Sample records for disordered phases coexist

  1. Lattice Supersymmetry and Order-Disorder Coexistence in the Tricritical Ising Model

    NASA Astrophysics Data System (ADS)

    O'Brien, Edward; Fendley, Paul

    2018-05-01

    We introduce and analyze a quantum spin or Majorana chain with a tricritical Ising point separating a critical phase from a gapped phase with order-disorder coexistence. We show that supersymmetry is not only an emergent property of the scaling limit but also manifests itself on the lattice. Namely, we find explicit lattice expressions for the supersymmetry generators and currents. Writing the Hamiltonian in terms of these generators allows us to find the ground states exactly at a frustration-free coupling. These confirm the coexistence between two (topologically) ordered ground states and a disordered one in the gapped phase. Deforming the model by including explicit chiral symmetry breaking, we find the phases persist up to an unusual chiral phase transition where the supersymmetry becomes exact even on the lattice.

  2. Boundary of Phase Co-existence in Docosahexaenoic Acid System

    NASA Astrophysics Data System (ADS)

    Lor, Chai; Hirst, Linda S.

    2011-11-01

    Docosahexaenoic acid (DHA) is a highly polyunsaturated fatty acid (PUFA) that exhibits six double bonds in the hydrocarbon tail. It induces phase separation of the membrane into liquid order and liquid disorder in mixtures containing other lipids with more saturation and cholesterol. With the utilization of atomic force microscopy, phase co-existence is observed in lipid mixtures containing DHA on a single supported lipid bilayer. The boundary of phase co-existence with decreasing DHA concentration is explored. The elastic force, thickness, and roughness of the different phases are investigated.

  3. Visualizing monolayers with a water-soluble fluorophore to quantify adsorption, desorption, and the double layer.

    PubMed

    Shieh, Ian C; Zasadzinski, Joseph A

    2015-02-24

    Contrast in confocal microscopy of phase-separated monolayers at the air-water interface can be generated by the selective adsorption of water-soluble fluorescent dyes to disordered monolayer phases. Optical sectioning minimizes the fluorescence signal from the subphase, whereas convolution of the measured point spread function with a simple box model of the interface provides quantitative assessment of the excess dye concentration associated with the monolayer. Coexisting liquid-expanded, liquid-condensed, and gas phases could be visualized due to differential dye adsorption in the liquid-expanded and gas phases. Dye preferentially adsorbed to the liquid-disordered phase during immiscible liquid-liquid phase coexistence, and the contrast persisted through the critical point as shown by characteristic circle-to-stripe shape transitions. The measured dye concentration in the disordered phase depended on the phase composition and surface pressure, and the dye was expelled from the film at the end of coexistence. The excess concentration of a cationic dye within the double layer adjacent to an anionic phospholipid monolayer was quantified as a function of subphase ionic strength, and the changes in measured excess agreed with those predicted by the mean-field Gouy-Chapman equations. This provided a rapid and noninvasive optical method of measuring the fractional dissociation of lipid headgroups and the monolayer surface potential.

  4. Orientational order in bipolar nematic microdroplets close to the phase transition

    NASA Astrophysics Data System (ADS)

    Vilfan, I.; Vilfan, M.; Žumer, S.

    1989-10-01

    The ordering in bipolar liquid-crystal droplets close to the nematic-paranematic phase translation is studied. Here, ``paranematic'' refers to the phase above the nematic-isotropic transition temperature. The structure of spherical droplets is obtained after the minimization of the Landau-de Gennes-type free energy assuming a constant value of the surface order parameter and strong anchoring of the molecules parallel to the surface. Disordered defect regions caused by elastic deformations are found close to the poles. The defect regions grow into the droplet as the coexistence temperature between the paranematic and nematic phases is approached from below. The temperature-radius phase diagram shows the first-order coexistence curve terminating in the critical point and a pronounced decrease of the coexistence temperature on approaching the critical radius.

  5. Membrane Bending Moduli of Coexisting Liquid Phases Containing Transmembrane Peptide.

    PubMed

    Usery, Rebecca D; Enoki, Thais A; Wickramasinghe, Sanjula P; Nguyen, V P; Ackerman, David G; Greathouse, Denise V; Koeppe, Roger E; Barrera, Francisco N; Feigenson, Gerald W

    2018-05-08

    A number of highly curved membranes in vivo, such as epithelial cell microvilli, have the relatively high sphingolipid content associated with "raft-like" composition. Given the much lower bending energy measured for bilayers with "nonraft" low sphingomyelin and low cholesterol content, observing high curvature for presumably more rigid compositions seems counterintuitive. To understand this behavior, we measured membrane rigidity by fluctuation analysis of giant unilamellar vesicles. We found that including a transmembrane helical GWALP peptide increases the membrane bending modulus of the liquid-disordered (Ld) phase. We observed this increase at both low-cholesterol fraction and higher, more physiological cholesterol fraction. We find that simplified, commonly used Ld and liquid-ordered (Lo) phases are not representative of those that coexist. When Ld and Lo phases coexist, GWALP peptide favors the Ld phase with a partition coefficient of 3-10 depending on mixture composition. In model membranes at high cholesterol fractions, Ld phases with GWALP have greater bending moduli than the Lo phase that would coexist. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Coexistence of twisted and untwisted crystals: An impurity/structural order model with implications for agate patterns

    USGS Publications Warehouse

    Comer, J.; Ortoleva, P.

    2007-01-01

    Coexistence of twisted and untwisted crystals is explained via a model that accounts for the coupling of the entropic and energetic effects of impurities and a supra-lattice-scale structural order parameter. It is shown that twisted impure crystals can be in equilibrium with untwisted purer ones. The model explains how coexistence can occur in agates and other systems under hydrostatic stress. The model implies that untwisted crystals grown under one set of conditions could undergo a phase separation that, when accompanied by an imposed compositional gradient, leads to commonly observed, alternating bands of twisted and untwisted crystals and, when occurring in the absence of an external gradient, mossy patterns of crystal texture can emerge. This phenomenon is not related to anisotropic applied stress. Rather coexistence is a consequence of a compositional segregation/twist phase transition. Since twist coexistence is a compositional equilibrium, it arises from the exchange between bulk phases; hence, the detailed nature of the atomic structure within an interface between twisted and untwisted zones is not relevant. The approach places crystal-twist phenomena within the theory of order/disorder phase transitions.

  7. Phospholipid Chain Interactions with Cholesterol Drive Domain Formation in Lipid Membranes.

    PubMed

    Bennett, W F Drew; Shea, Joan-Emma; Tieleman, D Peter

    2018-06-05

    Cholesterol is a key component of eukaryotic membranes, but its role in cellular biology in general and in lipid rafts in particular remains controversial. Model membranes are used extensively to determine the phase behavior of ternary mixtures of cholesterol, a saturated lipid, and an unsaturated lipid with liquid-ordered and liquid-disordered phase coexistence. Despite many different experiments that determine lipid-phase diagrams, we lack an understanding of the molecular-level driving forces for liquid phase coexistence in bilayers with cholesterol. Here, we use atomistic molecular dynamics computer simulations to address the driving forces for phase coexistence in ternary lipid mixtures. Domain formation is directly observed in a long-timescale simulation of a mixture of 1,2-distearoyl-sn-glycero-3-phosphocholine, unsaturated 1,2-dilinoleoyl-sn-glycero-3-phosphocholine, and cholesterol. Free-energy calculations for the exchange of the saturated and unsaturated lipids between the ordered and disordered phases give insight into the mixing behavior. We show that a large energetic contribution to domain formation is favorable enthalpic interactions of the saturated lipid in the ordered phase. This favorable energy for forming an ordered, cholesterol-rich phase is opposed by a large unfavorable entropy. Martini coarse-grained simulations capture the unfavorable free energy of mixing but do not reproduce the entropic contribution because of the reduced representation of the phospholipid tails. Phospholipid tails and their degree of unsaturation are key energetic contributors to lipid phase separation. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Line tension controls liquid-disordered + liquid-ordered domain size transition in lipid bilayers

    DOE PAGES

    Usery, Rebecca D.; Enoki, Thais A.; Wickramasinghe, Sanjula P.; ...

    2017-04-11

    To better understand animal cell plasma membranes, we studied simplified models, namely four-component lipid bilayer mixtures. Here we describe the domain size transition in the region of coexisting liquid-disordered (Ld) + liquid-ordered (Lo) phases. This transition occurs abruptly in composition space with domains increasing in size by two orders of magnitude, from tens of nanometers to microns. We measured the line tension between coexisting Ld and Lo domains close to the domain size transition for a variety of lipid mixtures, finding that in every case the transition occurs at a line tension of ~0.3 pN. A computational model incorporating linemore » tension and dipole repulsion indicated that even small changes in line tension can result in domains growing in size by several orders of magnitude, consistent with experimental observations. Lastly, we find that other properties of the coexisting Ld and Lo phases do not change significantly in the vicinity of the abrupt domain size transition.« less

  9. Line tension controls liquid-disordered + liquid-ordered domain size transition in lipid bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usery, Rebecca D.; Enoki, Thais A.; Wickramasinghe, Sanjula P.

    To better understand animal cell plasma membranes, we studied simplified models, namely four-component lipid bilayer mixtures. Here we describe the domain size transition in the region of coexisting liquid-disordered (Ld) + liquid-ordered (Lo) phases. This transition occurs abruptly in composition space with domains increasing in size by two orders of magnitude, from tens of nanometers to microns. We measured the line tension between coexisting Ld and Lo domains close to the domain size transition for a variety of lipid mixtures, finding that in every case the transition occurs at a line tension of ~0.3 pN. A computational model incorporating linemore » tension and dipole repulsion indicated that even small changes in line tension can result in domains growing in size by several orders of magnitude, consistent with experimental observations. Lastly, we find that other properties of the coexisting Ld and Lo phases do not change significantly in the vicinity of the abrupt domain size transition.« less

  10. Mapping coexistence lines via free-energy extrapolation: application to order-disorder phase transitions of hard-core mixtures.

    PubMed

    Escobedo, Fernando A

    2014-03-07

    In this work, a variant of the Gibbs-Duhem integration (GDI) method is proposed to trace phase coexistence lines that combines some of the advantages of the original GDI methods such as robustness in handling large system sizes, with the ability of histogram-based methods (but without using histograms) to estimate free-energies and hence avoid the need of on-the-fly corrector schemes. This is done by fitting to an appropriate polynomial function not the coexistence curve itself (as in GDI schemes) but the underlying free-energy function of each phase. The availability of a free-energy model allows the post-processing of the simulated data to obtain improved estimates of the coexistence line. The proposed method is used to elucidate the phase behavior for two non-trivial hard-core mixtures: a binary blend of spheres and cubes and a system of size-polydisperse cubes. The relative size of the spheres and cubes in the first mixture is chosen such that the resulting eutectic pressure-composition phase diagram is nearly symmetric in that the maximum solubility of cubes in the sphere-rich solid (∼20%) is comparable to the maximum solubility of spheres in the cube-rich solid. In the polydisperse cube system, the solid-liquid coexistence line is mapped out for an imposed Gaussian activity distribution, which produces near-Gaussian particle-size distributions in each phase. A terminal polydispersity of 11.3% is found, beyond which the cubic solid phase would not be stable, and near which significant size fractionation between the solid and isotropic phases is predicted.

  11. Dynamical arrest with zero complexity: The unusual behavior of the spherical Blume-Emery-Griffiths disordered model

    NASA Astrophysics Data System (ADS)

    Rainone, Corrado; Ferrari, Ulisse; Paoluzzi, Matteo; Leuzzi, Luca

    2015-12-01

    The short- and long-time dynamics of model systems undergoing a glass transition with apparent inversion of Kauzmann and dynamical arrest glass transition lines is investigated. These models belong to the class of the spherical mean-field approximation of a spin-1 model with p -body quenched disordered interaction, with p >2 , termed spherical Blume-Emery-Griffiths models. Depending on temperature and chemical potential the system is found in a paramagnetic or in a glassy phase and the transition between these phases can be of a different nature. In specific regions of the phase diagram coexistence of low-density and high-density paramagnets can occur, as well as the coexistence of spin-glass and paramagnetic phases. The exact static solution for the glassy phase is known to be obtained by the one-step replica symmetry breaking ansatz. Different scenarios arise for both the dynamic and the thermodynamic transitions. These include: (i) the usual random first-order transition (Kauzmann-like) for mean-field glasses preceded by a dynamic transition, (ii) a thermodynamic first-order transition with phase coexistence and latent heat, and (iii) a regime of apparent inversion of static transition line and dynamic transition lines, the latter defined as a nonzero complexity line. The latter inversion, though, turns out to be preceded by a dynamical arrest line at higher temperature. Crossover between different regimes is analyzed by solving mode-coupling-theory equations near the boundaries of paramagnetic solutions and the relationship with the underlying statics is discussed.

  12. Simulation of free energies of bicontinuous morphologies formed through block copolymer/homopolymer self-assembly

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Poornima; Martinez-Veracoechea, Francisco; Escobedo, Fernando

    Different types of bicontinuous phases can be formed from A-B diblock copolymers by the addition of A-type homopolymers over a range of compositions and relative chain lengths. Particle-based molecular simulations were used to study three bicontinuous phases - double gyroid (G), double diamond (D) and plumber's nightmare (P) - near their triple point of coexistence. For 3-D ordered phases, the stability of the morphology formed in simulation is highly sensitive to box size whose exact size is unknown a-priori. Accurate free energy estimates are required to ascertain the stable phase, particularly when multiple competing phases spontaneously form at the conditions of interest. A variant of thermodynamic integration was implemented to obtain free energies and hence identify the stable phases and their optimal box sizes by tracing a reversible path that connects the ordered and disordered phases. Clear evidence was found of D-G and D-P phase coexistence, consistent with previous predictions for the same blend using Self-consistent field theory. Our simulations also allowed us to examine the microscopic details of these coexisting bicontinuous phases and detect key differences between the microstructure of their nodes and struts.

  13. Signature of phase singularities in diffusive regimes in disordered waveguide lattices: interplay and qualitative analysis

    NASA Astrophysics Data System (ADS)

    Ghosh, Somnath

    2018-05-01

    Co-existence and interplay between mesoscopic light dynamics with singular optics in spatially random but temporally coherent disordered waveguide lattices is reported. Two CW light beams of 1.55 micron operating wavelength are launched as inputs to 1D waveguide lattices with controllable weak disorder in refractive index profile. Direct observation of phase singularities in the speckle pattern along the length is numerically demonstrated. Quantitative analysis of onset of such singular behavior and diffusive wave propagation is analyzed for the first time.

  14. Lattice model theory of the equation of state covering the gas, liquid, and solid phases

    NASA Technical Reports Server (NTRS)

    Bonavito, N. L.; Tanaka, T.; Chan, E. M.; Horiguchi, T.; Foreman, J. C.

    1975-01-01

    The three stable states of matter and the corresponding phase transitions were obtained with a single model. Patterned after Lennard-Jones and Devonshires's theory, a simple cubic lattice model containing two fcc sublattices (alpha and beta) is adopted. The interatomic potential is taken to be the Lennard-Jones (6-12) potential. Employing the cluster variation method, the Weiss and the pair approximations on the lattice gas failed to give the correct phase diagrams. Hybrid approximations were devised to describe the lattice term in the free energy. A lattice vibration term corresponding to a free volume correction is included semi-phenomenologically. The combinations of the lattice part and the free volume part yield the three states and the proper phase diagrams. To determine the coexistence regions, the equalities of the pressure and Gibbs free energy per molecule of the coexisting phases were utilized. The ordered branch of the free energy gives rise to the solid phase while the disordered branch yields the gas and liquid phases. It is observed that the triple point and the critical point quantities, the phase diagrams and the coexistence regions plotted are in good agreement with the experimental values and graphs for argon.

  15. Ordering phase transition in the one-dimensional Axelrod model

    NASA Astrophysics Data System (ADS)

    Vilone, D.; Vespignani, A.; Castellano, C.

    2002-12-01

    We study the one-dimensional behavior of a cellular automaton aimed at the description of the formation and evolution of cultural domains. The model exhibits a non-equilibrium transition between a phase with all the system sharing the same culture and a disordered phase of coexisting regions with different cultural features. Depending on the initial distribution of the disorder the transition occurs at different values of the model parameters. This phenomenology is qualitatively captured by a mean-field approach, which maps the dynamics into a multi-species reaction-diffusion problem.

  16. Ordering Transformations in High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Singh, Prashant; Johnson, Duane D.

    The high-temperature disordered phase of multi-component alloys, including high-entropy alloys (HEA), generally must experience segregation or else passes through partially-ordered phases to reach the low-temperature, fully-ordered phase. Our first-principles KKR-CPA-based atomic short-range ordering (SRO) calculations (analyzed as concentration-waves) reveal the competing partially and fully ordered phases in HEA, and these phases can be then directly assessed from KKR-CPA results in larger unit cells [Phys. Rev. B 91, 224204 (2015)]. For AlxCrFeNiTi0.25, Liu et al. [J Alloys Compd 619, 610 (2015)] experimentally find FCC+BCC coexistence that changes to BCC with increasing Al (x from 0-to-1), which then exhibits a partially-ordered B2 at low temperatures. CALPHAD (Calculation of Phase Diagrams) predicts a region with L21+B2 coexistence. From KKR-CPA calculations, we find crossover versus Al from FCC+BCC coexistence to BCC, as observed, and regions for partially-order B2+L21 coexistence, as suggest by CALPHAD. Our combined first-principles KKR-CPA method provides a powerful approach in predicting SRO and completing long-range order in HEA and other complex alloys. Supported by the U.S. DOE, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. Work was performed at Ames Laboratory, which is operated by Iowa State University for the U.S. DOE under Contract #DE-AC02-07CH11358.

  17. Disordered Supersolids in the Extended Bose-Hubbard Model

    DOE PAGES

    Lin, Fei; Maier, T. A.; Scarola, V. W.

    2017-10-06

    The extended Bose-Hubbard model captures the essential properties of a wide variety of physical systems including ultracold atoms and molecules in optical lattices, Josephson junction arrays, and certain narrow band superconductors. It exhibits a rich phase diagram including a supersolid phase where a lattice solid coexists with a superfluid. We use quantum Monte Carlo to study the supersolid part of the phase diagram of the extended Bose-Hubbard model on the simple cubic lattice. We add disorder to the extended Bose-Hubbard model and find that the maximum critical temperature for the supersolid phase tends to be suppressed by disorder. But wemore » also find a narrow parameter window in which the supersolid critical temperature is enhanced by disorder. Our results show that supersolids survive a moderate amount of spatial disorder and thermal fluctuations in the simple cubic lattice.« less

  18. Signature of phase singularities in diffusive regimes in disordered waveguide lattices: interplay and qualitative analysis.

    PubMed

    Ghosh, Somnath

    2018-05-10

    Coexistence and interplay between mesoscopic light dynamics with singular optics in spatially disordered waveguide lattices are reported. Two CW light beams of a 1.55 μm operating wavelength are launched as inputs to 1D waveguide lattices with controllable weak disorder in a complex refractive index profile. Direct observation of phase singularities in the speckle pattern along the length is numerically demonstrated. Quantitative analysis of the onset of such singular behavior and diffusive wave propagation is analyzed for the first time, to the best of our knowledge.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Fei; Maier, T. A.; Scarola, V. W.

    The extended Bose-Hubbard model captures the essential properties of a wide variety of physical systems including ultracold atoms and molecules in optical lattices, Josephson junction arrays, and certain narrow band superconductors. It exhibits a rich phase diagram including a supersolid phase where a lattice solid coexists with a superfluid. We use quantum Monte Carlo to study the supersolid part of the phase diagram of the extended Bose-Hubbard model on the simple cubic lattice. We add disorder to the extended Bose-Hubbard model and find that the maximum critical temperature for the supersolid phase tends to be suppressed by disorder. But wemore » also find a narrow parameter window in which the supersolid critical temperature is enhanced by disorder. Our results show that supersolids survive a moderate amount of spatial disorder and thermal fluctuations in the simple cubic lattice.« less

  20. Dirty bosons in a three-dimensional harmonic trap

    NASA Astrophysics Data System (ADS)

    Khellil, Tama; Pelster, Axel

    2017-09-01

    We study a three-dimensional Bose-Einstein condensate in an isotropic harmonic trapping potential with an additional delta-correlated disorder potential and investigate the emergence of a Bose-glass phase for increasing disorder strength. At zero temperature a first-order quantum phase transition from the superfluid phase to the Bose-glass phase is detected at a critical disorder strength, which agrees with the findings in the literature. Afterwards, we study the interplay between temperature and disorder fluctuations on the respective components of the particle density. In particular, we find for smaller disorder strengths that a superfluid region, a Bose-glass region, and a thermal region coexist. Furthermore, depending on the respective system parameters, three phase transitions are detected, namely, one from the superfluid to the Bose-glass phase, another one from the Bose-glass to the thermal phase, and finally one from the superfluid to the thermal phase. All these results are obtained by extending a quite recent Hartree-Fock mean-field theory for the dirty boson problem, which is based on the replica method, from the homogeneous case to a harmonic confinement.

  1. Charge pattern matching as a ‘fuzzy’ mode of molecular recognition for the functional phase separations of intrinsically disordered proteins

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsuan; Brady, Jacob P.; Forman-Kay, Julie D.; Chan, Hue Sun

    2017-11-01

    Biologically functional liquid-liquid phase separation of intrinsically disordered proteins (IDPs) is driven by interactions encoded by their amino acid sequences. Little is currently known about the molecular recognition mechanisms for distributing different IDP sequences into various cellular membraneless compartments. Pertinent physics was addressed recently by applying random-phase-approximation (RPA) polymer theory to electrostatics, which is a major energetic component governing IDP phase properties. RPA accounts for charge patterns and thus has advantages over Flory-Huggins (FH) and Overbeek-Voorn mean-field theories. To make progress toward deciphering the phase behaviors of multiple IDP sequences, the RPA formulation for one IDP species plus solvent is hereby extended to treat polyampholyte solutions containing two IDP species plus solvent. The new formulation generally allows for binary coexistence of two phases, each containing a different set of volume fractions ({φ }1,{φ }2) for the two different IDP sequences. The asymmetry between the two predicted coexisting phases with regard to their {φ }1/{φ }2 ratios for the two sequences increases with increasing mismatch between their charge patterns. This finding points to a multivalent, stochastic, ‘fuzzy’ mode of molecular recognition that helps populate various IDP sequences differentially into separate phase compartments. An intuitive illustration of this trend is provided by FH models, whereby a hypothetical case of ternary coexistence is also explored. Augmentations of the present RPA theory with a relative permittivity {ɛ }{{r}}(φ ) that depends on IDP volume fraction φ ={φ }1+{φ }2 lead to higher propensities to phase separate, in line with the case with one IDP species we studied previously. Notably, the cooperative, phase-separation-enhancing effects predicted by the prescriptions for {ɛ }{{r}}(φ ) we deem physically plausible are much more prominent than that entailed by common effective medium approximations based on Maxwell Garnett and Bruggeman mixing formulas. Ramifications of our findings on further theoretical development for IDP phase separation are discussed.

  2. Dynamic phases of active matter systems with quenched disorder

    DOE PAGES

    Sandor, Csand; Libal, Andras; Reichhardt, Charles; ...

    2017-03-16

    Depinning and nonequilibrium transitions within sliding states in systems driven over quenched disorder arise across a wide spectrum of size scales ranging from atomic friction at the nanoscale, flux motion in type II superconductors at the mesoscale, colloidal motion in disordered media at the microscale, and plate tectonics at geological length scales. Here we show that active matter or self-propelled particles interacting with quenched disorder under an external drive represents a class of system that can also exhibit pinning-depinning phenomena, plastic flow phases, and nonequilibrium sliding transitions that are correlated with distinct morphologies and velocity-force curve signatures. When interactions withmore » the substrate are strong, a homogeneous pinned liquid phase forms that depins plastically into a uniform disordered phase and then dynamically transitions first into a moving stripe coexisting with a pinned liquid and then into a moving phase-separated state at higher drives. We numerically map the resulting dynamical phase diagrams as a function of external drive, substrate interaction strength, and self-propulsion correlation length. These phases can be observed for active matter moving through random disorder. Lastly, our results indicate that intrinsically nonequilibrium systems can exhibit additional nonequilibrium transitions when subjected to an external drive.« less

  3. Dynamic phases of active matter systems with quenched disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandor, Csand; Libal, Andras; Reichhardt, Charles

    Depinning and nonequilibrium transitions within sliding states in systems driven over quenched disorder arise across a wide spectrum of size scales ranging from atomic friction at the nanoscale, flux motion in type II superconductors at the mesoscale, colloidal motion in disordered media at the microscale, and plate tectonics at geological length scales. Here we show that active matter or self-propelled particles interacting with quenched disorder under an external drive represents a class of system that can also exhibit pinning-depinning phenomena, plastic flow phases, and nonequilibrium sliding transitions that are correlated with distinct morphologies and velocity-force curve signatures. When interactions withmore » the substrate are strong, a homogeneous pinned liquid phase forms that depins plastically into a uniform disordered phase and then dynamically transitions first into a moving stripe coexisting with a pinned liquid and then into a moving phase-separated state at higher drives. We numerically map the resulting dynamical phase diagrams as a function of external drive, substrate interaction strength, and self-propulsion correlation length. These phases can be observed for active matter moving through random disorder. Lastly, our results indicate that intrinsically nonequilibrium systems can exhibit additional nonequilibrium transitions when subjected to an external drive.« less

  4. Topological Spin Glass in Diluted Spin Ice

    NASA Astrophysics Data System (ADS)

    Sen, Arnab; Moessner, R.

    2015-06-01

    It is a salient experimental fact that a large fraction of candidate spin liquid materials freeze as the temperature is lowered. The question naturally arises whether such freezing is intrinsic to the spin liquid ("disorder-free glassiness") or extrinsic, in the sense that a topological phase simply coexists with standard freezing of impurities. Here, we demonstrate a surprising third alternative, namely, that freezing and topological liquidity are inseparably linked. The topological phase reacts to the introduction of disorder by generating degrees of freedom of a new type (along with interactions between them), which in turn undergo a freezing transition while the topological phase supporting them remains intact.

  5. Topological Spin Glass in Diluted Spin Ice.

    PubMed

    Sen, Arnab; Moessner, R

    2015-06-19

    It is a salient experimental fact that a large fraction of candidate spin liquid materials freeze as the temperature is lowered. The question naturally arises whether such freezing is intrinsic to the spin liquid ("disorder-free glassiness") or extrinsic, in the sense that a topological phase simply coexists with standard freezing of impurities. Here, we demonstrate a surprising third alternative, namely, that freezing and topological liquidity are inseparably linked. The topological phase reacts to the introduction of disorder by generating degrees of freedom of a new type (along with interactions between them), which in turn undergo a freezing transition while the topological phase supporting them remains intact.

  6. Ethanol effects on binary and ternary supported lipid bilayers with gel/fluid domains and lipid rafts.

    PubMed

    Marquês, Joaquim T; Viana, Ana S; De Almeida, Rodrigo F M

    2011-01-01

    Ethanol-lipid bilayer interactions have been a recurrent theme in membrane biophysics, due to their contribution to the understanding of membrane structure and dynamics. The main purpose of this study was to assess the interplay between membrane lateral heterogeneity and ethanol effects. This was achieved by in situ atomic force microscopy, following the changes induced by sequential ethanol additions on supported lipid bilayers formed in the absence of alcohol. Binary phospholipid mixtures with a single gel phase, dipalmitoylphosphatidylcholine (DPPC)/cholesterol, gel/fluid phase coexistence DPPC/dioleoylphosphatidylcholine (DOPC), and ternary lipid mixtures containing cholesterol, mimicking lipid rafts (DOPC/DPPC/cholesterol and DOPC/sphingomyelin/cholesterol), i.e., with liquid ordered/liquid disordered (ld/lo) phase separation, were investigated. For all compositions studied, and in two different solid supports, mica and silicon, domain formation or rearrangement accompanied by lipid bilayer thinning and expansion was observed. In the case of gel/fluid coexistence, low ethanol concentrations lead to a marked thinning of the fluid but not of the gel domains. In the case of ld/lo all the bilayer thins simultaneously by a similar extent. In both cases, only the more disordered phase expanded significantly, indicating that ethanol increases the proportion of disordered domains. Water/bilayer interfacial tension variation and freezing point depression, inducing acyl chain disordering (including opening and looping), tilting, and interdigitation, are probably the main cause for the observed changes. The results presented herein demonstrate that ethanol influences the bilayer properties according to membrane lateral organization. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Pressure-induced structural transition in chalcopyrite ZnSiP2

    NASA Astrophysics Data System (ADS)

    Bhadram, Venkata S.; Krishna, Lakshmi; Toberer, Eric S.; Hrubiak, Rostislav; Greenberg, Eran; Prakapenka, Vitali B.; Strobel, Timothy A.

    2017-05-01

    The pressure-dependent phase behavior of semiconducting chalcopyrite ZnSiP2 was studied up to 30 GPa using in situ X-ray diffraction and Raman spectroscopy in a diamond-anvil cell. A structural phase transition to the rock salt type structure was observed between 27 and 30 GPa, which is accompanied by soft phonon mode behavior and simultaneous loss of Raman signal and optical transmission through the sample. The high-pressure rock salt type phase possesses cationic disorder as evident from broad features in the X-ray diffraction patterns. The behavior of the low-frequency Raman modes during compression establishes a two-stage, order-disorder phase transition mechanism. The phase transition is partially reversible, and the parent chalcopyrite structure coexists with an amorphous phase upon slow decompression to ambient conditions.

  8. Coexisting Disorders and Academic Achievement among Children with ADHD

    ERIC Educational Resources Information Center

    Barnard-Brak, Lucy; Sulak, Tracey N.; Fearon, Danielle D.

    2011-01-01

    Objective: ADHD is a commonly diagnosed neuropsychological disorder among school-aged children with reported high rates of coexisting or comorbid disorders. As ADHD has been associated with academic underachievement, the current study examines this association in view of the presence of coexisting disorders. The purpose of the current study is to…

  9. Pressure-induced structural transition in chalcopyrite ZnSiP 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhadram, Venkata S.; Krishna, Lakshmi; Toberer, Eric S.

    The pressure-dependent phase behavior of semiconducting chalcopyrite ZnSiP 2 was studied up to 30 GPa using in situ X-ray diffraction and Raman spectroscopy in a diamond-anvil cell. A structural phase transition to the rock salt type structure was observed between 27 and 30 GPa, which is accompanied by soft phonon mode behavior and simultaneous loss of Raman signal and optical transmission through the sample. The high-pressure rock salt type phase possesses cationic disorder as evident from broad features in the X-ray diffraction patterns. The behavior of the low-frequency Raman modes during compression establishes a two-stage, order-disorder phase transition mechanism. Themore » phase transition is partially reversible, and the parent chalcopyrite structure coexists with an amorphous phase upon slow decompression to ambient conditions.« less

  10. Synthesis of the new compound CaFe(CO 3) 2 and experimental constraints on the (Ca,Fe)CO 3 join

    NASA Astrophysics Data System (ADS)

    Davidson, Paula M.; Symmes, Gregory H.; Cohen, Barbara A.; Reeder, Richard J.; Lindsley, Donald H.

    1993-12-01

    Synthesis of the new (disordered) compound CaFe(CO 3) 2 has been achieved with the use of Fe-substituted CaCO 3(Cc ss) + Ca-substituted FeCO 3(Sid ss) as starting materials, and high CO 2 pressures. High pressure (20-30 kbar) is needed to stabilize FeCO 3 to sufficiently high temperatures for disordered CaFe(CO 3) 2 to form. Experiments provide reversed compositions of coexisting disordered phases in the CaFe join and locate the solvus temperature for CaFe(C) 3) 2 between 815 and 845°C at 30 kbars. Calculated phase relations predict that the stability of ordered CaFe(CO 3) 2 is limited to T < ˜450°C by the breakdown to Cc ss + Sid ss. A comparison of the unit-cell volume measured for disordered CaFe(CO 3) 2 vs. that estimated for ordered CaFe(CO 3) 2 suggests that increasing pressure stabilizes the disordered phase.

  11. Extinction of quasiparticle interference in underdoped cuprates with coexisting order

    NASA Astrophysics Data System (ADS)

    Andersen, Brian M.; Hirschfeld, P. J.

    2009-04-01

    Scanning tunneling spectroscopy (STS) measurements [Y. Kohsaka , Nature (London) 454, 1072 (2008)] have shown that dispersing quasiparticle interference (QPI) peaks in Fourier-transformed conductance maps disappear as the bias voltage exceeds a certain threshold corresponding to the coincidence of the contour of constant quasiparticle energy with the period-doubled (e.g., antiferromagnetic) zone boundary. Here we show that this may be caused by coexisting order present in the d -wave superconducting phase. We show explicitly how QPI peaks are extinguished in the situation with coexisting long-range spin-density wave order and discuss the connection with the more realistic case where short-range order is created by quenched disorder. Since it is the localized QPI peaks rather than the underlying antinodal states themselves which are destroyed at a critical bias, our proposal resolves a conflict between STS and photoemission spectroscopy regarding the nature of these states. We also study the momentum-summed density of states in the coexisting phase and show how the competing order produces a kink inside the “V”-shaped d -wave superconducting gap in agreement with recent STS measurements [J. W. Alldredge , Nat. Phys. 4, 319 (2008)].

  12. Stripe-like nanoscale structural phase separation in superconducting BaPb 1-xBi xO 3

    DOE PAGES

    Giraldo-Gallo, P.; Zhang, Y.; Parra, C.; ...

    2015-09-16

    The phase diagram of BaPb 1-xBi xO 3 exhibits a superconducting “dome” in the proximity of a charge density wave phase. For the superconducting compositions, the material coexists as two structural polymorphs. Here we show, via high resolution transmission electron microscopy, that the structural dimorphism is accommodated in the form of partially disordered nanoscale stripes. Identification of the morphology of the nanoscale structural phase separation enables determination of the associated length scales, which we compare to the Ginzburg-Landau coherence length. Thus, we find that the maximum T c occurs when the superconducting coherence length matches the width of the partiallymore » disordered stripes, implying a connection between the structural phase separation and the shape of the superconducting dome.« less

  13. Canadian Schizophrenia Guidelines: Schizophrenia and Other Psychotic Disorders with Coexisting Substance Use Disorders.

    PubMed

    Crockford, David; Addington, Donald

    2017-09-01

    Persons with schizophrenia and other psychotic disorders frequently have coexisting substance use disorders that require modifications to treatment approaches for best outcomes. The objectives of this review were to identify evidence-based practices best practices that improve outcomes for individuals with schizophrenia and substance used disorders. We reviewed guidelines that were published in the last 5 years and that included systematic reviews or meta-analyses. Most of our recommendations came from 2 publications from the National Institute for Health and Care Excellence (NICE): the 2011 guidance titled Coexisting Severe Mental Illness (Psychosis) and Substance Misuse: Assessment and Management in Healthcare Settings and the 2014 guidance titled Psychosis and Schizophrenia in Adults: Prevention and Management. We placed these recommendations into the Canadian context to create this guideline. Evidence supports the inclusion of individuals with coexisting substance use disorders in first-episode psychosis programs. The programs should integrate psychosis and substance use treatments, emphasizing ongoing monitoring of both substance use and patterns and symptoms. The best outcomes are achieved with combined use of antipsychotic medications and addiction-based psychosocial interventions. However, limited evidence is available to recommend using one antipsychotic medication over another or one psychosocial intervention over another for persons with schizophrenia and other psychotic disorders with coexisting substance use disorders. Treating persons who have schizophrenia and other psychotic disorders with coexisting substance use disorders can present clinical challenges, but modifications in practice can help engage and retain people in treatment, where significant improvements over time can be expected.

  14. Vapor-liquid phase behavior of a size-asymmetric model of ionic fluids confined in a disordered matrix: The collective-variables-based approach

    NASA Astrophysics Data System (ADS)

    Patsahan, O. V.; Patsahan, T. M.; Holovko, M. F.

    2018-02-01

    We develop a theory based on the method of collective variables to study the vapor-liquid equilibrium of asymmetric ionic fluids confined in a disordered porous matrix. The approach allows us to formulate the perturbation theory using an extension of the scaled particle theory for a description of a reference system presented as a two-component hard-sphere fluid confined in a hard-sphere matrix. Treating an ionic fluid as a size- and charge-asymmetric primitive model (PM) we derive an explicit expression for the relevant chemical potential of a confined ionic system which takes into account the third-order correlations between ions. Using this expression, the phase diagrams for a size-asymmetric PM are calculated for different matrix porosities as well as for different sizes of matrix and fluid particles. It is observed that general trends of the coexistence curves with the matrix porosity are similar to those of simple fluids under disordered confinement, i.e., the coexistence region gets narrower with a decrease of porosity and, simultaneously, the reduced critical temperature Tc* and the critical density ρi,c * become lower. At the same time, our results suggest that an increase in size asymmetry of oppositely charged ions considerably affects the vapor-liquid diagrams leading to a faster decrease of Tc* and ρi,c * and even to a disappearance of the phase transition, especially for the case of small matrix particles.

  15. Appearance of superconductivity at the vacancy order-disorder boundary in KxFe2 -ySe2

    NASA Astrophysics Data System (ADS)

    Duan, Chunruo; Yang, Junjie; Ren, Yang; Thomas, Sean M.; Louca, Despina

    2018-05-01

    The role of phase separation and the effect of Fe-vacancy ordering in the emergence of superconductivity in alkali metal doped iron selenides AxFe2 -ySe2 (A = K, Rb, Cs) is explored. High energy x-ray diffraction and Monte Carlo simulation were used to investigate the crystal structure of quenched superconducting (SC) and as-grown nonsuperconducting (NSC) KxFe2 -ySe2 single crystals. The coexistence of superlattice structures with the in-plane √{2 }×√{2 } K-vacancy ordering and the √{5 }×√{5 } Fe-vacancy ordering were observed in both the SC and NSC crystals alongside the I4/mmm Fe-vacancy-free phase. Moreover, in the SC crystals, an Fe-vacancy-disordered phase is additionally proposed to be present. Monte Carlo simulations suggest that it appears at the boundary between the I4/mmm vacancy-free phase and the I4/m vacancy-ordered phases (√{5 }×√{5 } ). The vacancy-disordered phase is nonmagnetic and is most likely the host of superconductivity.

  16. Impact of nanostructuring on the magnetic and magnetocaloric properties of microscale phase-separated La 5/8–yPr yCa 3/8MnO₃ manganites

    DOE PAGES

    Bingham, N. S.; Lampen, P.; Phan, M. H.; ...

    2012-08-16

    Bulk manganites of the form La 5/8–yPr yCa 3/8MnO₃ (LPCMO) exhibit a complex phase diagram due to coexisting charge-ordered antiferromagnetic (CO/AFM), charge-disordered paramagnetic (PM), and ferromagnetic (FM) phases. Because phase separation in LPCMO occurs on the microscale, reducing particle size to below this characteristic length is expected to have a strong impact on the magnetic properties of the system. Through a comparative study of the magnetic and magnetocaloric properties of single-crystalline (bulk) and nanocrystalline LPCMO (y=3/8) we show that the AFM, CO, and FM transitions seen in the single crystal can also be observed in the large particle sizes (400more » and 150 nm), while only a single PM to FM transition is found for the small particles (55 nm). Magnetic and magnetocaloric measurements reveal that decreasing particle size affects the balance of competing phases in LPCMO and narrows the range of fields over which PM, FM, and CO phases coexist. The FM volume fraction increases with size reduction, until CO is suppressed below some critical size, ~100 nm. With size reduction, the saturation magnetization and field sensitivity first increase as long-range CO is inhibited, then decrease as surface effects become increasingly important. The trend that the FM phase is stabilized on the nanoscale is contrasted with the stabilization of the charge-disordered PM phase occurring on the microscale, demonstrating that in terms of the characteristic phase separation length, a few microns and several hundred nanometers represent very different regimes in LPCMO.« less

  17. Structural-Phase Transformations of CuZn Alloy Under Thermal-Impact Cycling

    NASA Astrophysics Data System (ADS)

    Potekaev, A. I.; Chaplygina, A. A.; Kulagina, V. V.; Chaplygin, P. A.; Starostenkov, M. D.; Grinkevich, L. S.

    2017-02-01

    Using the Monte Carlo method, special features of structural - phase transformations in β-brass are investigated during thermal impact using thermal cycling as an example (a number of successive order - disorder and disorder - order phase transitions in the course of several heating - cooling cycles). It is shown that a unique hysteresis is observed after every heating and cooling cycle, whose presence indicates irreversibility of the processes, which suggests a difference in the structural - phase states both in the heating and cooling stages. A conclusion is drawn that the structural - phase transformations in the heating and cooling stages occur within different temperature intervals, where the thermodynamic stimuli of one or the other structural - phase state are low. This is also demonstrated both in the plots of configurational energy, long- and short-range order parameter, atomic structure variations, and structural - phase state distributions. Simultaneously, there coexist ordered and disordered phases and a certain collection of superstructure domains. This implies the presence of low - stability states in the vicinity of the order - disorder phase transition. The results of investigations demonstrate that the structural - phase transitions within two successive heating and cooling cycles at the same temperature are different in both stages. These changes, though not revolutionary, occur in every cycle and decrease with the increasing cycle number. In fact, the system undergoes training with a tendency towards a certain sequence of structural - phase states.

  18. Canadian Schizophrenia Guidelines: Schizophrenia and Other Psychotic Disorders with Coexisting Substance Use Disorders

    PubMed Central

    Addington, Donald

    2017-01-01

    Objective: Persons with schizophrenia and other psychotic disorders frequently have coexisting substance use disorders that require modifications to treatment approaches for best outcomes. The objectives of this review were to identify evidence-based practices best practices that improve outcomes for individuals with schizophrenia and substance used disorders. Method: We reviewed guidelines that were published in the last 5 years and that included systematic reviews or meta-analyses. Most of our recommendations came from 2 publications from the National Institute for Health and Care Excellence (NICE): the 2011 guidance titled Coexisting Severe Mental Illness (Psychosis) and Substance Misuse: Assessment and Management in Healthcare Settings and the 2014 guidance titled Psychosis and Schizophrenia in Adults: Prevention and Management. We placed these recommendations into the Canadian context to create this guideline. Results: Evidence supports the inclusion of individuals with coexisting substance use disorders in first-episode psychosis programs. The programs should integrate psychosis and substance use treatments, emphasizing ongoing monitoring of both substance use and patterns and symptoms. The best outcomes are achieved with combined use of antipsychotic medications and addiction-based psychosocial interventions. However, limited evidence is available to recommend using one antipsychotic medication over another or one psychosocial intervention over another for persons with schizophrenia and other psychotic disorders with coexisting substance use disorders. Conclusions: Treating persons who have schizophrenia and other psychotic disorders with coexisting substance use disorders can present clinical challenges, but modifications in practice can help engage and retain people in treatment, where significant improvements over time can be expected. PMID:28886671

  19. Reentrant equilibrium disordering in nanoparticle–polymer mixtures

    DOE PAGES

    Meng, Dong; Kumar, Sanat K.; Grest, Gary S.; ...

    2017-01-31

    A large body of experimental work has established that athermal colloid/polymer mixtures undergo a sequence of transitions from a disordered fluid state to a colloidal crystal to a second disordered phase with increasing polymer concentration. These transitions are driven by polymer-mediated interparticle attraction, which is a function of both the polymer density and size. It has been posited that the disordered state at high polymer density is a consequence of strong interparticle attractions that kinetically inhibit the formation of the colloidal crystal, i.e., the formation of a non-equilibrium gel phase interferes with crystallization. Here we use molecular dynamics simulations andmore » density functional theory on polymers and nanoparticles (NPs) of comparable size and show that the crystal-disordered phase coexistence at high polymer density for sufficiently long chains corresponds to an equilibrium thermodynamic phase transition. While the crystal is, indeed, stabilized at intermediate polymer density by polymer-induced intercolloid attractions, it is destabilized at higher densities because long chains lose significant configurational entropy when they are forced to occupy all of the crystal voids. Finally, our results are in quantitative agreement with existing experimental data and show that, at least in the nanoparticle limit of sufficiently small colloidal particles, the crystal phase only has a modest range of thermodynamic stability.« less

  20. Eco-friendly p-type Cu2SnS3 thermoelectric material: crystal structure and transport properties

    PubMed Central

    Shen, Yawei; Li, Chao; Huang, Rong; Tian, Ruoming; Ye, Yang; Pan, Lin; Koumoto, Kunihito; Zhang, Ruizhi; Wan, Chunlei; Wang, Yifeng

    2016-01-01

    As a new eco-friendly thermoelectric material, copper tin sulfide (Cu2SnS3) ceramics were experimentally studied by Zn-doping. Excellent electrical transport properties were obtained by virtue of 3-dimensionally conductive network for holes, which are less affected by the coexistence of cubic and tetragonal phases that formed upon Zn subsitition for Sn; a highest power factors ~0.84 mW m−1 K−2 at 723 K was achieved in the 20% doped sample. Moreover, an ultralow lattice thermal conductivity close to theoretical minimum was observed in these samples, which could be related to the disordering of atoms in the coexisting cubic and tetragonal phases and the interfaces. Thanks to the phonon-glass-electron-crystal features, a maximum ZT ~ 0.58 was obtained at 723 K, which stands among the tops for sulfide thermoelectrics at the same temperature. PMID:27666524

  1. Phase separation of electrons strongly coupled with phonons in cuprates and manganites

    NASA Astrophysics Data System (ADS)

    Alexandrov, Sasha

    2009-03-01

    Recent advanced Monte Carlo simulations have not found superconductivity and phase separation in the Hubbard model with on-site repulsive electron-electron correlations. I argue that microscopic phase separations in cuprate superconductors and colossal magnetoresistance (CMR) manganites originate from a strong electron-phonon interaction (EPI) combined with unavoidable disorder. Attractive electron correlations, caused by an almost unretarded EPI, are sufficient to overcome the direct inter-site Coulomb repulsion in these charge-transfer Mott-Hubbard insulators, so that low energy physics is that of small polarons and small bipolarons. They form clusters localized by disorder below the mobility edge, but propagate as the Bloch states above the mobility edge. I identify the Froehlich EPI as the most essential for pairing and phase separation in superconducting layered cuprates. The pairing of oxygen holes into heavy bipolarons in the paramagnetic phase (current-carrier density collapse (CCDC)) explains also CMR and high and low-resistance phase coexistence near the ferromagnetic transition of doped manganites.

  2. Structure of interfaces at phase coexistence. Theory and numerics

    NASA Astrophysics Data System (ADS)

    Delfino, Gesualdo; Selke, Walter; Squarcini, Alessio

    2018-05-01

    We compare results of the exact field theory of phase separation in two dimensions with Monte Carlo simulations for the q-state Potts model with boundary conditions producing an interfacial region separating two pure phases. We confirm in particular the theoretical predictions that below critical temperature the surplus of non-boundary colors appears in drops along a single interface, while for q  >  4 at critical temperature there is formation of two interfaces enclosing a macroscopic disordered layer. These qualitatively different structures of the interfacial region can be discriminated through a measurement at a single point for different system sizes.

  3. Tunable band alignment in two-phase-coexistence Nb3O7F nanocrystals with enhanced light harvesting and photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Huang, Fei; Feng, Xin; Yan, Aihua; Dong, Haiming; Hu, Miao; Li, Qi

    2018-06-01

    A two-phase-coexistence technique offers intriguing variables to maneuver novel and enhanced functionality in a single-component material. Most importantly, new band alignment and perfect interfaces between two phases can strongly affect local photoelectronic properties. However, previous efforts to achieve two-phase coexistence were mainly restricted to specific systems and methods. Here we demonstrate a phase-transition route to acquire two-phase-coexistence niobium oxyfluoride (Nb3O7F) nanocrystals for the first time. Based on key distinguishing features of the experimental results and theoretical analysis, the phase transition of Nb3O7F involves an organic/inorganic hybrid, heat treating, Al-doping, lattice deformation and structural rearrangement. The band gap can be effectively tuned from 3.03 eV to 2.84 eV, and the VBM can be tuned from 1.49 eV to 1.69 eV according to the phase proportion. Benefiting from uniform nanocrystal size, tunable band alignment and an optimized interfacial structure, the two-phase coexistence markedly enhances visible-light harvesting and the photocatalytic performance of Nb3O7F nanocrystals. The results not only demonstrate an opportunity to explore two-phase coexistence of novel nanocrystals, but also illustrate the role of two-phase coexistence in achieving enhanced photoelectronic properties.

  4. Tunable band alignment in two-phase-coexistence Nb3O7F nanocrystals with enhanced light harvesting and photocatalytic performance.

    PubMed

    Li, Zhen; Huang, Fei; Feng, Xin; Yan, Aihua; Dong, Haiming; Hu, Miao; Li, Qi

    2018-06-01

    A two-phase-coexistence technique offers intriguing variables to maneuver novel and enhanced functionality in a single-component material. Most importantly, new band alignment and perfect interfaces between two phases can strongly affect local photoelectronic properties. However, previous efforts to achieve two-phase coexistence were mainly restricted to specific systems and methods. Here we demonstrate a phase-transition route to acquire two-phase-coexistence niobium oxyfluoride (Nb 3 O 7 F) nanocrystals for the first time. Based on key distinguishing features of the experimental results and theoretical analysis, the phase transition of Nb 3 O 7 F involves an organic/inorganic hybrid, heat treating, Al-doping, lattice deformation and structural rearrangement. The band gap can be effectively tuned from 3.03 eV to 2.84 eV, and the VBM can be tuned from 1.49 eV to 1.69 eV according to the phase proportion. Benefiting from uniform nanocrystal size, tunable band alignment and an optimized interfacial structure, the two-phase coexistence markedly enhances visible-light harvesting and the photocatalytic performance of Nb 3 O 7 F nanocrystals. The results not only demonstrate an opportunity to explore two-phase coexistence of novel nanocrystals, but also illustrate the role of two-phase coexistence in achieving enhanced photoelectronic properties.

  5. Discovery of carbon-vacancy ordering in Nb4AlC3–x under the guidance of first-principles calculations

    PubMed Central

    Zhang, Hui; Hu, Tao; Wang, Xiaohui; Li, Zhaojin; Hu, Minmin; Wu, Erdong; Zhou, Yanchun

    2015-01-01

    The conventional wisdom to tailor the properties of binary transition metal carbides by order-disorder phase transformation has been inapplicable for the machinable ternary carbides (MTCs) due to the absence of ordered phase in bulk sample. Here, the presence of an ordered phase with structural carbon vacancies in Nb4AlC3–x (x ≈ 0.3) ternary carbide is predicted by first-principles calculations, and experimentally identified for the first time by transmission electron microscopy and micro-Raman spectroscopy. Consistent with the first-principles prediction, the ordered phase, o-Nb4AlC3, crystalizes in P63/mcm with a = 5.423 Å, c = 24.146 Å. Coexistence of ordered (o-Nb4AlC3) and disordered (Nb4AlC3–x) phase brings about abundant domains with irregular shape in the bulk sample. Both heating and electron irradiation can induce the transformation from o-Nb4AlC3 to Nb4AlC3–x. Our findings may offer substantial insights into the roles of carbon vacancies in the structure stability and order-disorder phase transformation in MTCs. PMID:26388153

  6. The epidemiology of pelvic floor disorders and childbirth: an update

    PubMed Central

    Hallock, Jennifer L.; Handa, Victoria L.

    2015-01-01

    SYNOPSIS Using a life span model, this article presents new scientific findings regarding risk factors for pelvic floor disorders (PFDs), with a focus on the role of childbirth in the development of single or multiple co-existing PFDs. Phase I of the life span model includes predisposing factors such as genetic predisposition and race. Phase II of the model includes inciting factors such as obstetric events. Prolapse, urinary incontinence (UI) and fecal incontinence (FI) are more common among vaginally parous women, although the impact of vaginal delivery on risk of FI is less dramatic than for prolapse and UI. Finally, Phase III includes intervening factors such as age and obesity. Both age and obesity are associated with prevalence of PFDs. The prevention and treatment of obesity is an important component to PFD prevention. PMID:26880504

  7. Origins of the anomalous stress behavior in charged colloidal suspensions under shear.

    PubMed

    Kumar, Amit; Higdon, Jonathan J L

    2010-11-01

    Numerical simulations are conducted to determine microstructure and rheology of sheared suspensions of charged colloidal particles at a volume fraction of ϕ=0.33. Over broad ranges of repulsive force strength F0 and Péclet number Pe, dynamic simulations show coexistence of ordered and disordered stable states with the state dependent on the initial condition. In contrast to the common view, at low shear rates, the disordered phase exhibits a lower viscosity (μ(r)) than the ordered phase, while this behavior is reversed at higher shear rates. Analysis shows the stress reversal is associated with different shear induced microstructural distortions in the ordered and disordered systems. Viscosity vs shear rate data over a wide range of F0 and Pe collapses well upon rescaling with the long-time self-diffusivity. Shear thinning viscosity in the ordered phase scaled as μ(r)∼Pe(-0.81) at low shear rates. The microstructural dynamics revealed in these studies explains the anomalous behavior and hysteresis loops in stress data reported in the literature.

  8. Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles

    NASA Astrophysics Data System (ADS)

    Wei, Ming-Tzo; Elbaum-Garfinkle, Shana; Holehouse, Alex S.; Chen, Carlos Chih-Hsiung; Feric, Marina; Arnold, Craig B.; Priestley, Rodney D.; Pappu, Rohit V.; Brangwynne, Clifford P.

