorsed and the other the number of organ systems with at least one endorsed symptom. Full MMPIs were then obtained from 29 women with primary affective disorder and 37 women with somatization disorder as part of a follow-up study of a consecutive series of 500 psychiatric clinic patients seen at Washington University. Women with the diagnosis of somatization disorder scored significantly higher on the somatization disorder scales created from the 44 items than did women with only major depression. These new scales appeared to be slightly more effective in identifying somatization disorder than the use of the standard MMPI scales for hypochondriasis and hysteria. Further development is needed.

  2. Effects of structural and chemical disorders on the vis/UV spectra of carbonaceous interstellar grains

    NASA Astrophysics Data System (ADS)

    Papoular, Robert J.; Yuan, Shengjun; Roldán, Rafael; Katsnelson, Mikhail I.; Papoular, Renaud

    2013-07-01

    The recent spectacular progress in the experimental and theoretical understanding of graphene, the basic constituent of graphite, is applied here to compute, from first principles, the ultraviolet extinction of nanoparticles made of stacks of graphene layers. The theory also covers cases where graphene is affected by structural, chemical or orientation disorder, each disorder type being quantitatively defined by a single parameter. The extinction bumps carried by such model materials are found to have positions and widths falling in the same range as the known astronomical 2175 Å features: as the disorder parameter increases, the bump width increases from 0.85 to 2.5 μm-1, while its peak position shifts from 4.65 to 4.75 μm-1. Moderate degrees of disorder are enough to cover the range of widths of the vast majority of observed bumps (0.75 to 1.3 μm-1). Higher degrees account for outliers, also observed in the sky. The introduction of structural or chemical disorder amounts to changing the initial sp2 bondings into sp3 or sp1, so the optical properties of the model material become similar to those of the more or less amorphous carbon-rich materials studied in the laboratory: a-C, a-C:H, HAC, ACH, coals, etc. The present treatment thus bridges gaps between physically different model materials.

  3. Atomic-scale identification of Pd leaching in nanoparticle catalyzed C–C coupling: Effects of particle surface disorder

    DOE PAGES

    Briggs, Beverly D.; Bedford, Nicholas M.; Seifert, Soenke; ...

    2015-07-23

    C–C coupling reactions are of great importance in the synthesis of numerous organic compounds, where Pd nanoparticle catalyzed systems represent new materials to efficiently drive these reactions. Despite their pervasive utility, the catalytic mechanism of these particle-based reactions remains highly contested. Herein we present evidence of an atom leaching mechanism for Stille coupling under aqueous conditions using peptide-capped Pd nanoparticles. EXAFS analysis revealed Pd coordination changes in the nanoparticle consistent with Pd atom abstraction, where sizing analysis by SAXS confirmed particle size changes associated with a leaching process. It is likely that recently discovered highly disordered surface Pd atoms aremore » the favored catalytic active sites and are leached during oxidative addition, resulting in smaller particles. Thus, probing the mechanism of nanoparticle-driven C–C coupling reactions through structural analyses provides fundamental information concerning these active sites and their reactivity at the atomic-scale, which can be used to improve catalytic performance to meet important sustainability goals.« less

  4. Thermally-induced first-order phase transition in the (FC6H4C2H4NH3)2[PbI4] photoluminescent organic-inorganic material

    NASA Astrophysics Data System (ADS)

    Koubaa, M.; Dammak, T.; Garrot, D.; Castro, M.; Codjovi, E.; Mlayah, A.; Abid, Y.; Boukheddaden, K.

    2012-03-01

    The thermal properties of the perovskite slab alkylammonium lead iodide (FC6H4C2H4NH3)2[PbI4] are investigated using spectroscopic ellipsometry, differential scanning calorimetry, photoluminescence, and Raman spectroscopy. The spectroscopic ellipsometry, performed in the heating mode, clearly evidenced the presence of a singularity at 375 K. This is corroborated by the temperature dependence of the photoluminescence, which pointed out a first-order order-disorder phase transition at ˜375 K, with a hysteresis loop of 40 K width. Raman spectroscopy data suggest that this transition arises from a dynamic rotational disordering of the ammonium headgroups of the alkylammonium chain. In contrast, differential scanning calorimetry measurements on a pellet sample led to an entropy change value ΔS ≈0.39 J/K/mol at the transition, suggesting the existence of a residual short-range order of the NH3+ on cooling from the high temperature phase.

  5. Mn doped InSb studied at the atomic scale by cross-sectional scanning tunneling microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauger, S. J. C.; Bocquel, J.; Koenraad, P. M., E-mail: p.m.koenraad@tue.nl

    2015-11-30

    We present an atomically resolved study of metal-organic vapor epitaxy grown Mn doped InSb. Both topographic and spectroscopic measurements have been performed by cross-sectional scanning tunneling microscopy (STM). The measurements on the Mn doped InSb samples show a perfect crystal structure without any precipitates and reveal that Mn acts as a shallow acceptor. The Mn concentration of the order of ∼10{sup 20 }cm{sup −3} obtained from the cross-sectional STM data compare well with the intended doping concentration. While the pair correlation function of the Mn atoms showed that their local distribution is uncorrelated beyond the STM resolution for observing individual dopants,more » disorder in the Mn ion location giving rise to percolation pathways is clearly noted. The amount of clustering that we see is thus as expected for a fully randomly disordered distribution of the Mn atoms and no enhanced clustering or second phase material was observed.« less

  6. [Organic brain syndrome].

    PubMed

    Hojaij, C R

    1984-12-01

    Organic Brain Syndrome (OBS) is an expression finding in the Diagnostic and Statistical Manual of Mental Disorders belonging to the great chapter of Organic Mental Disorders. With this meaning, it has been used in psychiatric centers outside the United States. Beginning with a lecture of the major aspects of the OBS, a critical revision is formulated under methodological and conceptual views of psychopathology. For that, classic authors are revised from Bonhoeffer to Weitbrecht.

  7. Combined effects of space charge and energetic disorder on photocurrent efficiency loss of field-dependent organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Yoon, Sangcheol; Park, Byoungchoo; Hwang, Inchan

    2015-11-01

    The loss of photocurrent efficiency by space-charge effects in organic solar cells with energetic disorder was investigated to account for how energetic disorder incorporates space-charge effects, utilizing a drift-diffusion model with field-dependent charge-pair dissociation and suppressed bimolecular recombination. Energetic disorder, which induces the Poole-Frenkel behavior of charge carrier mobility, is known to decrease the mobility of charge carriers and thus reduces photovoltaic performance. We found that even if the mobilities are the same in the absence of space-charge effects, the degree of energetic disorder can be an additional parameter affecting photocurrent efficiency when space-charge effects occur. Introducing the field-dependence parameter that reflects the energetic disorder, the behavior of efficiency loss with energetic disorder can differ depending on which charge carrier is subject to energetic disorder. While the energetic disorder that is applied to higher-mobility charge carriers decreases photocurrent efficiency further, the efficiency loss can be suppressed when energetic disorder is applied to lower-mobility charge carriers.

  8. Toward a modular multi-material nanoparticle synthesis and assembly strategy via bionanocombinatorics: bifunctional peptides for linking Au and Ag nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briggs, Beverly D.; Palafox-Hernandez, J. Pablo; Li, Yue

    Materials-binding peptides represent a unique avenue towards controlling the shape and size of nanoparticles (NPs) grown under aqueous conditions. Here, employing a bionanocombinatorics approach, two such materials-binding peptides were linked at either end of a photoswitchable spacer, forming a multi-domain materials-binding molecule to control the in situ synthesis and organization of Ag and Au NPs under ambient conditions. These multi-domain molecules retained the peptides’ ability to nucleate, grow, and stabilize Ag and Au NPs in aqueous media. Disordered co-assemblies of the two nanomaterials were observed by TEM imaging of dried samples after sequential growth of the two metals, and showedmore » a clustering behavior that was not observed without both metals and the linker molecules. While TEM evidence indicated the formation of AuNP/AgNP assemblies upon drying, SAXS analysis indicated that no extended assemblies existed in solution, suggesting that sample drying plays an important role in facilitating NP clustering. Molecular simulations and experimental data revealed tunable materials-binding based upon the isomerization state of the photoswitchable unit and metal employed. This work is a first step in generating externally actuated biomolecules with specific material-binding properties that could be used as the building blocks to achieve multi-material switchable NP assemblies.« less

  9. Psychiatric comorbidity and psychosocial impairment among patients with vertigo and dizziness.

    PubMed

    Lahmann, Claas; Henningsen, Peter; Brandt, Thomas; Strupp, Michael; Jahn, Klaus; Dieterich, Marianne; Eckhardt-Henn, Annegret; Feuerecker, Regina; Dinkel, Andreas; Schmid, Gabriele

    2015-03-01

    Vertigo and dizziness are often not fully explained by an organic illness, but instead are related to psychiatric disorders. This study aimed to evaluate psychiatric comorbidity and assess psychosocial impairment in a large sample of patients with a wide range of unselected organic and non-organic (ie, medically unexplained) vertigo/dizziness syndromes. This cross-sectional study involved a sample of 547 patients recruited from a specialised interdisciplinary treatment centre for vertigo/dizziness. Diagnostic evaluation included standardised neurological examinations, structured clinical interview for major mental disorders (SCID-I) and self-report questionnaires regarding dizziness, depression, anxiety, somatisation and quality of life. Neurological diagnostic workup revealed organic and non-organic vertigo/dizziness in 80.8% and 19.2% of patients, respectively. In 48.8% of patients, SCID-I led to the diagnosis of a current psychiatric disorder, most frequently anxiety/phobic, somatoform and affective disorders. In the organic vertigo/dizziness group, 42.5% of patients, particularly those with vestibular paroxysmia or vestibular migraine, had a current psychiatric comorbidity. Patients with psychiatric comorbidity reported more vertigo-related handicaps, more depressive, anxiety and somatisation symptoms, and lower psychological quality of life compared with patients without psychiatric comorbidity. Almost half of patients with vertigo/dizziness suffer from a psychiatric comorbidity. These patients show more severe psychosocial impairment compared with patients without psychiatric disorders. The worst combination, in terms of vertigo-related handicaps, is having non-organic vertigo/dizziness and psychiatric comorbidity. This phenomenon should be considered when diagnosing and treating vertigo/dizziness in the early stages of the disease. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. Assessing the World Health Organization's Alcohol Use Disorder Identification Test among Incarcerated Women.

    ERIC Educational Resources Information Center

    El-Bassel, Nabila; Schilling, Robert; Ivanoff, Andre; Chen, Duan-Rung; Hanson, Meredith

    1998-01-01

    Describes the results of administering the World Health Organization's Alcohol Use Disorder Identification Test (AUDIT) to 400 incarcerated drug-using women. Reports on AUDIT's utility, validity, and reliability. Results demonstrate that AUDIT can be used to identify problem drinkers among incarcerated, drug-using women. (MKA)

  11. A Guide to Selected National Genetic Voluntary Organizations.

    ERIC Educational Resources Information Center

    National Center for Education in Maternal and Child Health, Washington, DC.

    The directory lists mutual support groups concerned with the medical and psychosocial impacts of genetic disorders and birth defects on affected individuals and families. Each organization included is dedicated to the ongoing emotional, practical, and financial needs of these populations. Entries are categorized by disorder, including: general,…

  12. The diagnosis of organic brain syndrome.

    PubMed

    Berger, D M

    1977-03-01

    Because it stems from a variety of causes and interacting factors, organic brain syndrome is a difficult condition to diagnose. Several factors make it distinguishable from functional disorders, schizophrenia or hysteria. The syndrome cannot be considered in isolation from the patient's personality, however, since this will affect his coping with the disorder.

  13. Sensory Organization of Balance Control in Children with Developmental Coordination Disorder

    ERIC Educational Resources Information Center

    Fong, Shirley S. M.; Lee, Velma Y. L.; Pang, Marco Y. C.

    2011-01-01

    This study aimed to (1) compare functional balance performance and sensory organization of postural control between children with and without developmental coordination disorder (DCD) and (2) determine the association between postural control and participation diversity among children with DCD. We recruited 81 children with DCD and 67 typically…

  14. Using thermally stimulated current (TSC) to investigate disorder in micronized drug substance produced at different milling energies.

    PubMed

    Forcino, Rachel; Brum, Jeffrey; Galop, Marc; Sun, Yan

    2010-10-01

    To investigate the use of thermally stimulated current (TSC) to characterize disorder resulting from micronization of a crystalline drug substance. Samples processed at different milling energies are characterized, and annealing studied. Molecular mobility in micronized drug substance was studied using TSC and compared to results from differential scanning calorimetry (DSC). The micronized drug substance TSC spectra are compared to crystalline and amorphous references. TSC shows distinct relaxation modes for micronized material in comparison to a single weak exotherm observed with DSC. Molecular mobility modes are unique for micronized material compared to the amorphous reference indicating physically distinct disorder compared to phase-separated amorphous material. Signals are ascribed as arising from crystal defects. TSC differentiates material processed at different milling energies showing reasonable correlation between the AUC of the α-relaxation and micronization energy. The annealing process of crystal defects in micronized drug appears to proceed differently for α and β relaxations. TSC proves sensitive to the crystal defects in the micronized drug substance studied here. The technique is able to differentiate distinct types of disorder and can be used to characterize noncrystalline regions arising from milling processes which are physically distinct from amorphous material.

  15. Tissue and organ donation for research in forensic pathology: the MRC Sudden Death Brain and Tissue Bank.

    PubMed

    Millar, T; Walker, R; Arango, J-C; Ironside, J W; Harrison, D J; MacIntyre, D J; Blackwood, D; Smith, C; Bell, J E

    2007-12-01

    Novel methodological approaches to the investigation of brain and non-central nervous system disorders have led to increased demand for well-characterized, high quality human tissue samples, particularly from control cases. In the setting of the new Human Tissue legislation, we sought to determine whether relatives who have been suddenly bereaved are willing to grant authorization for research use of post mortem tissue samples and organs in sufficient numbers to support the establishment of a brain and tissue bank based in the forensic service. Research authorization was sought from families on the day prior to forensic post mortem examination followed up by written confirmation. We have to date selected individuals who have died suddenly (age range 1-89 years) and who were likely to have normal brains or who had displayed symptoms of a CNS disorder of interest to researchers, including psychiatric disorders. One hundred and eleven families have been approached during the first 2 years of this project. Research use of tissue samples was authorized by 96% of families and 17% agreed to whole brain donation. Audit of families' experience does not suggest that they are further distressed by being approached. Respondents expressed a clear view that the opportunity for research donation should be open to all bereaved families. Despite the sometimes long post mortem intervals, the quality of tissue samples is good, as assessed by a range of markers including Agilent BioAnalyzer quantification of RNA integrity (mean value 6.4). We conclude that the vast majority of families are willing to support research use of post mortem tissues even in the context of sudden bereavement and despite previous adverse publicity. The potential for acquisition of normal CNS and non-CNS tissues and of various hard-to-get CNS disorders suggests that efforts to access the forensic post mortem service for research material are eminently worthwhile. (c) 2007 Pathological Society of Great Britain and Ireland

  16. Organic photosensitive cells grown on rough electrode with nano-scale morphology control

    DOEpatents

    Yang, Fan [Piscataway, NJ; Forrest, Stephen R [Ann Arbor, MI

    2011-06-07

    An optoelectronic device and a method for fabricating the optoelectronic device includes a first electrode disposed on a substrate, an exposed surface of the first electrode having a root mean square roughness of at least 30 nm and a height variation of at least 200 nm, the first electrode being transparent. A conformal layer of a first organic semiconductor material is deposited onto the first electrode by organic vapor phase deposition, the first organic semiconductor material being a small molecule material. A layer of a second organic semiconductor material is deposited over the conformal layer. At least some of the layer of the second organic semiconductor material directly contacts the conformal layer. A second electrode is deposited over the layer of the second organic semiconductor material. The first organic semiconductor material is of a donor-type or an acceptor-type relative to the second organic semiconductor material, which is of the other material type.

  17. Emergent large mechanical damping in ferroelastic-martensitic systems driven by disorder

    NASA Astrophysics Data System (ADS)

    Ni, Yan; Zhang, Zhen; Fang, Minxia; Hao, Yanshuang; Ding, Xiangdong; Otsuka, Kazuhiro; Ren, Xiaobing

    2018-05-01

    Disorders and point defects strongly interplay with the phase transition and alter the properties of ferroelastic-martensitic systems. Unusual static and quasistatic behaviors, such as time-dependent phase transitions, are discovered when disorders are introduced. However, the role of disorders on the ferroelastic system in vibrational environments at moderate frequency is rarely known, investigation of which could further shed light on their application as mechanical damping materials. Here we present the emergence of large damping capacity in ferroelastic-martensitic systems [including both the T i50 -xN i50 +x alloy and (C a1 -xS rx) Ti O3 ceramics] by introducing disorder (i.e., substitutional Ni and Sr, respectively). As the level disorder increases, the damping capacity of both systems raises and eventually reaches a maximum when long-range-ordered martensite tends to vanish. Moreover, near the disorder-induced phase boundary, we observe a large mechanical damping in ferroelastic ceramics (C a1 -xS rx) Ti O3 with a figure of merit ˜2 GP a1 /2 . Microscopic and dynamic investigations indicate that such damping plateau could result from the competing evolution of density and mobility of domain boundaries when disorder is introduced. Our work provides a degree of freedom to develop ferroelastic damping materials and a potential way to tune domain-boundary-mediated functionalities for other ferroic materials.

  18. Charge relaxation and dynamics in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Kwok, H. L.

    2006-08-01

    Charge relaxation in dispersive materials is often described in terms of the stretched exponential function (Kohlrausch law). The process can be explained using a "hopping" model which in principle, also applies to charge transport such as current conduction. This work analyzed reported transient photoconductivity data on functionalized pentacene single crystals using a geometric hopping model developed by B. Sturman et al and extracted values (or range of values) on the materials parameters relevant to charge relaxation as well as charge transport. Using the correlated disorder model (CDM), we estimated values of the carrier mobility for the pentacene samples. From these results, we observed the following: i) the transport site density appeared to be of the same order of magnitude as the carrier density; ii) it was possible to extract lower bound values on the materials parameters linked to the transport process; and iii) by matching the simulated charge decay to the transient photoconductivity data, we were able to refine estimates on the materials parameters. The data also allowed us to simulate the stretched exponential decay. Our observations suggested that the stretching index and the carrier mobility were related. Physically, such interdependence would allow one to demarcate between localized molecular interactions and distant coulomb interactions.

  19. Charge carrier mobility in conjugated organic polymers: simulation of an electron mobility in a carbazole-benzothiadiazole-based polymer

    NASA Astrophysics Data System (ADS)

    Li, Yaping; Lagowski, Jolanta B.

    2011-08-01

    Inorganic (mostly silicon based) solar cells are important devices that are used to solve the world energy and environmental needs. Now days, organic solar cells are attracting considerable attention in the field of photovoltaic cells because of their low cost and processing flexibility. Often conjugated polymers are used in the construction of the organic solar cells. We study the conjugated polymers' charge transport using computational approach that involves the use of the density functional theory (DFT), semiempirical (ZINDO), and Monte Carlo (MC) theoretical methods in order to determine their transfer integrals, reorganization energies, transfer rates (with the use of Marcus-Hush equation) and mobilities. We employ the experimentally determined three dimensional (3D) structure of poly(9,9'-di-n-octylfluorene-alt-benzothiadiazole) (F8BT) to estimate the electron mobility in a similar co-alternating polymer consisting of carbazole and benzothiadiazole units (C8BT). In agreement with our previous work, we found that including an orientational disorder in the crystal reduces the electron mobility in C8BT. We hope that the proposed computational approach can be used to predict charge mobility in organic materials that are used in solar cells.

  20. Extraction of Photogenerated Electrons and Holes from a Covalent Organic Framework Integrated Heterojunction

    PubMed Central

    2014-01-01

    Covalent organic frameworks (COFs) offer a strategy to position molecular semiconductors within a rigid network in a highly controlled and predictable manner. The π-stacked columns of layered two-dimensional COFs enable electronic interactions between the COF sheets, thereby providing a path for exciton and charge carrier migration. Frameworks comprising two electronically separated subunits can form highly defined interdigitated donor–acceptor heterojunctions, which can drive the photogeneration of free charge carriers. Here we report the first example of a photovoltaic device that utilizes exclusively a crystalline organic framework with an inherent type II heterojunction as the active layer. The newly developed triphenylene–porphyrin COF was grown as an oriented thin film with the donor and acceptor units forming one-dimensional stacks that extend along the substrate normal, thus providing an optimal geometry for charge carrier transport. As a result of the degree of morphological precision that can be achieved with COFs and the enormous diversity of functional molecular building blocks that can be used to construct the frameworks, these materials show great potential as model systems for organic heterojunctions and might ultimately provide an alternative to the current disordered bulk heterojunctions. PMID:25412210

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Printz, Adam D.; Lipomi, Darren J., E-mail: dlipomi@ucsd.edu

    The primary goal of the field concerned with organic semiconductors is to produce devices with performance approaching that of silicon electronics, but with the deformability—flexibility and stretchability—of conventional plastics. However, an inherent competition between deformability and charge transport has long been observed in these materials, and achieving the extreme (or even moderate) deformability implied by the word “plastic” concurrently with high charge transport may be elusive. This competition arises because the properties needed for high carrier mobilities—e.g., rigid chains in π-conjugated polymers and high degrees of crystallinity in the solid state—are antithetical to deformability. On the device scale, this competitionmore » can lead to low-performance yet mechanically robust devices, or high-performance devices that fail catastrophically (e.g., cracking, cohesive failure, and delamination) under strain. There are, however, some observations that contradict the notion of the mutual exclusivity of electronic and mechanical performances. These observations suggest that this problem may not be a fundamental trade-off, but rather an inconvenience that may be negotiated by a logical selection of materials and processing conditions. For example, the selection of the poly(3-alkylthiophene) with a critical side-chain length—poly(3-heptylthiophene) (n = 7)—marries the high deformability of poly(3-octylthiophene) (n = 8) with the high electronic performance (as manifested in photovoltaic efficiency) of poly(3-hexylthiophene) (n = 6). This review explores the relationship between deformability and charge transport in organic semiconductors. The principal conclusions are that reducing the competition between these two parameters is in fact possible, with two demonstrated routes being: (1) incorporation of softer, insulating material into a stiffer, semiconducting material and (2) increasing disorder in a highly ordered film, but not enough to disrupt charge transport pathways. The aim of this review is to provide a bridge between the fields interested in electronic properties and mechanical properties of conjugated polymers. We provide a high-level introduction to some of the important electronic and mechanical properties and measurement techniques for organic electronic devices, demonstrate an apparent competition between good electronic performance and mechanical deformability, and highlight potential strategies for overcoming this undesirable competition. A marriage of these two fields would allow for rational design of materials for applications requiring large-area, low-cost, printable devices that are ultra-flexible or stretchable, such as organic photovoltaic devices and wearable, conformable, or implantable sensors.« less

  2. Molecular organization of the cholesteryl ester droplets in the fatty streaks of human aorta.

    PubMed Central

    Engelman, D M; Hillman, G M

    1976-01-01

    X-ray diffraction patterns from human arterial specimens containing atherosclerotic fatty streak lesions exhibited a single sharp reflection, corresponding to a structural spacing of about 35 A. Specimens without lesions did not. When specimens with fatty streaks were heated, an order-to-disorder phase transition was revealed by the disappearance of the sharp reflection. The transition was thermally reversible and its temperature varied from aorta to aorta over a range from 28 degrees to 42 degrees C. Since cholesteryl ester droplets are a major component of fatty streaks, comparison studies were made of the diffraction behavior from pure cholesteryl esters. We found that the diffraction patterns of the fatty streak material could be accounted for by the organization of the cholesteryl esters into a liquid-crystalline smectic phase that melts from the smectic to a less ordered phase upon heating. When combined with the conclusions of others from polarized light microscopy, our study shows that a droplet in the smectic phase has well-defined concentric layers of lipid molecules. In each layer, the long axes of the molecules have a net radial orientation with respect to the droplet, but the side-to-side organization is disordered. We suggest that the accessibility of portions of the lipids for specific binding to enzymes or transport proteins may be restricted when they are in the smectic state, and that exchange of lipids with surrounding membranes or other potential binding sites may likewise be inhibited. The restriction in the smectic phase should be greater than in the less ordered phases that exist at higher temperatures. Images PMID:965500

  3. [Neuropsychological evaluation of a case of organic personality disorder due to penetrating brain injury].

    PubMed

    Sanz de la Torre, J C; Pérez-Ríos, M

    1996-06-01

    In this paper, an organic personality disorder case by penetrating brain injury, predominantly localized in the right frontal lobe, is presented. Neuropsychological and neuroimaging (CT scan studies) were performed. We assessed the main cognitive aspect: orientation, attention, memory, intelligence, language, visual-spatial functioning, motor functioning, executive functioning and personality. The results obtained, point out disorders in the patient's behavior and in the executive functions. Likewise, other cognitive functions as: attention, memory, language and visual-spatial functioning, show specific deficits.

  4. Effects of Structural and Electronic Disorder in Topological Insulator Sb2Te3 Thin Films

    NASA Astrophysics Data System (ADS)

    Korzhovska, Inna

    Topological quantum matter is a unique and potentially transformative protectorate against disorder-induced backscattering. The ultimate disorder limits to the topological state, however, are still not known - understanding these limits is critical to potential applications in the fields of spintronics and information processing. In topological insulators spin-orbit interaction and time-reversal-symmetry invariance guarantees - at least up to a certain disorder strength - that charge transport through 2D gapless Dirac surface states is robust against backscattering by non-magnetic disorder. Strong disorder may destroy topological protection and gap out Dirac surface states, although recent theories predict that under severe electronic disorder a quantized topological conductance might yet reemerge. Very strong electronic disorder, however, is not trivial to install and quantify, and topological matter under such conditions thus far has not been experimentally tested. This thesis addresses the behavior of three-dimensional (3D) topological insulator (TI) films in a wide range of structural and electronic disorder. We establish strong positional disorder in thin (20-50 nm) Sb2Te 3 films, free of extrinsic magnetic dopants. Sb 2Te3 is a known 2nd generation topological insulator in the low-disorder crystalline state. It is also a known phase-change material that undergoes insulator-to-metal transition with the concurrent orders of magnitude resistive drop, where a huge range of disorder could be controllably explored. In this work we show that even in the absence of magnetic dopants, disorder may induce spin correlations detrimental to the topological state. Chapter 1 contains a brief introduction to the topological matter and describes the role played by disorder. This is followed by theory considerations and a survey of prior experimental work. Next we describe the motivation for our experiments and explain the choice of the material. Chapter 2 describes deposition techniques used for material growth, including the parameters significance and effects on the material properties. Chapter 3 describes structural and electrical characterization techniques employed in the work. In Chapter 4-5 we discuss the experimental results. Sb2Te 3 films at extreme disorder, where spin correlations dominate the transport of charge, are discussed in Chapter 4. We employ transport measurements as our main tool to explore disorder-induced changes in the Sb2Te 3. In addition we directly detect disorder-induced spin response in thin Sb2Te3 films free of extrinsic magnetic dopants; it onsets at a surprisingly high temperature ( 200 K) and vanishes when disorder is reduced. Localized spins control the hopping (tunneling) transport through spin memory induced by the non-equilibrium charge currents. The observed spin-memory phenomenon emerges as negative magnetoresistance distinct from orbital quantum interference effects. The hopping mechanism and spin correlations dominate transport over an extensive disorder range. Spin correlations are eventually suppressed by the restoration of positional order in the (bulk) crystalline state, implying a disorder threshold to the topological state. As disorder is reduced the material undergoes structural and electronic transitions, which are discussed in Chapter 5. We obtain a number of characteristic attributes that change sharply at the structural and electronic transitions: localization length, dimensionality, and the nature of conductance. Structural transition is clearly seen in the changes in lattice vibrations tracked by Raman spectroscopy, which we use here as a metric of disorder. The significance of the disorder-induced localization transition is discussed. Next we investigate the effects of structural and electronic disorder on the bulk and surfaces in the crystalline state of Sb2Te3. The nontrivial topology of this strongly spin-orbit coupled material comes from the band inversion in the bulk. One of the key transport signatures of topological surfaces is weak antilocalization (WAL) correction to conductivity; it is associated with the topological pi Berry phase and should display a two-dimensional (2D) character. In our work, we establish the disorder level at which 2D WAL appears. The conduction at this threshold is one conduction quantum G0; it corresponds to the topological quantum channel. Finally, we summarize our key findings and discuss open questions and next steps toward the understanding of disorder-induced correlations in the spin and charge channels that can alter the emergent behaviors of the topological states.

  5. Polymeric membrane materials for artificial organs.

    PubMed

    Kawakami, Hiroyoshi

    2008-01-01

    Many polymeric materials have already been used in the field of artificial organs. However, the materials used in artificial organs are not necessarily created with the best material selectivity and materials design; therefore, the development of synthesized polymeric membrane materials for artificial organs based on well-defined designs is required. The approaches to the development of biocompatible polymeric materials fall into three categories: (1) control of physicochemical characteristics on material surfaces, (2) modification of material surfaces using biomolecules, and (3) construction of biomimetic membrane surfaces. This review will describe current issues regarding polymeric membrane materials for use in artificial organs.

  6. e-Ana and e-Mia: A Content Analysis of Pro–Eating Disorder Web Sites

    PubMed Central

    Schenk, Summer; Wilson, Jenny L.; Peebles, Rebecka

    2010-01-01

    Objectives. The Internet offers Web sites that describe, endorse, and support eating disorders. We examined the features of pro–eating disorder Web sites and the messages to which users may be exposed. Methods. We conducted a systematic content analysis of 180 active Web sites, noting site logistics, site accessories, “thinspiration” material (images and prose intended to inspire weight loss), tips and tricks, recovery, themes, and perceived harm. Results. Practically all (91%) of the Web sites were open to the public, and most (79%) had interactive features. A large majority (84%) offered pro-anorexia content, and 64% provided pro-bulimia content. Few sites focused on eating disorders as a lifestyle choice. Thinspiration material appeared on 85% of the sites, and 83% provided overt suggestions on how to engage in eating-disordered behaviors. Thirty-eight percent of the sites included recovery-oriented information or links. Common themes were success, control, perfection, and solidarity. Conclusions. Pro–eating disorder Web sites present graphic material to encourage, support, and motivate site users to continue their efforts with anorexia and bulimia. Continued monitoring will offer a valuable foundation to build a better understanding of the effects of these sites on their users. PMID:20558807

  7. Organic light emitting device architecture for reducing the number of organic materials

    DOEpatents

    D'Andrade, Brian [Westampton, NJ; Esler, James [Levittown, PA

    2011-10-18

    An organic light emitting device is provided. The device includes an anode and a cathode. A first emissive layer is disposed between the anode and the cathode. The first emissive layer includes a first non-emitting organic material, which is an organometallic material present in the first emissive layer in a concentration of at least 50 wt %. The first emissive layer also includes a first emitting organic material. A second emissive layer is disposed between the first emissive layer and the cathode, preferably, in direct contact with the first emissive layer. The second emissive material includes a second non-emitting organic material and a second emitting organic material. The first and second non-emitting materials, and the first and second emitting materials, are all different materials. A first non-emissive layer is disposed between the first emissive layer and the anode, and in direct contact with the first emissive layer. The first non- emissive layer comprises the first non-emissive organic material.

  8. [The Role of Physician In Enhancement of Rehabilitation of Disabled Children].

    PubMed

    Nizova, L M; Kislisyna, I G

    2017-09-01

    The national and international experience of rehabilitation of disabled children was investigated. On the basis of monitoring data problem of increasing of number of children with diagnosis of infantile cerebral paralysis, including necessity of development of new methods of their rehabilitation was established. The comparative dynamics of nosology of disabled children permitted to detect diseases of nervous system and congenital abnormalities (malformations), deformations and chromosomal disorders, psychological disorders and behavioral disorders mostly specific for urban and rural area. The model of institutional environment of rehabilitation of disabled children was developed including system of formal (state, legislative acts, health institutions, organizations of social support of population)and non-formal (public, non-commercial and social psychological organizations) institutions impacted by economic, social,legal and demographic factors. The role of physician is substantiated concerning increasing of quality of rehabilitation services: diagnostic of disordered functions, detection of optimal volume of medical, psychological and pedagogue activities in patients with severe speech disorders, motoric and and neuro-censorial disorders developed as a result of early organic damage of brain, neuro-infections, strokes, and other affection of brain. The adequate curative rehabilitative complex programs were developed of social everyday and social labor rehabilitation.

  9. [Non-convulsive paroxysmal disorders in exogenous-organic diseases of the brain].

    PubMed

    Piven', B N; Koveva, O P

    1999-01-01

    Examination of 273 patients with exogenous-organic diseases of the brain revealed nonconvulsive paroxysmal disorders of traumatic, toxic, infectious, radioactive and combined origin in 112 cases (41.0%). Such disorders were characterised by pronounced polymorphism and presented with viscero-vegetative (36.6%), affective (27.7%), psychosensory (19.6%), sensory (15.2%), ideatoric (11.6%) paroxysms as well as with twilight states of consciousness (16.1%), absence seizures (10.7%), narcolepsy (2.7%), catalepcy (1.8%) and the states of "déjà vu" and "jamais vu" (5.4%). In most of the patients such paroxysms were found 5 or more years after exogenous influences, i.e. when the severity of the organic brain damage increased. A resemblance of nonconvulsive paroxysms was observed in the patients with different etiology of the disease. The disorders were seldom detected in routine medical practice which may cause in adequate therapy.

  10. Behavioral activation and inhibition system's role in predicting addictive behaviors of patients with bipolar disorder of Roozbeh Psychiatric Hospital

    PubMed Central

    Abbasi, Moslem; Sadeghi, Hasan; Pirani, Zabih; Vatandoust, Leyla

    2016-01-01

    Background: Nowadays, prevalence of addictive behaviors among bipolar patients is considered to be a serious health threat by the World Health Organization. The aim of this study is to investigate the role of behavioral activation and inhibition systems in predicting addictive behaviors of male patients with bipolar disorder at the Roozbeh Psychiatric Hospital. Materials and Methods: The research method used in this study is correlation. The study population consisted of 80 male patients with bipolar disorder referring to the psychiatrics clinics of Tehran city in 2014 who were referred to the Roozbeh Psychiatric Hospital. To collect data, the international and comprehensive inventory diagnostic interview, behavioral activation and inhibition systems scale, and addictive behaviors scale were used. Results: The results showed that there is a positive and significant relationship between behavioral activation systems and addictive behaviors (addictive eating, alcohol addiction, television addiction, cigarette addiction, mobile addiction, etc.). In addition, correlation between behavioral inhibition systems and addictive behaviors (addictive eating, alcohol addiction, TV addiction, cigarette addiction, mobile addiction) is significantly negative. Finally, regression analysis showed that behavioral activation and inhibition systems could significantly predict 47% of addictive behaviors in patients with bipolar disorder. Conclusions: It can be said that the patients with bipolar disorder use substance and addictive behaviors for enjoyment and as pleasure stimulants; they also use substances to suppress unpleasant stimulants and negative emotions. These results indicate that behavioral activation and inhibition systems have an important role in the incidence and exacerbation of addictive behaviors. Therefore, preventive interventions in this direction seem to be necessary. PMID:28194203

  11. Special Education Teacher Preparation in Classroom Management: Implications for Students with Emotional and Behavioral Disorders

    ERIC Educational Resources Information Center

    Oliver, Regina M.; Reschly, Daniel J.