    2017-11-01

    Many intracellular membraneless organelles form via phase separation of intrinsically disordered proteins (IDPs) or regions (IDRs). These include the Caenorhabditis elegans protein LAF-1, which forms P granule-like droplets in vitro. However, the role of protein disorder in phase separation and the macromolecular organization within droplets remain elusive. Here, we utilize a novel technique, ultrafast-scanning fluorescence correlation spectroscopy, to measure the molecular interactions and full coexistence curves (binodals), which quantify the protein concentration within LAF-1 droplets. The binodals of LAF-1 and its IDR display a number of unusual features, including 'high concentration' binodal arms that correspond to remarkably dilute droplets. We find that LAF-1 and other in vitro and intracellular droplets are characterized by an effective mesh size of ∼3-8 nm, which determines the size scale at which droplet properties impact molecular diffusion and permeability. These findings reveal how specific IDPs can phase separate to form permeable, low-density (semi-dilute) liquids, whose structural features are likely to strongly impact biological function.

  9. Phase Coexistence in a Dynamic Phase Diagram.

    PubMed

    Gentile, Luigi; Coppola, Luigi; Balog, Sandor; Mortensen, Kell; Ranieri, Giuseppe A; Olsson, Ulf

    2015-08-03

    Metastability and phase coexistence are important concepts in colloidal science. Typically, the phase diagram of colloidal systems is considered at the equilibrium without the presence of an external field. However, several studies have reported phase transition under mechanical deformation. The reason behind phase coexistence under shear flow is not fully understood. Here, multilamellar vesicle (MLV)-to-sponge (L3 ) and MLV-to-Lα transitions upon increasing temperature are detected using flow small-angle neutron scattering techniques. Coexistence of Lα and MLV phases at 40 °C under shear flow is detected by using flow NMR spectroscopy. The unusual rheological behavior observed by studying the lamellar phase of a non-ionic surfactant is explained using (2) H NMR and diffusion flow NMR spectroscopy with the coexistence of planar lamellar-multilamellar vesicles. Moreover, a dynamic phase diagram over a wide range of temperatures is proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Fluctuation effects in blends of A + B homopolymers with AB diblock copolymer

    NASA Astrophysics Data System (ADS)

    Spencer, Russell K. W.; Matsen, Mark W.

    2018-05-01

    Field-theoretic simulations (FTSs) are performed on ternary blends of A- and B-type homopolymers of polymerization Nh and symmetric AB diblock copolymers of polymerization Nc. Unlike previous studies, our FTSs are conducted in three-dimensional space, with the help of two new semi-grand canonical ensembles. Motivated by the first experiment to discover bicontinuous microemulsion (BμE) in the polyethylene-polyethylene propylene system, we consider molecules of high molecular weight with size ratios of α ≡ Nh/Nc = 0.1, 0.2, and 0.4. Our focus is on the A + B coexistence between the two homopolymer-rich phases in the low-copolymer region of the phase diagram. The Scott line, at which the A + B phases mix to form a disordered melt with increasing temperature (or decreasing χ), is accurately determined using finite-size scaling techniques. We also examine how the copolymer affects the interface between the A + B phases, reducing the interfacial tension toward zero. Although comparisons with self-consistent field theory (SCFT) illustrate that fluctuation effects are relatively small, fluctuations do nevertheless produce the observed BμE that is absent in the SCFT phase diagram. Furthermore, we find evidence of three-phase A + B + BμE coexistence, which may have been missed in the original as well as subsequent experiments.

  11. Dissociative disorder manifesting for underlying adolescent hemi-parkinsonism: New chronology for old mummies.

    PubMed

    Jha, Shailesh; Garg, Amit; Khanna, Amit

    2015-08-01

    Dissociative symptoms can be induced by a variety of conditions that can either coexist or mimic each other in clinical presentation. In coexisting dissociative disorder with medical illness, the causality remains uncertain, but sometime its role as nidus for dissociative symptoms just cannot be ruled out. The origin of "organic dissociative disorder" is undoubtedly found by various authors who demonstrated that a high percentage of patients with dissociative symptoms present with some form of neurological insult before developing the symptom. Herein we report on a case of adolescent onset hemi-parkinsonism with coexisting dissociative disorder. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Phase transitions in a multistate majority-vote model on complex networks

    NASA Astrophysics Data System (ADS)

    Chen, Hanshuang; Li, Guofeng

    2018-06-01

    We generalize the original majority-vote (MV) model from two states to arbitrary p states and study the order-disorder phase transitions in such a p -state MV model on complex networks. By extensive Monte Carlo simulations and a mean-field theory, we show that for p ≥3 the order of phase transition is essentially different from a continuous second-order phase transition in the original two-state MV model. Instead, for p ≥3 the model displays a discontinuous first-order phase transition, which is manifested by the appearance of the hysteresis phenomenon near the phase transition. Within the hysteresis loop, the ordered phase and disordered phase are coexisting, and rare flips between the two phases can be observed due to the finite-size fluctuation. Moreover, we investigate the type of phase transition under a slightly modified dynamics [Melo et al., J. Stat. Mech. (2010) P11032, 10.1088/1742-5468/2010/11/P11032]. We find that the order of phase transition in the three-state MV model depends on the degree heterogeneity of networks. For p ≥4 , both dynamics produce the first-order phase transitions.

  13. Gas-liquid phase coexistence in quasi-two-dimensional Stockmayer fluids: A molecular dynamics study.

    PubMed

    Ouyang, Wen-Ze; Xu, Sheng-Hua; Sun, Zhi-Wei

    2011-01-07

    The Maxwell construction together with molecular dynamics simulation is used to study the gas-liquid phase coexistence of quasi-two-dimensional Stockmayer fluids. The phase coexistence curves and corresponding critical points under different dipole strength are obtained, and the critical properties are calculated. We investigate the dependence of the critical point and critical properties on the dipole strength. When the dipole strength is increased, the abrupt disappearance of the gas-liquid phase coexistence in quasi-two-dimensional Stockmayer fluids is not found. However, if the dipole strength is large enough, it does lead to the formation of very long reversible chains which makes the relaxation of the system very slow and the observation of phase coexistence rather difficult or even impossible.

  14. Approaching Piezoelectric Response of Pb-Piezoelectrics in Hydrothermally Synthesized Bi0.5(Na1- xK x)0.5TiO3 Nanotubes.

    PubMed

    Ghasemian, Mohammad Bagher; Rawal, Aditya; Liu, Yun; Wang, Danyang

    2018-06-20

    A large piezoelectric coefficient of 76 pm/V along the diameter direction, approaching that of lead-based piezoelectrics, is observed in hydrothermally synthesized Pb-free Bi 0.5 (Na 0.8 K 0.2 ) 0.5 TiO 3 nanotubes. The 30-50 nm diameter nanotubes are formed through a scrolling and wrapping mechanism without the need of a surfactant or template. A molar ratio of KOH/NaOH = 0.5 for the mineralizers yields the Na/K ratio of ∼0.8:0.2, corresponding to an orthorhombic-tetragonal (O-T) phase boundary composition. X-ray diffraction patterns along with transmission electron microscopy analysis ascertain the coexistence of orthorhombic and tetragonal phases with (110) and (001) orientations along the nanotube length direction, respectively. 23 Na NMR spectroscopy confirms the higher degree of disorder in Bi 0.5 (Na 1- x K x ) 0.5 TiO 3 nanotubes with O-T phase coexistence. These findings present a significant advance toward the application of Pb-free piezoelectric materials.

  15. Anomalous partitioning of water in coexisting liquid phases of lipid multilayers near 100% relative humidity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Yicong; Ghosh, Sajal K.; Bera, Sambhunath

    2015-11-30

    X-ray diffraction is used to determine the hydration dependence of a ternary mixture lipid multilayer structure which has phase separated into liquid-ordered (Lo) and liquid-disordered (Ld) phases. An anomaly is observed in the swelling behavior of the Ld phase at a relative humidity (RH) close to 100%, which is different from the anomalous swelling happens close to the main lipid gel-fluid transition. The lamellar repeat distance of the Ld phase swells by an extra 4 Å, well beyond the equilibrium spacing predicted by the inter-bilayer forces. This anomalous swelling is caused by the hydrophobic mismatch energy at the domain boundaries,more » which produces surprisingly long range effect.« less

  16. Depressive disorders co-existing with Addison-Biermer anemia - case report.

    PubMed

    Just, Mark Jean; Kozakiewicz, Mariusz

    2015-01-01

    Anemia is a disease that can co-exist with depression, other mental disorders, or somatic diseases. Anemia can imitate symptoms of depression, while depression symptoms can mask concurring symptoms of anemia. I am presenting a case of a 48-year-old woman with Addison-Biermer anemia, with co-existing mood disorders. The clinical analysis of the presented patient's history indicates diagnostic problems and a need for a detailed analysis of drug-related complications that occurred during previous treatment, eg, in the form of neuroleptic malignant syndrome. The presented case report contains valuable guidelines that can be of assistance in diagnostics and treatment of patients treated for mental disorders, who are also diagnosed with somatic diseases.

  17. Computer simulation and high level virial theory of Saturn-ring or UFO colloids.

    PubMed

    Bates, Martin A; Dennison, Matthew; Masters, Andrew

    2008-08-21

    Monte Carlo simulations are used to map out the complete phase diagram of hard body UFO systems, in which the particles are composed of a concentric sphere and thin disk. The equation of state and phase behavior are determined for a range of relative sizes of the sphere and disk. We show that for relatively large disks, nematic and solid phases are observed in addition to the isotropic fluid. For small disks, two different solid phases exist. For intermediate sizes, only a disordered fluid phase is observed. The positional and orientational structure of the various phases are examined. We also compare the equations of state and the nematic-isotropic coexistence densities with those predicted by an extended Onsager theory using virial coefficients up to B(8).

  18. Computer simulation and high level virial theory of Saturn-ring or UFO colloids

    NASA Astrophysics Data System (ADS)

    Bates, Martin A.; Dennison, Matthew; Masters, Andrew

    2008-08-01

    Monte Carlo simulations are used to map out the complete phase diagram of hard body UFO systems, in which the particles are composed of a concentric sphere and thin disk. The equation of state and phase behavior are determined for a range of relative sizes of the sphere and disk. We show that for relatively large disks, nematic and solid phases are observed in addition to the isotropic fluid. For small disks, two different solid phases exist. For intermediate sizes, only a disordered fluid phase is observed. The positional and orientational structure of the various phases are examined. We also compare the equations of state and the nematic-isotropic coexistence densities with those predicted by an extended Onsager theory using virial coefficients up to B8.

  19. Comparison of health-related quality of life among men with different co-existing severe mental disorders in treatment for substance use.

    PubMed

    Adan, Ana; Marquez-Arrico, Julia E; Gilchrist, Gail

    2017-10-23

    Patient-perceived health-related quality of life has become an important outcome in health care as an indicator of treatment effectiveness and recovery for patients with substance use disorder. As no study has assessed health-related quality of life among male patients with substance use disorder and co-existing severe mental illness, we compared health-related quality of life among patients with substance use disorder and the following severe mental illness diagnosis in Barcelona, Spain: schizophrenia, bipolar disorder, major depressive disorder, and examined the associations with clinically related variables. Additionally, we compared results for health-related quality of life in patients with substance use disorder and severe mental illness, with Spanish population norms. We assessed 107 substance use disorder male patients using the 36-Item Short Form Health Survey comparing results across three groups with: comorbid schizophrenia (n = 37), comorbid bipolar disorder (n = 34), and comorbid major depressive disorder (n = 36). Multiple analyses of variance were performed to explore health-related quality of life by the type of co-existing SMI and linear regression analyses examined clinical correlates for the 36-Item Short Form Health Survey dimensions for each group. There were differences in Physical Functioning, Vitality and the Physical Composite Scale among groups. Poorer Physical Functioning was observed for patients with comorbid schizophrenia (80.13±3.27) and major depressive disorder (81.97±3.11) compared with comorbid bipolar disorder patients (94.26±1.93). Patients with substance use disorder and schizophrenia presented lower scores in Vitality (41.6±2.80) than those with co-existing bipolar disorder (55.68±3.66) and major depressive disorder (53.63±2.92). Finally, results in the Physical Composite Scale showed lower scores for patients with comorbid schizophrenia (51.06±1.41) and major depressive disorder (51.99±1.87) than for those with bipolar disorder (60.40±2.17). Moreover, all groups had poorer health-related quality of life, especially Social Functioning, Role-Emotional and Mental Health, compared with population norms. Different clinical variables (e.g. medical disease comorbidity, severity of addiction, psychiatric symptomatology, suicide attempts, drug relapses) were related to different health-related quality of life dimensions depending on the co-existing severe mental illness. Among male patients with substance use disorder, co-existing severe mental illness may influence some health-related quality of life dimensions and clinically related variables. Such differences may require tailored therapeutic interventions.

  20. Application of the Double-Tangent Construction of Coexisting Phases to Any Type of Phase Equilibrium for Binary Systems Modeled with the Gamma-Phi Approach

    ERIC Educational Resources Information Center

    Jaubert, Jean-Noël; Privat, Romain

    2014-01-01

    The double-tangent construction of coexisting phases is an elegant approach to visualize all the multiphase binary systems that satisfy the equality of chemical potentials and to select the stable state. In this paper, we show how to perform the double-tangent construction of coexisting phases for binary systems modeled with the gamma-phi…

  1. Topologically Diverse Human Membrane Proteins Partition to Liquid-Disordered Domains in Phase-Separated Lipid Vesicles.

    PubMed

    Schlebach, Jonathan P; Barrett, Paul J; Day, Charles A; Kim, Ji Hun; Kenworthy, Anne K; Sanders, Charles R

    2016-02-23

    The integration of membrane proteins into "lipid raft" membrane domains influences many biochemical processes. The intrinsic structural properties of membrane proteins are thought to mediate their partitioning between membrane domains. However, whether membrane topology influences the targeting of proteins to rafts remains unclear. To address this question, we examined the domain preference of three putative raft-associated membrane proteins with widely different topologies: human caveolin-3, C99 (the 99 residue C-terminal domain of the amyloid precursor protein), and peripheral myelin protein 22. We find that each of these proteins are excluded from the ordered domains of giant unilamellar vesicles containing coexisting liquid-ordered and liquid-disordered phases. Thus, the intrinsic structural properties of these three topologically distinct disease-linked proteins are insufficient to confer affinity for synthetic raft-like domains.

  2. Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5.

    PubMed

    Park, Tuson; Ronning, F; Yuan, H Q; Salamon, M B; Movshovich, R; Sarrao, J L; Thompson, J D

    2006-03-02

    With only a few exceptions that are well understood, conventional superconductivity does not coexist with long-range magnetic order (for example, ref. 1). Unconventional superconductivity, on the other hand, develops near a phase boundary separating magnetically ordered and magnetically disordered phases. A maximum in the superconducting transition temperature T(c) develops where this boundary extrapolates to zero Kelvin, suggesting that fluctuations associated with this magnetic quantum-critical point are essential for unconventional superconductivity. Invariably, though, unconventional superconductivity masks the magnetic phase boundary when T < T(c), preventing proof of a magnetic quantum-critical point. Here we report specific-heat measurements of the pressure-tuned unconventional superconductor CeRhIn5 in which we find a line of quantum-phase transitions induced inside the superconducting state by an applied magnetic field. This quantum-critical line separates a phase of coexisting antiferromagnetism and superconductivity from a purely unconventional superconducting phase, and terminates at a quantum tetracritical point where the magnetic field completely suppresses superconductivity. The T --> 0 K magnetic field-pressure phase diagram of CeRhIn5 is well described with a theoretical model developed to explain field-induced magnetism in the high-T(c) copper oxides, but in which a clear delineation of quantum-phase boundaries has not been possible. These experiments establish a common relationship among hidden magnetism, quantum criticality and unconventional superconductivity in copper oxides and heavy-electron systems such as CeRhIn5.

  3. Dynamic phase coexistence in glass-forming liquids.

    PubMed

    Pastore, Raffaele; Coniglio, Antonio; Ciamarra, Massimo Pica

    2015-07-09

    One of the most controversial hypotheses for explaining the heterogeneous dynamics of glasses postulates the temporary coexistence of two phases characterized by a high and by a low diffusivity. In this scenario, two phases with different diffusivities coexist for a time of the order of the relaxation time and mix afterwards. Unfortunately, it is difficult to measure the single-particle diffusivities to test this hypothesis. Indeed, although the non-Gaussian shape of the van-Hove distribution suggests the transient existence of a diffusivity distribution, it is not possible to infer from this quantity whether two or more dynamical phases coexist. Here we provide the first direct observation of the dynamical coexistence of two phases with different diffusivities, by showing that in the deeply supercooled regime the distribution of the single-particle diffusivities acquires a transient bimodal shape. We relate this distribution to the heterogeneity of the dynamics and to the breakdown of the Stokes-Einstein relation, and we show that the coexistence of two dynamical phases occurs up to a timescale growing faster than the relaxation time on cooling, for some of the considered models. Our work offers a basis for rationalizing the dynamics of supercooled liquids and for relating their structural and dynamical properties.

  4. A clinical review on megalencephaly

    PubMed Central

    Pavone, Piero; Praticò, Andrea Domenico; Rizzo, Renata; Corsello, Giovanni; Ruggieri, Martino; Parano, Enrico; Falsaperla, Raffaele

    2017-01-01

    Abstract Megalencephaly and macrocephaly present with a head circumference measurement 2 standard deviations above the age-related mean. However, even if pathologic events resulting in both megalencephaly and macrocephaly may coexist, a distinction between these two entities is appropriate, as they represent clinical expression of different disorders with a different approach in clinical work-up, overall prognosis, and treatment. Megalencephaly defines an increased growth of cerebral structures related to dysfunctional anomalies during the various steps of brain development in the neuronal proliferation and/or migration phases or as a consequence of postnatal abnormal events. The disorders associated with megalencephaly are classically defined into 3 groups: idiopathic or benign, metabolic, and anatomic. In this article, we seek to underline the clinical aspect of megalencephaly, emphasizing the main disorders that manifest with this anomaly in an attempt to properly categorize these disorders within the megalencephaly group. PMID:28658095

  5. Molecular dynamics study of intermediate phase of long chain alkyl sulfonate/water systems.

    PubMed

    Poghosyan, Armen H; Arsenyan, Levon H; Shahinyan, Aram A

    2013-01-08

    Using atomic level simulation we aimed to investigate various intermediate phases of the long chain alkyl sulfonate/water system. Overall, about 800 ns parallel molecular dynamics simulation study was conducted for a surfactant/water system consisting of 128 sodium pentadecyl sulfonate and 2251 water molecules. The GROMACS software code with united atom force field was applied. Despite some differences, the analysis of main structural parameters is in agreement with X-ray experimental findings. The mechanism of self-assembly of SPDS molecules was also examined. At T = 323 K we obtained both tilted fully interdigitated and liquid crystalline-like disordered hydrocarbon chains; hence, the presence of either gel phase that coexists with a lamellar phase or metastable gel phase with fraction of gauche configuration can be assumed. Further increase of temperature revealed that the system underwent a transition to a lamellar phase, which was clearly identified by the presence of fully disordered hydrocarbon chains. The transition from gel-to-fluid phase was implemented by simulated annealing treatment, and the phase transition point at T = 335 K was identified. The surfactant force field in its presented set is surely enabled to fully demonstrate the mechanism of self-assembly and the behavior of phase transition making it possible to get important information around the phase transition point.

  6. AC Current Driven Dynamic Vortex State in YBa2Cu3O7-x (Postprint)

    DTIC Science & Technology

    2012-02-01

    coexisting steady states of driven vortex motion with different characteristics: a quasi-static disordered glassy state in the sample interior and a...coexisting, vortex, plastic, dynamic, calculations, disordered , hysteretic, model, films, edges 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...characteris- tics: a quasi-static disordered glassy state in the sample interior and a dynamic state of plastic motion near the edges. Finite- element

  7. A possible four-phase coexistence in a single-component system

    NASA Astrophysics Data System (ADS)

    Akahane, Kenji; Russo, John; Tanaka, Hajime

    2016-08-01

    For different phases to coexist in equilibrium at constant temperature T and pressure P, the condition of equal chemical potential μ must be satisfied. This condition dictates that, for a single-component system, the maximum number of phases that can coexist is three. Historically this is known as the Gibbs phase rule, and is one of the oldest and venerable rules of thermodynamics. Here we make use of the fact that, by varying model parameters, the Gibbs phase rule can be generalized so that four phases can coexist even in single-component systems. To systematically search for the quadruple point, we use a monoatomic system interacting with a Stillinger-Weber potential with variable tetrahedrality. Our study indicates that the quadruple point provides flexibility in controlling multiple equilibrium phases and may be realized in systems with tunable interactions, which are nowadays feasible in several soft matter systems such as patchy colloids.

  8. A possible four-phase coexistence in a single-component system

    PubMed Central

    Akahane, Kenji; Russo, John; Tanaka, Hajime

    2016-01-01

    For different phases to coexist in equilibrium at constant temperature T and pressure P, the condition of equal chemical potential μ must be satisfied. This condition dictates that, for a single-component system, the maximum number of phases that can coexist is three. Historically this is known as the Gibbs phase rule, and is one of the oldest and venerable rules of thermodynamics. Here we make use of the fact that, by varying model parameters, the Gibbs phase rule can be generalized so that four phases can coexist even in single-component systems. To systematically search for the quadruple point, we use a monoatomic system interacting with a Stillinger–Weber potential with variable tetrahedrality. Our study indicates that the quadruple point provides flexibility in controlling multiple equilibrium phases and may be realized in systems with tunable interactions, which are nowadays feasible in several soft matter systems such as patchy colloids. PMID:27558452

  9. Specific Adhesion of Lipid Membranes Can Simultaneously Produce Two Types of Lipid and Protein Heterogeneities

    NASA Astrophysics Data System (ADS)

    Shindell, Orrin; Micah, Natalie; Ritzer, Max; Gordon, Vernita

    2015-03-01

    Living cells adhere to one another and their environment. Adhesion is associated with re-organization of the lipid and protein components of the cell membrane. The resulting heterogeneities are functional structures involved in biological processes. We use artificial lipid membranes that contain a single type of binding protein. Before adhesion, the lipid, protein, and dye components in the membrane are well-mixed and constitute a single disordered-liquid phase (Ld) . After adhesion, two distinct types of heterogeneities coexist in the adhesion zone: a central domain of ordered lipid phase that excludes both binding proteins and membrane dye, and a peripheral domain of disordered lipid phase that is densely packed with adhesion proteins and enriched in membrane dye relative to the non-adhered portion of the vesicle. Thus, we show that adhesion that is mediated by only one type of protein can organize the lipid and protein components of the membranes into heterogeneities that resemble those found in biology, for example the immune synapse.

  10. High Resolution NMR ^15N and ^31P NMR Of Antiferroelectric Phase Transition in Ammonium Dihydrogen Arsenate and Ammonium Dihydrogen Phosphate

    NASA Astrophysics Data System (ADS)

    Gunaydin-Sen, Ozge

    2005-03-01

    Natural abundance ^15N CPMAS NMR has been used to investigate the paraelectric-antiferroelectric phase transition of NH4H2AsO4 (ADA) (TN˜216K) and of NH4H2PO4 (ADP) (148K), with a focus on the role of the NH4^+ ion. Isotropic chemical shift of ^15N for ADA exhibits an almost linear temperature dependence to within TN±1K, and then changes discontinuously, followed by another almost linear dependence. The spectra of the paraelectric and antiferroelectric phases coexist around the TN. The sharp anomaly around TN implies that the NH4^+ ions undergo a displacive transition, whereas the protons in the O-HO bonds undergo an order-disorder transition. The ^15N data thus support a mixed order-disorder-displacive mechanism for this transition. The ^15N data on ADP exhibit somewhat different behavior. ^31P CPMAS measurements will also be presented and discussed in terms of the above model.

  11. Spin-liquid polymorphism in a correlated electron system on the threshold of superconductivity.

    PubMed

    Zaliznyak, Igor; Savici, Andrei T; Lumsden, Mark; Tsvelik, Alexei; Hu, Rongwei; Petrovic, Cedomir

    2015-08-18

    We report neutron scattering measurements which reveal spin-liquid polymorphism in an "11" iron chalcogenide superconductor. It occurs when a poorly metallic magnetic state of FeTe is tuned toward superconductivity by substitution of a small amount of tellurium with isoelectronic sulfur. We observe a liquid-like magnetic response, which is described by the coexistence of two disordered magnetic phases with different local structures whose relative abundance depends on temperature. One is the ferromagnetic (FM) plaquette phase observed in undoped, nonsuperconducting FeTe, which preserves the C4 symmetry of the underlying square lattice and is favored at high temperatures, whereas the other is the antiferromagnetic plaquette phase with broken C4 symmetry, which emerges with doping and is predominant at low temperatures. These findings suggest the coexistence of and competition between two distinct liquid states, and a liquid-liquid phase transformation between these states, in the electronic spin system of FeTe(1-x)(S,Se)(x). We have thus discovered the remarkable physics of competing spin-liquid polymorphs in a correlated electron system approaching superconductivity. Our results facilitate an understanding of large swaths of recent experimental data in unconventional superconductors. In particular, the phase with lower C2 local symmetry, whose emergence precedes superconductivity, naturally accounts for a propensity for forming electronic nematic states which have been observed experimentally, in cuprate and iron-based superconductors alike.

  12. Spin-liquid polymorphism in a correlated electron system on the threshold of superconductivity

    PubMed Central

    Zaliznyak, Igor; Savici, Andrei T.; Lumsden, Mark; Tsvelik, Alexei; Hu, Rongwei; Petrovic, Cedomir

    2015-01-01

    We report neutron scattering measurements which reveal spin-liquid polymorphism in an “11” iron chalcogenide superconductor. It occurs when a poorly metallic magnetic state of FeTe is tuned toward superconductivity by substitution of a small amount of tellurium with isoelectronic sulfur. We observe a liquid-like magnetic response, which is described by the coexistence of two disordered magnetic phases with different local structures whose relative abundance depends on temperature. One is the ferromagnetic (FM) plaquette phase observed in undoped, nonsuperconducting FeTe, which preserves the C4 symmetry of the underlying square lattice and is favored at high temperatures, whereas the other is the antiferromagnetic plaquette phase with broken C4 symmetry, which emerges with doping and is predominant at low temperatures. These findings suggest the coexistence of and competition between two distinct liquid states, and a liquid–liquid phase transformation between these states, in the electronic spin system of FeTe1−x(S,Se)x. We have thus discovered the remarkable physics of competing spin-liquid polymorphs in a correlated electron system approaching superconductivity. Our results facilitate an understanding of large swaths of recent experimental data in unconventional superconductors. In particular, the phase with lower C2 local symmetry, whose emergence precedes superconductivity, naturally accounts for a propensity for forming electronic nematic states which have been observed experimentally, in cuprate and iron-based superconductors alike. PMID:26240327

  13. Methyl-β-cyclodextrins preferentially remove cholesterol from the liquid disordered phase in giant unilamellar vesicles.

    PubMed

    Sanchez, Susana A; Gunther, German; Tricerri, Maria A; Gratton, Enrico

    2011-05-01

    Methyl-β-cyclodextrins (MβCDs) are molecules that are extensively used to remove and to load cholesterol (Chol) from artificial and natural membranes; however, the mechanism of Chol extraction by MβCD from pure lipids or from complex mixtures is not fully understood. One of the outstanding questions in this field is the capability of MβCD to remove Chol from lipid domains having different packing. Here, we investigated the specificity of MβCD to remove Chol from coexisting macrodomains with different lipid packing. We used giant unilamellar vesicles (GUVs) made of 1,2-dioleoylphosphatidylcholine:1,2-dipalmitoylphatidylcholine:free cholesterol, 1:1:1 molar ratio at 27°C. Under these conditions, individual GUVs present Chol distributed into lo and ld phases. The two phases can be distinguished and visualized using Laurdan generalized polarization and two-photon excitation fluorescence microscopy. Our data indicate that MβCD removes Chol preferentially from the more disordered phase. The process of selective Chol removal is dependent on the MβCD concentration. At high concentrations, MβCD also removes phospholipids.

  14. Communication: From close-packed to topologically close-packed: Formation of Laves phases in moderately polydisperse hard-sphere mixtures

    NASA Astrophysics Data System (ADS)

    Lindquist, Beth A.; Jadrich, Ryan B.; Truskett, Thomas M.

    2018-05-01

    Particle size polydispersity can help to inhibit crystallization of the hard-sphere fluid into close-packed structures at high packing fractions and thus is often employed to create model glass-forming systems. Nonetheless, it is known that hard-sphere mixtures with modest polydispersity still have ordered ground states. Here, we demonstrate by computer simulation that hard-sphere mixtures with increased polydispersity fractionate on the basis of particle size and a bimodal subpopulation favors the formation of topologically close-packed C14 and C15 Laves phases in coexistence with a disordered phase. The generality of this result is supported by simulations of hard-sphere mixtures with particle-size distributions of four different forms.

  15. Dynamics of Disorder-Order Transitions in Hard Sphere Colloidal Dispersions in micro-g

    NASA Technical Reports Server (NTRS)

    Zhu, J. X.; Li, M.; Phan, S. E.; Russel, W. B.; Chaikin, Paul M.; Rogers, Rick; Meyers, W.

    1996-01-01

    We performed a series of experiments on 0.518 millimeter PMMA spheres suspended in an index matching mixture of decalin and tetralin the microgravity environment provided by the Shuttle Columbia on mission STS-73. The samples ranged in concentration from 0.49 to 0.62. volume fraction (phi) of spheres, which covers the range in which liquid, coexistence, solid and glass phases are expected from Earth bound experiments. Light scattering was used to probe the static structure, and the particle dynamics. Digital and 35 mm photos provided information on the morphology of the crystals. In general, the crystallites grew considerably larger (roughly an order of magnitude larger) than the same samples with identical treatment in 1 g. The dynamic light scattering shows the typical short time diffusion and long time caging effects found in 1 g. The surprises that were encountered in microgravity include the preponderance of random hexagonal close packed (RHCP) structures and the complete absence of the expected face centered cubic (FCC) structure, existence of large dendritic crystals floating in the coexistence samples (where liquid and solid phases coexist) and the rapid crystallization of samples which exist only in glass phase under the influence of one g. These results suggest that colloidal crystal growth is profoundly effected by gravity in yet unrecognized ways. We suspect that the RCHP structure is related to the nonequilibrium growth that is evident from the presence of dendrites. An analysis of the dendritic growth instabilities is presented within the framework of the Ackerson-Schatzel equation.

  16. Synchronisation of chaos and its applications

    NASA Astrophysics Data System (ADS)

    Eroglu, Deniz; Lamb, Jeroen S. W.; Pereira, Tiago

    2017-07-01

    Dynamical networks are important models for the behaviour of complex systems, modelling physical, biological and societal systems, including the brain, food webs, epidemic disease in populations, power grids and many other. Such dynamical networks can exhibit behaviour in which deterministic chaos, exhibiting unpredictability and disorder, coexists with synchronisation, a classical paradigm of order. We survey the main theory behind complete, generalised and phase synchronisation phenomena in simple as well as complex networks and discuss applications to secure communications, parameter estimation and the anticipation of chaos.

  17. Floating liquid phase in sedimenting colloid-polymer mixtures.

    PubMed

    Schmidt, Matthias; Dijkstra, Marjolein; Hansen, Jean-Pierre

    2004-08-20

    Density functional theory and computer simulation are used to investigate sedimentation equilibria of colloid-polymer mixtures within the Asakura-Oosawa-Vrij model of hard sphere colloids and ideal polymers. When the ratio of buoyant masses of the two species is comparable to the ratio of differences in density of the coexisting bulk (colloid) gas and liquid phases, a stable "floating liquid" phase is found, i.e., a thin layer of liquid sandwiched between upper and lower gas phases. The full phase diagram of the mixture under gravity shows coexistence of this floating liquid phase with a single gas phase or a phase involving liquid-gas equilibrium; the phase coexistence lines meet at a triple point. This scenario remains valid for general asymmetric binary mixtures undergoing bulk phase separation.

  18. Structural transformations and disordering in zirconolite (CaZrTi2O7) at high pressure.

    PubMed

    Salamat, Ashkan; McMillan, Paul F; Firth, Steven; Woodhead, Katherine; Hector, Andrew L; Garbarino, Gaston; Stennett, Martin C; Hyatt, Neil C

    2013-02-04

    There is interest in identifying novel materials for use in radioactive waste applications and studying their behavior under high pressure conditions. The mineral zirconolite (CaZrTi(2)O(7)) exists naturally in trace amounts in diamond-bearing deep-seated metamorphic/igneous environments, and it is also identified as a potential ceramic phase for radionuclide sequestration. However, it has been shown to undergo radiation-induced metamictization resulting in amorphous forms. In this study we probed the high pressure structural properties of this pyrochlore-like structure to study its phase transformations and possible amorphization behavior. Combined synchrotron X-ray diffraction and Raman spectroscopy studies reveal a series of high pressure phase transformations. Starting from the ambient pressure monoclinic structure, an intermediate phase with P2(1)/m symmetry is produced above 15.6 GPa via a first order transformation resulting in a wide coexistence range. Upon compression to above 56 GPa a disordered metastable phase III with a cotunnite-related structure appears that is recoverable to ambient conditions. We examine the similarity between the zirconolite behavior and the structural evolution of analogous pyrochlore systems under pressure.

  19. Structural instability and phase co-existence driven non-Gaussian resistance fluctuations in metal nanowires at low temperatures.

    PubMed

    Bid, Aveek; Raychaudhuri, A K

    2016-11-11

    We report a detailed experimental study of the resistance fluctuations measured at low temperatures in high quality metal nanowires ranging in diameter from 15-200 nm. The wires exhibit co-existing face-centered-cubic and 4H hcp phases of varying degrees as determined from the x-ray diffraction data. We observe the appearance of a large non-Gaussian noise for nanowires of diameter smaller than 50 nm over a certain temperature range around ≈30 K. The diameter range ∼30 nm, where the noise has maxima coincides with the maximum volume fraction of the co-existing 4H hcp phase thus establishing a strong link between the fluctuation and the phase co-existence. The resistance fluctuation in the same temperature range also shows a deviation of [Formula: see text] behavior at low frequency with appearance of single frequency Lorentzian type contribution in the spectral power density. The fluctuations are thermally activated with an activation energy [Formula: see text] meV, which is of same order as the activation energy of creation of stacking fault in FCC metals that leads to the co-existing crystallographic phases. Combining the results of crystallographic studies of the nanowires and analysis of the resistance fluctuations we could establish the correlation between the appearance of the large resistance noise and the onset of phase co-existence in these nanowires.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hickey, Robert J.; Gillard, Timothy M.; Irwin, Matthew T.

    We have established the existence of a line of congruent first-order lamellar-to-disorder (LAM–DIS) transitions when appropriate amounts of poly(cyclohexylethylene) (C) and poly(ethylene) (E) homopolymers are mixed with a corresponding compositionally symmetric CE diblock copolymer. The line of congruent transitions, or the congruent isopleth, terminates at the bicontinuous microemulsion (BμE) channel, and its trajectory appears to be influenced by the critical composition of the C/E binary homopolymer blend. Blends satisfying congruency undergo a direct LAM–DIS transition without passing through a two-phase region. We present complementary optical transmission, small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and dynamic mechanical spectroscopy (DMS) resultsmore » that establish the phase behavior at constant copolymer volume fraction and varying C/E homopolymer volume ratios. Adjacent to the congruent composition at constant copolymer volume fraction, the lamellar and disordered phases are separated by two-phase coexistence windows, which converge, along with the line of congruent transitions, at an overall composition in the phase prism coincident with the BμE channel. Hexagonal and cubic (double gyroid) phases occur at higher diblock copolymer concentrations for asymmetric amounts of C and E homopolymers. These results establish a quantitative method for identifying the detailed phase behavior of ternary diblock copolymer–homopolymer blends, especially in the vicinity of the BμE.« less

  1. Structure and phase behavior of a confined nanodroplet composed of the flexible chain molecules.

    PubMed

    Kim, Soon-Chul; Kim, Eun-Young; Seong, Baek-Seok

    2011-04-28

    A polymer density functional theory has been employed for investigating the structure and phase behaviors of the chain polymer, which is modelled as the tangentially connected sphere chain with an attractive interaction, inside the nanosized pores. The excess free energy of the chain polymer has been approximated as the modified fundamental measure-theory for the hard spheres, the Wertheim's first-order perturbation for the chain connectivity, and the mean-field approximation for the van der Waals contribution. For the value of the chemical potential corresponding to a stable liquid phase in the bulk system and a metastable vapor phase, the flexible chain molecules undergo the liquid-vapor transition as the pore size is reduced; the vapor is the stable phase at small volume, whereas the liquid is the stable phase at large volume. The wide liquid-vapor coexistence curve, which explains the wide range of metastable liquid-vapor states, is observed at low temperature. The increase of temperature and decrease of pore size result in a narrowing of liquid-vapor coexistence curves. The increase of chain length leads to a shift of the liquid-vapor coexistence curve towards lower values of chemical potential. The coexistence curves for the confined phase diagram are contained within the corresponding bulk liquid-vapor coexistence curve. The equilibrium capillary phase transition occurs at a higher chemical potential than in the bulk phase.

  2. The impact on the family of the co-existing conditions of children with autism spectrum disorder.

    PubMed

    Petrou, Alexandra M; Soul, Abigail; Koshy, Beena; McConachie, Helen; Parr, Jeremy R

    2018-05-01

    We aimed to investigate whether the impact on families of children with Autism Spectrum Disorder (ASD) is associated with the number and/or type of emotional and behavioral co-existing conditions that parents/carers of children with ASD reported as occurring frequently. In addition, we examined whether there was a greater impact on families if their child was male, had lower levels of language, had more severe autism symptomatology, and whether impact was associated with the number and/or type of co-existing conditions. Families were recruited from large UK research databases. 420 parents/carers of children aged 3 years 2 months to 18 years 8 months completed the revised Impact on Family (IoF) Scale and reported on the frequency/rate of their child's co-existing conditions. Parents/carers reported higher mean IoF scores if their child: had a greater number of frequent co-existing conditions; had sleep problems; was only able to communicate physically; and had more severe autism symptomatology. The development and implementation of targeted treatment and management approaches are needed to reduce the impact of co-existing conditions on family life. Autism Res 2018, 11: 776-787. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. Autism Spectrum Disorder (ASD) is commonly associated with emotional and/or behavior conditions that affect family life. Parents/carers of children with ASD who: (a) reported a greater number of frequent co-existing conditions, (b) had sleep problems, (c) were only able to communicate physically, and (d) had more severe symptoms characteristic of autism, reported a greater burden/strain on the family. Treatment approaches to target co-existing conditions alongside characteristics of ASD are needed to reduce their impact on family life. © 2018 International Society for Autism Research, Wiley Periodicals, Inc.

  3. Large resistivity modulation in mixed-phase metallic systems

    DOE PAGES

    Lee, Yeonbae; Liu, Z. Q.; Heron, J. T.; ...

    2015-01-07

    Giant physical responses were discovered, in numerous systems, when two phases coexist; for example, near a phase transition. An intermetallic FeRh system undergoes a first-order antiferromagnetic to ferromagnetic transition above room temperature and shows two-phase coexistence near the transition. We have investigated the effect of an electric field to FeRh/PMN-PT heterostructures and report 8% change in the electrical resistivity of FeRh films. Such a 'giant' electroresistance (GER) response is striking in metallic systems, in which external electric fields are screened, and thus only weakly influence the carrier concentrations and mobilities. We show that our FeRh films comprise coexisting ferromagnetic andmore » antiferromagnetic phases with different resistivities and the origin of the GER effect is the strain-mediated change in their relative proportions. Finally, the observed behaviour is reminiscent of colossal magnetoresistance in perovskite manganites and illustrates the role of mixed-phase coexistence in achieving large changes in physical properties with low-energy external perturbation.« less

  4. Metastable liquid lamellar structures in binary and ternary mixtures of Lennard-Jones fluids

    NASA Astrophysics Data System (ADS)

    Díaz-Herrera, Enrique; Ramírez-Santiago, Guillermo; Moreno Razo, José A.

    2004-03-01

    We have carried out extensive equilibrium MD simulations to investigate the Liquid-Vapor coexistence in partially miscible binary and ternary mixtures LJ fluids. We have studied in detail the time evolution of the density profiles and the interfacial properties in a temperature region of the phase diagram where the condensed phase is demixed. The composition of the mixtures are fixed, 50% for the binary mixture and 33.33% for the ternary mixture. The results of the simulations clearly indicate that in the range of temperatures 78 < T < 102 ^oK,--in the scale of argon-- the system evolves towards a metastable alternated liquid-liquid lamellar state in coexistence with its vapor phase. These states can be achieved if the initial configuration is fully disordered, that is, when the particles of the fluids are randomly placed on the sites of an FCC crystal or the system is completely mixed. As temperature decreases these states become very well defined and more stable in time. We find that below 90 ^oK, the alternated liquid-liquid lamellar state remains alive for 80 ns, in the scale of argon, the longest simulation we have carried out. Nonetheless, we believe that in this temperature region these states will be alive for even much longer times.

  5. Phase coexistence and electric-field control of toroidal order in oxide superlattices.

    PubMed

    Damodaran, A R; Clarkson, J D; Hong, Z; Liu, H; Yadav, A K; Nelson, C T; Hsu, S-L; McCarter, M R; Park, K-D; Kravtsov, V; Farhan, A; Dong, Y; Cai, Z; Zhou, H; Aguado-Puente, P; García-Fernández, P; Íñiguez, J; Junquera, J; Scholl, A; Raschke, M B; Chen, L-Q; Fong, D D; Ramesh, R; Martin, L W

    2017-10-01

    Systems that exhibit phase competition, order parameter coexistence, and emergent order parameter topologies constitute a major part of modern condensed-matter physics. Here, by applying a range of characterization techniques, and simulations, we observe that in PbTiO 3 /SrTiO 3 superlattices all of these effects can be found. By exploring superlattice period-, temperature- and field-dependent evolution of these structures, we observe several new features. First, it is possible to engineer phase coexistence mediated by a first-order phase transition between an emergent, low-temperature vortex phase with electric toroidal order and a high-temperature ferroelectric a 1 /a 2 phase. At room temperature, the coexisting vortex and ferroelectric phases form a mesoscale, fibre-textured hierarchical superstructure. The vortex phase possesses an axial polarization, set by the net polarization of the surrounding ferroelectric domains, such that it possesses a multi-order-parameter state and belongs to a class of gyrotropic electrotoroidal compounds. Finally, application of electric fields to this mixed-phase system permits interconversion between the vortex and the ferroelectric phases concomitant with order-of-magnitude changes in piezoelectric and nonlinear optical responses. Our findings suggest new cross-coupled functionalities.

  6. Phase coexistence and electric-field control of toroidal order in oxide superlattices

    NASA Astrophysics Data System (ADS)

    Damodaran, A. R.; Clarkson, J. D.; Hong, Z.; Liu, H.; Yadav, A. K.; Nelson, C. T.; Hsu, S.-L.; McCarter, M. R.; Park, K.-D.; Kravtsov, V.; Farhan, A.; Dong, Y.; Cai, Z.; Zhou, H.; Aguado-Puente, P.; García-Fernández, P.; Íñiguez, J.; Junquera, J.; Scholl, A.; Raschke, M. B.; Chen, L.-Q.; Fong, D. D.; Ramesh, R.; Martin, L. W.

    2017-10-01

    Systems that exhibit phase competition, order parameter coexistence, and emergent order parameter topologies constitute a major part of modern condensed-matter physics. Here, by applying a range of characterization techniques, and simulations, we observe that in PbTiO3/SrTiO3 superlattices all of these effects can be found. By exploring superlattice period-, temperature- and field-dependent evolution of these structures, we observe several new features. First, it is possible to engineer phase coexistence mediated by a first-order phase transition between an emergent, low-temperature vortex phase with electric toroidal order and a high-temperature ferroelectric a1/a2 phase. At room temperature, the coexisting vortex and ferroelectric phases form a mesoscale, fibre-textured hierarchical superstructure. The vortex phase possesses an axial polarization, set by the net polarization of the surrounding ferroelectric domains, such that it possesses a multi-order-parameter state and belongs to a class of gyrotropic electrotoroidal compounds. Finally, application of electric fields to this mixed-phase system permits interconversion between the vortex and the ferroelectric phases concomitant with order-of-magnitude changes in piezoelectric and nonlinear optical responses. Our findings suggest new cross-coupled functionalities.

  7. Phase coexistence and electric-field control of toroidal order in oxide superlattices

    DOE PAGES

    Damodaran, A. R.; Clarkson, J. D.; Hong, Z.; ...

    2017-08-07

    Systems that exhibit phase competition, order parameter coexistence, and emergent order parameter topologies constitute a major part of modern condensed-matter physics. Here, by applying a range of characterization techniques, and simulations, we observe that in PbTiO 3/SrTiO 3 superlattices all of these effects can be found. By exploring superlattice period-, temperature- and field-dependent evolution of these structures, we observe several new features. First, it is possible to engineer phase coexistence mediated by a first-order phase transition between an emergent, low-temperature vortex phase with electric toroidal order and a high-temperature ferroelectric a 1/a 2 phase. At room temperature, the coexisting vortexmore » and ferroelectric phases form a mesoscale, fibre-textured hierarchical superstructure. The vortex phase possesses an axial polarization, set by the net polarization of the surrounding ferroelectric domains, such that it possesses a multi-order-parameter state and belongs to a class of gyrotropic electrotoroidal compounds. Finally, application of electric fields to this mixed-phase system permits interconversion between the vortex and the ferroelectric phases concomitant with order-of-magnitude changes in piezoelectric and nonlinear optical responses. Here, our findings suggest new cross-coupled functionalities.« less

  8. Spin liquid polymorphism in a correlated electron system on the threshold of superconductivity

    DOE PAGES

    Zalinznyak, Igor; Savici, Andrei T.; Lumsden, Mark D.; ...

    2015-08-18

    We report neutron scattering measurements which reveal spin-liquid polymorphism in an “11” iron chalcogenide superconductor. It occurs when a poorly metallic magnetic state of FeTe is tuned toward superconductivity by substitution of a small amount of tellurium with isoelectronic sulfur. We also observe a liquid-like magnetic response, which is described by the coexistence of two disordered magnetic phases with different local structures whose relative abundance depends on temperature. One is the ferromagnetic (FM) plaquette phase observed in undoped, nonsuperconducting FeTe, which preserves the C 4 symmetry of the underlying square lattice and is favored at high temperatures, whereas the othermore » is the antiferromagnetic plaquette phase with broken C 4 symmetry, which emerges with doping and is predominant at low temperatures. These findings suggest the coexistence of and competition between two distinct liquid states, and a liquid–liquid phase transformation between these states, in the electronic spin system of FeTe 1-x(S,Se) x. We have thus discovered the remarkable physics of competing spin-liquid polymorphs in a correlated electron system approaching superconductivity. These results facilitate an understanding of large swaths of recent experimental data in unconventional superconductors. In particular, the phase with lower C 2 local symmetry, whose emergence precedes superconductivity, naturally accounts for a propensity for forming electronic nematic states which have been observed experimentally, in cuprate and iron-based superconductors alike.« less

  9. Grain size dependent phase stabilities and presence of a monoclinic (Pm) phase in the morphotropic phase boundary region of (1-x)Bi(Mg1/2Ti1/2)O3-xPbTiO3 piezoceramics

    NASA Astrophysics Data System (ADS)

    Upadhyay, Ashutosh; Singh, Akhilesh Kumar

    2015-04-01

    Results of the room temperature structural studies on (1-x)Bi(Mg1/2Ti1/2)O3-xPbTiO3 ceramics using Rietveld analysis of the powder x-ray diffraction data in the composition range 0.28 ≤ x ≤ 0.45 are presented. The morphotropic phase boundary region exhibits coexistence of monoclinic (space group Pm) and tetragonal (space group P4 mm) phases in the composition range 0.33 ≤ x ≤ 0.40. The structure is nearly single phase monoclinic (space group Pm) in the composition range 0.28 ≤ x ≤ 0.32. The structure for the compositions with x ≥ 0.45 is found to be predominantly tetragonal with space group P4 mm. Rietveld refinement of the structure rules out the coexistence of rhombohedral and tetragonal phases in the morphotropic phase boundary region reported by earlier authors. The Rietveld structure analysis for the sample x = .35 calcined at various temperatures reveals that phase fraction of the coexisting phases in the morphotropic phase boundary region varies with grain size. The structural parameters of the two coexisting phases also change slightly with changing grain size.

  10. Co-morbidity of bipolar affective disorder and obsessive compulsive disorder in a Bedford community psychiatry team.

    PubMed

    Darby, Laura; Agius, Mark; Zaman, Rashid

    2011-09-01

    This is a study of the prevalence and impact of co-existing bipolar affective disorder on patients with OCD, and the effect on their management within a community psychiatric team. We found that 16% of patients who visited psychiatric outpatients with a diagnosis of OCD had co-existing bipolar affective disorder. Of these the majority had bipolar affective disorder II (67%). Co-morbidity raised a number of challenges to patient management. Compared to the control group the patients with co-morbid bipolar affective disorder required a greater number of outpatients appointments, had a greater number of hospital admissions, were more likely to have been allocated a care coordinator and to have received psychological input.

  11. Pattern Formation in Langmuir Monolayers Due to Long-Range Electrostatic Interactions

    NASA Astrophysics Data System (ADS)

    Fischer, Thomas M.; Lösche, Mathias

    A distinctive characteristic of Langmuir monolayers that bears important consequences for the physics of structure formation within membranes is the uniaxial orientation of the constituent dipolar molecules, brought about by the symmetry break which is induced by the surface of the aqueous substrate. The association of oriented molecular dipoles with the interface leads to the formation of image dipoles within the polarizeable medium - the subphase - such that the effective dipole orientation of every of the individual molecules is strictly normal to the surface, even within molecularly disordered phases. As a result, dipole-dipole repulsions play an eminently important role for the molecular interactions within the system - independent of the state of phase (while the dipole area density does of course depend on the state of phase) - and control the morphogenesis of the phase boundaries in their interplay with the one-dimensional (1D) line tension between coexisting phases. The physics of these phenomena is only now being explored and is particularly exciting for systems within a three-phase coexistence region where complete or partial wetting, as well as dewetting between the coexisting phases may be experimentally observed by applying fluorescence microscopy to the monolayer films. It is revealed that the wetting behavior depends sensitively on the details of the electrostatic interactions, in that the apparent contact angles observed at three-phase contact points depends on the sizes of the coexisting phases. This is in sharp contrast to the physics of wetting in conventional 3D systems where the contact angle is a materials property, independent of the local details. In 3D systems, this leads to Youngs equation - which has been established more than two centuries ago. We report recent progress in the understanding of this unusual and rather unexpected behavior of a quasi-2D system by reviewing recent experimental results from optical microscopy on equilibrium phase shapes, non-equilibrium phenomena - such as relaxation of the shapes after distortions inferred by Laser tweezers or local impulse heating - and rheological properties of the system. The theoretical analysis of the underlying molecular interactions leads to a comprehension of the observed phenomena and reveals microscopic properties of the system in quantitative terms. In view of the recently proposed lipid raft hypothesis, a particularly fascinating implication of our results is the possibility that biochemical reactions which depend on complex interactions between membrane-bound proteins might be controlled by the non-conventional physics of the 2D system: As an electrogenic event - such as ion transfer across the membrane - changes the electrostatic properties of the membrane surface it might concurrently infer wetting between 2D phases and thus lead to the conjunction of membrane areas that were originally separated within the plane. If two reactants (e.g., membrane-bound enzymes) are dissolved in distinct phases, such a colloidal reorganization might rearrange the micro-evironment to bring them into close vicinity - and thus trigger the biochemical reaction.

  12. The liquid⟷amorphous transition and the high pressure phase diagram of carbon

    NASA Astrophysics Data System (ADS)

    Robinson, David R.; Wilson, Mark

    2013-04-01

    The phase diagram of carbon is mapped to high pressure using a computationally-tractable potential model. The use of a relatively simple (Tersoff-II) potential model allows a large range of phase space to be explored. The coexistence (melting) curve for the diamond crystal/liquid dyad is mapped directly by modelling the solid/liquid interfaces. The melting curve is found to be re-entrant and belongs to a conformal class of diamond/liquid coexistence curves. On supercooling the liquid a phase transition to a tetrahedral amorphous form (ta-C) is observed. The liquid ⟷ amorphous coexistence curve is mapped onto the pT plane and is found to also be re-entrant. The entropy changes for both melting and the amorphous ⟶ liquid transitions are obtained from the respective coexistence curves and the associated changes in molar volume. The structural change on amorphization is analysed at different points on the coexistence curve including for transitions that are both isochoric and isocoordinate (no change in nearest-neighbour coordination number). The conformal nature of the melting curve is highlighted with respect to the known behaviour of Si. The relationship of the observed liquid/amorphous coexistence curve to the Si low- and high-density amorphous (LDA/HDA) transition is discussed.

  13. Coexisting order and disorder within a common 40-residue amyloid-β fibril structure in Alzheimer's disease brain tissue.

    PubMed

    Ghosh, Ujjayini; Yau, Wai-Ming; Tycko, Robert

    2018-05-15

    Fibrils formed by 40- and 42-residue amyloid-β (Aβ40 and Aβ42) peptides exhibit molecular-level structural polymorphisms. A recent screen of fibrils derived from brain tissue of Alzheimer's disease patients revealed a single predominant Aβ40 polymorph. We present solid state nuclear magnetic resonance (ssNMR) data that define its coexisting structurally ordered and disordered segments.

  14. Sex Differences in Autism Spectrum Disorder: An Examination of Developmental Functioning, Autistic Symptoms, and Coexisting Behavior Problems in Toddlers

    ERIC Educational Resources Information Center

    Hartley, Sigan L.; Sikora, Darryn M.

    2009-01-01

    Little is known about the female presentation of autism spectrum disorder (ASD) during early childhood. We investigated sex differences in developmental profiles using the Mullen Scales of Early Learning, autistic symptoms on the ADOS-G, and coexisting behavior problems on the CBCL in 157 boys and 42 girls with ASD aged 1.5-3.9 years. Overall,…

  15. Revisiting the co-existence of Attention-Deficit/Hyperactivity Disorder and Chronic Tic Disorder in childhood-The case of colour discrimination, sustained attention and interference control.

    PubMed

    Uebel-von Sandersleben, Henrik; Albrecht, Björn; Rothenberger, Aribert; Fillmer-Heise, Anke; Roessner, Veit; Sergeant, Joseph; Tannock, Rosemary; Banaschewski, Tobias

    2017-01-01

    Attention Deficit / Hyperactivity Disorder (ADHD) and Chronic Tic Disorder (CTD) are two common and frequently co-existing disorders, probably following an additive model. But this is not yet clear for the basic sensory function of colour processing sensitive to dopaminergic functioning in the retina and higher cognitive functions like attention and interference control. The latter two reflect important aspects for psychoeducation and behavioural treatment approaches. Colour discrimination using the Farnsworth-Munsell 100-hue Test, sustained attention during the Frankfurt Attention Inventory (FAIR), and interference liability during Colour- and Counting-Stroop-Tests were assessed to further clarify the cognitive profile of the co-existence of ADHD and CTD. Altogether 69 children were classified into four groups: ADHD (N = 14), CTD (N = 20), ADHD+CTD (N = 20) and healthy Controls (N = 15) and compared in cognitive functioning in a 2×2-factorial statistical model. Difficulties with colour discrimination were associated with both ADHD and CTD factors following an additive model, but in ADHD these difficulties tended to be more pronounced on the blue-yellow axis. Attention problems were characteristic for ADHD but not CTD. Interference load was significant in both Colour- and Counting-Stroop-Tests and unrelated to colour discrimination. Compared to Controls, interference load in the Colour-Stroop was higher in pure ADHD and in pure CTD, but not in ADHD+CTD, following a sub-additive model. In contrast, interference load in the Counting-Stroop did not reveal ADHD or CTD effects. The co-existence of ADHD and CTD is characterized by additive as well as sub-additive performance impairments, suggesting that their co-existence may show simple additive characteristics of both disorders or a more complex interaction, depending on demand. The equivocal findings on interference control may indicate limited validity of the Stroop-Paradigm for clinical assessments.

  16. Revisiting the co-existence of Attention-Deficit/Hyperactivity Disorder and Chronic Tic Disorder in childhood—The case of colour discrimination, sustained attention and interference control

    PubMed Central

    Rothenberger, Aribert; Fillmer-Heise, Anke; Roessner, Veit; Sergeant, Joseph; Tannock, Rosemary; Banaschewski, Tobias

    2017-01-01

    Objective Attention Deficit / Hyperactivity Disorder (ADHD) and Chronic Tic Disorder (CTD) are two common and frequently co-existing disorders, probably following an additive model. But this is not yet clear for the basic sensory function of colour processing sensitive to dopaminergic functioning in the retina and higher cognitive functions like attention and interference control. The latter two reflect important aspects for psychoeducation and behavioural treatment approaches. Methods Colour discrimination using the Farnsworth-Munsell 100-hue Test, sustained attention during the Frankfurt Attention Inventory (FAIR), and interference liability during Colour- and Counting-Stroop-Tests were assessed to further clarify the cognitive profile of the co-existence of ADHD and CTD. Altogether 69 children were classified into four groups: ADHD (N = 14), CTD (N = 20), ADHD+CTD (N = 20) and healthy Controls (N = 15) and compared in cognitive functioning in a 2×2-factorial statistical model. Results Difficulties with colour discrimination were associated with both ADHD and CTD factors following an additive model, but in ADHD these difficulties tended to be more pronounced on the blue-yellow axis. Attention problems were characteristic for ADHD but not CTD. Interference load was significant in both Colour- and Counting-Stroop-Tests and unrelated to colour discrimination. Compared to Controls, interference load in the Colour-Stroop was higher in pure ADHD and in pure CTD, but not in ADHD+CTD, following a sub-additive model. In contrast, interference load in the Counting-Stroop did not reveal ADHD or CTD effects. Conclusion The co-existence of ADHD and CTD is characterized by additive as well as sub-additive performance impairments, suggesting that their co-existence may show simple additive characteristics of both disorders or a more complex interaction, depending on demand. The equivocal findings on interference control may indicate limited validity of the Stroop-Paradigm for clinical assessments. PMID:28594866

  17. Nanoclustering phase competition induces the resistivity hump in colossal magnetoresistive manganites

    NASA Astrophysics Data System (ADS)

    Pradhan, Kalpataru; Yunoki, Seiji

    2017-12-01

    Using a two-band double-exchange model with Jahn-Teller lattice distortions and superexchange interactions, supplemented by quenched disorder, at an electron density n =0.65 , we explicitly demonstrate the coexistence of the n =1 /2 -type (π ,π ) charge-ordered and the ferromagnetic nanoclusters above the ferromagnetic transition temperature Tc in colossal magnetoresistive (CMR) manganites. The resistivity increases due to the enhancement of the volume fraction of the charge-ordered and the ferromagnetic nanoclusters upon decreasing the temperature down to Tc. The ferromagnetic nanoclusters start to grow and merge, and the volume fraction of the charge-ordered nanoclusters decreases below Tc, leading to the sharp drop in the resistivity. By applying a small external magnetic field h , we show that the resistivity above Tc increases, as compared with the case when h =0 , a fact that further confirms the coexistence of the charge-ordered and the ferromagnetic nanoclusters. In addition, we show that the volume fraction of the charge-ordered nanoclusters decreases upon increasing the bandwidth, and consequently the resistivity hump diminishes for large bandwidth manganites, in good qualitative agreement with experiments. The obtained insights from our calculations provide a complete pathway to understand the phase competition in CMR manganites.

  18. The ESSENCE in Child Psychiatry: Early Symptomatic Syndromes Eliciting Neurodevelopmental Clinical Examinations

    ERIC Educational Resources Information Center

    Gillberg, Christopher

    2010-01-01

    Co-existence of disorders--including attention-deficit/hyperactivity disorder, oppositional defiant disorder, tic disorder, developmental coordination disorder, and autism spectrum disorder--and sharing of symptoms across disorders (sometimes referred to as comorbidity) is the rule rather than the exception in child psychiatry and developmental…

  19. Temporal correlations in the Vicsek model with vectorial noise

    NASA Astrophysics Data System (ADS)

    Gulich, Damián; Baglietto, Gabriel; Rozenfeld, Alejandro F.

    2018-07-01

    We study the temporal correlations in the evolution of the order parameter ϕ(t) for the Vicsek model with vectorial noise by estimating its Hurst exponent H with detrended fluctuation analysis (DFA). We present results on this parameter as a function of noise amplitude η introduced in simulations. We also compare with well known order-disorder phase transition for that same noise range. We find that - regardless of detrending degree - H spikes at the known coexistence noise for phase transition, and that this is due to nonstationarities introduced by the transit of the system between two well defined states with lower exponents. We statistically support this claim by successfully synthesizing equivalent cases derived from a transformed fractional Brownian motion (TfBm).

  20. First-principles study of configurational disorder in B4C using a superatom-special quasirandom structure method

    NASA Astrophysics Data System (ADS)

    Ektarawong, A.; Simak, S. I.; Hultman, L.; Birch, J.; Alling, B.

    2014-07-01

    Configurationally disordered crystalline boron carbide, with the composition B4C, is studied using first-principles calculations. We investigate both dilute and high concentrations of carbon-boron substitutional defects. For the latter purpose, we suggest a superatom's picture of the complex structure and combine it with a special quasirandom structure approach for disorder. In this way, we model a random distribution of high concentrations of the identified low-energy defects: (1) bipolar defects and (2) rotation of icosahedral carbon among the three polar-up sites. Additionally, the substitutional disorder of the icosahedral carbon at all six polar sites, as previously discussed in the literature, is also considered. Two configurational phase transitions from the ordered to the disordered configurations are predicted to take place upon an increase in temperature using a mean-field approximation for the entropy. The first transition, at 870 K, induces substitutional disorder of the icosahedral carbon atoms among the three polar-up sites; meanwhile the second transition, at 2325 K, reveals the random substitution of the icosahedral carbon atoms at all six polar sites coexisting with bipolar defects. Already the first transition removes the monoclinic distortion existing in the ordered ground-state configuration and restore the rhombohedral system (R3m). The restoration of inversion symmetry yielding the full rhombohedral symmetry (R3¯m ) on average, corresponding to what is reported in the literature, is achieved after the second transition. Investigating the effects of high pressure on the configurational stability of the disordered B4C phases reveals a tendency to stabilize the ordered ground-state configuration as the configurationally ordering/disordering transition temperature increases with pressure exerted on B4C. The electronic density of states, obtained from the disordered phases, indicates a sensitivity of the band gap to the degree of configurational disorder in B4C.

  1. Schizophrenia and anorexia nervosa - reciprocal relationships. A literature review.

    PubMed

    Morylowska-Topolska, Justyna; Ziemiński, Rafał; Molas, Agnieszka; Gajewski, Jacek; Flis, Marta; Stelmach, Ewa; Karakuła-Juchnowicz, Hanna

    2017-04-30

    Although schizophrenia and anorexia nervosa are seemingly very distinct psychiatric disorders, their symptoms are connected by various types of relationships. The present article reviews the literature and recapitulates the views of various authors on the links between these two disorders. Symptoms of anorexia may 1) precede the onset of psychosis; 2) evolve in its active phase or more rarely manifest in remission; and, conversely, 3) psychotic symptoms may occur transiently in the course of anorexia nervosa. When anorexia precedes the manifestation of psychosis, symptoms of anorexia can be treated as a component of the prodromal phase of schizophrenia. Another possibility of co-existence of a psychosis (e.g., schizophrenia) with anorexia is when the eating disorder syndrome manifests at the same time as the full-blown psychotic syndrome. In such cases, when the symptoms of the two disorders occur simultaneously, it is often difficult to say whether the patient is suffering from schizophrenia, in the course of which anorexia has arisen secondary to psychotic symptoms or whether he/she is suffering from anorexia during which he/she has developed psychotic symptoms, usually thematically associated with eating. Studies published so far, mainly case reports, point to the complex nature of the interrelationships between schizophrenia and anorexia nervosa. Further research is needed to conclusively explain the relationships between psychotic disorders and anorexia nervosa, which would allow physicians to use more effective methods of treatment in this group of patients.

  2. Ultrafast Dynamics in Vanadium Dioxide: Separating Spatially Segregated Mixed Phase Dynamics in the Time-domain

    NASA Astrophysics Data System (ADS)

    Hilton, David

    2011-10-01

    In correlated electronic systems, observed electronic and structural behavior results from the complex interplay between multiple, sometimes competing degrees-of- freedom. One such material used to study insulator-to-metal transitions is vanadium dioxide, which undergoes a phase transition from a monoclinic-insulating phase to a rutile-metallic phase when the sample is heated to 340 K. The major open question with this material is the relative influence of this structural phase transition (Peirels transition) and the effects of electronic correlations (Mott transition) on the observed insulator-to-metal transition. Answers to these major questions are complicated by vanadium dioxide's sensitivity to perturbations in the chemical structure in VO2. For example, related VxOy oxides with nearly a 2:1 ratio do not demonstrate the insulator-to- metal transition, while recent work has demonstrated that W:VO2 has demonstrated a tunable transition temperature controllable with tungsten doping. All of these preexisting results suggest that the observed electronic properties are exquisitely sensitive to the sample disorder. Using ultrafast spectroscopic techniques, it is now possible to impulsively excite this transition and investigate the photoinduced counterpart to this thermal phase transition in a strongly nonequilibrium regime. I will discuss our recent results studying the terahertz-frequency conductivity dynamics of this photoinduced phase transition in the poorly understood near threshold temperature range. We find a dramatic softening of the transition near the critical temperature, which results primarily from the mixed phase coexistence near the transition temperature. To directly study this mixed phase behavior, we directly study the nucleation and growth rates of the metallic phase in the parent insulator using non-degenerate optical pump-probe spectroscopy. These experiments measure, in the time- domain, the coexistent phase separation in VO2 (spatially separated insulator and metal islands) and, more importantly, their dynamic evolution in response to optical excitation.

  3. Attention Deficit Hyperactivity Disorder: The Differential Diagnosis.

    ERIC Educational Resources Information Center

    Weinberg, Warren A.; Emslie, Graham J.

    This paper presents information on the diagnostic criteria and management of disorders that may be wrongly identified as Attention Deficit Hyperactivity Disorder (ADHD) or may coexist with ADHD thus complicating identification and treatment. The disorders discussed are: depression, mania, primary disorder of vigilance, narcolepsy, developmental…

  4. Coexisting nanoscale inverse spinel and rock salt crystallographic phases in NiCo2O4 epitaxial thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Sharona, H.; Loukya, B.; Bhat, U.; Sahu, R.; Vishal, B.; Silwal, P.; Gupta, A.; Datta, R.

    2017-12-01

    The origin of alternating wavy dark-bright stripe-like contrast in strain contrast transmission electron microscopy images of NiCo2O4 (NCO) epitaxial thin films grown by pulsed laser deposition has been investigated. The nanoscale stripe-like pattern is determined to be associated with coexisting rock salt (RS) and inverse spinel crystal phases. The presence of two different phases, not addressed in previous reports, is experimentally confirmed by both electron diffraction and high resolution transmission electron microscopy imaging. First principles based calculations, together with compressive strain present in the films, support the formation of such coexisting crystallographic phases in NCO. Similar microstructural patterns and RS structure are not observed in epitaxial films of two other oxides of the spinel family, namely, NiFe2O4 and CoFe2O4. A correlation between the coexisting structures and the macroscopic physical properties of NCO is discussed.

  5. Grain size dependent phase stabilities and presence of a monoclinic (Pm) phase in the morphotropic phase boundary region of (1−x)Bi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} piezoceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Ashutosh; Singh, Akhilesh Kumar, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in

    2015-04-14

    Results of the room temperature structural studies on (1−x)Bi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} ceramics using Rietveld analysis of the powder x-ray diffraction data in the composition range 0.28 ≤ x ≤ 0.45 are presented. The morphotropic phase boundary region exhibits coexistence of monoclinic (space group Pm) and tetragonal (space group P4 mm) phases in the composition range 0.33 ≤ x ≤ 0.40. The structure is nearly single phase monoclinic (space group Pm) in the composition range 0.28 ≤ x ≤ 0.32. The structure for the compositions with x ≥ 0.45 is found to be predominantly tetragonal with space group P4 mm. Rietveld refinement of the structure rules out the coexistence of rhombohedral and tetragonal phases inmore » the morphotropic phase boundary region reported by earlier authors. The Rietveld structure analysis for the sample x = .35 calcined at various temperatures reveals that phase fraction of the coexisting phases in the morphotropic phase boundary region varies with grain size. The structural parameters of the two coexisting phases also change slightly with changing grain size.« less

  6. Experimental evidence for stochastic switching of supercooled phases in NdNiO3 nanostructures

    NASA Astrophysics Data System (ADS)

    Kumar, Devendra; Rajeev, K. P.; Alonso, J. A.

    2018-03-01

    A first-order phase transition is a dynamic phenomenon. In a multi-domain system, the presence of multiple domains of coexisting phases averages out the dynamical effects, making it nearly impossible to predict the exact nature of phase transition dynamics. Here, we report the metal-insulator transition in samples of sub-micrometer size NdNiO3 where the effect of averaging is minimized by restricting the number of domains under study. We observe the presence of supercooled metallic phases with supercooling of 40 K or more. The transformation from the supercooled metallic to the insulating state is a stochastic process that happens at different temperatures and times in different experimental runs. The experimental results are understood without incorporating material specific properties, suggesting that the behavior is of universal nature. The size of the sample needed to observe individual switching of supercooled domains, the degree of supercooling, and the time-temperature window of switching are expected to depend on the parameters such as quenched disorder, strain, and magnetic field.

  7. Exploring the dynamics of phase separation in colloid-polymer mixtures with long range attraction.

    PubMed

    Sabin, Juan; Bailey, Arthur E; Frisken, Barbara J

    2016-06-28

    We have studied the kinetics of phase separation and gel formation in a low-dispersity colloid - non-adsorbing polymer system with long range attraction using small-angle light scattering. This system exhibits two-phase and three-phase coexistence of gas, liquid and crystal phases when the strength of attraction is between 2 and 4kBT and gel phases when the strength of attraction is increased. For those samples that undergo macroscopic phase separation, whether to gas-crystal, gas-liquid or gas-liquid-crystal coexistence, we observe dynamic scaling of the structure factor and growth of a characteristic length scale that behaves as expected for phase separation in fluids. In samples that gel, the power law associated with the growth of the dominant length scale is not equal to 1/3, but appears to depend mainly on the strength of attraction, decreasing from 1/3 for samples near the coexistence region to 1/27 at 8kBT, over a wide range of colloid and polymer concentrations.

  8. Exposure to dysfunctional parenting and trauma events and posttraumatic stress profiles among a treatment sample with coexisting depression and alcohol use problems.

    PubMed

    Bailey, Kylie; Webster, Rosemary; Baker, Amanda L; Kavanagh, David J

    2012-06-01

    Trauma exposure (including experiencing dysfunctional parenting when a child) and posttraumatic stress disorder (PTSD) frequently coexist with major depressive disorder (MDD) and alcohol use disorders (AUD), with the impact of this comorbidity usually studied as a dual disorder (i.e. PTSD-MDD or PTSD-AUD). This study explores trauma exposure (including to dysfunctional parenting), PTSD symptom severity and PTSD in people seeking treatment for coexisting depressive symptoms and alcohol use problems. Participants (n = 221) with current depression and alcohol use problems were recruited. Trauma exposure, PTSD symptoms and PTSD were assessed using the Posttraumatic Stress Diagnostic Scale. The Measure of Parenting Style assessed dysfunctional parenting (neglect/over-control/abuse) experienced as a child. Most participants experienced trauma (71.6%, n = 159), with more than one-third reaching DSM-IV criteria for current PTSD (38.0%, n = 84). Unique to this study was that there were no gender differences in rates of trauma exposure, number of traumatic events and PTSD. More severe PTSD symptoms and PTSD were associated with: childhood neglect; earlier depression onset; more severe depression and alcohol problems; and lower general functioning. More severe problems with alcohol were related to Intrusion and Avoidance symptoms, while severe alcohol dependence symptoms were related to hyperarousal. PTSD symptoms and PTSD are highly prevalent in those with coexisting depression and alcohol use problems and are associated with a history of childhood neglect and higher levels of comorbidity. Trauma, PTSD symptoms and PTSD should be assessed and addressed among people seeking treatment for coexisting depression and alcohol problems. © 2011 Australasian Professional Society on Alcohol and other Drugs.

  9. Competitive intransitivity, population interaction structure, and strategy coexistence.

    PubMed

    Laird, Robert A; Schamp, Brandon S

    2015-01-21

    Intransitive competition occurs when competing strategies cannot be listed in a hierarchy, but rather form loops-as in the game rock-paper-scissors. Due to its cyclic competitive replacement, competitive intransitivity promotes strategy coexistence, both in rock-paper-scissors and in higher-richness communities. Previous work has shown that this intransitivity-mediated coexistence is strongly influenced by spatially explicit interactions, compared to when populations are well mixed. Here, we extend and broaden this line of research and examine the impact on coexistence of intransitive competition taking place on a continuum of small-world networks linking spatial lattices and regular random graphs. We use simulations to show that the positive effect of competitive intransitivity on strategy coexistence holds when competition occurs on networks toward the spatial end of the continuum. However, in networks that are sufficiently disordered, increasingly violent fluctuations in strategy frequencies can lead to extinctions and the prevalence of monocultures. We further show that the degree of disorder that leads to the transition between these two regimes is positively dependent on population size; indeed for very large populations, intransitivity-mediated strategy coexistence may even be possible in regular graphs with completely random connections. Our results emphasize the importance of interaction structure in determining strategy dynamics and diversity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Nucleation in Sheared Granular Matter

    NASA Astrophysics Data System (ADS)

    Rietz, Frank; Radin, Charles; Swinney, Harry L.; Schröter, Matthias

    2018-02-01

    We present an experiment on crystallization of packings of macroscopic granular spheres. This system is often considered to be a model for thermally driven atomic or colloidal systems. Cyclically shearing a packing of frictional spheres, we observe a first order phase transition from a disordered to an ordered state. The ordered state consists of crystallites of mixed fcc and hcp symmetry that coexist with the amorphous bulk. The transition, initiated by homogeneous nucleation, overcomes a barrier at 64.5% volume fraction. Nucleation consists predominantly of the dissolving of small nuclei and the growth of nuclei that have reached a critical size of about ten spheres.

  11. Increased Frequency of Encopresis in a Child Diagnosed With Attention Deficit/Hyperactivity Disorder and Encopresis After Atomoxetine Use: A Case Report.

    PubMed

    Yektaş, Çiğdem; Cansiz, Mehmet Akif; Tufan, Ali Evren

    2016-01-01

    Attention deficit hyperactivity disorder (ADHD) is among the most frequently reported coexisting psychiatric conditions in children with encopresis. Some case reports state that atomoxetine-a selective presynaptic norepinephrine reuptake inhibitor-approved for treatment of ADHD is also effective in the treatment of coexisting encopresis. Contrasting those reports, here we present a case diagnosed with ADHD and secondary encopresis without constipation whose encopretic symptoms increased after atomoxetine treatment and discuss possible mechanisms.

  12. Bipolar Disorder in Children: Implications for Speech-Language Pathologists

    ERIC Educational Resources Information Center

    Quattlebaum, Patricia D.; Grier, Betsy C.; Klubnik, Cynthia

    2012-01-01

    In the United States, bipolar disorder is an increasingly common diagnosis in children, and these children can present with severe behavior problems and emotionality. Many studies have documented the frequent coexistence of behavior disorders and speech-language disorders. Like other children with behavior disorders, children with bipolar disorder…

  13. Liquid-liquid equilibrium in the- n-heptane- n-perfluorohexane system

    NASA Astrophysics Data System (ADS)

    Khairulin, R. A.; Stankus, S. V.; Gruzdev, V. A.; Bityutskii, V. A.

    2009-01-01

    The shape of the liquid-liquid coexistence curve in the C7H16-C6F14 system in the molar concentration-temperature coordinates close to the critical solution point was studied by narrow-beam gamma-raying of two-phase samples. The molar volumes of the coexisting liquid phases and critical point coordinates (critical temperature T c = 316.266 ± 0.03 K and critical concentration x c = 39.0 ± 0.4 mol % C6F14) were determined. The critical index β of the coexistence curve was found to be 0.322 ± 0.005. The diameter of the coexistence curve did not obey the classic “rectilinear diameter rule.”

  14. Managing attention deficit hyperactivity disorder in adults using illicit psychostimulants: A systematic review.

    PubMed

    Cook, Jon; Lloyd-Jones, Martyn; Arunogiri, Shalini; Ogden, Edward; Bonomo, Yvonne

    2017-09-01

    Attention deficit hyperactivity disorder and stimulant use disorder commonly co-exist, and appropriate treatments have not been well established. To provide guidance for treatment of co-existing attention deficit hyperactivity disorder and stimulant use disorder. A systematic review of published English articles using MEDLINE, EMBASE, CINAHL, PsycINFO and Cochrane, utilising consistent search terms. Randomised controlled trials, comparing any treatment arm with a control group, for participants meeting Diagnostic and Statistical Manual of Mental Disorders or equivalent criteria for both attention deficit hyperactivity disorder and stimulant use disorder. Eight trials were identified for inclusion in this review. Four of eight studies showed improvement in attention deficit hyperactivity disorder outcome measures compared with placebo. Two of six studies that reported substance use outcomes showed improvement in treatment arms compared with placebo. Studies to show effect tended to be those with the highest treatment dosage. Evidence for the efficacy of treatment of patients with comorbid stimulant use disorder and attention deficit hyperactivity disorder is limited. Promising outcomes need replication in further studies utilising higher treatment dosage.

  15. Microstructure and phase behavior in colloids and liquid crystals

    NASA Astrophysics Data System (ADS)

    Lohr, Matthew Alan

    This thesis describes our investigation of microstructure and phase behavior in colloids and liquid crystals. The first set of experiments explores the phase behavior of helical packings of thermoresponsive microspheres inside glass capillaries as a function of volume fraction. Stable helical packings are observed with long-range orientational order. Some of these packings evolve abruptly to disordered states as the volume fraction is reduced. We quantify these transitions using correlation functions and susceptibilities of an orientational order parameter. The emergence of coexisting metastable packings, as well as coexisting ordered and disordered states, is also observed. These findings support the notion of phase-transition-like behavior in quasi-one-dimensional systems. The second set of experiments investigates cross-over behavior from glasses with attractive interactions to sparse gel-like states. In particular, the vibrational modes of quasi-two-dimensional disordered colloidal packings of hard colloidal spheres with short-range attractions are measured as a function of packing fraction. A crossover from glassy to sparse gel-like states is indicated by an excess of low-frequency phonon modes. This change in vibrational mode distribution appears to arise from highly localized vibrations that tend to involve individual and/or small clusters of particles with few local bonds. These mode behaviors and corresponding structural insights may serve as a useful signature for glass-gel transitions in wider classes of attractive packings. A third set of experiments explores the director structures of aqueous lyotropic chromonic liquid crystal (LCLC) films created on square lattice cylindrical-micropost substrates. The structures are manipulated by modulating of the concentration-dependent elastic properties of LCLC s via drying. Nematic LCLC films exhibit preferred bistable alignment along the diagonals of the micropost lattice. Columnar LCLC films form two distinct director and defect configurations: a diagonally aligned director pattern with local squares of defects, and an off-diagonal configuration with zig-zag defects. The formation of these patterns appears to be tied to the relative free energy costs of splay and bend deformations in the precursor nematic films. The observed nematic and columnar configurations are understood numerically using a Landau-de Gennes free energy model. This work provides first examples of quasi-2D micropatterning of LC films in the columnar phase and the first micropatterning of lyotropic LC films in general, as well as demonstrating alignment and configuration switching of typically difficult-to-align LCLC films via bulk elastic properties.

  16. The Comorbidity between Attention-Deficit/Hyperactivity Disorder (ADHD) in Children and Arabic Speech Sound Disorder

    ERIC Educational Resources Information Center

    Hariri, Ruaa Osama

    2016-01-01

    Children with Attention-Deficiency/Hyperactive Disorder (ADHD) often have co-existing learning disabilities and developmental weaknesses or delays in some areas including speech (Rief, 2005). Seeing that phonological disorders include articulation errors and other forms of speech disorders, studies pertaining to children with ADHD symptoms who…

  17. Out-of-equilibrium processes in suspensions of oppositely charged colloids: liquid-to-crystal nucleation and gel formation

    NASA Astrophysics Data System (ADS)

    Sanz, Eduardo

    2009-03-01

    We study the kinetics of the liquid-to-crystal transformation and of gel formation in colloidal suspensions of oppositely charged particles. We analyse, by means of both computer simulations and experiments, the evolution of a fluid quenched to a state point of the phase diagram where the most stable state is either a homogeneous crystalline solid or a solid phase in contact with a dilute gas. On the one hand, at high temperatures and high packing fractions, close to an ordered-solid/disordered-solid coexistence line, we find that the fluid-to-crystal pathway does not follow the minimum free energy route. On the other hand, a quench to a state point far from the ordered-crystal/disordered-crystal coexistence border is followed by a fluid-to-solid transition through the minimum free energy pathway. At low temperatures and packing fractions we observe that the system undergoes a gas-liquid spinodal decomposition that, at some point, arrests giving rise to a gel-like structure. Both our simulations and experiments suggest that increasing the interaction range favors crystallization over vitrification in gel-like structures. [4pt] In collaboration with Chantal Valeriani, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands and SUPA, School of Physics, University of Edinburgh, JCMB King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK; Teun Vissers, Andrea Fortini, Mirjam E. Leunissen, and Alfons van Blaaderen, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University; Daan Frenke, FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands and Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK; and Marjolein Dijkstra, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University.

  18. Rise of an alternative majority against opinion leaders

    NASA Astrophysics Data System (ADS)

    Tucci, K.; González-Avella, J. C.; Cosenza, M. G.

    2016-03-01

    We investigate the role of opinion leaders or influentials in the collective behavior of a social system. Opinion leaders are characterized by their unidirectional influence on other agents. We employ a model based on Axelrod's dynamics for cultural interaction among social agents that allows for non-interacting states. We find three collective phases in the space of parameters of the system, given by the fraction of opinion leaders and a quantity representing the number of available states: one ordered phase having the state imposed by the leaders; another nontrivial ordered phase consisting of a majority group in a state orthogonal or alternative to that of the opinion leaders, and a disordered phase, where many small groups coexist. We show that the spontaneous rise of an alternative group in the presence of opinion leaders depends on the existence of a minimum number of long-range connections in the underlying network. This phenomenon challenges the common idea that influentials are fundamental to propagation processes in society, such as the formation of public opinion.

  19. Origin of anomalies and phase competitions around magnetic transition temperature in Pr0.7Ca0.3MnO3

    NASA Astrophysics Data System (ADS)

    Shah, Matiullah; Nadeem, M.; Atif, M.

    2013-03-01

    A polycrystalline sample of Pr0.7Ca0.3MnO3 is synthesized by the conventional solid-state reaction method and the phase formation is confirmed by x-ray diffraction. In this work, we addressed the phase competition issues in the vicinity of magnetic transition temperature and also established its correlation with oxygen contents of domains, disorder effects and heterogeneity in the material. The appearance and disappearance of anomaly in the vicinity of TC (128 K) with magnetic field is discussed in terms of establishment of short- and long-range networks between Mn3+ and Mn4+. Switching behaviour of two competing phases is analysed qualitatively and quantitatively, using an equivalent circuit model and magnetization analysis. The issue of coexisting phases is further substantiated using a simple depression angle approach of impedance plane plots. variable range hopping is found to be a better model than polaronic for explaining the transport properties of both competing phases below the magnetic transition temperature, 128 K.

  20. Extensional Flow-Induced Dynamic Phase Transitions in Isotactic Polypropylene.

    PubMed

    Ju, Jianzhu; Wang, Zhen; Su, Fengmei; Ji, Youxin; Yang, Haoran; Chang, Jiarui; Ali, Sarmad; Li, Xiangyang; Li, Liangbin

    2016-09-01

    With a combination of fast extension rheometer and in situ synchrotron radiation ultra-fast small- and wide-angle X-ray scattering, flow-induced crystallization (FIC) of isotactic polypropylene (iPP) is studied at temperatures below and above the melting point of α crystals (Tmα). A flow phase diagram of iPP is constructed in strain rate-temperature space, composing of melt, non-crystalline shish, α and α&β coexistence regions, based on which the kinetic and dynamic competitions among these four phases are discussed. Above Tmα , imposing strong flow reverses thermodynamic stabilities of the disordered melt and the ordered phases, leading to the occurrence of FIC of β and α crystals as a dynamic phase transition. Either increasing temperature or stain rate favors the competiveness of the metastable β over the stable α crystals, which is attributed to kinetic rate rather than thermodynamic stability. The violent competitions among four phases near the boundary of crystal-melt may frustrate crystallization and result in the non-crystalline shish winning out. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Severe avoidant/restrictive food intake disorder and coexisting stimulant treated attention deficit hyperactivity disorder.

    PubMed

    Pennell, Alexandra; Couturier, Jennifer; Grant, Christina; Johnson, Natasha

    2016-11-01

    There is a growing body of literature describing the development, clinical course, and treatment of avoidant/restrictive food intake disorder (ARFID), a diagnostic category introduced in the DSM-5. However, information surrounding complex cases of ARFID involving coexisting medical and/or psychiatric disorders remains scarce. Here we report on two cases of young patients diagnosed concurrently with ARFID and attention deficit hyperactivity disorder (ADHD) who both experienced significant growth restriction following initiation of stimulant medication. The appetite suppressant effect of stimulants exacerbated longstanding avoidant and restrictive eating behaviors resulting in growth restriction and admission to an inpatient eating disorders unit. The implications of ARFID exacerbated by stimulant-treated ADHD are explored, as well as the treatment delivered. These cases suggest that further research is needed to explore management options to counteract the appetite suppression effects of stimulants, while simultaneously addressing attention deficit symptoms and oppositional behavior. © 2016 Wiley Periodicals, Inc. (Int J Eat Disord 2016; 49:1036-1039). © 2016 Wiley Periodicals, Inc.

  2. Phase-coexisting patterns, horizontal segregation, and controlled convection in vertically vibrated binary granular mixtures

    NASA Astrophysics Data System (ADS)

    Ansari, Istafaul Haque; Rivas, Nicolas; Alam, Meheboob

    2018-01-01

    We report patterns consisting of coexistence of synchronous and asynchronous states [for example, a granular gas co-existing with (i) bouncing bed, (ii) undulatory subharmonic waves, and (iii) Leidenfrost-like states] in experiments on vertically vibrated binary granular mixtures in a Hele-Shaw cell. Most experiments have been carried out with equimolar binary mixtures of glass and steel balls of same diameter by varying the total layer height (F ) for a range of shaking acceleration (Γ ). All patterns as well as the related phase diagram in the (Γ ,F ) plane have been reproduced via molecular dynamics simulations of the same system. The segregation of heavier and lighter particles along the horizontal direction is shown to be the progenitor of such phase-coexisting patterns as confirmed in both experiment and simulation. At strong shaking we uncover a partial convection state in which a pair of convection rolls is found to coexist with a Leidenfrost-like state. The crucial role of the relative number density of two species on controlling the buoyancy-driven granular convection is demonstrated. The onset of horizontal segregation can be explained in terms of an anisotropic diffusion tensor.

  3. Wetting phenomenon in the liquid-vapor phase coexistence of a partially miscible Lennard-Jones binary mixture

    NASA Astrophysics Data System (ADS)

    Ramírez-Santiago, Guillermo; Díaz-Herrera, Enrique; Moreno Razo, José A.

    2004-03-01

    We have carried out extensive equilibrium MD simulations to study wetting phenomena in the liquid-vapor phase coexistence of a partially miscible binary LJ mixture. We find that in the temperature range 0.60 ≤ T^* < 0.80, the system separates forming a liquid A-liquid B interface in coexistence with the vapor phase. At higher temperatures, 0.80 ≤ T^* < 1.25 the liquid phases are wet by the vapor phase. By studying the behavior of the surface tension as a function of temperature we estimate the wetting transition temperature (WTT) to be T^*_w≃ 0.80. The adsorption of molecules at the liquid-liquid interface shows a discontinuity at about T^*≃ 0.79 suggesting that the wetting transition is a first order phase transition. These results are in agreement with some experiments carried out in fluid binary mixtures. In addition, we estimated the consolute temperature to be T^* _cons≃ 1.25. The calculated phase diagram of the mixture suggest the existence of a tricritical point.

  4. Stabilizing the hexagonal close packed structure of hard spheres with polymers: Phase diagram, structure, and dynamics

    NASA Astrophysics Data System (ADS)

    Edison, John R.; Dasgupta, Tonnishtha; Dijkstra, Marjolein

    2016-08-01

    We study the phase behaviour of a binary mixture of colloidal hard spheres and freely jointed chains of beads using Monte Carlo simulations. Recently Panagiotopoulos and co-workers predicted [Nat. Commun. 5, 4472 (2014)] that the hexagonal close packed (HCP) structure of hard spheres can be stabilized in such a mixture due to the interplay between polymer and the void structure in the crystal phase. Their predictions were based on estimates of the free-energy penalty for adding a single hard polymer chain in the HCP and the competing face centered cubic (FCC) phase. Here we calculate the phase diagram using free-energy calculations of the full binary mixture and find a broad fluid-solid coexistence region and a metastable gas-liquid coexistence region. For the colloid-monomer size ratio considered in this work, we find that the HCP phase is only stable in a small window at relatively high polymer reservoir packing fractions, where the coexisting HCP phase is nearly close packed. Additionally we investigate the structure and dynamic behaviour of these mixtures.

  5. Mechanical desorption of a single chain: unusual aspects of phase coexistence at a first-order transition.

    PubMed

    Skvortsov, Alexander M; Klushin, Leonid I; Polotsky, Alexey A; Binder, Kurt

    2012-03-01

    The phase transition occurring when a single polymer chain adsorbed at a planar solid surface is mechanically desorbed is analyzed in two statistical ensembles. In the force ensemble, a constant force applied to the nongrafted end of the chain (that is grafted at its other end) is used as a given external control variable. In the z-ensemble, the displacement z of this nongrafted end from the surface is taken as the externally controlled variable. Basic thermodynamic parameters, such as the adsorption energy, exhibit a very different behavior as a function of these control parameters. In the thermodynamic limit of infinite chain length the desorption transition with the force as a control parameter clearly is discontinuous, while in the z-ensemble continuous variations are found. However, one should not be misled by a too-naive application of the Ehrenfest criterion to consider the transition as a continuous transition: rather, one traverses a two-phase coexistence region, where part of the chain is still adsorbed and the other part desorbed and stretched. Similarities with and differences from two-phase coexistence at vapor-liquid transitions are pointed out. The rounding of the singularities due to finite chain length is illustrated by exact calculations for the nonreversal random walk model on the simple cubic lattice. A new concept of local order parameter profiles for the description of the mechanical desorption of adsorbed polymers is suggested. This concept give evidence for both the existence of two-phase coexistence within single polymer chains for this transition and the anomalous character of this two-phase coexistence. Consequences for the proper interpretation of experiments performed in different ensembles are briefly mentioned.

  6. Reasons for substance use among people with mental disorders.

    PubMed

    Thornton, Louise K; Baker, Amanda L; Lewin, Terry J; Kay-Lambkin, Frances J; Kavanagh, David; Richmond, Robyn; Kelly, Brian; Johnson, Martin P

    2012-04-01

    Comorbidity of mental disorders and substance use continues to be a major problem. To inform the development of more effective interventions for these co-existing disorders, this paper aimed to determine if there are clear variations in the reasons for tobacco, alcohol or cannabis use across people with different mental disorders. Data from five randomized controlled trials on co-existing disorders that measured reasons for tobacco, alcohol or cannabis use using the Drug Use Motives Questionnaire, Reasons for Smoking Questionnaire or via free response are reported and combined. Two studies involved participants with depression, two involved participants with a psychotic disorder and one involved participants with a range of mental disorders. A series of logistic regressions were conducted to examine differences in reasons for tobacco, alcohol or cannabis use and to compare these reasons between people with psychotic disorders or depression. Participants had a mean age of 38 (SD=12) and just over half (60%) were male. Forty-six percent of participants had a psychotic disorder and 54% experienced depression. Data from 976 participants across the five studies were included in the analyses. Tobacco and alcohol were primarily used to cope, while cannabis was primarily used for pleasure. People with psychotic disorders were more likely than people with depression to use tobacco for coping, pleasure and illness motives. People with depression, in contrast, were more likely to use alcohol for these reasons and social reasons. It may be important to tailor interventions for co-existing mental disorders and substance use by substance type and type of mental disorder. For example, interventions might be improved by including alternative coping strategies to tobacco and/or alcohol use, by addressing the social role of alcohol and by helping people with mental disorders using cannabis to gain pleasure from their lives in other ways. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Self-Organized Bistability Associated with First-Order Phase Transitions

    NASA Astrophysics Data System (ADS)

    di Santo, Serena; Burioni, Raffaella; Vezzani, Alessandro; Muñoz, Miguel A.

    2016-06-01

    Self-organized criticality elucidates the conditions under which physical and biological systems tune themselves to the edge of a second-order phase transition, with scale invariance. Motivated by the empirical observation of bimodal distributions of activity in neuroscience and other fields, we propose and analyze a theory for the self-organization to the point of phase coexistence in systems exhibiting a first-order phase transition. It explains the emergence of regular avalanches with attributes of scale invariance that coexist with huge anomalous ones, with realizations in many fields.

  8. Dendritic Growth of Hard-Sphere Crystals. Experiment 34

    NASA Technical Reports Server (NTRS)

    Russel, W. B.; Chaikin, P. M.; Zhu, Ji-Xiang; Meyer, W. V.; Rogers, R.

    1998-01-01

    Recent observations of the disorder-order transition for colloidal hard spheres under microgravity revealed dendritic crystallites roughly 1-2 mm in size for samples in the coexistence region of the phase diagram. Order-of-magnitude estimates rationalize the absence of large or dendritic crystals under normal gravity and their stability to annealing in microgravity. A linear stability analysis of the Ackerson and Schaetzel model for crystallization of hard spheres establishes the domain of instability for diffusion-limited growth at small supersaturations. The relationship between hard-sphere and molecular crystal growth is established and exploited to relate the predicted linear instability to the well-developed dendrites observed.

  9. Partially ordered state of ice XV

    PubMed Central

    Komatsu, K.; Noritake, F.; Machida, S.; Sano-Furukawa, A.; Hattori, T.; Yamane, R.; Kagi, H.

    2016-01-01

    Most ice polymorphs have order–disorder “pairs” in terms of hydrogen positions, which contributes to the rich variety of ice polymorphs; in fact, three recently discovered polymorphs— ices XIII, XIV, and XV—are ordered counter forms to already identified disordered phases. Despite the considerable effort to understand order–disorder transition in ice crystals, there is an inconsistency among the various experiments and calculations for ice XV, the ordered counter form of ice VI, i.e., neutron diffraction observations suggest antiferroelectrically ordered structures, which disagree with dielectric measurement and theoretical studies, implying ferroelectrically ordered structures. Here we investigate in-situ neutron diffraction measurements and density functional theory calculations to revisit the structure and stability of ice XV. We find that none of the completely ordered configurations are particular favored; instead, partially ordered states are established as a mixture of ordered domains in disordered ice VI. This scenario in which several kinds of ordered configuration coexist dispels the contradictions in previous studies. It means that the order–disorder pairs in ice polymorphs are not one-to-one correspondent pairs but rather have one-to-n correspondence, where there are n possible configurations at finite temperature. PMID:27375120

  10. Sleep Patterns in Children with Attention-Deficit/Hyperactivity Disorder, Tic Disorder, and Comorbidity

    ERIC Educational Resources Information Center

    Kirov, Roumen; Kinkelbur, Joerg; Banaschewski, Tobias; Rothenberger, Aribert

    2007-01-01

    Background: In children, attention-deficit/hyperactivity disorder (ADHD), tic disorder (TD), and their coexistence (ADHD + TD comorbidity) are very common and clinically important. Associated sleep patterns and their clinical role are still insufficiently investigated. This study aimed at characterizing these sleep patterns in children with ADHD,…

  11. School Based Assessment of Attention Deficit Disorders.

    ERIC Educational Resources Information Center

    Carter, Susanne

    This paper analyzes and synthesizes information on assessment of attention deficit disorder (ADD), to provide guidance to states as they formulate policies and practices. The paper presents an overview of ADD from an educational perspective, focusing on student characteristics, developmental patterns, and coexisting disorders. Schoolwide…

  12. Risk correlates for physical-mental multimorbidities in South Africa: a cross-sectional study.

    PubMed

    Petersen, I; Rathod, S; Kathree, T; Selohilwe, O; Bhana, A

    2017-12-04

    The aim of this study was to identify the risk correlates for coexisting common mental disorders (CMDs) in the chronic care population in South Africa, with the view to identifying particularly vulnerable patient populations. The sample comprised 2549 chronic care patients enrolled in the baseline and endline rounds of a facility detection survey conducted by the Programme for Improving Mental Health Care in three large facilities in the Dr Kenneth Kaunda district in the North West province of South Africa. Participants were screened for depression using the Patient Health Questionnaire (PHQ9) and for alcohol misuse using the Alcohol Use Disorders Identification Test (AUDIT). Data were analysed according to the number of morbidities, disorder type (physical or mental) and demographic variables. Multimorbidity was defined as the presence of two or more disorders (physical and/or mental). Just over one-third of the sample reported two or more physical conditions. Women were more at risk of being depressed than were men, with men more at risk of alcohol misuse. Those who were employed were at lower risk of having coexisting CMDs, while being younger, HIV positive, and food deprived were all found to be associated with higher risk for having coexisting CMDs. In the face of the large treatment gap for CMDs in South Africa, and the role that coexisting CMDs can play in exacerbating the burden of chronic physical diseases, mental health screening and treatment interventions should target HIV-positive, younger patients living in circumstances where there is household food insecurity.

  13. Phases, phase equilibria, and phase rules in low-dimensional systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, T., E-mail: timfrol@berkeley.edu; Mishin, Y., E-mail: ymishin@gmu.edu

    2015-07-28

    We present a unified approach to thermodynamic description of one, two, and three dimensional phases and phase transformations among them. The approach is based on a rigorous definition of a phase applicable to thermodynamic systems of any dimensionality. Within this approach, the same thermodynamic formalism can be applied for the description of phase transformations in bulk systems, interfaces, and line defects separating interface phases. For both lines and interfaces, we rigorously derive an adsorption equation, the phase coexistence equations, and other thermodynamic relations expressed in terms of generalized line and interface excess quantities. As a generalization of the Gibbs phasemore » rule for bulk phases, we derive phase rules for lines and interfaces and predict the maximum number of phases than may coexist in systems of the respective dimensionality.« less

  14. Coexistence of a metastable double hcp phase in bcc-fcc structure transition of Te under high pressure

    NASA Astrophysics Data System (ADS)

    Akahama, Yuichi; Okawa, Naoki; Sugimoto, Toshiyuki; Fujihisa, Hiroshi; Hirao, Naoshisa; Ohishi, Yasuo

    2018-02-01

    The structural phase transitions of tellurium (Te) are investigated at pressures of up to 330 GPa at 298 K using an X-ray powder diffraction technique. In the experiments, it was found that the high-pressure bcc phase (Te-V) transitioned to the fcc phase (Te-VI) at 99 GPa, although a double hcp phase (dhcp) coexisted with the fcc phase. As the pressure was increased and decreased, the dhcp phase vanished at 255 and 100 GPa, respectively. These results suggest that the dhcp phase is metastable at 298 K and the structure of the highest-pressure phase of Te is fcc. The present results provide important information regarding the high-pressure behavior of group-16 elements.

  15. Cu(Ir1 - xCrx)2S4: a model system for studying nanoscale phase coexistence at the metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Božin, E. S.; Knox, K. R.; Juhás, P.; Hor, Y. S.; Mitchell, J. F.; Billinge, S. J. L.

    2014-02-01

    Increasingly, nanoscale phase coexistence and hidden broken symmetry states are being found in the vicinity of metal-insulator transitions (MIT), for example, in high temperature superconductors, heavy fermion and colossal magnetoresistive materials, but their importance and possible role in the MIT and related emergent behaviors is not understood. Despite their ubiquity, they are hard to study because they produce weak diffuse signals in most measurements. Here we propose Cu(Ir1 - xCrx)2S4 as a model system, where robust local structural signals lead to key new insights. We demonstrate a hitherto unobserved coexistence of an Ir4+ charge-localized dimer phase and Cr-ferromagnetism. The resulting phase diagram that takes into account the short range dimer order is highly reminiscent of a generic MIT phase diagram similar to the cuprates. We suggest that the presence of quenched strain from dopant ions acts as an arbiter deciding between the competing ground states.

  16. Group acceptance and commitment therapy (ACT) for bipolar disorder and co-existing anxiety - an open pilot study.

    PubMed

    Pankowski, Sara; Adler, Mats; Andersson, Gerhard; Lindefors, Nils; Svanborg, Cecilia

    2017-03-01

    Previous studies have supported acceptance and commitment therapy (ACT) for reducing impairment related to various chronic conditions. ACT may possibly be beneficial for bipolar disorder (BD) with co-existing anxiety, which is associated with a poorer treatment outcome. Efforts are needed to identify suitable psychological interventions for BD and co-existing anxiety. In this open clinical trial, we included 26 patients with BD type 1 or 2 at an outpatient psychiatric unit specializing in affective disorders. The intervention consisted of a 12-session manualized group treatment that included psychoeducation, mindfulness, engaging in values-based behaviour, cognitive defusion, acceptance and relapse prevention modules. Participants completed four self-report questionnaires covering anxiety symptoms (Beck Anxiety Inventory - BAI), depressive symptoms (Beck Depression Inventory - BDI-II), quality of life (Quality of Life Inventory - QOLI) and psychological flexibility (Acceptance and Action Questionnaire - AAQ-2) before, during and after the treatment. At post-treatment, the participants reported significant improvements in all outcome measures, with large effects (Cohen's d between 0.73 and 1.98). The mean reduction in anxiety symptoms was 45%. At post-treatment, 96% of the patients were classified as responders on at least one of the outcome measures. A limitation is that the trial is uncontrolled. The results suggest that ACT has the potential to be an effective treatment for BD patients with co-existing anxiety. Further randomized studies are warranted.

  17. Attention Deficit Hyperactivity Disorder, Tic Disorder, and Allergy: Is There a Link? A Nationwide Population-Based Study

    ERIC Educational Resources Information Center

    Chen, Mu-Hong; Su, Tung-Ping; Chen, Ying-Sheue; Hsu, Ju-Wei; Huang, Kai-Lin; Chang, Wen-Han; Bai, Ya-Mei

    2013-01-01

    Background: Attention deficit hyperactivity disorder (ADHD) and tic disorder usually co-occur in the same individuals, but the underlying mechanisms remain unclear. Previous evidence has shown that a frequent coexistence of allergic diseases was noted in patients with ADHD or tic disorder. We attempted to investigate the possible link among ADHD,…

  18. Mapping the phase inhomogeneity across first order spin flop transition

    NASA Astrophysics Data System (ADS)

    Tripathi, Malvika; Majumder, Supriyo; Choudhary, R. J.; Phase, D. M.

    2018-04-01

    As a consequence of spin reorientation phase transition (SRPT, TSRPT = 34K) in SmCrO3, the two phases, high temperature uncompensated anti-ferromagnetic Γ4 configuration and low temperature collinear anti-ferromagnetic phase Γ1 coexist in the vicinity of transition. The observed unexpectedly huge coercivity (Hc ˜2T) below SRPT at 25K questions on the behavior of two co-existing phases. In the present study, we have used the FORC diagrams to monitor the distribution of clusters related to different phases and to understand the nature of interaction among the clusters of distinct phases. We observed that the nature of interaction has indeed magnetic effect and the pining across phase boundaries may cause the enhancement of coercivity at 25K.

  19. A Lattice Boltzmann Framework for the simulation of boiling hydrodynamics in BWRs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, P. K.; Tentner, A.; Uddin, R.

    2008-01-01

    Multi phase and multi component flows are ubiquitous in nature as well as in many man-made processes. A specific example is the Boiling Water Reactor (BWR) core, in which the coolant enters the core as liquid, undergoes a phase change as it traverses the core and exits as a high quality two-phase mixture. Two-phase flows in BWRs typically manifest a wide variety of geometrical patterns of the co-existing phases depending on the local system conditions. Modeling of such flows currently relies on empirical correlations (for example, in the simulation of bubble nucleation, bubble growth and coalescence, and inter-phase surface topologymore » transitions) that hinder the accurate simulation of two-phase phenomena using Computational Fluid Dynamics (CFD) approaches. The Lattice Boltzmann Method (LBM) is in rapid development as a modeling tool to understand these macro-phenomena by coupling them with their underlying micro-dynamics. This paper presents a consistent LBM formulation for the simulation of a two-phase water-steam system. Results of initial model validation in a range of thermodynamic conditions typical for BWRs are also shown. The interface between the two coexisting phases is captured from the dynamics of the model itself, i.e., no interface tracking is needed. The model is based on the Peng-Robinson (P-R) non-ideal equation of state and can quantitatively approximate the phase-coexistence curve for water at different temperatures ranging from 125 to 325 oC. Consequently, coexisting phases with large density ratios (up to {approx}1000) may be simulated. Two-phase models in the 200-300 C temperature range are of significant importance to nuclear engineers since most BWRs operate under similar thermodynamic conditions. Simulation of bubbles and droplets in a gravity-free environment of the corresponding coexisting phase until steady state is reached satisfies Laplace law at different temperatures and thus, yield the surface tension of the fluid. Comparing the LBM surface tension thus calculated using the LBM to the corresponding experimental values for water, the LBM lattice unit (lu) can be scaled to the physical units. Using this approach, spatial scaling of the LBM emerges from the model itself and is not imposed externally.« less

  20. Tuning the phase diagram of colloid-polymer mixtures via Yukawa interactions

    NASA Astrophysics Data System (ADS)

    González García, Álvaro; Tuinier, Remco

    2016-12-01

    Theory that predicts the phase behavior of interacting Yukawa spheres in a solution containing nonadsorbing polymer is presented. Our approach accounts for multiple overlap of depletion zones. It is found that additional Yukawa interactions beyond hard core interactions strongly affect the location and presence of coexistence regions and phase states. The theoretical phase diagrams are compared with Monte Carlo simulations. The agreement between the two approaches supports the validity of the theoretical approximations made and confirms that, by choosing the parameters of the interaction potentials, tuning of the binodals is possible. The critical end point characterizes the phase diagram topology. It is demonstrated how an additional Yukawa interaction shifts this point with respect to the hard sphere case. Provided a certain depletant-to-colloid size ratio for which a stable colloidal gas-liquid phase coexistence takes place for hard spheres, added direct interactions turn this into a metastable gas-liquid equilibrium. The opposite case, the induction of a stable gas-liquid coexistence where only fluid-solid was present for hard spheres, is also reported.