    2010-01-01

    Special education teachers' skills with classroom organization and behavior management affect the emergence and persistence of behavior problems as well as the success of inclusive practice for students with emotional and behavioral disorders (EBD). Adequate special education teacher preparation and strong classroom organization and behavior…

  12. The Diagnosis of Organic Brain Syndrome

    PubMed Central

    Berger, David M.

    1977-01-01

    Because it stems from a variety of causes and interacting factors, organic brain syndrome is a difficult condition to diagnose. Several factors make it distinguishable from functional disorders, schizophrenia or hysteria. The syndrome cannot be considered in isolation from the patient's personality, however, since this will affect his coping with the disorder. PMID:21304779

  13. Effect of Cation Rotation on Charge Dynamics in Hybrid Lead Halide Perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gélvez-Rueda, María C.; Cao, Duyen H.; Patwardhan, Sameer

    Organic-inorganic hybrid halide perovskites are a promising class of materials for photovoltaic application with reported power efficiencies over similar to 22%. However, not much is known about the influence of the organic dipole rotation and phase transitions on charge carrier dynamics. Here, we report substantial changes in mobility and lifetime of charge carriers in CH 3NH 3PbI 3 after the low-temperature tetragonal (beta) to orthorhombic (gamma) phase transition. By using microwave conductivity measurements, we observed that the mobility and lifetime of ionized charge carriers increase as the temperature decreases and a sudden increment is seen after the beta-gamma phase transition.more » For CH 3NH 3PbI 3, the mobility and the half-lifetime increase by a factor of 36 compared with the values before the beta-gamma phase transition. We attribute the considerable change in the dynamics at low temperature to the decrease of the inherent dynamic disorder of the organic cation (CH 3NH 3+) inside the perovskite crystal structure.« less

  14. Molecular disorder and translation/rotation coupling in the plastic crystal phase of hybrid perovskites.

    PubMed

    Even, J; Carignano, M; Katan, C

    2016-03-28

    The complexity of hybrid organic perovskites calls for an innovative theoretical view that combines usually disconnected concepts in order to achieve a comprehensive picture: (i) the intended applications of this class of materials are currently in the realm of conventional semiconductors, which reveal the key desired properties for the design of efficient devices. (ii) The reorientational dynamics of the organic component resembles that observed in plastic crystals, therefore requiring a stochastic treatment that can be done in terms of pseudospins and rotator functions. (iii) The overall structural similarity with all inorganic perovskites suggests the use of the high temperature pseudo cubic phase as the reference platform on which further refinements can be built. In this paper we combine the existing knowledge on these three fields to define a general scenario based on which we can continue the quest towards a fundamental understanding of hybrid organic perovskites. With the introduction of group theory as the main tool to rationalize the different ideas and with the help of molecular dynamics simulations, several experimentally observed properties are naturally explained with possible suggestions for future work.

  15. Molecular disorder and translation/rotation coupling in the plastic crystal phase of hybrid perovskites

    NASA Astrophysics Data System (ADS)

    Even, J.; Carignano, M.; Katan, C.

    2016-03-01

    The complexity of hybrid organic perovskites calls for an innovative theoretical view that combines usually disconnected concepts in order to achieve a comprehensive picture: (i) the intended applications of this class of materials are currently in the realm of conventional semiconductors, which reveal the key desired properties for the design of efficient devices. (ii) The reorientational dynamics of the organic component resembles that observed in plastic crystals, therefore requiring a stochastic treatment that can be done in terms of pseudospins and rotator functions. (iii) The overall structural similarity with all inorganic perovskites suggests the use of the high temperature pseudo cubic phase as the reference platform on which further refinements can be built. In this paper we combine the existing knowledge on these three fields to define a general scenario based on which we can continue the quest towards a fundamental understanding of hybrid organic perovskites. With the introduction of group theory as the main tool to rationalize the different ideas and with the help of molecular dynamics simulations, several experimentally observed properties are naturally explained with possible suggestions for future work.

  16. Evaluation of the Homework, Organization, and Planning Skills (HOPS) Intervention for Middle School Students with ADHD as Implemented by School Mental Health Providers.

    PubMed

    Langberg, Joshua M; Epstein, Jeffery N; Becker, Stephen P; Girio-Herrera, Erin; Vaughn, Aaron J

    2012-09-01

    The purpose of the study was to evaluate the Homework, Organization, and Planning Skills (HOPS) intervention for middle school students with Attention-Deficit/Hyperactivity Disorder (ADHD) as implemented by school mental health (SMH) providers using a randomized trial design. Seventeen SMH providers from five school districts implemented the HOPS intervention. Forty-seven middle school students with ADHD (grades 6-8) were randomly assigned to receive the HOPS intervention or to a waitlist comparison group. Parent and teacher ratings of organizational skills and homework problems were collected pre- and post-intervention and at a 3-monoth follow-up, and school grades were also collected. Intervention participants demonstrated significant improvements relative to the waitlist comparison across parent-rated organized action ( d = .88), materials management ( d = .63), planning ( d = 1.05), and homework completion behaviors ( d = .85). Intervention participants did not make significant improvements relative to the comparison group according to teacher ratings. SMH providers were able to implement the HOPS intervention with fidelity despite the fact that no formal ongoing consultation was provided.

  17. Evaluation of the Homework, Organization, and Planning Skills (HOPS) Intervention for Middle School Students with ADHD as Implemented by School Mental Health Providers

    PubMed Central

    Langberg, Joshua M.; Epstein, Jeffery N.; Becker, Stephen P.; Girio-Herrera, Erin; Vaughn, Aaron J.

    2013-01-01

    The purpose of the study was to evaluate the Homework, Organization, and Planning Skills (HOPS) intervention for middle school students with Attention-Deficit/Hyperactivity Disorder (ADHD) as implemented by school mental health (SMH) providers using a randomized trial design. Seventeen SMH providers from five school districts implemented the HOPS intervention. Forty-seven middle school students with ADHD (grades 6–8) were randomly assigned to receive the HOPS intervention or to a waitlist comparison group. Parent and teacher ratings of organizational skills and homework problems were collected pre- and post-intervention and at a 3-monoth follow-up, and school grades were also collected. Intervention participants demonstrated significant improvements relative to the waitlist comparison across parent-rated organized action (d = .88), materials management (d = .63), planning (d = 1.05), and homework completion behaviors (d = .85). Intervention participants did not make significant improvements relative to the comparison group according to teacher ratings. SMH providers were able to implement the HOPS intervention with fidelity despite the fact that no formal ongoing consultation was provided. PMID:25355991

  18. Theoretical study of spin Hall effect in conjugated Organic semiconductors

    NASA Astrophysics Data System (ADS)

    Mahani, M. R.; Delin, A.

    The spin Hall effect (SHE), a direct conversion between electronic and spin currents, is a rapidly growing branch of spintronics. The study of SHE in conjugated polymers has gained momentum recently due to the weak spin-orbit couplings and hyperfine interactions in these materials. Our calculations of SHE based on the recent work, are the result of the misalignment of pi-orbitals in triads consisting of three molecules. In disordered organics, where the electronic conduction is through hopping of the electrons among randomly oriented molecules, instead of identifying a hopping triad to represent the entire system, we numerically solve the master equations for electrical and spin hall conductivities by summing the contributions from all triads in a sufficiently large system. The interference between the direct and indirect hoppings in these triads leads to SHE proportional to the orientation vector of molecule at the first order of spin-orbit coupling. Hence, our results show, the degree of molecular alignment as well as the strength of the spin-orbit coupling can be used to control the SHE in organics.

  19. Electronic delocalization in discotic liquid crystals: a joint experimental and theoretical study.

    PubMed

    Crispin, Xavier; Cornil, Jérôme; Friedlein, Rainer; Okudaira, Koji Kamiya; Lemaur, Vincent; Crispin, Annica; Kestemont, Gaël; Lehmann, Matthias; Fahlman, Mats; Lazzaroni, Roberto; Geerts, Yves; Wendin, Göran; Ueno, Nobuo; Brédas, Jean-Luc; Salaneck, William R

    2004-09-29

    Discotic liquid crystals emerge as very attractive materials for organic-based (opto)electronics as they allow efficient charge and energy transport along self-organized molecular columns. Here, angle-resolved photoelectron spectroscopy (ARUPS) is used to investigate the electronic structure and supramolecular organization of the discotic molecule, hexakis(hexylthio)diquinoxalino[2,3-a:2',3'-c]phenazine, deposited on graphite. The ARUPS data reveal significant changes in the electronic properties when going from disordered to columnar phases, the main feature being a decrease in ionization potential by 1.8 eV following the appearance of new electronic states at low binding energy. This evolution is rationalized by quantum-chemical calculations performed on model stacks containing from two to six molecules, which illustrate the formation of a quasi-band structure with Bloch-like orbitals delocalized over several molecules in the column. The ARUPS data also point to an energy dispersion of the upper pi-bands in the columns by some 1.1 eV, therefore highlighting the strongly delocalized nature of the pi-electrons along the discotic stacks.

  20. Novel hole transport materials for organic light emitting devices

    NASA Astrophysics Data System (ADS)

    Shi, Jianmin; Forsythe, Eric; Morton, David

    2008-08-01

    Organic electronic devices generally have a layered structure with organic materials sandwiched between an anode and a cathode, such organic electronic devices of organic light-emitting diode (OLED), organic photovoltaic (OPV), organic thin-film transistor (OTFT). There are many advantages of these organic electronic devices as compared to silicon-based devices. However, one of key challenge for an organic electronic device is to minimize the charge injection barrier from electrodes to organic materials and improve the charge transport mobility. In order to overcome these circumstances, there are many approaches including, designing organic materials with minimum energy barriers and improving charge transport mobility. Ideally organic materials or complex with Ohmic contact will be the most desired.

  1. Using an Exemplification Exercise to Teach Psychological Disorders

    ERIC Educational Resources Information Center

    Balch, William R.

    2009-01-01

    At the beginning of the semester, 2 introductory psychology classes took 1 pretest requiring them to match 12 psychological disorders with the correct definitions and another requiring them to match the disorders with appropriate examples. Twelve weeks later, both classes heard lecture material on the disorders. One class also performed an…

  2. A Comparison of Voice Activity and Participation Profiles Among Etiological Groups.

    PubMed

    Lee, Seung Jin; Choi, Hong-Shik; Kim, HyangHee

    2018-05-11

    The purpose of this study was to determine whether patients with functional voice disorders show voice activity and participation profiles different from those of the organic and neurogenic groups. The Korean Version of the Voice Activity and Participation Profile (K-VAPP) was administered to 200 participants (150 patients with functional, organic, and neurogenic voice disorders, 50 for each etiological group, 50 controls without vocal complaint). The K-VAPP subscale scores of the etiological groups were compared, controlling for age, professional use of voice, and severity of voice disorder measured by overall severity of the Consensus Auditory-Perceptual Evaluation of Voice (CAPE-V). Results of a one-way analysis of variance indicated significant differences in the overall severity across groups (neurogenic > functional = organic > control). Among four groups, the organic group showed higher mean Z-scores of the K-VAPP than the control group, and the functional group showed higher mean Z-scores of the K-VAPP than the organic group. Compared with the neurogenic group, the functional group showed lower mean Z-scores for total score, Activity Limitation Score, SUB3, and SUB5. A comparison among three etiological groups showed that the functional group did not show higher scores than the organic group. On the contrary, the functional group showed a lower total score, Participation Restriction Score, and score for subsection 3 (effect on daily communication) than the neurogenic group. Psychometric assessment of voice disorders using the K-VAPP could provide clinicians with baseline information that is applicable to various voice disorders. Further studies pertaining to the follow-up of voice disorders with various etiologies are needed to extend its clinical usefulness. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  3. Rare Disorders and Diseases

    ERIC Educational Resources Information Center

    Umlauf, Mary; Monaco, Jana; FitzZaland, Mary; FitzZaland, Richard; Novitsky, Scott

    2008-01-01

    According to the National Organization for Rare Disorders (NORD), a rare or "orphan" disease affects fewer than 200,000 people in the United States. There are more than 6,000 rare disorders that, taken together, affect approximately 25 million Americans. "Exceptional Parent" ("EP") recognizes that when a disorder affects a child or adult, it…

  4. Effect of reduced use of organic solvents on disability pension in painters

    PubMed Central

    Järvholm, Bengt; Burdorf, Alex

    2017-01-01

    Objective To investigate whether the decreased use of paints based on organic solvents has caused a decreased risk for neuropsychiatric disorders in painters by studying their incidence in disability pensions. Methods The incidence of disability pension in Swedish painters who had participated in health examinations between 1971 and 1993 was studied through linkage with Swedish registers of disability pension over 1971–2010 and compared with the incidence in other construction workers as woodworkers, concrete workers and platers. When phasing out began in the 1970s, about 40% of paints were based on organic solvents and it had decreased to 4% in 1990s. The analysis was adjusted for age, time period, body mass index and smoking. Results The painters (n=23 065) had an increased risk of disability pension due to neurological diagnosis (n=285, relative risk (RR) 1.92, 95% CI 1.67 to 2.20) and psychiatric diagnosis (n=632, RR=1.61, 95 % CI 1.42 to 1.82). For neurological disorders there was a time trend with a continuously decreasing risk from 1980 onwards, but there was no such trend for psychiatric disorders. Conclusions High exposure to organic solvents increased the risk for disability pension in neurological disorders, and the risk decreased when the use of organic solvents decreased. The painters also had an increased risk of disability pension due to psychiatric disorders, but the causes have to be further investigated. PMID:28780566

  5. Deciphering chemical order/disorder and material properties at the single-atom level.

    PubMed

    Yang, Yongsoo; Chen, Chien-Chun; Scott, M C; Ophus, Colin; Xu, Rui; Pryor, Alan; Wu, Li; Sun, Fan; Theis, Wolfgang; Zhou, Jihan; Eisenbach, Markus; Kent, Paul R C; Sabirianov, Renat F; Zeng, Hao; Ercius, Peter; Miao, Jianwei

    2017-02-01

    Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling 'real' materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily on average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. This work combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure-property relationships at the fundamental level.

  6. The perils of dimensionalization: challenges in distinguishing negative traits from personality disorders.

    PubMed

    Wakefield, Jerome C

    2008-09-01

    The harmful dysfunction analysis of mental disorder is used to assess whether traits are indicative of personality disorder, and the ways such an inference can go wrong. Personality is an overall organization that allows the organism to accomplish basic goals within the constraints of its basic traits and specific intentional states. Extreme traits can be negative or "dysfunctional" in the sense that they interfere with the achievement of socially or personally valued goals; however, they are not necessarily dysfunctions or disorders in the biological or medical sense. Thus, no sheer assessment of a set of traits can offer sufficient information for a diagnosis of personality disorder. Nor do criteria such as maladaptiveness, impairment, or clinical significance necessarily transform a trait into a personality disorder. The DSM's most plausible suggestion for judging when traits are dysfunctions, inflexibility, is also problematic because many nondisordered traits are inflexible as well.

  7. Systemic Mastocytosis with Smoldering Multiple Myeloma: Report of a Case

    PubMed Central

    Garcia, Gwenalyn; Ying, Liu; Hurford, Matthew; Odaimi, Marcel

    2016-01-01

    Systemic mastocytosis (SM) is a disease characterized by a clonal infiltration of mast cells affecting various tissues of the body. It is grouped into six different subtypes according to the World Health Organization classification. It is called indolent systemic mastocytosis (ISM) when there is no evidence of end organ dysfunction, while the presence of end organ dysfunction defines aggressive systemic mastocytosis (ASM). When SM coexists with a clonal hematological disorder, it is classified as systemic mastocytosis with associated clonal hematological nonmast cell lineage disease (SM-AHNMD). Over 80% of SM-AHNMD cases involve disorders of the myeloid cell lines. To our knowledge, there are only 8 reported cases to date of SM associated with a plasma cell disorder. We report a patient with ISM who was found to have concomitant smoldering multiple myeloma. His disease later progressed to ASM. We discuss this rare association between SM and a plasma cell disorder, and potential common pathophysiologic mechanisms linking the two disorders will be reviewed. We also discuss prognostic factors in SM as well as the management options considered during the evolution of the patient's disease. PMID:27293930

  8. A Review on Disorder-Driven Metal–Insulator Transition in Crystalline Vacancy-Rich GeSbTe Phase-Change Materials

    PubMed Central

    Wang, Jiang-Jing; Xu, Ya-Zhi; Mazzarello, Riccardo; Wuttig, Matthias; Zhang, Wei

    2017-01-01

    Metal–insulator transition (MIT) is one of the most essential topics in condensed matter physics and materials science. The accompanied drastic change in electrical resistance can be exploited in electronic devices, such as data storage and memory technology. It is generally accepted that the underlying mechanism of most MITs is an interplay of electron correlation effects (Mott type) and disorder effects (Anderson type), and to disentangle the two effects is difficult. Recent progress on the crystalline Ge1Sb2Te4 (GST) compound provides compelling evidence for a disorder-driven MIT. In this work, we discuss the presence of strong disorder in GST, and elucidate its effects on electron localization and transport properties. We also show how the degree of disorder in GST can be reduced via thermal annealing, triggering a disorder-driven metal–insulator transition. The resistance switching by disorder tuning in crystalline GST may enable novel multilevel data storage devices. PMID:28773222

  9. A Review on Disorder-Driven Metal-Insulator Transition in Crystalline Vacancy-Rich GeSbTe Phase-Change Materials.

    PubMed

    Wang, Jiang-Jing; Xu, Ya-Zhi; Mazzarello, Riccardo; Wuttig, Matthias; Zhang, Wei

    2017-07-27

    Metal-insulator transition (MIT) is one of the most essential topics in condensed matter physics and materials science. The accompanied drastic change in electrical resistance can be exploited in electronic devices, such as data storage and memory technology. It is generally accepted that the underlying mechanism of most MITs is an interplay of electron correlation effects (Mott type) and disorder effects (Anderson type), and to disentangle the two effects is difficult. Recent progress on the crystalline Ge₁Sb₂Te₄ (GST) compound provides compelling evidence for a disorder-driven MIT. In this work, we discuss the presence of strong disorder in GST, and elucidate its effects on electron localization and transport properties. We also show how the degree of disorder in GST can be reduced via thermal annealing, triggering a disorder-driven metal-insulator transition. The resistance switching by disorder tuning in crystalline GST may enable novel multilevel data storage devices.

  10. Biomaterials in light amplification

    NASA Astrophysics Data System (ADS)

    Mysliwiec, Jaroslaw; Cyprych, Konrad; Sznitko, Lech; Miniewicz, Andrzej

    2017-03-01

    Biologically produced or inspired materials can serve as optical gain media, i.e. they can exhibit the phenomenon of light amplification. Some of these materials, under suitable dye-doping and optical pumping conditions, show lasing phenomena. The emerging branch of research focused on obtaining lasing action in highly disordered and highly light scattering materials, i.e. research on random lasing, is perfectly suited for biological materials. The use of biomaterials in light amplification has been extensively reported in the literature. In this review we attempt to report on progress in the development of biologically derived systems able to show the phenomena of light amplification and random lasing together with the contribution of our group to this field. The rich world of biopolymers modified with molecular aggregates and nanocrystals, and self-organized at the nanoscale, offers a multitude of possibilities for tailoring luminescent and light scattering properties that are not easily replicated in conventional organic or inorganic materials. Of particular importance and interest are light amplification and lasing, or random lasing studies in biological cells and tissues. In this review we will describe nucleic acids and their complexes employed as gain media due to their favorable optical properties and ease of manipulation. We will report on research conducted on various biomaterials showing structural analogy to nucleic acids such as fluorescent proteins, gelatins in which the first distributed feedback laser was realized, and also amyloids or silks, which, due to their dye-doped fiber-like structure, allow for light amplification. Other materials that were investigated in that respect include polysaccharides, like starch exhibiting favorable photostability in comparison to other biomaterials, and chitosan, which forms photonic crystals or cellulose. Light amplification and random lasing was not only observed in processed biomaterials but also in living cells and tissues or separated phase systems like phosphatydylcholine liposomes. All of the above-mentioned light amplification possibilities of biomaterials also have potential for several interesting applications in biology, medicine, sensing and imaging, which will be described and discussed in this review.

  11. 78 FR 19637 - National Organic Program: Notice of Draft Guidance on Classification of Materials and Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ... Classification of Materials and Materials for Organic Crop Production AGENCY: Agricultural Marketing Service... organic crop production, livestock production, and handling. The second set of draft guidance documents, NOP 5034, provides clarification regarding materials for use in organic crop production. These...

  12. First-principles studiesy of the order-disorder phase transition in FeCo using Wang-Landau Monte-Carlo method

    NASA Astrophysics Data System (ADS)

    Pei, Zongrui; Eisenbach, Markus; Stocks, G. Malcolm

    Simulating order-disorder phase transitions in magnetic materials requires the accurate treatment of both the atomic and magnetic interactions, which span a vast configuration space. Using FeCo as a prototype system, we demonstrate that this can be addressed by combining the Locally Self-consistent Multiple Scattering (LSMS) method with the Wang-Landau (WL) Monte-Carlo algorithm. Fe-Co based materials are interesting magnetic materials but a reliable phase diagram of the binary Fe-Co system is still difficult to obtain. Using the combined WL-LSMS method we clarify the existence of the disordered A2 phase and predict the Curie temperature between it and the ordered B2 phase. The WL-LSMS method is readily applicable to the study of second-order phase transitions in other binary and multi-component alloys, thereby providing a means to the direct simulation of order-disorder phase transitions in complex alloys without need of intervening classical model Hamiltonians. We also demonstrate the capability of our method to guide the design of new magnetic materials. This research was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division and it used Oak Ridge Leadership Computing Facility resources at Oak Ridge National Laboratory.

  13. Biomineralization-inspired synthesis of functional organic/inorganic hybrid materials: organic molecular control of self-organization of hybrids.

    PubMed

    Arakaki, Atsushi; Shimizu, Katsuhiko; Oda, Mayumi; Sakamoto, Takeshi; Nishimura, Tatsuya; Kato, Takashi

    2015-01-28

    Organisms produce various organic/inorganic hybrid materials, which are called biominerals. They form through the self-organization of organic molecules and inorganic elements under ambient conditions. Biominerals often have highly organized and hierarchical structures from nanometer to macroscopic length scales, resulting in their remarkable physical and chemical properties that cannot be obtained by simple accumulation of their organic and inorganic constituents. These observations motivate us to create novel functional materials exhibiting properties superior to conventional materials--both synthetic and natural. Herein, we introduce recent progress in understanding biomineralization processes at the molecular level and the development of organic/inorganic hybrid materials by these processes. We specifically outline fundamental molecular studies on silica, iron oxide, and calcium carbonate biomineralization and describe material synthesis based on these mechanisms. These approaches allow us to design a variety of advanced hybrid materials with desired morphologies, sizes, compositions, and structures through environmentally friendly synthetic routes using functions of organic molecules.

  14. Cell Model Of A Disordered Solid

    NASA Technical Reports Server (NTRS)

    Peng, Steven T. J.; Landel, Robert F.; Moacanin, Jovan; Simha, Robert; Papazoglou, Elizabeth

    1990-01-01

    Elastic properties predicted from first principles. Paper discusses generalization of cell theory of disordered (non-crystaline) solid to include anisotropic stresses. Study part of continuing effort to understand macroscopic stress-and-strain properties of solid materials in terms of microscopic physical phenomena. Emphasis on derivation, from first principles, of bulk, shear, and Young's moduli of glassy material at zero absolute temperature.

  15. Effects of Wh-Question Graphic Organizers on Reading Comprehension Skills of Students with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Bethune, Keri S.; Wood,Charles L.

    2013-01-01

    Students with autism spectrum disorders often have difficulty with reading comprehension. This study used a delayed multiple baseline across participants design to evaluate the effects of graphic organizers on the accuracy of wh-questions answered following short passage reading. Participants were three elementary-age students with autism spectrum…

  16. Distinctions between organic brain syndrome and functional psychiatric disorders: based on the geriatric mental state interview.

    PubMed

    Fleiss, J; Gurland, B; Roche, P D

    1976-01-01

    Discriminant function analysis was employed to study the ability of the Geriatric Mental Status interview to distinguish between patients diagnosed by the project as having an organic brain syndrome or a functional psychiatric disorder. In both New York and London, patients with organic brain syndrome scored significantly higher (p less than 0.05) than those with functional disorders on the factors of impaired memory, disorientation and incomprehensibility and significantly lower on the factors of depression and somatic concerns. Discriminant functions calculated from data on the New York and London patients separately significantly distinguished not only the patients on whom the functions were based but the patients in the other sample as well.

  17. [Motor system physiotherapy of the masticatory organ].

    PubMed

    Jagucka-Metel, Wioletta; Brzeska, Paulina; Sobolewska, Ewa; Machoy-Mokrzyńska, Anna; Baranowska, Agata

    2013-01-01

    The motor system of the masticatory organ is a complex morphological and functional structure. Its dysfunctions are manifested by various symptoms within the masticatory apparatus and in distant organs. The paper presents a discussion on the physiotherapeutic procedure for the treatment of disorders in the motor system of the masticatory organ. Therapeutic methods are presented, including: massage, trigger point therapy, kinesitherapy, biofeedback, manual therapy, postural re-education, kinesiotaping, physical interventions (TENS, hyaluronidase iontophoresis, ultrasound, laser therapy, and magnetoledotherapy). The paper points out the role of a comprehensive approach to the patient in order to eliminate the cause of disorders, going beyond symptomatic treatment.

  18. Psychogenic and organic amnesia: a multidimensional assessment of clinical, neuroradiological, neuropsychological and psychopathological features.

    PubMed

    Serra, Laura; Fadda, Lucia; Buccione, Ivana; Caltagirone, Carlo; Carlesimo, Giovanni A

    2007-01-01

    Psychogenic amnesia is a complex disorder characterised by a wide variety of symptoms. Consequently, in a number of cases it is difficult distinguish it from organic memory impairment. The present study reports a new case of global psychogenic amnesia compared with two patients with amnesia underlain by organic brain damage. Our aim was to identify features useful for distinguishing between psychogenic and organic forms of memory impairment. The findings show the usefulness of a multidimensional evaluation of clinical, neuroradiological, neuropsychological and psychopathological aspects, to provide convergent findings useful for differentiating the two forms of memory disorder.

  19. The role of anaerobes in patients with ventilator-associated pneumonia and aspiration pneumonia: a prospective study.

    PubMed

    Marik, P E; Careau, P

    1999-01-01

    Aspiration of oropharyngeal material, with its high concentration of anaerobic bacteria, has been implicated in the pathogenesis of both ventilator-associated pneumonia (VAP) and aspiration pneumonitis (AP). Consequently, patients with these disorders are usually treated with antimicrobial agents with anaerobic activity. To determine the incidence of anaerobic bacteria in patients with VAP and AP. Prospective, nonrandomized, interventional study. University-affiliated community teaching hospital. We performed sequential blind protected specimen brush (PSB) sampling and mini-BAL in 143 patients with 185 episodes of suspected VAP and 25 patients with AP who required mechanical ventilation. Quantitative aerobic and anaerobic cultures were performed on all specimens. Pneumonia was considered to be present when either > 500 cfu/mL cultured from blind PSB sampling or > 5,000 cfu/mL cultured from mini-BAL were present. Using the predefined criteria, bacterial pneumonia was diagnosed in 63 of 185 suspected VAP episodes (34%) and 12 of 25 patients with AP (48%). At least one dose of an antibiotic was given in the 24 h prior to bacteriologic sampling in 106 suspected VAP episodes (57%) and in 12 patients with AP (48%). More than one pathogen was isolated from 11 VAP and four AP patients. Pseudomonas aeruginosa, Staphylococcus aureus, and enteric Gram-negative organisms were isolated most frequently from patients with VAP. In the patients with AP, enteric Gram-negative organisms were isolated in patients with GI disorders and Streptococcus pneumoniae and Haemophilus influenzae predominated in patients with "community-acquired" aspiration. Only one anaerobic organism was isolated from the entire group of patients; Veillonella paravula was isolated from a blind PSB specimen in a patient with suspected aspiration pneumonia. Despite painstaking effort, we were able to isolate only one anaerobic organism (nonpathogenic) from this group of patients. The spectrum of aerobes in patients with VAP was similar to that reported in the literature. The organisms found in patients with AP was a reflection of the organisms likely to colonize the oropharynx. The use of antibiotics with anaerobic coverage may not be necessary in patients with suspected VAP and AP. Furthermore, penicillin G and clindamycin may not be the antibiotics of choice in patients with AP.

  20. Methods for associating or dissociating guest materials with a metal organic framework, systems for associating or dissociating guest materials within a series of metal organic frameworks, thermal energy transfer assemblies, and methods for transferring thermal energy

    DOEpatents

    McGrail, B. Peter; Brown, Daryl R.; Thallapally, Praveen K.

    2016-08-02

    Methods for releasing associated guest materials from a metal organic framework are provided. Methods for associating guest materials with a metal organic framework are also provided. Methods are provided for selectively associating or dissociating guest materials with a metal organic framework. Systems for associating or dissociating guest materials within a series of metal organic frameworks are provided. Thermal energy transfer assemblies are provided. Methods for transferring thermal energy are also provided.

  1. Methods for associating or dissociating guest materials with a metal organic framework, systems for associating or dissociating guest materials within a series of metal organic frameworks, thermal energy transfer assemblies, and methods for transferring thermal energy

    DOEpatents

    McGrail, B. Peter; Brown, Daryl R.; Thallapally, Praveen K.

    2014-08-05

    Methods for releasing associated guest materials from a metal organic framework are provided. Methods for associating guest materials with a metal organic framework are also provided. Methods are provided for selectively associating or dissociating guest materials with a metal organic framework. Systems for associating or dissociating guest materials within a series of metal organic frameworks are provided. Thermal energy transfer assemblies are provided. Methods for transferring thermal energy are also provided.

  2. A meta-analysis of the evidence on the impact of prenatal and early infancy exposures to mercury on autism and attention deficit/hyperactivity disorder in the childhood.

    PubMed

    Yoshimasu, Kouichi; Kiyohara, Chikako; Takemura, Shigeki; Nakai, Kunihiko

    2014-09-01

    Although a measurable number of epidemiological studies have been conducted to clarify the associations between mercury exposure during embryo or early infancy and later incidences of autism spectrum disorders (ASD) or attention-deficit hyperactivity disorder (ADHD), the conclusion still remains unclear. Meta-analysis was conducted for two major exposure sources; i.e., thimerosal vaccines that contain ethylmercury (clinical exposure), and environmental sources, using relevant literature published before April 2014. While thimerosal exposures did not show any material associations with an increased risk of ASD or ADHD (the summary odds ratio (OR) 0.99, 95% confidence interval (CI) 0.80-1.24 for ASD; OR 0.91, 95% CI 0.70-1.13 for ADHD/ADD), significant associations were observed for environmental exposures in both ASD (OR 1.66, 95% CI 1.14-2.17) and ADHD (OR 1.60, 95% CI 1.10-2.33). The summary ORs were similar after excluding studies not adjusted for confounders. Moderate adverse effects were observed only between environmental inorganic or organic mercury exposures and ASD/ADHD. However, these results should be interpreted with caution since the number of epidemiological studies on this issue was limited and still at an early stage. Further studies focused on subjects with genetic vulnerabilities of developmental disorders are warranted for better understanding of the effects of such environmental exposures. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. An Analysis of Operating Room Performance Metrics at Reynolds Army Community Hospital

    DTIC Science & Technology

    2009-06-28

    and Disorders of the Male Reproductive System Diseases and Disorders of the Blood, Blood Forming Organs, Immunological Myeloproliferative Diseases and...Disorders, Poorly Differentiated Neoplasm Infectious and Parasitic Diseases, Systemic or Unspecified Sites Injuries, Poisonings and Toxic Effects

  4. Study of multiband disordered systems using the typical medium dynamical cluster approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yi; Terletska, Hanna; Moore, C.

    We generalize the typical medium dynamical cluster approximation to multiband disordered systems. Using our extended formalism, we perform a systematic study of the nonlocal correlation effects induced by disorder on the density of states and the mobility edge of the three-dimensional two-band Anderson model. We include interband and intraband hopping and an intraband disorder potential. Our results are consistent with those obtained by the transfer matrix and the kernel polynomial methods. We also apply the method to K xFe 2-ySe 2 with Fe vacancies. Despite the strong vacancy disorder and anisotropy, we find the material is not an Anderson insulator.more » Moreover our results demonstrate the application of the typical medium dynamical cluster approximation method to study Anderson localization in real materials.« less

  5. Study of multiband disordered systems using the typical medium dynamical cluster approximation

    DOE PAGES

    Zhang, Yi; Terletska, Hanna; Moore, C.; ...

    2015-11-06

    We generalize the typical medium dynamical cluster approximation to multiband disordered systems. Using our extended formalism, we perform a systematic study of the nonlocal correlation effects induced by disorder on the density of states and the mobility edge of the three-dimensional two-band Anderson model. We include interband and intraband hopping and an intraband disorder potential. Our results are consistent with those obtained by the transfer matrix and the kernel polynomial methods. We also apply the method to K xFe 2-ySe 2 with Fe vacancies. Despite the strong vacancy disorder and anisotropy, we find the material is not an Anderson insulator.more » Moreover our results demonstrate the application of the typical medium dynamical cluster approximation method to study Anderson localization in real materials.« less

  6. Immense Magnetic Response of Exciplex Light Emission due to Correlated Spin-Charge Dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Yifei; Sahin-Tiras, Kevser; Harmon, Nicholas J.; Wohlgenannt, Markus; Flatté, Michael E.

    2016-01-01

    As carriers slowly move through a disordered energy landscape in organic semiconductors, tiny spatial variations in spin dynamics relieve spin blocking at transport bottlenecks or in the electron-hole recombination process that produces light. Large room-temperature magnetic-field effects (MFEs) ensue in the conductivity and luminescence. Sources of variable spin dynamics generate much larger MFEs if their spatial structure is correlated on the nanoscale with the energetic sites governing conductivity or luminescence such as in coevaporated organic blends within which the electron resides on one molecule and the hole on the other (an exciplex). Here, we show that exciplex recombination in blends exhibiting thermally activated delayed fluorescence produces MFEs in excess of 60% at room temperature. In addition, effects greater than 4000% can be achieved by tuning the device's current-voltage response curve by device conditioning. Both of these immense MFEs are the largest reported values for their device type at room temperature. Our theory traces this MFE and its unusual temperature dependence to changes in spin mixing between triplet exciplexes and light-emitting singlet exciplexes. In contrast, spin mixing of excitons is energetically suppressed, and thus spin mixing produces comparatively weaker MFEs in materials emitting light from excitons by affecting the precursor pairs. Demonstration of immense MFEs in common organic blends provides a flexible and inexpensive pathway towards magnetic functionality and field sensitivity in current organic devices without patterning the constituent materials on the nanoscale. Magnetic fields increase the power efficiency of unconditioned devices by 30% at room temperature, also showing that magnetic fields may increase the efficiency of the thermally activated delayed fluorescence process.

  7. Immense Magnetic Response of Exciplex Light Emission due to Correlated Spin-Charge Dynamics

    DOE PAGES

    Wang, Yifei; Sahin-Tiras, Kevser; Harmon, Nicholas J.; ...

    2016-02-05

    As carriers slowly move through a disordered energy landscape in organic semiconductors, tiny spatial variations in spin dynamics relieve spin blocking at transport bottlenecks or in the electron-hole recombination process that produces light. Large room-temperature magnetic-field effects (MFEs) ensue in the conductivity and luminescence. Sources of variable spin dynamics generate much larger MFEs if their spatial structure is correlated on the nanoscale with the energetic sites governing conductivity or luminescence such as in coevaporated organic blends within which the electron resides on one molecule and the hole on the other (an exciplex). Here, we show that exciplex recombination in blendsmore » exhibiting thermally activated delayed fluorescence produces MFEs in excess of 60% at room temperature. In addition, effects greater than 4000% can be achieved by tuning the device’s current-voltage response curve by device conditioning. Both of these immense MFEs are the largest reported values for their device type at room temperature. Our theory traces this MFE and its unusual temperature dependence to changes in spin mixing between triplet exciplexes and light-emitting singlet exciplexes. In contrast, spin mixing of excitons is energetically suppressed, and thus spin mixing produces comparatively weaker MFEs in materials emitting light from excitons by affecting the precursor pairs. Demonstration of immense MFEs in common organic blends provides a flexible and inexpensive pathway towards magnetic functionality and field sensitivity in current organic devices without patterning the constituent materials on the nanoscale. In conclusion, magnetic fields increase the power efficiency of unconditioned devices by 30% at room temperature, also showing that magnetic fields may increase the efficiency of the thermally activated delayed fluorescence process.« less

  8. Management of post-transplant lymphoproliferative disorder in adult solid organ transplant recipients - BCSH and BTS Guidelines.

    PubMed

    Parker, Anne; Bowles, Kristin; Bradley, J Andrew; Emery, Vincent; Featherstone, Carrie; Gupte, Girish; Marcus, Robert; Parameshwar, Jayan; Ramsay, Alan; Newstead, Charles

    2010-06-01

    A joint working group established by the Haemato-oncology subgroup of the British Committee for Standards in Haematology (BCSH) and the British Transplantation Society (BTS) has reviewed the available literature and made recommendations for the diagnosis and management of post-transplant lymphoproliferative disorder in adult recipients of solid organ transplants. This review details the therapeutic options recommended including reduction in immunosuppression (RIS), transplant organ resection, radiotherapy and chemotherapy. Effective therapy should be instituted before progressive disease results in declining performance status and multi-organ dysfunction. The goal of treatment should be a durable complete remission with retention of transplanted organ function with minimal toxicity.

  9. Deciphering chemical order/disorder and material properties at the single-atom level

    DOE PAGES

    Yang, Yongsoo; Chen, Chien-Chun; Scott, M. C.; ...

    2017-02-01

    Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling ‘real’ materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily onmore » average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. The work presented here combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure–property relationships at the fundamental level.« less

  10. Effect of reduced use of organic solvents on disability pension in painters.

    PubMed

    Järvholm, Bengt; Burdorf, Alex

    2017-11-01

    To investigate whether the decreased use of paints based on organic solvents has caused a decreased risk for neuropsychiatric disorders in painters by studying their incidence in disability pensions. The incidence of disability pension in Swedish painters who had participated in health examinations between 1971 and 1993 was studied through linkage with Swedish registers of disability pension over 1971-2010 and compared with the incidence in other construction workers as woodworkers, concrete workers and platers. When phasing out began in the 1970s, about 40% of paints were based on organic solvents and it had decreased to 4% in 1990s. The analysis was adjusted for age, time period, body mass index and smoking. The painters (n=23 065) had an increased risk of disability pension due to neurological diagnosis (n=285, relative risk (RR) 1.92, 95% CI 1.67 to 2.20) and psychiatric diagnosis (n=632, RR=1.61, 95 % CI 1.42 to 1.82). For neurological disorders there was a time trend with a continuously decreasing risk from 1980 onwards, but there was no such trend for psychiatric disorders. High exposure to organic solvents increased the risk for disability pension in neurological disorders, and the risk decreased when the use of organic solvents decreased. The painters also had an increased risk of disability pension due to psychiatric disorders, but the causes have to be further investigated. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Dynamics of cracks in disordered materials

    NASA Astrophysics Data System (ADS)

    Bonamy, Daniel

    2017-05-01

    Predicting when rupture occurs or cracks progress is a major challenge in numerous fields of industrial, societal, and geophysical importance. It remains largely unsolved: stress enhancement at cracks and defects, indeed, makes the macroscale dynamics extremely sensitive to the microscale material disorder. This results in giant statistical fluctuations and non-trivial behaviors upon upscaling, difficult to assess via the continuum approaches of engineering.

  12. Effect of disorder on the optical properties of short period superlattices

    NASA Technical Reports Server (NTRS)

    Strozier, J. A.; Zhang, Y. A.; Horton, C.; Ignatiev, A.; Shih, H. D.

    1993-01-01

    The optical properties of disordered short period superlattices are studied using a one-dimensional tight-binding model. A difference vector and disorder structure factor are proposed to characterize the disordered superlattice. The density of states, participation number, and optical absorption coefficients for both ordered and disordered superlattices are calculated as a function of energy. The results show that introduction of disorder into an indirect band gap material enhances the optical transition near the indirect band edge.

  13. Implications of Occupational Disorder on Ion Mobility in Li4Ti5O12 Battery Materials.

    PubMed

    Heenen, Hendrik H; Scheurer, Christoph; Reuter, Karsten

    2017-06-14

    Lithium-titanium-oxide (Li 4 Ti 5 O 12 , LTO) is unique among battery materials due to its exceptional cyclability and high rate capability. This performance is believed to derive at least partly from the occupational disorder introduced via mixed Li/Ti occupancy in the LTO spinel-like structure. We explore the vast configuration space accessible during high-temperature LTO synthesis by Monte Carlo sampling and indeed find lowest-energy structures to be characterized by a high degree of microscopic inhomogeneity. Dynamical simulations in corresponding configurations reveal the dominant fraction of Li ions to be immobile on nanosecond time scales. However, Ti antisite-like defects stabilized by the configurational disorder give rise to a novel correlated ion diffusion mechanism. The resulting fast but localized diffusion could be a key element in the sudden rise in conductivity found in LTO in the early stages of charging and questions the validity of ion mobility measurements for this and other configurationally disordered materials.

  14. Magnetoconductance oscillations at a nanoparticle film-superconductor interface: a means for probing flux penetration depth.

    PubMed

    Dunford, Jeffrey L; Dhirani, Al-Amin

    2008-11-12

    Interfaces between disordered normal materials and superconductors (S) can exhibit 'reflectionless tunnelling' (RT)-a phenomenon that arises from repeated disorder-driven elastic scattering, multiple Andreev reflections, and electron/hole interference. RT has been used to explain zero-bias conductance peaks (ZBCPs) observed using doped semiconductors and evaporated granular metal films as the disordered normal materials. Recently, in addition to ZBCPs, magnetoconductance oscillations predicted by RT theory have been observed using a novel normal disordered material: self-assembled nanoparticle films. In the present study, we find that the period of these oscillations decreases as temperature (T) increases. This suggests that the magnetic flux associated with interfering pathways increases accordingly. We propose that the increasing flux can be attributed to magnetic field penetration into S as [Formula: see text]. This model agrees remarkably well with known T dependence of penetration depth predicted by Bardeen-Cooper-Schrieffer theory. Our study shows that this additional region of flux is significant and must be considered in experimental and theoretical studies of RT.

  15. Low Dimensional Temporal Organization of Spontaneous Eye Blinks in Adults with Developmental Disabilities and Stereotyped Movement Disorder

    ERIC Educational Resources Information Center

    Lee, Mei-Hua; Bodfish, James W.; Lewis, Mark H.; Newell, Karl M.

    2010-01-01

    This study investigated the mean rate and time-dependent sequential organization of spontaneous eye blinks in adults with intellectual and developmental disability (IDD) and individuals from this group who were additionally categorized with stereotypic movement disorder (IDD + SMD). The mean blink rate was lower in the IDD + SMD group than the IDD…

  16. Taekwondo Training Improves Sensory Organization and Balance Control in Children with Developmental Coordination Disorder: A Randomized Controlled Trial

    ERIC Educational Resources Information Center

    Fong, Shirley S. M.; Tsang, William W. N.; Ng, Gabriel Y. F.

    2012-01-01

    Children with developmental coordination disorder (DCD) have poorer postural control and are more susceptible to falls and injuries than their healthy counterparts. Sports training may improve sensory organization and balance ability in this population. This study aimed to evaluate the effects of three months of Taekwondo (TKD) training on the…

  17. Disordering and dynamic self-organization in stoichiometric UO2 at high temperatures

    NASA Astrophysics Data System (ADS)

    Annamareddy, Ajay; Eapen, Jacob

    2017-01-01

    Neutron scattering experiments show significant oxygen disorder in UO2 at temperatures above 2000 K. The nature of the disorder, however, has not been ascertained with certainty. Using atomistic simulations and metrics from statistical mechanics we show that the oxygen anions predominantly hop from one native (tetrahedral) lattice site to another, above a characteristic temperature Tα (∼2000 K). Interestingly, we discover two types of disorder - the first one, which is a measure of the fraction of anions that are displaced from their native sites, portrays a monotonic increase with temperature and shows excellent conformity to neutron scattering data. The second metric based on the mean square displacement of the anions in an isoconfigurational ensemble demonstrates a dynamic self-organization behavior in which the anions are spatially correlated to those with similar mobility. This dynamic self-organization, however, experiences a non-monotonic variation with temperature depicting a maximum near the Bredig or λ-transition. We further establish that the thermodynamic metric cp/T, which is equal to the rate of change of entropy with temperature, is a key entropic indicator of the dynamic self-organization among the oxygen anions in UO2 at high temperatures.

  18. School Social Work Interventions with Behaviorally Disordered Children: Practical Applications of Theory.

    ERIC Educational Resources Information Center

    McCullagh, James G., Ed.; McCullagh, Cheryl A., Ed.

    The handbook, intended for school social workers and related services personnel in Iowa who work with behavior disordered students, consists of 21 papers organized into four sections. The first section provides an orientation to behavior disorders in two papers: "Behavioral Disorders in Iowa--An Overview" (Carl R. Smith and Jeff Grimes);…

  19. Characteristics of Military Members Hospitalized with a Psychiatric Diagnosis During the Persian Gulf War

    DTIC Science & Technology

    1992-01-01

    and VI contained diagnoses that occurred with the least frequency. Group V included military members with diagnoses of Schizophrenia, Schizoaffective ...Disorder 2 2.0 Paranoid Disorder 3 3.0 Organic Delusional Disorder 1 1.0 Psychotic episode 6 6.1 Group V 4 4.0 Schizophrenia 1 1.0 Schizoaffective Disorder 1

  20. Newborn screening tests

    MedlinePlus

    ... adrenal hyperplasia Congenital hypothyroidism Cystic fibrosis Fatty acid metabolism disorders Galactosemia Glucose-6-phosphate dehydrogenase deficiency (G6PD) Human immunodeficiency disease (HIV) Organic acid metabolism disorders Phenylketonuria ( ...

  1. Epilepsy - resources

    MedlinePlus

    Resources - epilepsy ... The following organizations are good resources for information on epilepsy : Epilepsy Foundation -- www.epilepsy.com National Institute of Neurological Disorders and Stroke -- www.ninds.nih.gov/disorders/ ...

  2. Cross-national associations between gender and mental disorders in the World Health Organization World Mental Health Surveys.

    PubMed

    Seedat, Soraya; Scott, Kate Margaret; Angermeyer, Matthias C; Berglund, Patricia; Bromet, Evelyn J; Brugha, Traolach S; Demyttenaere, Koen; de Girolamo, Giovanni; Haro, Josep Maria; Jin, Robert; Karam, Elie G; Kovess-Masfety, Viviane; Levinson, Daphna; Medina Mora, Maria Elena; Ono, Yutaka; Ormel, Johan; Pennell, Beth-Ellen; Posada-Villa, Jose; Sampson, Nancy A; Williams, David; Kessler, Ronald C

    2009-07-01

    Gender differences in mental disorders, including more anxiety and mood disorders among women and more externalizing disorders among men, are found consistently in epidemiological surveys. The gender roles hypothesis suggests that these differences narrow as the roles of women and men become more equal. To study time-space (cohort-country) variation in gender differences in lifetime DSM-IV mental disorders across cohorts in 15 countries in the World Health Organization World Mental Health Survey Initiative and to determine if this variation is significantly related to time-space variation in female gender role traditionality as measured by aggregate patterns of female education, employment, marital timing, and use of birth control. Face-to-face household surveys. Africa, the Americas, Asia, Europe, the Middle East, and the Pacific. Community-dwelling adults (N = 72,933). The World Health Organization Composite International Diagnostic Interview assessed lifetime prevalence and age at onset of 18 DSM-IV anxiety, mood, externalizing, and substance disorders. Survival analyses estimated time-space variation in female to male odds ratios of these disorders across cohorts defined by the following age ranges: 18 to 34, 35 to 49, 50 to 64, and 65 years and older. Structural equation analysis examined predictive effects of variation in gender role traditionality on these odds ratios. In all cohorts and countries, women had more anxiety and mood disorders than men, and men had more externalizing and substance disorders than women. Although gender differences were generally consistent across cohorts, significant narrowing was found in recent cohorts for major depressive disorder and substance disorders. This narrowing was significantly related to temporal (major depressive disorder) and spatial (substance disorders) variation in gender role traditionality. While gender differences in most lifetime mental disorders were fairly stable over the time-space units studied, substantial intercohort narrowing of differences in major depression was found to be related to changes in the traditionality of female gender roles. Additional research is needed to understand why this temporal narrowing was confined to major depression.

  3. 49 CFR 172.101 - Purpose and use of hazardous materials table.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... paragraph (c)(11): For the transportation of samples of self-reactive materials, organic peroxides... hazard class, the material is not a hazardous material. (13) Self-reactive materials and organic peroxides. A generic proper shipping name for a self-reactive material or an organic peroxide, as listed in...

  4. [Somatoform vertigo syndromes].

    PubMed

    Feuerecker, R; Dieterich, M; Eckhardt-Henn, A; Becker-Bense, S

    2015-03-01

    About 30 % of patients presenting to general practitioners complain of episodic or chronic vertigo or dizziness symptoms mostly with substantial impact on their daily living and activities. 30 to 50 % of the dizziness disorders are organically not sufficiently explained and are caused by mental or psychosomatic diseases. Somatoform dizziness syndromes can occur without a preceding vestibular disorder (e. g., primary somatoform dizziness) or they can develop in consequence of an organic vestibular disorder (secondary somatoform dizziness). However, it often takes months or even years until the correct diagnosis is made and an appropriate psychosomatic therapy can be initiated. Therefore, it is essential for the course of the disease that at an early stage not only careful interdisciplinary organic but also psychosomatic diagnostics are applied. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Subjective life satisfaction and mental disorders among older adults in UAE in general population.

    PubMed

    Ghubach, Rafia; El-Rufaie, Omar; Zoubeidi, Taoufik; Sabri, Sufyan; Yousif, Saeed; Moselhy, Hamdy F

    2010-05-01

    Life satisfaction is widely considered to be a central aspect of human welfare. Many have identified happiness with it, and some maintain that well-being consists largely or wholly in being satisfied with one's life. Empirical research on well-being relies heavily on life satisfaction studies. The aim of this study was to examine the relationships of psychiatric disorders and physical disorders on life satisfaction among Arab older adults in general population. Face-to-face interviews with Geriatric Mental State Interview (GMS-A3) were conducted with a nationwide sample of 2000 household in 2001. Total samples of 610 elders (above 60 years) were interviewed. There were 347 males (56.9%) and 263 females (43.1%). The mean age was 68.6 years (SD = 8.3). The commonest diagnoses were depression (20.2%), anxiety (5.6%), hypochondriasis (4.4%), and organic brain syndrome with or without dementia (3.6%). The findings suggest that having depressive disorder was significantly associated with less life satisfaction in the whole sample of older adults' people. In addition, anxiety, hypochondriacal disorders, and organic brain syndrome were significantly associated with low life satisfaction. Meanwhile, other psychiatric disorders e.g., phobia, Obsessive Compulsive disorder (OCD), schizophrenia were not significantly associated with life satisfaction. No significant relationship was found with any physical disorders alone. The data further reveal that low level of life satisfaction was especially significant in the age group above 85 years and people who live alone or only with wife/husband. The strong influence of psychiatric disorders e.g., depression, anxiety, organic brain syndrome, and hypochondriasis rather than physical disorders suggests that a lack of meaning and worries are more detrimental to life satisfaction than physical frailty. The findings underscore the need to develop interventions that help older people deal more effectively with psychiatric disorders and its comorbidities. Moreover, the results suggest that providing family support, by not allowing older adults to live alone, may be especially helpful for older adults.

  6. [The efficacy of intravenous lacosamide in psychiatric hospital].

    PubMed

    Vakula, I N; Bojko, E O; Vorona, U A; Storozhuk, J A; Nikiforova, E U; Nikiforova, D I; Glazunova, T I

    2016-01-01

    To evaluate the efficacy and tolerability of intravenous lacosamide (vimpat) in inpatients with frequent partial-onset seizures and affective and cognitive disorders. Fifteen patients were enrolled including 14 patients diagnosed with «organic personality disorder associated with epilepsy» (cryptogenic or symptomatic epilepsy with frequent partial-onset and/or secondary-generalized seizures (serial seizures in some cases) and 1 patient with a preliminary diagnosis of «organic schizophrenia-like disorder», which was changed for «organic personality disorder associated with epilepsy» after examination. Patients were treated with 2--3 antiepileptic drugs (AEDs), but no one of them received earlier lacosamide. Lacosamide was used intravenously in drops in the dose of 200 or 400 mg daily during 5 days. In 4 patients with marked personality disorders, the frequency of seizures decreased by 75%, no seizures were noted after 2--3 days of treatment in 11 patients. A positive effect of lacosamide on the affective sphere and quality-of-life was observed in 11 (73.4%) patients with epilepsy. Mild and moderate adverse effects were found only in 2 patients. It has been concluded that lacosamide demonstrates the high efficacy in patients with frequent drug-resistant seizures.

  7. Design of crystal-like aperiodic solids with selective disorder–phonon coupling

    PubMed Central

    Overy, Alistair R.; Cairns, Andrew B.; Cliffe, Matthew J.; Simonov, Arkadiy; Tucker, Matthew G.; Goodwin, Andrew L.

    2016-01-01

    Functional materials design normally focuses on structurally ordered systems because disorder is considered detrimental to many functional properties. Here we challenge this paradigm by showing that particular types of strongly correlated disorder can give rise to useful characteristics that are inaccessible to ordered states. A judicious combination of low-symmetry building unit and high-symmetry topological template leads to aperiodic ‘procrystalline' solids that harbour this type of disorder. We identify key classes of procrystalline states together with their characteristic diffraction behaviour, and establish mappings onto known and target materials. The strongly correlated disorder found in these systems is associated with specific sets of modulation periodicities distributed throughout the Brillouin zone. Lattice dynamical calculations reveal selective disorder-driven phonon broadening that resembles the poorly understood ‘waterfall' effect observed in relaxor ferroelectrics. This property of procrystalline solids suggests a mechanism by which strongly correlated topological disorder might allow independently optimized thermal and electronic transport behaviour, such as required for high-performance thermoelectrics. PMID:26842772

  8. A stochastic multicellular model identifies biological watermarks from disorders in self-organized patterns of phyllotaxis

    PubMed Central

    Refahi, Yassin; Brunoud, Géraldine; Farcot, Etienne; Jean-Marie, Alain; Pulkkinen, Minna; Vernoux, Teva; Godin, Christophe

    2016-01-01

    Exploration of developmental mechanisms classically relies on analysis of pattern regularities. Whether disorders induced by biological noise may carry information on building principles of developmental systems is an important debated question. Here, we addressed theoretically this question using phyllotaxis, the geometric arrangement of plant aerial organs, as a model system. Phyllotaxis arises from reiterative organogenesis driven by lateral inhibitions at the shoot apex. Motivated by recurrent observations of disorders in phyllotaxis patterns, we revisited in depth the classical deterministic view of phyllotaxis. We developed a stochastic model of primordia initiation at the shoot apex, integrating locality and stochasticity in the patterning system. This stochastic model recapitulates phyllotactic patterns, both regular and irregular, and makes quantitative predictions on the nature of disorders arising from noise. We further show that disorders in phyllotaxis instruct us on the parameters governing phyllotaxis dynamics, thus that disorders can reveal biological watermarks of developmental systems. DOI: http://dx.doi.org/10.7554/eLife.14093.001 PMID:27380805

  9. Role of composition, bond covalency, and short-range order in the disordering of stannate pyrochlores by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Tracy, Cameron L.; Shamblin, Jacob; Park, Sulgiye; Zhang, Fuxiang; Trautmann, Christina; Lang, Maik; Ewing, Rodney C.

    2016-08-01

    A2S n2O7 (A =Nd ,Sm,Gd,Er,Yb,and Y) materials with the pyrochlore structure were irradiated with 2.2 GeV Au ions to systematically investigate disordering of this system in response to dense electronic excitation. Structural modifications were characterized, over multiple length scales, by transmission electron microscopy, x-ray diffraction, and Raman spectroscopy. Transformations to amorphous and disordered phases were observed, with disordering dominating the structural response of materials with small A -site cation ionic radii. Both the disordered and amorphous phases were found to possess weberite-type local ordering, differing only in that the disordered phase exhibits a long-range, modulated arrangement of weberite-type structural units into an average defect-fluorite structure, while the amorphous phase remains fully aperiodic. Comparison with the behavior of titanate and zirconate pyrochlores showed minimal influence of the high covalency of the Sn-O bond on this phase behavior. An analytical model of damage accumulation was developed to account for simultaneous amorphization and recrystallization of the disordered phase during irradiation.

  10. Metal oxide charge transport material doped with organic molecules

    DOEpatents

    Forrest, Stephen R.; Lassiter, Brian E.

    2016-08-30

    Doping metal oxide charge transport material with an organic molecule lowers electrical resistance while maintaining transparency and thus is optimal for use as charge transport materials in various organic optoelectronic devices such as organic photovoltaic devices and organic light emitting devices.

  11. Intrinsically disordered proteins drive enamel formation via an evolutionarily conserved self-assembly motif.

    PubMed

    Wald, Tomas; Spoutil, Frantisek; Osickova, Adriana; Prochazkova, Michaela; Benada, Oldrich; Kasparek, Petr; Bumba, Ladislav; Klein, Ophir D; Sedlacek, Radislav; Sebo, Peter; Prochazka, Jan; Osicka, Radim

    2017-02-28

    The formation of mineralized tissues is governed by extracellular matrix proteins that assemble into a 3D organic matrix directing the deposition of hydroxyapatite. Although the formation of bones and dentin depends on the self-assembly of type I collagen via the Gly-X-Y motif, the molecular mechanism by which enamel matrix proteins (EMPs) assemble into the organic matrix remains poorly understood. Here we identified a Y/F-x-x-Y/L/F-x-Y/F motif, evolutionarily conserved from the first tetrapods to man, that is crucial for higher order structure self-assembly of the key intrinsically disordered EMPs, ameloblastin and amelogenin. Using targeted mutations in mice and high-resolution imaging, we show that impairment of ameloblastin self-assembly causes disorganization of the enamel organic matrix and yields enamel with disordered hydroxyapatite crystallites. These findings define a paradigm for the molecular mechanism by which the EMPs self-assemble into supramolecular structures and demonstrate that this process is crucial for organization of the organic matrix and formation of properly structured enamel.

  12. Effects of Magnetic Nanoparticles and External Magnetostatic Field on the Bulk Heterojunction Polymer Solar Cells

    DOE PAGES

    Wang, Kai; Yi, Chao; Liu, Chang; ...

    2015-03-18

    The price of energy to separate tightly bound electron-hole pair (or charge-transfer state) and extract freely movable charges from low-mobility materials represents fundamental losses for many low-cost photovoltaic devices. In bulk heterojunction (BHJ) polymer solar cells (PSCs), approximately 50% of the total efficiency lost among all energy loss pathways is due to the photogenerated charge carrier recombination within PSCs and low charge carrier mobility of disordered organic materials. To address these issues, we introduce magnetic nanoparticles (MNPs) and orientate these MNPS within BHJ composite by an external magnetostatic field. Over 50% enhanced efficiency was observed from BHJ PSCs incorporated withmore » MNPs and an external magnetostatic field alignment when compared to the control BHJ PSCs. The optimization of BHJ thin film morphology, suppression of charge carrier recombination, and enhancement in charge carrier collection result in a greatly increased short-circuit current density and fill factor, as a result, enhanced power conversion efficiency.« less

  13. Evaluating bone quality in patients with chronic kidney disease

    PubMed Central

    Malluche, Hartmut H.; Porter, Daniel S.; Pienkowski, David

    2013-01-01

    Bone of normal quality and quantity can successfully endure physiologically imposed mechanical loads. Chronic kidney disease–mineral and bone disorder (CKD–MBD) adversely affects bone quality through alterations in bone turnover and mineralization, whereas bone quantity is affected through changes in bone volume. Changes in bone quality can be associated with altered bone material, structure, or microdamage, which can result in an elevated rate of fracture in patients with CKD–MBD. Fractures cannot always be explained by reduced bone quantity and, therefore, bone quality should be assessed with a variety of techniques from the macro-organ level to the nanoscale level. In this Review, we demonstrate the importance of evaluating bone from multiple perspectives and hierarchical levels to understand CKD–MBD-related abnormalities in bone quality. Understanding the relationships between variations in material, structure, microdamage, and mechanical properties of bone in patients with CKD–MBD should aid in the development of new modalities to prevent, or treat, these abnormalities. PMID:24100399

  14. Phage Display Technology in Biomaterials Engineering: Progress and Opportunities for Applications in Regenerative Medicine.

    PubMed

    Martins, Ivone M; Reis, Rui L; Azevedo, Helena S

    2016-11-18

    The field of regenerative medicine has been gaining momentum steadily over the past few years. The emphasis in regenerative medicine is to use various in vitro and in vivo approaches that leverage the intrinsic healing mechanisms of the body to treat patients with disabling injuries and chronic diseases such as diabetes, osteoarthritis, and degenerative disorders of the cardiovascular and central nervous system. Phage display has been successfully employed to identify peptide ligands for a wide variety of targets, ranging from relatively small molecules (enzymes, cell receptors) to inorganic, organic, and biological (tissues) materials. Over the past two decades, phage display technology has advanced tremendously and has become a powerful tool in the most varied fields of research, including biotechnology, materials science, cell biology, pharmacology, and diagnostics. The growing interest in and success of phage display libraries is largely due to its incredible versatility and practical use. This review discusses the potential of phage display technology in biomaterials engineering for applications in regenerative medicine.

  15. Two-Dimensional Ordering of Solute Nanoclusters at a Close-Packed Stacking Fault: Modeling and Experimental Analysis

    PubMed Central

    Kimizuka, Hajime; Kurokawa, Shu; Yamaguchi, Akihiro; Sakai, Akira; Ogata, Shigenobu

    2014-01-01

    Predicting the equilibrium ordered structures at internal interfaces, especially in the case of nanometer-scale chemical heterogeneities, is an ongoing challenge in materials science. In this study, we established an ab-initio coarse-grained modeling technique for describing the phase-like behavior of a close-packed stacking-fault-type interface containing solute nanoclusters, which undergo a two-dimensional disorder-order transition, depending on the temperature and composition. Notably, this approach can predict the two-dimensional medium-range ordering in the nanocluster arrays realized in Mg-based alloys, in a manner consistent with scanning tunneling microscopy-based measurements. We predicted that the repulsively interacting solute-cluster system undergoes a continuous evolution into a highly ordered densely packed morphology while maintaining a high degree of six-fold orientational order, which is attributable mainly to an entropic effect. The uncovered interaction-dependent ordering properties may be useful for the design of nanostructured materials utilizing the self-organization of two-dimensional nanocluster arrays in the close-packed interfaces. PMID:25471232

  16. Reversible Phase Transition with Ultralarge Dielectric Relaxation Behaviors in Succinimide Lithium(I) Hybrids.

    PubMed

    Tang, Yun-Zhi; Wang, Bin; Zhou, Hai-Tao; Chen, Shao-Peng; Tan, Yu-Hui; Wang, Chang-Feng; Yang, Chang-Shan; Wen, He-Rui

    2018-02-05

    Dielectric relaxations have widely applied on high permittivity capacitors, dielectric switches, ferroelectrics, pyroelectrics, and electrical insulating materials. However, few investigations of large dielectric relaxation behaviors on organic-inorganic hybrid materials have been documented before. Here we present a novel two-dimensional succinimide lithium(I) hybrid compound, [Li(PDD) 2 ClO 4 ] n , 1, (PDD = 2,5-pyrrolidinedione = succinimide) which shows reversible phase transition behavior in the vicinity of 228 K accompanied by an unusual symmetry breaking from I4 1 /amd to C2/c. X-ray single crystal diffractions analysis indicates the twist motion of pyrrolidine heterocycles, and order-disorder motion of ClO 4 - anions triggered the reversible phase transition. By means of an intuitive crystallographic model (rattling ion model), we further illustrated the mechanism of the interesting reversible phase transition. Particularly, 1 shows ultralarge dielectric relaxation behavior in the vicinity of the phase transition by its dielectric constant dependence on temperatures and frequencies as well as its Cole-Cole relation.

  17. Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids

    NASA Astrophysics Data System (ADS)

    Liu, Mengxia; Voznyy, Oleksandr; Sabatini, Randy; García de Arquer, F. Pelayo; Munir, Rahim; Balawi, Ahmed Hesham; Lan, Xinzheng; Fan, Fengjia; Walters, Grant; Kirmani, Ahmad R.; Hoogland, Sjoerd; Laquai, Frédéric; Amassian, Aram; Sargent, Edward H.

    2017-02-01

    Bandtail states in disordered semiconductor materials result in losses in open-circuit voltage (Voc) and inhibit carrier transport in photovoltaics. For colloidal quantum dot (CQD) films that promise low-cost, large-area, air-stable photovoltaics, bandtails are determined by CQD synthetic polydispersity and inhomogeneous aggregation during the ligand-exchange process. Here we introduce a new method for the synthesis of solution-phase ligand-exchanged CQD inks that enable a flat energy landscape and an advantageously high packing density. In the solid state, these materials exhibit a sharper bandtail and reduced energy funnelling compared with the previous best CQD thin films for photovoltaics. Consequently, we demonstrate solar cells with higher Voc and more efficient charge injection into the electron acceptor, allowing the use of a closer-to-optimum bandgap to absorb more light. These enable the fabrication of CQD solar cells made via a solution-phase ligand exchange, with a certified power conversion efficiency of 11.28%. The devices are stable when stored in air, unencapsulated, for over 1,000 h.

  18. Are animal models useful for studying human disc disorders/degeneration?

    PubMed Central

    Eisenstein, Stephen M.; Ito, Keita; Little, Christopher; Kettler, A. Annette; Masuda, Koichi; Melrose, James; Ralphs, Jim; Stokes, Ian; Wilke, Hans Joachim

    2007-01-01

    Intervertebral disc (IVD) degeneration is an often investigated pathophysiological condition because of its implication in causing low back pain. As human material for such studies is difficult to obtain because of ethical and government regulatory restriction, animal tissue, organs and in vivo models have often been used for this purpose. However, there are many differences in cell population, tissue composition, disc and spine anatomy, development, physiology and mechanical properties, between animal species and human. Both naturally occurring and induced degenerative changes may differ significantly from those seen in humans. This paper reviews the many animal models developed for the study of IVD degeneration aetiopathogenesis and treatments thereof. In particular, the limitations and relevance of these models to the human condition are examined, and some general consensus guidelines are presented. Although animal models are invaluable to increase our understanding of disc biology, because of the differences between species, care must be taken when used to study human disc degeneration and much more effort is needed to facilitate research on human disc material. PMID:17632738

  19. Resolving ultrafast exciton migration in organic solids at the nanoscale.

    PubMed

    Penwell, Samuel B; Ginsberg, Lucas D S; Noriega, Rodrigo; Ginsberg, Naomi S

    2017-11-01

    Effectiveness of molecular-based light harvesting relies on transport of excitons to charge-transfer sites. Measuring exciton migration, however, has been challenging because of the mismatch between nanoscale migration lengths and the diffraction limit. Instead of using bulk substrate quenching methods, here we define quenching boundaries all-optically with sub-diffraction resolution, thus characterizing spatiotemporal exciton migration on its native nanometre and picosecond scales. By transforming stimulated emission depletion microscopy into a time-resolved ultrafast approach, we measure a 16-nm migration length in poly(2,5-di(hexyloxy)cyanoterephthalylidene) conjugated polymer films. Combined with Monte Carlo exciton hopping simulations, we show that migration in these films is essentially diffusive because intrinsic chromophore energetic disorder is comparable to chromophore inhomogeneous broadening. Our approach will enable previously unattainable correlation of local material structure to exciton migration character, applicable not only to photovoltaic or display-destined organic semiconductors but also to explaining the quintessential exciton migration exhibited in photosynthesis.

  20. Organic photovoltaics: elucidating the ultra-fast exciton dissociation mechanism in disordered materials.

    PubMed

    Heitzer, Henry M; Savoie, Brett M; Marks, Tobin J; Ratner, Mark A

    2014-07-14

    Organic photovoltaics (OPVs) offer the opportunity for cheap, lightweight and mass-producible devices. However, an incomplete understanding of the charge generation process, in particular the timescale of dynamics and role of exciton diffusion, has slowed further progress in the field. We report a new Kinetic Monte Carlo model for the exciton dissociation mechanism in OPVs that addresses the origin of ultra-fast (<1 ps) dissociation by incorporating exciton delocalization. The model reproduces experimental results, such as the diminished rapid dissociation with increasing domain size, and also lends insight into the interplay between mixed domains, domain geometry, and exciton delocalization. Additionally, the model addresses the recent dispute on the origin of ultra-fast exciton dissociation by comparing the effects of exciton delocalization and impure domains on the photo-dynamics.This model provides insight into exciton dynamics that can advance our understanding of OPV structure-function relationships. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Impact of Tortuosity on Charge-Carrier Transport in Organic Bulk Heterojunction Blends

    NASA Astrophysics Data System (ADS)

    Heiber, Michael C.; Kister, Klaus; Baumann, Andreas; Dyakonov, Vladimir; Deibel, Carsten; Nguyen, Thuc-Quyen

    2017-11-01

    The impact of the tortuosity of the charge-transport pathways through a bulk heterojunction film on the charge-carrier mobility is theoretically investigated using model morphologies and kinetic Monte Carlo simulations. The tortuosity descriptor provides a quantitative metric to characterize the quality of the charge-transport pathways, and model morphologies with controlled domain size and tortuosity are created using an anisotropic domain growth procedure. The tortuosity is found to be dependent on the anisotropy of the domain structure and is highly tunable. Time-of-flight charge-transport simulations on morphologies with a range of tortuosity values reveal that tortuosity can significantly reduce the magnitude of the mobility and the electric-field dependence relative to a neat material. These reductions are found to be further controlled by the energetic disorder and temperature. Most significantly, the sensitivity of the electric-field dependence to the tortuosity can explain the different experimental relationships previously reported, and exploiting this sensitivity could lead to simpler methods for characterizing and optimizing charge transport in organic solar cells.