  1. Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Lihua; He, Xiaoman; Qu, Jun

    Al(OH){sub 3} and Ca(OH){sub 2} powders are co-ground to prepare a precursor which hydrates into a layered double hydroxide (LDH) phase by agitation in aqueous solution with target hexavalent chromium (Cr(VI)) at room temperature, to achieve an obvious improvement in removal efficiency of Cr(VI) through an easy incorporation into the structure. Although the prepared precursor transforms into LDH phases also when agitated in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. The adsorption isotherm and kinetic studies show that the phenomena occurring on the Al-Ca precursor fit a pseudo-second-order kineticsmore » with a Langmuir adsorption capacity of 59.45 mg/g. Besides, characterizations of the prepared precursor and the samples after adsorption are also performed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscope (TEM) to understand the reason of the preferential incorporation of Cr(VI) to the coexisting chloride salts during the LDH phase formation. - Graphical abstract: Activated Ca-Al hydroxides (C{sub 3}A) transformed into Ca-Al-OH compound when agitated in water. Ca-Al precursor (C{sub 3}A) was agitated in a hexavalent chromium (Cr(VI)) solution to form Al-Ca-CrO{sub 4} LDH product. Ca-Al-CrO{sub 4} LDH phase occurred preferentially to Ca-Al-MCl{sub 2} LDH phases in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. - Highlights: • Activated Ca-Al hydroxides transformed into LDH when agitated in water with some inorganic substances. • Hexavalent Cr was incorporated in the LDH structure at high adsorption capacity. • Ca-Al-Cr LDH phase occurred preferentially to Ca-Al-MCl{sub 2} LDH phases with coexistence. • The prepared Ca-Al hydroxides had high performance as adsorbent even with high salinity of the solution.« less

  2. Influence of Methylphenidate on Motor Performance and Attention in Children with Developmental Coordination Disorder and Attention Deficit Hyperactive Disorder

    ERIC Educational Resources Information Center

    Bart, Orit; Daniel, Liron; Dan, Orrie; Bar-Haim, Yair

    2013-01-01

    Individuals with attention deficit hyperactive disorder (ADHD) often have coexisting developmental coordination disorder (DCD). The positive therapeutic effect of methylphenidate on ADHD symptoms is well documented, but its effects on motor coordination are less studied. We assessed the influence of methylphenidate on motor performance in children…

  3. The microscopic structure of an exactly solvable model binary solution that exhibits two closed loops in the phase diagram.

    PubMed

    Lungu, Radu P; Huckaby, Dale A

    2008-07-21

    An exactly solvable lattice model describing a binary solution is considered where rodlike molecules of types AA and BB cover the links of a honeycomb lattice, the neighboring molecular ends having three-body and orientation-dependent bonding interactions. At phase coexistence of AA-rich and BB-rich phases, the average fraction of each type of triangle of neighboring molecular ends is calculated exactly. The fractions of the different types of triangles are then used to deduce the local microscopic structure of the coexisting phases for a case of the model that contains two closed loops in the phase diagram.

  4. Comorbidity and coexisting symptoms and infections presented in general practice by COPD patients: Does livestock density in the residential environment play a role?

    PubMed

    Baliatsas, Christos; Borlée, Floor; van Dijk, Christel E; van der Star, Baukje; Zock, Jan-Paul; Smit, Lidwien A M; Spreeuwenberg, Peter; Heederik, Dick; Yzermans, C Joris

    2017-06-01

    Patients with chronic obstructive pulmonary disease (COPD) constitute a potentially susceptible group towards environmental exposures such as livestock farm emissions, given their compromised respiratory health status. The primary aim of this study was to examine the association between livestock exposure and comorbidities and coexisting symptoms and infections in COPD patients. Data were collected from 1828 COPD patients (without co-occurring asthma) registered in 23 general practices and living in a rural area with a high livestock density. Prevalence of comorbid diseases/disorders and coexisting symptoms/infections were based on electronic health records from the year 2012. Various indicators of individual exposure to livestock were estimated based on residential addresses, using a geographic information system. At least one comorbid disorder was present in 69% of the COPD patients (especially cardiac disorders and depression, while 49% had at least one coexisting symptom and/or infection (especially upper respiratory tract infections, respiratory symptoms and pneumonia). Half of the COPD-patients resided less than 500m of the nearest farm. Some positive as well as inverse associations were found between the examined outcomes and exposure estimates, although not consistent. Despite the high prevalence of coexisting chronic and acute conditions presented in primary care by in COPD patients, this investigation found no convincing evidence for an association with livestock exposure estimates. There is a need for a replication of the present findings in studies with a longitudinal design, on different groups of potentially susceptible patients. Future research should also elucidate the biological plausibility of possible protective effects of exposure. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Formation of metastable phases by spinodal decomposition

    PubMed Central

    Alert, Ricard; Tierno, Pietro; Casademunt, Jaume

    2016-01-01

    Metastable phases may be spontaneously formed from other metastable phases through nucleation. Here we demonstrate the spontaneous formation of a metastable phase from an unstable equilibrium by spinodal decomposition, which leads to a transient coexistence of stable and metastable phases. This phenomenon is generic within the recently introduced scenario of the landscape-inversion phase transitions, which we experimentally realize as a structural transition in a colloidal crystal. This transition exhibits a rich repertoire of new phase-ordering phenomena, including the coexistence of two equilibrium phases connected by two physically different interfaces. In addition, this scenario enables the control of sizes and lifetimes of metastable domains. Our findings open a new setting that broadens the fundamental understanding of phase-ordering kinetics, and yield new prospects of applications in materials science. PMID:27713406

  6. Charged Particles on Surfaces: Coexistence of Dilute Phases and Periodic Structures at Interfaces

    NASA Astrophysics Data System (ADS)

    Loverde, Sharon M.; Solis, Francisco J.; Olvera de La Cruz, Monica

    2007-06-01

    We consider a mixture of two immiscible oppositely charged molecules strongly adsorbed to an interface, with a neutral nonselective molecular background. We determine the coexistence between a high density ionic periodic phase and a dilute isotropic ionic phase. We use a strong segregation approach for the periodic phase and determine the one-loop free energy for the dilute phase. Lamellar and hexagonal patterns are calculated for different charge stoichiometries of the mixture. Molecular dynamics simulations exhibit the predicted phase behavior. The periodic length scale of the solid phase is found to scale as ɛ/(lBψ3/2), where ψ is the effective charge density, lB is the Bjerrum length, and ɛ is the cohesive energy.

  7. Phase coexistence and exchange-bias effect in LiM n2O4 nanorods

    NASA Astrophysics Data System (ADS)

    Zhang, X. K.; Yuan, J. J.; Xie, Y. M.; Yu, Y.; Kuang, F. G.; Yu, H. J.; Zhu, X. R.; Shen, H.

    2018-03-01

    In this paper, the magnetic properties of LiM n2O4 nanorods with an average diameter of ˜100 nm and length of ˜1 μ m are investigated. The temperature dependences of dc and ac susceptibility measurements show that LiM n2O4 nanorods experience multiple magnetic phase transitions upon cooling, i.e., paramagnetic (PM), antiferromagnetic (AFM), canted antiferromagnetic (CAFM), and cluster spin glass (SG). The coexistence between a long-range ordered AFM phase due to a M n4 +-M n4 + interaction and a cluster SG phase originating from frozen AFM clusters at low temperature in LiM n2O4 nanorods is elucidated. Field-cooled hysteresis loops (FC loops) and magnetic training effect (TE) measurements confirm the presence of an exchange-bias (EB) effect in LiM n2O4 nanorods below the Néel temperature (TN˜60 K ) . Furthermore, by analyzing the TE, we conclude that the observed EB effect originates completely from an exchange coupling interaction at the interface between the AFM and cluster SG states. A phenomenological model based on phase coexistence is proposed to interpret the origin of the EB effect below 60 K in the present compound. In turn, the appearance of the EB effect further supports the coexistence of AFM order along with a cluster SG state in LiM n2O4 nanorods.

  8. Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides

    NASA Astrophysics Data System (ADS)

    Zhong, Lihua; He, Xiaoman; Qu, Jun; Li, Xuewei; Lei, Zhiwu; Zhang, Qiwu; Liu, Xinzhong

    2017-01-01

    Al(OH)3 and Ca(OH)2 powders are co-ground to prepare a precursor which hydrates into a layered double hydroxide (LDH) phase by agitation in aqueous solution with target hexavalent chromium (Cr(VI)) at room temperature, to achieve an obvious improvement in removal efficiency of Cr(VI) through an easy incorporation into the structure. Although the prepared precursor transforms into LDH phases also when agitated in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. The adsorption isotherm and kinetic studies show that the phenomena occurring on the Al-Ca precursor fit a pseudo-second-order kinetics with a Langmuir adsorption capacity of 59.45 mg/g. Besides, characterizations of the prepared precursor and the samples after adsorption are also performed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscope (TEM) to understand the reason of the preferential incorporation of Cr(VI) to the coexisting chloride salts during the LDH phase formation. Ca-Al precursor (C3A) was agitated in a hexavalent chromium (Cr(VI)) solution to form Al-Ca-CrO4 LDH product. Ca-Al-CrO4 LDH phase occurred preferentially to Ca-Al-MCl2 LDH phases in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist.

  9. Phase characteristics of 0.92Bi{sub 0.5}Na{sub 0.5}TiO{sub 3}-0.08BiAlO{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Wei; Mao, Chaoliang; Liu, Zhen

    2015-03-02

    The phase characteristics of 0.92Bi{sub 0.5}Na{sub 0.5}TiO{sub 3}-0.08BiAlO{sub 3} lead-free ceramics were investigated systematically. The loss tangent of poled sample shows a broad peak when heating to about 80 °C, i.e., depolarization temperature T{sub d}. The polarization-electric field hysteresis loops at different temperature exhibit the feature of ferroelectric (FE)- antiferroelectric (AFE) phase transition and the co-existence of FE and AFE phase. The pyroelectric coefficients curve confirms its diffusion behaviors. The initial hysteresis loop and switching current curves under T{sub d} indicate the co-existence of FE and AFE phase. The domain morphology of transmission electron microscopy supports the co-existence of FE andmore » AFE phase. Our work not only exhibit that the FE and AFE phase characteristics of 0.92Bi{sub 0.5}Na{sub 0.5}TiO{sub 3}-0.08BiAlO{sub 3} ceramics but also they may be helpful for further investigation on lead-free ceramics.« less

  10. Towards functionalization of graphene: in situ study of the nucleation of copper-phtalocyanine on graphene

    NASA Astrophysics Data System (ADS)

    Schwarz, Daniel; Henneke, Caroline; Kumpf, Christian

    2016-02-01

    Molecular films present an elegant way for the uniform functionalization or doping of graphene. Here, we present an in situ study on the initial growth of copper phthalocyanine (CuPc) on epitaxial graphene on Ir(111). We followed the growth up to a closed monolayer with low energy electron microscopy and selected area electron diffraction (μLEED). The molecules coexist on graphene in a disordered phase without long-range order and an ordered crystalline phase. The local topography of the graphene substrate plays an important role in the nucleation process of the crystalline phase. Graphene flakes on Ir(111) feature regions that are under more tensile stress than others. We observe that the CuPc molecules form ordered domains initially on those graphene regions that are closest to the fully relaxed lattice. We attribute this effect to a stronger influence of the underlying Ir(111) substrate for molecules adsorbed on those relaxed regions.

  11. Spin dynamics of antiferromagnets in the presence of a homogeneous magnetization

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, T. R.; Belitz, D.

    2017-06-01

    We use general hydrodynamic equations to determine the long-wavelength spin excitations in isotropic antiferromagnets in the presence of a homogeneous magnetization. The latter may be induced, such as in antiferromagnets in an external magnetic field, or spontaneous, such as in ferrimagnetic or canted phases that are characterized by the coexistence of antiferromagnetic and ferromagnetic order. Depending on the physical situation, we find propagating spin waves that are gapped in some cases and gapless in others, diffusive modes, or relaxational modes. The excitation spectra turn out to be qualitatively different depending on whether or not the homogeneous magnetization is a conserved quantity. The results lay the foundation for a description of a variety of quantum phase transitions, including the transition from a ferromagnetic metal to an antiferromagnetic one, and the spin-flop transitions that are observed in some antiferromagnets. They also are crucial for incorporating weak localization and Altshuler-Aronov effects into the descriptions of quantum phases in both clean and disordered magnetic metals.

  12. Solid-liquid like phase transition in a confined granular suspension

    NASA Astrophysics Data System (ADS)

    Sakai, Nariaki; Lechenault, Frederic; Adda Bedia, Mokhtar

    We present an experimental study of a liquid-solid like phase transition in a two-dimensional granular media. Particles are placed in a vertical Hele-Show cell filled with a denser solution of cesium-chloride. Thus, when the cell is rotated around its axis, hydrostatic pressure exerts a centripetal force on the particles which confines them towards the center. This force is in competition with gravity, thus by modifying the rotation rate, it is possible to transform continuously and reversibly the sample from a disordered loose state to an ordered packed state. The system presents many similarities with thermal systems at equilibrium like density and interface fluctuations, and the transition between the two phases goes through a coexistence state, where there is nucleation and growth of locally ordered domains which are captured by the correlation function of the hexatic order parameter. We discuss the possibility to extend the grand-canonical formalism to out-of equilibrium systems, in order to uncover a state equation between the density and the pressure in the medium.

  13. Time-resolved x-ray diffraction and calorimetric studies at low scan rates

    PubMed Central

    Yao, Haruhiko; Hatta, Ichiro; Koynova, Rumiana; Tenchov, Boris

    1992-01-01

    The phase transitions of dipalmitoylphosphatidylethanolamine (DPPE) in excess water have been examined by low-angle time-resolved x-ray diffraction and calorimetry at low scan rates. The lamellar subgel/lamellar liquid-crystalline (Lc → Lα), lamellar gel/lamellar liquid-crystalline (Lβ → Lα), and lamellar liquid-crystalline/lamellar gel (Lα → Lβ) phase transitions proceed via coexistence of the initial and final phases with no detectable intermediates at scan rates 0.1 and 0.5°C/min. At constant temperature within the region of the Lβ → Lα transition the ratio of the two coexisting phases was found to be stable for over 30 min. The state of stable phase coexistence was preceded by a 150-s relaxation taking place at constant temperature after termination of the heating scan in the transition region. While no intermediate structures were present in the coexistence region, a well reproducible multipeak pattern, with at least four prominent heat capacity peaks separated in temperature by 0.4-0.5°C, has been observed in the cooling transition (Lα → Lβ) by calorimetry. The multipeak pattern became distinct with an increase of incubation time in the liquid-crystalline phase. It was also clearly resolved in the x-ray diffraction intensity versus temperature plots recorded at slow cooling rates. These data suggest that the equilibrium state of the Lα phase of hydrated DPPE is represented by a mixture of domains that differ in thermal behavior, but cannot be distinguished structurally by x-ray scattering. Imagesp689-aFIGURE 9 PMID:19431820

  14. Dynamical Scaling and Phase Coexistence in Topologically Constrained DNA Melting.

    PubMed

    Fosado, Y A G; Michieletto, D; Marenduzzo, D

    2017-09-15

    There is a long-standing experimental observation that the melting of topologically constrained DNA, such as circular closed plasmids, is less abrupt than that of linear molecules. This finding points to an important role of topology in the physics of DNA denaturation, which is, however, poorly understood. Here, we shed light on this issue by combining large-scale Brownian dynamics simulations with an analytically solvable phenomenological Landau mean field theory. We find that the competition between melting and supercoiling leads to phase coexistence of denatured and intact phases at the single-molecule level. This coexistence occurs in a wide temperature range, thereby accounting for the broadening of the transition. Finally, our simulations show an intriguing topology-dependent scaling law governing the growth of denaturation bubbles in supercoiled plasmids, which can be understood within the proposed mean field theory.

  15. Lateral organization of mixed, two-phosphatidylcholine liposomes as investigated by GPS, the slope of Laurdan generalized polarization spectra.

    PubMed

    Vallejo, Alba A; Velázquez, Jesús B; Fernández, Marta S

    2007-10-01

    The effect of the excitation or emission wavelengths on Laurdan generalized polarization (GP) can be evaluated by GPS, a quantitative, simplified determination of the GP spectrum slope, the thermotropic dependence of which allows the assessment of phospholipid lamellar membrane phase, as shown in a recent publication of our laboratory [J.B. Velázquez, M.S. Fernández, Arch. Biochem. Biophys. 455 (2006) 163-174]. In the present work, we applied Laurdan GPS to phase transition studies of mixed, two-phosphatidylcholine liposomes prepared from variable proportions of dimyristoyl- and dipalmitoylphosphatidylcholine (DMPC and DPPC, respectively). We have found that the GPS function reports a clear limit between the gel/liquid-crystalline phase coexistence region and the liquid-crystalline state, not only at a certain temperature T(c) for liposomes of constant composition submitted to temperature scans, but also at a defined mole fraction X(c), for two-component liposomes of variable composition at constant temperature. The T(c) or the X(c) values obtained from GPS vs. temperature or GPS vs. composition plots, respectively, allow the construction of a partial phase diagram for the DMPC-DPPC mixtures, showing the boundary between the two-phase coexisting region and the liquid-crystalline state. Likewise, at the onset of the transition region, i.e., the two-phase coexisting region as detected by GPS, it is possible to determine, although with less precision, a temperature T(o) or a mole fraction X(o) defining a boundary located below but near the limit between the gel and ripple phase, reported in the literature. These GPS results are consistent with the proposal by several authors that a fraction of L(alpha) phospholipids coexists with gel phospholipids in the rippled phase.

  16. Asperger Syndrome and Medication Treatment

    ERIC Educational Resources Information Center

    Tsai, Luke Y.

    2007-01-01

    Asperger syndrome (AS) is a neurobiological disorder whose core clinical symptoms include impairment in social interaction, impairments in verbal and nonverbal communication, and restricted, repetitive, and stereotyped patterns of behavior, interests, and activities. AS is often accompanied by coexisting neuropsychiatric disorders, including…

  17. Competition between coexisting phases in (La,Pr)CaMnO3 manganites

    NASA Astrophysics Data System (ADS)

    Masunaga, S. H.; Jardim, R. F.

    2007-10-01

    Polycrystalline La5/8-yPryCa3/8MnO3, 0⩽y⩽0.625, samples were synthesized by the solid-state reaction method and studied using x-ray powder diffraction, magnetic susceptibility [χ(T)], and magnetoresistivity [ρ(T,H)] measurements. Some features such as an appreciable thermal hysteresis observed in both ρ(T ) and χ(T ) curves indicated a competing scenario due to the coexistence of different phases. We have also found that there is a critical region in the phase diagram, for the Pr concentration ranging from ˜0.30 to 0.40, where the magnitude of the insulator to metal transition temperature (TMI), the Curie temperature (TC), the magnetoresistance, and the residual resistivity (ρ0) are characterized by abrupt changes with little increase in y. Our data also indicate that the physical properties of these manganites in this critical region are dominated by a strong competition between coexisting ferromagnetic metallic and charge-ordered insulating phases.

  18. Molecular Simulation of the Phase Diagram of Methane Hydrate: Free Energy Calculations, Direct Coexistence Method, and Hyperparallel Tempering.

    PubMed

    Jin, Dongliang; Coasne, Benoit

    2017-10-24

    Different molecular simulation strategies are used to assess the stability of methane hydrate under various temperature and pressure conditions. First, using two water molecular models, free energy calculations consisting of the Einstein molecule approach in combination with semigrand Monte Carlo simulations are used to determine the pressure-temperature phase diagram of methane hydrate. With these calculations, we also estimate the chemical potentials of water and methane and methane occupancy at coexistence. Second, we also consider two other advanced molecular simulation techniques that allow probing the phase diagram of methane hydrate: the direct coexistence method in the Grand Canonical ensemble and the hyperparallel tempering Monte Carlo method. These two direct techniques are found to provide stability conditions that are consistent with the pressure-temperature phase diagram obtained using rigorous free energy calculations. The phase diagram obtained in this work, which is found to be consistent with previous simulation studies, is close to its experimental counterpart provided the TIP4P/Ice model is used to describe the water molecule.

  19. Coexistence of 9p Deletion Syndrome and Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Günes, Serkan; Ekinci, Özalp; Ekinci, Nuran; Toros, Fevziye

    2017-01-01

    Deletion or duplication of the short arm of chromosome 9 may lead to a variety of clinical conditions including craniofacial and limb abnormalities, skeletal malformations, mental retardation, and autism spectrum disorder. Here, we present a case report of 5-year-old boy with 9p deletion syndrome and autism spectrum disorder.

  20. Bullying and Suicide Revisited: What Schools Can Do Now

    ERIC Educational Resources Information Center

    Poland, Scott; Lieberman, Richard

    2018-01-01

    The research is clear on youth suicide: Mental illness plays a significant role. Suicide is most often the result of untreated or undertreated mental illness, and when certain disorders coexist in youth, particularly depression and impulse disorders (such as alcohol and substance abuse, nonsuicidal self-injury, or conduct disorder), the risk for…

  1. Phase Coexistence in Insect Swarms

    NASA Astrophysics Data System (ADS)

    Sinhuber, Michael; Ouellette, Nicholas T.

    2017-10-01

    Animal aggregations are visually striking, and as such are popular examples of collective behavior in the natural world. Quantitatively demonstrating the collective nature of such groups, however, remains surprisingly difficult. Inspired by thermodynamics, we applied topological data analysis to laboratory insect swarms and found evidence for emergent, material-like states. We show that the swarms consist of a core "condensed" phase surrounded by a dilute "vapor" phase. These two phases coexist in equilibrium, and maintain their distinct macroscopic properties even though individual insects pass freely between them. We further define a pressure and chemical potential to describe these phases, extending theories of active matter to aggregations of macroscopic animals and laying the groundwork for a thermodynamic description of collective animal groups.

  2. Spiral magnetic order and pressure-induced superconductivity in transition metal compounds.

    PubMed

    Wang, Yishu; Feng, Yejun; Cheng, J-G; Wu, W; Luo, J L; Rosenbaum, T F

    2016-10-06

    Magnetic and superconducting ground states can compete, cooperate and coexist. MnP provides a compelling and potentially generalizable example of a material where superconductivity and magnetism may be intertwined. Using a synchrotron-based non-resonant X-ray magnetic diffraction technique, we reveal a spiral spin order in MnP and trace its pressure evolution towards superconducting order via measurements in a diamond anvil cell. Judging from the magnetostriction, ordered moments vanish at the quantum phase transition as pressure increases the electron kinetic energy. Spins remain local in the disordered phase, and the promotion of superconductivity is likely to emerge from an enhanced coupling to residual spiral spin fluctuations and their concomitant suppression of phonon-mediated superconductivity. As the pitch of the spiral order varies across the 3d transition metal compounds in the MnP family, the magnetic ground state switches between antiferromagnet and ferromagnet, providing an additional tuning parameter in probing spin-fluctuation-induced superconductivity.

  3. The epidemiology and treatment of depression when it coexists with somatoform disorders, somatization, or pain.

    PubMed

    Smith, G R

    1992-07-01

    This article reviews the relationship between depressive disorders and somatoform disorders, somatization, and pain. These disorders and symptoms are clinically interrelated, yet the nature of the interrelation is not well understood. This review of the literature from 1975 through mid-year 1990 addresses the epidemiology and treatment of these conditions and/or symptoms when they occur together. When robust criteria are used to determine which publications are included, only 14 are available that address depressive disorders, somatoform disorders, and somatization. Similarly, there are only 13 that address depressive disorders and pain. Taken together, these studies indicate that 1) in somatization disorder patients, there is a high prevalence of depression; 2) in patients with major depression, there are substantial levels of hypochondriacal and somatizing symptoms; 3) that depression in the face of coexisting somatization disorder can be successfully treated; 4) in chronic pain patients, there is a high prevalence of depressive disorders; 5) in patients with major depression, pain is a frequent complaint; 6) and finally, that pain improves with the treatment of depression. What is most striking from this review, however, is the very limited number of studies that address these important problems. This lack of research-based data calls for new aggressive research efforts in this area.

  4. [Mixed Munchausen Syndrome with organic comorbidity].

    PubMed

    Mora, Marcelo; Saluto, Valeria; Balbi, Paula; Spotti, Martina; Fadel, Daniel

    2017-03-01

    We present a detailed case report that shows a woman patient who has Factitious Disorder manifested by the coexistence both of: A) typical/direct Munchausen and B) Munchausen by proxy or indirect: being the frst one (A) about the own person and the second one (B) about other people (most cases about their own young children). Furthermore, in the reported case we observed that the patient shown the particularity of having positive biological markers for Myasthenia Gravis (serology markers), and having inconsistent clinical manifestations that are typically observed in the exacerbation phase when she still continued in remission phase. In our own bibliographic research we couldn`t fnd anything about this case of "Mixed Munchausen Syndrome with organic comorbidity". In the same way as we tried to get information about the diagnostic algorithms and the possible therapeutic treatment strategies we found nothing like this reported before. Finally, this clinical presentation constitutes a blind spot for the scientifc community generating a lack of recognition for this diagnostic category and above all of the confusion that this mental disorder can generate in: a) the inadequate use of therapeutic resources, b) the irrational use of drugs, c) the distortion of institutional instances, and d) the medical behaviors that occurred in this case.

  5. Coexistence of multiple sclerosis and ankylosing spondylitis: Report of four cases from Russia and review of the literature.

    PubMed

    Fominykh, Vera; Shevtsova, Tatyana; Arzumanian, Narine; Brylev, Lev

    2017-10-01

    Multiple sclerosis is a chronic demyelinating disorder of the central nervous system. There are many cases of multiple sclerosis - like syndrome and demyelinating disorders in systemic lupus erythematosus, Sjogren disease, Behcet disease and other autoimmune conditions. Coexistence of ankylosing spondylitis and multiple sclerosis usually is rare but in this article we report 4 Russian patients with concomitant multiple sclerosis and ankylosing spondylitis diseases. None of these patients received anti-tumor necrosis factor alpha therapy prior to diagnosis of multiple sclerosis. Pathogenesis, diagnostic and treatment challenges are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. [Coexistence of coeliac disease and inflammatory bowel disease in children].

    PubMed

    Krawiec, Paulina; Pawłowska-Kamieniak, Agnieszka; Pac-Kożuchowska, Elżbieta; Mroczkowska-Juchkiewcz, Agnieszka; Kominek, Katarzyna

    2016-01-01

    Coeliac disease and inflammatory bowel disease are chronic inflammatory conditions of gastrointestinal tract with complex aetiology with genetic, environmental and immunological factors contributing to its pathogenesis. It was noted that immune-mediated disorders often coexist. There is well-known association between coeliac disease and type 1 diabetes and ulcerative colitis and primary sclerosing cholangitis. However, growing body of literature suggests the association between coeliac disease and inflammatory bowel disease, particularly ulcerative colitis. This is an extremely rare problem in paediatric gastroenterology. To date there have been reported several cases of children with coexisting coeliac disease and inflammatory bowel disease. Herewith we present review of current literature on coexistence of coeliac disease and inflammatory bowel disease in children. © 2016 MEDPRESS.

  7. Continuum theory of phase separation kinetics for active Brownian particles.

    PubMed

    Stenhammar, Joakim; Tiribocchi, Adriano; Allen, Rosalind J; Marenduzzo, Davide; Cates, Michael E

    2013-10-04

    Active Brownian particles (ABPs), when subject to purely repulsive interactions, are known to undergo activity-induced phase separation broadly resembling an equilibrium (attraction-induced) gas-liquid coexistence. Here we present an accurate continuum theory for the dynamics of phase-separating ABPs, derived by direct coarse graining, capturing leading-order density gradient terms alongside an effective bulk free energy. Such gradient terms do not obey detailed balance; yet we find coarsening dynamics closely resembling that of equilibrium phase separation. Our continuum theory is numerically compared to large-scale direct simulations of ABPs and accurately accounts for domain growth kinetics, domain topologies, and coexistence densities.

  8. Discontinuous non-equilibrium phase transition in a threshold Schloegl model for autocatalysis: Generic two-phase coexistence and metastability

    DOE PAGES

    Wang, Chi -Jen; Liu, Da -Jiang; Evans, James W.

    2015-04-28

    Threshold versions of Schloegl’s model on a lattice, which involve autocatalytic creation and spontaneous annihilation of particles, can provide a simple prototype for discontinuous non-equilibrium phase transitions. These models are equivalent to so-called threshold contact processes. A discontinuous transition between populated and vacuum states can occur selecting a threshold of N ≥ 2 for the minimum number, N, of neighboring particles enabling autocatalytic creation at an empty site. Fundamental open questions remain given the lack of a thermodynamic framework for analysis. For a square lattice with N = 2, we show that phase coexistence occurs not at a unique valuemore » but for a finite range of particle annihilation rate (the natural control parameter). This generic two-phase coexistence also persists when perturbing the model to allow spontaneous particle creation. Such behavior contrasts both the Gibbs phase rule for thermodynamic systems and also previous analysis for this model. We find metastability near the transition corresponding to a non-zero effective line tension, also contrasting previously suggested critical behavior. As a result, mean-field type analysis, extended to treat spatially heterogeneous states, further elucidates model behavior.« less

  9. Discontinuous non-equilibrium phase transition in a threshold Schloegl model for autocatalysis: Generic two-phase coexistence and metastability

    NASA Astrophysics Data System (ADS)

    Wang, Chi-Jen; Liu, Da-Jiang; Evans, James W.

    2015-04-01

    Threshold versions of Schloegl's model on a lattice, which involve autocatalytic creation and spontaneous annihilation of particles, can provide a simple prototype for discontinuous non-equilibrium phase transitions. These models are equivalent to so-called threshold contact processes. A discontinuous transition between populated and vacuum states can occur selecting a threshold of N ≥ 2 for the minimum number, N, of neighboring particles enabling autocatalytic creation at an empty site. Fundamental open questions remain given the lack of a thermodynamic framework for analysis. For a square lattice with N = 2, we show that phase coexistence occurs not at a unique value but for a finite range of particle annihilation rate (the natural control parameter). This generic two-phase coexistence also persists when perturbing the model to allow spontaneous particle creation. Such behavior contrasts both the Gibbs phase rule for thermodynamic systems and also previous analysis for this model. We find metastability near the transition corresponding to a non-zero effective line tension, also contrasting previously suggested critical behavior. Mean-field type analysis, extended to treat spatially heterogeneous states, further elucidates model behavior.

  10. Designing lipids for selective partitioning into liquid ordered membrane domains.

    PubMed

    Momin, Noor; Lee, Stacey; Gadok, Avinash K; Busch, David J; Bachand, George D; Hayden, Carl C; Stachowiak, Jeanne C; Sasaki, Darryl Y

    2015-04-28

    Self-organization of lipid molecules into specific membrane phases is key to the development of hierarchical molecular assemblies that mimic cellular structures. While the packing interaction of the lipid tails should provide the major driving force to direct lipid partitioning to ordered or disordered membrane domains, numerous examples show that the headgroup and spacer play important but undefined roles. We report here the development of several new biotinylated lipids that examine the role of spacer chemistry and structure on membrane phase partitioning. The new lipids were prepared with varying lengths of low molecular weight polyethylene glycol (EGn) spacers to examine how spacer hydrophilicity and length influence their partitioning behavior following binding with FITC-labeled streptavidin in liquid ordered (Lo) and liquid disordered (Ld) phase coexisting membranes. Partitioning coefficients (Kp Lo/Ld) of the biotinylated lipids were determined using fluorescence measurements in studies with giant unilamellar vesicles (GUVs). Compared against DPPE-biotin, DPPE-cap-biotin, and DSPE-PEG2000-biotin lipids, the new dipalmityl-EGn-biotin lipids exhibited markedly enhanced partitioning into liquid ordered domains, achieving Kp of up to 7.3 with a decaethylene glycol spacer (DP-EG10-biotin). We further demonstrated biological relevance of the lipids with selective partitioning to lipid raft-like domains observed in giant plasma membrane vesicles (GPMVs) derived from mammalian cells. Our results found that the spacer group not only plays a pivotal role for designing lipids with phase selectivity but may also influence the structural order of the domain assemblies.

  11. Bilayer registry in a multicomponent asymmetric membrane: Dependence on lipid composition and chain length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polley, Anirban; Mayor, Satyajit; Rao, Madan, E-mail: madan@rri.res.in, E-mail: madan@ncbs.res.in

    2014-08-14

    A question of considerable interest to cell membrane biology is whether phase segregated domains across an asymmetric bilayer are strongly correlated with each other and whether phase segregation in one leaflet can induce segregation in the other. We answer both these questions in the affirmative, using an atomistic molecular dynamics simulation to study the equilibrium statistical properties of a 3-component asymmetric lipid bilayer comprising an unsaturated palmitoyl-oleoyl-phosphatidyl-choline, a saturated sphingomyelin, and cholesterol with different composition ratios. Our simulations are done by fixing the composition of the upper leaflet to be at the coexistence of the liquid ordered (l{sub o})-liquid disorderedmore » (l{sub d}) phases, while the composition of the lower leaflet is varied from the phase coexistence regime to the mixed l{sub d} phase, across a first-order phase boundary. In the regime of phase coexistence in each leaflet, we find strong transbilayer correlations of the l{sub o} domains across the two leaflets, resulting in bilayer registry. This transbilayer correlation depends sensitively upon the chain length of the participating lipids and possibly other features of lipid chemistry, such as degree of saturation. We find that the l{sub o} domains in the upper leaflet can induce phase segregation in the lower leaflet, when the latter is nominally in the mixed (l{sub d}) phase.« less

  12. A Lifetime Prevalence of Comorbidity Between Bipolar Affective Disorder and Anxiety Disorders: A Meta-analysis of 52 Interview-based Studies of Psychiatric Population

    PubMed Central

    Nabavi, Behrouz; Mitchell, Alex J.; Nutt, David

    2015-01-01

    Background Bipolar affective disorder has a high rate of comorbidity with a multitude of psychiatric disorders and medical conditions. Among all the potential comorbidities, co-existing anxiety disorders stand out due to their high prevalence. Aims To determine the lifetime prevalence of comorbid anxiety disorders in bipolar affective disorder under the care of psychiatric services through systematic review and meta-analysis. Method Random effects meta-analyses were used to calculate the lifetime prevalence of comorbid generalised anxiety disorder, panic disorder, social anxiety disorder, specific phobia, agoraphobia, obsessive compulsive disorder and posttraumatic stress disorder in bipolar affective disorder. Results 52 studies were included in the meta-analysis. The rate of lifetime comorbidity was as follows: panic disorder 16.8% (95% CI 13.7–20.1), generalised anxiety disorder 14.4% (95% CI 10.8–18.3), social anxiety disorder13.3% (95% CI 10.1–16.9), post-traumatic stress disorder 10.8% (95% CI 7.3–14.9), specific phobia 10.8% (95% CI 8.2–13.7), obsessive compulsive disorder 10.7% (95% CI 8.7–13.0) and agoraphobia 7.8% (95% CI 5.2–11.0). The lifetime prevalence of any anxiety disorders in bipolar disorder was 42.7%. Conclusions Our results suggest a high rate of lifetime concurrent anxiety disorders in bipolar disorder. The diagnostic issues at the interface are particularly difficult because of the substantial symptom overlap. The treatment of co-existing conditions has clinically remained challenging. PMID:26629535

  13. Clinicopathologic correlations in 172 cases of rapid eye movement sleep behavior disorder with or without a coexisting neurologic disorder

    PubMed Central

    Boeve, B.F.; Silber, M.H.; Ferman, T.J.; Lin, S.C.; Benarroch, E.E.; Schmeichel, A.M.; Ahlskog, J.E.; Caselli, R.J.; Jacobson, S.; Sabbagh, M.; Adler, C.; Woodruff, B.; Beach, T.G.; Iranzo, A.; Gelpi, E.; Santamaria, J.; Tolosa, E.; Singer, C.; Mash, D.C.; Luca, C.; Arnulf, I.; Duyckaerts, C.; Schenck, C.H.; Mahowald, M.W.; Dauvilliers, Y.; Graff-Radford, N.R.; Wszolek, Z.K.; Parisi, J.E.; Dugger, B.; Murray, M.E.; Dickson, D.W.

    2013-01-01

    Objective To determine the pathologic substrates in patients with rapid eye movement (REM) sleep behavior disorder (RBD) with or without a coexisting neurologic disorder. Methods The clinical and neuropathologic findings were analyzed on all autopsied cases from one of the collaborating sites in North America and Europe, were evaluated from January 1990 to March 2012, and were diagnosed with polysomnogram (PSG)-proven or probable RBD with or without a coexisting neurologic disorder. The clinical and neuropathologic diagnoses were based on published criteria. Results 172 cases were identified, of whom 143 (83%) were men. The mean ± SD age of onset in years for the core features were as follows – RBD, 62 ± 14 (range, 20–93), cognitive impairment (n = 147); 69 ± 10 (range, 22–90), parkinsonism (n = 151); 68 ± 9 (range, 20–92), and autonomic dysfunction (n = 42); 62 ± 12 (range, 23–81). Death age was 75 ± 9 years (range, 24–96). Eighty-two (48%) had RBD confirmed by PSG, 64 (37%) had a classic history of recurrent dream enactment behavior, and 26 (15%) screened positive for RBD by questionnaire. RBD preceded the onset of cognitive impairment, parkinsonism, or autonomic dysfunction in 87 (51%) patients by 10 ± 12 (range, 1–61) years. The primary clinical diagnoses among those with a coexisting neurologic disorder were dementia with Lewy bodies (n = 97), Parkinson’s disease with or without mild cognitive impairment or dementia (n = 32), multiple system atrophy (MSA) (n = 19), Alzheimer’s disease (AD)(n = 9) and other various disorders including secondary narcolepsy (n = 2) and neurodegeneration with brain iron accumulation-type 1 (NBAI-1) (n = 1). The neuropathologic diagnoses were Lewy body disease (LBD)(n = 77, including 1 case with a duplication in the gene encoding α-synuclein), combined LBD and AD (n = 59), MSA (n = 19), AD (n = 6), progressive supranulear palsy (PSP) (n = 2), other mixed neurodegenerative pathologies (n = 6), NBIA-1/LBD/tauopathy (n = 1), and hypothalamic structural lesions (n = 2). Among the neurodegenerative disorders associated with RBD (n = 170), 160 (94%) were synucleinopathies. The RBD-synucleinopathy association was particularly high when RBD preceded the onset of other neurodegenerative syndrome features. Conclusions In this large series of PSG-confirmed and probable RBD cases that underwent autopsy, the strong association of RBD with the synucleinopathies was further substantiated and a wider spectrum of disorders which can underlie RBD now are more apparent. PMID:23474058

  14. Clinicopathologic correlations in 172 cases of rapid eye movement sleep behavior disorder with or without a coexisting neurologic disorder.

    PubMed

    Boeve, B F; Silber, M H; Ferman, T J; Lin, S C; Benarroch, E E; Schmeichel, A M; Ahlskog, J E; Caselli, R J; Jacobson, S; Sabbagh, M; Adler, C; Woodruff, B; Beach, T G; Iranzo, A; Gelpi, E; Santamaria, J; Tolosa, E; Singer, C; Mash, D C; Luca, C; Arnulf, I; Duyckaerts, C; Schenck, C H; Mahowald, M W; Dauvilliers, Y; Graff-Radford, N R; Wszolek, Z K; Parisi, J E; Dugger, B; Murray, M E; Dickson, D W

    2013-08-01

    To determine the pathologic substrates in patients with rapid eye movement (REM) sleep behavior disorder (RBD) with or without a coexisting neurologic disorder. The clinical and neuropathologic findings were analyzed on all autopsied cases from one of the collaborating sites in North America and Europe, were evaluated from January 1990 to March 2012, and were diagnosed with polysomnogram (PSG)-proven or probable RBD with or without a coexisting neurologic disorder. The clinical and neuropathologic diagnoses were based on published criteria. 172 cases were identified, of whom 143 (83%) were men. The mean±SD age of onset in years for the core features were as follows - RBD, 62±14 (range, 20-93), cognitive impairment (n=147); 69±10 (range, 22-90), parkinsonism (n=151); 68±9 (range, 20-92), and autonomic dysfunction (n=42); 62±12 (range, 23-81). Death age was 75±9 years (range, 24-96). Eighty-two (48%) had RBD confirmed by PSG, 64 (37%) had a classic history of recurrent dream enactment behavior, and 26 (15%) screened positive for RBD by questionnaire. RBD preceded the onset of cognitive impairment, parkinsonism, or autonomic dysfunction in 87 (51%) patients by 10±12 (range, 1-61) years. The primary clinical diagnoses among those with a coexisting neurologic disorder were dementia with Lewy bodies (n=97), Parkinson's disease with or without mild cognitive impairment or dementia (n=32), multiple system atrophy (MSA) (n=19), Alzheimer's disease (AD)(n=9) and other various disorders including secondary narcolepsy (n=2) and neurodegeneration with brain iron accumulation-type 1 (NBAI-1) (n=1). The neuropathologic diagnoses were Lewy body disease (LBD)(n=77, including 1 case with a duplication in the gene encoding α-synuclein), combined LBD and AD (n=59), MSA (n=19), AD (n=6), progressive supranulear palsy (PSP) (n=2), other mixed neurodegenerative pathologies (n=6), NBIA-1/LBD/tauopathy (n=1), and hypothalamic structural lesions (n=2). Among the neurodegenerative disorders associated with RBD (n=170), 160 (94%) were synucleinopathies. The RBD-synucleinopathy association was particularly high when RBD preceded the onset of other neurodegenerative syndrome features. In this large series of PSG-confirmed and probable RBD cases that underwent autopsy, the strong association of RBD with the synucleinopathies was further substantiated and a wider spectrum of disorders which can underlie RBD now are more apparent. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Traffic jams induce dynamical phase transition in spatial rock-paper-scissors game

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi; Ichinose, Genki; Tainaka, Kei-ichi

    2018-02-01

    Spatial and temporal behaviors of the rock-paper-scissors (RPS) game is key to understanding not only biodiversity but also a variety of cyclic systems. It has been demonstrated that, in the stochastic cellular automaton of RPS game, three species cannot survive on one-dimensional (1-d) lattice; only a single species survives. Previous studies have shown that three species are able to coexist if the migration of species is considered. However, their definitions of migration are the swapping of two species or the random walk of species, which rarely occurs in nature. Here, we investigate the effect of migration by using the 1-d lattice traffic model in which species can move rightward if the site ahead is empty. Computer simulations reveal that three species can survive at the same time within the wide range of parameter values. At low densities, all species can coexist. In contrast, the extinction of two species occurs if the density exceeds the critical limit of the jamming transition. This dynamical phase transition between the coexistence and single (non-coexistence) phase clearly separates due to the self-organized pattern: condensation and rarefaction in the stripe-pattern of three species.

  16. Low temperature structural and transport studies of La{sub 0.175}Pr{sub 0.45}Ca{sub 0.375}MnO{sub 3-δ}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Shivani; Shahee, Aga; Singh, Kiran

    2016-05-23

    The temperature (T) dependent x-ray diffraction (XRD) and resistivity measurements of La{sub 0.175}Pr{sub 0.45}Ca{sub 0.375}MnO{sub 3-δ} (LPCMO) have been performed down to 2 K to understand the structural and transport properties. From room temperature down to 220 K, LPCMO exists in orthorhombic phase with Pnma structure and at T~220 K, it transforms to charge ordered (CO) monoclinic phase with P2{sub 1}/m structure and remains as it is down to 2 K. The CO phase is evident from the occurrence of weak but well defined superlattice peaks in the XRD pattern. This structural transformation is of first order in nature asmore » evident from the phase coexistence across the transition region. These results thus clearly illustrate that LPCMO undergoes a first order structural phase transition from charge disordered orthorhombic phase to CO monoclinic phase at ~220 K, consistent with temperature dependent resistivity results. Our structural analysis of T dependent XRD data using Rietveld refinement infers that below 220 K, LPCMO forms commensurate CO monoclinic P2{sub 1}/m structure with four times structural modulation.« less

  17. Subtypes of ataques de nervios: the influence of coexisting psychiatric diagnosis.

    PubMed

    Salmán, E; Liebowitz, M R; Guarnaccia, P J; Jusino, C M; Garfinkel, R; Street, L; Cárdenas, D L; Silvestre, J; Fyer, A J; Carrasco, J L; Davies, S O; Klein, D F

    1998-06-01

    The current study assesses the relationship between presenting symptomatology of the self-labeled Hispanic popular diagnosis of ataques de nervios and the specific co-morbid psychiatric diagnoses. Hispanic subjects seeking treatment at an anxiety disorders clinic (n = 156) were assessed with a specially designed self-report instrument for both traditional ataque de nervios and panic symptoms, and with structured or semistructured psychiatric interviews for Axis-I disorders. This report focuses on 102 subjects with ataque de nervios who also met criteria for panic disorder, other anxiety disorders, or an affective disorder. Distinct ataque symptom patterns correlated with co-existing panic disorder, affective disorders, or other anxiety disorders. Individuals with both ataque and panic disorder reported the most asphyxia, fear of dying, and increased fear during their ataques. People with ataques who also met criteria for affective disorder reported the most anger, screaming, becoming aggressive, and breaking things during ataques. Ataque positive subjects with other anxiety disorders were less salient for both panic-like and emotional-anger symptoms. The findings suggest that (a) ataque de nervios is a popular label referring to several distinct patterns of loss of emotional control, (b) the type of loss of emotional control is influenced by the associated psychiatric disorder, and (c) ataque symptom patterns may be a useful clinical marker for detecting psychiatric disorders. Further study is needed to examine the relationship between ataque de nervios and psychiatric disorders, as well as the relationship to cultural, demographic, environmental, and personality factors.

  18. Effectiveness of a group psychoeducation program for the treatment of subclinical disordered eating in women with type 1 diabetes.

    PubMed

    Alloway, S C; Toth, E L; McCargar, L J

    2001-01-01

    The coexistence of type 1 diabetes mellitus and disordered eating is associated with poor metabolic control, poor adherence to diabetes treatment regimens, and increased risk of long-term diabetic complications. This study assessed whether a six-session group psychoeducation program would improve metabolic control, diabetes treatment adherence, eating disorder symptomatology, and general psychopathology in women with coexisting type 1 diabetes and subclinical disordered eating. Fourteen women were assigned to the treatment group (n=8) or wait-list control group (n=6). Measurements were taken at baseline, post-intervention, and one month post-intervention. There were no significant differences in how the treatment group and wait-list control group changed over time. Between the first and second measurements, both groups demonstrated significant improvements in depression and general emotional distress. The results suggest that a six-session group psychoeducation program is no more effective than a wait-list control group for treating subclinical disordered eating in women with type 1 diabetes. Further research is required to determine the most effective treatment for this population.

  19. Evidence for the coexistence of an anisotropic superconducting gap and nonlocal effects in the nonmagnetic superconductor LuNi2B2C.

    PubMed

    Park, Tuson; Chia, Elbert E M; Salamon, M B; Bauer, E D; Vekhter, I; Thompson, J D; Choi, Eun Mi; Kim, Heon Jung; Lee, Sung-Ik; Canfield, P C

    2004-06-11

    A study of the dependence of the heat capacity C(p)(alpha) on the field angle in LuNi2B2C reveals an anomalous disorder effect. For pure samples, C(p)(alpha) exhibits a fourfold variation as the field H (alpha=0). A slightly disordered sample, however, develops anomalous secondary minima along <110> for mu(0)H>1 T, leading to an eightfold pattern at 2 K and 1.5 T. The anomalous pattern is discussed in terms of coexisting superconducting gap anisotropy and nonlocal effects.

  20. Interface mobility and the liquid-glass transition in a one-component system described by an embedded atom method potential

    NASA Astrophysics Data System (ADS)

    Mendelev, M. I.; Schmalian, J.; Wang, C. Z.; Morris, J. R.; Ho, K. M.

    2006-09-01

    We present molecular dynamics (MD) studies of the liquid structure, thermodynamics, and dynamics in a one-component system described by the Ercolessi-Adams embedded atom method potential for Al. We find two distinct noncrystalline phases in this system. One of them is a liquid phase and the second phase has similar structure but different equation of state. Moreover, this phase has qualitatively different dynamics than that in the liquid phase. The transitions between these two noncrystalline phases can be seen during MD simulation. The hysteresis in this transition suggests that this is a first-order transition. This conclusion is strongly supported by simulations of the two phases that demonstrate that these phases may coexist with a well-defined interface. We find the coexistent temperature and the interface mobility. Finally, we discuss how these results can be explained using modern models of vitrification.

  1. The coexistence temperature of hydrogen clathrates: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Luis, D. P.; Romero-Ramirez, I. E.; González-Calderón, A.; López-Lemus, J.

    2018-03-01

    Extensive molecular dynamics simulations in the equilibrium isobaric-isothermal (NPT) ensemble were developed to determine the coexistence temperatures of the water hydrogen mixture using the direct coexistence method. The water molecules were modeled using the four-site TIP4P/Ice analytical potential, and the hydrogen molecules were described using a three-site potential. The simulations were performed at different pressures (p = 900, 1500, 3000, and 4000 bars). At each pressure, a series of simulations were developed at different temperatures (from 230 to 270 K). Our results followed a line parallel to the experimental coexistence temperatures and underestimated these temperatures by approximately 25 K in the investigated range. The final configurations could or could not contain a fluid phase depending on the pressure, in accordance with the phase diagram. In addition, we explored the dynamics of the H2 molecules through clathrate hydrate cages and observed different behaviors of the H2 molecules in the small cages and the large cages of the sII structure.

  2. Effect of interlayer coupling on the coexistence of antiferromagnetism and superconductivity in Fe pnictide superconductors: A study of Ca0.74 (1 )La0.26 (1 )(Fe1 -xCox)As2 single crystals

    NASA Astrophysics Data System (ADS)

    Jiang, Shan; Liu, Lian; Schütt, Michael; Hallas, Alannah M.; Shen, Bing; Tian, Wei; Emmanouilidou, Eve; Shi, Aoshuang; Luke, Graeme M.; Uemura, Yasutomo J.; Fernandes, Rafael M.; Ni, Ni

    2016-05-01

    We report the transport, thermodynamic, muon spin relaxation, and neutron study of the Ca0.74 (1 )La0.26 (1 ) (Fe1 -xCox )As2 single crystals, mapping out the temperature-doping level phase diagram. Upon Co substitution on the Fe site, the structural and magnetic phase transitions in this 112 compound are suppressed and superconductivity up to 20 K occurs. Our measurements of the superconducting and magnetic volume fractions show that these two phases coexist microscopically in the underdoped region, in contrast to the related Ca10(Pt3As8 )((Fe1 -xPtx )2As2 )5 (10-3-8) compound, where coexistence is absent. Supported by model calculations, we discuss the differences in the phase diagrams of the 112 and 10-3-8 compounds in terms of the FeAs interlayer coupling, whose strength is affected by the character of the spacer layer, which is metallic in the 112 compound and insulating in the 10-3-8 compound.

  3. Psychopathological Profile in Children with Chronic Tic Disorder and Co-Existing ADHD: Additive Effects

    ERIC Educational Resources Information Center

    Roessner, Veit; Becker, Andreas; Banaschewski, Tobias; Rothenberger, Aribert

    2007-01-01

    The nature of the co-occurrence of chronic tic disorders (CTD) and attention deficit hyperactivity disorder (ADHD) is unclear. Especially in the field of psychopathology, the relationship of CTD and ADHD remains to be clarified. Thus, the aim of the present chart review study was to specify the contribution of CTD and/or ADHD to the…

  4. A patient with coexisting narcolepsy and morbid jealousy showing favourable response to fluoxetine.

    PubMed Central

    Wing, Y. K.; Lee, S.; Chiu, H. F.; Ho, C. K.; Chen, C. N.

    1994-01-01

    A 37 year old Chinese man suffered from coexisting narcolepsy and morbid jealousy which were precipitated by head injury 5 years previously. Fluoxetine 20 mg/day reduced his narcoleptic symptoms and morbid jealousy but not his sleepiness. On defaulting treatment, the patient's symptoms and marital problem recurred. A common central serotonin disturbance might be involved in mediating the sleep disorder and associated psychopathology. PMID:8140016

  5. Influence of coexisting phases on the surface dilatational viscosity of Langmuir monolayers.

    PubMed

    Lopez, Juan M; Vogel, Michael J; Hirsa, Amir H

    2004-11-01

    Monolayer hydrodynamics are usually described in terms of a Newtonian constitutive relationship. However, this macroscopic view fails to account for small-scale coexisting phase domains, which are generally present in the monolayer and appear to have profound macroscopic effects. Here, we provide direct evidence of these effects, consisting of Brewster angle microscopy images of the monolayer, space- and time-resolved interfacial velocity measurements, and comparisons with predictions based on the Navier-Stokes equations together with the classic model for a Newtonian interface.

  6. Phase equilibria of H2SO4, HNO3, and HCl hydrates and the composition of polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Wooldridge, Paul J.; Zhang, Renyi; Molina, Mario J.