  2. Cerebral palsy - resources

    MedlinePlus

    Resources - cerebral palsy ... The following organizations are good resources for information on cerebral palsy : National Institute of Neurological Disorders and Stroke -- www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Hope- ...

  3. [Differential diagnosis in potency disorders].

    PubMed

    Kockott, G; Dittmar, F

    1976-12-02

    Disorders of sexual libido are seldom organic, in general they are of psychological origin. It is, however, difficult to obtain a differential diagnosis. One of the first diagnostic considerations must be the establishment of primary or secondary libidinal dificit, or indeed, whether there is no libido at all. In cases of libido disorders with primary libido dificit, depression, organic disease, or side effects of pharmaca may be the cause. Libido disorders in the presence of functional libido, however, must be regarded as primarily psychologically caused. An exception are libido problems in the presence of diabetes mellitus and peripheral vasculatory defeciencies. In these cases libido is either totally absent or appears only secondarily. The symptomatology of libido disorders in the presence of depression, diabetes melitus, and peripheral vasculatory disturbancies, as well as psychologically caused erectile and ejaculatory difficulties are discussed in detail. These groups are compared with respect to libido and behavior involving erection, ejaculation, anxiety and avoidance.

  4. Perovskite-sensitized solar cells-based Ga-TiO2 nanodiatom-like photoanode: the improvement of performance by perovskite crystallinity refinement

    NASA Astrophysics Data System (ADS)

    Umar, Akrajas Ali; Al-She'irey, Altaf Yahya Ahmed; Rahman, Mohd Yusri Abd; Salleh, Muhamad Mat; Oyama, Munetaka

    2018-05-01

    The structure and crystallinity of the photoactive materials in solar cell determines the exciton formation, carrier's recombination, life-time and transportation in the devices. Here, we report that enhanced charge transportation, internal quantum efficiency and the carrier life-time can be achieved by modifying the structure, morphology of the organic perovskite thin film, enabling the improvement of the solar cell performance. The thin film structure modification was achieved via a thermal annealing in vacuum. In typical procedure, the power conversion efficiency of the PSC device can be upgraded from 0.5 to 2.9%, which is approximately 6 times increment, when the surface structure disorders are limited in the organic perovskite thin film. By optimizing the organic perovskite loading on the Ga-TiO2 diatom-like nanostructures photoanode and combining with a fine control of organic perovskite thin film structure, power conversion efficiency as high as 6.58% can be generated from the device. Electrochemical impedance spectroscopy and current-voltage analysis in the dark indicated that this process has effectively augmented the carrier life-time and limited the carrier recombination, enhancing the overall performance of the solar cell device. The preparation process and mechanism of the device performance improvement will be discussed.

  5. Increasing the Augmentative and Alternative Communication Knowledge and Self-Efficacy of Parents of Children with Autism Spectrum Disorders Using Multimedia Training Materials

    ERIC Educational Resources Information Center

    Bellomo, Nina M.

    2016-01-01

    This applied dissertation was designed to provide online multimedia training materials for parents of children, ages 2-11, with Autism Spectrum Disorders (ASD), who use or need Augmentative and Alternative Communication (AAC). Many children with ASD have communication difficulties, and the best path to communication competence is through some form…

  6. Evaluation of Generalized Performance across Materials When Using Video Technology by Students with Autism Spectrum Disorder and Moderate Intellectual Disability

    ERIC Educational Resources Information Center

    Mechling, Linda C.; Ayres, Kevin M.; Foster, Ashley L.; Bryant, Kathryn J.

    2015-01-01

    The purpose of this study was to evaluate the ability of four high school-aged students with a diagnosis of autism spectrum disorder and moderate intellectual disability to generalize performance of skills when using materials different from those presented through video models. An adapted alternating treatments design was used to evaluate student…

  7. Predictive Validity of ICD-10 Hyperkinetic Disorder Relative to DSM-IV Attention-Deficit/Hyperactivity Disorder among Younger Children

    ERIC Educational Resources Information Center

    Lahey, Benjamin B.; Pelham, William E.; Chronis, Andrea; Massetti, Greta; Kipp, Heidi; Ehrhardt, Ashley; Lee, Steve S.

    2006-01-01

    Background: Little is known about the predictive validity of hyperkinetic disorder (HKD) as defined by the Diagnostic Criteria for Research for mental and behavioral disorders of the tenth edition of the International Classification of Diseases (ICD-10; World Health Organization, 1993), particularly when the diagnosis is given to younger children.…

  8. The Association between Autism Spectrum Disorders and Congenital Anomalies by Organ Systems in a Finnish National Birth Cohort

    ERIC Educational Resources Information Center

    Timonen-Soivio, Laura; Sourander, Andre; Malm, Heli; Hinkka-Yli-Salomäki, Susanna; Gissler, Mika; Brown, Alan; Vanhala, Raija

    2015-01-01

    The aim of this study was to evaluate the association between autism spectrum disorders (ASD) with and without intellectual disability (ID) and congenital anomalies (CAs) by organ system. The sample included all children diagnosed with ASD (n = 4441) from the Finnish Hospital Discharge Register during 1987-2000 and a total of four controls per…

  9. Validation of the World Health Organization's Quality of Life Questionnaire with Parents of Children with Autistic Disorder

    ERIC Educational Resources Information Center

    Dardas, Latefa A.; Ahmad, Muayyad M.

    2014-01-01

    The World Health Organization's Quality of Life Questionnaire-BREF (WHOQOL-BREF) has been used in many studies that target parents of children with Autistic Disorder. However, the measure has yet to be validated and adapted to this sample group whose daily experiences are considered substantially different from those of parents of children…

  10. Field-Induced Disorder and Carrier Localization in Molecular Organic Transistors

    NASA Astrophysics Data System (ADS)

    Ando, M.; Minakata, T.; Duffy, C.; Sirringhaus, H.

    2009-06-01

    We propose a "field-induced polymorphous disorder" model to explain bias-stress instability in molecular organic thin-film transistors, based on the experimental results showing the strong correlation between the micro-structural change in semiconductor layer composed of penrtacene molecules and the threshold voltage (Vth) shift due to electron trapping in a reversible manner under the successive bias-stress, thermal annealing, and light irradiation.

  11. Electrostatic modification of novel materials

    NASA Astrophysics Data System (ADS)

    Ahn, C. H.; Bhattacharya, A.; di Ventra, M.; Eckstein, J. N.; Frisbie, C. Daniel; Gershenson, M. E.; Goldman, A. M.; Inoue, I. H.; Mannhart, J.; Millis, Andrew J.; Morpurgo, Alberto F.; Natelson, Douglas; Triscone, Jean-Marc

    2006-10-01

    Application of the field-effect transistor principle to novel materials to achieve electrostatic doping is a relatively new research area. It may provide the opportunity to bring about modifications of the electronic and magnetic properties of materials through controlled and reversible changes of the carrier concentration without modifying the level of disorder, as occurs when chemical composition is altered. As well as providing a basis for new devices, electrostatic doping can in principle serve as a tool for studying quantum critical behavior, by permitting the ground state of a system to be tuned in a controlled fashion. In this paper progress in electrostatic doping of a number of materials systems is reviewed. These include structures containing complex oxides, such as cuprate superconductors and colossal magnetoresistive compounds, organic semiconductors, in the form of both single crystals and thin films, inorganic layered compounds, single molecules, and magnetic semiconductors. Recent progress in the field is discussed, including enabling experiments and technologies, open scientific issues and challenges, and future research opportunities. For many of the materials considered, some of the results can be anticipated by combining knowledge of macroscopic or bulk properties and the understanding of the field-effect configuration developed during the course of the evolution of conventional microelectronics. However, because electrostatic doping is an interfacial phenomenon, which is largely an unexplored field, real progress will depend on the development of a better understanding of lattice distortion and charge transfer at interfaces in these systems.

  12. High liquid yield process for retorting various organic materials including oil shale

    DOEpatents

    Coburn, Thomas T.

    1990-01-01

    This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process.

  13. A high liquid yield process for retorting various organic materials including oil shale

    DOEpatents

    Coburn, T.T.

    1988-07-26

    This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process. 2 figs.

  14. Mental Illness in Persons with Mental Retardation: ARC Facts.

    ERIC Educational Resources Information Center

    Weber, Linda R.; Wimmer, Sharon

    This brief factsheet presents information on mental illness in mentally retarded persons. The most prevalent disorders found in this population are schizophrenia, organic brain syndrome, adjustment disorders, personality disorders, depression, and behavioral problems. Few standardized methods of assessment exist for the diagnosis of mental illness…

  15. Characterizing the Atomic Structure in Low Concentrations of Weakly Ordered, Weakly Scattering Materials Using the Pair Distribution Function

    NASA Astrophysics Data System (ADS)

    Terban, Maxwell W.

    Nanoscale structural characterization is critical to understanding the physical underpinnings of properties and behavior in materials with technological applications. The work herein shows how the pair distribution function technique can be applied to x-ray total scattering data for material systems which weakly scatter x-rays, a typically difficult task due to the poor signal-to-noise obtained from the structures of interest. Characterization and structural modeling are demonstrated for a variety of molecular and porous systems, along with the detection and characterization of disordered, minority phases and components. In particular, reliable detection and quantitative analysis are demonstrated for nanocrystals of an active pharmaceutical ingredient suspended in dilute solution down to a concentration of 0.25 wt. %, giving a practical limit of detection for ordered nanoscale phases within a disordered matrix. Further work shows that minority nanocrystalline phases can be detected, fingerprinted, and modeled for mixed crystalline and amorphous systems of small molecules and polymers. The crystallization of amorphous lactose is followed under accelerated aging conditions. Melt quenching is shown to produce a different local structure than spray drying or freeze drying, along with increased resistance to crystallization. The initial phases which form in the spray dried formulation are identified as a mixture of polymorphs different from the final alpha-lactose monohydrate form. Hard domain formation in thermoplastic polyurethanes is also characterized as a function of methylene diphenyl diisocyanate and butanediol component ratio, showing that distinct and different hard phase structures can form and are solved by indexing with structures derived from molecular dynamics relaxation. In both cases, phase fractions can be quantified in the mixed crystalline and amorphous systems by fitting with both standards or structure models. Later chapters, demonstrate pair distribution characterization of particle incorporation, structure, and synthesis of nanoporous materials. Nanoparticle size distributions are extracted from platinum nanoparticles nucleating within a zeolite matrix through structural modeling, and validated by transmission electron microscope studies. The structure of zirconium phosphonate-phosphate unconventional metal organic framework is determined to consist of turbostratically disordered nanocrystalline layers of Zr-phenylphosphonate, and the local environment of terbium intercalated between the layers is found to resemble the local environment in scheelite-type terbium phosphate. Finally, the early stages of reaction between aqueous zinc dinitrate hexahydrate and methanolic 2-methylimidazole are characterized using in situ total scattering measurements, showing that secondary building units of tetrahedrally coordinated by 2-methylimidazole initially form upon reaction. Overall, the methodologies are developed and applied toward phase detection, identification, solution, and behavior in pharmaceuticals, polymers, and nanoporous materials along with advice for carrying out experiments and analysis on such materials such that they can be extended to other similar systems.

  16. Forms of work organization and associations with shoulder disorders: Results from a French working population.

    PubMed

    Bodin, Julie; Garlantézec, Ronan; Costet, Nathalie; Descatha, Alexis; Fouquet, Natacha; Caroly, Sandrine; Roquelaure, Yves

    2017-03-01

    The aim of this study was to identify forms of work organization in a French region and to study associations with the occurrence of symptomatic and clinically diagnosed shoulder disorders in workers. Workers were randomly included in this cross-sectional study from 2002 to 2005. Sixteen organizational variables were assessed by a self-administered questionnaire: i.e. shift work, job rotation, repetitiveness of tasks, paced work/automatic rate, work pace dependent on quantified targets, permanent controls or surveillance, colleagues' work and customer demand, and eight variables measuring decision latitude. Five forms of work organization were identified using hierarchical cluster analysis (HCA) of variables and HCA of workers: low decision latitude with pace constraints, medium decision latitude with pace constraints, low decision latitude with low pace constraints, high decision latitude with pace constraints and high decision latitude with low pace constraints. There were significant associations between forms of work organization and symptomatic and clinically-diagnosed shoulder disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The Importance of Collaboration in Advancing Understanding of Rare Disorders: US/EU Joint Initiative on Silver-Russell Syndrome.

    PubMed

    Salem, Jennifer B; Netchine, Irène; Harbison, Madeleine D

    2017-11-01

    Patient-support organizations can facilitate a significant change in the way rare disorders are approached. Besides connecting families with each other and directing patients to experienced medical specialists, these groups, by collaborating with government initiatives like COST, can effect the direction and funding of rare disease research. By concentrating the rare disease patient population and funneling them to specific centers of excellence, these organizations help build specialists' experience and their study populations. It requires a basic spirit of collaboration, driven parent leaders, a well-organized support platform, sources of funding, supportive clinical and research professionals and finally an effective method of collecting and disseminating information. Silver-Russell Syndrome is an excellent example of a rare disorder that has become better recognized, understood and treated because patient-support organizations, using the internet as a critical tool, have worked together with clinical care/research specialists and public funding agencies to build collaboration. Copyright© of YS Medical Media ltd.

  18. Voice Handicap Index associated with common mental disorders in elementary school teachers.

    PubMed

    da Rocha, Luise Marques; de Mattos Souza, Luciano Dias

    2013-09-01

    To verify the relationship between common mental disorders (CMDs) and the Voice Handicap Index (VHI) in elementary school teachers from municipal schools. The VHI mean scores in the group of teachers with symptoms of mental disorder were significantly higher than those in the group of teachers with no symptoms in the total scores of three subscales: disability (functional domain), handicap (emotional domain), and impairment (organic domain). An observational cross-sectional, quantitative study was conducted in the public schools of urban and rural areas of the city of Pelotas. A total of 575 teachers participated. Vocal handicap was measured using VHI, producing a total score and three subscales, including emotional, functional, and organic domains. The Self-Reporting Questionnaire, 20 items scale was used to measure mental disorder symptoms. A log transformation was used, followed by linear regression, to evaluate the relationship between the independent variables and the outcomes. Teachers with CMD symptoms and who took a sick leave from teaching because of voice problems obtained the lowest scores in VHI (P < 0.050). Emotional, functional, and organic voice handicap scores were significantly higher in teachers with CMD symptoms (P < 0.001). A close association between voice problems and mental disorders was identified based on the statistically significant association between high levels of voice handicap and the mental disorders. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  19. EMISSION OF ORGANIC SUBSTANCES FROM INDOOR SURFACE MATERIALS

    EPA Science Inventory

    A wide variety of surface materials in buildings can release organic compounds. Examples include building materials, furnishings, maintenance materials, clothing, and paper products. These sources contribute substantially to the hundreds of organic compounds that have been measur...

  20. Implications of extraterrestrial material on the origin of life

    NASA Astrophysics Data System (ADS)

    Pasek, Matthew A.

    Meteoritic organic material may provide the best perspective on prebiotic chemistry. Meteorites have also been invoked as a source of prebiotic material. This study suggests a caveat to extraterrestrial organic delivery: that prebiotic meteoritic organics were too dilute to promote prebiotic reactions. However, meteoritic material provides building material for endogenous synthesis of prebiotic molecules, such as by hydrolysis of extraterrestrial organic tars, and corrosion of phosphide minerals.

  1. Computerized tomography in neuro-ophthalmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moseley, I.F.; Sanders, M.D.

    This highly specialized text is organized into sections that cover anatomy, diseases of the orbit, visual loss, optic nerve disease, disorders of eye movement, and heredofamilial, developmental, and metabolic disorders.

  2. Design of Nickel-Based Cation-Disordered Rock-Salt Oxides: The Effect of Transition Metal (M = V, Ti, Zr) Substitution in LiNi0.5M0.5O2 Binary Systems.

    PubMed

    Cambaz, Musa Ali; Vinayan, Bhaghavathi P; Euchner, Holger; Johnsen, Rune E; Guda, Alexander A; Mazilkin, Andrey; Rusalev, Yury V; Trigub, Alexander L; Gross, Axel; Fichtner, Maximilian

    2018-06-20

    Cation-disordered oxides have been ignored as positive electrode material for a long time due to structurally limited lithium insertion/extraction capabilities. In this work, a case study is carried out on nickel-based cation-disordered Fm3 ̅m LiNi 0.5 M 0.5 O 2 positive electrode materials. The present investigation targets tailoring the electrochemical properties for nickel-based cation-disordered rock-salt by electronic considerations. The compositional space for binary LiM +3 O 2 with metals active for +3/+4 redox couples is extended to ternary oxides with LiA 0.5 B 0.5 O 2 with A = Ni 2+ and B = Ti 4+ , Zr 4+ , and V +4 to assess the impact of the different transition metals in the isostructural oxides. The direct synthesis of various new unknown ternary nickel-based Fm3̅ m cation-disordered rock-salt positive electrode materials is presented with a particular focus on the LiNi 0.5 V 0.5 O 2 system. This positive electrode material for Li-ion batteries displays an average voltage of ∼2.55 V and a high discharge capacity of 264 mAhg -1 corresponding to 0.94 Li. For appropriate cutoff voltages, a long cycle life is achieved. The charge compensation mechanism is probed by XANES, confirming the reversible oxidation and reduction of V 4+ /V 5+ . The enhancement in the electrochemical performances within the presented compounds stresses the importance of mixed cation-disordered transition metal oxides with different electronic configuration.

  3. Intrinsically Disordered Proteins and the Origins of Multicellular Organisms

    NASA Astrophysics Data System (ADS)

    Dunker, A. Keith

    In simple multicellular organisms all of the cells are in direct contact with the surrounding milieu, whereas in complex multicellular organisms some cells are completely surrounded by other cells. Current phylogenetic trees indicate that complex multicellular organisms evolved independently from unicellular ancestors about 10 times, and only among the eukaryotes, including once for animals, twice each for green, red, and brown algae, and thrice for fungi. Given these multiple independent evolutionary lineages, we asked two questions: 1. Which molecular functions underpinned the evolution of multicellular organisms?; and, 2. Which of these molecular functions depend on intrinsically disordered proteins (IDPs)? Compared to unicellularity, multicellularity requires the advent of molecules for cellular adhesion, for cell-cell communication and for developmental programs. In addition, the developmental programs need to be regulated over space and time. Finally, each multicellular organism has cell-specific biochemistry and physiology. Thus, the evolution of complex multicellular organisms from unicellular ancestors required five new classes of functions. To answer the second question we used Key-words in Swiss Protein ranked for associations with predictions of protein structure or disorder. With a Z-score of 18.8 compared to random-function proteins, à differentiation was the biological process most strongly associated with IDPs. As expected from this result, large numbers of individual proteins associated with differentiation exhibit substantial regions of predicted disorder. For the animals for which there is the most readily available data all five of the underpinning molecular functions for multicellularity were found to depend critically on IDP-based mechanisms and other evidence supports these ideas. While the data are more sparse, IDPs seem to similarly underlie the five new classes of functions for plants and fungi as well, suggesting that IDPs were indeed crucial for the evolution of complex multicellular organisms. These new findings necessitate a rethinking of the gene regulatory network models currently used to explain cellular differentiation and the evolution of complex multicellular organisms.

  4. Ethical issues when modelling brain disorders innon-human primates.

    PubMed

    Neuhaus, Carolyn P

    2018-05-01

    Non-human animal models of human diseases advance our knowledge of the genetic underpinnings of disease and lead to the development of novel therapies for humans. While mice are the most common model organisms, their usefulness is limited. Larger animals may provide more accurate and valuable disease models, but it has, until recently, been challenging to create large animal disease models. Genome editors, such as Clustered Randomised Interspersed Palindromic Repeat (CRISPR), meet some of these challenges and bring routine genome engineering of larger animals and non-human primates (NHPs) well within reach. There is growing interest in creating NHP models of brain disorders such as autism, depression and Alzheimer's, which are very difficult to model or study in other organisms, including humans. New treatments are desperately needed for this set of disorders. This paper is novel in asking: Insofar as NHPs are being considered for use as model organisms for brain disorders, can this be done ethically? The paper concludes that it cannot. Notwithstanding ongoing debate about NHPs' moral status, (1) animal welfare concerns, (2) the availability of alternative methods of studying brain disorders and (3) unmet expectations of benefit justify a stop on the creation of NHP model organisms to study brain disorders. The lure of using new genetic technologies combined with the promise of novel therapeutics presents a formidable challenge to those who call for slow, careful, and only necessary research involving NHPs. But researchers should not create macaques with social deficits or capuchin monkeys with memory deficits just because they can. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Bipolar molecular composites: a new class of high-electron-mobility organic solids

    NASA Astrophysics Data System (ADS)

    Lin, Liang-Bih; Jenekhe, Samson A.; Borsenberger, Paul M.

    1997-10-01

    We describe high electron mobility in organic solids in the form of bipolar molecular composites of N,N'-bis(1,2-dimethylpropyl)-1,4,5,8-naphthalenetetracarboxylic diimide (NTDI) and tri-p-tolylaniine (TTA). The electron mobility in the NTDI/TTA composites is ~2 x 10 cm2/Vs, which is a factor of 4 to 6 higher than in pure NTDI and isone of the highest values reported for disordered organic solids. The field and temperature dependencies of the charge mobility can be described using the disorder formalism due to Bassler and co-workers, which provides an estimation of the energy width σ of the hopping site manifold. Analysis of the data gave σ=0.081 and 0.060 eV for the electron and hole mobilities in a NTDI/TTA composite of 0.5510.45 molar ratio. The energetic disorder for electron transport in the bipolar composites is substantially lower than for pure NTDI, which is 0.093 eV. The results suggest that the observed enhancement arises from a substantial reduction of energetic disorder in the electron transport manifold of the bipolar composites. The reduction of energetic disorder may be due to intermolecular charge transfer between NTDI and TTA. Such a charge transfer could stabilize the electron transport manifold by better charge delocalization, and consequently, less energetic disorder. Another possible reason for the observed enhanced electron mobility is the reduction of NTDI dimers that can act as carrier traps by the presence of TTA molecules in the bipolar composites. These results also suggest that bipolar composites represent a promising new class of high electron mobility organic solids.

  6. Computed tomography assessment of intestinal gas volumes in functional gastrointestinal disorders.

    PubMed

    Mc Williams, Sebastian R; Mc Laughlin, Patrick D; O'Connor, Owen J; Desmond, Alan N; Ní Laoíre, Aine; Shanahan, Fergus; Quigley, Eamonn Mm; Maher, Michael M

    2012-10-01

    Many patients with functional gastrointestinal disorders (FGIDs) rank sensations of bloating and distension among their most debilitating symptoms. Previous studies that have examined intestinal gas volume (IGV) in patients with FGIDs have employed a variety of invasive and imaging techniques. These studies are limited by small numbers and have shown conflicting results. The aim of our study was to estimate, using CT of the abdomen and pelvis (CTAP), IGV in patients attending FGID clinic and to compare IGV in patients with and without FGID. All CTAP (n = 312) performed on patients (n = 207) attending a specialized FGID clinic over 10-year period were included in this study. Patients were classified into one of 3 groups according to the established clinical grading system, as organic gastrointestinal disorder (OGID, ie, patients with an organic non-functional disorder, n = 84), FGID (n = 36) or organic and functional gastrointestinal disorder (OFGID, ie, patients with an organic and a functional disorder, n = 87). Two independent readers blinded to the diagnostic group calculated IGV using threshold based 3D region growing with OsiriX. Median IGVs for the FGID, OGID, and OFGID groups were 197.6, 220.6 and 155.0 mL, respectively. Stepwise linear regression revealed age at study, gender, and calculated body mass index to predict the log IGV with an r(2) of 0.116, and P < 0.001. There was a significant positive correlation between age and IGV in OGID (Spearman's = 0.253, P = 0.02) but this correlation was non-significant in the other groups. Although bloating is a classic symptom in FGID patients, IGV may not be increased compared with OGID and OFGID patients.

  7. Holocene deposits in the Mangyshlak Peninsula, North Caspian Sea region

    NASA Astrophysics Data System (ADS)

    Bezrodnykh, Yu. P.; Deliya, S. V.; Romanyuk, B. F.; Fedorov, V. I.; Sorokin, V. M.; Luksha, V. L.

    2014-07-01

    Comprehensive analysis of the data of high-precision seismoacoustic profiling, drilling and sampling of deposits using seabed corers, biostratigraphic studies, and radiocarbon age data was performed for the first time for Mangyshlak sediments in several bottom sites of the North Caspian. It was found that the Mangyshlak sediments comprise numerous linearly stretched depressions of 5-10 m in depth (morphologically similar to modern substeppe ilmen areas in the Volga River delta), which are covered by the Novocaspian sedimentary cover, and river incisions (among them the largest Volga River valley). In addition, the Mangyshlak sediments comprise the deltaic alluvial fans of different sizes along the shelf zone of the North Caspian. Analysis of mollusks and biogenic remains indicates that accumulation of the Mangyshlak sediments occurred in freshwater and slightly salty water environments under various hydrodynamic and hydrochemical conditions. According to radiocarbon dating of organic matter, the Mangyshlak sediments formed during sea regression in the range of 10-8 ka (isotopic age) or 11.5-8.5 ka (calendar age). Several types of sediments are distinguished: clayey-carbonate sediments, enriched with organic matter up to the formation of sapropel and peat, accumulated at the lowest sea level; weakly calcareous silty-clayey silts, formed during the subsequent intense filling of paleodepressions with terrigenous material. The features of the mineral composition of sediments are as follows: polymineral composition of clayey material with a high proportion of hydromica and disordered mixed-layered formations, a high content of minerals of the epidote group, amphiboles, and other accessory minerals. All of this indicates a genetic relationship between the Mangyshlak sediments and the Volga terrigenous material.

  8. Influence of vapor deposition on structural and charge transport properties of ethylbenzene films

    DOE PAGES

    Antony, Lucas W.; Jackson, Nicholas E.; Lyubimov, Ivan; ...

    2017-04-14

    Organic glass films formed by physical vapor deposition exhibit enhanced stability relative to those formed by conventional liquid cooling and aging techniques. Recently, experimental and computational evidence has emerged indicating that the average molecular orientation can be tuned by controlling the substrate temperature at which these “stable glasses” are grown. In this work, we present a comprehensive all-atom simulation study of ethylbenzene, a canonical stable-glass former, using a computational film formation procedure that closely mimics the vapor deposition process. Atomistic studies of experimentally formed vapor-deposited glasses have not been performed before, and this study therefore begins by verifying that themore » model and method utilized here reproduces key structural features observed experimentally. Having established agreement between several simulated and experimental macroscopic observables, simulations are used to examine the substrate temperature dependence of molecular orientation. The results indicate that ethylbenzene glasses are anisotropic, depending upon substrate temperature, and that this dependence can be understood from the orientation present at the surface of the equilibrium liquid. By treating ethylbenzene as a simple model for molecular semiconducting materials, a quantum-chemical analysis is then used to show that the vapor-deposited glasses exhibit decreased energetic disorder and increased magnitude of the mean-squared transfer integral relative to isotropic, liquid-cooled films, an effect that is attributed to the anisotropic ordering of the molecular film. Finally, these results suggest a novel structure–function simulation strategy capable of tuning the electronic properties of organic semiconducting glasses prior to experimental deposition, which could have considerable potential for organic electronic materials design.« less

  9. Influence of vapor deposition on structural and charge transport properties of ethylbenzene films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antony, Lucas W.; Jackson, Nicholas E.; Lyubimov, Ivan

    Organic glass films formed by physical vapor deposition exhibit enhanced stability relative to those formed by conventional liquid cooling and aging techniques. Recently, experimental and computational evidence has emerged indicating that the average molecular orientation can be tuned by controlling the substrate temperature at which these “stable glasses” are grown. In this work, we present a comprehensive all-atom simulation study of ethylbenzene, a canonical stable-glass former, using a computational film formation procedure that closely mimics the vapor deposition process. Atomistic studies of experimentally formed vapor-deposited glasses have not been performed before, and this study therefore begins by verifying that themore » model and method utilized here reproduces key structural features observed experimentally. Having established agreement between several simulated and experimental macroscopic observables, simulations are used to examine the substrate temperature dependence of molecular orientation. The results indicate that ethylbenzene glasses are anisotropic, depending upon substrate temperature, and that this dependence can be understood from the orientation present at the surface of the equilibrium liquid. By treating ethylbenzene as a simple model for molecular semiconducting materials, a quantum-chemical analysis is then used to show that the vapor-deposited glasses exhibit decreased energetic disorder and increased magnitude of the mean-squared transfer integral relative to isotropic, liquid-cooled films, an effect that is attributed to the anisotropic ordering of the molecular film. Finally, these results suggest a novel structure–function simulation strategy capable of tuning the electronic properties of organic semiconducting glasses prior to experimental deposition, which could have considerable potential for organic electronic materials design.« less

  10. Influence of Vapor Deposition on Structural and Charge Transport Properties of Ethylbenzene Films

    PubMed Central

    2017-01-01

    Organic glass films formed by physical vapor deposition exhibit enhanced stability relative to those formed by conventional liquid cooling and aging techniques. Recently, experimental and computational evidence has emerged indicating that the average molecular orientation can be tuned by controlling the substrate temperature at which these “stable glasses” are grown. In this work, we present a comprehensive all-atom simulation study of ethylbenzene, a canonical stable-glass former, using a computational film formation procedure that closely mimics the vapor deposition process. Atomistic studies of experimentally formed vapor-deposited glasses have not been performed before, and this study therefore begins by verifying that the model and method utilized here reproduces key structural features observed experimentally. Having established agreement between several simulated and experimental macroscopic observables, simulations are used to examine the substrate temperature dependence of molecular orientation. The results indicate that ethylbenzene glasses are anisotropic, depending upon substrate temperature, and that this dependence can be understood from the orientation present at the surface of the equilibrium liquid. By treating ethylbenzene as a simple model for molecular semiconducting materials, a quantum-chemical analysis is then used to show that the vapor-deposited glasses exhibit decreased energetic disorder and increased magnitude of the mean-squared transfer integral relative to isotropic, liquid-cooled films, an effect that is attributed to the anisotropic ordering of the molecular film. These results suggest a novel structure–function simulation strategy capable of tuning the electronic properties of organic semiconducting glasses prior to experimental deposition, which could have considerable potential for organic electronic materials design. PMID:28573203

  11. 76 FR 35222 - National Institute on Deafness and Other Communication Disorders; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ... Deafness and Other Communication Disorders; Notice of Closed Meetings Pursuant to section 10(d) of the... disclose confidential trade secrets or commercial property such as patentable material, and personal... Deafness and Other Communication Disorders Special Emphasis Panel, CDRC Conflicts. Date: June 23, 2011...

  12. 75 FR 33818 - National Institute on Deafness and Other Communication Disorders; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... Deafness and Other Communication Disorders; Notice of Closed Meeting Pursuant to section 10(d) of the... disclose confidential trade secrets or commercial property such as patentable material, and personal... Deafness and Other Communication Disorders Special Emphasis Panel; VSL--SEP Review. Date: June 14, 2010...

  13. 75 FR 77888 - National Institute on Deafness and Other Communication Disorders; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... Deafness and Other Communication Disorders; Notice of Closed Meetings Pursuant to section 10(d) of the... disclose confidential trade secrets or commercial property such as patentable material, and personal... Deafness and Other Communication Disorders Special Emphasis Panel; Accessible and Affordable Hearing Health...

  14. 77 FR 5036 - National Institute on Deafness and Other Communication Disorders; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-01

    ... Deafness and Other Communication Disorders; Notice of Closed Meetings Pursuant to section 10(d) of the... disclose confidential trade secrets or commercial property such as patentable material, and personal... Deafness and Other Communication Disorders Special Emphasis Panel; Affordable Hearing. Date: February 14...

  15. 77 FR 57570 - National Institute On Deafness and Other Communication Disorders; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-18

    ... Deafness and Other Communication Disorders; Notice of Closed Meetings Pursuant to section 10(d) of the... disclose confidential trade secrets or commercial property such as patentable material, and personal... constitute a clearly unwarranted invasion of personal privacy. Name of Committee: Communication Disorders...

  16. 78 FR 66946 - National Institute on Deafness and Other Communication Disorders; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... Deafness and Other Communication Disorders; Notice of Closed Meeting Pursuant to section 10(d) of the... disclose confidential trade secrets or commercial property such as patentable material, and personal... Deafness and Other Communication Disorders Special Emphasis Panel; Hearing Clinical Trial Review. Date...

  17. 78 FR 10621 - National Institute on Deafness and Other Communication Disorders; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-14

    ... Deafness and Other Communication Disorders; Notice of Closed Meetings Pursuant to section 10(d) of the... disclose confidential trade secrets or commercial property such as patentable material, and personal... Deafness and Other Communication Disorders Special Emphasis Panel; NIDCD Vestibular Prosthesis Research...

  18. 77 FR 50705 - National Institute on Deafness and Other Communication Disorders; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... Deafness and Other Communication Disorders; Notice of Closed Meetings Pursuant to section 10(d) of the... disclose confidential trade secrets or commercial property such as patentable material, and personal... Deafness and Other Communication Disorders Special Emphasis Panel, NIDCD P30 Review Meeting. Date...

  19. 77 FR 5032 - National Institute on Deafness and Other Communication Disorders; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-01

    ... Deafness and Other Communication Disorders; Notice of Closed Meeting Pursuant to section 10(d) of the... disclose confidential trade secrets or commercial property such as patentable material, and personal... constitute a clearly unwarranted invasion of personal privacy. Name of Committee: Communication Disorders...

  20. 75 FR 33817 - National Institute on Deafness and Other Communication Disorders; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... Deafness and Other Communication Disorders; Notice of Closed Meeting Pursuant to section 10(d) of the... disclose confidential trade secrets or commercial property such as patentable material, and personal... Deafness and Other Communication Disorders Special Emphasis Panel, Translational PAR. Date: July 8, 2010...

  1. 78 FR 56902 - National Institute on Deafness and Other Communication Disorders; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... Deafness and Other Communication Disorders; Notice of Closed Meetings Pursuant to section 10(d) of the... disclose confidential trade secrets or commercial property such as patentable material, and personal... Deafness and Other Communication Disorders Special Emphasis Panel; Vestibular Clinical Trial Review. Date...