    1995-01-01

    Thermodynamic properties and phase equilibria behavior for the hydrates and coexisting pairs of hydrates of common acids which exist in the stratosphere are assembled from new laboratory measurements and standard literature data. The analysis focuses upon solid-vapor and solid-solid-vapor equilibria at temperatures around 200 K and includes new calorimetric and vapor pressure data. Calculated partial pressures versus 1/T slopes for the hydrates and coexisting hydrates agree well with experimental data where available.

  7. Phase Equilibria of H2SO4, HNO3, and HCl Hydrates and the Composition of Polar Stratospheric Clouds

    NASA Technical Reports Server (NTRS)

    Wooldridge, Paul J.; Zhang, Renyi; Molina, Mario J.

    1995-01-01

    Thermodynamic properties and phase equilibria behavior for the hydrates and coexisting pairs of hydrates of common acids which exist in the stratosphere are assembled from new laboratory measurements and standard literature data. The analysis focuses upon solid-vapor and solid-solid-vapor equilibria at temperatures around 200 K and includes new calorimetric and vapor pressure data. Calculated partial pressures versus 1/T slopes for the hydrates and coexisting hydrates agree well with experimental data where available.

  8. Octahedral tilting, monoclinic phase and the phase diagram of PZT

    NASA Astrophysics Data System (ADS)

    Cordero, F.; Trequattrini, F.; Craciun, F.; Galassi, C.

    2011-10-01

    Anelastic and dielectric spectroscopy measurements on PbZr1-xTixO3 (PZT) close to the morphotropic (MPB) and antiferroelectric boundaries provide new insight into some controversial aspects of its phase diagram. No evidence is found of a border separating monoclinic (M) from rhombohedral (R) phases, in agreement with recent structural studies supporting a coexistence of the two phases over a broad composition range x < 0.5, with the fraction of M increasing toward the MPB. It is also discussed why the observed maximum of elastic compliance appears to be due to a rotational instability of the polarization linearly coupled to shear strain. Therefore it cannot be explained by extrinsic softening from finely twinned R phase alone, but indicates the presence also of M phase, not necessarily homogeneous. A new diffuse transition is found within the ferroelectric phase near x ˜ 0.1, at a temperature TIT higher than the well established boundary TT to the phase with tilted octahedra. It is proposed that around TIT the octahedra start rotating in a disordered manner and finally become ordered below TT. In this interpretation, the onset temperature for octahedral tilting monotonically increases up to the antiferroelectric transition of PbZrO3, and the depression of TT(x) below x = 0.18 would be a consequence of the partial relief of the mismatch between the average cation radii with the initial stage of tilting below TIT.

  9. Genetic similarities between tobacco use disorder and related comorbidities: an exploratory study

    PubMed Central

    2014-01-01

    Background Tobacco use disorder (TUD), defined as the use of tobacco to the detriment of a person’s health or social functioning, is associated with various disorders. We hypothesized that mutual variation in genes may partly explain this link. The aims of this study were to make a non-exhaustive inventory of the disorders using (partially) the same genetic pathways as TUD, and to describe the genetic similarities between TUD and the selected disorders. Methods We developed a 3 stage approach: (i) selection of genes influencing TUD using Gene2Mesh and Ingenuity Pathway Analysis (IPA), (ii) selection of disorders associated with the selected genes using IPA and (iii) genetic similarities between disorders associated with TUD using Jaccard distance and cluster analyses. Results Fourteen disorders and thirty-two genes met our inclusion criteria. The Jaccard distance between pairs of disorders ranged from 0.00 (e.g. oesophageal cancer and malignant hypertension) to 0.45 (e.g. bladder cancer and addiction). A lower number in the Jaccard distance indicates a higher similarity between the two disorders. Two main clusters of genetically similar disorders were observed, one including coexisting disorders (e.g. addiction and alcoholism) and the other one with the side-effects of smoking (e.g. gastric cancer and malignant hypertension). Conclusions This exploratory study partly explains the potential genetic components linking TUD to other disorders. Two principle clusters of disorders were observed (i) coexisting disorders of TUD and (ii) side-effects of TUD disorders. A further deepening of this observation in a real life study should allow strengthening this hypothesis. PMID:25060307

  10. [Coexistence of autoimmune polyglandular syndrome type 3 with diabetes insipidus].

    PubMed

    Krysiak, Robert; Okopień, Bogusław

    2015-01-01

    Autoimmune polyglandular syndromes are conditions characterized by the combination of two or more organ-specific disorders. The underestimation oftheir real frequency probable results from physicians' inadequate knowledge of these clinical entities and sometimes their atypical clinical presentation. Because they comprise a wide spectrum of autoimmune disorders, autoimmune polyglandular syndromes are divided into four types, among which type-3 is the most common one. In this article, we report the case of a young female, initially diagnosed with diabetes mellitus who several years later developed full-blown autoimmune polyglandular syndrome type 3 consisting of autoimmune thyroid disorder and latent autoimmune diabetes in adults.The discussed case suggests that in selected patients diabetes insipidus may coexist with autoimmune endocrinopathies and nonendocrine autoimmunopathies, as well as that in some patients idiopathic diabetes insipidus may be secondary to lymphocytic infiltration and destruction of the hypothalamic supraoptic and paraventricular nuclei and/or the supraoptic-hypophyseal tract

  11. Communication: phase transitions, criticality, and three-phase coexistence in constrained cell models.

    PubMed

    Nayhouse, Michael; Kwon, Joseph Sang-Il; Orkoulas, G

    2012-05-28

    In simulation studies of fluid-solid transitions, the solid phase is usually modeled as a constrained system in which each particle is confined to move in a single Wigner-Seitz cell. The constrained cell model has been used in the determination of fluid-solid coexistence via thermodynamic integration and other techniques. In the present work, the phase diagram of such a constrained system of Lennard-Jones particles is determined from constant-pressure simulations. The pressure-density isotherms exhibit inflection points which are interpreted as the mechanical stability limit of the solid phase. The phase diagram of the constrained system contains a critical and a triple point. The temperature and pressure at the critical and the triple point are both higher than those of the unconstrained system due to the reduction in the entropy caused by the single occupancy constraint.

  12. Warm and cold pasta phase in relativistic mean field theory

    NASA Astrophysics Data System (ADS)

    Avancini, S. S.; Menezes, D. P.; Alloy, M. D.; Marinelli, J. R.; Moraes, M. M. W.; Providência, C.

    2008-07-01

    In the present article we investigate the onset of the pasta phase with different parametrizations of the nonlinear Walecka model. At zero temperature two different methods are used, one based on coexistent phases and the other on the Thomas-Fermi approximation. At finite temperature only the coexistence phases method is used. npe matter with fixed proton fractions and in β equilibrium is studied. The pasta phase decreases with the increase of temperature. The internal pasta structure and the beginning of the homogeneous phase vary depending on the proton fraction (or the imposition of β equilibrium), on the method used, and on the chosen parametrization. It is shown that a good parametrization of the surface tension with dependence on the temperature, proton fraction, and geometry is essential to describe correctly large isospin asymmetries and the transition from pasta to homogeneous matter.

  13. FAST TRACK COMMUNICATION: Spontaneous symmetry breaking in a bridge model fed by junctions

    NASA Astrophysics Data System (ADS)

    Popkov, Vladislav; Evans, Martin R.; Mukamel, David

    2008-10-01

    We introduce a class of 1D models mimicking a single-lane bridge with two junctions and two particle species driven in opposite directions. The model exhibits spontaneous symmetry breaking (SSB) for a range of injection/extraction rates. In this phase the steady-state currents of the two species are not equal. Moreover, there is a co-existence region in which the symmetry-broken phase co-exists with a symmetric phase. Along a path in which the extraction rate is varied, keeping the injection rate fixed and large, hysteresis takes place. The mean-field phase diagram is calculated and supporting Monte Carlo simulations are presented. One of the transition lines exhibits a kink, a feature which cannot exist in transition lines of equilibrium phase transitions.

  14. Threshold of coexistence and critical behavior of a predator-prey stochastic model in a fractal landscape

    NASA Astrophysics Data System (ADS)

    Argolo, C.; Barros, P.; Tomé, T.; Arashiro, E.; Gleria, Iram; Lyra, M. L.

    2016-08-01

    We investigate a stochastic lattice model describing a predator-prey system in a fractal scale-free landscape, mimicked by the fractal Sierpinski carpet. We determine the threshold of species coexistence, that is, the critical phase boundary related to the transition between an active state, where both species coexist and an absorbing state where one of the species is extinct. We show that the predators must live longer in order to persist in a fractal habitat. We further performed a finite-size scaling analysis in the vicinity of the absorbing-state phase transition to compute a set of stationary and dynamical critical exponents. Our results indicate that the transition belongs to the directed percolation universality class exhibited by the usual contact process model on the same fractal landscape.

  15. Occurrence of selected lower urinary tract symptoms in patientsof a day hospital for neurotic disorders.

    PubMed

    Sobański, Jerzy A; Skalski, Michał; Gołąbek, Tomasz; Świerkosz, Agata; Przydacz, Mikołaj; Klasa, Katarzyna; Rutkowski, Krzysztof; Dembińska, Edyta; Mielimąka, Michał; Cyranka, Katarzyna; Chłosta, Piotr L; Dudek, Dominika

    2016-12-23

    To assess the occurrence of selected lower urinary tract symptoms in the population of patients with neurotic and personality disorders. This was a retrospective analysis of occurrence, co-existence and severity of two selected lower urinary tract symptoms in 3,929 patients in a day hospital for neurotic disorders. The KO "O" symptom checklist was used to measure the study variables. Although the symptoms associated with micturition are not the most prevalent symptoms of neurotic disorders, neither are they the most typical ones, the prevalence of urinary frequency referring to the last week before psychotherapy evaluated among the patients of a day hospital, was approximately 50%. Involuntary micturition, a symptom with a significant implication on the self-esteem and social functioning was much less common; it was reported by approximately 5% relatively healthy and young group of patients. Major bother from urinary frequency was reported by 9-14% of patients, whereas from involuntary micturition by only 0.6%-1% of the surveyed patients. Selected urological symptoms seem to be prevalent among the patients with neurotic and personality disorders, and are independent of the specific diagnosis or patients' gender. Their co-existence with other symptoms of neurotic disorders reported by the patients indicates their strongest relationship with the somatoform, dissociative, sexual and agoraphobic disorders.

  16. Large Energy Storage Density and High Thermal Stability in a Highly Textured (111)-Oriented Pb0.8Ba0.2ZrO3 Relaxor Thin Film with the Coexistence of Antiferroelectric and Ferroelectric Phases.

    PubMed

    Peng, Biaolin; Zhang, Qi; Li, Xing; Sun, Tieyu; Fan, Huiqing; Ke, Shanming; Ye, Mao; Wang, Yu; Lu, Wei; Niu, Hanben; Zeng, Xierong; Huang, Haitao

    2015-06-24

    A highly textured (111)-oriented Pb0.8Ba0.2ZrO3 (PBZ) relaxor thin film with the coexistence of antiferroelectric (AFE) and ferroelectric (FE) phases was prepared on a Pt/TiOx/SiO2/Si(100) substrate by using a sol-gel method. A large recoverable energy storage density of 40.18 J/cm(3) along with an efficiency of 64.1% was achieved at room temperature. Over a wide temperature range of 250 K (from room temperature to 523 K), the variation of the energy density is within 5%, indicating a high thermal stability. The high energy storage performance was endowed by a large dielectric breakdown strength, great relaxor dispersion, highly textured orientation, and the coexistence of FE and AFE phases. The PBZ thin film is believed to be an attractive material for applications in energy storage systems over a wide temperature range.

  17. Steric Pressure among Membrane-Bound Polymers Opposes Lipid Phase Separation.

    PubMed

    Imam, Zachary I; Kenyon, Laura E; Carrillo, Adelita; Espinoza, Isai; Nagib, Fatema; Stachowiak, Jeanne C

    2016-04-19

    Lipid rafts are thought to be key organizers of membrane-protein complexes in cells. Many proteins that interact with rafts have bulky polymeric components such as intrinsically disordered protein domains and polysaccharide chains. Therefore, understanding the interaction between membrane domains and membrane-bound polymers provides insights into the roles rafts play in cells. Multiple studies have demonstrated that high concentrations of membrane-bound polymeric domains create significant lateral steric pressure at membrane surfaces. Furthermore, our recent work has shown that lateral steric pressure at membrane surfaces opposes the assembly of membrane domains. Building on these findings, here we report that membrane-bound polymers are potent suppressors of membrane phase separation, which can destabilize lipid domains with substantially greater efficiency than globular domains such as membrane-bound proteins. Specifically, we created giant vesicles with a ternary lipid composition, which separated into coexisting liquid ordered and disordered phases. Lipids with saturated tails and poly(ethylene glycol) (PEG) chains conjugated to their head groups were included at increasing molar concentrations. When these lipids were sparse on the membrane surface they partitioned to the liquid ordered phase. However, as they became more concentrated, the fraction of GUVs that were phase-separated decreased dramatically, ultimately yielding a population of homogeneous membrane vesicles. Experiments and physical modeling using compositions of increasing PEG molecular weight and lipid miscibility phase transition temperature demonstrate that longer polymers are the most efficient suppressors of membrane phase separation when the energetic barrier to lipid mixing is low. In contrast, as the miscibility transition temperature increases, longer polymers are more readily driven out of domains by the increased steric pressure. Therefore, the concentration of shorter polymers required to suppress phase separation decreases relative to longer polymers. Collectively, our results demonstrate that crowded, membrane-bound polymers are highly efficient suppressors of phase separation and suggest that the ability of lipid domains to resist steric pressure depends on both their lipid composition and the size and concentration of the membrane-bound polymers they incorporate.

  18. Room Temperature Monoclinic Phase in BaTiO3 Single Crystals

    NASA Astrophysics Data System (ADS)

    Denev, Sava; Kumar, Amit; Barnes, Andrew; Vlahos, Eftihia; Shepard, Gabriella; Gopalan, Venkatraman

    2010-03-01

    BaTiO3 is a well studied ferroelectric material for the last half century. It is well known to show phase transitions to tetragonal, orthorhombic and rhombohedral phases upon cooling. Yet, some old and some recent studies have argued that all these phases co-exist with a second phase with monoclinic distortion. Using optical second harmonic generation (SHG) at room temperature we directly present evidence for such monoclininc phase co-existing with tetragonal phase at room temperature. We observe domains with the expected tetragonal symmetry exhibiting 90^o and 180^o domain walls. However, at points of higher stress at the tips of the interpenetrating tetragonal domains we observe a well pronounced metastable ``staircase pattern'' with a micron-scale fine structure. Polarization studies show that this phase can be explained only by monoclinic symmetry. This phase is very sensitive to external perturbations such as temperature and fields, hence stabilizing this phase at room temperature could lead to large properties' tunability.

  19. Coexistence of non-volatile bi-polar resistive switching and tunneling magnetoresistance in spatially confined La0.3Pr0.4Ca0.3MnO3 films

    NASA Astrophysics Data System (ADS)

    Jeon, J.; Jung, J.; Chow, K. H.

    2017-12-01

    We report the coexistence of non-volatile bi-polar resistive switching (RS) and tunneling magnetoresistance (TMR) in spatially confined La0.3Pr0.4Ca0.3MnO3 films grown on LaAlO3 substrates. At certain temperatures, the arrangement of electronic phase domains in these narrow systems mimics those found in heterostructured metal-insulator-metal devices. The relative spin orientations between adjacent ferromagnetic metallic phase domains enable the TMR effect, while the creation/annihilation of conduction filaments between the metallic phase domains produces the RS effect.

  20. Interaction of high density lipoprotein particles with membranes containing cholesterol.

    PubMed

    Sanchez, Susana A; Tricerri, Maria A; Gratton, Enrico

    2007-08-01

    In this study, free cholesterol (FC) efflux mediated by human HDL was investigated using fluorescence methodologies. The accessibility of FC to HDL may depend on whether it is located in regions rich in unsaturated phospholipids or in domains containing high levels of FC and sphingomyelin, known as "lipid rafts." Laurdan generalized polarization and two-photon microscopy were used to quantify FC removal from different pools in the bilayer of giant unilamellar vesicles (GUVs). GUVs made of POPC and FC were observed after incubation with reconstituted particles containing apolipoprotein A-I and POPC [78A diameter reconstituted high density lipoprotein (rHDL)]. Fluorescence correlation spectroscopy data show an increase in rHDL size during the incubation period. GUVs made of two "raft-like" mixtures [DOPC/DPPC/FC (1:1:1) and POPC/SPM/FC (6:1:1)] were used to model liquid-ordered/liquid-disordered phase coexistence. Through these experiments, we conclude that rHDL preferentially removes cholesterol from the more fluid phases. These data, and their extrapolation to in vivo systems, show the significant role that phase separation plays in the regulation of cholesterol homeostasis.

  1. The Differential Diagnosis of Functional Symptoms in Adolescence.

    ERIC Educational Resources Information Center

    Silber, Thomas J.

    1982-01-01

    Functional complaints constitute the major reason why adolescents visit the physician's office. These complaints may coexist with organic illness of minor or major significance. Proposes a definition of functional disorders, sets forth a classification of the differential diagnosis of these disorders and suggests techniques for their management.…

  2. Sleep Disorders, Epilepsy, and Autism

    ERIC Educational Resources Information Center

    Malow, Beth A.

    2004-01-01

    The purpose of this review article is to describe the clinical data linking autism with sleep and epilepsy and to discuss the impact of treating sleep disorders in children with autism either with or without coexisting epileptic seizures. Studies are presented to support the view that sleep is abnormal in individuals with autistic spectrum…

  3. Αn uncommon coexistence of primary sexual, cough and exercise headaches: the first three cases from Greece.

    PubMed

    Bougea, A; Constantinides, V; Anagnostou, E; Kararizou, E

    2015-01-01

    The "other primary headaches" encompasses a group of uncommon but distinct headache disorders. The coexistence of their subforms such as primary sexual and exercise headache is not a new phenomenon, but in association with cough headache is rather uncommon. Report of cases: We report three cases with a rare coexistence of primary cough, exercise and associated with sexual activity headache. Indomethacin was effective in all patients. The leading pathophysiological explanation involves a rapid rise in intra-abdominal pressure exertional factors or an inappropriate reaction in the cerebral vasculature. Further studies are needed to confirm a common pathogenic mechanism in these patients. Τhe coexistence of these headaches needs to be taken into account in the final classification that is expected to be available in 2016. Hippokratia 2015; 19 (4): 369-371.

  4. Theory of amorphous ices.

    PubMed

    Limmer, David T; Chandler, David

    2014-07-01

    We derive a phase diagram for amorphous solids and liquid supercooled water and explain why the amorphous solids of water exist in several different forms. Application of large-deviation theory allows us to prepare such phases in computer simulations. Along with nonequilibrium transitions between the ergodic liquid and two distinct amorphous solids, we establish coexistence between these two amorphous solids. The phase diagram we predict includes a nonequilibrium triple point where two amorphous phases and the liquid coexist. Whereas the amorphous solids are long-lived and slowly aging glasses, their melting can lead quickly to the formation of crystalline ice. Further, melting of the higher density amorphous solid at low pressures takes place in steps, transitioning to the lower-density glass before accessing a nonequilibrium liquid from which ice coarsens.

  5. Some aspects of the DSM-III personality disorders illustrated by a consecutive sample of hospitalized patients.

    PubMed

    Dahl, A A

    1986-01-01

    The main innovations of DSM-III concerning the personality disorders are the assignment of a separate axis and definitions of diagnostic criteria for these disorders. Even with these improvements, diagnosis of the personality disorders shows only moderate interrater reliability. Reasons for this are discussed. Data from a consecutive sample of hospitalized patients are used to illustrate the prevalence of the personality disorders, the coexistence of axis I disorders, and the overlap within the personality disorders. The method of conditional probabilities is presented as a way to get better separation of these disorders.

  6. Structural stability of methane hydrate at high pressures

    USGS Publications Warehouse

    Shu, J.; Chen, X.; Chou, I-Ming; Yang, W.; Hu, Jiawen; Hemley, R.J.; Mao, Ho-kwang

    2011-01-01

    The structural stability of methane hydrate under pressure at room temperature was examined by both in-situ single-crystal and powder X-ray diffraction techniques on samples with structure types I, II, and H in diamond-anvil cells. The diffraction data for types II (sII) and H (sH) were refined to the known structures with space groups Fd3m and P63/mmc, respectively. Upon compression, sI methane hydrate transforms to the sII phase at 120 MPa, and then to the sH phase at 600 MPa. The sII methane hydrate was found to coexist locally with sI phase up to 500 MPa and with sH phase up to 600 MPa. The pure sH structure was found to be stable between 600 and 900 MPa. Methane hydrate decomposes at pressures above 3 GPa to form methane with the orientationally disordered Fm3m structure and ice VII (Pn3m). The results highlight the role of guest (CH4)-host (H2O) interactions in the stabilization of the hydrate structures under pressure.

  7. Patients with eating disorders showed no signs of coeliac disease before and after nutritional intervention.

    PubMed

    Kaltsa, Maria; Garoufi, Anastasia; Tsitsika, Artemis; Tsirogianni, Alexandra; Papasteriades, Chryssa; Kossiva, Lydia

    2015-07-01

    This study assessed the presence of specific antibodies for coeliac disease in outpatients suffering from eating disorders before and after nutritional intervention. We also evaluated whether those patients should undergo regular screening for coeliac disease. The sample consisted of 154 patients with a mean age of 16.7 years - ranging from one to 19 years of age - suffering from eating disorders. Serology screening for coeliac disease and total immunoglobulin A (IgA) levels was evaluated in the 154 children before the nutritional intervention and in 104 patients after the intervention. The patients consumed an adequate amount of gluten in both phases. Postintervention evaluation revealed that 92 patients (88.5%) achieved a normal body weight, while the remaining 12 (11.5%) became obese. Postprandial abdominal discomfort and pain were resolved. The serology tests were negative in all patients, before and after intervention. None displayed IgA deficiency. To the best of our knowledge, this was the first prospective study where patients underwent a screening serology for coeliac disease before and after nutritional intervention. No indication of the coexistence of eating disorders and coeliac disease was documented, and the patients in our study were unlikely to require regular screening for coeliac disease. ©2015 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  8. Structure of Ce2RhIn8: an example of complementary use of high-resolution neutron powder diffraction and reciprocal-space mapping to study complex materials.

    PubMed

    Moshopoulou, E G; Ibberson, R M; Sarrao, J L; Thompson, J D; Fisk, Z

    2006-04-01

    The room-temperature crystal structure of the heavy fermion antiferromagnet Ce2RhIn8, dicerium rhodium octaindide, has been studied by a combination of high-resolution synchrotron X-ray reciprocal-space mapping of single crystals and high-resolution time-of-flight neutron powder diffraction. The structure is disordered, exhibiting a complex interplay of non-periodic, partially correlated planar defects, coexistence and segregation of polytypic phases (induced by periodic planar ;defects'), mosaicity (i.e. domain misalignment) and non-uniform strain. These effects evolve as a function of temperature in a complicated way, but they remain down to low temperatures. The room-temperature diffraction data are best represented by a complex mixture of two polytypic phases, which are affected by non-periodic, partially correlated planar defects, differ slightly in their tetragonal structures, and exhibit different mosaicities and strain values. Therefore, Ce2RhIn8 approaches the paracrystalline state, rather than the classic crystalline state and thus several of the concepts of conventional single-crystal crystallography are inapplicable. The structural results are discussed in the context of the role of disorder in the heavy-fermion state and in the interplay between superconductivity and magnetism.

  9. Lateral Interactions in Monolayer Thick Mercury Films

    NASA Astrophysics Data System (ADS)

    Kime, Yolanda Jan

    An understanding of lateral adatom-adatom interactions is often an important part of understanding electronic structure and adsorption energetics in monolayer thick films. In this dissertation I use angle-resolved photoemission and thermal desorption spectroscopies to explore the relationship between the adatom-adatom interaction and other characteristics of the adlayer, such as electronic structure, defects, or coexistent structural phases in the adlayer. Since Hg binds weakly to many substrates, the lateral interactions are often a major contribution to the dynamics of the overlayer. Hg adlayer systems are thus ideal for probing lateral interactions. The electronic structures of Hg adlayers on Ag(100), Cu(100), and Cu_3Au(100) are studied with angle-resolved ultraviolet photoemission. The Hg atomic 5d_{5/2} electronic band is observed to split into two levels following adsorption onto some surfaces. The energetic splitting of the Hg 5d_{5/2} level is found to be directly correlated to the adlayer homogeneous strain energy. The existence of the split off level also depends on the order or disorder of the Hg adlayer. The energetics of Hg adsorption on Cu(100) are probed using thermal desorption spectroscopy. Two different ordered adlayer structures are observed for Hg adsorption on Cu(100) at 200 K. Under some adsorption conditions and over a range of exposures, the two phases are seen to coexist on the surface prior to the thermal desorption process. A phase transition from the more dense to the less dense phase is observed to occur during the thermal desorption process. Inherent differences in defect densities are responsible for the observed differences between lateral interactions measured previously with equilibrium (atom beam scattering) and as measured by the non-equilibrium (thermal desorption) technique reported here. Theoretical and experimental evidence for an indirect through-metal interaction between adatoms is also discussed. Although through-metal interactions may play a role in some adsorption systems, there is little compelling evidence that this effect is significant in many experimental reports where the through metal bond is invoked.

  10. Eating disorder emergencies: understanding the medical complexities of the hospitalized eating disordered patient.

    PubMed

    Cartwright, Martina M

    2004-12-01

    Eating disorders are maladaptive eating behaviors that typically develop in adolescence and early adulthood. Psychiatric maladies and comorbid conditions, especially insulin-dependent diabetes mellitus, frequently co-exist with eating disorders. Serious medical complications affecting all organs and tissues can develop and result in numerous emergent hospitalizations. This article reviews the pathophysiologies of anorexia nervosa, bulimia nervosa, and orthorexia nervosa and discusses the complexities associated with the treatment of medical complications seen in these patients.

  11. Psychiatric comorbidity among patients with hypochondriasis.

    PubMed

    Noyes, R; Kathol, R G; Fisher, M M; Phillips, B M; Suelzer, M T; Woodman, C L

    1994-03-01

    The purpose of this study was to determine the nature and extent of comorbidity among patients with DSM-III-R hypochondriasis and to examine the relationships between this disorder and coexisting psychiatric illness. For this purpose, patients seen in a general medicine clinic were screened using measures of hypochondriacal attitudes and somatic symptoms. Those scoring above an established cutoff were given a structured diagnostic interview. In this manner, 50 patients who met DSM-III-R criteria for hypochondriasis and 50 age- and sex-matched controls were identified. The presence of other psychiatric disorders (current and past) was determined by means of the same diagnostic interview. More hypochondriacal subjects (62.0%) had lifetime comorbidity than did controls (30.0%). Major depression, the most frequent comorbid disturbance, was usually current and most often had an onset after that of hypochondriasis. Panic disorder with agoraphobia, the most frequent anxiety disorder, was also current but often began before or at the same time as hypochondriasis. Few subjects met criteria for somatization disorder but a third qualified for a subsyndromal form of this disorder. The data show that, in medical outpatients with hypochondriasis, mood and anxiety disorders frequently coexist. This comorbidity is subject to varying interpretations including overlap of symptom criteria, treatment-seeking bias, and the possibility that hypochondriasis predisposes to or causes the comorbid disorder, as seems likely in the case of depression. In some instances hypochondriasis may be an associated feature of another illness.

  12. Metastability Gap in the Phase Diagram of Monoclonal IgG Antibody.

    PubMed

    Rowe, Jacob B; Cancel, Rachel A; Evangelous, Tyler D; Flynn, Rhiannon P; Pechenov, Sergei; Subramony, J Anand; Zhang, Jifeng; Wang, Ying

    2017-10-17

    Crystallization of IgG antibodies has important applications in the fields of structural biology, biotechnology, and biopharmaceutics. However, a rational approach to crystallize antibodies is still lacking. In this work, we report a method to estimate the solubility of antibodies at various temperatures. We experimentally determined the full phase diagram of an IgG antibody. Using the full diagram, we examined the metastability gaps, i.e., the distance between the crystal solubility line and the liquid-liquid coexistence curve, of IgG antibodies. By comparing our results to the partial phase diagrams of other IgGs reported in literature, we found that IgG antibodies have similar metastability gaps. Thereby, we present an equation with two phenomenological parameters to predict the approximate location of the solubility line of IgG antibodies with respect to their liquid-liquid coexistence curves. We have previously shown that the coexistence curve of an antibody solution can be readily determined by the polyethylene glycol-induced liquid-liquid phase separation method. Combining the polyethylene glycol-induced liquid-liquid phase separation measurements and the phenomenological equation in this article, we provide a general and practical means to predict the thermodynamic conditions for crystallizing IgG antibodies in the solution environments of interest. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Phase stability in the two-dimensional anisotropic boson Hubbard Hamiltonian

    DOE PAGES

    Ying, T.; Batrouni, G. G.; Rousseau, V. G.; ...

    2013-05-15

    The two dimensional square lattice hard-core boson Hubbard model with near neighbor interactions has a ‘checkerboard’ charge density wave insulating phase at half-filling and sufficiently large intersite repulsion. When doped, rather than forming a supersolid phase in which long range charge density wave correlations coexist with a condensation of superfluid defects, the system instead phase separates. However, it is known that there are other lattice geometries and interaction patterns for which such coexistence takes place. In this paper we explore the possibility that anisotropic hopping or anisotropic near neighbor repulsion might similarly stabilize the square lattice supersolid. Lastly, by consideringmore » the charge density wave structure factor and superfluid density for different ratios of interaction strength and hybridization in the ˆx and ˆy directions, we conclude that phase separation still occurs.« less

  14. Entropic Description of Gas Hydrate Ice-Liquid Equilibrium via Enhanced Sampling of Coexisting Phases

    NASA Astrophysics Data System (ADS)

    Małolepsza, Edyta; Kim, Jaegil; Keyes, Tom

    2015-05-01

    Metastable β ice holds small guest molecules in stable gas hydrates, so its solid-liquid equilibrium is of interest. However, aqueous crystal-liquid transitions are very difficult to simulate. A new molecular dynamics algorithm generates trajectories in a generalized N P T ensemble and equilibrates states of coexisting phases with a selectable enthalpy. With replicas spanning the range between β ice and liquid water, we find the statistical temperature from the enthalpy histograms and characterize the transition by the entropy, introducing a general computational procedure for first-order transitions.

  15. Entropic description of gas hydrate ice/liquid equilibrium via enhanced sampling of coexisting phases

    DOE PAGES

    Malolepsza, Edyta; Kim, Jaegil; Keyes, Tom

    2015-04-28

    Metastable β ice holds small guest molecules in stable gas hydrates, so its solid/liquid equilibrium is of interest. However, aqueous crystal/liquid transitions are very difficult to simulate. A new MD algorithm generates trajectories in a generalized NPT ensemble and equilibrates states of coexisting phases with a selectable enthalpy. Furthermore, with replicas spanning the range between β ice and liquid water we find the statistical temperature from the enthalpy histograms and characterize the transition by the entropy, introducing a general computational procedure for first-order transitions.

  16. Coexistence of Phases in a Protein Heterodimer

    PubMed Central

    Krokhotin, Andrey; Liwo, Adam; Niemi, Antti J.; Scheraga, Harold A.

    2012-01-01

    A heterodimer consisting of two or more different kinds of proteins can display an enormous number of distinct molecular architectures. The conformational entropy is an essential ingredient in the Helmholtz free energy and, consequently, these heterodimers can have a very complex phase structure. Here, it is proposed that there is a state of proteins, in which the different components of a heterodimer exist in different phases. For this purpose, the structures in the protein data bank (PDB) have been analyzed, with radius of gyration as the order parameter. Two major classes of heterodimers with their protein components coexisting in different phases have been identified. An example is the PDB structure 3DXC. This is a transcriptionally active dimer. One of the components is an isoform of the intra-cellular domain of the Alzheimer-disease related amyloid precursor protein (AICD), and the other is a nuclear multidomain adaptor protein in the Fe65 family. It is concluded from the radius of gyration that neither of the two components in this dimer is in its own collapsed phase, corresponding to a biologically active protein. The UNRES energy function has been utilized to confirm that, if the two components are separated from each other, each of them collapses. The results presented in this work show that heterodimers whose protein components coexist in different phases, can have intriguing physical properties with potentially important biological consequences. PMID:22830730

  17. Phase diagram of the underdoped cuprates at high magnetic field

    NASA Astrophysics Data System (ADS)

    Chakraborty, Debmalya; Morice, Corentin; Pépin, Catherine

    2018-06-01

    The experimentally measured phase diagram of cuprate superconductors in the temperature-applied magnetic field plane illuminates key issues in understanding the physics of these materials. At low temperature, the superconducting state gives way to a long-range charge order with increasing magnetic field; both the orders coexist in a small intermediate region. The charge order transition is strikingly insensitive to temperature and quickly reaches a transition temperature close to the zero-field superconducting Tc. We argue that such a transition along with the presence of the coexisting phase is difficult to obtain in a weak coupling competing orders formalism. We demonstrate that for some range of parameters there is an enlarged symmetry of the strongly coupled charge and superconducting orders in the system depending on their relative masses and the coupling strength of the two orders. We establish that this sharp switch from the superconducting phase to the charge order phase can be understood in the framework of a composite SU(2) order parameter comprising the charge and superconducting orders. Finally, we illustrate that there is a possibility of the coexisting phase of the competing charge and superconducting orders only when the SU(2) symmetry between them is weakly broken due to biquadratic terms in the free energy. The relation of this sharp transition to the proximity to the pseudogap quantum critical doping is also discussed.

  18. Nanotextured phase coexistence in the correlated insulator V2O3

    NASA Astrophysics Data System (ADS)

    McLeod, Alexander

    The Mott insulator-metal transition remains among the most studied phenomena in correlated electron physics. However, the formation of spontaneous spatial patterns amidst coexisting insulating and metallic phases remains poorly explored on the meso- and nanoscales. Here we present real-space evolution of the insulator-metal transition in a thin film of V2O3, the ``canonical'' Mott insulator, imaged at high spatial resolution by cryogenic near-field infrared microscopy. We resolve spontaneously nanotextured coexistence of metal and correlated Mott insulator phases near the insulator-metal transition (T = 160-180 K) associated with percolation and an underlying structural phase transition. Augmented with macroscopic temperature-resolved X-ray diffraction measurements of the same film, a quantitative analysis of nano-infrared images acquired across the transition suggests decoupling of electronic and structural transformations. Persistent low-temperature metallicity is accompanied by unconventional dimensional scaling among metallic ``puddles,'' implicating relevance of a long-range Coulombic interaction through the film's first-order insulator-metal transition. The speaker and co-authors acknowledge support from DOE-DE-SC0012375, DOE-DE-SC0012592, and AFOSR Grant No. FA9550-12-1-0381. The speaker also acknowledges support from a US Dept. of Energy Office of Science Graduate Fellowship (DOE SCGF).

  19. Influence of the intrinsic membrane protein bacteriorhodopsin on gel-phase domain topology in two-component phase-separated bilayers.

    PubMed Central

    Schram, V; Thompson, T E

    1997-01-01

    We have investigated the effect of the intrinsic membrane protein bacteriorhodopsin of Halobacterium halobium on the lateral organization of the lipid phase structure in the coexistence region of an equimolar mixture of dimyristoylphos-phatidylcholine and distearoylphosphatidylcholine. The fluorescence recovery after photobleaching (FRAP) technique was used to monitor the diffusion of both a lipid analog (N-(7-nitrobenzoxa-2,3-diazol-4-yl)-dimyristoylphosphatidyle thanolamine, NBD-DMPE) and fluorescein-labeled bacteriorhodopsin (Fl-BR). In the presence of bacteriorhodopsin, the mobile fractions of the two fluorescent probes display a shift of the percolation threshold toward lower temperatures (larger gel-phase fractions), independent of the protein concentration, from 43 degrees C (without bacteriorhodopsin) to 39 degrees C and 41 degrees C for NBD-DMPE and Fl-BR, respectively. Moreover, in the presence of bacteriorhodopsin, the gel-phase domains are much less efficient in restricting the diffusion of both probes than they are in the absence of the protein in the two-phase coexistence region. Bacteriorhodopsin itself, however, obstructs diffusion of NBD-DMPE and Fl-BR to about the same extent in the fluid phase of the two-phase region as it does in the homogeneous fluid phase. These observations suggest that 1) the protein induces the formation of much larger and/or more centrosymmetrical gel-phase domains than those formed in its absence, and 2) bacteriorhodopsin partitions almost equally between the coexisting fluid and gel phases. Although the molecular mechanisms involved are not clear, this phenomenon is fully consistent with the effect of the transmembrane peptide pOmpA of Escherichia coli investigated by electron spin resonance in the same lipid system. PMID:9129824

  20. Presence of a monoclinic (Pm) phase in the morphotropic phase boundary region of multiferroic (1 − x)Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} solid solution: A Rietveld study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Rishikesh, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in; Singh, Akhilesh Kumar, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in

    2014-07-28

    We present here the results of structural studies on multiferroic (1 − x)Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} solid solution using Rietveld analysis on powder x-ray diffraction data in the composition range 0.35 ≤ x ≤ 0.55. The stability region of various crystallographic phases at room temperature for (1 − x)Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} is determined precisely. Structural transformation from pseudo-cubic (x ≤ 0.40) to tetragonal (x ≥ 0.50) phase is observed via phase coexistence region demarcating the morphotropic phase boundary. The morphotropic phase boundary region consists of coexisting tetragonal and monoclinic structures with space group P4mm and Pm, respectively, stable in composition range 0.41 ≤ x ≤ 0.49 as confirmed by Rietveld analysis. The resultsmore » of Rietveld analysis completely rule out the coexistence of rhombohedral and tetragonal phases in the morphotropic phase boundary region reported by earlier workers. A comparison between the bond lengths for “B-site cations-oxygen anions” obtained after Rietveld refinement, with the bond length calculated using Shannon-Prewitt ionic radii, reveals the ionic nature of B-O (Ni/Ti-O) bonds for the cubic phase and partial covalent character for the other crystallographic phases.« less

  1. Phase diagram of an extended Agassi model

    NASA Astrophysics Data System (ADS)

    García-Ramos, J. E.; Dukelsky, J.; Pérez-Fernández, P.; Arias, J. M.

    2018-05-01

    Background: The Agassi model [D. Agassi, Nucl. Phys. A 116, 49 (1968), 10.1016/0375-9474(68)90482-X] is an extension of the Lipkin-Meshkov-Glick (LMG) model [H. J. Lipkin, N. Meshkov, and A. J. Glick, Nucl. Phys. 62, 188 (1965), 10.1016/0029-5582(65)90862-X] that incorporates the pairing interaction. It is a schematic model that describes the interplay between particle-hole and pair correlations. It was proposed in the 1960s by D. Agassi as a model to simulate the properties of the quadrupole plus pairing model. Purpose: The aim of this work is to extend a previous study by Davis and Heiss [J. Phys. G: Nucl. Phys. 12, 805 (1986), 10.1088/0305-4616/12/9/006] generalizing the Agassi model and analyze in detail the phase diagram of the model as well as the different regions with coexistence of several phases. Method: We solve the model Hamiltonian through the Hartree-Fock-Bogoliubov (HFB) approximation, introducing two variational parameters that play the role of order parameters. We also compare the HFB calculations with the exact ones. Results: We obtain the phase diagram of the model and classify the order of the different quantum phase transitions appearing in the diagram. The phase diagram presents broad regions where several phases, up to three, coexist. Moreover, there is also a line and a point where four and five phases are degenerated, respectively. Conclusions: The phase diagram of the extended Agassi model presents a rich variety of phases. Phase coexistence is present in extended areas of the parameter space. The model could be an important tool for benchmarking novel many-body approximations.

  2. Coexistence of Native and Denatured Phases in a Single Proteinlike Molecule

    NASA Astrophysics Data System (ADS)

    Du, Rose; Grosberg, Alexander Yu.; Tanaka, Toyoichi

    1999-11-01

    In order to understand the nuclei which develop during the course of protein folding and unfolding, we examine equilibrium coexistence of phases within a single heteropolymer chain. We computationally generate the phase segregation by applying a ``folding pressure,'' or adding an energetic bonus for native monomer-monomer contacts. The computer models reveal that in a polymer system some nuclei hinder folding via topological constraints. Using this insight, we show that the critical nucleus size is of the order of the entire chain and that unfolding time scales as exp\\(cN2/3\\), in the large N limit, N and c being the chain length and a constant, respectively.

  3. Long-Time Variation of Magnetic Structure in (Pr xLa 1-x)Co 2Si 2: Coexistence of Slow and Fast Processes in Magnetic Phase Transition

    DOE PAGES

    Motoya, Kiyoichiro; Hagihala, Masato; Shigeoka, Toru; ...

    2017-03-14

    In this paper, long-time variations of the magnetic structure in PrCo 2Si 2 and (Pr 0.98La 0.02)Co 2Si 2 were studied by magnetization and time-resolved neutron scattering measurements. The amplitudes of magnetic Bragg peaks showed marked time variations after cooling or heating across the magnetic transition temperature T 1 between two different antiferromagnetic phases. However, the amplitude of the time variation decreased rapidly with increasing distance from T 1. Finally, we analyzed the results on the basis of a phase transition model that includes the coexistence of fast and slow processes.

  4. Theory of amorphous ices

    PubMed Central

    Limmer, David T.; Chandler, David

    2014-01-01

    We derive a phase diagram for amorphous solids and liquid supercooled water and explain why the amorphous solids of water exist in several different forms. Application of large-deviation theory allows us to prepare such phases in computer simulations. Along with nonequilibrium transitions between the ergodic liquid and two distinct amorphous solids, we establish coexistence between these two amorphous solids. The phase diagram we predict includes a nonequilibrium triple point where two amorphous phases and the liquid coexist. Whereas the amorphous solids are long-lived and slowly aging glasses, their melting can lead quickly to the formation of crystalline ice. Further, melting of the higher density amorphous solid at low pressures takes place in steps, transitioning to the lower-density glass before accessing a nonequilibrium liquid from which ice coarsens. PMID:24858957

  5. Nuclear ``pasta'' phase within density dependent hadronic models

    NASA Astrophysics Data System (ADS)

    Avancini, S. S.; Brito, L.; Marinelli, J. R.; Menezes, D. P.; de Moraes, M. M. W.; Providência, C.; Santos, A. M.

    2009-03-01

    In the present paper, we investigate the onset of the “pasta” phase with different parametrizations of the density dependent hadronic model and compare the results with one of the usual parametrizations of the nonlinear Walecka model. The influence of the scalar-isovector virtual δ meson is shown. At zero temperature, two different methods are used, one based on coexistent phases and the other on the Thomas-Fermi approximation. At finite temperature, only the coexistence phases method is used. npe matter with fixed proton fractions and in β equilibrium are studied. We compare our results with restrictions imposed on the values of the density and pressure at the inner edge of the crust, obtained from observations of the Vela pulsar and recent isospin diffusion data from heavy-ion reactions, and with predictions from spinodal calculations.

  6. Macroscopic phase separation of superconductivity and ferromagnetism in Sr0.5Ce0.5FBiS2-x Se x revealed by μSR.

    PubMed

    Nikitin, A M; Grinenko, V; Sarkar, R; Orain, J-C; Salis, M V; Henke, J; Huang, Y K; Klauss, H-H; Amato, A; Visser, A de

    2017-12-12

    The compound Sr 0.5 Ce 0.5 FBiS 2 belongs to the intensively studied family of layered BiS 2 superconductors. It attracts special attention because superconductivity at T sc  = 2.8 K was found to coexist with local-moment ferromagnetic order with a Curie temperature T C  = 7.5 K. Recently it was reported that upon replacing S by Se T C drops and ferromagnetism becomes of an itinerant nature. At the same time T sc increases and it was argued superconductivity coexists with itinerant ferromagnetism. Here we report a muon spin rotation and relaxation study (μSR) conducted to investigate the coexistence of superconductivity and ferromagnetic order in Sr 0.5 Ce 0.5 FBiS 2-x Se x with x = 0.5 and 1.0. By inspecting the muon asymmetry function we find that both phases do not coexist on the microscopic scale, but occupy different sample volumes. For x = 0.5 and x = 1.0 we find a ferromagnetic volume fraction of ~8 % and ~30 % at T = 0.25 K, well below T C  = 3.4 K and T C  = 3.3 K, respectively. For x = 1.0 (T sc  = 2.9 K) the superconducting phase occupies most (~64 %) of the remaining sample volume, as shown by transverse field experiments that probe the Gaussian damping due to the vortex lattice. We conclude ferromagnetism and superconductivity are macroscopically phase separated.

  7. [Awareness of adult attention-deficit/hyperactivity disorder (ADHD) in Greece].

    PubMed

    Pehlivanidis, A

    2012-06-01

    Attention-deficit/hyperactivity disorder (ADHD) is the most common neurodevelopment disorder of childhood that persists into adulthood in the majority of cases. In adults, the clinical picture of ADHD is complex and comorbidity with other psychiatric disorders is the rule. The documentation that the disorder had a childhood onset and the various comorbid symptomatologies present both in childhood and adult life represent the most influential obstacles for the accurate clinical diagnosis of the disorder. In 75% of cases with adult ADHD there is at least one coexisting comorbid disorder, with anxiety and mood disorders as well as substance abuse and impulse control disorders being the most prevalent ones. Adult psychiatrists have limited experience in the diagnosis, treatment and overall management of the disorder. Greece is a member of the European Network Adult ADHD (ENAA), founded in 2003, aiming to increase awareness of the disorder and to improve knowledge and patient care for adults with ADHD across Europe. A clinic where diagnosis as well as treatment recommendations are given after a thorough assessment of adult ADHD patients, is hosted at the First Department of Psychiatry of the Athens National and Kapodistian University. The clinic is in close collaboration with ENAA. The diagnosis of ADHD is given after a detailed evaluation of the patient, based on history taken, self-administered questionnaires and a specific psychiatric interview. The reliable trace of the symptoms' onset back in early childhood, current symptomatology, as well as its impact on at least two major areas of functioning (school, home, work or personal relationships) are pivotal for the assessment procedure. Special attention should be paid in the distinction of symptoms often coexisting with the core symptoms of the ADHD, such as emotional liability, incessant mental activity, avoidance of situations like queuing, especially when there is also frustration, from those indicating a comorbid disorder, e.g. bipolar disorder, major depression, anxiety disorders or personality disorders. Its coexistence with substance abuse requires special attention, as ADHD is quite prevalent in this group. In order to treat an ADHD patient the rule is a multidimensional intervention. Comorbid psychiatric disorders must be treated first. Psychoeducation of the patient is needed in most of the cases as well as the admin istration of specific for the ADHD psychotropic medication. Coaching, Cognitive Therapy and family interventions are proved to be the most efficacious psychosocial treatments. In the context of our university outpatients' clinic an observation study for exploring the occurrence of ADHD among patients with anxiety and depressive disorders took place. 15% of patients with anxiety and depressive disorders received for the first time in their lives the diagnosis of ADHD. The above mentioned indicate the need for further training psychiatrists in the recognition and treatment of adult ADHD.

  8. Ultrafast optical snapshots of hybrid perovskites reveal the origin of multiband electronic transitions

    DOE PAGES

    Appavoo, Kannatassen; Nie, Wanyi; Blancon, Jean -Christophe; ...

    2017-11-15

    In this paper, connecting the complex electronic excitations of hybrid perovskites to their intricate organic-inorganic lattice structure has critical implications for energy conversion and optoelectronic technologies. Here we detail the multiband, multivalley electronic structure of a halide hybrid perovskite by measuring the absorption transients of a millimeter-scale-grain thin film as it undergoes a thermally controlled reversible tetragonal-to-orthogonal phase transition. Probing nearly single grains of this hybrid perovskite, we observe an unreported energy splitting (degeneracy lifting) of the high-energy 2.6 eV band in the tetragonal phase that further splits as the rotational degrees of freedom of the disordered CH 3NH 3more » + molecules are reduced when the sample is cooled. This energy splitting drastically increases during an extended phase-transition coexistence region that persists from 160 to 120 K, becoming more pronounced in the orthorhombic phase. By tracking the temperature-dependent optical transition energies and using symmetry analysis that describes the evolution of electronic states from the tetragonal phase to the orthorhombic phase, we assign this energy splitting to the nearly degenerate transitions in the tetragonal phase from both the R- and M-point-derived states. Importantly, these assignments explain how momentum conservation effects lead to long hot-carrier lifetimes in the room-temperature tetragonal phase, with faster hot-carrier relaxation when the hybrid perovskite structurally transitions to the orthorhombic phase due to enhanced scattering at the Γ point.« less

  9. Ultrafast optical snapshots of hybrid perovskites reveal the origin of multiband electronic transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appavoo, Kannatassen; Nie, Wanyi; Blancon, Jean -Christophe

    In this paper, connecting the complex electronic excitations of hybrid perovskites to their intricate organic-inorganic lattice structure has critical implications for energy conversion and optoelectronic technologies. Here we detail the multiband, multivalley electronic structure of a halide hybrid perovskite by measuring the absorption transients of a millimeter-scale-grain thin film as it undergoes a thermally controlled reversible tetragonal-to-orthogonal phase transition. Probing nearly single grains of this hybrid perovskite, we observe an unreported energy splitting (degeneracy lifting) of the high-energy 2.6 eV band in the tetragonal phase that further splits as the rotational degrees of freedom of the disordered CH 3NH 3more » + molecules are reduced when the sample is cooled. This energy splitting drastically increases during an extended phase-transition coexistence region that persists from 160 to 120 K, becoming more pronounced in the orthorhombic phase. By tracking the temperature-dependent optical transition energies and using symmetry analysis that describes the evolution of electronic states from the tetragonal phase to the orthorhombic phase, we assign this energy splitting to the nearly degenerate transitions in the tetragonal phase from both the R- and M-point-derived states. Importantly, these assignments explain how momentum conservation effects lead to long hot-carrier lifetimes in the room-temperature tetragonal phase, with faster hot-carrier relaxation when the hybrid perovskite structurally transitions to the orthorhombic phase due to enhanced scattering at the Γ point.« less

  10. Ultrafast optical snapshots of hybrid perovskites reveal the origin of multiband electronic transitions

    NASA Astrophysics Data System (ADS)

    Appavoo, Kannatassen; Nie, Wanyi; Blancon, Jean-Christophe; Even, Jacky; Mohite, Aditya D.; Sfeir, Matthew Y.

    2017-11-01

    Connecting the complex electronic excitations of hybrid perovskites to their intricate organic-inorganic lattice structure has critical implications for energy conversion and optoelectronic technologies. Here we detail the multiband, multivalley electronic structure of a halide hybrid perovskite by measuring the absorption transients of a millimeter-scale-grain thin film as it undergoes a thermally controlled reversible tetragonal-to-orthogonal phase transition. Probing nearly single grains of this hybrid perovskite, we observe an unreported energy splitting (degeneracy lifting) of the high-energy 2.6 eV band in the tetragonal phase that further splits as the rotational degrees of freedom of the disordered C H3N H3 + molecules are reduced when the sample is cooled. This energy splitting drastically increases during an extended phase-transition coexistence region that persists from 160 to 120 K, becoming more pronounced in the orthorhombic phase. By tracking the temperature-dependent optical transition energies and using symmetry analysis that describes the evolution of electronic states from the tetragonal phase to the orthorhombic phase, we assign this energy splitting to the nearly degenerate transitions in the tetragonal phase from both the R - and M -point-derived states. Importantly, these assignments explain how momentum conservation effects lead to long hot-carrier lifetimes in the room-temperature tetragonal phase, with faster hot-carrier relaxation when the hybrid perovskite structurally transitions to the orthorhombic phase due to enhanced scattering at the Γ point.

  11. Space-time thermodynamics of the glass transition

    NASA Astrophysics Data System (ADS)

    Merolle, Mauro; Garrahan, Juan P.; Chandler, David

    2005-08-01

    We consider the probability distribution for fluctuations in dynamical action and similar quantities related to dynamic heterogeneity. We argue that the so-called “glass transition” is a manifestation of low action tails in these distributions where the entropy of trajectory space is subextensive in time. These low action tails are a consequence of dynamic heterogeneity and an indication of phase coexistence in trajectory space. The glass transition, where the system falls out of equilibrium, is then an order-disorder phenomenon in space-time occurring at a temperature Tg, which is a weak function of measurement time. We illustrate our perspective ideas with facilitated lattice models and note how these ideas apply more generally. Author contributions: M.M., J.P.G., and D.C. performed research and wrote the paper.

  12. Focal nodular hyperplasia coexistent with hepatoblastoma in a 36-d-old infant

    PubMed Central

    Gong, Ying; Chen, Lian; Qiao, Zhong-Wei; Ma, Yang-Yang

    2015-01-01

    Focal nodular hyperplasia (FNH) is a benign hepatic tumor characterized by hepatocyte hyperplasia and a central stellate scar. The association of FNH with other hepatic lesions, such as adenomas, hemangiomas and hepatocellular carcinoma, has been previously reported, but FNH associated with another hepatic tumor is rare in infants. Here we report a case of FNH coexistent with hepatoblastoma in a 36-d-old girl. Computed tomography (CT) imaging showed an ill-delineated, inhomogeneous enhanced mass with a central star-like scar in the right lobe of the liver. The tumor showed early mild enhancement at the arterial phase (from 40HU without contrast to 52HU at the arterial phase), intense enhancement at the portal phase (87.7HU) and 98.1HU in the 3-min delay scan. A central scar in the tumor presented as low density on non-contrast CT and slightly enhanced at delayed contrast-enhanced scanning. This infant underwent surgical resection of the tumor. Histopathology demonstrated typical FNH coexistent with a focal hepatoblastoma, which showed epithelioid tumor cells separated by proliferated fibrous tissue. PMID:25624742

  13. Focal nodular hyperplasia coexistent with hepatoblastoma in a 36-d-old infant.

    PubMed

    Gong, Ying; Chen, Lian; Qiao, Zhong-Wei; Ma, Yang-Yang

    2015-01-21

    Focal nodular hyperplasia (FNH) is a benign hepatic tumor characterized by hepatocyte hyperplasia and a central stellate scar. The association of FNH with other hepatic lesions, such as adenomas, hemangiomas and hepatocellular carcinoma, has been previously reported, but FNH associated with another hepatic tumor is rare in infants. Here we report a case of FNH coexistent with hepatoblastoma in a 36-d-old girl. Computed tomography (CT) imaging showed an ill-delineated, inhomogeneous enhanced mass with a central star-like scar in the right lobe of the liver. The tumor showed early mild enhancement at the arterial phase (from 40HU without contrast to 52HU at the arterial phase), intense enhancement at the portal phase (87.7HU) and 98.1HU in the 3-min delay scan. A central scar in the tumor presented as low density on non-contrast CT and slightly enhanced at delayed contrast-enhanced scanning. This infant underwent surgical resection of the tumor. Histopathology demonstrated typical FNH coexistent with a focal hepatoblastoma, which showed epithelioid tumor cells separated by proliferated fibrous tissue.

  14. Monolayer phase coarsening using oscillatory flow

    NASA Astrophysics Data System (ADS)

    Leung, J.; Lopez, J. M.; Vogel, M. J.

    2005-11-01

    The co-existing phase domains of monolayers commonly observed via microscope are examined on flowing systems. Recent evidence shows that co-existing phase domains have profound effects on monolayer response to bulk flow. The present flow geometry consists of an open-top rectangular cavity in which the flow is driven by the periodic oscillation of the floor in its own plane. The oscillation of the floor dilates and compresses any film at the gas/liquid interface while still maintaining an essentially flat interface. A range of flow conditions (oscillation frequency and amplitude) is chosen so that the flow remains essentially two-dimensional. Measurements at the interface, initially covered by an insoluble monolayer (vitamin K1 or stearic acid), are made using a Brewster angle microscope system with a pulsed laser. Various phenomena such as fragmentation (breaking up of co-existing domains into finer ones) had previously been observed in sheared monolayer flows. In this new flow regime, we have seen dramatic coarsening of the domains. Interesting relaxation behavior at short and long time scales will also be discussed.

  15. Depression and Heart Diseases: Leading Health Problems.

    PubMed

    Raič, Matea

    2017-12-01

    Depression is the most common psychiatric disorder in the world population and the most frequent mental disorder in a primary health care. Unrecognized and untreated depression is associated with a poor outcome of treated chronic diseases which co-exist with depression. Depression and cardiovascular diseases are bidirectional related conditions, risks are for each other, and they often co-exist. Depression is a common disorder in cardiovascular patients with a prevalence of 20% to 45%, which is much more frequent than in the general population. In cardiac patients with acute myocardial infarction, depression occurs three times more often than in the general population. Depression has a direct effect on the pathophysiological changes of various organ systems, changing the values of blood pressure, heart rate, vasomotor tone, vascular resistance, blood viscosity and plasma volume. The potential mechanism for developing heart disease in depressed patients includes hypothalamic-pituitary-adrenal gland dysfunction, increased proinflammatory and prothrombotic factor activity, reduced omega-3 fatty acids, reduced heart rate variability, smoking, physical inactivity, reduced mood, self-esteem and self-efficacy.

  16. Co-incidence of Turner syndrome and Duchenne muscular dystrophy - an important problem for the clinician.

    PubMed

    Kaczorowska, Ewa; Zimowski, Janusz; Cichoń-Kotek, Monika; Mrozińska, Agnieszka; Purzycka, Joanna; Wierzba, Jolanta; Limon, Janusz; Lipska-Ziętkiewicz, Beata S

    Turner syndrome is a relatively common chromosomal disorder which affects about one in 2000 live born females. Duchenne muscular dystrophy is an X-linked recessive disorder affecting 1:3600 live born males. Considering the above, the coexistence of these two diseases may occur only anecdotally. Here, we report a 4 ½ year-old female with classical 45,X Turner syndrome who also had Duchenne muscular dystrophy caused by a point mutation in the dystrophin gene (c.9055delG). The patient showed the typical phenotype of Turner syndrome including distinctive dysmorphic features (short neck, low posterior hairline, wide position of nipples), aortic coarctation and feet lymphedema. Besides, she presented with an unusually early beginning of muscular dystrophy symptoms with infantile-onset motor developmental delay, intellectual disability and early calf muscular hypertrophy. The coexistence of an X-linked recessive disorder should be considered in women affected by Turner syndrome presenting with additional atypical clinical features.

  17. Coexistence of multiphase superconductivity and ferromagnetism in lithiated iron selenide hydroxide [(L i1 -xF ex) OH ]FeSe

    NASA Astrophysics Data System (ADS)

    Urban, Christian; Valmianski, Ilya; Pachmayr, Ursula; Basaran, Ali C.; Johrendt, Dirk; Schuller, Ivan K.

    2018-01-01

    We present experimental evidence for (a) multiphase superconductivity and (b) coexistence of magnetism and superconductivity in a single structural phase of lithiated iron selenide hydroxide [(L i1 -xF ex )OH]FeSe. Magnetic field modulated microwave spectroscopy data confirms superconductivity with at least two distinct transition temperatures attributed to well-defined superconducting phases at TSC 1=40 ±2 K and TSC 2=35 ±2 K. Magnetometry data for the upper critical fields reveal a change in the magnetic order (TM=12 K) below TSC 1 and TSC 2 that is consistent with ferromagnetism. This occurs because the superconducting coherence length is much smaller than the structural coherence length, allowing for several different electronic and magnetic states on a single crystallite. The results give insight into the physics of complex multinary materials, where several phenomena governed by different characteristic length scales coexist.

  18. Polydispersity effects in colloid-polymer mixtures.

    PubMed

    Liddle, S M; Narayanan, T; Poon, W C K

    2011-05-18

    We study phase separation and transient gelation experimentally in a mixture consisting of polydisperse colloids (polydispersity: ≈ 6%) and non-adsorbing polymers, where the ratio of the average size of the polymer to that of the colloid is ≈ 0.062. Unlike what has been reported previously for mixtures with somewhat lower colloid polydispersity (≈ 5%), the addition of polymers does not expand the fluid-solid coexistence region. Instead, we find a region of fluid-solid coexistence which has an approximately constant width but an unexpected re-entrant shape. We detect the presence of a metastable gas-liquid binodal, which gives rise to two-stepped crystallization kinetics that can be rationalized as the effect of fractionation. Finally, we find that the separation into multiple coexisting solid phases at high colloid volume fractions predicted by equilibrium statistical mechanics is kinetically suppressed before the system reaches dynamical arrest.

  19. Is Behavioral Regulation in Children with ADHD Aggravated by Comorbid Anxiety Disorder?

    ERIC Educational Resources Information Center

    Sorensen, Lin; Plessen, Kerstin J.; Nicholas, Jude; Lundervold, Astri J.

    2011-01-01

    Background: The present study investigated the impact of coexisting anxiety disorder in children with ADHD on their ability to regulate behavior. Method: Parent reports on the Behavior Rating Inventory of Executive Function (BRIEF) in a comorbid group of children with ADHD and anxiety (n = 11) were compared to BRIEF reports in a group of children…

  20. Mental Health: Knowledge, Attitudes and Training of Professionals on Dual Diagnosis of Intellectual Disability and Psychiatric Disorder

    ERIC Educational Resources Information Center

    Werner, S.; Stawski, M.

    2012-01-01

    Background: Dual diagnosis (DD) refers to the coexistence of intellectual disability and psychiatric disorder. In order to provide individuals with DD with adequate care, it is essential for mental health workers to have adequate knowledge and positive attitudes. These may be achieved through proper training. Aims: To summarise the available…

  1. Development of the NIDA-Funded Center on Substance Abuse and Mental Illness

    ERIC Educational Resources Information Center

    Singer, Mark I.; Kola, Lenore A.; Biegel, David E.

    2008-01-01

    This article describes one school's effort to establish a social work research development center in the area of coexisting drug and mental disorders (dual disorders), within the context of the social work profession's efforts to compete more effectively for federal research grants. This center was funded as part of a successful application in…

  2. Neuromotor Deficits in Developmental Coordination Disorder: Evidence from a Reach-to-Grasp Task

    ERIC Educational Resources Information Center

    Biancotto, Marina; Skabar, Aldo; Bulgheroni, Maria; Carrozzi, Marco; Zoia, Stefania

    2011-01-01

    Developmental coordination disorder (DCD) has been classified as a specific learning disability, nonetheless the underlying cognitive mechanisms are still a matter of discussion. After a summary of the main hypotheses on the principal neuromotor causes of DCD, this study applies a causal model framework to describe the possible coexistence of more…

  3. Lyotropic Phase Behavior of Polybutadiene-Poly(ethylene oxide) Diblock Copolymers in Ionic Liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simone, Peter M.; Lodge, Timothy P.

    2008-08-26

    The lyotropic phase behavior of three poly(1,2-butadiene-b-ethylene oxide) diblock copolymers (PB-PEO) with different monomer volume fractions has been studied in two different ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMI][TFSI]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMI][PF{sub 6}]), across the complete concentration range. The ordered microstructures present in the solutions were characterized via small-angle X-ray scattering (SAXS). The phase diagrams for the PB-PEO/ionic liquid solutions include regions corresponding to the classical copolymer microstructures: body-centered-cubic lattices of spheres, hexagonally ordered cylinders, and lamellae. Additionally, the phase diagrams also include wide regions of coexisting microstructures and regions apparently corresponding to a disordered network microstructure. The phase behavior ofmore » the PB-PEO copolymers in both ionic liquids was comparable to their previously reported aqueous solution behavior. The temperature dependence of the phase diagrams was very modest, indicative of a highly segregated system. The level of solvent selectivity was also investigated via cryogenic transmission electron microscopy (cryo-TEM) on dilute solutions. On the basis of the morphology of the dilute solution copolymer aggregate structures in the ionic liquid solvents, and on the structural length scales of the concentrated solutions, it was concluded that for PB-PEO [BMI][PF{sub 6}] behaves as a more selective solvent than [EMI][TFSI].« less

  4. Pressure induced solid-solid reconstructive phase transition in LiGa O2 dominated by elastic strain

    NASA Astrophysics Data System (ADS)

    Hu, Qiwei; Yan, Xiaozhi; Lei, Li; Wang, Qiming; Feng, Leihao; Qi, Lei; Zhang, Leilei; Peng, Fang; Ohfuji, Hiroaki; He, Duanwei

    2018-01-01

    Pressure induced solid-solid reconstructive phase transitions for graphite-diamond, and wurtzite-rocksalt in GaN and AlN occur at significantly higher pressure than expected from equilibrium coexistence and their transition paths are always inconsistent with each other. These indicate that the underlying nucleation and growth mechanism in the solid-solid reconstructive phase transitions are poorly understood. Here, we propose an elastic-strain dominated mechanism in a reconstructive phase transition, β -LiGa O2 to γ -LiGa O2 , based on in situ high-pressure angle dispersive x-ray diffraction and single-crystal Raman scattering. This mechanism suggests that the pressure induced solid-solid reconstructive phase transition is neither purely diffusionless nor purely diffusive, as conventionally assumed, but a combination. The large elastic strains are accumulated, with the coherent nucleation, in the early stage of the transition. The elastic strains along the 〈100 〉 and 〈001 〉 directions are too large to be relaxed by the shear stress, so an intermediate structure emerges reducing the elastic strains and making the transition energetically favorable. At higher pressures, when the elastic strains become small enough to be relaxed, the phase transition to γ -LiGa O2 begins and the coherent nucleation is substituted with a semicoherent one with Li and Ga atoms disordered.

  5. Cooperation induces other cooperation: Fruiting bodies promote the evolution of macrocysts in Dictyostelium discoideum.

    PubMed

    Shibasaki, Shota; Shirokawa, Yuka; Shimada, Masakazu

    2017-05-21

    Biological studies of the evolution of cooperation are challenging because this process is vulnerable to cheating. Many mechanisms, including kin discrimination, spatial structure, or by-products of self-interested behaviors, can explain this evolution. Here we propose that the evolution of cooperation can be induced by other cooperation. To test this idea, we used a model organism Dictyostelium discoideum because it exhibits two cooperative dormant phases, the fruiting body and the macrocyst. In both phases, the same chemoattractant, cyclic AMP (cAMP), is used to collect cells. This common feature led us to hypothesize that the evolution of macrocyst formation would be induced by coexistence with fruiting bodies. Before forming a mathematical model, we confirmed that macrocysts coexisted with fruiting bodies, at least under laboratory conditions. Next, we analyzed our evolutionary game theory-based model to investigate whether coexistence with fruiting bodies would stabilize macrocyst formation. The model suggests that macrocyst formation represents an evolutionarily stable strategy and a global invader strategy under this coexistence, but is unstable if the model ignores the fruiting body formation. This result indicates that the evolution of macrocyst formation and maintenance is attributable to coexistence with fruiting bodies. Therefore, macrocyst evolution can be considered as an example of evolution of cooperation induced by other cooperation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Coexistence of superconductivity and antiferromagnetism probed by simultaneous nuclear magnetic resonance and electrical transport in (TMTSF)2PF6 system.

    PubMed

    Lee, I J; Brown, S E; Yu, W; Naughton, M J; Chaikin, P M

    2005-05-20

    We report simultaneous NMR and electrical transport experiments in the pressure range near the boundary of the antiferromagnetic spin density wave (SDW) insulator and the metallic/superconducting (SC) phase in (TMTSF)2PF6. Measurements indicate a tricritical point separating a line of second-order SDW/metal transitions from a line of first-order SDW/metal(SC) transitions with coexistence of macroscopic regions of SDW and metal(SC) order, with little mutual interaction but strong hysteretic effects. NMR results quantify the fraction of each phase.

  7. Allergic sensitization and filaggrin variants predispose to the comorbidity of eczema, asthma, and rhinitis: results from the Isle of Wight birth cohort

    PubMed Central

    Ziyab, Ali H.; Karmaus, Wilfried; Zhang, Hongmei; Holloway, John W.; Steck, Susan E.; Ewart, Susan; Arshad, Syed Hasan

    2014-01-01

    Background Allergic sensitization and filaggrin gene (FLG) variants are important risk factors for allergic disorders; however, knowledge on their individual and interactive effects on the coexistence of eczema, asthma, and rhinitis is lacking. Objective This study aimed at investigating the single and combined effects of allergic sensitization and FLG variants on the development of single and multiple allergic disorders. Methods The Isle of Wight Birth Cohort (n = 1,456) has been examined at 1, 2, 4, 10, and 18 years of age. Repeated measurements of eczema, asthma, rhinitis, and skin prick tests were available for all follow-ups. FLG variants were genotyped in 1,150 participants. Associations of allergic sensitization and FLG variants with single and multiple allergic disorders were tested in log-binomial regression analysis. Results The prevalence of eczema-, asthma-, and rhinitis-only ranged from 5.6% to 8.5%, 4.9% to 10.2%, and 2.5% to 20.4%, respectively, during the first 18 years of life. The coexistence of allergic disorders is common, with approximately 2% of the population reporting the comorbidity of “eczema, asthma, and rhinitis” during the study period. In repeated measurement analyses, allergic sensitization and FLG variants, when analyzed separately, were associated with having single and multiple allergic disorders. Of particular significance, their combined effect increased the risk of “eczema and asthma” (RR = 13.67, 95% CI: 7.35 – 25.42), “asthma and rhinitis” (RR = 7.46, 95% CI: 5.07 – 10.98), and “eczema, asthma, and rhinitis” (RR = 23.44, 95% CI: 12.27 – 44.78). Conclusions and Clinical Relevance The coexistence of allergic disorders is frequent and allergic sensitization and FLG variants jointly increased risk of allergic comorbidities, which may represent more severe and complex clinical phenotypes. The interactive effect and the elevated proportion of allergic comorbidities associated with allergic sensitization and FLG variants emphasize their joint importance in the pathogenesis of allergic disorders. PMID:24708301

  8. Micro- and Nano-Liquid Phases Coexistent with Ice as Separation and Reaction Media.

    PubMed

    Okada, Tetsuo

    2017-04-01

    Ice has a variety of scientifically interesting features, some of which have not been reasonably interpreted despite substantial efforts by researchers. Most chemical studies of ice have focused on the elucidation of its physicochemical nature and its roles in the natural environment. Ice often contains impurities, such as salts, and in such cases, a liquid phase coexists with solid ice over a wide temperature range. This impure ice also acts as a cryoreactor, governing the circulation of chemical species of environmental importance. Reactions and phenomena occurring in this liquid phase show features different from those seen in normal bulk aqueous solutions. In the present account, we discuss the chemical characteristics of the liquid phase that develops in a frozen aqueous phase and show how novel analytical systems can be designed based on he features of the liquid phase which are predictable in some cases but unpredictable in others. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Improved modeling of two-dimensional transitions in dense phases on crystalline surfaces. Krypton–graphite system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ustinov, E. A., E-mail: eustinov@mail.wplus.net

    This paper presents a refined technique to describe two-dimensional phase transitions in dense fluids adsorbed on a crystalline surface. Prediction of parameters of 2D liquid–solid equilibrium is known to be an extremely challenging problem, which is mainly due to a small difference in thermodynamic functions of coexisting phases and lack of accuracy of numerical experiments in case of their high density. This is a serious limitation of various attempts to circumvent this problem. To improve this situation, a new methodology based on the kinetic Monte Carlo method was applied. The methodology involves analysis of equilibrium gas–liquid and gas–solid systems undergoingmore » an external potential, which allows gradual shifting parameters of the phase coexistence. The interrelation of the chemical potential and tangential pressure for each system is then treated with the Gibbs–Duhem equation to obtain the point of intersection corresponding to the liquid/solid–solid equilibrium coexistence. The methodology is demonstrated on the krypton–graphite system below and above the 2D critical temperature. Using experimental data on the liquid–solid and the commensurate–incommensurate transitions in the krypton monolayer derived from adsorption isotherms, the Kr–graphite Lennard–Jones parameters have been corrected resulting in a higher periodic potential modulation.« less

  10. Morphological Evolution of Gyroid-Forming Block Copolymer Thin Films with Varying Solvent Evaporation Rate.

    PubMed

    Wu, Yi-Hsiu; Lo, Ting-Ya; She, Ming-Shiuan; Ho, Rong-Ming

    2015-08-05

    In this study, we aim to examine the morphological evolution of block copolymer (BCP) nanostructured thin films through solvent evaporation at different rates for solvent swollen polystyrene-block-poly(l-lactide) (PS-PLLA). Interesting phase transitions from disorder to perpendicular cylinder and then gyroid can be found while using a partially selective solvent for PS to swell PS-PLLA thin film followed by solvent evaporation. During the transitions, gyroid-forming BCP thin film with characteristic crystallographic planes of (111)G, (110)G, and (211)G parallel to air surface can be observed, and will gradually transform into coexisting (110)G and (211)G planes, and finally transforms to (211)G plane due to the preferential segregation of constituted block to the surface (i.e., the thermodynamic origin for self-assembly) that affects the relative amount of each component at the air surface. With the decrease on the evaporation rate, the disorder phase will transform to parallel cylinder and then directly to (211)G without transition to perpendicular cylinder phase. Most importantly, the morphological evolution of PS-PLLA thin films is strongly dependent upon the solvent removal rate only in the initial stage of the evaporation process due to the anisotropy of cylinder structure. Once the morphology is transformed back to the isotropic gyroid structure after long evaporation, the morphological evolution will only relate to the variation of the surface composition. Similar phase transitions at the substrate can also be obtained by controlling the ratio of PLLA-OH to PS-OH homopolymers to functionalize the substrate. As a result, the fabrication of well-defined nanostructured thin films with controlled orientation can be achieved by simple swelling and deswelling with controlled evaporation rate.

  11. Comparing the Levels of Acute-Phase Reactants Between Smoker and Nonsmoker Diabetic Patients: More Predicted Risk for Cardiovascular Diseases in Smoker Compared to Nonsmoker Diabetics.

    PubMed

    Rezaei-Adl, Sepideh; Ghahroudi Tali, Arash; Saffar, Hiva; Rajabiani, Afsaneh; Abdollahi, Alireza

    2017-09-01

     Due to a close link between cardiovascular disorders and increased acute phase responses, it is now proposed the relation of total sialic acid (TSA) and C Reactive Protein (CRP) as main components of acute phase proteins and cardiovascular risk profiles such as diabetes mellitus and smoking. We hypothesized that the elevation in the level of TSA along with other prototype acute phase reactants such as CRP is expected more in the coexistence of diabetes and smoking than in diabetes mellitus alone. Ninety diabetic patients were randomly selected and entered into this case-control study. Using block randomization method, the patients were randomly assigned into smokers (n=45) and nonsmokers (n=45). A group of ten healthy individuals was also included as the control. The serum levels of TSA, CRP, iron, and hemoglobin were measured by the specific techniques. Comparing laboratory parameters across the three groups indicated significantly higher levels of TSA and CRP in smoker diabetics as compared to non-smoker diabetics and the healthy controls, while there was no difference in other parameters including serum iron and hemoglobin. A significant positive correlation was also revealed between TCA and CRP (r=0.324, P=0.030), but no significant association was found between other parameters. In the background of smoking, increasing the level of both TSA and CRP is predicted more than the existence of diabetes mellitus alone. In fact, the increase in these biomarkers is more predictable in smoker than in nonsmoker diabetics. This finding emphasizes the increased risk for cardiovascular disorders in smoker compared to non-smoker diabetics.

  12. A personal 35 year perspective on Gilles de la Tourette syndrome: prevalence, phenomenology, comorbidities, and coexistent psychopathologies.

    PubMed

    Robertson, Mary M

    2015-01-01

    This Series is a personal narrative of my experience with patients with Gilles de la Tourette syndrome and covers its definition and history since the first description in 1825. Controversy entered the prevalence debate early. Although originally considered very rare, in the 1980s, Tourette's syndrome was reported to be common. However, Tourette's syndrome has been shown to occur at a prevalence of about 0·85% to 1%. Tourette's syndrome is more common in the male population, more prominent during childhood, and usually improves, but does not disappear with age. Tourette's syndrome is considered less common in people of sub-Saharan black African, African-American, and American Hispanic ethnic origin. The phenomenology is similar worldwide, indicating a biological basis. The hallmark characteristics are multiple motor and one or more vocal/phonic tics. Other associated features include premonitory urges, a waxing and waning course, and to a much lesser degree, coprolalia. Comorbid disorders are common and are suggested to include obsessive-compulsive disorder and behaviours, attention deficit hyperactivity disorder, and autistic spectrum disorder. Coexistent psychopathologies are suggested to include depression and conduct and personality disorders. Importantly, I argue that Tourette's syndrome is not a unitary condition. Finally, I offer suggestions for future research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Phase equilibria in the nominally Al65Cu23Fe12 system at 3, 5 and 21 GPa: Implications for the quasicrystal-bearing Khatyrka meteorite

    NASA Astrophysics Data System (ADS)

    Stagno, Vincenzo; Bindi, Luca; Steinhardt, Paul J.; Fei, Yingwei

    2017-10-01

    Two of the three natural quasiperiodic crystals found in the Khatyrka meteorite show a composition within the Al-Cu-Fe system. Icosahedrite, with formula Al63Cu24Fe13, coexists with the new Al62Cu31Fe7 quasicrystal plus additional Al-metallic minerals such as stolperite (AlCu), kryachkoite [(Al,Cu)6(Fe,Cu)], hollisterite (AlFe3), khatyrkite (Al2Cu) and cupalite (AlCu), associated to high-pressure phases like ringwoodite/ahrensite, coesite, and stishovite. These high-pressure minerals represent the evidence that most of the Khatyrka meteoritic fragments formed at least at 5 GPa and 1200 °C, if not at more extreme conditions. On the other hand, experimental studies on phase equilibria within the representative Al-Cu-Fe system appear mostly limited to ambient pressure conditions, yet. This makes the interpretation of the coexisting mineral phases in the meteoritic sample quite difficult. We performed experiments at 3, 5 and 21 GPa and temperatures of 800-1500 °C using the multi-anvil apparatus to investigate the phase equilibria in the Al65Cu23Fe12 system representative of the first natural quasicrystal, icosahedrite. Our results, supported by single-crystal X-ray diffraction and analyses by scanning electron microscopy, confirm the stability of icosahedrite at high pressure and temperature along with additional coexisting Al-bearing phases representative of khatyrkite and stolperite as those found in the natural meteorite. One reversal experiment performed at 5 GPa and 1200 °C shows the formation of the icosahedral quasicrystal from a pure Al, Cu and Fe mixture, a first experimental synthesis of icosahedrite under those conditions. Pressure appears to not play a major role in the distribution of Al, Cu and Fe between the coexisting phases, icosahedrite in particular. Results from this study extend our knowledge on the stability of icosahedral AlCuFe at higher temperature and pressure than previously examined, and provide a new constraint on the stability of icosahedrite.

  14. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle

    PubMed Central

    Feillet, Céline; Krusche, Peter; Tamanini, Filippo; Janssens, Roel C.; Downey, Mike J.; Martin, Patrick; Teboul, Michèle; Saito, Shoko; Lévi, Francis A.; Bretschneider, Till; van der Horst, Gijsbertus T. J.; Delaunay, Franck; Rand, David A.

    2014-01-01

    Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer. PMID:24958884

  15. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle.

    PubMed

    Feillet, Céline; Krusche, Peter; Tamanini, Filippo; Janssens, Roel C; Downey, Mike J; Martin, Patrick; Teboul, Michèle; Saito, Shoko; Lévi, Francis A; Bretschneider, Till; van der Horst, Gijsbertus T J; Delaunay, Franck; Rand, David A

    2014-07-08

    Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer.

  16. Effects of configurational disorder on the elastic properties of icosahedral boron-rich alloys based on B6O, B13C2, and B4C, and their mixing thermodynamics

    NASA Astrophysics Data System (ADS)

    Ektarawong, A.; Simak, S. I.; Hultman, L.; Birch, J.; Tasnádi, F.; Wang, F.; Alling, B.

    2016-04-01

    The elastic properties of alloys between boron suboxide (B6O) and boron carbide (B13C2), denoted by (B6O)1-x(B13C2)x, as well as boron carbide with variable carbon content, ranging from B13C2 to B4C are calculated from first-principles. Furthermore, the mixing thermodynamics of (B6O)1-x(B13C2)x is studied. A superatom-special quasirandom structure approach is used for modeling different atomic configurations, in which effects of configurational disorder between the carbide and suboxide structural units, as well as between boron and carbon atoms within the units, are taken into account. Elastic properties calculations demonstrate that configurational disorder in B13C2, where a part of the C atoms in the CBC chains substitute for B atoms in the B12 icosahedra, drastically increase the Young's and shear modulus, as compared to an atomically ordered state, B12(CBC). These calculated elastic moduli of the disordered state are in excellent agreement with experiments. Configurational disorder between boron and carbon can also explain the experimentally observed almost constant elastic moduli of boron carbide as the carbon content is changed from B4C to B13C2. The elastic moduli of the (B6O)1-x(B13C2)x system are also practically unchanged with composition if boron-carbon disorder is taken into account. By investigating the mixing thermodynamics of the alloys, in which the Gibbs free energy is determined within the mean-field approximation for the configurational entropy, we outline the pseudo-binary phase diagram of (B6O)1-x(B13C2)x. The phase diagram reveals the existence of a miscibility gap at all temperatures up to the melting point. Also, the coexistence of B6O-rich as well as ordered or disordered B13C2-rich domains in the material prepared through equilibrium routes is predicted.

  17. Counseling Persons with Comorbid Disorders: A Quantitative Comparison of Counselor Active Rehabilitation Service and Standard Rehabilitation Counseling Approaches

    ERIC Educational Resources Information Center

    Ferdinandi, Andrew D.; Li, Ming Hui

    2007-01-01

    The purpose of this quantitative study was to investigate the effect of counselor active rehabilitation service compared with the effect of standard rehabilitation counseling in assisting individuals with coexisting psychiatric and substance abuse disorders in attaining desired life roles. This study was conducted during a 6-month period in a…

  18. Effect of the fcc-hcp martensitic transition on the equation of state of solid krypton up to 140 GPa

    NASA Astrophysics Data System (ADS)

    Rosa, A. D.; Garbarino, G.; Briggs, R.; Svitlyk, V.; Morard, G.; Bouhifd, M. A.; Jacobs, J.; Irifune, T.; Mathon, O.; Pascarelli, S.

    2018-03-01

    Solid krypton (Kr) undergoes a pressure-induced martensitic phase transition from a face-centered cubic (fcc) to a hexagonal close-packed (hcp) structure. These two phases coexist in a very wide pressure domain inducing important modifications of the bulk properties of the resulting mixed phase system. Here, we report a detailed in situ x-ray diffraction and absorption study of the influence of the fcc-hcp phase transition on the compression behavior of solid krypton in an extended pressure domain up to 140 GPa. The onset of the hcp-fcc transformation was observed in this study at around 2.7 GPa and the coexistence of these two phases up to 140 GPa, the maximum investigated pressure. The appearance of the hcp phase is also evidenced by the pressure-induced broadening and splitting of the first peak in the XANES spectra. We demonstrate that the transition is driven by a continuous nucleation and intergrowth of nanometric hcp stacking faults that evolve in the fcc phase. These hcp stacking faults are unaffected by high-temperature annealing, suggesting that plastic deformation is not at their origin. The apparent small Gibbs free-energy differences between the two structures that decrease upon compression may explain the nucleation of hcp stacking faults and the large coexistence domain of fcc and hcp krypton. We observe a clear anomaly in the equation of state of the fcc solid at ˜20 GPa when the proportion of the hcp form reaches ˜20 % . We demonstrate that this anomaly is related to the difference in stiffness between the fcc and hcp phases and propose two distinct equation of states for the low and high-pressure regimes.

  19. Role of length polydispersity in the phase behavior of freely rotating hard-rectangle fluids

    NASA Astrophysics Data System (ADS)

    Díaz-De Armas, Ariel; Martínez-Ratón, Yuri

    2017-05-01

    We use the density-functional formalism, in particular the scaled-particle theory, applied to a length-polydisperse hard-rectangle fluid to study its phase behavior as a function of the mean particle aspect ratio κ0 and polydispersity Δ0. The numerical solutions of the coexistence equations are calculated by transforming the original problem with infinite degrees of freedoms to a finite set of equations for the amplitudes of the Fourier expansion of the moments of the density profiles. We divide the study into two parts. The first one is devoted to the calculation of the phase diagrams in the packing fraction η0-κ0 plane for a fixed Δ0 and selecting parent distribution functions with exponential (the Schulz distribution) or Gaussian decays. In the second part we study the phase behavior in the η0-Δ0 plane for fixed κ0 while Δ0 is changed. We characterize in detail the orientational ordering of particles and the fractionation of different species between the coexisting phases. Also we study the character (second vs first order) of the isotropic-nematic phase transition as a function of polydispersity. We particularly focus on the stability of the tetratic phase as a function of κ0 and Δ0. The isotropic-nematic transition becomes strongly of first order when polydispersity is increased: The coexistence gap widens and the location of the tricritical point moves to higher values of κ0 while the tetratic phase is slightly destabilized with respect to the nematic one. The results obtained here can be tested in experiments on shaken monolayers of granular rods.

  20. Obstructive sleep apnea in severe mental disorders.

    PubMed

    Szaulińska, Katarzyna; Pływaczewski, Robert; Sikorska, Olga; Holka-Pokorska, Justyna; Wierzbicka, Aleksandra; Wichniak, Adam; Śliwiński, Paweł

    2015-01-01

    The prevalence of obstructive sleep apnoea (OSA) is estimated to be 3-7.5% in men and 2-3% in women. In mentally ill population it is even higher, as these patients are a high risk OSA group. The aim of the paper was a review of literature about the prevalence of sleep apnoea in patients with schizophrenia, bipolar disorder and recurrent depressive disorder.The available data show that OSA is present in 15-48% of patients with schizophrenia, 21-43% of patients with bipolar disorder and 11-18% of patients with recurrent depressive disorder. The lack of diagnosis of OSA in people with mental illnesses has multiple negative consequences. The symptoms of sleep apnoea might imitate the symptoms of mental illnesses such as negative symptoms of schizophrenia and symptoms of depression, they might as well aggravate the cognitive impairment. A number of the drugs used in mental disorders may aggravate the symptoms of OSA. OSA is as well the risk factor for cardiovascular and metabolic diseases which are a serious clinical problem in mentally ill people and contribute to shortening of their expected lifespan. From the point of view of the physicians treating OSA it is important to pay attention to the fact that co-existing depression is the most common reason for resistant daytime sleepiness in OSA patients treated effectively with Continuous Positive Airway Pressure (CPAP). CPAP therapy leads to significant improvement of mood. However, in schizophrenia and bipolar patients it may rarely lead to acute worsening of mental state, exacerbation of psychotic symptoms or phase shift from depression to mania.

  1. Imaging the Dynamics of the Ferroelectric Stripe Phase Near a Field-Driven Phase Transition in Bismuth Ferrite

    NASA Astrophysics Data System (ADS)

    Laanait, Nouamane; Li, Qian; Zhang, Zhan; Kalinin, Sergei

    Electric field-driven phase transitions in multiferroic systems such as Bismuth Ferrite could potentially host interesting domain dynamics due to the coexistence of multiple order parameters. Structural imaging of these dynamics under a host of elastic and electric boundary conditions is therefore of interest. Here, we present X-ray diffraction microscopy (XDM) studies of the domain wall dynamics in a bismuth ferrite thin-film near the field-driven transition from rhombohedral to monoclinic (R to M). XDM is a novel full-field imaging technique that uses Bragg diffraction contrast to image structural configurations with sub-100nm lateral resolutions and fast acquisition times (milliseconds to seconds per image). We find that under electric fields 100 kV/cm, a bismuth ferrite thin-film (100 nm BiFeO3/DyScO3 (110)) undergoes a structural phase transition but that this new phase (M) is pinned by the preexisting ferroelectric/ferroelastic stripe phase (R). At higher fields ( 300 kV/cm), we observe unusually slow domain wall dynamics in the stripe phase, consisting of periodicity doubling, domain wall roughening and crowding. These observed ferroelastic domain wall spatial dynamics are weakly constrained by the crystal symmetry of the orthorhombic substrate but exhibit nonlinear dynamics more commonly associated with disordered nematic systems. This work was supported by the Eugene P. Wigner Fellowship program at Oak Ridge National Laboratory, a U.S. Department of Energy facility.

  2. Phase diagrams of block copolymer melts by dissipative particle dynamics simulations

    NASA Astrophysics Data System (ADS)

    Gavrilov, Alexey A.; Kudryavtsev, Yaroslav V.; Chertovich, Alexander V.

    2013-12-01

    Phase diagrams for monodisperse and polydisperse diblock copolymer melts and a random multiblock copolymer melt are constructed using dissipative particle dynamics simulations. A thorough visual analysis and calculation of the static structure factor in several hundreds of points at each of the diagrams prove the ability of mesoscopic molecular dynamics to predict the phase behavior of polymer systems as effectively as the self-consistent field-theory and Monte Carlo simulations do. It is demonstrated that the order-disorder transition (ODT) curve for monodisperse diblocks can be precisely located by a spike in the dependence of the mean square pressure fluctuation on χN, where χ is the Flory-Huggins parameter and N is the chain length. For two other copolymer types, the continuous ODTs are observed. Large polydispersity of both blocks obeying the Flory distribution in length does not shift the ODT curve but considerably narrows the domains of the cylindrical and lamellar phases partially replacing them with the wormlike micelle and perforated lamellar phases, respectively. Instead of the pure 3d-bicontinuous phase in monodisperse diblocks, which could be identified as the gyroid, a coexistence of the 3d phase and cylindrical micelles is detected in polydisperse diblocks. The lamellar domain spacing D in monodisperse diblocks follows the strong-segregation theory prediction, D/N1/2 ˜ (χN)1/6, whereas in polydisperse diblocks it is almost independent of χN at χN < 100. Completely random multiblock copolymers cannot form ordered microstructures other than lamellas at any composition.

  3. Understanding Strain-Induced Phase Transformations in BiFeO3 Thin Films.

    PubMed

    Dixit, Hemant; Beekman, Christianne; Schlepütz, Christian M; Siemons, Wolter; Yang, Yongsoo; Senabulya, Nancy; Clarke, Roy; Chi, Miaofang; Christen, Hans M; Cooper, Valentino R

    2015-08-01

    Experiments demonstrate that under large epitaxial strain a coexisting striped phase emerges in BiFeO 3 thin films, which comprises a tetragonal-like ( T ') and an intermediate S ' polymorph. It exhibits a relatively large piezoelectric response when switching between the coexisting phase and a uniform T ' phase. This strain-induced phase transformation is investigated through a synergistic combination of first-principles theory and experiments. The results show that the S ' phase is energetically very close to the T ' phase, but is structurally similar to the bulk rhombohedral ( R ) phase. By fully characterizing the intermediate S ' polymorph, it is demonstrated that the flat energy landscape resulting in the absence of an energy barrier between the T ' and S ' phases fosters the above-mentioned reversible phase transformation. This ability to readily transform between the S ' and T ' polymorphs, which have very different octahedral rotation patterns and c / a ratios, is crucial to the enhanced piezoelectricity in strained BiFeO 3 films. Additionally, a blueshift in the band gap when moving from R to S ' to T ' is observed. These results emphasize the importance of strain engineering for tuning electromechanical responses or, creating unique energy harvesting photonic structures, in oxide thin film architectures.

  4. Formation of gapless Z 2 spin liquid phase manganites in the (Sm1- y Gd y )0.55Sr0.45MnO3 system in zero magnetic field: Topological phase transitions to states with low and high density of 2D-vortex pairs induced by the magnetic field

    NASA Astrophysics Data System (ADS)

    Bukhan'ko, F. N.; Bukhan'ko, A. F.

    2017-12-01

    The evolution of the ground state of the manganese spin ensemble in the (Sm1- y Gd y )0.55Sr0.45MnO3 in the case of isovalent substitution of rare-earth samarium ions with large radii with gadolinium ions with significantly smaller radii is studied. The measured temperature dependences of the ac magnetic susceptibility and the field dependences of the dc magnetizations are analyzed using the Heisenberg-Kitaev model describing the transition from the ordered spin state with classical isotropic AFM exchange to the frustrated spin state with quantum highly anisotropic FM exchange. A continuous transition from the 3D ferromagnetic state of manganese spins in the initial sample with y = 0 to zigzag AFM ordering of CE-type spins in ab planes for y = 0.5, coexisting in samples with y = 0.5, 0.6, and 0.7 at temperatures below T N ≅ 48.5 K with a disordered phase such as a quantum Griffiths phase is identified. As the gadolinium concentration further increases, the CE-type zigzag AFM structure is molten, which leads to the appearance of an unusual phase in Gd0.55Sr0.45MnO3 in the temperature range close to the absolute zero. This phase has characteristic features of a gapless Z 2 quantum spin liquid in zero external magnetic field. The step changes in the magnetization isotherms measured at 4.2 K in the field range of ±75 kOe are explained by quantum phase transitions of the Z 2 spin liquid to a phase with topological order in weak magnetic fields and a polarized phase in strong fields. The significant difference between critical fields and magnetization jumps in isotherms indicates the existence of hysteretic phenomena in quantum spin liquid magnetization-demagnetization processes caused by the difference between localization-delocalization of 2D vortex pairs induced by a magnetic field in a quantum spin liquid with disorder.

  5. Spin incommensurability and two phase competition in cobaltites.

    PubMed

    Phelan, D; Louca, Despina; Kamazawa, K; Lee, S-H; Ancona, S N; Rosenkranz, S; Motome, Y; Hundley, M F; Mitchell, J F; Moritomo, Y

    2006-12-08

    The perovskite LaCoO3 evolves from a nonmagnetic Mott insulator to a spin cluster ferromagnet (FM) with the substitution of Sr2+ for La3+ in La1-xSrxCoO3. The clusters increase in size and number with x and the charge percolation through the clusters leads to a metallic state. Using elastic neutron scattering on La1-xSrxCoO3 single crystals, we show that an incommensurate spin superstructure coexists with the FM spin clusters. The incommensurability increases continuously with x, with the intensity rising in the insulating phase and dropping in the metallic phase as it directly competes with the commensurate FM, itinerant clusters. The spin incommensurability arises from local order of Co3+-Co4+ clusters but no long-range static or dynamic spin stripes develop. The coexistence and competition of the two magnetic phases explain the residual resistivity at low temperatures in samples with metalliclike transport.

  6. Ultrafast studies of coexisting electronic order in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Hinton, James; Thewalt, Eric; Alpichshev, Zhanybek; Sternbach, Aaron; McLeod, Alex; Ji, L.; Veit, Mike; Dorrow, Chelsey; Koralek, Jake; Xhao, Xudong; Barisic, Neven; Kemper, Alexander; Gedik, Nuh; Greven, Martin; Basov, Dimitri; Orenstein, Joe

    The cuprate family of high temperature superconductors displays a variety of electronic phases which emerge when charge carriers are added to the antiferromagnetic parent compound. These electronic phases are characterized by subtle differences in the low energy electronic excitations. Ultrafast time-resolved reflectivity (TRR) provides an ideal tool for investigating the cuprate phase diagram, as small changes in the electronic structure can produce significant contrast in the non-equilibrium reflectivity. Here we present TRR measurements of cuprate superconductors, focusing on the model single-layer cuprate HgBa2CuO4+δ. We observe a cusp-like feature in the quasiparticle lifetime near the superconducting transition temperature Tc. This feature can be understood using a model of coherently-mixed charge-density wave and superconducting pairing. We propose extending this technique to the nanoscale using ultrafast scattering scanning near-field microscopy (u-SNOM). This will allow us to explore how these electronic phases coexist and compete in real-space.

  7. Temperature Controlled Electrostatic Disorder and Polymorphism in Ultrathin Films of α-Sexithiophene

    NASA Astrophysics Data System (ADS)

    Hoffman, Benjamin; Jafari, Sara; McAfee, Terry; Apperson, Aubrey; O'Connor, Brendan; Dougherty, Daniel

    Competing phases in well-ordered alpha-sexithiophene (α-6T) are shown to contribute to electrostatic disorder observed by differences in surface potential between mono- and bi-layer crystallites. Ultrathin films are of key importance to devices in which charge transport occurs in the first several monolayers nearest to a dielectric interface (e.g. thin film transistors) and complex structures in this regime impact the general electrostatic landscape. This study is comprised of 1.5 ML sample crystals grown via organic molecular beam deposition onto a temperature controlled hexamethyldisilazane (HMDS) passivated SiO2 substrate to produce well-ordered layer-by-layer type growth. Sample topography and surface potential were characterized simultaneously using Kelvin Probe Force Microscopy to then isolate contact potential differences by first and second layer α-6T regions. Films grown on 70° C, 120° C substrates are observed to have a bilayer with lower, higher potential than the monolayer, respectively. Resulting interlayer potential differences are a clear source of electrostatic disorder and are explained as subtle shifts in tilt-angles between layers relative to the substrate. These empirical results continue our understanding of how co-existing orientations contribute to the complex electrostatics influencing charge transport. NSF CAREER award DMR-1056861.

  8. Emergent ferroelectricity in disordered tri-color multilayer structure comprised of ferromagnetic manganites

    NASA Astrophysics Data System (ADS)

    Niu, Li-Wei; Chen, Chang-Le; Dong, Xiang-Lei; Xing, Hui; Luo, Bing-Cheng; Jin, Ke-Xin

    2016-10-01

    Multiferroic materials, showing the coexistence and coupling of ferroelectric and magnetic orders, are of great technological and fundamental importance. However, the limitation of single phase multiferroics with robust magnetization and polarization hinders the magnetoelectric effect from being applied practically. Magnetic frustration, which can induce ferroelectricity, gives rise to multiferroic behavior. In this paper, we attempt to construct an artificial magnetically frustrated structure comprised of manganites to induce ferroelectricity. A disordered stacking of manganites is expected to result in frustration at interfaces. We report here that a tri-color multilayer structure comprised of non-ferroelectric La0.9Ca0.1MnO3(A)/Pr0.85Ca0.15MnO3(B)/Pr0.85Sr0.15MnO3(C) layers with the disordered arrangement of ABC-ACB-CAB-CBA-BAC-BCA is prepared to form magnetoelectric multiferroics. The multilayer film exhibits evidence of ferroelectricity at room temperature, thus presenting a candidate for multiferroics. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471301, 61078057, 51172183, 51402240, and 51471134), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20126102110045), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2015JQ5125), and the Fundamental Research Funds for the Central Universities, China (Grant No. 3102015ZY078).

  9. Cooling induces phase separation in membranes derived from isolated CNS myelin

    PubMed Central

    Pusterla, Julio M.; Schneck, Emanuel; Funari, Sérgio S.; Démé, Bruno; Tanaka, Motomu

    2017-01-01

    Purified myelin membranes (PMMs) are the starting material for biochemical analyses such as the isolation of detergent-insoluble glycosphingolipid-rich domains (DIGs), which are believed to be representatives of functional lipid rafts. The normal DIGs isolation protocol involves the extraction of lipids under moderate cooling. Here, we thus address the influence of cooling on the structure of PMMs and its sub-fractions. Thermodynamic and structural aspects of periodic, multilamellar PMMs are examined between 4°C and 45°C and in various biologically relevant aqueous solutions. The phase behavior is investigated by small-angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC). Complementary neutron diffraction (ND) experiments with solid-supported myelin multilayers confirm that the phase behavior is unaffected by planar confinement. SAXS and ND consistently show that multilamellar PMMs in pure water become heterogeneous when cooled by more than 10–15°C below physiological temperature, as during the DIGs isolation procedure. The heterogeneous state of PMMs is stabilized in physiological solution, where phase coexistence persists up to near the physiological temperature. This result supports the general view that membranes under physiological conditions are close to critical points for phase separation. In presence of elevated Ca2+ concentrations (> 10 mM), phase coexistence is found even far above physiological temperatures. The relative fractions of the two phases, and thus presumably also their compositions, are found to vary with temperature. Depending on the conditions, an “expanded” phase with larger lamellar period or a “compacted” phase with smaller lamellar period coexists with the native phase. Both expanded and compacted periods are also observed in DIGs under the respective conditions. The observed subtle temperature-dependence of the phase behavior of PMMs suggests that the composition of DIGs is sensitive to the details of the isolation protocol. PMID:28915267

  10. Solid-liquid phase coexistence of alkali nitrates from molecular dynamics simulations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayaraman, Saivenkataraman

    2010-03-01

    Alkali nitrate eutectic mixtures are finding application as industrial heat transfer fluids in concentrated solar power generation systems. An important property for such applications is the melting point, or phase coexistence temperature. We have computed melting points for lithium, sodium and potassium nitrate from molecular dynamics simulations using a recently developed method, which uses thermodynamic integration to compute the free energy difference between the solid and liquid phases. The computed melting point for NaNO3 was within 15K of its experimental value, while for LiNO3 and KNO3, the computed melting points were within 100K of the experimental values [4]. We aremore » currently extending the approach to calculate melting temperatures for binary mixtures of lithium and sodium nitrate.« less

  11. Electromotive force measurements on cells involving beta-alumina solid electrolyte

    NASA Technical Reports Server (NTRS)

    Choudhury, N. S.

    1973-01-01

    Open-circuit emf measurements have been made to demonstrate that a two-phase, polycrystalline mixture of beta-alumina and alpha-alumina could be used as a solid electrolyte in galvanic cells with reversible electrodes fixing oxygen or aluminum chemical potentials. These measurements indicate that such a two-phase solid electrolyte may be used to monitor oxygen chemical potentials as low as that corresponding to Al and Al2O3 coexistence (potentials of about 10 to the minus 47th power atm at 1000 K). The activity of Na2O in beta-alumina in coexistence with alpha-alumina was also determined by emf measurements.

  12. Orthorhombic-tetragonal phase coexistence and enhanced piezo-response at room temperature in Zr, Sn, and Hf modified BaTiO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalyani, Ajay Kumar; Brajesh, Kumar; Ranjan, Rajeev, E-mail: rajeev@materials.iisc.ernet.in

    2014-06-23

    The effect of Zr, Hf, and Sn in BaTiO{sub 3} has been investigated at close composition intervals in the dilute concentration limit. Detailed structural analysis by x-ray and neutron powder diffraction revealed that merely 2 mol. % of Zr, Sn, and Hf stabilizes a coexistence of orthorhombic (Amm2) and tetragonal (P4mm) phases at room temperature. As a consequence, all the three systems show substantial enhancement in the longitudinal piezoelectric coefficient (d{sub 33}), with Sn modification exhibiting the highest value ∼425 pC/N.

  13. Theory and computer simulation of hard-core Yukawa mixtures: thermodynamical, structural and phase coexistence properties.

    PubMed

    Mkanya, Anele; Pellicane, Giuseppe; Pini, Davide; Caccamo, Carlo

    2017-09-13

    We report extensive calculations, based on the modified hypernetted chain (MHNC) theory, on the hierarchical reference theory (HRT), and on Monte Carlo simulations, of thermodynamical, structural and phase coexistence properties of symmetric binary hard-core Yukawa mixtures (HCYM) with attractive interactions at equal species concentration. The obtained results are throughout compared with those available in the literature for the same systems. It turns out that the MHNC predictions for thermodynamic and structural quantities are quite accurate in comparison with the MC data. The HRT is equally accurate for thermodynamics, and slightly less accurate for structure. Liquid-vapor (LV) and liquid-liquid (LL) consolute coexistence conditions as emerging from simulations, are also highly satisfactorily reproduced by both the MHNC and HRT for relatively long ranged potentials. When the potential range reduces, the MHNC faces problems in determining the LV binodal line; however, the LL consolute line and the critical end point (CEP) temperature and density turn out to be still satisfactorily predicted within this theory. The HRT also predicts with good accuracy the CEP position. The possibility of employing liquid state theories HCYM for the purpose of reliably determining phase equilibria in multicomponent colloidal fluids of current technological interest, is discussed.

  14. Theory and computer simulation of hard-core Yukawa mixtures: thermodynamical, structural and phase coexistence properties

    NASA Astrophysics Data System (ADS)

    Mkanya, Anele; Pellicane, Giuseppe; Pini, Davide; Caccamo, Carlo

    2017-09-01

    We report extensive calculations, based on the modified hypernetted chain (MHNC) theory, on the hierarchical reference theory (HRT), and on Monte Carlo simulations, of thermodynamical, structural and phase coexistence properties of symmetric binary hard-core Yukawa mixtures (HCYM) with attractive interactions at equal species concentration. The obtained results are throughout compared with those available in the literature for the same systems. It turns out that the MHNC predictions for thermodynamic and structural quantities are quite accurate in comparison with the MC data. The HRT is equally accurate for thermodynamics, and slightly less accurate for structure. Liquid-vapor (LV) and liquid-liquid (LL) consolute coexistence conditions as emerging from simulations, are also highly satisfactorily reproduced by both the MHNC and HRT for relatively long ranged potentials. When the potential range reduces, the MHNC faces problems in determining the LV binodal line; however, the LL consolute line and the critical end point (CEP) temperature and density turn out to be still satisfactorily predicted within this theory. The HRT also predicts with good accuracy the CEP position. The possibility of employing liquid state theories HCYM for the purpose of reliably determining phase equilibria in multicomponent colloidal fluids of current technological interest, is discussed.

  15. Specific comorbidity between bulimia nervosa and personality disorders.

    PubMed

    Carroll, J M; Touyz, S W; Beumont, P J

    1996-03-01

    The present study investigates the comorbidity between bulimia nervosa (BN) and the entire range of American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders, 3rd rev. ed. (DSM-III-R) personality disorders and controls for the presence of coexisting depression. The Personality Disorders Examination (PDE), a structured interview that encompasses all 13 (provisional) DSM-III-R personality disorders, was administered to three groups of subjects: depressed BN patients (n = 15), nondepressed BN patients (n = 15), and nonpsychiatric controls (n = 15). The BN patients were referrals to a dieting disorder unit affiliated with the University of Sydney. They all met DSM-III-R criteria and all had body mass indexes (BMIs) greater than 19. The nonpsychiatric control group were recruited from an undergraduate psychology course. All subjects were given the Bulimic Investigatory Test, Edinburgh (BITE), the Eating Disorders Inventory-2 (EDI-2), the Hamilton Depression Rating Scale (HDRS), and the PDE. 46.7% of depressed BN patients met the criteria for at least one Axis II diagnosis, as assessed by the PDE, and 33.3% of nondepressed BN patients received such a diagnosis, whereas only 6.7% of nonpsychiatric control subjects met this criterion (p < .05). The results of the present study provide support for an increased comorbidity between personality disorders and BN that cannot be attributed to the confounding influence of coexisting depression. This finding enables the identification of subgroups of individuals with BN, enabling them to be compared and contrasted. The identification of differences between subgroups may provide information regarding prognosis and differential response to treatment, which could enable more appropriate treatment decisions to be made.

  16. Non-classical phase diagram for virus bacterial coevolution mediated by clustered regularly interspaced short palindromic repeats.