  2. 76 FR 35222 - National Institute on Deafness and Other Communication Disorders; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ... Deafness and Other Communication Disorders; Notice of Closed Meetings Pursuant to section 10(d) of the... disclose confidential trade secrets or commercial property such as patentable material, and personal... Deafness and Other Communication Disorders Special Emphasis Panel, R24--NIDCD Community-Wide Scientific...

  3. Organization out of disorder: liquid-liquid phase separation in plants.

    PubMed

    Cuevas-Velazquez, Cesar L; Dinneny, José R

    2018-05-30

    Membraneless compartments are formed from the dynamic physical association of proteins and RNAs through liquid-liquid phase separation, and have recently emerged as an exciting new mechanism to explain the dynamic organization of biochemical processes in the cell. In this review, we provide an overview of the current knowledge of the process of phase separation in plants and other eukaryotes. We discuss specific examples of liquid-like membraneless compartments found in green plants, their composition, and the intriguing prevalence of proteins with intrinsically disordered domains. Finally, we speculate on the function of disordered proteins in regulating the formation of membraneless compartments and how their conformational flexibility may be important for molecular memory and for sensing perturbations in the physicochemical environment of the cell, particularly important processes in sessile organisms. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Attention Deficit Hyperactivity Disorder. Decade of the Brain.

    ERIC Educational Resources Information Center

    Neuwirth, Sharyn

    This guide to attention deficit hyperactivity disorder (ADHD) is organized in three parts which address understanding the problem, getting help, and sustaining hope. A question-and-answer format addresses the following topics: symptoms of ADHD; other conditions which may produce similar symptoms; other disorders which may accompany ADHD; causes of…

  5. ARO-YIP (Materials By Design): Organic Photovoltaic Multiferroics

    DTIC Science & Technology

    Materials-by- design and self-assembly principles are applied to organic functional materials to control their morphology, interface, and crystalline...multifunctional properties, such as dielectric, magnetic, optoelectronic, and magnetoelectric coupling behaviors. The control of organic crystallization and...electronics. In this project, we aim at utilizing the material design and assembly strategies to rationally develop organic multiferroic-photovoltaics

  6. Myasthenia gravis - resources

    MedlinePlus

    Resources - myasthenia gravis ... The following organizations provide information on myasthenia gravis : Myasthenia Gravis Foundation of America -- www.myasthenia.org National Institute of Neurological Disorders and Stroke -- www.ninds.nih.gov/Disorders/Patient-Caregiver- ...

  7. Organic Analysis in Miller Range 090657 and Buckley Island 10933 CR2 Chondrites: Part 1 In-Situ Observation of Carbonaceous Material

    NASA Technical Reports Server (NTRS)

    Cao, T.; Nakamura-Messenger, K.; Berger, E. L.; Burton, A. S.; Messenger, S.; Clemett, S. J.

    2016-01-01

    Primitive carbonaceous chondrites contain a wide variety of organic material, ranging from soluble discrete molecules to insoluble unstructured kerogen-like component as well as structured nano-globules of macromolecular carbon. The relationship between the soluble organic molecules, macromolecular organic material, and host minerals are poorly understood. Due to the differences in extractability of soluble and insoluble organic materials, the analysis methods for each differ and are often performed independently. The combination of soluble and insoluble analyses, when performed concurrently, can provide a wider understanding on spatial distribution, and elemental, structural and isotopic composition of organic material in primitive meteorites. Furthermore, they can provide broader perspective on how extraterrestrial organic ma-terials potentially contributed to the synthesis of life's essential compounds such as amino acids, sugar acids, activated phosphates and nucleobases.

  8. Multisystemic Eosinophilia Resembling Hypereosinophilic Syndrome in a Colony-Bred Owl Monkey (Aotus vociferans)

    PubMed Central

    Gozalo, Alfonso S; Rosenberg, Helene F; Elkins, William R; Montoya, Enrique J; Weller, Richard E

    2009-01-01

    In animals, multisystemic eosinophilic disease is a rare condition characterized by eosinophilic and lymphoplasmacytic infiltrates in various organs. This disorder resembles the human disease known as hypereosinophilic syndrome, a condition defined by prolonged peripheral eosinophilia in the absence of recognizable etiology and associated with end-organ damage. In this report we describe a research-naïve, colony-born, juvenile female owl monkey (Aotus vociferans) who presented clinically with severe respiratory distress and histologically with multiple end-organ infiltration with phenotypically mature eosinophils, plasma cells, and lymphocytes. No tumors or infectious agents were noted either macroscopically or microscopically. Cultures from lung samples revealed no bacteria or fungi. Histologic examination of lung, heart, thymus, liver, spleen, kidney, adrenal, pancreas, stomach, small intestine, and colon revealed no migrating nematode larvae, other parasites, or foreign material that might trigger eosinophilia, nor was there any evidence of or history consistent with an allergic etiology. Given that we ruled out most exogenous and endogenous triggers of eosinophilia, the signs, symptoms, and pathologic findings support the diagnosis of multisystemic eosinophilic disease. To our knowledge, this report is the first description of presumptive hypereosinophilic syndrome in a nonhuman primate. PMID:19476722

  9. Alteration of the bone tissue material properties in type 1 diabetes mellitus: A Fourier transform infrared microspectroscopy study.

    PubMed

    Mieczkowska, Aleksandra; Mansur, Sity Aishah; Irwin, Nigel; Flatt, Peter R; Chappard, Daniel; Mabilleau, Guillaume

    2015-07-01

    Type 1 diabetes mellitus (T1DM) is a severe disorder characterized by hyperglycemia and hypoinsulinemia. A higher occurrence of bone fractures has been reported in T1DM, and although bone mineral density is reduced in this disorder, it is also thought that bone quality may be altered in this chronic pathology. Vibrational microscopies such as Fourier transform infrared microspectroscopy (FTIRM) represent an interesting approach to study bone quality as they allow investigation of the collagen and mineral compartment of the extracellular matrix in a specific bone location. However, as spectral feature arising from the mineral may overlap with those of the organic component, the demineralization of bone sections should be performed for a full investigation of the organic matrix. The aims of the present study were to (i) develop a new approach, based on the demineralization of thin bone tissue section to allow a better characterization of the bone organic component by FTIRM, (ii) to validate collagen glycation and collagen integrity in bone tissue and (iii) to better understand what alterations of tissue material properties in newly forming bone occur in T1DM. The streptozotocin-injected mouse (150 mg/kg body weight, injected at 8 weeks old) was used as T1DM model. Animals were randomly allocated to control (n = 8) or diabetic (n = 10) groups and were sacrificed 4 weeks post-STZ injection. Bones were collected at necropsy, embedded in polymethylmethacrylate and sectioned prior to examination by FTIRM. FTIRM collagen parameters were collagen maturity (area ratio between 1660 and 1690 cm(-1) subbands), collagen glycation (area ratio between the 1032 cm(-1) subband and amide I) and collagen integrity (area ratio between the 1338 cm(-1) subband and amide II). No significant differences in the mineral compartment of the bone matrix could be observed between controls and STZ-injected animals. On the other hand, as compared with controls, STZ-injected animals presented with significant higher value for collagen maturity (17%, p = 0.0048) and collagen glycation (99%, p = 0.0121), while collagen integrity was significantly lower by 170% (p = 0.0121). This study demonstrated the profound effect of early T1DM on the organic compartment of the bone matrix in newly forming bone. Further studies in humans are required to ascertain whether T1DM also lead to similar effect on the quality of the bone matrix. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Metal-organic framework materials with ultrahigh surface areas

    DOEpatents

    Farha, Omar K.; Hupp, Joseph T.; Wilmer, Christopher E.; Eryazici, Ibrahim; Snurr, Randall Q.; Gomez-Gualdron, Diego A.; Borah, Bhaskarjyoti

    2015-12-22

    A metal organic framework (MOF) material including a Brunauer-Emmett-Teller (BET) surface area greater than 7,010 m.sup.2/g. Also a metal organic framework (MOF) material including hexa-carboxylated linkers including alkyne bond. Also a metal organic framework (MOF) material including three types of cuboctahedron cages fused to provide continuous channels. Also a method of making a metal organic framework (MOF) material including saponifying hexaester precursors having alkyne bonds to form a plurality of hexa-carboxylated linkers including alkyne bonds and performing a solvothermal reaction with the plurality of hexa-carboxylated linkers and one or more metal containing compounds to form the MOF material.

  11. Neural Systems for Cognitive and Emotional Processing in Posttraumatic Stress Disorder

    PubMed Central

    Brown, Vanessa M.; Morey, Rajendra A.

    2012-01-01

    Individuals with posttraumatic stress disorder (PTSD) show altered cognition when trauma-related material is present. PTSD may lead to enhanced processing of trauma-related material, or it may cause impaired processing of trauma-unrelated information. However, other forms of emotional information may also alter cognition in PTSD. In this review, we discuss the behavioral and neural effects of emotion processing on cognition in PTSD, with a focus on neuroimaging results. We propose a model of emotion-cognition interaction based on evidence of two network models of altered brain activation in PTSD. The first is a trauma-disrupted network made up of ventrolateral PFC, dorsal anterior cingulate cortex (ACC), hippocampus, insula, and dorsomedial PFC that are differentially modulated by trauma content relative to emotional trauma-unrelated information. The trauma-disrupted network forms a subnetwork of regions within a larger, widely recognized network organized into ventral and dorsal streams for processing emotional and cognitive information that converge in the medial PFC and cingulate cortex. Models of fear learning, while not a cognitive process in the conventional sense, provide important insights into the maintenance of the core symptom clusters of PTSD such as re-experiencing and hypervigilance. Fear processing takes place within the limbic corticostriatal loop composed of threat-alerting and threat-assessing components. Understanding the disruptions in these two networks, and their effect on individuals with PTSD, will lead to an improved knowledge of the etiopathogenesis of PTSD and potential targets for both psychotherapeutic and pharmacotherapeutic interventions. PMID:23162499

  12. Ionics of nanoheterogeneous materials

    NASA Astrophysics Data System (ADS)

    Uvarov, Nikolay F.

    2007-05-01

    The results of studies of composite ionic conductors are considered. The relationship between their properties and the ionic salt disordering and the interfacial interaction between the components of the material is analysed. Special attention is paid to models that describe the surface disordering and the mechanism of defect formation. The methods of calculation of physicochemical characteristics of composites, the thermodynamic stability and peculiarities of the genesis of the nanocomposite morphology are discussed.

  13. Organic photovoltaic cells utilizing ultrathin sensitizing layer

    DOEpatents

    Forrest, Stephen R [Ann Arbor, MI; Yang, Fan [Piscataway, NJ; Rand, Barry P [Somers, NY

    2011-09-06

    A photosensitive device includes a plurality of organic photoconductive materials disposed in a stack between a first electrode and a second electrode, including a first continuous layer of donor host material, a second continuous layer of acceptor host material, and at least one other organic photoconductive material disposed as a plurality of discontinuous islands between the first continuous layer and the second continuous layer. Each of these other photoconductive materials has an absorption spectra different from the donor host material and the acceptor host material. Preferably, each of the discontinuous islands consists essentially of a crystallite of the respective organic photoconductive material, and more preferably, the crystallites are nanocrystals.

  14. Insecure Attachment Styles and Increased Borderline Personality Organization in Substance Use Disorders.

    PubMed

    Hiebler-Ragger, Michaela; Unterrainer, Human-Friedrich; Rinner, Anita; Kapfhammer, Hans-Peter

    Previous research has linked insecure attachment styles and borderline personality organization to substance use disorder (SUD). However, it still remains unclear whether those impairments apply to different kinds of SUDs to the same extent. Therefore, in this study we sought to investigate potential differences regarding attachment deficits and borderline personality organization in two different SUD inpatient groups and furthermore in comparison to healthy controls. A total of 66 (24 female) inpatients diagnosed with alcohol use disorder (AUD), 57 (10 female) inpatients diagnosed with polydrug use disorder (PUD), and 114 (51 female) healthy controls completed the Borderline Personality Inventory and the Attachment Style Questionnaire. Compared to healthy controls, AUD and PUD inpatients showed significant deficits in all attachment parameters (p < 0.01) as well as a significantly increased amount of borderline personality organization (p < 0.01). No differences between AUD and PUD inpatients were observed (p > 0.05). Our results indicate that the drug(s) of choice cannot be regarded as an indicator for the extent of attachment deficits or personality pathology. These initial findings are mainly limited by the rather small sample size as well as just a single point of measurement. Future research might also consider further covariates such as comorbidity or psychotropic medication. © 2016 S. Karger AG, Basel.

  15. Set shifting and visuospatial organization deficits in body dysmorphic disorder.

    PubMed

    Greenberg, Jennifer L; Weingarden, Hilary; Reuman, Lillian; Abrams, Dylan; Mothi, Suraj S; Wilhelm, Sabine

    2017-11-24

    Individuals with body dysmorphic disorder (BDD) over-attend to perceived defect(s) in their physical appearance, often becoming "stuck" obsessing about perceived flaws and engaging in rituals to hide flaws. These symptoms suggest that individuals with BDD may experience deficits in underlying neurocognitive functions, such as set-shifting and visuospatial organization. These deficits have been implicated as risk and maintenance factors in disorders with similarities to BDD but have been minimally investigated in BDD. The present study examined differences in neurocognitive functions among BDD participants (n = 20) compared to healthy controls (HCs; n = 20). Participants completed neuropsychological assessments measuring set-shifting (Cambridge Neuropsychological Test Automated Battery Intra-Extra Dimensional Set Shift [IED] task) and visuospatial organization and memory (Rey-Osterrieth Complex Figure Test [ROCF]). Results revealed a set-shifting deficit among BDD participants compared to HCs on the IED. On the ROCF, BDD participants exhibited deficits in visuospatial organization compared to HCs, but they did not differ in visuospatial memory compared to HCs. Results did not change when accounting for depression severity. Findings highlight neurocognitive deficits as potential endophenotype markers of clinical features (i.e., delusionality). Understanding neuropsychological deficits may clarify similarities and differences between BDD and related disorders and may guide targets for BDD treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Degenerative disease affecting the nervous system.

    PubMed

    Eadie, M J

    1974-03-01

    The term "degenerative disease" is one which is rather widely used in relation to the nervous system and yet one which is rarely formally and carefully defined. The term appears to be applied to disorders of the nervous system which often occur in later life and which are of uncertain cause. In the Shorter Oxford Dictionary the word degeneration is defined as "a change of structure by which an organism, or an organ, assumes the form of a lower type". However this is not quite the sense in which the word is applied in human neuropathology, where it is conventional to restrict the use of the word to those organic disorders which are of uncertain or poorly understood cause and in which there is a deterioration or regression in the level of functioning of the nervous system. The concept of degenerative disorder is applied to other organs as well as to the brain, and as disease elsewhere in the body may affect the nervous system, it seems reasonable to include within the topic of degenerative disorder affecting the nervous system those conditions in which the nervous system is involved as a result of primary degenerations in other parts of the body. Copyright © 1974 Australian Physiotherapy Association. Published by . All rights reserved.

  17. Removal of Organic Pollutants from Water Using Superwetting Materials.

    PubMed

    Li, Lingxiao; Zhang, Junping; Wang, Aiqin

    2018-02-01

    The frequent occurrence of water pollution accidents and the leakage of organic pollutants have caused severe environmental and ecological crisis. It is thus highly imperative to find efficient materials to solve the problem. Inspired by the lotus leaf, superwetting materials are receiving increasing attention in the field of removal of organic pollutants from water. Various superwetting materials have been successfully generated and integrated into devices for removal of organic pollutants from water. On the basis of our previous work in the field, we summarized in this account the progress of removal of (1) floating and underwater insoluble, (2) emulsified insoluble, and (3) both insoluble and soluble organic pollutants from water using superwetting materials including superhydrophobic & superoleophilic materials, superhydrophilic & underwater superoleophobic materials, and materials with controllable wettability. The superwetting materials are in the forms of 2D porous materials, 3D porous materials and particles, etc. Finally, the current state and future challenges in this field are discussed. We hope this account could shed light on the design of novel superwetting materials for efficient removal of organic pollutants from water. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Functional organic materials for electronics industries

    NASA Technical Reports Server (NTRS)

    Shibayama, K.; Ono, H.

    1982-01-01

    Topics closely related with organic, high molecular weight material synthesis are discussed. These are related to applications such as display, recording, sensors, semiconductors, and I.C. correlation. New materials are also discussed. General principles of individual application are not included. Materials discussed include color, electrochromic, thermal recording, organic photoconductors for electrophotography, and photochromic materials.

  19. pH-sensitive optrode

    DOEpatents

    Hirschfeld, Tomas B.; Wang, Francis T.

    1989-01-01

    An apparatus is provided for remotely monitoring pH. A support material is provided on which organic dye molecules are covalently attached at a surface density falling within a predetermined range. The pH dependent fluorescence response of the bound organic dye molecules depends critically on surface density of the organic dye molecules bound to the support material and the nature of the covalent linkage betwen the organic dye molecules and the support material. The invention is operated by contacting the support material on which the organic dye is attached with the fluid whose pH is to be determined. When in contact, the organic dye on the support material is illuminated so that it is caused to fluoresce. The intensity of organic dye fluorescence is then related to pH.

  20. Proposals for Paraphilic Disorders in the International Classification of Diseases and Related Health Problems, Eleventh Revision (ICD-11).

    PubMed

    Krueger, Richard B; Reed, Geoffrey M; First, Michael B; Marais, Adele; Kismodi, Eszter; Briken, Peer

    2017-07-01

    The World Health Organization is currently developing the 11th revision of the International Classifications of Diseases and Related Health Problems (ICD-11), with approval of the ICD-11 by the World Health Assembly anticipated in 2018. The Working Group on the Classification of Sexual Disorders and Sexual Health (WGSDSH) was created and charged with reviewing and making recommendations for categories related to sexuality that are contained in the chapter of Mental and Behavioural Disorders in ICD-10 (World Health Organization 1992a). Among these categories was the ICD-10 grouping F65, Disorders of sexual preference, which describes conditions now widely referred to as Paraphilic Disorders. This article reviews the evidence base, rationale, and recommendations for the proposed revisions in this area for ICD-11 and compares them with DSM-5. The WGSDSH recommended that the grouping, Disorders of sexual preference, be renamed to Paraphilic Disorders and be limited to disorders that involve sexual arousal patterns that focus on non-consenting others or are associated with substantial distress or direct risk of injury or death. Consistent with this framework, the WGSDSH also recommended that the ICD-10 categories of Fetishism, Fetishistic Transvestism, and Sadomasochism be removed from the classification and new categories of Coercive Sexual Sadism Disorder, Frotteuristic Disorder, Other Paraphilic Disorder Involving Non-Consenting Individuals, and Other Paraphilic Disorder Involving Solitary Behaviour or Consenting Individuals be added. The WGSDSH's proposals for Paraphilic Disorders in ICD-11 are based on the WHO's role as a global public health agency and the ICD's function as a public health reporting tool.

  1. The crystallography of correlated disorder.

    PubMed

    Keen, David A; Goodwin, Andrew L

    2015-05-21

    Classical crystallography can determine structures as complicated as multi-component ribosomal assemblies with atomic resolution, but is inadequate for disordered systems--even those as simple as water ice--that occupy the complex middle ground between liquid-like randomness and crystalline periodic order. Correlated disorder nevertheless has clear crystallographic signatures that map to the type of disorder, irrespective of the underlying physical or chemical interactions and material involved. This mapping hints at a common language for disordered states that will help us to understand, control and exploit the disorder responsible for many interesting physical properties.

  2. Pro-eating disorder search patterns: the possible influence of celebrity eating disorder stories in the media.

    PubMed

    Lewis, Stephen P; Klauninger, Laura; Marcincinova, Ivana

    2016-01-01

    Pro eating disorder websites often contain celebrity-focused content (e.g., images) used as thinspiration to engage in unhealthy eating disorder behaviours. The current study was conducted to examine whether news media stories covering eating disorder disclosures of celebrities corresponded with increases in Internet searches for pro eating disorder material. Results indicated that search volumes for pro eating disorder terms spiked in the month immediately following such news coverage but only for particularly high-profile celebrities. Hence, there may be utility in providing recovery-oriented resources within the search results for pro-eating disorder Internet searches and within news stories of this nature.

  3. Molecular aspects of aromatic C additions to soils: Implications of char quality for ecosystem functionality

    NASA Astrophysics Data System (ADS)

    Keiluweit, M.; Nico, P. S.; Johnson, M. G.; Kleber, M.

    2009-12-01

    Solid residues of incomplete combustion (biochar or char) are continuously being added to soils due to natural vegetation fires in many ecosystems. However, new strategies for carbon sequestration in soils are likely to include the active addition of biochar to soils. Since biochar is a highly aromatic organic material such additions will modify the native molecular structure of soil organic matter and thus alter interactions with the global atmosphere and hydrosphere. Here we present a molecular level assessment of the physical organization and chemical complexity of biomass-derived chars and, specifically, that of aromatic carbon in char structures. Differences among wood and grass charred at temperatures from 100 to 700°C are investigated. BET-N2 surface area, X-ray diffraction (XRD), synchrotron-based Near-edge X-ray Absorption Fine Structure (NEXAFS) and Fourier transform infrared (FT-IR) spectroscopy results demonstrate how the two plant precursor materials undergo analogous, but quantitatively different physical-chemical transitions as charring intensity increases. These changes suggest the existence of four distinct physical and chemical categories of char. We find that each category of char consists of a unique mixture of chemical phases and physical states: (i) in transition chars the crystalline character of the precursor materials is preserved, (ii) in amorphous chars the heat-altered molecules and incipient aromatic polycondensates are randomly mixed, (iii) composite chars consist of poorly ordered graphene stacks embedded in amorphous phases, and (iv) turbostratic chars are dominated by turbostratic (disordered) graphitic crystallites. There is wide variation in both the chemical and the physical nature of aromatic carbon among these char categories. In this presentation we will point out how molecular variations among the aromatic components of the different char categories translate into differences in their ability to: (i) persist in the environment, (ii) function as environmental sorbents, and (iii) to enable the soil to provide environmental services.

  4. [Development of lipids and carbohydrates metabolism disorders caused by drinkable water with high content of chlorine organic compounds].

    PubMed

    Luzhetsky, K P; Ustinova, O Yu; Shur, P Z; Kiryanov, D A; Dolgikh, O V; Chigvintsev, v M; Perevalov, A Ya

    2015-01-01

    Evaluation of effects caused by environmental peroral exposure to chlorine organic compounds revealed that individuals with AG variation of HTR2A gene are a community with increased sensitivity to chloroform and a risk group for lipid and carbohydrates metabolism disorders. Individual risk of endocrine disorders (ICD: E67.8 excessive nutrition and E66.0 obesity) in these individuals is higher than in general population exposed to chloroform at residence (HQ1.72). Serum serotonin level, that is functionally connected with HTR2A gene, is 1.3 times lower vs. the reference group value.

  5. Structural and functional connectivity of the human brain in autism spectrum disorders and attention-deficit/hyperactivity disorder: A rich club organization study

    PubMed Central

    Ray, Siddharth; Miller, Meghan; Karalunas, Sarah; Robertson, C.J.; Grayson, David; Cary, Paul; Hawkey, Elizabeth; Painter, Julia G.; Kriz, Daniel; Fombonne, Eric; Nigg, Joel T.; Fair, Damien A.

    2015-01-01

    Attention deficit hyperactive disorder (ADHD) and Autism spectrum disorders (ASD) are two of the most common and vexing neurodevelopmental disorders among children. Although the two disorders share many behavioral and neuropsychological characteristics, most MRI studies examine only one of the disorders at a time. Using graph theory combined with structural and functional connectivity, we examined the large-scale network organization among three groups of children: a group with ADHD (8-12 years, n = 20), a group with ASD (7-13 years, n = 16), and typically developing controls (TD) (8-12 years, n = 20). We apply the concept of the rich-club organization, whereby central, highly connected hub regions are also highly connected to themselves. We examine the brain into two different network domains: (1) inside a rich-club network phenomena, and (2) outside a rich-club network phenomena. ASD and ADHD populations had markedly different patterns of rich club and non rich-club connections in both functional and structural data. The ASD group exhibited higher connectivity in structural and functional networks but only inside the rich-club networks. These findings were replicated using the autism brain imaging data exchange (ABIDE) dataset with ASD (n = 85) and TD (n = 101). The ADHD group exhibited a lower generalized fractional anisotropy (GFA) and functional connectivity inside the rich-club networks, but a higher number of axonal fibers and correlation coefficient values outside the rich-club. Despite some shared biological features and frequent comorbity, these data suggest ADHD and ASD exhibit distinct large-scale connectivity patterns in middle childhood. PMID:25116862

  6. Functional conjugated pyridines via main-group element tuning.

    PubMed

    Stolar, Monika; Baumgartner, Thomas

    2018-03-29

    Pyridine-based materials have seen widespread attention for the development of n-type organic materials. In recent years, the incorporation of main-group elements has also explored significant advantages for the development and tunability of organic conjugated materials. The unique chemical and electronic structure of main-group elements has led to several enhancements in conventional organic materials. This Feature article highlights recent main-group based pyridine materials by discussing property enhancements and application in organic electronics.

  7. Psychiatric diagnosis and differential risks of offending following discharge.

    PubMed

    Coid, Jeremy W; Yang, Min; Ullrich, Simone; Hickey, Nicole; Kahtan, Nadji; Freestone, Mark

    2015-01-01

    Psychiatric diagnosis is not considered a risk factor for offending following discharge. However, treatment interventions and aftercare are strongly influenced by clinical primary diagnosis. We compared differential risks of reoffending of patients falling into six primary diagnostic categories following discharge from Medium Secure Units in the UK: schizophrenia/schizoaffective disorder; delusional disorder; mania/hypomania; depressive disorder; organic brain syndrome; personality disorder. We followed up 1344 patients, on average 6.2 years (SD=2.1) at risk, discharged from 7 of 14 Regional Medium Secure services in England and Wales. Outcomes were period prevalence, incidence, and cumulative probability of criminal conviction. Established demographic and criminal history predictors of reoffending were observed across different diagnostic categories. Risks of all offending were increased for personality disorder, violence/acquisitive offending for delusional disorder, sexual offending for mania/hypomania and violence/acquisitive offending for organic brain syndrome. Patterns of risk over time differed markedly between categories of mental disorder. Most patients with personality disorder who offended violently did so within 4 years of discharge. A subgroup with delusional disorder demonstrated increased risk of violent offending 5 years after discharge. Differential risks of reoffending are observed between different diagnostic groups. Clinical diagnosis should be included together with established risk measures in risk management following discharge. Close supervision of patients with personality disorder should begin immediately after discharge when risks of reoffending are greatest. For delusional disorder further investigation is needed into the marked increase in risk of violence after 5 years. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Significance of personality disorders in the face of drop-outs from psychiatric hospitalizations. The case of selected psychiatric units.

    PubMed

    Biała, Maja; Kiejna, Andrzej

    2017-06-18

    The World Health Organization's estimations indicate that about 50% of patients in well-developed countries may not adhere to long-term therapies. In the field of psychiatry, drop-outs from psychiatric treatment are particularly important. Personality disorders are a significant part of this sphere. The aim of this research was to empirically verify the hypothesis regarding the relation between comorbid personality disorders and drop-outs from treatment among patients of psychiatric wards. This study was a prospective cohort study. 110 patients, hospitalized in 3 different psychiatric wards, were included. Personality disorders were assessed with the Structured Clinical Interview For DSM-IV Personality Disorders (SCID-II). The research was financed by the Polish National Science Center (DEC-2011/01/N/NZ5/05364). The response rate was 89.1%. 72.56% of patients suffered from personality disorders (SCID-II) (among them the most prevalent were: personality disorder - not otherwise specified - 40.7% and borderline personality disorder - 12.38%; 22.95% of patients dropped out from treatment). However, occurrence of personality disorders was not relevant for those drop-outs. On the other hand, relationships at the level of certain criteria of borderline personality disorders and passive-aggressive personality have been revealed. These relationships became stronger when considered from the perspective of differences in the organization of treatment at individual wards. Some personality disorders may play an important role in drop-outs from psychiatric treatment. Presented results require further research.

  9. Perylene-Based All-Organic Redox Battery with Excellent Cycling Stability.

    PubMed

    Iordache, Adriana; Delhorbe, Virginie; Bardet, Michel; Dubois, Lionel; Gutel, Thibaut; Picard, Lionel

    2016-09-07

    Organic materials derived from biomass can constitute a viable option as replacements for inorganic materials in lithium-ion battery electrodes owing to their low production costs, recyclability, and structural diversity. Among them, conjugated carbonyls have become the most promising type of organic electrode material as they present high theoretical capacity, fast reaction kinetics, and quasi-infinite structural diversity. In this letter, we report a new perylene-based all-organic redox battery comprising two aromatic conjugated carbonyl electrode materials, the prelithiated tetra-lithium perylene-3,4,9,10-tetracarboxylate (PTCLi6) as negative electrode material and the poly(N-n-hexyl-3,4,9,10-perylene tetracarboxylic)imide (PTCI) as positive electrode material. The resulting battery shows promising long-term cycling stability up to 200 cycles. In view of the enhanced cycling performances, the two organic materials studied herein are proposed as suitable candidates for the development of new all-organic lithium-ion batteries.

  10. High mobility high efficiency organic films based on pure organic materials

    DOEpatents

    Salzman, Rhonda F [Ann Arbor, MI; Forrest, Stephen R [Ann Arbor, MI

    2009-01-27

    A method of purifying small molecule organic material, performed as a series of operations beginning with a first sample of the organic small molecule material. The first step is to purify the organic small molecule material by thermal gradient sublimation. The second step is to test the purity of at least one sample from the purified organic small molecule material by spectroscopy. The third step is to repeat the first through third steps on the purified small molecule material if the spectroscopic testing reveals any peaks exceeding a threshold percentage of a magnitude of a characteristic peak of a target organic small molecule. The steps are performed at least twice. The threshold percentage is at most 10%. Preferably the threshold percentage is 5% and more preferably 2%. The threshold percentage may be selected based on the spectra of past samples that achieved target performance characteristics in finished devices.

  11. Familial pseudoxanthoma elasticum associated with multiple comedones.

    PubMed

    Maarouf, Melody; Sharon, Victoria R; Sivamani, Raja K; Prakash, Neha; Bipin, T H; Davis, Tracy; Shi, Vivian Y

    2017-09-15

    Pseudoxanthoma elasticum (PXE) is an autosomal recessive disorder characterized by atypical elastic fibers that causes connective tissue abnormalities of the skin, eyes, and heart, among other organs. The disorder is rare, with a classic presentation of yellow-orange cobblestone-like papules on flexural areas, lax skin, ocular degeneration, and moribund vasculature in multiple organs. There is wide variability in the presentation of the affected organs [1]. We present two sisters with classic cutaneous findings of PXE with the additional unusual findings of numerous open comedones on the neck. To our knowledge, this is the first report of numerous open comedones in familial PXE.

  12. Method for catalytic destruction of organic materials

    DOEpatents

    Sealock, Jr., L. John; Baker, Eddie G.; Elliott, Douglas C.

    1997-01-01

    A method is disclosed for converting waste organic materials into an innocuous product gas. The method comprises maintaining, in a pressure vessel, in the absence of oxygen, at a temperature of 250.degree. C. to 500.degree. C. and a pressure of at least 50 atmospheres, a fluid organic waste material, water, and a catalyst consisting essentially of reduced nickel in an amount sufficient to catalyze a reaction of the organic waste material to produce an innocuous product gas composed primarily of methane and carbon dioxide. The methane in the product gas may be burned to preheat the organic materials.

  13. Method for catalytic destruction of organic materials

    DOEpatents

    Sealock, L.J. Jr.; Baker, E.G.; Elliott, D.C.

    1997-05-20

    A method is disclosed for converting waste organic materials into an innocuous product gas. The method comprises maintaining, in a pressure vessel, in the absence of oxygen, at a temperature of 250 to 500 C and a pressure of at least 50 atmospheres, a fluid organic waste material, water, and a catalyst consisting essentially of reduced nickel in an amount sufficient to catalyze a reaction of the organic waste material to produce an innocuous product gas composed primarily of methane and carbon dioxide. The methane in the product gas may be burned to preheat the organic materials. 7 figs.

  14. Mental health professionals' natural taxonomies of mental disorders: implications for the clinical utility of the ICD-11 and the DSM-5.

    PubMed

    Reed, Geoffrey M; Roberts, Michael C; Keeley, Jared; Hooppell, Catherine; Matsumoto, Chihiro; Sharan, Pratap; Robles, Rebeca; Carvalho, Hudson; Wu, Chunyan; Gureje, Oye; Leal-Leturia, Itzear; Flanagan, Elizabeth H; Correia, João Mendonça; Maruta, Toshimasa; Ayuso-Mateos, José Luís; de Jesus Mari, Jair; Xiao, Zeping; Evans, Spencer C; Saxena, Shekhar; Medina-Mora, María Elena

    2013-12-01

    To examine the conceptualizations held by psychiatrists and psychologists around the world of the relationships among mental disorders in order to inform decisions about the structure of the classification of mental and behavioral disorders in World Health Organization's International Classification of Diseases and Related Health Problems 11th Revision (ICD-11). 517 mental health professionals in 8 countries sorted 60 cards containing the names of mental disorders into groups of similar disorders, and then formed a hierarchical structure by aggregating and disaggregating these groupings. Distance matrices were created from the sorting data and used in cluster and correlation analyses. Clinicians' taxonomies were rational, interpretable, and extremely stable across countries, diagnostic system used, and profession. Clinicians' consensus classification structure was different from ICD-10 and the American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders 4th Edition (DSM-IV), but in many respects consistent with ICD-11 proposals. The clinical utility of the ICD-11 may be improved by making its structure more compatible with the common conceptual organization of mental disorders observed across diverse global clinicians. © 2013 Wiley Periodicals, Inc.