    PubMed

    Han, Pu; Deem, Michael W

    2017-02-01

    CRISPR is a newly discovered prokaryotic immune system. Bacteria and archaea with this system incorporate genetic material from invading viruses into their genomes, providing protection against future infection by similar viruses. The condition for coexistence of prokaryots and viruses is an interesting problem in evolutionary biology. In this work, we show an intriguing phase diagram of the virus extinction probability, which is more complex than that of the classical predator-prey model. As the CRISPR incorporates genetic material, viruses are under pressure to evolve to escape recognition by CRISPR. When bacteria have a small rate of deleting spacers, a new parameter region in which bacteria and viruses can coexist arises, and it leads to a more complex coexistence patten for bacteria and viruses. For example, when the virus mutation rate is low, the virus extinction probability changes non-montonically with the bacterial exposure rate. The virus and bacteria coevolution not only alters the virus extinction probability, but also changes the bacterial population structure. Additionally, we show that recombination is a successful strategy for viruses to escape from CRISPR recognition when viruses have multiple proto-spacers, providing support for a recombination-mediated escape mechanism suggested experimentally. Finally, we suggest that the re-entrant phase diagram, in which phages can progress through three phases of extinction and two phases of abundance at low spacer deletion rates as a function of exposure rate to bacteria, is an experimentally testable phenomenon. © 2017 The Author(s).

  17. Colossal Magnetoelectric Effect with Competing Multiferroic and Weak-Ferromagnetic Phases

    NASA Astrophysics Data System (ADS)

    Choi, Young Jai; Zhang, Chenglin; Lee, Nara; Cheong, Sang-Wook

    2011-03-01

    From our investigation of magnetoelectric properties of Eu 0.75 Y0.25 Mn O3 , where a multiferroic phase competes with a weak ferromagnetic phase in magnetic fields, we found intriguing hysteretic behaviors of physical properties with variation of temperature and magnetic field. These hysteretic behaviors arise from the kinetic arrest/de-arrest processes of the first order magnetic transition, resulting in freezing or melting of a magnetoelectric glass state with the coexistence of two competing phases. We note that most of large magnetoelectric coupling effects in multiferroics are associated with the large change of polarization with magnetic fields, but the control of ferromagnetic-type magnetization by applying electric fields is most relevant to technological applications, which is scarcely observed. This important issue of mutual controllability is achieved in Eu 0.75 Y0.25 Mn O3 utilizing dynamical modulations of the coexistence of two contraindicative phases, highly susceptible to the external perturbations such as electric and magnetic fields.

  18. Multimodal Responses of Self-Organized Circuitry in Electronically Phase Separated Materials

    DOE PAGES

    Herklotz, Andreas; Guo, Hangwen; Wong, Anthony T.; ...

    2016-07-13

    When confining an electronically phase we separated manganite film to the scale of its coexisting self-organized metallic and these insulating domains allows resistor-capacitor circuit-like responses while providing both electroresistive and magnetoresistive switching functionality.

  19. Phase coexistence and high electrical properties in (KxNa0.96-xLi0.04)(Nb0.85Ta0.15)O3 piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Chang, Yunfei; Yang, Zupei; Ma, Difei; Liu, Zonghuai; Wang, Zenglin

    2009-03-01

    (KxNa0.96-xLi0.04)(Nb0.85Ta0.15)O3 lead-free piezoelectric ceramics were produced by conventional solid-state reaction method. The effects of K/Na ratio on the phase transitional behavior, Raman spectrum, microstructure, and dielectric, piezoelectric, and ferroelectric properties of the ceramics have been investigated. The phase structure of the ceramics undergoes a transition from orthorhombic to tetragonal phase with increasing x. A double-degenerate symmetric O-Nb-O stretching vibration v1 and a triply degenerate symmetric O-Nb-O bending vibration v5 are detected as relatively strong scattering in the Raman spectra. The peak shifts of v5 and v1 modes all have a discontinuity with x between 0.42 and 0.46, which may suggest the coexistence of orthorhombic and tetragonal phases in this range. Properly modifying x reduces the sintering temperature, promotes the grain growth behavior, and improves the density of the ceramics. The polymorphic phase transition (at To -t) is shifted to near room temperature by increasing x to 0.44 (K/Na ratio of about 0.85:1), and the coexistence of orthorhombic and tetragonal phases in the ceramics at x =0.44 results in the optimized electrical properties (d33=291 pC/N, kp=0.54, ɛr=1167, tan δ=0.018, To -t=35 °C, TC=351 °C, Pr=27.65 μC/cm2, and Ec=8.63 kV/cm). The results show that the equal K/Na ratio is not an essential condition in obtaining optimized electrical properties in (KxNa0.96-xLi0.04)(Nb0.85Ta0.15)O3 ceramics.

  20. ADHD Subtypes and Co-Occurring Anxiety, Depression, and Oppositional-Defiant Disorder: Differences in Gordon Diagnostic System and Wechsler Working Memory and Processing Speed Index Scores

    ERIC Educational Resources Information Center

    Mayes, Susan Dickerson; Calhoun, Susan L.; Chase, Gary A.; Mink, Danielle M.; Stagg, Ryan E.

    2009-01-01

    Objective: Wechsler Intelligence Scale for Children Freedom-from-Distractibility/Working Memory Index (FDI/WMI), Processing Speed Index (PSI), and Gordon Diagnostic System (GDS) scores in ADHD children were examined as a function of subtype and coexisting anxiety, depression, and oppositional-defiant disorder. Method: Participants were 587…

  1. Metabolic myopathies

    NASA Technical Reports Server (NTRS)

    Martin, A.; Haller, R. G.; Barohn, R.; Blomqvist, C. G. (Principal Investigator)

    1994-01-01

    Metabolic myopathies are disorders of muscle energy production that result in skeletal muscle dysfunction. Cardiac and systemic metabolic dysfunction may coexist. Symptoms are often intermittent and provoked by exercise or changes in supply of lipid and carbohydrate fuels. Specific disorders of lipid and carbohydrate metabolism in muscle are reviewed. Evaluation often requires provocative exercise testing. These tests may include ischemic forearm exercise, aerobic cycle exercise, and 31P magnetic resonance spectroscopy with exercise.

  2. Direct calculation of liquid-vapor phase equilibria from transition matrix Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Errington, Jeffrey R.

    2003-06-01

    An approach for directly determining the liquid-vapor phase equilibrium of a model system at any temperature along the coexistence line is described. The method relies on transition matrix Monte Carlo ideas developed by Fitzgerald, Picard, and Silver [Europhys. Lett. 46, 282 (1999)]. During a Monte Carlo simulation attempted transitions between states along the Markov chain are monitored as opposed to tracking the number of times the chain visits a given state as is done in conventional simulations. Data collection is highly efficient and very precise results are obtained. The method is implemented in both the grand canonical and isothermal-isobaric ensemble. The main result from a simulation conducted at a given temperature is a density probability distribution for a range of densities that includes both liquid and vapor states. Vapor pressures and coexisting densities are calculated in a straightforward manner from the probability distribution. The approach is demonstrated with the Lennard-Jones fluid. Coexistence properties are directly calculated at temperatures spanning from the triple point to the critical point.

  3. Conventional magnetic superconductors

    DOE PAGES

    Wolowiec, C. T.; White, B. D.; Maple, M. B.

    2015-07-01

    We discuss several classes of conventional magnetic superconductors including the ternary rhodium borides and molybdenum chalcogenides (or Chevrel phases), and the quaternary nickel-borocarbides. These materials exhibit some exotic phenomena related to the interplay between superconductivity and long-range magnetic order including: the coexistence of superconductivity and antiferromagnetic order; reentrant and double reentrant superconductivity, magnetic field induced superconductivity, and the formation of a sinusoidally-modulated magnetic state that coexists with superconductivity. We introduce the article with a discussion of the binary and pseudobinary superconducting materials containing magnetic impurities which at best exhibit short-range “glassy” magnetic order. Early experiments on these materials led tomore » the idea of a magnetic exchange interaction between the localized spins of magnetic impurity ions and the spins of the conduction electrons which plays an important role in understanding conventional magnetic superconductors. Furthermore, these advances provide a natural foundation for investigating unconventional superconductivity in heavy-fermion compounds, cuprates, and other classes of materials in which superconductivity coexists with, or is in proximity to, a magnetically-ordered phase.« less

  4. Self-disorders and schizophrenia: a phenomenological reappraisal of poor insight and noncompliance.

    PubMed

    Henriksen, Mads G; Parnas, Josef

    2014-05-01

    Poor insight into illness is considered the primary cause of treatment noncompliance in schizophrenia. In this article, we critically discuss the predominant conceptual accounts of poor insight, which consider it as an ineffective self-reflection, caused either by psychological defenses or impaired metacognition. We argue that these accounts are at odds with the phenomenology of schizophrenia, and we propose a novel account of poor insight. We suggest that the reason why schizophrenia patients have no or only partial insight and consequently do not comply with treatment is rooted in the nature of their anomalous self-experiences (ie, self- disorders) and the related articulation of their psychotic symptoms. We argue that self-disorders destabilize the patients' experiential framework, thereby weakening their basic sense of reality (natural attitude) and enabling another sense of reality (solipsistic attitude) to emerge and coexist. This coexistence of attitudes, which Bleuler termed "double bookkeeping," is, in our view, central to understanding what poor insight in schizophrenia really is. We suggest that our phenomenologically informed account of poor insight may have important implications for early intervention, psychoeducation, and psychotherapy for schizophrenia.

  5. Self-disorders and Schizophrenia: A Phenomenological Reappraisal of Poor Insight and Noncompliance

    PubMed Central

    Henriksen, Mads G.

    2014-01-01

    Poor insight into illness is considered the primary cause of treatment noncompliance in schizophrenia. In this article, we critically discuss the predominant conceptual accounts of poor insight, which consider it as an ineffective self-reflection, caused either by psychological defenses or impaired metacognition. We argue that these accounts are at odds with the phenomenology of schizophrenia, and we propose a novel account of poor insight. We suggest that the reason why schizophrenia patients have no or only partial insight and consequently do not comply with treatment is rooted in the nature of their anomalous self-experiences (ie, self- disorders) and the related articulation of their psychotic symptoms. We argue that self-disorders destabilize the patients’ experiential framework, thereby weakening their basic sense of reality (natural attitude) and enabling another sense of reality (solipsistic attitude) to emerge and coexist. This coexistence of attitudes, which Bleuler termed “double bookkeeping,” is, in our view, central to understanding what poor insight in schizophrenia really is. We suggest that our phenomenologically informed account of poor insight may have important implications for early intervention, psychoeducation, and psychotherapy for schizophrenia. PMID:23798710

  6. Coexistence of superfluid and rigid moments of inertia in 76,78Kr

    NASA Astrophysics Data System (ADS)

    Kaplan, M. S.; Saladin, J. X.; Faro, L.; Winchell, D. F.; Takai, H.; Knott, C. N.

    1988-12-01

    High spin states in 76,78Kr were populated via the 63Cu( 16O,n2p) 76Kr and 64Ni( 18O,4n) 78Kr reactions at 69 MeV and γγ coincidence data were collected. New band crossings and quasi-particle alignments are discussed. Moments of inertia of bands built on intrinsic excitations are found to be exceptionally constant with spin and equal to the rigid-body value, indicating strong suppression of coherent pairing correlations. The coexistence of such bands with bands of reduced, superfluid moments of inertia suggests the appearance of a new phenomenon: phase coexistence.

  7. Raman spectra and anomalies of dielectric properties and thermal expansion of lead-free (1-x)Na0.5Bi0.5TiO3-xSrTiO3 (x = 0, 0.08 and 0.1) ceramics

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, E. M.; Suchanicz, J.; Bovtun, V.; Konieczny, K.; Czaja, P.; Kluczewska, K.; Handke, B.; Antonova, M.; Sternberg, A.

    2016-08-01

    Thermal expansion, Raman and dielectric properties of the lead-free (1-x)Na0.5Bi0.5TiO3-xSrTiO3 (x = 0, 0.08 and 0.1) ceramic solid solutions, fabricated by the conventional solid-state reaction method, were investigated. The Sr-doping results in an increase of the dielectric permittivity, broadening of the permittivity maximum, enhancement of the relaxation near depolarization temperature, broadening of the Raman bands and shift of all anomalies toward lower temperatures. The observed effects are attributed to an increase of the degree of cationic disorder and enhancement of the relaxor-like features. Anomalies in the thermal expansion strain were observed at the temperatures corresponding to the dielectric anomalies but not related to any phase transitions. These anomalies are supposed to follow changes of the averaged unit cell volume in the temperature interval of tetragonal and rhombohedral phase coexistence.

  8. Nucleus-size pinning for determination of nucleation free-energy barriers and nucleus geometry

    NASA Astrophysics Data System (ADS)

    Sharma, Abhishek K.; Escobedo, Fernando A.

    2018-05-01

    Classical Nucleation Theory (CNT) has recently been used in conjunction with a seeding approach to simulate nucleation phenomena at small-to-moderate supersaturation conditions when large free-energy barriers ensue. In this study, the conventional seeding approach [J. R. Espinosa et al., J. Chem. Phys. 144, 034501 (2016)] is improved by a novel, more robust method to estimate nucleation barriers. Inspired by the interfacial pinning approach [U. R. Pedersen, J. Chem. Phys. 139, 104102 (2013)] used before to determine conditions where two phases coexist, the seed of the incipient phase is pinned to a preselected size to iteratively drive the system toward the conditions where the seed becomes a critical nucleus. The proposed technique is first validated by estimating the critical nucleation conditions for the disorder-to-order transition in hard spheres and then applied to simulate and characterize the highly non-trivial (prolate) morphology of the critical crystal nucleus in hard gyrobifastigia. A generalization of CNT is used to account for nucleus asphericity and predict nucleation free-energy barriers for gyrobifastigia. These predictions of nuclei shape and barriers are validated by independent umbrella sampling calculations.

  9. Shear banding, discontinuous shear thickening, and rheological phase transitions in athermally sheared frictionless disks

    NASA Astrophysics Data System (ADS)

    Vâgberg, Daniel; Olsson, Peter; Teitel, S.

    2017-05-01

    We report on numerical simulations of simple models of athermal, bidisperse, soft-core, massive disks in two dimensions, as a function of packing fraction ϕ , inelasticity of collisions as measured by a parameter Q , and applied uniform shear strain rate γ ˙. Our particles have contact interactions consisting of normally directed elastic repulsion and viscous dissipation, as well as tangentially directed viscous dissipation, but no interparticle Coulombic friction. Mapping the phase diagram in the (ϕ ,Q ) plane for small γ ˙, we find a sharp first-order rheological phase transition from a region with Bagnoldian rheology to a region with Newtonian rheology, and show that the system is always Newtonian at jamming. We consider the rotational motion of particles and demonstrate the crucial importance that the coupling between rotational and translational degrees of freedom has on the phase structure at small Q (strongly inelastic collisions). At small Q , we show that, upon increasing γ ˙, the sharp Bagnoldian-to-Newtonian transition becomes a coexistence region of finite width in the (ϕ ,γ ˙) plane, with coexisting Bagnoldian and Newtonian shear bands. Crossing this coexistence region by increasing γ ˙ at fixed ϕ , we find that discontinuous shear thickening can result if γ ˙ is varied too rapidly for the system to relax to the shear-banded steady state corresponding to the instantaneous value of γ ˙.

  10. Crystallization induced ordering of hard magnetic L1{sub 0} phase in melt-spun FeNi-based ribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Kazuhisa, E-mail: sato@uhvem.osaka-u.ac.jp; Sharma, Parmanand; Zhang, Yan

    2016-05-15

    The microstructure of newly developed hard magnetic Fe{sub 42}Ni{sub 41.3}Si{sub x}B{sub 12-x}P{sub 4}Cu{sub 0.7} (x = 2 to 8 at%) nanocrystalline alloy ribbons has been studied by transmission electron microscopy (TEM) and electron diffraction. A high-density polycrystalline grains, ∼30 nm in size, were formed in a ribbon after annealing at 673 K for 288 hours. Elemental mapping of the annealed specimen revealed the coexistence of three regions, Fe-rich, Ni-rich, and nearly equiatomic Fe-Ni, with areal fractions of 37%, 40%, and 23 %, respectively. The equiatomic L1{sub 0}-type ordered phase of FeNi was detected in between the Fe and Ni-rich phases.more » The presence of superlattice reflections in nanobeam electron diffraction patterns confirmed the formation of the hard magnetic L1{sub 0} phase beyond any doubt. The L1{sub 0} phase of FeNi was detected in alloys annealed in the temperature range of 673 to 813 K. The present results suggest that the order-disorder transition temperature of L1{sub 0} FeNi is higher than the previously reported value (593 K). The high diffusion rates of the constituent elements induced by the crystallization of an amorphous phase at relatively low temperature (∼673 K) are responsible for the development of atomic ordering in FeNi.« less

  11. [Multimodal treatment of attention-deficit hyperactivity disorder in children].

    PubMed

    Jans, T; Kreiker, S; Warnke, A

    2008-07-01

    Evidence-based treatments for attention-deficit hyperactivity disorder (ADHD) in children include primarily medication (stimulants and atomoxetine) and psychosocial interventions (parent training and behavioural classroom interventions). Results of treatment studies suggest that ADHD without significant coexisting disorders can be treated effectively by pharmacotherapy and expert counselling, while additional behaviour therapy demonstrates no significant improvement. Incremental benefits of combined pharmacological and behavioural interventions emerge if a comorbid condition is present. Behaviour therapy alone may be useful for treating less pronounced ADHD symptoms. Therapeutic strategies also account for the specific treatment of comorbid disorders and the need for support by youth welfare services.

  12. Phase coexistence and domain configuration in Pb(Mg1/3Nb2/3)O3-0.34PbTiO3 single crystal revealed by synchrotron-based X-ray diffractive three-dimensional reciprocal space mapping and piezoresponse force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ruixue; Xu, Han; Yang, Bin

    The crystalline phases and domain configuration in the morphotropic phase boundary composition Pb(Mg1/3Nb2/3)O3-0.34PbTiO3 (PMN-0.34PT) single crystal have been investigated by synchrotronbased X-ray 3D Reciprocal Space Mapping (3D-RSM) and Piezoresponse Force Microscopy. The coexistence of tetragonal (T) and monoclinic MC phases in this PMN-0.34PT single crystal is confirmed. The affiliation of each diffraction spot in the 3D-RSM was identified with the assistance of qualitative simulation. Most importantly, the twinning structure between different domains in such a mixed phase PMN-PT crystal is firmly clarified, and the spatial distribution of different twin domains is demonstrated. In addition, the lattice parameters of T andmore » MC phases in PMN-0.34PT single crystal as well as the tilting angles of crystal lattices caused by the interfacial lattice mismatch are determined.« less

  13. Charge ordered ferromagnetic phase in La_0.5Ca_0.5MnO_3

    NASA Astrophysics Data System (ADS)

    Mathur, Neil

    2003-03-01

    Charge order and ferromagnetism should be mutually exclusive in the manganites, because ferromagnetism in these materials is normally promoted by delocalised electrons. Surprisingly, a phase that is both strongly charge ordered and fully ferromagnetic is observed [1] at 90 K in La_0.5Ca_0.5MnO_3, using Fresnel imaging, dark-field TEM and electron holography. This new phase coexists with the two low temperature phases that were already known to coexist in La_0.5Ca_0.5MnO_3. (One of these expected phases is ferromagnetic but not charge-ordered, the other is charge-ordered but not ferromagnetic.) Strain fields could be responsible for the novel microscopic texture presented here - perhaps creating conditions in which nearest neighbour hopping is sufficient to promote ferromagnetism. Similarly, strain fields are believed to cause sub-micron phase separation in the manganites. It therefore seems that the manganites can adapt to their environments over a wide range of length scales [2]. [1] http://xxx.lanl.gov/abs/cond-mat/0209436 [2] Neil Mathur and Peter Littlewood, Physics Today, early 2003.

  14. Coexistence of two electronic phases in LaTiO3+δ (0.01⩽δ⩽0.12) and their evolution with δ

    NASA Astrophysics Data System (ADS)

    Zhou, H. D.; Goodenough, J. B.

    2005-04-01

    Although LaTiO3+δ(0.01⩽δ⩽0.12) is single-phase to powder x-ray diffraction, its properties reveal that a hole-poor strongly correlated electronic phase coexists with a hole-rich itinerant-electron phase. With δ⩽0.03 , the hole-rich phase exists as a minority phase of isolated, mobile itinerant-electron clusters embedded in the hole-poor phase. With δ⩾0.08 , isolated hole-poor clusters are embedded in an itinerant-electron matrix. As δ>0.08 increases, the hole-poor clusters become smaller and more isolated until they are reduced to superparamagnetic strong-correlation fluctuations by δ=0.12 . This behavior is consistent with prediction from the virial theorem of a first-order phase change at the crossover from localized (or strongly correlated) to itinerant electronic behavior, a smaller equilibrium (Ti-O) bond length being in the itinerant-electron phase. Accordingly, the variation of volume with oxidation state does not obey Végard’s law; the itinerant-electron minority phase exerts a compressive force on the hole-poor matrix, and the hole-poor minority phase exerts a tensile stress on the hole-rich matrix.

  15. Influence of methylphenidate on motor performance and attention in children with developmental coordination disorder and attention deficit hyperactive disorder.

    PubMed

    Bart, Orit; Daniel, Liron; Dan, Orrie; Bar-Haim, Yair

    2013-06-01

    Individuals with attention deficit hyperactive disorder (ADHD) often have coexisting developmental coordination disorder (DCD). The positive therapeutic effect of methylphenidate on ADHD symptoms is well documented, but its effects on motor coordination are less studied. We assessed the influence of methylphenidate on motor performance in children with comorbid DCD and ADHD. Participants were 30 children (24 boys) aged 5.10-12.7 years diagnosed with both DCD and ADHD. Conners' Parent Rating Scale was used to reaffirm ADHD diagnosis and the Developmental Coordination Disorder Questionnaire was used to diagnose DCD. The Movement Assessment Battery for Children-2 and the online continuous performance test were administrated to all participants twice, with and without methylphenidate. The tests were administered on two separate days in a blind design. Motor performance and attention scores were significantly better with methylphenidate than without it (p<0.001 for improvement in the Movement Assessment Battery for Children-2 and p<0.006 for the online continuous performance test scores). The findings suggest that methylphenidate improves both attention and motor coordination in children with coexisting DCD and ADHD. More research is needed to disentangle the causality of the improvement effect and whether improvement in motor coordination is directly affected by methylphenidate or mediated by improvement in attention. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Phase equilibrium in argon films stabilized by homogeneous surfaces and thermodynamics of two-stage melting transition.

    PubMed

    Ustinov, E A

    2014-02-21

    Freezing of gases adsorbed on open surfaces (e.g., graphite) and in narrow pores is a widespread phenomenon which is a subject of a large number of publications. Modeling of the gas/liquid-solid transition is usually accomplished with a molecular simulation technique. However, quantitative analysis of the gas/liquid-solid coexistence and thermodynamic properties of the solid layer still encounters serious difficulties. This is mainly due to the effect of simulation box size on the lattice constant. Since the lattice constant is a function of loading and temperature, once the ordering transition has occurred, the simulation box size must be corrected in the course of simulation according to the Gibbs-Duhem equation. A significant problem is also associated with accurate prediction of the two-dimensional liquid-solid coexistence because of a small difference in densities of coexisting phases. The aim of this study is thermodynamic analysis of the two-dimensional phase coexistence in systems involving crystal-like free of defects layers in narrow slit pores. A special attention was paid to the determination of triple point temperatures. It is shown that intrinsic properties of argon monolayer adsorbed on the graphite surface are similar to those of isolated monolayer accommodated in the slit pore having width of two argon collision diameters. Analysis of the latter system is shown to be clearer and less time-consuming than the former one, which has allowed for explanation of the experimentally observed two-stage melting transition of argon monolayer on graphite without invoking the periodic surface potential modulation and orientational transition.

  17. Phase equilibrium in argon films stabilized by homogeneous surfaces and thermodynamics of two-stage melting transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ustinov, E. A., E-mail: eustinov@mail.wplus.net

    Freezing of gases adsorbed on open surfaces (e.g., graphite) and in narrow pores is a widespread phenomenon which is a subject of a large number of publications. Modeling of the gas/liquid–solid transition is usually accomplished with a molecular simulation technique. However, quantitative analysis of the gas/liquid–solid coexistence and thermodynamic properties of the solid layer still encounters serious difficulties. This is mainly due to the effect of simulation box size on the lattice constant. Since the lattice constant is a function of loading and temperature, once the ordering transition has occurred, the simulation box size must be corrected in the coursemore » of simulation according to the Gibbs–Duhem equation. A significant problem is also associated with accurate prediction of the two-dimensional liquid–solid coexistence because of a small difference in densities of coexisting phases. The aim of this study is thermodynamic analysis of the two-dimensional phase coexistence in systems involving crystal-like free of defects layers in narrow slit pores. A special attention was paid to the determination of triple point temperatures. It is shown that intrinsic properties of argon monolayer adsorbed on the graphite surface are similar to those of isolated monolayer accommodated in the slit pore having width of two argon collision diameters. Analysis of the latter system is shown to be clearer and less time-consuming than the former one, which has allowed for explanation of the experimentally observed two-stage melting transition of argon monolayer on graphite without invoking the periodic surface potential modulation and orientational transition.« less

  18. Refining the phase diagram of Pb{sub 1−x}La{sub x}(Zr{sub 0.9}Ti{sub 0.1}){sub 1−x/4}O{sub 3} ceramics by structural, dielectric, and anelastic spectroscopy investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craciun, F., E-mail: Floriana.Craciun@isc.cnr.it; Cordero, F.; Ciuchi, I. V.

    2015-05-14

    We present the results of dielectric and anelastic spectroscopy measurements, together with X-ray diffraction investigations, which allow us to establish more precisely the phase diagram of Pb{sub 1−x}La{sub x}(Zr{sub 0.9}Ti{sub 0.1}){sub 1−x/4}O{sub 3} (PLZT x/90/10) in the compositional range around the AFE/FE phase boundary (0 < x < 0.04). From structural analysis and polarization-electric field measurements, we have found that the ground state of PLZT samples with x < 0.025 is rhombohedral R3c, while samples with x > 0.032 are antiferroelectric with orthorhombic Pbam structure. In-between, for compositions with 0.025 ≤ x ≤ 0.032, a coexistence of the AFE/FE phases is evidenced. The use of complementary dielectric and anelastic techniques allows tomore » follow the phase transitions shifts throughout all the interesting composition range and to construct the temperature-composition phase diagram. The tilt instability line, separating the R3c and R3m low and high temperature phases, has been evidenced. Moreover, the new transition, associated with the onset of disordered tilting preceding the long range order of the R3c phase, previously found in Zr-rich Pb(Zr,Ti)O{sub 3}, is confirmed in rhombohedral PLZT x/90/10 compositions.« less

  19. Nanoscale ferromagnetism in phase-separated manganites

    NASA Astrophysics Data System (ADS)

    Mori, S.; Horibe, Y.; Asaka, T.; Matsui, Y.; Chen, C. H.; Cheong, S. W.

    2007-03-01

    Magnetic domain structures in phase-separated manganites were investigated by low-temperature Lorentz electron microscopy, in order to understand some unusual physical properties such as a colossal magnetoresistance (CMR) effect and a metal-to-insulator transition. In particular, we examined a spatial distribution of the charge/orbital-ordered (CO/OO) insulator state and the ferromagnetic (FM) metallic one in phase-separated manganites; Cr-doped Nd0.5Ca0.5MnO3 and ( La1-xPrx)CaMnO3 with x=0.375, by obtaining both the dark-field images and Lorentz electron microscopic ones. It is found that an unusual coexistence of the CO/OO and FM metallic states below a FM transition temperature in the two compounds. The present experimental results clearly demonstrated the coexisting state of the two distinct ground states in manganites.

  20. SLEEP AND CIRCADIAN RHYTHM DISORDERS IN PARKINSON'S DISEASE.

    PubMed

    Gros, Priti; Videnovic, Aleksandar

    2017-09-01

    Sleep disorders are among the most challenging non-motor features of Parkinson's disease (PD) and significantly affect quality of life. Research in this field has gained recent interest among clinicians and scientists and is rapidly evolving. This review is dedicated to sleep and circadian dysfunction associated with PD. Most primary sleep disorders may co-exist with PD; majority of these disorders have unique features when expressed in the PD population. We discuss the specific considerations related to the common sleep problems in Parkinson's disease including insomnia, rapid eye movement sleep behavior disorder, restless legs syndrome, sleep disordered breathing, excessive daytime sleepiness and circadian rhythm disorders. Within each of these sleep disorders, we present updated definitions, epidemiology, etiology, diagnosis, clinical implications and management. Furthermore, areas of potential interest for further research are outlined.

  1. Spin dynamics of random Ising chain in coexisting transverse and longitudinal magnetic fields

    NASA Astrophysics Data System (ADS)

    Liu, Zhong-Qiang; Jiang, Su-Rong; Kong, Xiang-Mu; Xu, Yu-Liang

    2017-05-01

    The dynamics of the random Ising spin chain in coexisting transverse and longitudinal magnetic fields is studied by the recursion method. Both the spin autocorrelation function and its spectral density are investigated by numerical calculations. It is found that system's dynamical behaviors depend on the deviation σJ of the random exchange coupling between nearest-neighbor spins and the ratio rlt of the longitudinal and the transverse fields: (i) For rlt = 0, the system undergoes two crossovers from N independent spins precessing about the transverse magnetic field to a collective-mode behavior, and then to a central-peak behavior as σJ increases. (ii) For rlt ≠ 0, the system may exhibit a coexistence behavior of a collective-mode one and a central-peak one. When σJ is small (or large enough), system undergoes a crossover from a coexistence behavior (or a disordered behavior) to a central-peak behavior as rlt increases. (iii) Increasing σJ depresses effects of both the transverse and the longitudinal magnetic fields. (iv) Quantum random Ising chain in coexisting magnetic fields may exhibit under-damping and critical-damping characteristics simultaneously. These results indicate that changing the external magnetic fields may control and manipulate the dynamics of the random Ising chain.

  2. Field-induced coexistence of s++ and s± superconducting states in dirty multiband superconductors

    NASA Astrophysics Data System (ADS)

    Garaud, Julien; Corticelli, Alberto; Silaev, Mihail; Babaev, Egor

    2018-02-01

    In multiband systems, such as iron-based superconductors, the superconducting states with locking and antilocking of the interband phase differences are usually considered as mutually exclusive. For example, a dirty two-band system with interband impurity scattering undergoes a sharp crossover between the s± state (which favors phase antilocking) and the s++ state (which favors phase locking). We discuss here that the situation can be much more complex in the presence of an external field or superconducting currents. In an external applied magnetic field, dirty two-band superconductors do not feature a sharp s±→s++ crossover but rather a washed-out crossover to a finite region in the parameter space where both s± and s++ states can coexist for example as a lattice or a microemulsion of inclusions of different states. The current-carrying regions such as the regions near vortex cores can exhibit an s± state while it is the s++ state that is favored in the bulk. This coexistence of both states can even be realized in the Meissner state at the domain's boundaries featuring Meissner currents. We demonstrate that there is a magnetic-field-driven crossover between the pure s± and the s++ states.

  3. Simulation of phase equilibria

    NASA Astrophysics Data System (ADS)

    Martin, Marcus Gary

    The focus of this thesis is on the use of configurational bias Monte Carlo in the Gibbs ensemble. Unlike Metropolis Monte Carlo, which is reviewed in chapter I, configurational bias Monte Carlo uses an underlying Markov chain transition matrix which is asymmetric in such a way that it is more likely to attempt to move to a molecular conformation which has a lower energy than to one with a higher energy. Chapter II explains how this enables efficient simulation of molecules with complex architectures (long chains and branched molecules) for coexisting fluid phases (liquid, vapor, or supercritical), and also presents several of our recent extensions to this method. In chapter III we discuss the development of the Transferable Potentials for Phase Equilibria United Atom (TraPPE-UA) force field which accurately describes the fluid phase coexistence for linear and branched alkanes. Finally, in the fourth chapter the methods and the force field are applied to systems ranging from supercritical extraction to gas chromatography to illustrate the power and versatility of our approach.

  4. FAST TRACK COMMUNICATION: Gas liquid phase coexistence in a tetrahedral patchy particle model

    NASA Astrophysics Data System (ADS)

    Romano, Flavio; Tartaglia, Piero; Sciortino, Francesco

    2007-08-01

    We evaluate the location of the gas-liquid coexistence line and of the associated critical point for the primitive model for water (PMW), introduced by Kolafa and Nezbeda (1987 Mol. Phys. 61 161). Besides being a simple model for a molecular network forming liquid, the PMW is representative of patchy proteins and novel colloidal particles interacting with localized directional short-range attractions. We show that the gas-liquid phase separation is metastable, i.e. it takes place in the region of the phase diagram where the crystal phase is thermodynamically favoured, as in the case of particles interacting via short-range attractive spherical potentials. We do not observe crystallization close to the critical point. The region of gas-liquid instability of this patchy model is significantly reduced as compared to that from equivalent models of spherically interacting particles, confirming the possibility of observing kinetic arrest in a homogeneous sample driven by bonding as opposed to packing.

  5. Synchronization of tunable asymmetric square-wave pulses in delay-coupled optoelectronic oscillators.

    PubMed

    Martínez-Llinàs, Jade; Colet, Pere; Erneux, Thomas

    2015-03-01

    We consider a model for two delay-coupled optoelectronic oscillators under positive delayed feedback as prototypical to study the conditions for synchronization of asymmetric square-wave oscillations, for which the duty cycle is not half of the period. We show that the scenario arising for positive feedback is much richer than with negative feedback. First, it allows for the coexistence of multiple in- and out-of-phase asymmetric periodic square waves for the same parameter values. Second, it is tunable: The period of all the square-wave periodic pulses can be tuned with the ratio of the delays, and the duty cycle of the asymmetric square waves can be changed with the offset phase while the total period remains constant. Finally, in addition to the multiple in- and out-of-phase periodic square waves, low-frequency periodic asymmetric solutions oscillating in phase may coexist for the same values of the parameters. Our analytical results are in agreement with numerical simulations and bifurcation diagrams obtained by using continuation techniques.

  6. Studies on the phase diagram of Pb-Fe-O system and standard molar Gibbs energy of formation of 'PbFe5O8.5' and Pb2Fe2O5

    NASA Astrophysics Data System (ADS)

    Sahu, Sulata Kumari; Ganesan, Rajesh; Gnanasekaran, T.

    2012-07-01

    Partial phase diagram of Pb-Fe-O system has been established by phase equilibration studies over a wide temperature range coupled with high temperature solid electrolyte based emf cells. Ternary oxides are found to coexist with liquid lead only at temperatures above 900 K. At temperatures below 900 K, iron oxides coexist with liquid lead. Standard molar Gibbs energy of formation of ternary oxides 'PbFe5O8.5' and Pb2Fe2O5 were determined by measuring equilibrium oxygen partial pressures over relevant phase fields using emf cells and are given by the following expressions: ΔfGmo 'PbFeO'±1.0(kJ mol)=-2208.1+0.6677(T/K) (917⩽T/K⩽1117) ΔfGmo PbFeO±0.8(kJ mol)=-1178.4+0.3724(T/K) (1050⩽T/K⩽1131) .

  7. Evidence of nanocrystalline semiconducting graphene monoxide during thermal reduction of graphene oxide in vacuum.

    PubMed

    Mattson, Eric C; Pu, Haihui; Cui, Shumao; Schofield, Marvin A; Rhim, Sonny; Lu, Ganhua; Nasse, Michael J; Ruoff, Rodney S; Weinert, Michael; Gajdardziska-Josifovska, Marija; Chen, Junhong; Hirschmugl, Carol J

    2011-12-27

    As silicon-based electronics are reaching the nanosize limits of the semiconductor roadmap, carbon-based nanoelectronics has become a rapidly growing field, with great interest in tuning the properties of carbon-based materials. Chemical functionalization is a proposed route, but syntheses of graphene oxide (G-O) produce disordered, nonstoichiometric materials with poor electronic properties. We report synthesis of an ordered, stoichiometric, solid-state carbon oxide that has never been observed in nature and coexists with graphene. Formation of this material, graphene monoxide (GMO), is achieved by annealing multilayered G-O. Our results indicate that the resulting thermally reduced G-O (TRG-O) consists of a two-dimensional nanocrystalline phase segregation: unoxidized graphitic regions are separated from highly oxidized regions of GMO. GMO has a quasi-hexagonal unit cell, an unusually high 1:1 O:C ratio, and a calculated direct band gap of ∼0.9 eV.

  8. Self-organization of a wedge-shaped surfactant in monolayers and multilayers.

    PubMed

    Cain, Nicholas; Van Bogaert, Josh; Gin, Douglas L; Hammond, Scott R; Schwartz, Daniel K

    2007-01-16

    The self-organization behavior of a wedge-shaped surfactant, disodium-3,4,5-tris(dodecyloxy)phenylmethylphosphonate, was studied in Langmuir monolayers (at the air-water interface), Langmuir-Blodgett (LB) monolayers and multilayers, and films adsorbed spontaneously from isooctane solution onto a mica substrate (self-assembled films). This compound forms an inverted hexagonal lyotropic liquid crystal phase in the bulk and in thick adsorbed films. Surface pressure isotherm and Brewster angle microscope (BAM) studies of Langmuir monolayers revealed three phases: gas (G), liquid expanded (LE), and liquid condensed (LC). The surface pressure-temperature phase diagram was determined in detail; a triple point was found at approximately 10 degrees C. Atomic force microscope (AFM) images of LB monolayers transferred from various regions of the phase diagram were consistent with the BAM images and indicated that the LE regions are approximately 0.5 nm thinner than the LC regions. AFM images were also obtained of self-assembled films after various adsorption times. For short adsorption times, when monolayer self-assembly was incomplete, the film topography indicated the coexistence of two distinct monolayer phases. The height difference between these two phases was again 0.5 nm, suggesting a correspondence with the LE/LC coexistence observed in the Langmuir monolayers. For longer immersion times, adsorbed multilayers assembled into highly organized periodic arrays of inverse cylindrical micelles. Similar periodic structures, with the same repeat distance of 4.5 nm, were also observed in three-layer LB films. However, the regions of organized periodic structure were much smaller and more poorly correlated in the LB multilayers than in the films adsorbed from solution. Collectively, these observations indicate a high degree of similarity between the molecular organization in Langmuir layers/LB films and adsorbed self-assembled films. In both cases, monolayers progress through an LE phase, into LE/LC coexistence, and finally into LC phase as surface density increases. Following the deposition of an additional bilayer, the film reorganizes to form an array of inverted cylindrical micelles.

  9. Complex Fluids at Interfaces and Interfaces of Complex Fluids

    NASA Astrophysics Data System (ADS)

    Nouri, Mariam

    The present thesis deals with two independent projects and is consequently divided into two parts. The first part details a computational study of the fluid structure of ring-shaped molecules and their positional and orientational molecular organizations in different degrees of confinement, while the second part concerns an experimental study of phase behavior and interfacial phenomena in confined colloid-polymer systems. In the first part, ring-shaped molecules are studied using Monte Carlo simulation techniques in one, two and three dimensions. The model used to describe ring-shaped molecules is composed of hard-spheres linked together to form planar rigid rings. For rings of various sizes and for a wide range of densities, positional and orientational orderings are reported in forms of pair distribution functions of the ring centers and correlation functions of the ring normal orientations. Special emphasis is given to understand structural formation at interfaces, i.e., the structure and orderings of these molecules when they are confined to two dimensions. In a plane but the rings themselves are free to rotate around all axes, nematic ordering is observed at sufficiently high densities. In the second part, phase equilibria of confined aqueous colloid-polymer systems are studied experimentally using fluorescence microscopy. Aqueous mixtures of fluorescent polystyrene spheres and polyacrylamide are confined between a glass slide and a coverslip. The phase diagram is determined as a function of the colloidal and polymer concentrations. Liquid-liquid phase coexistence between a colloid-rich phase and a polymer-rich phase occurs at intermediate polymer concentrations, while liquid-solid phase coexistence between a polymer-rich liquid and a colloid-rich solid is observed at high polymer concentrations. Interfacial thickness and tension of the interface between these coexisting phases are measured using image analysis techniques. It is also observed that the colloid-rich solid and liquid domains coarsen mainly by Ostwald ripening.

  10. Effect of migration in a diffusion model for template coexistence in protocells.

    PubMed

    Fontanari, José F; Serva, Maurizio

    2014-03-01

    The compartmentalization of distinct templates in protocells and the exchange of templates between them (migration) are key elements of a modern scenario for prebiotic evolution. Here we use the diffusion approximation of population genetics to study analytically the steady-state properties of such a prebiotic scenario. The coexistence of distinct template types inside a protocell is achieved by a selective pressure at the protocell level (group selection) favoring protocells with a mixed template composition. In the degenerate case, where the templates have the same replication rate, we find that a vanishingly small migration rate suffices to eliminate the segregation effect of random drift and so to promote coexistence. In the nondegenerate case, a small migration rate greatly boosts coexistence as compared with the situation where there is no migration. However, increase of the migration rate beyond a critical value leads to the complete dominance of the more efficient template type (homogeneous regime). In this case, we find a continuous phase transition separating the homogeneous and the coexistence regimes, with the order parameter vanishing linearly with the distance to the transition point.

  11. Self-Organized Superlattice and Phase Coexistence inside Thin Film Organometal Halide Perovskite.

    PubMed

    Kim, Tae Woong; Uchida, Satoshi; Matsushita, Tomonori; Cojocaru, Ludmila; Jono, Ryota; Kimura, Kohei; Matsubara, Daiki; Shirai, Manabu; Ito, Katsuji; Matsumoto, Hiroaki; Kondo, Takashi; Segawa, Hiroshi

    2018-02-01

    Organometal halide perovskites have attracted widespread attention as the most favorable prospective material for photovoltaic technology because of their high photoinduced charge separation and carrier transport performance. However, the microstructural aspects within the organometal halide perovskite are still unknown, even though it belongs to a crystal system. Here direct observation of the microstructure of the thin film organometal halide perovskite using transmission electron microscopy is reported. Unlike previous reports claiming each phase of the organometal halide perovskite solely exists at a given temperature range, it is identified that the tetragonal and cubic phases coexist at room temperature, and it is confirmed that superlattices composed of a mixture of tetragonal and cubic phases are self-organized without a compositional change. The organometal halide perovskite self-adjusts the configuration of phases and automatically organizes a buffer layer at boundaries by introducing a superlattice. This report shows the fundamental crystallographic information for the organometal halide perovskite and demonstrates new possibilities as promising materials for various applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Well-Known Distinctive Signatures of Quantum Phase Transition in Shape Coexistence Configuration of Nuclei

    NASA Astrophysics Data System (ADS)

    Majarshin, A. Jalili; Sabri, H.

    2018-03-01

    It is interesting that a change of nuclear shape may be described in terms of a phase transition. This paper studies the quantum phase transition of the U(5) to SO(6) in the interacting boson model (IBM) on the finite number N of bosons. This paper explores the well-known distinctive signatures of transition from spherical vibrational to γ-soft shape phase in the IBM with the variation of a control parameter. Quantum phase transitions occur as a result of properties of ground and excited states levels. We apply an affine \\widehat {SU(1,1)} approach to numerically solve non-linear Bethe Ansatz equation and point out what observables are particularly sensitive to the transition. The main aim of this work is to describe the most prominent observables of QPT by using IBM in shape coexistence configuration. We calculate energies of excited states and signatures of QPT as energy surface, energy ratio, energy differences, quadrupole electric transition rates and expectation values of boson number operators and show their behavior in QPT. These observables are calculated and examined for 98 - 102Mo isotopes.

  13. Chimera at the phase-flip transition of an ensemble of identical nonlinear oscillators

    NASA Astrophysics Data System (ADS)

    Gopal, R.; Chandrasekar, V. K.; Senthilkumar, D. V.; Venkatesan, A.; Lakshmanan, M.

    2018-06-01

    A complex collective emerging behavior characterized by coexisting coherent and incoherent domains is termed as a chimera state. We bring out the existence of a new type of chimera in a nonlocally coupled ensemble of identical oscillators driven by a common dynamic environment. The latter facilitates the onset of phase-flip bifurcation/transitions among the coupled oscillators of the ensemble, while the nonlocal coupling induces a partial asynchronization among the out-of-phase synchronized oscillators at this onset. This leads to the manifestation of coexisting out-of-phase synchronized coherent domains interspersed by asynchronous incoherent domains elucidating the existence of a different type of chimera state. In addition to this, a rich variety of other collective behaviors such as clusters with phase-flip transition, conventional chimera, solitary state and complete synchronized state which have been reported using different coupling architectures are found to be induced by the employed couplings for appropriate coupling strengths. The robustness of the resulting dynamics is demonstrated in ensembles of two paradigmatic models, namely Rössler oscillators and Stuart-Landau oscillators.

  14. Well-Known Distinctive Signatures of Quantum Phase Transition in Shape Coexistence Configuration of Nuclei

    NASA Astrophysics Data System (ADS)

    Majarshin, A. Jalili; Sabri, H.

    2018-06-01

    It is interesting that a change of nuclear shape may be described in terms of a phase transition. This paper studies the quantum phase transition of the U(5) to SO(6) in the interacting boson model (IBM) on the finite number N of bosons. This paper explores the well-known distinctive signatures of transition from spherical vibrational to γ-soft shape phase in the IBM with the variation of a control parameter. Quantum phase transitions occur as a result of properties of ground and excited states levels. We apply an affine \\widehat {SU(1,1)} approach to numerically solve non-linear Bethe Ansatz equation and point out what observables are particularly sensitive to the transition. The main aim of this work is to describe the most prominent observables of QPT by using IBM in shape coexistence configuration. We calculate energies of excited states and signatures of QPT as energy surface, energy ratio, energy differences, quadrupole electric transition rates and expectation values of boson number operators and show their behavior in QPT. These observables are calculated and examined for 98 - 102Mo isotopes.

  15. Kerr-AdS analogue of triple point and solid/liquid/gas phase transition

    NASA Astrophysics Data System (ADS)

    Altamirano, Natacha; Kubizňák, David; Mann, Robert B.; Sherkatghanad, Zeinab

    2014-02-01

    We study the thermodynamic behavior of multi-spinning d = 6 Kerr-anti de Sitter black holes in the canonical ensemble of fixed angular momenta J1 and J2. We find, dependent on the ratio q = J2/J1, qualitatively different interesting phenomena known from the ‘every day thermodynamics’ of simple substances. For q = 0 the system exhibits recently observed reentrant large/small/large black hole phase transitions, but for 0 < q ≪ 1 we find an analogue of a ‘solid/liquid’ phase transition. Furthermore, for q ∈ (0.00905, 0.0985) the system displays the presence of a large/intermediate/small black hole phase transition with two critical and one triple (or tricritical) points. This behavior is reminiscent of the solid/liquid/gas phase transition except that the coexistence line of small and intermediate black holes does not continue for an arbitrary value of pressure (similar to the solid/liquid coexistence line) but rather terminates at one of the critical points. Finally, for q > 0.0985 we observe the ‘standard liquid/gas behavior’ of the Van der Waals fluid.

  16. Attention deficit/hyperactivity disorders with co-existing substance use disorder is characterized by early antisocial behaviour and poor cognitive skills

    PubMed Central

    2013-01-01

    Background Attention Deficit/Hyperactivity Disorder (ADHD) is associated with an increased risk of co-existing substance abuse. The Swedish legislation on compulsory healthcare can be applied to persons with severe substance abuse who can be treated involuntarily during a period of six months. This context enables a reliable clinical assessment of ADHD in individuals with severe substance use disorder (SUD). Methods In the context of compulsory care for individuals with severe SUD, male patients were assessed for ADHD, co-morbid psychiatric symptoms, psychosocial background, treatment history, and cognition. The data from the ADHD/SUD group (n = 60) was compared with data from (1) a group of individuals with severe substance abuse without known ADHD (SUD group, n = 120), as well as (2) a group with ADHD from an outpatient psychiatric clinic (ADHD/Psych group, n = 107). Results Compared to the general SUD group in compulsory care, the ADHD/SUD group had already been significantly more often in compulsory care during childhood or adolescence, as well as imprisoned more often as adults. The most common preferred abused substance in the ADHD/SUD group was stimulant drugs, while alcohol and benzodiazepine abuse was more usual in the general SUD group. Compared to the ADHD/Psych group, the ADHD/SUD group reported more ADHD symptoms during childhood and performed poorer on all tests of general intellectual ability and executive functions. Conclusions The clinical characteristics of the ADHD/SUD group differed from those of both the SUD group and the ADHD/Psych group in several respects, indicating that ADHD in combination with SUD is a particularly disabling condition. The combination of severe substance abuse, poor general cognitive ability, severe psychosocial problems, including indications of antisocial behaviour, and other co-existing psychiatric conditions should be considered in treatment planning for adults with ADHD and SUD. PMID:24330331

  17. Nonequilibrium phase coexistence and criticality near the second explosion limit of hydrogen combustion

    NASA Astrophysics Data System (ADS)

    Newcomb, Lucas B.; Alaghemandi, Mohammad; Green, Jason R.

    2017-07-01

    While hydrogen is a promising source of clean energy, the safety and optimization of hydrogen technologies rely on controlling ignition through explosion limits: pressure-temperature boundaries separating explosive behavior from comparatively slow burning. Here, we show that the emergent nonequilibrium chemistry of combustible mixtures can exhibit the quantitative features of a phase transition. With stochastic simulations of the chemical kinetics for a model mechanism of hydrogen combustion, we show that the boundaries marking explosive domains of kinetic behavior are nonequilibrium critical points. Near the pressure of the second explosion limit, these critical points terminate the transient coexistence of dynamical phases—one that autoignites and another that progresses slowly. Below the critical point temperature, the chemistry of these phases is indistinguishable. In the large system limit, the pseudo-critical temperature converges to the temperature of the second explosion limit derived from mass-action kinetics.

  18. Electronic Phase Separation in the Slightly Underdoped Iron Pnictide Superconductor Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J. T.; Inosov, D. S.; Sun, G. L.

    2009-03-20

    Here we present a combined study of the slightly underdoped novel pnictide superconductor Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} by means of x-ray powder diffraction, neutron scattering, muon-spin rotation ({mu}SR), and magnetic force microscopy (MFM). Static antiferromagnetic order sets in below T{sub m}{approx_equal}70 K as inferred from the neutron scattering and zero-field-{mu}SR data. Transverse-field {mu}SR below T{sub c} shows a coexistence of magnetically ordered and nonmagnetic states, which is also confirmed by MFM imaging. We explain such coexistence by electronic phase separation into antiferromagnetic and superconducting- or normal-state regions on a lateral scale of several tens of nanometers. Our findings indicatemore » that such mesoscopic phase separation can be considered an intrinsic property of some iron pnictide superconductors.« less

  19. Ultrafast photo-induced dynamics across the metal-insulator transition of VO2

    NASA Astrophysics Data System (ADS)

    Wang, Siming; Ramírez, Juan Gabriel; Jeffet, Jonathan; Bar-Ad, Shimshon; Huppert, Dan; Schuller, Ivan K.

    2017-04-01

    The transient reflectivity of VO2 films across the metal-insulator transition clearly shows that with low-fluence excitation, when insulating domains are dominant, energy transfer from the optically excited electrons to the lattice is not instantaneous, but precedes the superheating-driven expansion of the metallic domains. This implies that the phase transition in the coexistence regime is lattice-, not electronically-driven, at weak laser excitation. The superheated phonons provide the latent heat required for the propagation of the optically-induced phase transition. For VO2 this transition path is significantly different from what has been reported in the strong-excitation regime. We also observe a slow-down of the superheating-driven expansion of the metallic domains around the metal-insulator transition, which is possibly due to the competition among several co-existing phases, or an emergent critical-like behavior.

  20. Water freezing and ice melting

    DOE PAGES

    Malolepsza, Edyta; Keyes, Tom

    2015-10-12

    The generalized replica exchange method (gREM) is designed to sample states with coexisting phases and thereby to describe strong first order phase transitions. The isobaric MD version of the gREM is presented and applied to freezing of liquid water, and melting of hexagonal and cubic ice. It is confirmed that coexisting states are well sampled. The statistical temperature as a function of enthalpy, T S(H), is obtained. Hysteresis between freezing and melting is observed and discussed. The entropic analysis of phase transitions is applied and equilibrium transition temperatures, latent heats, and surface tensions are obtained for hexagonal ice↔liquid and cubicmore » ice↔liquid, with excellent agreement with published values. A new method is given to assign water molecules among various symmetry types. As a result, pathways for water freezing, ultimately leading to hexagonal ice, are found to contain intermediate layered structures built from hexagonal and cubic ice.« less

  1. Charge and orbital orders and structural instability in high-pressure quadruple perovskite CeCuMn6O12

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Matsushita, Yoshitaka; Katsuya, Yoshio; Tanaka, Masahiko; Yamaura, Kazunari; Belik, Alexei A.