  15. A mouse model for fucosidosis recapitulates storage pathology and neurological features of the milder form of the human disease

    PubMed Central

    Wolf, Heike; Stroobants, Stijn; D'Hooge, Rudi; Hermans-Borgmeyer, Irm; Lüllmann-Rauch, Renate; Dierks, Thomas; Lübke, Torben

    2016-01-01

    ABSTRACT Fucosidosis is a rare lysosomal storage disorder caused by the inherited deficiency of the lysosomal hydrolase α-L-fucosidase, which leads to an impaired degradation of fucosylated glycoconjugates. Here, we report the generation of a fucosidosis mouse model, in which the gene for lysosomal α-L-fucosidase (Fuca1) was disrupted by gene targeting. Homozygous knockout mice completely lack α-L-fucosidase activity in all tested organs leading to highly elevated amounts of the core-fucosylated glycoasparagine Fuc(α1,6)-GlcNAc(β1-N)-Asn and, to a lesser extent, other fucosylated glycoasparagines, which all were also partially excreted in urine. Lysosomal storage pathology was observed in many visceral organs, such as in the liver, kidney, spleen and bladder, as well as in the central nervous system (CNS). On the cellular level, storage was characterized by membrane-limited cytoplasmic vacuoles primarily containing water-soluble storage material. In the CNS, cellular alterations included enlargement of the lysosomal compartment in various cell types, accumulation of secondary storage material and neuroinflammation, as well as a progressive loss of Purkinje cells combined with astrogliosis leading to psychomotor and memory deficits. Our results demonstrate that this new fucosidosis mouse model resembles the human disease and thus will help to unravel underlying pathological processes. Moreover, this model could be utilized to establish diagnostic and therapeutic strategies for fucosidosis. PMID:27491075

  16. Capturing Guest Dynamics in Metal-Organic Framework CPO-27-M (M = Mg, Zn) by (2)H Solid-State NMR Spectroscopy.

    PubMed

    Xu, Jun; Sinelnikov, Regina; Huang, Yining

    2016-06-07

    Metal-organic frameworks (MOFs) are promising porous materials for gas separation and storage as well as sensing. In particular, a series of isostructural MOFs with coordinately unsaturated metal centers, namely, CPO-27-M or M-MOF-74 (M = Mg, Zn, Mn, Fe, Ni, Co, Cu), have shown exceptional adsorption capacity and selectivity compared to those of classical MOFs that contain only fully coordinated metal sites. Although it is widely accepted that the interaction between guest molecules and exposed metal centers is responsible for good selectivity and large maximum uptake, the investigation of such guest-metal interaction is very challenging because adsorbed molecules are usually disordered in the pores and undergo rapid thermal motions. (2)H solid-state NMR (SSNMR) spectroscopy is one of the most extensively used techniques for capturing guest dynamics in porous materials. In this work, variable-temperature (2)H wide-line SSNMR experiments were performed on CPO-27-M (M = Mg, Zn) loaded with four prototypical guest molecules: D2O, CD3CN, acetone-d6, and C6D6. The results indicate that different guest molecules possess distinct dynamic behaviors inside the channel of CPO-27-M. For a given guest molecule, its dynamic behavior also depends on the nature of the metal centers. The binding strength of guest molecules is discussed on the basis of the (2)H SSNMR data.

  17. Smart materials on the way to theranostic nanorobots: Molecular machines and nanomotors, advanced biosensors, and intelligent vehicles for drug delivery.

    PubMed

    Sokolov, Ilya L; Cherkasov, Vladimir R; Tregubov, Andrey A; Buiucli, Sveatoslav R; Nikitin, Maxim P

    2017-06-01

    Theranostics, a fusion of two key parts of modern medicine - diagnostics and therapy of the organism's disorders, promises to bring the efficacy of medical treatment to a fundamentally new level and to become the basis of personalized medicine. Extrapolating today's progress in the field of smart materials to the long-run prospect, we can imagine future intelligent agents capable of performing complex analysis of different physiological factors inside the living organism and implementing a built-in program thereby triggering a series of therapeutic actions. These agents, by analogy with their macroscopic counterparts, can be called nanorobots. It is quite obscure what these devices are going to look like but they will be more or less based on today's achievements in nanobiotechnology. The present Review is an attempt to systematize highly diverse nanomaterials, which may potentially serve as modules for theranostic nanorobotics, e.g., nanomotors, sensing units, and payload carriers. Biocomputing-based sensing, externally actuated or chemically "fueled" autonomous movement, swarm inter-agent communication behavior are just a few inspiring examples that nanobiotechnology can offer today for construction of truly intelligent drug delivery systems. The progress of smart nanomaterials toward fully autonomous drug delivery nanorobots is an exciting prospect for disease treatment. Synergistic combination of the available approaches and their further development may produce intelligent drugs of unmatched functionality. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. 75 FR 51279 - National Institute on Deafness and Other Communication Disorders; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-19

    ... Deafness and Other Communication Disorders; Notice of Closed Meetings Pursuant to section 10(d) of the... disclose confidential trade secrets or commercial property such as patentable material, and personal... Deafness and Other Communication Disorders Special Emphasis Panel, R24 RFA. Date: September 16, 2010. Time...

  19. 8 CFR 1241.14 - Continued detention of removable aliens on account of special circumstances.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... based on material changed circumstances. (iii) The alien may appeal an adverse decision to the Board in... personality disorder and behavior associated with that condition or disorder, the alien is likely to engage in... recommendations pertaining to whether, due to a mental condition or personality disorder and behavior associated...

  20. 8 CFR 1241.14 - Continued detention of removable aliens on account of special circumstances.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... based on material changed circumstances. (iii) The alien may appeal an adverse decision to the Board in... personality disorder and behavior associated with that condition or disorder, the alien is likely to engage in... recommendations pertaining to whether, due to a mental condition or personality disorder and behavior associated...

  1. Language extraction from zinc sulfide

    NASA Astrophysics Data System (ADS)

    Varn, Dowman Parks

    2001-09-01

    Recent advances in the analysis of one-dimensional temporal and spacial series allow for detailed characterization of disorder and computation in physical systems. One such system that has defied theoretical understanding since its discovery in 1912 is polytypism. Polytypes are layered compounds, exhibiting crystallinity in two dimensions, yet having complicated stacking sequences in the third direction. They can show both ordered and disordered sequences, sometimes each in the same specimen. We demonstrate a method for extracting two-layer correlation information from ZnS diffraction patterns and employ a novel technique for epsilon-machine reconstruction. We solve a long-standing problem---that of determining structural information for disordered materials from their diffraction patterns---for this special class of disorder. Our solution offers the most complete possible statistical description of the disorder. Furthermore, from our reconstructed epsilon-machines we find the effective range of the interlayer interaction in these materials, as well as the configurational energy of both ordered and disordered specimens. Finally, we can determine the 'language' (in terms of the Chomsky Hierarchy) these small rocks speak, and we find that regular languages are sufficient to describe them.

  2. The Relationship of Gender and Family Environment to Eating Disorder Risk in Adolescents.

    ERIC Educational Resources Information Center

    Felker, Kenneth R.; Stivers, Cathie

    1994-01-01

    Surveys measured components of family environment and adolescents' risk of developing anorexia nervosa or bulimia. Females displayed a greater risk than males for developing eating disorders. Lower cohesion, expressiveness, independence, and organization in the family implied a higher eating disorder risk, as did greater conflict and control. (RJM)

  3. Eating Disorders: An Experiment in the Development of a Preventative Program.

    ERIC Educational Resources Information Center

    Bruce, Vivian M.

    1986-01-01

    This article describes how health professionals at the University of Manitoba developed an educational and treatment program for eating disorders. Discusses the group's two objectives: to plan a preventative program for all eating disorders (including obesity) that would be oriented to health maintenance and to organize a treatment program. (CT)

  4. Traumatic Memories in Acute Stress Disorder: An Analysis of Narratives before and after Treatment

    ERIC Educational Resources Information Center

    Moulds, Michelle L.; Bryant, Richard A.

    2005-01-01

    The dissociative reactions in acute stress disorder purportedly impede encoding and organization of traumatic memories and consequently impair the individual's ability to retrieve trauma-related details. A qualitative examination was conducted on trauma narratives of individuals with acute stress disorder (N = 15) prior to cognitive behavior…

  5. [Locomotive syndrome and frailty. Musculoskeletal ambulation disorder symptom complex and locomotive syndrome].

    PubMed

    Yamamoto, Noriaki

    2012-04-01

    Musculoskeletal ambulation disorder symptom complex is the new concept of musculoskeletal disorders with disability in walking and balance, which lead to the high risk of fall and lower activity in elderly. Locomotive syndrome is another concept to aware of healthy locomotive organ for early prevention of orthopedic disease.

  6. Altered Placental Tryptophan Metabolism: A Crucial Molecular Pathway for the Fetal Programming of Neurodevelopmental Disorders

    DTIC Science & Technology

    2015-07-01

    Programming of Neurodevelopmental Disorders PRINCIPAL INVESTIGATOR: Alexandre Bonnin, PhD CONTRACTING ORGANIZATION: University of Southern...Molecular Pathway for the Fetal Programming of Neurodevelopmental Disorders 5a. CONTRACT NUMBER W81XWH-13-1-0135 Pathway for the Fetal Programming of... Neurodevelopmental Disorders 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Alexandre Bonnin, PhD; 5d. PROJECT NUMBER Nick Goeden

  7. Biomarkers of Risk for Post-Traumatic Stress Disorder (PTSD)

    DTIC Science & Technology

    2008-05-01

    post - traumatic stress disorder ( PTSD ),” Principal Investigator, 4/07-4/10, $276,422. 12. R01 MH0687670-01 “DEX/CRH Response... Stress Disorder ( PTSD ) PRINCIPAL INVESTIGATOR: Audrey R. Tyrka, M.D., Ph.D. CONTRACTING ORGANIZATION: Butler Hospital... Stress Disorder ( PTSD ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-07-1-0269 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Audrey R.

  8. Incidence and Psychophysiology of Post-Traumatic Stress Disorder in Breast Cancer Victims and Witnesses

    DTIC Science & Technology

    1997-10-01

    stressful events such as military combat or violent rape can and do produce post - traumatic stress disorder ( PTSD ), the ability of less acute...Psychophysiology of Post - Traumatic Stress Disorder in Breast Cancer Victims and Witnesses PRINCIPAL INVESTIGATOR: Roger K. Pitman, M.D. CONTRACTING ORGANIZATION...Psychophysiology of Post - Traumatic Stress Disorder in Breast Cancer Victims and Witnesses DAMD17-94-J-4365 6. AUTHOR(S) Roger

  9. Mental disorders among college students in the World Health Organization World Mental Health Surveys.

    PubMed

    Auerbach, R P; Alonso, J; Axinn, W G; Cuijpers, P; Ebert, D D; Green, J G; Hwang, I; Kessler, R C; Liu, H; Mortier, P; Nock, M K; Pinder-Amaker, S; Sampson, N A; Aguilar-Gaxiola, S; Al-Hamzawi, A; Andrade, L H; Benjet, C; Caldas-de-Almeida, J M; Demyttenaere, K; Florescu, S; de Girolamo, G; Gureje, O; Haro, J M; Karam, E G; Kiejna, A; Kovess-Masfety, V; Lee, S; McGrath, J J; O'Neill, S; Pennell, B-E; Scott, K; Ten Have, M; Torres, Y; Zaslavsky, A M; Zarkov, Z; Bruffaerts, R

    2016-10-01

    Although mental disorders are significant predictors of educational attainment throughout the entire educational career, most research on mental disorders among students has focused on the primary and secondary school years. The World Health Organization World Mental Health Surveys were used to examine the associations of mental disorders with college entry and attrition by comparing college students (n = 1572) and non-students in the same age range (18-22 years; n = 4178), including non-students who recently left college without graduating (n = 702) based on surveys in 21 countries (four low/lower-middle income, five upper-middle-income, one lower-middle or upper-middle at the times of two different surveys, and 11 high income). Lifetime and 12-month prevalence and age-of-onset of DSM-IV anxiety, mood, behavioral and substance disorders were assessed with the Composite International Diagnostic Interview (CIDI). One-fifth (20.3%) of college students had 12-month DSM-IV/CIDI disorders; 83.1% of these cases had pre-matriculation onsets. Disorders with pre-matriculation onsets were more important than those with post-matriculation onsets in predicting subsequent college attrition, with substance disorders and, among women, major depression the most important such disorders. Only 16.4% of students with 12-month disorders received any 12-month healthcare treatment for their mental disorders. Mental disorders are common among college students, have onsets that mostly occur prior to college entry, in the case of pre-matriculation disorders are associated with college attrition, and are typically untreated. Detection and effective treatment of these disorders early in the college career might reduce attrition and improve educational and psychosocial functioning.

  10. pH-sensitive optrode

    DOEpatents

    Hirschfeld, T.B.; Wang, F.T.

    1989-02-07

    An apparatus is provided for remotely monitoring pH. A support material is provided on which organic dye molecules are covalently attached at a surface density falling within a predetermined range. The pH dependent fluorescence response of the bound organic dye molecules depends critically on surface density of the organic dye molecules bound to the support material and the nature of the covalent linkage between the organic dye molecules and the support material. The invention is operated by contacting the support material on which the organic dye is attached with the fluid whose pH is to be determined. When in contact, the organic dye on the support material is illuminated so that it is caused to fluoresce. The intensity of organic dye fluorescence is then related to pH. 4 figs.

  11. Fabricating porous materials using interpenetrating inorganic-organic composite gels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Dong-Kyun; Volosin, Alex

    Porous materials are fabricated using interpenetrating inorganic-organic composite gels. A mixture or precursor solution including an inorganic gel precursor, an organic polymer gel precursor, and a solvent is treated to form an inorganic wet gel including the organic polymer gel precursor and the solvent. The inorganic wet gel is then treated to form a composite wet gel including an organic polymer network in the body of the inorganic wet gel, producing an interpenetrating inorganic-organic composite gel. The composite wet gel is dried to form a composite material including the organic polymer network and an inorganic network component. The composite materialmore » can be treated further to form a porous composite material, a porous polymer or polymer composite, a porous metal oxide, and other porous materials.« less

  12. The Use of Music and Other Forms of Organized Sound as a Therapeutic Intervention for Students with Auditory Processing Disorder: Providing the Best Auditory Experience for Children with Learning Differences

    ERIC Educational Resources Information Center

    Faronii-Butler, Kishasha O.

    2013-01-01

    This auto-ethnographical inquiry used vignettes and interviews to examine the therapeutic use of music and other forms of organized sound in the learning environment of individuals with Central Auditory Processing Disorders. It is an investigation of the traditions of healing with sound vibrations, from its earliest cultural roots in shamanism and…

  13. Personality organization in borderline patients with a history of suicide attempts.

    PubMed

    Baus, Nicole; Fischer-Kern, Melitta; Naderer, Andrea; Klein, Jakob; Doering, Stephan; Pastner, Barbara; Leithner-Dziubas, Katharina; Plener, Paul L; Kapusta, Nestor D

    2014-08-15

    Suicide attempts (SA) are common in patients with Borderline Personality Disorder (BPD). Recent studies focus on aspects of personality associated with risk for SA such as deficits in affect regulation including impulse control and aggression. The current study examines associations of dysfunctional personality organization, psychiatric comorbidities as well as non-suicidal self-injury (NSSI) with SA in a sample of 68 BPD outpatients. Patients with a history of SA yielded higher scores in personality domains of aggression, especially self-directed aggression. Further, a history of SA was associated with a worse general level of personality organization and a higher prevalence rate of NSSI and substance abuse disorder. The results demonstrate that SA in BPD patients might be regarded as a manifestation of impaired personality functioning rather than mere state variables and symptoms. Moreover, these findings might have implications for indication, treatment, and prognosis of Borderline Personality Disorder. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Peas, please: a case report and neuroscientific review of dissociative amnesia and fugue.

    PubMed

    MacDonald, Kai; MacDonald, Tina

    2009-01-01

    Dissociative amnesia that encompasses one's entire life and identity is a rare disorder, as is dissociative fugue. In evaluating such cases, a dichotomy is often invoked between functional and organic etiologies. However, this dichotomy suffers from both conceptual and ethical flaws. Conceptually, putative brain-based, organic etiologies for many dissociative disorders-including dissociative amnesia-exist. Ethically, such dichotomies may result in dismissive care for patients with distress-based disorders like dissociative amnesia. In support of humane, neurobiologically informed treatment of patients with dissociative amnesia, we present excerpts from 2 post-event interviews with a patient who suffered and recovered from an episode of dissociative amnesia and fugue. Following this, we review current neurobiological models of dissociative amnesia that undermine the dichotomy of functional versus organic, and suggest that the crucial distinction in such cases is between a patient's willful, conscious deceit and processes that occur without conscious intent.

  15. Is aberrant mammary tissue a marker for chronic alcoholism or kidney-urinary tract malformations?

    PubMed

    Camacho, F M; Moreno-Giménez, J C; García-Hernández, M J

    1998-01-01

    Numerous publications describe the relationship between aberrant mammary tissue (AMT) and kidney-urinary tract malformations, individual/ familial alcoholism and sense organ disorders. We investigated these possible associations and reviewed 72 cases observed in our Department during the past 3 years: 30 men and 42 women, 17 of them with bilateral AMT (7 men and 10 women) and 25 patients from 9 families. Diagnosis was made according to Kajawa's classification. A detailed family history was performed asking for individual or familial alcoholism, especially in the mother, in addition to blood tests and ultrasonographic examination of the abdomen and the kidneys. We only found 1 family history of alcoholism in 3 families, but in the father, never in the mother or the affected subject. No congenital/ hereditary nephrourinary defects or sense organ disorders were found. We believe that in our population AMT is not a marker for alcoholism, kidney-urinary malformations nor sense organ disorders.

  16. Disordered solids: In search of the perfect glass

    NASA Astrophysics Data System (ADS)

    Biroli, Giulio

    2014-08-01

    The jury's still out on how glasses and other disordered materials form. However, a new framework suggests that we can understand their mechanical properties without this information, by using the physics of jamming.

  17. Posttraumatic stress disorder in patients with traumatic brain injury and amnesia for the event?

    PubMed

    Warden, D L; Labbate, L A; Salazar, A M; Nelson, R; Sheley, E; Staudenmeier, J; Martin, E

    1997-01-01

    Frequency of DSM-III-R posttraumatic stress disorder (PTSD) was studied in 47 active-duty service members (46 male, 1 female; mean age 27 = 7) with moderate traumatic brain injury and neurogenic amnesia for the event. Patients had attained "oriented and cooperative" recovery level. When evaluated with a modified Present State Examination and other questions at various points from study entry to 24-month follow-up, no patients met full criteria for PTSD or met criterion B (reexperience); 6 (13%) met both C (avoidance) and D (arousal) criteria. Five of these 6 also had organic mood disorder, depressed type, and/or organic anxiety disorder. Posttraumatic amnesia following moderate head injury may protect against recurring memories and the development of PTSD. Some patients with neurogenic amnesia may develop a form of PTSD without the reexperiencing symptoms.

  18. Quantifying the effects of disorder on switching of perpendicular spin ice arrays

    NASA Astrophysics Data System (ADS)

    Kempinger, Susan; Fraleigh, Robert; Lammert, Paul; Crespi, Vincent; Samarth, Nitin; Zhang, Sheng; Schiffer, Peter

    There is much contemporary interest in probing custom designed, frustrated systems such as artificial spin ice. To that end, we study arrays of lithographically patterned, single-domain Pt/Co multilayer islands. Due to the perpendicular anisotropy of these materials, we are able to use diffraction-limited magneto-optical Kerr effect microscopy to access the magnetic state in situ with an applied field. As we tune the interaction strength by adjusting the lattice spacing, we observe the switching field distribution broadening with increasing dipolar interactions. Using a simple mathematical analysis we extract the intrinsic disorder (the disorder that would be present without interactions) from these switching field distributions. We also characterize the intrinsic disorder by systematically removing neighbor effects from the switching field distribution. Understanding this disorder contribution as well as the interaction strength allows us to more accurately characterize the moment correlation. This project was funded by the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Grant No. DE- SC0010778

  19. Interplay between topology and disorder in a two-dimensional semi-Dirac material

    NASA Astrophysics Data System (ADS)

    Sriluckshmy, P. V.; Saha, Kush; Moessner, Roderich

    2018-01-01

    We investigate the role of disorder in a two-dimensional semi-Dirac material characterized by a linear dispersion in one direction and a parabolic dispersion in the orthogonal direction. Using the self-consistent Born approximation, we show that disorder can drive a topological Lifshitz transition from an insulator to a semimetal, as it generates a momentum-independent off-diagonal contribution to the self-energy. Breaking time-reversal symmetry enriches the topological phase diagram with three distinct regimes—single-node trivial, two-node trivial, and two-node Chern. We find that disorder can drive topological transitions from both the single- and two-node trivial to the two-node Chern regime. We further analyze these transitions in an appropriate tight-binding Hamiltonian of an anisotropic hexagonal lattice by calculating the real-space Chern number. Additionally, we compute the disorder-averaged entanglement entropy which signals both the topological Lifshitz and Chern transition as a function of the anisotropy of the hexagonal lattice. Finally, we discuss experimental aspects of our results.

  20. [Beyond depression: assessing personality disorders, alexithymia and socio-emotional alienation in patients with HIV infection].

    PubMed

    Masiello, Addolorata; De Guglielmo, Carmen; Giglio, Sergio; Acone, Nicola

    2014-09-01

    HIV infection is commonly associated with emotional and cognitive disorders that recognize both causes of an organic nature (related to the virus itself) and non-organic factors (emotional stress resulting from HIV diagnosis, social stigma and continued risk behaviour such as alcohol or drug abuse). Most of the literature has focused attention on depressive disorder, the most common mental disorder in the HIV population. In our analysis we evaluated the presence of personality disorders and alexithymia in a group of patients seropositive for HIV through appropriate psychological tests. Our data revealed a close relationship between socio-emotional alienation, distorted body perception and the difficulty in relating with each other, which is perceived as threatening and judgmental; this concept takes us back to the social stigma that modifies the emotional communication of HIV patients. The illness is experienced as an outsider that modifies the body, imprisons the emotionalism and cannot be controlled. Such personality alterations stop the emotional communication, thereby developing alexithymia.

  1. Neighborhood Disorder, Perceived Social Cohesion, and Social Participation Among Older Americans.

    PubMed

    Latham, Kenzie; Clarke, Philippa J

    2016-08-01

    This research explores whether physical neighborhood disorder or perceived social cohesion is associated with participation in social activities among older Americans (age 65+). Using the first wave of the National Health & Aging Trends Study (NHATS; N = 6,383), a series of logistic regression models were created to assess the odds of participation. Low social cohesion was associated with decreased odds of visiting friends and family (odds ratio [OR] = 0.65; 95% confidence interval [CI] = [0.52, 0.82]) and participating in organizations (OR = 0.68; 95% CI = [0.53, 0.88]). Presence of neighborhood disorder was associated with decreased odds of visiting friends and family (OR = 0.62; 95% CI = [0.47, 0.82]), participating in organizations (OR = 0.66; 95% CI = [0.48, 0.89]), and going out for enjoyment (OR = 0.68; 95% CI = [0.53, 0.86]). Physical capacity and activity value moderated the relationship between neighborhood disorder/cohesion and attending religious services. Improving neighborhood disorder and social cohesion may increase social participation among older adults.

  2. Recent progress of high performance polymer OLED and OPV materials for organic printed electronics.

    PubMed

    Sekine, Chizu; Tsubata, Yoshiaki; Yamada, Takeshi; Kitano, Makoto; Doi, Shuji

    2014-06-01

    The development of organic printed electronics has been expanding to a variety of applications and is expected to bring innovations to our future life. Along with this trend, high performance organic materials with cost-efficient fabrication processes and specific features such as thin, light weight, bendable, and low power consumption are required. A variety of organic materials have been investigated in the development of this field. The basic guidelines for material design and the recent progress of polymer-based organic light-emitting diodes (OLEDs) and organic photovoltaic cells (OPVs) are reported.

  3. Recent progress of high performance polymer OLED and OPV materials for organic printed electronics

    PubMed Central

    Sekine, Chizu; Tsubata, Yoshiaki; Yamada, Takeshi; Kitano, Makoto; Doi, Shuji

    2014-01-01

    The development of organic printed electronics has been expanding to a variety of applications and is expected to bring innovations to our future life. Along with this trend, high performance organic materials with cost-efficient fabrication processes and specific features such as thin, light weight, bendable, and low power consumption are required. A variety of organic materials have been investigated in the development of this field. The basic guidelines for material design and the recent progress of polymer-based organic light-emitting diodes (OLEDs) and organic photovoltaic cells (OPVs) are reported. PMID:27877671

  4. Recent progress of high performance polymer OLED and OPV materials for organic printed electronics

    NASA Astrophysics Data System (ADS)

    Sekine, Chizu; Tsubata, Yoshiaki; Yamada, Takeshi; Kitano, Makoto; Doi, Shuji

    2014-06-01

    The development of organic printed electronics has been expanding to a variety of applications and is expected to bring innovations to our future life. Along with this trend, high performance organic materials with cost-efficient fabrication processes and specific features such as thin, light weight, bendable, and low power consumption are required. A variety of organic materials have been investigated in the development of this field. The basic guidelines for material design and the recent progress of polymer-based organic light-emitting diodes (OLEDs) and organic photovoltaic cells (OPVs) are reported.

  5. Organic thermoelectric materials for energy harvesting and temperature control

    NASA Astrophysics Data System (ADS)

    Russ, Boris; Glaudell, Anne; Urban, Jeffrey J.; Chabinyc, Michael L.; Segalman, Rachel A.

    2016-10-01

    Conjugated polymers and related processing techniques have been developed for organic electronic devices ranging from lightweight photovoltaics to flexible displays. These breakthroughs have recently been used to create organic thermoelectric materials, which have potential for wearable heating and cooling devices, and near-room-temperature energy generation. So far, the best thermoelectric materials have been inorganic compounds (such as Bi2Te3) that have relatively low Earth abundance and are fabricated through highly complex vacuum processing routes. Molecular materials and hybrid organic-inorganic materials now demonstrate figures of merit approaching those of these inorganic materials, while also exhibiting unique transport behaviours that are suggestive of optimization pathways and device geometries that were not previously possible. In this Review, we discuss recent breakthroughs for organic materials with high thermoelectric figures of merit and indicate how these materials may be incorporated into new module designs that take advantage of their mechanical and thermoelectric properties.

  6. New 2D Carbon Nitride Organic Materials Synthesis with Huge-Application Prospects in CN Photocatalyst.

    PubMed

    Zhao, Gang; Cheng, Yanling; Wu, Yongzhong; Xu, Xijin; Hao, Xiaopeng

    2018-04-01

    In recent years, 2D materials are attracting increased attention because of their excellent properties. In this paper, new 2D carbon nitride (CN) organic materials are successfully prepared on the basis of the organic synthesis theory, and the thickness is about 1.5 nm. This new 2D CN organic material further strengthens the 2D materials family. Meanwhile, their synthetic mechanism is theoretically speculated. Then CN photocatalysts of several structures are obtained by roasting 2D CN organic materials. Through the photocatalytic hydrogen production experiments, the results exhibit that these kinds of photocatalysts have good photocatalytic effects compared to common g-C 3 N 4 . © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Development of in vivo gene therapy for hearing disorders: introduction of adeno-associated virus into the cochlea of the guinea pig.

    PubMed

    Lalwani, A K; Walsh, B J; Reilly, P G; Muzyczka, N; Mhatre, A N

    1996-07-01

    Gene therapy is currently being used to treat many disorders including cancer, viral infection and the degenerative and fatal diseases of the cardiovascular and the central nervous systems. However, the potential use of gene therapy for alleviation of hearing impairment has not been investigated despite the absence of effective therapy for most forms of inherited hearing disorders. The purpose of this study was to assess the feasibility of introducing genetic material directly into the peripheral auditory system using adeno-associated virus (AAV) as the transfection vector and Hartley guinea pigs as the animal model. Approximately 10(5) particles of AAV containing the bacterial beta-galactosidase (beta-gal) sequence with Ad 2 major late promoter were infused into the cochlea of the animal with the aid of an osmotic minipump. Animals were killed after 2 weeks. Two Hartley guinea pigs with intracochlear saline infusion and four unoperated (nonperfused) animals served as negative controls. Both, the infused and the contralateral, non-infused cochleae were harvested from each animal, decalcified, and embedded in paraffin. Sections, 8 microns in width, were cut from the embedded cochleae and assayed for beta-gal expression via immunohistochemistry. Animals perfused with AAV showed intense immunohistochemical reactivity in the spiral limbus, spiral ligament, spiral ganglion cells and the organ of Corti in the perfused cochlea and a much weaker staining but with similar pattern in the contralateral ear. Cochleae from saline-infused and unoperated animals were devoid of the DAB stain. This study demonstrates for the first time in vivo expression of a foreign gene within the mammalian inner ear resulting from its localized, AAV-mediated introduction. The ability to introduce and stably express exogenous genetic material in the peripheral auditory system will have both experimental and therapeutic benefits. These results lay the groundwork for future studies assessing the potential use of gene therapy for alleviation of hearing impairment.

  8. Mass Spectrometry-Based Metabolomic and Proteomic Strategies in Organic Acidemias

    PubMed Central

    Imperlini, Esther; Santorelli, Lucia; Orrù, Stefania; Scolamiero, Emanuela; Ruoppolo, Margherita

    2016-01-01

    Organic acidemias (OAs) are inherited metabolic disorders caused by deficiency of enzymatic activities in the catabolism of amino acids, carbohydrates, or lipids. These disorders result in the accumulation of mono-, di-, or tricarboxylic acids, generally referred to as organic acids. The OA outcomes can involve different organs and/or systems. Some OA disorders are easily managed if promptly diagnosed and treated, whereas, in others cases, such as propionate metabolism-related OAs (propionic acidemia, PA; methylmalonic acidemia, MMA), neither diet, vitamin therapy, nor liver transplantation appears to prevent multiorgan impairment. Here, we review the recent developments in dissecting molecular bases of OAs by using integration of mass spectrometry- (MS-) based metabolomic and proteomic strategies. MS-based techniques have facilitated the rapid and economical evaluation of a broad spectrum of metabolites in various body fluids, also collected in small samples, like dried blood spots. This approach has enabled the timely diagnosis of OAs, thereby facilitating early therapeutic intervention. Besides providing an overview of MS-based approaches most frequently used to study the molecular mechanisms underlying OA pathophysiology, we discuss the principal challenges of metabolomic and proteomic applications to OAs. PMID:27403441

  9. What Should You Know about Blood Disorders in Women?

    MedlinePlus

    ... Articles & Key Findings About Us Do you have heavy periods? This fact sheet talks about the symptoms ... Bleeding Disorders in Women Facts Signs and Symptoms Heavy Menstrual Bleeding Research Articles & Key Findings Free Materials ...

  10. Nonlinear optical properties of organic materials V; Proceedings of the 5th Meeting, San Diego, CA, July 22-24, 1992

    NASA Astrophysics Data System (ADS)

    Williams, David J.

    The present volume on nonlinear optical properties of organic materials discusses organic nonlinear optics, polymers for nonlinear optics, characterization of nonlinear properties, photorefractive and second-order materials, harmonic generation in organic materials, and devices and applications. Particular attention is given to organic semiconductor-doped polymer glasses as novel nonlinear media, heterocyclic nonlinear optical materials, loss measurements in electrooptic polymer waveguides, the phase-matched second-harmonic generation in planar waveguides, electrooptic measurements in poled polymers, transient effects in spatial light modulation by nonlinearity-absorbing molecules, the electrooptic effects in organic single crystals, surface acoustic wave propagation in an organic nonlinear optical crystal, nonlinear optics of astaxanthin thin films; and advanced high-temperature polymers for integrated optical waveguides. (No individual items are abstracted in this volume)

  11. The second law of thermodynamics is the first law of psychology: evolutionary developmental psychology and the theory of tandem, coordinated inheritances: comment on Lickliter and Honeycutt (2003).

    PubMed

    Tooby, John; Cosmides, Leda; Barrett, H Clark

    2003-11-01

    Organisms inherit a set of environmental regularities as well as genes, and these two inheritances repeatedly encounter each other across generations. This repetition drives natural selection to coordinate the interplay of stably replicated genes with stably persisting environmental regularities, so that this web of interactions produces the reliable development of a functionally organized design. Selection is the only known counterweight to the tendency of physical systems to lose rather than grow functional organization. This means that the individually unique and unpredictable factors in the web of developmental interactions are a disordering threat to normal development. Selection built anti-entropic mechanisms into organisms to orchestrate transactions with environments so that they have some chance of being organization-building and reproduction-enhancing rather than disordering.

  12. High efficiency organic photovoltaic cells employing hybridized mixed-planar heterojunctions

    DOEpatents

    Xue, Jiangeng; Uchida, Soichi; Rand, Barry P; Forrest, Stephen

    2013-11-19

    A device is provided, having a first electrode, a second electrode, and a photoactive region disposed between the first electrode and the second electrode. The photoactive region includes a first organic layer comprising a mixture of an organic acceptor material and an organic donor material, wherein the first organic layer has a thickness not greater than 0.8 characteristic charge transport lengths, and a second organic layer in direct contact with the first organic layer, wherein: the second organic layer comprises an unmixed layer of the organic acceptor material or the organic donor material of the first organic layer, and the second organic layer has a thickness not less than about 0.1 optical absorption lengths. Preferably, the first organic layer has a thickness not greater than 0.3 characteristic charge transport lengths. Preferably, the second organic layer has a thickness of not less than about 0.2 optical absorption lengths. Embodiments of the invention can be capable of power efficiencies of 2% or greater, and preferably 5% or greater.

  13. Microcephaly Information Page

    MedlinePlus

    ... You are here Home » Disorders » All Disorders Microcephaly Information Page Microcephaly Information Page What research is being done? The National ... the U.S. and Worldwide NINDS Clinical Trials Related Information Patient Organizations Birth Defect Research for Children, Inc. ...

  14. Unmet Needs of Families of School-Aged Children with an Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Brown, Hilary K.; Ouellette-Kuntz, Helene; Hunter, Duncan; Kelley, Elizabeth; Cobigo, Virginie

    2012-01-01

    Background: To aid decision making regarding the allocation of limited resources, information is needed on the perceived unmet needs of parents of school-aged children with an autism spectrum disorder. Materials and Methods: A cross-sectional survey was conducted of 101 Canadian families of school-aged children with an autism spectrum disorder.…

  15. Energy Content & Spectral Energy Representation of Wave Propagation in a Granular Chain

    NASA Astrophysics Data System (ADS)

    Shrivastava, Rohit; Luding, Stefan

    2017-04-01

    A mechanical wave is propagation of vibration with transfer of energy and momentum. Studying the energy as well as spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting) or non-destructive testing for the study of internal structure of solids. Wave propagation through granular materials is often accompanied by energy attenuation which is quantified by Quality factor and this parameter has often been used to characterize material properties, hence, determining the Quality factor (energy attenuation parameter) can also help in determining the properties of the material [3], studied experimentally in [2]. The study of Energy content (Kinetic, Potential and Total Energy) of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain can assist in understanding the energy attenuation due to disorder as a function of propagation distance. The spectral analysis of the energy signal can assist in understanding dispersion as well as attenuation due to scattering in different frequencies (scattering attenuation). The selection of one-dimensional granular chain also helps in studying only the P-wave attributes of the wave and removing the influence of shear or rotational waves. Granular chains with different mass distributions have been studied, by randomly selecting masses from normal, binary and uniform distributions and the standard deviation of the distribution is considered as the disorder parameter, higher standard deviation means higher disorder and lower standard deviation means lower disorder [1]. For obtaining macroscopic/continuum properties, ensemble averaging has been invoked. Instead of analyzing deformation-, velocity- or stress-signals, interpreting information from a Total Energy signal turned out to be much easier in comparison to displacement, velocity or acceleration signals of the wave, hence, indicating a better analysis method for wave propagation through granular materials. Increasing disorder decreases the Energy of higher frequency signals transmitted, but at the same time the energy of spatially localized high frequencies increases. Brian P. Lawney and Stefan Luding. Mass-disorder effects on the frequency filtering in one-dimensional discrete particle systems. AIP Conference Proceedings, 1542(1), 2013. Ibrahim Guven. Hydraulical and acoustical properties of porous sintered glass bead systems: experiments, theory and simulations (Doctoral dissertation). Rainer Tonn. Comparison of seven methods for the computation of Q. Physics of the Earth and Planetary Interiors, 55(3):259 - 268, 1989. Rohit Kumar Shrivastava and Stefan Luding.: Effect of Disorder on Bulk Sound Wave Speed : A Multiscale Spectral Analysis, Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2016-83, in review, 2017.

  16. Accession Medical Standards Analysis and Research Activity (AMSARA)

    DTIC Science & Technology

    2004-01-01

    young adults with psychiatric disorders 15. SUBJECT TERMS Accession, medical, standards, attrition, waiver, discharge, hospitalization, disability...86 Research to Develop a Screening Test for Detection of Psychiatric Disorders in Young Adults ...secondary to organic or functional mental disorders that interfere with work or school after age 12 or current use of medication to improve or maintain

  17. Psychiatric misdiagnoses in Dandy-Walker variant.

    PubMed

    Blaettner, C; Pfaffenberger, N M; Cartes-Zumelzu, F; Hofer, A

    2015-01-01

    Cases of intellectual impairment and aberrant behavior in patients with cerebellar diseases have been described since the early nineteenth century. Here, we report on a patient suffering from Dandy-Walker variant who presented with symptoms of obsessive compulsive disorder and delusional disorder. The current findings emphasize the potential relevance of focal cerebellar lesions as organic correlates of these disorders.

  18. The Examination of the Link between Pesticides in Food and Learning Disorders in Children.

    ERIC Educational Resources Information Center

    Raby, Sue Ellen

    The relationship between pesticides in food and the occurrence of attention deficit disorder (ADD) and attention deficit hyperactivity disorder (ADHD) in school age children is considered. Pesticides include chlorinated hydrocarbons and organic phosphates that are commonly present in fruits and vegetables, which are a large part of the diet of…

  19. Argentine adaptation of the Quality of Life Indicators guide for organizations that support people with autistic spectrum disorders.

    PubMed

    Cuesta Gómez, José L; Manzone, Luisa A

    2018-04-01

    This article describes the adaptation process of the Quality of Life Indicators guide for organizations that support people with autistic spectrum disorders which has taken place in Argentina (Cuesta, J. L., 2009) using the Delphi method, and with the participation of a group of autism-related experts from different fields and domestic institutions. The result is an instrument based on a quality-of-life model which is adjusted to the Argentine setting, helps planning and assessing centers and programs for people with autistic spectrum disorders, and responds to the increasing number of specific services which cover the needs of this population. Sociedad Argentina de Pediatría.

  20. Localization Transport in Granular and Nanoporous Carbon Systems.

    NASA Astrophysics Data System (ADS)

    Fung, Alex Weng Pui

    Porous carbon materials have long since been used in industry to make capacitors and adsorption agents because of their high specific surface area. Although their adsorption properties have been extensively studied, we have not seen the same vigor in the investigation of their physical properties, which are important not only for providing complementary characterization methods, but also for understanding the physics which underlies the manufacturing process and motivates intelligent design of these materials. The study of the new physics in these novel nanoporous materials also straddles the scientific forefronts of nanodimensional and disordered systems. In this thesis, we study the structural and electrical properties of two nanoporous carbons, namely activated carbon fibers and carbon aerogels. Specifically, we perform Raman scattering, x-ray diffraction, magnetic susceptibility, electrical transport and magnetotransport experiments. Results from other experiments reported in the literature or communicated to us by our collaborators, such as porosity and surface area measurements by adsorption methods, electron spin resonance, transmission electron microscopy, mechanical properties measurements and so on, are also frequently used in this thesis for additional characterization information. By correlating all the relevant results, we obtain the structure -property relationships in these nanoporous materials. This study shows that the transport properties of these porous materials can be used on one hand for sensitive characterization of complex materials, and on the other hand, for observing interesting and unusual physical phenomena. For example, as-prepared nanoporous carbon systems, exhibit in their low-temperature electrical conductivity a universal temperature dependence which is characteristic of a granular metallic system, despite their morphological differences. By studying further the magnetoresistance in these carbon materials, it is found that the variable-range hopping mechanism cannot be totally disregarded in the understanding of the low-temperature conduction process in some granular metals having a similar morphology. In the transport study of the heat-treated activated carbon fibers, the surprising observation of a negative magnetoresistance at room temperature has also provided some insight into the weak localization phenomenon in the percolation limit. In particular, the effects of anomalous diffusion in a percolating system is now included in the calculations of the weak-localization corrections to the conductivity and magnetoresistance, yielding a new temperature dependence of the dephasing distance. These localization phenomena in the nanoporous carbon structures studied here are mostly understandable in terms of the existing theories for disordered systems, but their detailed interpretations often indicate problems and shortcomings in some of these theories, at times because the physical properties of the nanoporous carbon materials studied here are unique among disordered materials. Hence, nanoporous carbons belong to a distinct class of disordered systems in their own rights. In the field of transport in disordered systems, porous media also seem to have been an oversight of the general research community, although theoretical percolation studies have often touched upon systems with similar morphologies. This thesis presents a study of the transport behavior in nanoporous carbons over the full spectrum of disorder, controlled by heat treatment, starting from the strong localization regime, then crossing the metal-insulator transition, and finally to the weak localization limit. In each regime of disorder, the existing theories are either adapted, and when necessary, extended to explain the observed transport behavior in these fascinating materials. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617 -253-1690.).

  1. New organic-inorganic hybrid molecular systems and highly organized materials in catalysis

    NASA Astrophysics Data System (ADS)

    Kustov, L. M.

    2015-11-01

    Definitions of hybrid materials are suggested, and applications of these materials are considered. Particular attention is focused on the application of hybrid materials in hydrogenation, partial oxidation, plant biomass conversion, and natural gas reforming, primarily on the use of core-shell nanoparticles and decorated metal nanoparticles in these reactions. Application prospects of various hybrid materials, particularly those of metal-organic frameworks, are discussed.

  2. Thio-,amine-,nitro-,and macrocyclic containing organic aerogels & xerogels

    DOEpatents

    Fox, Glenn A.; Tillotson, Thomas M.

    2005-08-02

    An organic aerogel or xerogel formed by a sol-gel reaction using starting materials that exhibit similar reactivity to the most commonly used resorcinol starting material. The new starting materials, including thio-, amine- and nitro-containing molecules and functionalized macrocyclic molecules will produce organic xerogels and aerogels that have improved performance in the areas of detection and sensor technology, as well as water stream remediation. Also, further functionalization of these new organic aerogels or xerogels will yield material that can be extracted with greater facility than current organic aerogels.

  3. The impact of systematic occupational health and safety management for occupational disorders and long-term work attendance.

    PubMed

    Dellve, Lotta; Skagert, Katrin; Eklöf, Mats

    2008-09-01

    Despite several years of conducting formalized systematic occupational health and safety management (SOHSM), as required by law in Sweden and most other industrialized countries, there is still little evidence on how SOHSM should be approached to have an impact on employees' health. The aim of this study was to investigate the importance of SOHSM, considering structured routines and participation processes, for the incidence of occupational disorders and the prevalence of long-term work attendance among home care workers (HCWs). Municipal human service organizations were compared concerning (a) their structured routines and participation processes for SOHSM and (b) employee health, i.e. the municipal five-year incidence of occupational disorders and prevalence of work attendance among HCWs. National register-based data from the whole population of HCWs (n=154 773) were linked to register-data of occupational disorders and prevalence of long-term work attendance. The top managers and safety representatives in selected high- and low-incidence organizations (n=60) answered a questionnaire about structure and participation process of SOHSM. The results showed that prevalence of long-term work attendance was higher where structure and routines for SOHSM (policy, goals and plans for action) were well organized. Highly structured SOHSM and human resource management were also related to high organizational incidence of reported occupational disorders. Allocated budget and routines related to HCWs' influence in decisions concerning performance of care were also related to long-term work attendance. The participation processes had a weak effect on occupational disorders and work attendance among HCWs. Reporting occupational disorders may be a functional tool to stimulate the development of effective SOHSM, to improve the work environment and sustainable work ability.

  4. Differences in psychopathology and behavioral characteristics of patients affected by conversion motor disorder and organic dystonia.

    PubMed

    Pastore, Adriana; Pierri, Grazia; Fabio, Giada; Ferramosca, Silvia; Gigante, Angelo; Superbo, Maria; Pellicciari, Roberta; Margari, Francesco

    2018-01-01

    Typically, the diagnosis of conversion motor disorder (CMD) is achieved by the exclusion of a wide range of organic illnesses rather than by applying positive criteria. New diagnostic criteria are highly needed in this scenario. The main aim of this study was to explore the use of behavioral features as an inclusion criterion for CMD, taking into account the relationship of the patients with physicians, and comparing the results with those from patients affected by organic dystonia (OD). Patients from the outpatient Movement Disorder Service were assigned to either the CMD or the OD group based on Fahn and Williams criteria. Differences in sociodemographics, disease history, psychopathology, and degree of satisfaction about care received were assessed. Patient-neurologist agreement about the etiological nature of the disorder was also assessed using the k -statistic. A logistic regression analysis estimated the discordance status as a predictor to case/control status. In this study, 31 CMD and 31 OD patients were included. CMD patients showed a longer illness life span, involvement of more body regions, higher comorbidity with anxiety, depression, and borderline personality disorder, as well as higher negative opinions about physicians' delivering of proper care. Contrary to our expectations, CMD disagreement with neurologists about the etiological nature of the disorder was not statistically significant. Additional analysis showed that having at least one personality disorder was statistically associated with the discordance status. This study suggests that CMD patients show higher conflicting behavior toward physicians. Contrary to our expectations, they show awareness of their psychological needs, suggesting a possible lack of recognition of psychological distress in the neurological setting.

  5. Differences in psychopathology and behavioral characteristics of patients affected by conversion motor disorder and organic dystonia

    PubMed Central

    Pastore, Adriana; Pierri, Grazia; Fabio, Giada; Ferramosca, Silvia; Gigante, Angelo; Superbo, Maria; Pellicciari, Roberta; Margari, Francesco

    2018-01-01

    Purpose Typically, the diagnosis of conversion motor disorder (CMD) is achieved by the exclusion of a wide range of organic illnesses rather than by applying positive criteria. New diagnostic criteria are highly needed in this scenario. The main aim of this study was to explore the use of behavioral features as an inclusion criterion for CMD, taking into account the relationship of the patients with physicians, and comparing the results with those from patients affected by organic dystonia (OD). Patients and methods Patients from the outpatient Movement Disorder Service were assigned to either the CMD or the OD group based on Fahn and Williams criteria. Differences in sociodemographics, disease history, psychopathology, and degree of satisfaction about care received were assessed. Patient–neurologist agreement about the etiological nature of the disorder was also assessed using the k-statistic. A logistic regression analysis estimated the discordance status as a predictor to case/control status. Results In this study, 31 CMD and 31 OD patients were included. CMD patients showed a longer illness life span, involvement of more body regions, higher comorbidity with anxiety, depression, and borderline personality disorder, as well as higher negative opinions about physicians’ delivering of proper care. Contrary to our expectations, CMD disagreement with neurologists about the etiological nature of the disorder was not statistically significant. Additional analysis showed that having at least one personality disorder was statistically associated with the discordance status. Conclusion This study suggests that CMD patients show higher conflicting behavior toward physicians. Contrary to our expectations, they show awareness of their psychological needs, suggesting a possible lack of recognition of psychological distress in the neurological setting. PMID:29849460

  6. 2D Organic Materials for Optoelectronic Applications.

    PubMed

    Yang, Fangxu; Cheng, Shanshan; Zhang, Xiaotao; Ren, Xiaochen; Li, Rongjin; Dong, Huanli; Hu, Wenping

    2018-01-01

    The remarkable merits of 2D materials with atomically thin structures and optoelectronic attributes have inspired great interest in integrating 2D materials into electronics and optoelectronics. Moreover, as an emerging field in the 2D-materials family, assembly of organic nanostructures into 2D forms offers the advantages of molecular diversity, intrinsic flexibility, ease of processing, light weight, and so on, providing an exciting prospect for optoelectronic applications. Herein, the applications of organic 2D materials for optoelectronic devices are a main focus. Material examples include 2D, organic, crystalline, small molecules, polymers, self-assembly monolayers, and covalent organic frameworks. The protocols for 2D-organic-crystal-fabrication and -patterning techniques are briefly discussed, then applications in optoelectronic devices are introduced in detail. Overall, an introduction to what is known and suggestions for the potential of many exciting developments are presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Methane production by attached film

    DOEpatents

    Jewell, William J.

    1981-01-01

    A method for purifying wastewater of biodegradable organics by converting the organics to methane and carbon dioxide gases is disclosed, characterized by the use of an anaerobic attached film expanded bed reactor for the reaction process. Dilute organic waste material is initially seeded with a heterogeneous anaerobic bacteria population including a methane-producing bacteria. The seeded organic waste material is introduced into the bottom of the expanded bed reactor which includes a particulate support media coated with a polysaccharide film. A low-velocity upward flow of the organic waste material is established through the bed during which the attached bacterial film reacts with the organic material to produce methane and carbon dioxide gases, purified water, and a small amount of residual effluent material. The residual effluent material is filtered by the film as it flows upwardly through the reactor bed. In a preferred embodiment, partially treated effluent material is recycled from the top of the bed to the bottom of the bed for further treatment. The methane and carbon dioxide gases are then separated from the residual effluent material and purified water.

  8. Laterality and Lateralization in Autism Spectrum Disorder, Using a Standardized Neuro-Psychomotor Assessment.

    PubMed

    Paquet, A; Golse, B; Girard, M; Olliac, B; Vaivre-Douret, L

    2017-01-01

    A detailed assessment of laterality in children with Autism Spectrum Disorder (ASD) was realized, including handedness and other measures (muscle tone, manual performance, dominant eye), using a standardized battery for the developmental assessment of neuro-psychomotor functions. The results of the laterality tests relating to cerebral hemisphere organization (spontaneous gestural laterality and tonic laterality) were different in ASD children, and indicate that the cerebral organization could be disrupted. These assessments, added to the observations of usual laterality most often reported in the literature, provide better understanding of the developmental organization from the pathophysiological point of view in children with ASD.

  9. Organic/hybrid thin films deposited by matrix-assisted pulsed laser evaporation (MAPLE)

    NASA Astrophysics Data System (ADS)

    Stiff-Roberts, Adrienne D.; Ge, Wangyao

    2017-12-01

    Some of the most exciting materials research in the 21st century attempts to resolve the challenge of simulating, synthesizing, and characterizing new materials with unique properties designed from first principles. Achievements in such development for organic and organic-inorganic hybrid materials make them important options for electronic and/or photonic devices because they can impart multi-functionality, flexibility, transparency, and sustainability to emerging systems, such as wearable electronics. Functional organic materials include small molecules, oligomers, and polymers, while hybrid materials include inorganic nanomaterials (such as zero-dimensional quantum dots, one-dimensional carbon nanotubes, or two-dimensional nanosheets) combined with organic matrices. A critically important step to implementing new electronic and photonic devices using such materials is the processing of thin films. While solution-based processing is the most common laboratory technique for organic and hybrid materials, vacuum-based deposition has been critical to the commercialization of organic light emitting diodes based on small molecules, for example. Therefore, it is desirable to explore vacuum-based deposition of organic and hybrid materials that include larger macromolecules, such as polymers. This review article motivates the need for physical vapor deposition of polymeric and hybrid thin films using matrix-assisted pulsed laser evaporation (MAPLE), which is a type of pulsed laser deposition. This review describes the development of variations in the MAPLE technique, discusses the current understanding of laser-target interactions and growth mechanisms for different MAPLE variations, surveys demonstrations of MAPLE-deposited organic and hybrid materials for electronic and photonic devices, and provides a future outlook for the technique.

  10. Biofoam

    DOEpatents

    Morrison, Robert L.

    1995-01-01

    Biofoam is a rigid, opaque microcellular organic foam made from organic materials derived from natural products and biological organisms. Typical organic materials are agar, agarose, gelatin, algin, alginates, gellan gum, and microcrystalline cellulose. The organic material is dissolved in a polar solvent, typically water, and the solution can be gelled immediately. The gel is frozen and freeze-dried to form the biofoam. Alternatively, a nonpolar solvent is added to the solution and emulsified. The resulting emulsion is then gelled, frozen, and freeze-dried. A variety of crystalline, fibrous, or metallic additives may be added to produce lightweight composite materials with enhanced strength and insulating properties. The amount of dilution of the organic material in the solvent(s) determines the density of the resulting biofoams, which ranges from about 1.0 mg/cm.sup.3 to about 500 mg/cm.sup.3.

  11. Disordered kagomé spin ice

    NASA Astrophysics Data System (ADS)

    Greenberg, Noah; Kunz, Andrew

    2018-05-01

    Artificial spin ice is made from a large array of patterned magnetic nanoislands designed to mimic naturally occurring spin ice materials. The geometrical arrangement of the kagomé lattice guarantees a frustrated arrangement of the islands' magnetic moments at each vertex where the three magnetic nanoislands meet. This frustration leads to a highly degenerate ground state which gives rise to a finite (residual) entropy at zero temperature. In this work we use the Monte Carlo simulation to explore the effects of disorder in kagomé spin ice. Disorder is introduced to the system by randomly removing a known percentage of magnetic islands from the lattice. The behavior of the spin ice changes as the disorder increases; evident by changes to the shape and locations of the peaks in heat capacity and the residual entropy. The results are consistent with observations made in diluted physical spin ice materials.

  12. Quasi-crystalline and disordered photonic structures fabricated using direct laser writing

    NASA Astrophysics Data System (ADS)

    Sinelnik, Artem D.; Pinegin, Konstantin V.; Bulashevich, Grigorii A.; Rybin, Mikhail V.; Limonov, Mikhail F.; Samusev, Kirill B.

    2017-09-01

    Direct laser writing is a rapid prototyping technology that has been utilized for the fabrication of micro- and nano-scale materials that have a perfect structure in most of the cases. In this study we exploit the direct laser writing to create several classes of non-periodic materials, such as quasi-crystalline lattices and three-dimensional (3D) objects with an orientation disorder in structural elements. Among quasi-crystalline lattices we consider Penrose tiling and Lévy-type photonic glasses. Images of the fabricated structures are obtained with a scanning electron microscope. In experiment we study the optical diffraction from 3D woodpile photonic structures with orientation disorder and analyze diffraction patters observed on a flat screen positioned behind the sample. With increasing of the disorder degree, we find an impressive transformation of the diffraction patterns from perfect Laue picture to a speckle pattern.

  13. Visualization of exciton transport in ordered and disordered molecular solids.

    PubMed

    Akselrod, Gleb M; Deotare, Parag B; Thompson, Nicholas J; Lee, Jiye; Tisdale, William A; Baldo, Marc A; Menon, Vinod M; Bulović, Vladimir

    2014-04-16

    Transport of nanoscale energy in the form of excitons is at the core of photosynthesis and the operation of a wide range of nanostructured optoelectronic devices such as solar cells, light-emitting diodes and excitonic transistors. Of particular importance is the relationship between exciton transport and nanoscale disorder, the defining characteristic of molecular and nanostructured materials. Here we report a spatial, temporal and spectral visualization of exciton transport in molecular crystals and disordered thin films. Using tetracene as an archetype molecular crystal, the imaging reveals that exciton transport occurs by random walk diffusion, with a transition to subdiffusion as excitons become trapped. By controlling the morphology of the thin film, we show that this transition to subdiffusive transport occurs at earlier times as disorder is increased. Our findings demonstrate that the mechanism of exciton transport depends strongly on the nanoscale morphology, which has wide implications for the design of excitonic materials and devices.

  14. The differential diagnosis of pseudobulbar affect (PBA). Distinguishing PBA among disorders of mood and affect. Proceedings of a roundtable meeting.

    PubMed

    Arciniegas, David B; Lauterbach, Edward C; Anderson, Karen E; Chow, Tiffany W; Flashman, Laura A; Hurley, Robin A; Kaufer, Daniel I; McAllister, Thomas W; Reeve, Alison; Schiffer, Randolph B; Silver, Jonathan M

    2005-05-01

    This monograph summarizes the proceedings of a roundtable meeting convened to discuss pseudobulbar affect (PBA). Two didactic lectures were presented followed by a moderated discussion among 11 participants. Post-meeting manuscript development synthesized didactic- and discussion-based content ad incorporated additional material from the neuroscience literature. A conceptual framework with which to distinguish between disorders of mood and affect is presented first, and disorders of affect regulation are then reviewed briefly. A detailed description of the most common of these disorders, PBA, is the focus of the remainder of the monograph. The prevalence, putative neuranatomic and neurochemical bases of PBA are reviewed, and current and emerging methods of evaluation and treatment of persons with PBA are discussed. The material presented in this monograph will help clinicians better recognize, diagnose, and treat PBA, and will form a foundation for understanding and interpreting future studies of this condition.

  15. Mental illness in U.S. Presidents between 1776 and 1974: a review of biographical sources.

    PubMed

    Davidson, Jonathan R T; Connor, Kathryn M; Swartz, Marvin

    2006-01-01

    Numerous historical accounts suggest the presence of mental illness in US Presidents, but no systematic review has been undertaken for all holders of this office. We reviewed biographical sources regarding mental illness in 37 US Presidents from 1776 to 1974. Material was extracted by one of the authors and given to experienced psychiatrists for independent review of the correspondence of behaviors, symptoms, and medical information in source material to DSM-IV criteria for Axis I disorders. Levels of confidence were given for each diagnosis. Eighteen (49%) Presidents met criteria suggesting psychiatric disorder: depression (24%), anxiety (8%), bipolar disorder (8%), and alcohol abuse/dependence (8%) were the most common. In 10 instances (27%), a disorder was evident during presidential office, which in most cases probably impaired job performance. Mental illness in heads of state is a topic deserving further attention. Methodological limitations of using biography to determine psychopathology are discussed.

  16. Sleep Apnea Information Page

    MedlinePlus

    ... are here Home » Disorders » All Disorders Sleep Apnea Information Page Sleep Apnea Information Page What research is being done? The National ... the U.S. and Worldwide NINDS Clinical Trials Related Information Patient Organizations American Sleep Apnea Association American Sleep ...

  17. The Cell's Sophisticated Army to Defend Against Assaults on DNAThe Cell's Sophisticated Army to Defend Against Assaults on DNA | Center for Cancer Research

    Cancer.gov

    The maintenance of genome integrity and function is essen-tial for the survival of cells and organisms. Any damage to our genetic material must be immediately sensed and repaired to preserve a cell’s func-tional integrity. Cells are constantly faced with the challenge of protecting their DNA from assaults by damaging chemicals and ultraviolet light. DNA damage that escapes repair can lead to a variety of genetic disorders and diseases, particularly cancer. To avoid this catastrophe, the cell employs an army of DNA repair factors that “rush to the scene” and initiate a cascade of events to repair the damage. Exactly how different repair factors sense DNA damage and orchestrate their concert-ed response is not well understood.

  18. Disordered 3 D Multi-layer Graphene Anode Material from CO2 for Sodium-Ion Batteries.

    PubMed

    Smith, Kassiopeia; Parrish, Riley; Wei, Wei; Liu, Yuzi; Li, Tao; Hu, Yun Hang; Xiong, Hui

    2016-06-22

    We report the application of disordered 3 D multi-layer graphene, synthesized directly from CO2 gas through a reaction with Li at 550 °C, as an anode for Na-ion batteries (SIBs) toward a sustainable and greener future. The material exhibited a reversible capacity of ∼190 mA h g(-1) with a Coulombic efficiency of 98.5 % at a current density of 15 mA g(-1) . The discharge capacity at higher potentials (>0.2 V vs. Na/Na(+) ) is ascribed to Na-ion adsorption at defect sites, whereas the capacity at low potentials (<0.2 V) is ascribed to intercalation between graphene sheets through electrochemical characterization, Raman spectroscopy, and small-angle X-ray scattering experiments. The disordered multi-layer graphene electrode demonstrated a great rate capability and cyclability. This novel approach to synthesize disordered 3 D multi-layer graphene from CO2 gas makes it attractive not only as an anode material for SIBs but also to mitigate CO2 emission. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Factors influencing the utilization of empirically supported treatments for eating disorders.

    PubMed

    Simmons, Angela M; Milnes, Suzanne M; Anderson, Drew A

    2008-01-01

    This study expands upon previous research investigating the use of empirically supported treatments (ESTs) for eating disorders by surveying a large sample of clinicians who specialize in treating eating disorders. Surveys developed for this study were sent to 698 members of a large, professional, eating disorder organization who were listed as treatment providers on the organization's website. Despite clinicians reporting frequently using CBT techniques, most identified something other than CBT or IPT as their primary approach to treatment. In contrast with previous research, the majority had received prior training in the use of manual-based treatments. However, consistent with previous investigations, most denied regular use of such treatments. Although manual-based CBT and IPT are referred to as "treatments of choice," professional clinicians in the field are not consistently using them. Responses suggest several barriers to the utilization of ESTs in practice.

  20. Hierarchical Diagnosis of Vocal Fold Disorders

    NASA Astrophysics Data System (ADS)

    Nikkhah-Bahrami, Mansour; Ahmadi-Noubari, Hossein; Seyed Aghazadeh, Babak; Khadivi Heris, Hossein

    This paper explores the use of hierarchical structure for diagnosis of vocal fold disorders. The hierarchical structure is initially used to train different second-level classifiers. At the first level normal and pathological signals have been distinguished. Next, pathological signals have been classified into neurogenic and organic vocal fold disorders. At the final level, vocal fold nodules have been distinguished from polyps in organic disorders category. For feature selection at each level of hierarchy, the reconstructed signal at each wavelet packet decomposition sub-band in 5 levels of decomposition with mother wavelet of (db10) is used to extract the nonlinear features of self-similarity and approximate entropy. Also, wavelet packet coefficients are used to measure energy and Shannon entropy features at different spectral sub-bands. Davies-Bouldin criterion has been employed to find the most discriminant features. Finally, support vector machines have been adopted as classifiers at each level of hierarchy resulting in the diagnosis accuracy of 92%.

  1. Responding to the needs of the population suffering from severe mental disorders by a multifaceted territorial approach: Reorganization of the French mental health system.

    PubMed

    Franck, Nicolas; Laforcade, Michel

    2018-02-25

    Organizing the management of severe mental disorders at the national level is a major challenge given the complexity of the disorders and the diversity of responses needed to address all the needs. A founding principle for the creation or development of measures consists in structuring care programs around functional and personal recovery, and not only clinical recovery. The fact that the French psychiatric field is currently being modernized by its missions being redefined within territorial mental health projects gives the opportunity to generalize these principles. This article illustrates how the creation of a hierarchical organization of psychosocial rehabilitation can (a) give more coherence to the part of the French mental health system, (b) improve the quality of care, and (c) promote social inclusion and recovery of people with severe mental disorders. © 2018 Wiley Periodicals, Inc.

  2. Endocrine and metabolic disorders associated with human immune deficiency virus infection.

    PubMed

    Unachukwu, C N; Uchenna, D I; Young, E E

    2009-01-01

    Many reports have described endocrine and metabolic disorders in the human immunodeficiency virus (HIV) infection. This article reviewed various reports in the literature in order to increase the awareness and thus the need for early intervention when necessary. Data were obtained from MEDLINE, Google search and otherjournals on 'HIV, Endocrinopathies/Metabolic Disorders' from 1985 till 2007. Studies related to HIV associated endocrinopathies and metabolic disorders in the last two decades were reviewed. Information on epidemiology, pathogenesis, diagnosis and treatment of the target organ endocrinopathies and metabolic disorders in HIV/AIDS were extracted from relevant literature. Endocrine and metabolic disturbances occur in the course of HIV infection. Pathogenesis includes direct infection of endocrine glands by HIV or opportunistic organisms, infiltration by neoplasms and side effects of drugs. Adrenal insufficiency is the commonest HIV endocrinopathy with cytomegalovirus adrenalitis occurring in 40-88% of cases. Thyroid dysfunction may occur as euthyroid sick syndrome or sub-clinical hypothyroidism. Hypogonadotrophic dysfunction accounts for 75% of HIV-associated hypogonadism, with prolonged amenorrhoea being three times more likely in the women. Pancreatic dysfunction may result in hypoglycaemia or diabetes mellitus (DM). Highly active antiretroviral therapy (HAART) especially protease inhibitors has been noted to result in insulin resistance and lipodystrophy. Virtually every endocrine organ is involved in the course of HIV infection. Detailed endocrinological and metabolic evaluation and appropriate treatment is necessary in the optimal management of patients with HIV infection in our environment.

  3. Organic photovoltaic devices comprising solution-processed substituted metal-phthalocyanines and exhibiting near-IR photo-sensitivity

    DOEpatents

    McGrath, Dominic V.; Mayukh, Mayank; Placencia, Diogenes; Armstrong, Neal R.

    2016-11-29

    Organic photovoltaic (OPV) devices are disclosed. An exemplary device has first and second electrodes and an organic, photovoltaically active zone located between the first and second electrodes. The photovoltaically active zone includes an organic electron-donor material and an organic electron-acceptor material. The electron-donor material includes one or more trivalent- or tetravalent-metal phthalocyanines with alkylchalcogenide ring substituents, and is soluble in at least one organic solvent. This solubility facilitates liquid-processability of the donor material, including formation of thin-films, on an unlimited scale to form planar and bulk heterojunctions in organic OPVs. These donor materials are photovoltaically active in both visible and near-IR wavelengths of light, enabling more of the solar spectrum, for example, to be applied to producing electricity. Also disclosed are methods for producing the metalated phthalocyanines and actual devices.

  4. From 'Big 4' to 'Big 5': a review and epidemiological study on the relationship between psychiatric disorders and World Health Organization preventable diseases.

    PubMed

    Chartier, Gabrielle; Cawthorpe, David

    2016-09-01

    This study outlines the rationale and provides evidence in support of including psychiatric disorders in the World Health Organization's classification of preventable diseases. The methods used represent a novel approach to describe clinical pathways, highlighting the importance of considering the full range of comorbid disorders within an integrated population-based data repository. Review of literature focused on comorbidity in relation to the four preventable diseases identified by the World Health Organization. This revealed that only 29 publications over the last 5 years focus on populations and tend only to consider one or two comorbid disorders simultaneously in regard to any main preventable disease class. This article draws attention to the importance of physical and psychiatric comorbidity and illustrates the complexity related to describing clinical pathways in terms of understanding the etiological and prognostic clinical profile for patients. Developing a consistent and standardized approach to describe these features of disease has the potential to dramatically shift the format of both clinical practice and medical education when taking into account the complex relationships between and among diseases, such as psychiatric and physical disease, that, hitherto, have been largely unrelated in research.

  5. Quantitative Probes of Electron-Phonon Coupling in an Organic Charge-Transfer Material

    NASA Astrophysics Data System (ADS)

    Rury, Aaron; Sorenson, Shayne; Driscoll, Eric; Dawlaty, Jahan

    While organic charge transfer (CT) materials may provide alternatives to inorganic materials in electronics and photonics applications, properties central to applications remain understudied in these organic materials. Specifically, electron-phonon coupling plays a pivotal role in electronic applications yet this coupling in CT materials remains difficult to directly characterize. To better understand the suitability of organic CT materials for electronic applications, we have devised an experimental technique that can directly assess electron-phonon coupling in a model organic CT material. Upon non-resonant interaction with an ultrafast laser pulse, we show that coherent excitation of Raman-active lattice vibrations of quinhydrone, a 1:1 co-crystal of the hydroquinone and p-benzoquinone, modulates the energies of electronic transitions probed by a white light pulse. Using a well-established theoretical framework of vibrational quantum beat spectra across the probe bandwidth, we quantitatively extract the parameters describing these electronic transitions to characterize electron-phonon coupling in this material. In conjunction with temperature-dependent resonance Raman measurements, we assess the hypothesis that several sharp transitions in the near-IR correspond to previously unknown excitonic states of this material. These results and their interpretation set the foundation for further elucidation of the one of the most important parameters in the application of organic charge-transfer materials to electronics and photonics.

  6. Eating disorder emergencies: understanding the medical complexities of the hospitalized eating disordered patient.

    PubMed

    Cartwright, Martina M

    2004-12-01

    Eating disorders are maladaptive eating behaviors that typically develop in adolescence and early adulthood. Psychiatric maladies and comorbid conditions, especially insulin-dependent diabetes mellitus, frequently co-exist with eating disorders. Serious medical complications affecting all organs and tissues can develop and result in numerous emergent hospitalizations. This article reviews the pathophysiologies of anorexia nervosa, bulimia nervosa, and orthorexia nervosa and discusses the complexities associated with the treatment of medical complications seen in these patients.

  7. David Adler Lectureship Award: n-point Correlation Functions in Heterogeneous Materials.

    NASA Astrophysics Data System (ADS)

    Torquato, Salvatore

    2009-03-01

    The determination of the bulk transport, electromagnetic, mechanical, and optical properties of heterogeneous materials has a long and venerable history, attracting the attention of some of the luminaries of science, including Maxwell, Lord Rayleigh, and Einstein. The bulk properties can be shown to depend rigorously upon infinite sets of various n-point correlation functions. Many different types of correlation functions arise, depending on the physics of the problem. A unified approach to characterize the microstructure and bulk properties of a large class of disordered materials is developed [S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer-Verlag, New York, 2002)]. This is accomplished via a canonical n-point function Hn from which one can derive exact analytical expressions for any microstructural function of interest. This microstructural information can then be used to estimate accurately the bulk properties of the material. Unlike homogeneous materials, seemingly different bulk properties (e.g., transport and mechanical properties) of a heterogeneous material can be linked to one another because of the common microstructure that they share. Such cross-property relations can be used to estimate one property given a measurement of another. A recently identified decorrelation principle, roughly speaking, refers to the phenomenon that unconstrained correlations that exist in low-dimensional disordered materials vanish as the space dimension becomes large. Among other results, this implies that in sufficiently high dimensions the densest spheres packings may be disordered (rather than ordered) [S. Torquato and F. H. Stillinger, ``New Conjectural Lower Bounds on the Optimal Density of Sphere Packings," Experimental Mathematics, 15, 307 (2006)].

  8. Materials Organization, Planning, and Homework Completion in Middle School Students with ADHD: Impact on Academic Performance.

    PubMed

    Langberg, Joshua M; Epstein, Jeffery N; Girio, Erin L; Becker, Stephen P; Vaughn, Aaron J; Altaye, Mekibib

    2011-06-01

    This study evaluated the homework functioning of middle school students with ADHD to determine what aspects are most predictive of school grades and the best source (e.g., parents or teachers) for obtaining this information. Students with ADHD in grades 5-8 ( N = 57) and their parents and teachers completed the Children's Organization Skills Scales (COSS) to measure materials organization, planning, and time-management, and parents completed the Homework Problems Checklist (HPC) to examine homework completion and homework materials management behaviors. Regression analyses revealed that parent-rated homework materials management and teacher-rated memory and materials management were the best predictors of school grades. These findings suggest that organization of materials is a critical component of the homework completion process for students with ADHD and an important target for intervention. Teachers were the best source of information regarding materials organization and planning, whereas parents were a valuable source of information for specific homework materials management problems.

  9. Materials Organization, Planning, and Homework Completion in Middle School Students with ADHD: Impact on Academic Performance

    PubMed Central

    Langberg, Joshua M.; Epstein, Jeffery N.; Girio, Erin L.; Becker, Stephen P.; Vaughn, Aaron J.; Altaye, Mekibib

    2013-01-01

    This study evaluated the homework functioning of middle school students with ADHD to determine what aspects are most predictive of school grades and the best source (e.g., parents or teachers) for obtaining this information. Students with ADHD in grades 5–8 (N = 57) and their parents and teachers completed the Children’s Organization Skills Scales (COSS) to measure materials organization, planning, and time-management, and parents completed the Homework Problems Checklist (HPC) to examine homework completion and homework materials management behaviors. Regression analyses revealed that parent-rated homework materials management and teacher-rated memory and materials management were the best predictors of school grades. These findings suggest that organization of materials is a critical component of the homework completion process for students with ADHD and an important target for intervention. Teachers were the best source of information regarding materials organization and planning, whereas parents were a valuable source of information for specific homework materials management problems. PMID:23577045

  10. Common Alterations in Sensitivity to Type but Not Amount of Reward in ADHD and Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Demurie, Ellen; Roeyers, Herbert; Baeyens, Dieter; Sonuga-Barke, Edmund

    2011-01-01

    Background: Children with attention deficit/hyperactivity disorder (ADHD) display abnormalities in reward processing. Most reward studies have focused on the effects of material or monetary rewards. Studies with autism spectrum disorder (ASD) have focused on social rewards. In this study we compared the effects of amount and type of reward in…

  11. Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries.

    PubMed

    Guo, Juchen; Xu, Yunhua; Wang, Chunsheng

    2011-10-12

    The commercialization of lithium-sulfur batteries is hindered by low cycle stability and low efficiency, which are induced by sulfur active material loss and polysulfide shuttle reaction through dissolution into electrolyte. In this study, sulfur-impregnated disordered carbon nanotubes are synthesized as cathode material for the lithium-sulfur battery. The obtained sulfur-carbon tube cathodes demonstrate superior cyclability and Coulombic efficiency. More importantly, the electrochemical characterization indicates a new stabilization mechanism of sulfur in carbon induced by heat treatment.

  12. Disorders related to sexuality and gender identity in the ICD‐11: revising the ICD‐10 classification based on current scientific evidence, best clinical practices, and human rights considerations

    PubMed Central

    Reed, Geoffrey M.; Drescher, Jack; Krueger, Richard B.; Atalla, Elham; Cochran, Susan D.; First, Michael B.; Cohen‐Kettenis, Peggy T.; Arango‐de Montis, Iván; Parish, Sharon J.; Cottler, Sara; Briken, Peer; Saxena, Shekhar

    2016-01-01

    In the World Health Organization's forthcoming eleventh revision of the International Classification of Diseases and Related Health Problems (ICD‐11), substantial changes have been proposed to the ICD‐10 classification of mental and behavioural disorders related to sexuality and gender identity. These concern the following ICD‐10 disorder groupings: F52 Sexual dysfunctions, not caused by organic disorder or disease; F64 Gender identity disorders; F65 Disorders of sexual preference; and F66 Psychological and behavioural disorders associated with sexual development and orientation. Changes have been proposed based on advances in research and clinical practice, and major shifts in social attitudes and in relevant policies, laws, and human rights standards. This paper describes the main recommended changes, the rationale and evidence considered, and important differences from the DSM‐5. An integrated classification of sexual dysfunctions has been proposed for a new chapter on Conditions Related to Sexual Health, overcoming the mind/body separation that is inherent in ICD‐10. Gender identity disorders in ICD‐10 have been reconceptualized as Gender incongruence, and also proposed to be moved to the new chapter on sexual health. The proposed classification of Paraphilic disorders distinguishes between conditions that are relevant to public health and clinical psychopathology and those that merely reflect private behaviour. ICD‐10 categories related to sexual orientation have been recommended for deletion from the ICD‐11. PMID:27717275

  13. An updated literature review on maternal-fetal and reproductive disorders of Toxoplasma gondii infection.

    PubMed

    Fallahi, S; Rostami, A; Nourollahpour Shiadeh, M; Behniafar, H; Paktinat, S

    2018-03-01

    Toxoplasma gondii infection is one of the most prevalent infectious disease with worldwide distribution. Congenital toxoplasmosis is annually responsible for 1.20 million disability-adjusted life years around the world, but often it is overlooked many countries. We performed an updated review to summarize the current researches on fetal, neonatal and maternal consequences of T. gondii infection and also adverse effects of toxoplasmosis on women reproductive organs. T. gondii infection could be cause of several abnormalities from hydrocephalus, microcephaly, deafness, abortion and still birth in fetal to psychomotor retardation, intellectual disability, hearing loss, slower postnatal motor development during the first year of life; and chorioretinitis, cryptogenic epilepsy and autism spectrum disorders in newborns. Moreover, this infection is related with neuropsychiatric disorders such as anxiety, schizophrenia spectrum disorders, depression, decreased weight, autoimmune thyroid diseases, self-directed violence, violent suicide attempts in mothers. This literature review emphasized that toxoplasmosis could be an important neglected factor endometritis, ovarian dysfunction, impaired folliculogenesis, ovarian and uterine atrophy, decrease in reproductive organs weight and reproductive performance in women. We reviewed role of the immunological profile such as pro-infiammatory cytokines and hormonal changes as main potential mechanisms related to this infection and development of maternal-fetal and reproductive disorders. T. gondii is associated with several brain related disorders in both mothers and newborns, and also it is cause of several abnormalities in reproductive organs. Early diagnosis and treatment of the infection could be effective to significantly improve the clinical outcome. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. [Obesity as pathology of adipocytes: number of cells, volume of arterial bloodstream,local pools of circulation in vivo, natriuretic peptides and arterial hypertension].

    PubMed

    Titov, V N; Dmitriev, V A

    2015-03-01

    The non-specific systemic biological reaction of arterial pressure from the level of organism. vasomotor center and proximal section of arterial bloodstream is appealed to compensate disorders of metabolism and microcirculation in distal section of arteries. This phenomenon occurs in several cases. The primarily local disorders of metabolism at autocrine level, physiological (aphysiological) death of cells, "littering" of intercellular medium become the cause of disorder of microcirculation in paracrin cenosises and deteriorate realization of biological functions of homeostasis, trophology, endoecology and adaptation. The local compensation of affected perfusion in paracrin cenosises at the expense of function of peripheral peristaltic pumps, redistribution of local bloodflow in biological reaction of endothelium-depended vaso-dilation has no possibility to eliminate disorders in realization of biological functions. The systemic increase of arterial pressure under absence of specific symptoms of symptomatic arterial hypertension is a test to detect disorder of biological functions of homeostasis, trophology, biological function of endoecology and adaptation. Allforms of arterial hypertension develop by common algorithm independently from causes of disorders of blood flow, microcirculation in distal section of arteries. The non-specific systemic compensation ofdisorders of metabolism from level of organism, in proximal section of arterial bloodstream always is the same one and results in aphysiological alterations in organs-targets. To comprehend etiological characteristics of common pathogenesis of arterial hypertension is possible in case of application of such technically complicated and still unclear in differential diagnostic of deranged functions modes of metabolomics.

  15. Sibutramine-induced mania as the first manifestation of bipolar disorder.

    PubMed

    Waszkiewicz, Napoleon; Zalewska-Szajda, Beata; Szajda, Sławomir Dariusz; Simonienko, Katarzyna; Zalewska, Anna; Szulc, Agata; Ładny, Jerzy Robert; Zwierz, Krzysztof

    2012-05-18

    Sibutramine, used in obesity treatment, has been associated with many neuropsychiatric side effects including hypomanic and manic episodes. Hypomanic/manic episodes related to sibutramine treatment were earlier reported in patients who had previous history of bipolar disorder, after sibutramine overdose, after over-the-counter product illegally containing very high dose of sibutramine, together with psychotic symptoms, in organic patient, or after interaction of sibutramine with other drugs. We report the first case of a patient with clear manic episode, after treatment with recommended dose of sibutramine, without previous history of mood disorders, organic changes or drug interactions, that was followed by episode of depression. Minimal recommended dose of sibutramine induced manic episode that was the first manifestation of bipolar disorder. The manic episode, associated with sibutramine treatment, was induced in a person without previous history of mood disorders. Potential risks associated with the treatment of obesity using sibutramine warn physicians to be alert not only to common and cardiovascular but also to psychiatric adverse effects. A careful assessment of patient's mental state and detailed psychiatric family history should be done before sibutramine treatment. In patients with a family history for bipolar disorder the use of even minimal dose of sibutramine should be contraindicated.

  16. Assessment of time management skills: psychometric properties of the Swedish version.

    PubMed

    Janeslätt, Gunnel Kristina; Holmqvist, Kajsa Lidström; White, Suzanne; Holmefur, Marie

    2018-05-01

    Persons with impaired time management skills are often in need of occupational therapy. Valid and reliable instruments to assess time management and organizational skills are needed for the evaluation of intervention. The purpose of this study was to evaluate the psychometric properties of a Swedish version of the Assessment of Time Management Skills (ATMS-S) for persons with and without impaired time management skills. A total of 238 persons participated in the study, of whom 94 had self-reported impaired time management skills due to mental disorders such as schizophrenic spectrum or neurodevelopmental disorders such as attention deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD) and mild intellectual disabilities, and 144 persons had no reported impaired time management skills. Rasch analysis was used to analyze data. Three subscales were detected: the time management subscale with 11 items, the organization & planning subscale with 11 items, and the subscale of regulation of emotions with 5 items, with excellent to acceptable psychometric properties. The conclusions were that: ATMS-S is a valid instrument for self-rating of time management, organization & planning and for the regulation of emotions. ATMS-S can be useful for persons with mental disorders including mild neurodevelopmental disorders.

  17. Functional dyspepsia: A new approach from traditional Persian medicine

    PubMed Central

    Pasalar, Mehdi; Nimrouzi, Majid; Choopani, Rasool; Mosaddegh, Mahmoud; Kamalinejad, Mohammad; Mohagheghzadeh, Abdolali; Bagheri Lankarani, Kamran

    2016-01-01

    Objective: One of the most common global disorders is related to gastrointestinal system. Functional dyspepsia (FD) defined as upper abdominal pain and discomfort in the absence of organic ailments is a prevalent disease without any confirmed medication. The purpose of this study was to find gastric disorders which might be coincidental to FD based on traditional Persian medicine (TPM). Materials and Methods: We searched the main textbooks of TPM including Al-Havi (by Rhazes), Canon of medicine (by Avicenna), ZakhireKhawrazmshahi (by Ismail Jorjani), Moalijat-e Aghili and Makhzan Al-adviya (by Mohammad Hosein AghiliShirazi), and ExirAzam (by Hakim Azam Khan). Also, we searched Pubmed, Scopus, Science Direct, Medline, scientific information database (SID), Iranmedex and Google Scholar from 1980 to 1 August 2014 for dyspepsia, gastrointestinal disease, traditional Persian medicine, and gastric dystemperaments. Results: There is no equivalent term for FD in traditional Persian medicine although similar signs and symptoms are visible in terms like simple cold dystemperament of stomach, indigestion, and digestion debility in TPM sources. Some treatments mentioned in TPM have shown promising results in the current experimental tests. Conclusion: Finding these similarities in complementary and alternative medicine (CAM) textbooks may lead to discovering new remedies for this widespread disease. PMID:27222829

  18. Dental esthetics--instrument for recreating a new facial esthetic to the elderly patient.

    PubMed

    Scutariu, Mihaela Monica; Forna, Norina

    2014-01-01

    The major objective of this paper consists in underlining the wide range of possibilities in assessing the elderly patient; it relies on clinical examination in order to exclusively improve the patient's physiognomic aspect. In this context it has been organized a study which included 64 elderly patients aged between 60 and 90 years of age (median age 75), which presented themselves at the Clinical Service of Dental Semiology and Gerontostomatology between 2011-2012; they requested the restoration of the functions affected by odontal coronary lesions, periodontal disorders or edentations more or less expanded, malocclusions, malrelations of the mandible to the skull and unsuccessful or deteriorated dental or prosthetic treatments. The restoration of dental arches has been performed relying on common sense and power of discernment, respecting both facial features and expression by redimensioning the lower part of the face, repositioning the mandible and using gnatoprosthetic devices. Solving the problems elderly patients confront themselves with and the success of the treatment has been possible only after a correct assessment of the involutive phenomena that influence the oral cavity, after understanding the local and general factors that predispose to oral disorders as well as the differences between various techniques and materials.

  19. Role of cholesterol and lipid organization in disease

    NASA Astrophysics Data System (ADS)

    Maxfield, Frederick R.; Tabas, Ira

    2005-12-01

    Membrane lipids are essential for biological functions ranging from membrane trafficking to signal transduction. The composition of lipid membranes influences their organization and properties, so it is not surprising that disorders in lipid metabolism and transport have a role in human disease. Significant recent progress has enhanced our understanding of the molecular and cellular basis of lipid-associated disorders such as Tangier disease, Niemann-Pick disease type C and atherosclerosis. These insights have also led to improved understanding of normal physiology.

  20. Controlled growth of larger heterojunction interface area for organic photosensitive devices

    DOEpatents

    Yang, Fan [Somerset, NJ; Forrest, Stephen R [Ann Arbor, MI

    2009-12-29

    An optoelectronic device and a method of fabricating a photosensitive optoelectronic device includes depositing a first organic semiconductor material on a first electrode to form a continuous first layer having protrusions, a side of the first layer opposite the first electrode having a surface area at least three times greater than an underlying lateral cross-sectional area; depositing a second organic semiconductor material directly on the first layer to form a discontinuous second layer, portions of the first layer remaining exposed; depositing a third organic semiconductor material directly on the second layer to form a discontinuous third layer, portions of at least the second layer remaining exposed; depositing a fourth organic semiconductor material on the third layer to form a continuous fourth layer, filling any exposed gaps and recesses in the first, second, and third layers; and depositing a second electrode on the fourth layer, wherein at least one of the first electrode and the second electrode is transparent, and the first and third organic semiconductor materials are both of a donor-type or an acceptor-type relative to second and fourth organic semiconductor materials, which are of the other material type.

  1. Organic photosensitive cells having a reciprocal-carrier exciton blocking layer

    DOEpatents

    Rand, Barry P [Princeton, NJ; Forrest, Stephen R [Princeton, NJ; Thompson, Mark E [Anaheim Hills, CA

    2007-06-12

    A photosensitive cell includes an anode and a cathode; a donor-type organic material and an acceptor-type organic material forming a donor-acceptor junction connected between the anode and the cathode; and an exciton blocking layer connected between the acceptor-type organic material of the donor-acceptor junction and the cathode, the blocking layer consisting essentially of a material that has a hole mobility of at least 10.sup.-7 cm.sup.2/V-sec or higher, where a HOMO of the blocking layer is higher than or equal to a HOMO of the acceptor-type material.

  2. A new class of tunable hypersonic phononic crystals based on polymer-tethered colloids.

    PubMed

    Alonso-Redondo, E; Schmitt, M; Urbach, Z; Hui, C M; Sainidou, R; Rembert, P; Matyjaszewski, K; Bockstaller, M R; Fytas, G

    2015-09-22

    The design and engineering of hybrid materials exhibiting tailored phononic band gaps are fundamentally relevant to innovative material technologies in areas ranging from acoustics to thermo-optic devices. Phononic hybridization gaps, originating from the anti-crossing between local resonant and propagating modes, have attracted particular interest because of their relative robustness to structural disorder and the associated benefit to 'manufacturability'. Although hybridization gap materials are well known, their economic fabrication and efficient control of the gap frequency have remained elusive because of the limited property variability and expensive fabrication methodologies. Here we report a new strategy to realize hybridization gap materials by harnessing the 'anisotropic elasticity' across the particle-polymer interface in densely polymer-tethered colloidal particles. Theoretical and Brillouin scattering analysis confirm both the robustness to disorder and the tunability of the resulting hybridization gap and provide guidelines for the economic synthesis of new materials with deliberately controlled gap position and width frequencies.

  3. Bioinspired Cellular Structures: Additive Manufacturing and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Stampfl, J.; Pettermann, H. E.; Liska, R.

    Biological materials (e.g., wood, trabecular bone, marine skeletons) rely heavily on the use of cellular architecture, which provides several advantages. (1) The resulting structures can bear the variety of "real life" load spectra using a minimum of a given bulk material, featuring engineering lightweight design principles. (2) The inside of the structures is accessible to body fluids which deliver the required nutrients. (3) Furthermore, cellular architectures can grow organically by adding or removing individual struts or by changing the shape of the constituting elements. All these facts make the use of cellular architectures a reasonable choice for nature. Using additive manufacturing technologies (AMT), it is now possible to fabricate such structures for applications in engineering and biomedicine. In this chapter, we present methods that allow the 3D computational analysis of the mechanical properties of cellular structures with open porosity. Various different cellular architectures including disorder are studied. In order to quantify the influence of architecture, the apparent density is always kept constant. Furthermore, it is shown that how new advanced photopolymers can be used to tailor the mechanical and functional properties of the fabricated structures.

  4. Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids.

    PubMed

    Liu, Mengxia; Voznyy, Oleksandr; Sabatini, Randy; García de Arquer, F Pelayo; Munir, Rahim; Balawi, Ahmed Hesham; Lan, Xinzheng; Fan, Fengjia; Walters, Grant; Kirmani, Ahmad R; Hoogland, Sjoerd; Laquai, Frédéric; Amassian, Aram; Sargent, Edward H

    2017-02-01

    Bandtail states in disordered semiconductor materials result in losses in open-circuit voltage (V oc ) and inhibit carrier transport in photovoltaics. For colloidal quantum dot (CQD) films that promise low-cost, large-area, air-stable photovoltaics, bandtails are determined by CQD synthetic polydispersity and inhomogeneous aggregation during the ligand-exchange process. Here we introduce a new method for the synthesis of solution-phase ligand-exchanged CQD inks that enable a flat energy landscape and an advantageously high packing density. In the solid state, these materials exhibit a sharper bandtail and reduced energy funnelling compared with the previous best CQD thin films for photovoltaics. Consequently, we demonstrate solar cells with higher V oc and more efficient charge injection into the electron acceptor, allowing the use of a closer-to-optimum bandgap to absorb more light. These enable the fabrication of CQD solar cells made via a solution-phase ligand exchange, with a certified power conversion efficiency of 11.28%. The devices are stable when stored in air, unencapsulated, for over 1,000 h.

  5. An Archeology of Corruption in Medicine.

    PubMed

    Little, Miles; Lipworth, Wendy; Kerridge, Ian

    2018-07-01

    Corruption is a word used loosely to describe many kinds of action that people find distasteful. We prefer to reserve it for the intentional misuse of the good offices of an established social entity for private benefit, posing as fair trading. The currency of corruption is not always material or financial. Moral corruption is all too familiar within churches and other ostensibly beneficent institutions, and it happens within medicine and the pharmaceutical industries. Corrupt behavior reduces trust, costs money, causes injustice, and arouses anger. Yet it persists, despite all efforts since the beginnings of societies. People who act corruptly may lack conscience and empathy in the same way as those with some personality disorders. Finding ways to prevent corruption from contaminating beneficent organizations is therefore likely to be frustratingly difficult. Transparency and accountability may go some way, but the determined corruptor is unlikely to feel constrained by moral and reporting requirements of this kind. Punishment and redress are complicated issues, unlikely to satisfy victims and society at large. Both perhaps should deal in the same currency-material or social-in which the corrupt dealing took place.

  6. Liquid-Crystalline Elastomers with Gold Nanoparticle Cross-Linkers.

    PubMed

    Wójcik, Michał M; Wróbel, Jarosław; Jańczuk, Zuzanna Z; Mieczkowski, Józef; Górecka, Ewa; Choi, Joonmyung; Cho, Maenghyo; Pociecha, Damian

    2017-07-03

    Embedding nanoparticles in a responsive polymer matrix is a formidable way to fabricate hybrid materials with predesigned properties and prospective applications in actuators, mechanically tunable optical elements, and electroclinic films. However, achieving chemical compatibility between nanoparticles and organic matter is not trivial and often results in disordered structures. Herein, it is shown that using nanoparticles as exclusive cross-linkers in the preparation of liquid-crystalline polymers can yield long-range-ordered liquid-crystalline elastomers with high loadings of well-dispersed nanoparticles, as confirmed by small-angle XRD measurements. Moreover, the strategy of incorporating NPs as cross-linking units does not result in disruption of mechanical properties of the polymer, and this phenomenon was explained by the means of all-atom molecular dynamics simulations. Such materials can exhibit switchable behavior under thermal stimulus with stability spanning over multiple heating/cooling cycles. The presented strategy has proven to be a promising approach for the preparation of new types of hybrid liquid-crystalline elastomers that can be of value for future photonic applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Elaboration of Prussian Blue Analogue/Silica Nanocomposites: Towards Tailor-Made Nano-Scale Electronic Devices

    PubMed Central

    Fornasieri, Giulia; Aouadi, Merwen; Delahaye, Emilie; Beaunier, Patricia; Durand, Dominique; Rivière, Eric; Albouy, Pierre-Antoine; Brisset, François; Bleuzen, Anne

    2012-01-01

    The research of new molecular materials able to replace classical solid materials in electronics has attracted growing attention over the past decade. Among these compounds photoswitchable Prussian blue analogues (PBA) are particularly interesting for the elaboration of new optical memories. However these coordination polymers are generally synthesised as insoluble powders that cannot be integrated into a real device. Hence their successful integration into real applications depends on an additional processing step. Nanostructured oxides elaborated by sol-gel chemistry combined with surfactant micelle templating can be used as nanoreactors to confine PBA precipitation and organize the functional nano-objects in the three dimensions of space. In this work we present the elaboration of different CoFe PBA/silica nanocomposites. Our synthetic procedure fully controls the synthesis of PBA in the porosity of the silica matrix from the insertion of the precursors up to the formation of the photomagnetic compound. We present results on systems from the simplest to the most elaborate: from disordered xerogels to ordered nanostructured films passing through mesoporous monoliths. PMID:28817053

  8. Emotional Feedback and the Viral Spread of Social Media Messages About Autism Spectrum Disorders

    PubMed Central

    2016-01-01

    Objective. To determine whether exchanges of emotional language between health advocacy organizations and social media users predict the spread of posts about autism spectrum disorders (ASDs). Methods. I created a Facebook application that tracked views of ASD advocacy organizations' posts between July 19, 2011, and December 18, 2012. I evaluated the association between exchanges of emotional language and viral views of posts, controlling for additional characteristics of posts, the organizations that produced them, the social media users who viewed them, and the broader social environment. Results. Exchanges of emotional language between advocacy organizations and social media users are strongly associated with viral views of posts. Conclusions. Social media outreach may be more successful if organizations invite emotional dialogue instead of simply conveying information about ASDs. Yet exchanges of angry language may contribute to the viral spread of misinformation, such as the rumor that vaccines cause ASDs. PMID:27196641

  9. Emotional Feedback and the Viral Spread of Social Media Messages About Autism Spectrum Disorders.

    PubMed

    Bail, Christopher A

    2016-07-01

    To determine whether exchanges of emotional language between health advocacy organizations and social media users predict the spread of posts about autism spectrum disorders (ASDs). I created a Facebook application that tracked views of ASD advocacy organizations' posts between July 19, 2011, and December 18, 2012. I evaluated the association between exchanges of emotional language and viral views of posts, controlling for additional characteristics of posts, the organizations that produced them, the social media users who viewed them, and the broader social environment. Exchanges of emotional language between advocacy organizations and social media users are strongly associated with viral views of posts. Social media outreach may be more successful if organizations invite emotional dialogue instead of simply conveying information about ASDs. Yet exchanges of angry language may contribute to the viral spread of misinformation, such as the rumor that vaccines cause ASDs.

  10. Universality in the Self Organized Critical behavior of a cellular model of superconducting vortex dynamics

    NASA Astrophysics Data System (ADS)

    Sun, Yudong; Vadakkan, Tegy; Bassler, Kevin

    2007-03-01

    We study the universality and robustness of variants of the simple model of superconducting vortex dynamics first introduced by Bassler and Paczuski in Phys. Rev. Lett. 81, 3761 (1998). The model is a coarse-grained model that captures the essential features of the plastic vortex motion. It accounts for the repulsive interaction between vortices, the pining of vortices at quenched disordered locations in the material, and the over-damped dynamics of the vortices that leads to tearing of the flux line lattice. We report the results of extensive simulations of the critical ``Bean state" dynamics of the model. We find a phase diagram containing four distinct phases of dynamical behavior, including two phases with distinct Self Organized Critical (SOC) behavior. Exponents describing the avalanche scaling behavior in the two SOC phases are determined using finite-size scaling. The exponents are found to be robust within each phase and for different variants of the model. The difference of the scaling behavior in the two phases is also observed in the morphology of the avalanches.

  11. [Psychoactive plant species--actual list of plants prohibited in Poland].

    PubMed

    Simonienko, Katarzyna; Waszkiewicz, Napoleon; Szulc, Agata

    2013-01-01

    According to the Act on Counteracting Drug Addiction (20-th of March, 2009, Dz. U. Nr 63 poz. 520.) the list of federally prohibited plants in Poland was expanded to include 16 new species. Until that time the only illegal plant materials were cannabis, papaver, coca and most of their products. The actual list of herbal narcotics includes species which significantly influence on the central nervous system work but which are rarely described in the national literature. The plants usually come from distant places, where--among primeval cultures--are used for ritual purposes. In our civilization the plants are usually used experimentally, recreationally or to gain particular narcotic effects. The results of the consumption vary: they can be specific or less typical, imitate other substances intake, mental disorders or different pathological states. The plant active substances can interact with other medicaments, be toxic to internal organs, cause serious threat to health or even death. This article describes the sixteen plant species, which are now prohibited in Poland, their biochemical ingredients and their influence on the human organism.

  12. Evolution of Photoluminescence, Raman, and Structure of CH3NH3PbI3 Perovskite Microwires Under Humidity Exposure

    NASA Astrophysics Data System (ADS)

    Segovia, Rubén; Qu, Geyang; Peng, Miao; Sun, Xiudong; Shi, Hongyan; Gao, Bo

    2018-03-01

    Self-assembled organic-inorganic CH3NH3PbI3 perovskite microwires (MWs) upon humidity exposure along several weeks were investigated by photoluminescence (PL) spectroscopy, Raman spectroscopy, and X-ray diffraction (XRD). We show that, in addition to the common perovskite decomposition into PbI2 and the formation of a hydrated phase, humidity induced a gradual PL redshift at the initial weeks that is stabilized for longer exposure ( 21 nm over the degradation process) and an intensity enhancement. Original perovskite Raman band and XRD reflections slightly shifted upon humidity, indicating defects formation and structure distortion of the MWs crystal lattice. By correlating the PL, Raman, and XRD results, it is believed that the redshift of the MWs PL emission was originated from the structural disorder caused by the incorporation of H2O molecules in the crystal lattice and radiative recombination through moisture-induced subgap trap states. Our study provides insights into the optical and structural response of organic-inorganic perovskite materials upon humidity exposure.

  13. Comprehensive physicochemical studies of a new hybrid material: 2-Amino-4-methyl-3-nitropyridinium hydrogen oxalate

    NASA Astrophysics Data System (ADS)

    Bryndal, I.; Kucharska, E.; Wandas, M.; Lorenc, J.; Hermanowicz, K.; Mączka, M.; Lis, T.; Marchewka, M.; Hanuza, J.

    2014-01-01

    A new organic-organic salt, 2-amino-4-methyl-3-nitropyridinium hydrogen oxalate (AMNPO), and its deuterium analogue have been synthesized and characterized by means of FT-IR, FT-Raman, DSC and single crystal X-ray studies. The DSC measurements and temperature dependence of the IR and Raman spectra in the range 4-295 K show that it undergoes a reversible phase transition at ∼240 K. At room temperature it crystallizes in noncentrosymmetric space group P21. The unit-cell is built of the 2-amino-4-methyl-3-nitropyridinium cations and oxalate monoanions which are connected via the Nsbnd H⋯O and Osbnd H⋯O hydrogen bonds. The geometrical and hydrogen bond parameters are similar for non-deuterated (at 120 and 293 K) and deuterated compounds (at 90 K). The phase transition is probably a consequence of order-disorder transition inside of hydrogen network. The 6-311G(2d,2p) basis set with B3LYP functional have been used to discuss the structure and vibrational spectra of the studied compound.

  14. Multiple Pregnancy

    MedlinePlus

    ... 8 completed weeks of pregnancy. Fetus: The developing organism in the uterus from the ninth week of pregnancy until the end of pregnancy. Fraternal Twins: Twins that have developed from two fertilized eggs that are not genetically identical. Genetic Disorders: A term for disorders caused ...

  15. Pelvic organ prolapse (POP) surgery: the evidence for the repairs.

    PubMed

    Gomelsky, Alex; Penson, David F; Dmochowski, Roger R

    2011-06-01

    What is known on the subject? and What does the study add? Substantial experience of the outcomes has been gathered regarding the acute and sub-acute experience with various types of corrective procedures for POP. These include long-term POP correction as well as more recent recognition of improvement in functional disorders associated with POP such as UI, colorectal dysfunction, and sexual dysfunction. Long-term follow-up is available for some of the older types of interventions and current multicentre trials are being accrued with longer term follow-up for new interventions including mesh-type repairs. The study adds a condensed and summarized version of the current literature regarding the various interventions for POP and also provides an overview of the current controversies and areas where knowledge is incomplete and in need of further elaboration for definitive answers regarding optimization of surgical care for POP. Our aim is to summarise the available data on the transvaginal placement of synthetic mesh for pelvic organ prolapse (POP) repair, with a focus on the outcomes and complications of commercial POP-repair kits. As the stability and durability of autologous tissues may be questionable, nonabsorbable, synthetic materials are an attractive alternative for providing additional support during POP surgery. These materials are not novel, and most have been used for many years in surgical applications, e.g. hernia repairs. While theoretically appealing, the implantation of synthetic mesh in the pelvis may be associated with inherent adverse consequences, such as erosion, extrusion, and infection. Additionally, the routine use of these materials may carry potential long-term complications, such as dyspareunia, chronic pelvic pain, and vaginal distortion. The success and failure of mesh-augmented POP repair is related not only to the synthetic material itself, but also to patient- and surgeon-related factors. Recent warnings by the USA Food and Drug Administration and other groups regarding adverse events further complicate the decision to use synthetic mesh. © 2011 THE AUTHORS; BJU INTERNATIONAL © 2011 BJU INTERNATIONAL.

  16. Apparatus and method for constant flow oxidizing of organic materials

    DOEpatents

    Surma, Jeffrey E.; Nelson, Norvell; Steward, G. Anthony; Bryan, Garry H.

    1999-01-01

    The invention is a method and apparatus using high cerium concentration in the anolyte of an electrochemical cell to oxidize organic materials. The method and apparatus further use an ultrasonic mixer to enhance the oxidation rate of the organic material in the electrochemical cell. A reaction vessel provides an advantage of independent reaction temperature control and electrochemical cell temperature control. A separate or independent reaction vessel may be used without an ultrasonic mixer to oxidize gaseous phase organic materials.

  17. Biofoam

    DOEpatents

    Morrison, R.L.

    1995-01-17

    Biofoam is a rigid, opaque microcellular organic foam made from organic materials derived from natural products and biological organisms. Typical organic materials are agar, agarose, gelatin, algin, alginates, gellan gum, and microcrystalline cellulose. The organic material is dissolved in a polar solvent, typically water, and the solution can be gelled immediately. The gel is frozen and freeze-dried to form the biofoam. Alternatively, a nonpolar solvent is added to the solution and emulsified. The resulting emulsion is then gelled, frozen, and freeze-dried. A variety of crystalline, fibrous, or metallic additives may be added to produce lightweight composite materials with enhanced strength and insulating properties. The amount of dilution of the organic material in the solvent(s) determines the density of the resulting biofoams, which ranges from about 1.0 mg/cm[sup 3] to about 500 mg/cm[sup 3]. 4 figures.

  18. Light-emitting device with organic electroluminescent material and photoluminescent materials

    DOEpatents

    McNulty, Thomas Francis; Duggal, Anil Raj; Turner, Larry Gene; Shiang, Joseph John

    2005-06-07

    A light-emitting device comprises a light-emitting member, which comprises two electrodes and an organic electroluminescent material disposed between the electrodes, and at least one organic photoluminescent ("PL") material. The light-emitting member emits light having a first spectrum in response to a voltage applied across the two electrodes. The organic PL material absorbs a portion of the light emitted by the light-emitting member and emits light having second spectrum different than the first spectrum. The light-emitting device can include an inorganic PL material that absorbs another portion of the light emitted from the light-emitting member and emits light having a third spectrum different than both the first and the second spectra.

  19. Architectures and criteria for the design of high efficiency organic photovoltaic cells

    DOEpatents

    Rand, Barry; Forrest, Stephen R; Burk, Diana Pendergrast

    2015-03-24

    An organic photovoltaic cell includes an anode and a cathode, and a plurality of organic semiconductor layers between the anode and the cathode. At least one of the anode and the cathode is transparent. Each two adjacent layers of the plurality of organic semiconductor layers are in direct contact. The plurality of organic semiconductor layers includes an intermediate layer consisting essentially of a photoconductive material, and two sets of at least three layers. A first set of at least three layers is between the intermediate layer and the anode. Each layer of the first set consists essentially of a different organic semiconductor material having a higher LUMO and a higher HOMO, relative to the material of an adjacent layer of the plurality of organic semiconductor layers closer to the cathode. A second set of at least three layers is between the intermediate layer and the cathode. Each layer of the second set consists essentially of a different organic semiconductor material having a lower LUMO and a lower HOMO, relative to the material of an adjacent layer of the plurality of organic semiconductor layers closer to the anode.

  20. Mass Spectum Imaging of Organics Injected into Stardust Aerogel by Cometary Impacts

    NASA Technical Reports Server (NTRS)

    Clemett, S. J.; Nakamura-Messenger, K.; Messenger, S.

    2014-01-01

    Comets have largely escaped the hydrothermal processing that has affected the chemistry and mineralogy of even the most primitive meteorites. Consequently, they are expected to better preserve nebular and interstellar organic materials. Organic matter constitutes roughly 20-30% by weight of vol-atile and refractory cometary materials [1,2]. Yet organic matter identified in Stardust aerogel samples is only a minor component [3-5]. The dearth of intact organic matter, fine-grained and pre-solar materials led to suggestions that comet 81P/Wild-2 is com-posed largely of altered materials, and is more similar to meteorites than the primitive view of comets [6]. However, fine-grained materials are particularly susceptible to alteration and destruction during the hypervelocity impact. While hypervelocity capture can cause thermal pyrolysis of organic phases, some of the impacting organic component appears to have been explosively dispersed into surrounding aerogel [7]. We used a two-step laser mass spectrometer to map the distribution of organic matter within and sur-rounding a bulbous Stardust track to constrain the dispersion of organic matter during the impact.

Top