    2018-02-01

    We prepared a quadruple perovskite CeCuMn6O12 under high-pressure and high-temperature conditions at 6 GPa and about 1670 K and investigated its structural, magnetic and transport properties. CeCuMn6O12 crystallizes in space group Im-3 above T CO  =  297 K below this temperature, it adopts space group R-3 with the 1:3 (Mn4+:Mn3+) charge and orbital orders. Unusual compressed Mn3+O6 octahedra are realized in CeCuMn6O12 similar to CaMn7O12 with the  -Q 3 Jahn-Teller distortion mode. Below about 90 K, structural instability takes place with phase separation and the appearance of competing phases; and below 70 K, two R-3 phases coexist. CeCuMn6O12 exhibits a ferromagnetic-like transition below T C  =  140 K, and it is a semiconductor with the magnetoresistance reaching about  -40% at 140 K and 70 kOe. We argued that the valence of Ce is  +3 in CeCuMn6O12 with the Ce3+(C{{u}2+}Mn23+ )(Mn33+M{{n}4+} )O12 charge distribution in the charge-ordered R-3 phase and Ce3+(C{{u}2+}Mn23+ )(Mn43.25+ )O12 in the charge-disordered Im-3 phase.

  2. Posttraumatic stress disorder and posttraumatic growth coexistence and the risk factors in Wenchuan earthquake survivors.

    PubMed

    Wu, Zhibin; Xu, Jiuping; Sui, Yan

    2016-03-30

    Various studies have assessed the negative and/or positive changes in the aftermath of traumatic events. Yet few of these have addressed the factors associated with the coexistence of both negative and positive changes after a devastating earthquake. The aim of this study is to assess the relationship between the negative and positive changes and elucidate the risk factors of such changes one year after Wenchuan earthquake. A total of 2080 survivors from 19 counties participated in a self-report questionnaire survey which included the posttraumatic stress disorder (PTSD) Check list-Civilian, the posttraumatic growth PTG Inventory (PTGI). The prevalence of PTSD and moderate PTG was found to be 40.1% (95% CI [37.9% 42.3%]) and 51.1% (95% CI [48.9% 53.3%]). The PTSD and moderate PTG coexistence was 19.6% (95% CI [17.8% 21.4%]). PTSD symptom severity was significantly positively associated with the PTG score. Middle aged groups (31-40 and 41-50 years old, OR=2.323, 95% CI [1.059, 5.095] and OR=2.410, 95% CI [1.090, 5.329] respectively), those with lower income levels (OR=8.019, 95% CI [2.421, 26.558]), those living in temporary house (OR=1.946, 95% CI [1.280, 2.956]), and those who had had less social support (OR=1.109, 95% CI [1.076, 1.143]) had a significantly higher possibility for the presence of PTSD and moderate PTG coexistence. The results indicated the widespread positive changes in earthquake survivors. Better income levels and living conditions and higher social support were suggested to promote PTG in those with PTSD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Surface energy from order parameter profile: At the QCD phase transition

    NASA Technical Reports Server (NTRS)

    Frei, Z.; Patkos, A.

    1989-01-01

    The order parameter profile between coexisting confined and plasma regions at the quantum chromodynamic (QCD) phase transition is constructed. The dimensionless combination of the surface energy (Sigma) and the correlation length (Zeta) is estimated to be Sigma Zeta 3 approximately equals 0.8.

  4. Explosive synchronization coexists with classical synchronization in the Kuramoto model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danziger, Michael M., E-mail: michael.danziger@biu.ac.il; Havlin, Shlomo; Moskalenko, Olga I.

    2016-06-15

    Explosive synchronization has recently been reported in a system of adaptively coupled Kuramoto oscillators, without any conditions on the frequency or degree of the nodes. Here, we find that, in fact, the explosive phase coexists with the standard phase of the Kuramoto oscillators. We determine this by extending the mean-field theory of adaptively coupled oscillators with full coupling to the case with partial coupling of a fraction f. This analysis shows that a metastable region exists for all finite values of f > 0, and therefore explosive synchronization is expected for any perturbation of adaptively coupling added to the standard Kuramoto model.more » We verify this theory with GPU-accelerated simulations on very large networks (N ∼ 10{sup 6}) and find that, in fact, an explosive transition with hysteresis is observed for all finite couplings. By demonstrating that explosive transitions coexist with standard transitions in the limit of f → 0, we show that this behavior is far more likely to occur naturally than was previously believed.« less

  5. Lateral diffusion study of the Pt-Al system using the NAC nuclear microprobe.

    NASA Astrophysics Data System (ADS)

    de Waal, H.; Pretorius, R.

    1999-10-01

    In this study a nuclear microprobe (NMP) was used to analyse phase formation during reaction in Pt-Al lateral diffusion couples. Phase identification was done by Rutherford backscattering spectroscopy. These results were compared with phase formation during conventional thin film Pt-Al interactions. The co-existence of multiple phases in lateral diffusion couples is discussed with reference to the effective heat of formation (EHF) model.

  6. Luminescence properties and color identification of Eu doped Ca3(PO4)2 phosphors calcined in air

    NASA Astrophysics Data System (ADS)

    Tong, Chao; Zhu, Yangguang; Xu, Chuanyan; Yang, Lei; Li, Yadong

    2017-09-01

    The Ca3(PO4)2:Eu (TCP) phosphor was synthesized by a high-temperature solid-state reaction in air atmosphere. X-ray powder diffraction(XRD) analysis indicates that the α-TCP↔β-TCP phase transition takes place under different calcination and cooling conditions. The luminescence properties of the two different phases of TCP were discussed according to the luminescence spectra during the heating and cooling transition. The CIE chromaticity coordinates of β-TCP phase located at the red region, α-TCP phase at bluish-green region because of the coexistence of Eu2+ and Eu3+ ions. The color-tunable emission of the products could also be directly observed under UV lamp. Pure red and bluish-green-emitting particles were observed respectively for the pure β-TCP phase and α-TCP phase samples whereas bluish-green and red mixture emitting particles were traced for the α-TCP /β-TCP phase co-existence samples. Therefore, results of this study suggested that Eu ion could be used as a spectroscopic probe to qualitatively identify the crystalline phase of TCP by a simple and convenient way to observe the color-tunable emission of the samples when irradiating it under 365 nm UV lamp.

  7. Case-control study of risk factors for spasmodic dysphonia: A comparison with other voice disorders.

    PubMed

    Tanner, Kristine; Roy, Nelson; Merrill, Ray M; Sauder, Cara; Houtz, Daniel R; Smith, Marshall E

    2012-05-01

    This epidemiology study examined risk factors uniquely associated with spasmodic dysphonia (SD). Case-control. A questionnaire was administered to 150 patients with SD (with and without coexisting vocal tremor) and 136 patients with other structural, neurological, and functional voice disorders (excluding SD and vocal tremor). Questions included personal and family medical histories, environmental exposures, trauma, illnesses, voice use habits, and the Short Form 36. Several factors were uniquely associated with SD (α = .05), including: 1) a personal history of cervical dystonia, sinus and throat illnesses, mumps, rubella, dust exposure, and frequent volunteer voice use, 2) a family history of voice disorders, 3) an immediate family history of vocal tremor and meningitis, and 4) an extended family history of head and neck tremor, ocular disease, and meningitis. Vocal tremor coexisted with SD in 29% of cases. Measles and mumps vaccines were protective for SD. SD is likely multifactorial and associated with several endogenous and exogenous factors. Certain viral exposures, voice use patterns, and familial neurological conditions may contribute to the onset of SD later in life. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  8. Mental disorders frequency alternative and complementary medicine usage among patients with hypertension and type 2 diabetes mellitus.

    PubMed

    Keskin, Ahmet; BIlge, Ugur

    2014-01-01

    Diabetes mellitus (DM) and hypertension (HT) are chronic disorders with which mental disorders may coexist and for which patients may resort to alternative medicine use. Alternative and complementary medicine is a treatment option that patients tend to use. This study is to determine the prevalence of mental disorders among patients diagnosed with DM and HT and their use of alternative medicine methods. Materials and Methods The study was conducted in a primary care setting. The data were collected from the Family Health Center No. 4 at Ηankaya, Ankara, Turkey. It involved patients aged between 18 and 65, who were on follow-up treatment for DM and HT. Patients accepted to participate in the study were administered the sociodemographic data form, the Primary Care Evaluation of Mental Disorders (PRIME-MD) questionnaire and the alternative medicine inquiry form. One hundred and sixteen patients with HT and 119 patients with DM (type 2) were recruited for the study. In this study, 47.4% of HT patients and 53.8% of the DM patients were diagnosed with a PRIME-MD. The most commonly encountered disorder was mood disorders, in 37.1% of the HT patients and 45.4% of the DM patients. In this study, four HT patients (0.3%) and no DM patients stated that they resorted to complimentary medicine, which can use be used alongside conventional medical treatment and may help to feel better and cope better with any chronic condition. All four HT patients were using multivitamin combinations to support the treatment. As the alternative medicine usage was described as treatment used instead of conventional medical treatment we did not find any patient using alternative medicine. Mental disorders may coexist with HT and DM. Some of the HT and DM patients suffering from a mental disorder seek psychiatric support, while others do not. We believe that it is important to examine patients for mental disorders, while being followed-up for a chronic disease.

  9. Phase coexistence and domain configuration in Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.34PbTiO{sub 3} single crystal revealed by synchrotron-based X-ray diffractive three-dimensional reciprocal space mapping and piezoresponse force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ruixue; Yang, Bin, E-mail: binyang@hit.edu.cn; Sun, Enwei

    The crystalline phases and domain configuration in the morphotropic phase boundary composition Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.34PbTiO{sub 3} (PMN-0.34PT) single crystal have been investigated by synchrotron-based X-ray 3D Reciprocal Space Mapping (3D-RSM) and Piezoresponse Force Microscopy. The coexistence of tetragonal (T) and monoclinic M{sub C} phases in this PMN-0.34PT single crystal is confirmed. The affiliation of each diffraction spot in the 3D-RSM was identified with the assistance of qualitative simulation. Most importantly, the twinning structure between different domains in such a mixed phase PMN-PT crystal is firmly clarified, and the spatial distribution of different twin domains is demonstrated. In addition, themore » lattice parameters of T and M{sub C} phases in PMN-0.34PT single crystal as well as the tilting angles of crystal lattices caused by the interfacial lattice mismatch are determined.« less

  10. Autoimmune chorea in adults

    PubMed Central

    O’Toole, Orna; Lennon, Vanda A.; Ahlskog, J. Eric; Matsumoto, Joseph Y.; Pittock, Sean J.; Bower, James; Fealey, Robert; Lachance, Daniel H.

    2013-01-01

    Objectives: To determine the characteristics of adult-onset autoimmune chorea, and compare paraneoplastic and idiopathic subgroups. Methods: Thirty-six adults with autoimmune chorea were identified at Mayo Clinic (Rochester, MN) from 1997 to 2012. Medical record and laboratory data were recorded. Nonparaneoplastic (n = 22) and paraneoplastic cases (n = 14) were compared. Results: Women accounted for 21 patients (58%). Median age at symptom onset was 67 years (range 18–87 years). We estimated the incidence for Olmsted County was 1.5 per million person-years. Symptom onset was subacute in all. Chorea was focal (20 patients) or generalized (16 patients). Although chorea predominated, other neurologic disorders frequently coexisted (29 patients); abnormal eye movements were uncommon (4 patients). No patient had NMDA receptor antibody or any immunoglobulin (Ig)G yielding a detectable immunofluorescence binding pattern restricted to basal ganglia. Two had synaptic IgG antibodies novel to the context of chorea (GAD65, 1; CASPR2, 1). In the paraneoplastic group, 14 patients had evidence of cancer. Of 13 with a histopathologically confirmed neoplasm, small-cell carcinoma and adenocarcinoma were most common; 6 patients had a cancer-predictive paraneoplastic autoantibody, with CRMP-5–IgG and ANNA-1 being most common. In the idiopathic group, 19 of the 22 patients had a coexisting autoimmune disorder (most frequently systemic lupus erythematosus and antiphospholipid syndrome); autoantibodies were detected in 21 patients, most frequently lupus and phospholipid specificities (19 patients). The paraneoplastic group was older (p = 0.001), more frequently male (p = 0.006), had more frequent weight loss (p = 0.02), and frequently had peripheral neuropathy (p = 0.008). Conclusions: Autoimmune chorea is a rare disorder with rapid onset. Male sex, older age, severe chorea, coexisting peripheral neuropathy, and weight loss increase the likelihood of cancer. PMID:23427325

  11. Study of a structural phase transition by two dimensional Fourier transform NMR method

    NASA Astrophysics Data System (ADS)

    Trokiner, A.; Man, P. P.; Théveneau, H.; Papon, P.

    1985-09-01

    The fluoroperovskite RbCaF 3 undergoes a structural phase transition at 195.5 K, from a cubic phase where the 87Rb nuclei have no quadrupolar interaction ( ωQ= 0) to a tetragonal phase where ω Q ≠ O. The transition is weakly first-order. A two-dimensional FT NMR experiment has been performed on 87Rb ( I = {3}/{2}) in a single crystal in both phases and in the vicinity of the phase transition. Our results show the coexistence of the two phases at the phase transition.

  12. The stability of a crystal with diamond structure for patchy particles with tetrahedral symmetry.

    PubMed

    Noya, Eva G; Vega, Carlos; Doye, Jonathan P K; Louis, Ard A

    2010-06-21

    The phase diagram of model anisotropic particles with four attractive patches in a tetrahedral arrangement has been computed at two different values of the range of the potential, with the aim of investigating the conditions under which a diamond crystal can be formed. We find that the diamond phase is never stable for our longer-ranged potential. At low temperatures and pressures, the fluid freezes into a body-centered-cubic solid that can be viewed as two interpenetrating diamond lattices with a weak interaction between the two sublattices. Upon compression, an orientationally ordered face-centered-cubic crystal becomes more stable than the body-centered-cubic crystal, and at higher temperatures, a plastic face-centered-cubic phase is stabilized by the increased entropy due to orientational disorder. A similar phase diagram is found for the shorter-ranged potential, but at low temperatures and pressures, we also find a region over which the diamond phase is thermodynamically favored over the body-centered-cubic phase. The higher vibrational entropy of the diamond structure with respect to the body-centered-cubic solid explains why it is stable even though the enthalpy of the latter phase is lower. Some preliminary studies on the growth of the diamond structure starting from a crystal seed were performed. Even though the diamond phase is never thermodynamically stable for the longer-ranged model, direct coexistence simulations of the interface between the fluid and the body-centered-cubic crystal and between the fluid and the diamond crystal show that at sufficiently low pressures, it is quite probable that in both cases the solid grows into a diamond crystal, albeit involving some defects. These results highlight the importance of kinetic effects in the formation of diamond crystals in systems of patchy particles.

  13. CADASIL and autoimmunity: coexistence in a family with the R169C mutation at exon 4 of the NOTCH3 gene.

    PubMed

    Paraskevas, George P; Bougea, Anastasia; Synetou, Margarita; Vassilopoulou, Sophia; Anagnostou, Evangelos; Voumvourakis, Konstantinos; Iliopoulos, Alexios; Spengos, Konstantinos

    2014-01-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an inherited small vessel disease caused by mutations of the NOTCH3 gene, which result in degeneration of vascular smooth muscle cells, arteriolar stenosis, and impaired cerebral blood flow. For clinicians this is the commonest hereditary adult-onset condition causing stroke and vascular dementia at middle age. Atypical phenotypes have been recognized, and the disease is probably underdiagnosed in the wider stroke population. Coexistence of autoimmunity is atypical and has been described only in occasional patients. Three members of a Greek family from the island of Lesvos of North East Greece were evaluated. The patients come from a four-generation family in which there were at least seven members with clinical data suggestive of CADASIL. We describe here the clinical, imaging and biochemical findings in this family with R169C mutation at exon 4 and presenting additional clinical and biochemical findings suggestive of autoimmune disorder. DNA was extracted from whole blood using standard procedures for sequencing. Three affected members of this family carried the R169C. In a phenotypic analysis of affected individuals from four generations with CADASIL, the disease was characterized by migraine attacks, recurrent subcortical infarcts, and cognitive decline with typical anterior temporal lobe white matter lesions. At least 3 mutation carriers from two generations had increased antinuclear antibody (ANA) titers and various combinations of rash, joint pains, photosensitivity, and renal involvement. This is a rare description of the coexistence of autoimmunity in CADASIL patients with possible worsening clinical effects. The study extends the spectrum of atypical presentation of CADASIL. The coexistence of autoimmunity does not necessarily exclude CADASIL, but may cause an additional diagnostic and therapeutic challenge. This autoimmune disorder may have increased the severity of the disease and, additionally, may be related to the pathogenetic mechanisms of CADASIL. It is possible that the NOTCH3 mutation alone is not enough to trigger autoimmunity since, in the case of our family, the R169C mutation has already been described in other families with no evidence of coexistent autoimmunity. Other genetic or environmental factors or interactions and/or common pathways between the vascular and immune systems are probably co-operating. Further, prospective studies are needed to clarify the prevalence and types of autoimmune disorders present in CADASIL families. © 2014 S. Karger AG, Basel.

  14. Coexisting synchronous and asynchronous states in locally coupled array of oscillators by partial self-feedback control

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Ghosh, Dibakar; Parmananda, Punit; Osipov, G. V.; Dana, Syamal K.

    2017-07-01

    We report the emergence of coexisting synchronous and asynchronous subpopulations of oscillators in one dimensional arrays of identical oscillators by applying a self-feedback control. When a self-feedback is applied to a subpopulation of the array, similar to chimera states, it splits into two/more sub-subpopulations coexisting in coherent and incoherent states for a range of self-feedback strength. By tuning the coupling between the nearest neighbors and the amount of self-feedback in the perturbed subpopulation, the size of the coherent and the incoherent sub-subpopulations in the array can be controlled, although the exact size of them is unpredictable. We present numerical evidence using the Landau-Stuart system and the Kuramoto-Sakaguchi phase model.

  15. Influence of gender on attention-deficit/hyperactivity disorder in Europe--ADORE.

    PubMed

    Nøvik, Torunn Stene; Hervas, Amaia; Ralston, Stephen J; Dalsgaard, Søren; Rodrigues Pereira, Rob; Lorenzo, Maria J

    2006-12-01

    Attention-deficit/hyperactivity disorder (ADHD) in girls in Europe is poorly understood; it is not known whether they exhibit similar symptom patterns or co-existing problems and receive the same type of treatment as boys. To examine gender differences for referral patterns, social demographic factors, ADHD core symptomatology, co-existing health problems, psychosocial functioning and treatment. Baseline data from the ADHD Observational Research in Europe (ADORE) study, a 24-month, naturalistic, longitudinal observational study in 10 European countries of children (aged 6-18 years) with hyperactive/inattentive/impulsive symptoms but no previous diagnosis of ADHD, were analysed by gender. Data from 1,478 children were analysed: 231 girls (15.7%) and 1,222 boys (84.3%) (gender data missing for 25 patients). Gender ratios (girl:boy) varied by country, ranging from 1:3 to 1:16. Comparisons showed few gender effects in core ADHD symptomatology and clinical correlates of ADHD. Compared with boys, girls had significantly more parent-rated emotional symptoms and prosocial behaviour and were more likely to be the victim of bullying and less likely to be the bully. Girls and boys had similar levels of co-existing psychiatric and physical health problems, and received the same type of treatment. Fewer girls than boys are referred for ADHD treatment, but they have a similar pattern of impairment and receive similar treatment.

  16. Phase-coexistence and thermal hysteresis in samples comprising adventitiously doped MnAs nanocrystals: programming of aggregate properties in magnetostructural nanomaterials.

    PubMed

    Zhang, Yanhua; Regmi, Rajesh; Liu, Yi; Lawes, Gavin; Brock, Stephanie L

    2014-07-22

    Small changes in the synthesis of MnAs nanoparticles lead to materials with distinct behavior. Samples prepared by slow heating to 523 K (type-A) exhibit the characteristic magnetostructural transition from the ferromagnetic hexagonal (α) to the paramagnetic orthorhombic (β) phase of bulk MnAs at Tp = 312 K, whereas those prepared by rapid nucleation at 603 K (type-B) adopt the β structure at room temperature and exhibit anomalous magnetic properties. The behavior of type-B nanoparticles is due to P-incorporation (up to 3%), attributed to reaction of the solvent (trioctylphosphine oxide). P-incorporation results in a decrease in the unit cell volume (∼1%) and shifts Tp below room temperature. Temperature-dependent X-ray diffraction reveals a large region of phase-coexistence, up to 90 K, which may reflect small differences in Tp from particle-to-particle within the nearly monodisperse sample. The large coexistence range coupled to the thermal hysteresis results in process-dependent phase mixtures. As-prepared type-B samples exhibiting the β structure at room temperature convert to a mixture of α and β after the sample has been cooled to 77 K and rewarmed to room temperature. This change is reflected in the magnetic response, which shows an increased moment and a shift in the temperature hysteresis loop after cooling. The proportion of α present at room temperature can also be augmented by application of an external magnetic field. Both doped (type-B) and undoped (type-A) MnAs nanoparticles show significant thermal hysteresis narrowing relative to their bulk phases, suggesting that formation of nanoparticles may be an effective method to reduce thermal losses in magnetic refrigeration applications.

  17. Neurofilaments Function as Shock Absorbers: Compression Response Arising from Disordered Proteins.

    PubMed

    Kornreich, Micha; Malka-Gibor, Eti; Zuker, Ben; Laser-Azogui, Adi; Beck, Roy

    2016-09-30

    What can cells gain by using disordered, rather than folded, proteins in the architecture of their skeleton? Disordered proteins take multiple coexisting conformations, and often contain segments which act as random-walk-shaped polymers. Using x-ray scattering we measure the compression response of disordered protein hydrogels, which are the main stress-responsive component of neuron cells. We find that at high compression their mechanics are dominated by gaslike steric and ionic repulsions. At low compression, specific attractive interactions dominate. This is demonstrated by the considerable hydrogel expansion induced by the truncation of critical short protein segments. Accordingly, the floppy disordered proteins form a weakly cross-bridged hydrogel, and act as shock absorbers that sustain large deformations without failure.

  18. Neurofilaments Function as Shock Absorbers: Compression Response Arising from Disordered Proteins

    NASA Astrophysics Data System (ADS)

    Kornreich, Micha; Malka-Gibor, Eti; Zuker, Ben; Laser-Azogui, Adi; Beck, Roy

    2016-09-01

    What can cells gain by using disordered, rather than folded, proteins in the architecture of their skeleton? Disordered proteins take multiple coexisting conformations, and often contain segments which act as random-walk-shaped polymers. Using x-ray scattering we measure the compression response of disordered protein hydrogels, which are the main stress-responsive component of neuron cells. We find that at high compression their mechanics are dominated by gaslike steric and ionic repulsions. At low compression, specific attractive interactions dominate. This is demonstrated by the considerable hydrogel expansion induced by the truncation of critical short protein segments. Accordingly, the floppy disordered proteins form a weakly cross-bridged hydrogel, and act as shock absorbers that sustain large deformations without failure.

  19. Sleep disorders, epilepsy, and autism.

    PubMed

    Malow, Beth A

    2004-01-01

    The purpose of this review article is to describe the clinical data linking autism with sleep and epilepsy and to discuss the impact of treating sleep disorders in children with autism either with or without coexisting epileptic seizures. Studies are presented to support the view that sleep is abnormal in individuals with autistic spectrum disorders. Epilepsy and sleep have reciprocal relationships, with sleep facilitating seizures and seizures adversely affecting sleep architecture. The hypothesis put forth is that identifying and treating sleep disorders, which are potentially caused by or contributed to by autism, may impact favorably on seizure control and on daytime behavior. The article concludes with some practical suggestions for the evaluation and treatment of sleep disorders in this population of children with autism.

  20. Diagnosis of Atopic Dermatitis: Mimics, Overlaps, and Complications

    PubMed Central

    Siegfried, Elaine C.; Hebert, Adelaide A.

    2015-01-01

    Atopic dermatitis (AD) is one of the most common skin diseases affecting infants and children. A smaller subset of adults has persistent or new-onset AD. AD is characterized by pruritus, erythema, induration, and scale, but these features are also typical of several other conditions that can mimic, coexist with, or complicate AD. These include inflammatory skin conditions, infections, infestations, malignancies, genetic disorders, immunodeficiency disorders, nutritional disorders, graft-versus-host disease, and drug eruptions. Familiarity of the spectrum of these diseases and their distinguishing features is critical for correct and timely diagnosis and optimal treatment. PMID:26239454

  1. Analysis of three-phase equilibrium conditions for methane hydrate by isometric-isothermal molecular dynamics simulations.

    PubMed

    Yuhara, Daisuke; Brumby, Paul E; Wu, David T; Sum, Amadeu K; Yasuoka, Kenji

    2018-05-14

    To develop prediction methods of three-phase equilibrium (coexistence) conditions of methane hydrate by molecular simulations, we examined the use of NVT (isometric-isothermal) molecular dynamics (MD) simulations. NVT MD simulations of coexisting solid hydrate, liquid water, and vapor methane phases were performed at four different temperatures, namely, 285, 290, 295, and 300 K. NVT simulations do not require complex pressure control schemes in multi-phase systems, and the growth or dissociation of the hydrate phase can lead to significant pressure changes in the approach toward equilibrium conditions. We found that the calculated equilibrium pressures tended to be higher than those reported by previous NPT (isobaric-isothermal) simulation studies using the same water model. The deviations of equilibrium conditions from previous simulation studies are mainly attributable to the employed calculation methods of pressure and Lennard-Jones interactions. We monitored the pressure in the methane phase, far from the interfaces with other phases, and confirmed that it was higher than the total pressure of the system calculated by previous studies. This fact clearly highlights the difficulties associated with the pressure calculation and control for multi-phase systems. The treatment of Lennard-Jones interactions without tail corrections in MD simulations also contributes to the overestimation of equilibrium pressure. Although improvements are still required to obtain accurate equilibrium conditions, NVT MD simulations exhibit potential for the prediction of equilibrium conditions of multi-phase systems.

  2. Analysis of three-phase equilibrium conditions for methane hydrate by isometric-isothermal molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Yuhara, Daisuke; Brumby, Paul E.; Wu, David T.; Sum, Amadeu K.; Yasuoka, Kenji

    2018-05-01

    To develop prediction methods of three-phase equilibrium (coexistence) conditions of methane hydrate by molecular simulations, we examined the use of NVT (isometric-isothermal) molecular dynamics (MD) simulations. NVT MD simulations of coexisting solid hydrate, liquid water, and vapor methane phases were performed at four different temperatures, namely, 285, 290, 295, and 300 K. NVT simulations do not require complex pressure control schemes in multi-phase systems, and the growth or dissociation of the hydrate phase can lead to significant pressure changes in the approach toward equilibrium conditions. We found that the calculated equilibrium pressures tended to be higher than those reported by previous NPT (isobaric-isothermal) simulation studies using the same water model. The deviations of equilibrium conditions from previous simulation studies are mainly attributable to the employed calculation methods of pressure and Lennard-Jones interactions. We monitored the pressure in the methane phase, far from the interfaces with other phases, and confirmed that it was higher than the total pressure of the system calculated by previous studies. This fact clearly highlights the difficulties associated with the pressure calculation and control for multi-phase systems. The treatment of Lennard-Jones interactions without tail corrections in MD simulations also contributes to the overestimation of equilibrium pressure. Although improvements are still required to obtain accurate equilibrium conditions, NVT MD simulations exhibit potential for the prediction of equilibrium conditions of multi-phase systems.

  3. Comorbidity of bipolar disorder and eating disorders.

    PubMed

    Álvarez Ruiz, Eva M; Gutiérrez-Rojas, Luis

    2015-01-01

    The comorbidity of bipolar disorder and eating disorders has not been studied in depth. In addition, clinical implications involved in the appearance of both disorders are very important. A systematic literature review of MEDLINE published up to September 2013 was performed, analyzing all the articles that studied the comorbidity of both conditions (bipolar disorder and eating disorders) and others research that studied the efficacy of pharmacological treatment and psychotherapy to improve these illnesses. In this review we found a high comorbidity of bipolar disorder and eating disorders, especially of bulimia nervosa and binge eating disorder. Studies show that lithium and topiramate are 2 of the more effective pharmacological agents in the treatment of both disorders. There are a lot of studies that show evidence of comorbidity of bipolar disorder and eating disorders. However, further research is needed on assessment and treatment when these conditions co-exist, as well as study into the biopsychological aspects to determine the comorbid aetiology. Copyright © 2014 SEP y SEPB. Published by Elsevier España. All rights reserved.

  4. Deep-Earth Equilibration between Molten Iron and Solid Silicates

    NASA Astrophysics Data System (ADS)

    Brennan, M.; Zurkowski, C. C.; Chidester, B.; Campbell, A.

    2017-12-01

    Elemental partitioning between iron-rich metals and silicate minerals influences the properties of Earth's deep interior, and is ultimately responsible for the nature of the core-mantle boundary. These interactions between molten iron and solid silicates were influential during planetary accretion, and persist today between the mantle and liquid outer core. Here we report the results of diamond anvil cell experiments at lower mantle conditions (40 GPa, >2500 K) aimed at examining systems containing a mixture of metals (iron or Fe-16Si alloy) and silicates (peridotite). The experiments were conducted at pressure-temperature conditions above the metallic liquidus but below the silicate solidus, and the recovered samples were analyzed by FIB/SEM with EDS to record the compositions of the coexisting phases. Each sample formed a three-phase equilibrium between bridgmanite, Fe-rich metallic melt, and an oxide. In one experiment, using pure Fe, the quenched metal contained 6 weight percent O, and the coexisting oxide was ferropericlase. The second experiment, using Fe-Si alloy, was highly reducing; its metal contained 10 wt% Si, and the coexisting mineral was stishovite. The distinct mineralogies of the two experiments derived from their different starting metals. These results imply that metallic composition is an important factor in determining the products of mixed phase iron-silicate reactions. The properties of deep-Earth interfaces such as the core-mantle boundary could be strongly affected by their metallic components.

  5. [Clinical and neurophysiological data of neurofeedback therapy in children with ADHD].

    PubMed

    Kubik, Alicja; Kubik, Paweł; Stanios, Martyna; Kraj, Bogusława

    2016-01-01

    ADHD occurs in 3% of school-age children (and in 70% of them in adulthood) and represents an important medical and social problem. It is characterized by attention deficits, hyperactivity and impulsiveness. Neurofeedback therapy (EEG biofeedback, NF) is carried out based on the analysis of EEG. To investigate the effect of NF therapy on clinical status and parameters of the EEG in ADHD. In the years 2007-2014, 287 children (191 boys), aged 6-17 years were included into the study. Some children with ADHD had other coexisting disorders like: tics, dyslexia, emotional or behavior disorders. Visual analysis of EEG was made and 7 selected parameters of bioelectrical activity were assessed. EEG tracing before and after NF therapy were compared. NF therapy lasted from 9 months to 3 years (mean 1.5 years). 60-240 NF training sessions were performed with the use of NF device, video-games and 16-channel Elmiko devices. Statistical analysis of the results was made. Children with ADHD additionally presented low self-esteem, anxiety and sleep disorders. The baseline theta/beta ratio in children with ADHD and ADHD with cooccurring dyslexia was >4.0 and in children with ADHD and coexisting tics 3.0-3.8, with coexisting behavioral disorders 3.7-4.0 and emotional disorders 3.3-3.7. After therapy, this ratio decreased significantly in all groups, but most significantly in ADHD and ADHD with dyslexia group. In the group with dyslexia theta and alpha activity in the left fronto-temporo-parietal region (the speech centers) has been increased. In children with ADHD and behavior disorders right-sided paroxysmal changes in the form of slow and sharp waves in the temporo-centro-parietal regions were found. In emotionally disturbed children increased fast beta activity in the right hemisphere (anxiety, fear) was observed. Initially NF therapy reduced hyperactivity and impulsivity of children, subsequently improvement of attention was observed and eventually reduction of emotional and behavior disturbances was noticed. Noticeable improvement in the self-esteem was observed as well. The therapy had a positive impact on the spatial organization of EEG in each group. It proved to be particularly useful in children with ADHD and dyslexia. Neurofeedback therapy is a valuable tool with beneficial impact on children with ADHD and accompanying disorders. Characteristics of brain bioelectric activity provides a reliable basis to establish individual EEG bio-feedback protocols of therapy in children and monitor the effectiveness of treatment. In the last 4 years the number of children with ADHD and cooccurring tics who applied for neurofeedback therapy has increased significantly.

  6. Effect of membrane microheterogeneity and domain size on fluorescence resonance energy transfer.

    PubMed

    Towles, Kevin B; Brown, Angela C; Wrenn, Steven P; Dan, Nily

    2007-07-15

    Studies of multicomponent membranes suggest lateral inhomogeneity in the form of membrane domains, but the size of small (nanoscale) domains in situ cannot be determined with current techniques. In this article, we present a model that enables extraction of membrane domain size from time-resolved fluorescence resonance energy transfer (FRET) data. We expand upon a classic approach to the infinite phase separation limit and formulate a model that accounts for the presence of disklike domains of finite dimensions within a two-dimensional infinite planar bilayer. The model was tested against off-lattice Monte Carlo calculations of a model membrane in the liquid-disordered (l(d)) and liquid-ordered (l(o)) coexistence regime. Simulated domain size was varied from 5 to 50 nm, and two fluorophores, preferentially partitioning into opposite phases, were randomly mixed to obtain the simulated time-resolved FRET data. The Monte Carlo data show clear differences in the efficiency of energy transfer as a function of domain size. The model fit of the data yielded good agreement for the domain size, especially in cases where the domain diameter is <20 nm. Thus, data analysis using the proposed model enables measurement of nanoscale membrane domains using time-resolved FRET.

  7. Localization of electrons due to orbitally ordered bi-stripes in the bilayer manganite La(2-2x)Sr(1+2x)Mn2O7 (x ~ 0.59).

    PubMed

    Sun, Z; Wang, Q; Fedorov, A V; Zheng, H; Mitchell, J F; Dessau, D S

    2011-07-19

    Electronic phases with stripe patterns have been intensively investigated for their vital roles in unique properties of correlated electronic materials. How these real-space patterns affect the conductivity and other properties of materials (which are usually described in momentum space) is one of the major challenges of modern condensed matter physics. By studying the electronic structure of La(2-2x)Sr(1+2x)Mn(2)O(7) (x ∼ 0.59) and in combination with earlier scattering measurements, we demonstrate the variation of electronic properties accompanying the melting of so-called bi-stripes in this material. The static bi-stripes can strongly localize the electrons in the insulating phase above T(c) ∼ 160 K, while the fraction of mobile electrons grows, coexisting with a significant portion of localized electrons when the static bi-stripes melt below T(c). The presence of localized electrons below T(c) suggests that the melting bi-stripes exist as a disordered or fluctuating counterpart. From static to melting, the bi-stripes act as an atomic-scale electronic valve, leading to a "colossal" metal-insulator transition in this material.

  8. On the co-existence of maximal and whiskered tori in the planetary three-body problem

    NASA Astrophysics Data System (ADS)

    Pinzari, Gabriella

    2018-05-01

    In this paper, we discuss about the possibility of the coexistence of stable and unstable quasi-periodic Kolmogorov-Arnold-Moser (kam) tori in a region of the phase space of the three-body problem. The argument of proof goes along kam theory and, especially, the production of two non-smoothly related systems of canonical coordinates in the same region of the phase space, the possibility of which is foreseen, for "properly degenerate" systems, by a theorem of Nekhoroshev and Miščenko and Fomenko. The two coordinate systems are alternative to the classical reduction of the nodes by Jacobi, described, e.g., in Arnold ["Small denominators and problems of stability of motion in classical and celestial mechanics," 18, 85-191 (1963)].

  9. Phase diagram and universality of the Lennard-Jones gas-liquid system.

    PubMed

    Watanabe, Hiroshi; Ito, Nobuyasu; Hu, Chin-Kun

    2012-05-28

    The gas-liquid phase transition of the three-dimensional Lennard-Jones particles system is studied by molecular dynamics simulations. The gas and liquid densities in the coexisting state are determined with high accuracy. The critical point is determined by the block density analysis of the Binder parameter with the aid of the law of rectilinear diameter. From the critical behavior of the gas-liquid coexisting density, the critical exponent of the order parameter is estimated to be β = 0.3285(7). Surface tension is estimated from interface broadening behavior due to capillary waves. From the critical behavior of the surface tension, the critical exponent of the correlation length is estimated to be ν = 0.63(4). The obtained values of β and ν are consistent with those of the Ising universality class.

  10. Microscopic coexistence of magnetism and superconductivity in charge-compensated Ba1-xKx(Fe1-yCoy)2As2

    NASA Astrophysics Data System (ADS)

    Goltz, Til; Zinth, Veronika; Johrendt, Dirk; Rosner, Helge; Pascua, Gwendolyne; Luetkens, Hubertus; Materne, Philipp; Klauss, Hans-Henning

    2014-04-01

    We present a detailed investigation of the electronic phase diagram of effectively charge compensated Ba1-xKx(Fe1-yCoy)2As2 with x /2≈y. Our experimental study by means of x-ray diffraction, Mössbauer spectroscopy, muon spin relaxation and ac-susceptibility measurements on polycrystalline samples is complemented by density functional electronic structure calculations. For low substitution levels of x /2≈y≤0.13, the system displays an orthorhombically distorted and antiferromagnetically ordered ground state. The low-temperature structural and magnetic order parameters are successively reduced with increasing substitution level. We observe a linear relationship between the structural and the magnetic order parameter as a function of temperature and substitution level for x /2≈y≤0.13. At intermediate substitution levels in the range between 0.13 and 0.19, we find superconductivity with a maximum Tc of 15 K coexisting with static magnetic order on a microscopic length scale. For higher substitution levels x /2≈y≥0.25, a tetragonal nonmagnetic ground state is observed. Our DFT calculations yield a significant reduction of the Fe 3d density of states at the Fermi energy and a strong suppression of the ordered magnetic moment in excellent agreement with experimental results. The appearance of superconductivity within the antiferromagnetic state can by explained by the introduction of disorder due to nonmagnetic impurities to a system with a constant charge carrier density.

  11. New Wine in Old Flasks: A New Solution of the Clapeyron Equation

    ERIC Educational Resources Information Center

    Shilo, Doron; Ghez, Richard

    2008-01-01

    The coexisting equilibrium states between single-component gas and condensed phases (liquid or solid) are often calculated by assuming that the condensed phase's molar volume is negligible in comparison with the gas's. Here, we present an analytic solution of Clapeyron's equation when this assumption is relaxed. It differs substantially from…

  12. Water in Inhomogeneous Nanoconfinement: Coexistence of Multilayered Liquid and Transition to Ice Nanoribbons.

    PubMed

    Qiu, Hu; Zeng, Xiao Cheng; Guo, Wanlin

    2015-10-27

    Phase behavior and the associated phase transition of water within inhomogeneous nanoconfinement are investigated using molecular dynamics simulations. The nanoconfinement is constructed by a flat bottom plate and a convex top plate. At 300 K, the confined water can be viewed as a coexistence of monolayer, bilayer, and trilayer liquid domains to accommodate the inhomogeneous confinement. With increasing liquid density, the confined water with uneven layers transforms separately into two-dimensional ice crystals with unchanged layer number and rhombic in-plane symmetry for oxygen atoms. The monolayer water undergoes the transition first into a puckered ice nanoribbon, and the bilayer water transforms into a rhombic ice nanoribbon next, followed by the transition of trilayer water into a trilayer ice nanoribbon. The sequential localized liquid-to-solid transition within the inhomogeneous confinement can also be achieved by gradually decreasing the temperature at low liquid densities. These findings of phase behaviors of water under the inhomogeneous nanoconfinement not only extend the phase diagram of confined water but also have implications for realistic nanofluidic systems and microporous materials.

  13. Chevrons, filaments, spinning clusters and phase coexistence: emergent dynamics of 2- and 3-d particle suspensions driven by multiaxial magnetic fields

    DOE PAGES

    Solis, Kyle J.; Martin, James E.

    2017-07-06

    In recent years a rich variety of emergent phenomena have been observed when suspensions of magnetic particles are subjected to alternating magnetic fields. These particle assemblies often exhibit vigorous dynamics due to the injection of energy from the field. These include surface and interface phenomena, such as highly organized, segmented “snakes” that can be induced to swim by structural symmetry breaking, and “asters” and “anti-asters,” particle assemblies that can be manipulated to capture and transport cargo. In bulk suspensions of magnetic platelets subjected to multiaxial alternating fields, advection lattices and even vortex lattices have been created, and a variety ofmore » biomimetic dynamics – serpents, bees and amoebas – have been discovered in magnetic fluids suspended in an immiscible liquid. In this paper several new driven phases are presented, including flying chevrons, dense spinning clusters, filaments, and examples of phase coexistence in driven phases. These observations broaden the growing field of driven magnetic suspensions and present new challenges to those interested in simulating the dynamics of these complex systems.« less

  14. The critical behavior of the refractive index near liquid-liquid critical points.

    PubMed

    Losada-Pérez, Patricia; Glorieux, Christ; Thoen, Jan

    2012-04-14

    The nature of the critical behavior in the refractive index n is revisited in the framework of the complete scaling formulation. A comparison is made with the critical behavior of n as derived from the Lorentz-Lorenz equation. Analogue anomalies to those predicted for the dielectric constant ε, namely, a leading |t|(2β) singularity in the coexistence-curve diameter in the two-phase region and a |t|(1-α) along the critical isopleth in the one phase region, are expected in both cases. However, significant differences as regards the amplitudes of both singularities are obtained from the two approaches. Analysis of some literature data along coexistence in the two-phase region and along the critical isopleth in the one-phase region provide evidence of an intrinsic effect, independent of the density, in the critical anomalies of n. This effect is governed by the shift of the critical temperature with an electric field, which is supposed to take smaller values at optical frequencies than at low frequencies in the Hz to MHz range.

  15. The Association between Psychiatric Comorbidities and Outcomes for Inpatients with Traumatic Brain Injury.

    PubMed

    Brandel, Michael G; Hirshman, Brian R; McCutcheon, Brandon A; Tringale, Kathryn; Carroll, Kate; Richtand, Neil M; Perry, William; Chen, Clark C; Carter, Bob S

    2017-03-01

    It is well established that traumatic brain injury (TBI) is associated with the development of psychiatric disorders. However, the impact of psychiatric disorders on TBI outcome is less well understood. We examined the outcomes of patients who experienced a traumatic subdural hemorrhage and whether a comorbid psychiatric disorder was associated with a change in outcome. A retrospective observational study was performed in the California Office of Statewide Health Planning and Development (OSHPD) and the Nationwide Inpatient Sample (NIS). Patients hospitalized for acute subdural hemorrhage were identified using International Classification of Diseases, Ninth Revision (ICD-9) diagnosis codes. Patients with coexisting psychiatric diagnoses were identified. Outcomes studied included mortality and adverse discharge disposition. In OSPHD, diagnoses of depression (OR = 0.64, p < 0.001), bipolar disorder (OR = 0.45, p < 0.05), and anxiety (OR = 0.37, p < 0.001) were associated with reduced mortality during hospitalization for TBI, with a trend toward psychosis (OR = 0.56, p = 0.08). Schizophrenia had no effect. Diagnoses of psychosis (OR = 2.12, p < 0.001) and schizophrenia (OR = 2.60, p < 0.001) were associated with increased adverse discharge. Depression and bipolar disorder had no effect, and anxiety was associated with reduced adverse discharge (OR = 0.73, p = 0.01). Results were confirmed using the NIS. Analysis revealed novel associations between coexisting psychiatric diagnoses and TBI outcomes, with some subgroups having decreased mortality and increased adverse discharge. Potential mechanisms include pharmacological effects of frequently prescribed psychiatric medications, the pathophysiology of individual psychiatric disorders, or under-coding of psychiatric illness in the most severely injured patients. Because pharmacological mechanisms, if validated, might lead to improved outcome in TBI patients, further studies may provide significant public health benefit.

  16. Obsessive-compulsive personality disorder and behavioral disinhibition.

    PubMed

    Villemarette-Pittman, Nicole R; Stanford, Matthew S; Greve, Kevin W; Houston, Rebecca J; Mathias, Charles W

    2004-01-01

    Although obsessive-compulsive personality disorder (OCPD) is an Axis II diagnosis that is not commonly associated with behavioral disinhibition, the literature contains reports of occasional explosive aggressive outbursts. Existing explanations of OCPD etiology do not address the coexistence of compulsive and impulsive features witnessed in some subpopulations of patients. In this study, the authors present a compensatory theory of OCPD in an effort to explain clinical observations of an unexpectedly large number of OCPD diagnoses among patients clinic referred and self-referred for aggression problems.

  17. Grand-canonical solution of semiflexible self-avoiding trails on the Bethe lattice.

    PubMed

    Dantas, W G; Oliveira, Tiago J; Stilck, Jürgen F; Prellberg, Thomas

    2017-02-01

    We consider a model of semiflexible interacting self-avoiding trails (sISATs) on a lattice, where the walks are constrained to visit each lattice edge at most once. Such models have been studied as an alternative to the self-attracting self-avoiding walks (SASAWs) to investigate the collapse transition of polymers, with the attractive interactions being on site as opposed to nearest-neighbor interactions in SASAWs. The grand-canonical version of the sISAT model is solved on a four-coordinated Bethe lattice, and four phases appear: non-polymerized (NP), regular polymerized (P), dense polymerized (DP), and anisotropic nematic (AN), the last one present in the phase diagram only for sufficiently stiff chains. The last two phases are dense, in the sense that all lattice sites are visited once in the AN phase and twice in the DP phase. In general, critical NP-P and DP-P transition surfaces meet with a NP-DP coexistence surface at a line of bicritical points. The region in which the AN phase is stable is limited by a discontinuous critical transition to the P phase, and we study this somewhat unusual transition in some detail. In the limit of rods, where the chains are totally rigid, the P phase is absent and the three coexistence lines (NP-AN, AN-DP, and NP-DP) meet at a triple point, which is the endpoint of the bicritical line.

  18. Fluorescence, polarized fluorescence, and Brewster angle microscopy of palmitic acid and lung surfactant protein B monolayers.

    PubMed Central

    Lipp, M M; Lee, K Y; Waring, A; Zasadzinski, J A

    1997-01-01

    Fluorescence, polarized fluorescence, and Brewster angle microscopy reveal that human lung surfactant protein SP-B and its amino terminus (SP-B[1-25]) alter the phase behavior of palmitic acid monolayers by inhibiting the formation of condensed phases and creating a new fluid protein-rich phase. This fluid phase forms a network that separates condensed phase domains at coexistence and persists to high surface pressures. The network changes the monolayer collapse mechanism from heterogeneous nucleation/growth and fracturing processes to a more homogeneous process through isolating individual condensed phase domains. This results in higher surface pressures at collapse, and monolayers easier to respread on expansion, factors essential to the in vivo function of lung surfactant. The network is stabilized by a low-line tension between the coexisting phases, as confirmed by the observation of extended linear domains, or "stripe" phases, and a Gouy-Chapman analysis of protein-containing monolayers. Comparison of isotherm data and observed morphologies of monolayers containing SP-B(1-25) with those containing the full SP-B sequence show that the shortened peptide retains most of the native activity of the full-length protein, which may lead to cheaper and more effective synthetic replacement formulations. Images FIGURE 1 FIGURE 3 FIGURE 4 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 10 PMID:9168053

  19. Ferroelastic domain structure and phase transition in single-crystalline [PbZn 1/3Nb 2/3O 3] 1-x[PbTiO 3] x observed via in situ x-ray microbeam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tao; Du, Zehui; Tamura, Nobumichi

    (1-x)Pb(Zn 1/3Nb 2/3)O 3-xPbTiO 3 ((1-x)PZN-xPT in short) is one of the most important piezoelectric materials. In this study, we extensively investigated (1-x)PZN-xPT (x = 0.07–0.11) ferroelectric single crystals using in-situ synchrotron μXRD, complemented by TEM and PFM, to correlate microstructures with phase transitions. The results reveal that (i) at 25°C, the equilibrium state of (1-x)PZN-xPT is a metastable orthorhombic phase for x = 0.07 and 0.08, while it shows coexistence of orthorhombic and tetragonal phases for x = 0.09 and x = 0.11, with all ferroelectric phases accompanied by ferroelastic domains; (ii) upon heating, the phase transformation in xmore » = 0.07 is Orthorhombic → Monoclinic → Tetragonal → Cubic. The coexistence of ferroelectric tetragonal and paraelectric cubic phases was in-situ observed in x = 0.08 above Curie temperature (T C), and (iii) phase transition can be explained by the evolution of the ferroelectric and ferroelastic domains. These results disclose that (1-x)PZN-xPT are in an unstable regime, which is possible factor for its anomalous dielectric response and high piezoelectric coefficient.« less

  20. Ferroelastic domain structure and phase transition in single-crystalline [PbZn 1/3Nb 2/3O 3] 1-x[PbTiO 3] x observed via in situ x-ray microbeam

    DOE PAGES

    Li, Tao; Du, Zehui; Tamura, Nobumichi; ...

    2017-11-10

    (1-x)Pb(Zn 1/3Nb 2/3)O 3-xPbTiO 3 ((1-x)PZN-xPT in short) is one of the most important piezoelectric materials. In this study, we extensively investigated (1-x)PZN-xPT (x = 0.07–0.11) ferroelectric single crystals using in-situ synchrotron μXRD, complemented by TEM and PFM, to correlate microstructures with phase transitions. The results reveal that (i) at 25°C, the equilibrium state of (1-x)PZN-xPT is a metastable orthorhombic phase for x = 0.07 and 0.08, while it shows coexistence of orthorhombic and tetragonal phases for x = 0.09 and x = 0.11, with all ferroelectric phases accompanied by ferroelastic domains; (ii) upon heating, the phase transformation in xmore » = 0.07 is Orthorhombic → Monoclinic → Tetragonal → Cubic. The coexistence of ferroelectric tetragonal and paraelectric cubic phases was in-situ observed in x = 0.08 above Curie temperature (T C), and (iii) phase transition can be explained by the evolution of the ferroelectric and ferroelastic domains. These results disclose that (1-x)PZN-xPT are in an unstable regime, which is possible factor for its anomalous dielectric response and high piezoelectric coefficient.« less

  1. Time scales of supercooled water and implications for reversible polyamorphism

    NASA Astrophysics Data System (ADS)

    Limmer, David T.; Chandler, David

    2015-09-01

    Deeply supercooled water exhibits complex dynamics with large density fluctuations, ice coarsening and characteristic time scales extending from picoseconds to milliseconds. Here, we discuss implications of these time scales as they pertain to two-phase coexistence and to molecular simulations of supercooled water. Specifically, we argue that it is possible to discount liquid-liquid criticality because the time scales imply that correlation lengths for such behaviour would be bounded by no more than a few nanometres. Similarly, it is possible to discount two-liquid coexistence because the time scales imply a bounded interfacial free energy that cannot grow in proportion to a macroscopic surface area. From time scales alone, therefore, we see that coexisting domains of differing density in supercooled water can be no more than nanoscale transient fluctuations.

  2. Oxygen miscibility gap and spin glass formation in the pyrochlore Lu{sub 2}Mo{sub 2}O{sub 7}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, L.; Ritter, C.; Harrison, A.

    2013-07-15

    Rare earth (R) molybdate pyrochlores, R{sub 2}Mo{sub 2}O{sub 7}, are of interest as frustrated magnets. Polycrystalline samples of Lu{sub 2}Mo{sub 2}O{sub 7−x} prepared at 1600 °C display a coexistence of cubic pyrochlore phases. Rietveld fits to powder neutron diffraction data and chemical analyses show that the miscibility gap is between a stoichiometric x=0 and an oxygen-deficient x≈0.4 phase. Lu{sub 2}Mo{sub 2}O{sub 7} behaves as a spin glass material, with a divergence of field cooled and zero field cooled DC magnetic susceptibilities at a spin freezing temperature T{sub f}=16 K, that varies with frequency in AC measurements following a Vogel–Fulcher law.more » Lu{sub 2}Mo{sub 2}O{sub 6.6} is more highly frustrated spin glass and has T{sub f}=20 K. - Graphical abstract: The cubic Lu{sub 2}Mo{sub 2}O{sub 7−x} system exhibits a miscibility gap between coexisting pyrochlore phases at 1600 °C. Neutron powder diffraction refinement and chemical analysis shows that the gap separates stoichiometric x=0 and oxygen-deficient x≈0.4 phases. Lu{sub 2}Mo{sub 2}O{sub 7−x} has a frustrated spin glass ground state that is sensitive to the oxygen content. - Highlights: • The cubic Lu{sub 2}Mo{sub 2}O{sub 7−x} system has a miscibility gap between coexisting pyrochlore phases at 1600 °C. • Neutron powder diffraction shows that the gap separates x=0 and oxygen-deficient x≈0.4 phases. • Lu{sub 2}Mo{sub 2}O{sub 7−x} has a frustrated spin glass ground state that is sensitive to the oxygen content.« less

  3. Evaluation of the grand-canonical partition function using expanded Wang-Landau simulations. IV. Performance of many-body force fields and tight-binding schemes for the fluid phases of silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desgranges, Caroline; Delhommelle, Jerome

    We extend Expanded Wang-Landau (EWL) simulations beyond classical systems and develop the EWL method for systems modeled with a tight-binding Hamiltonian. We then apply the method to determine the partition function and thus all thermodynamic properties, including the Gibbs free energy and entropy, of the fluid phases of Si. We compare the results from quantum many-body (QMB) tight binding models, which explicitly calculate the overlap between the atomic orbitals of neighboring atoms, to those obtained with classical many-body (CMB) force fields, which allow to recover the tetrahedral organization in condensed phases of Si through, e.g., a repulsive 3-body term thatmore » favors the ideal tetrahedral angle. Along the vapor-liquid coexistence, between 3000 K and 6000 K, the densities for the two coexisting phases are found to vary significantly (by 5 orders of magnitude for the vapor and by up to 25% for the liquid) and to provide a stringent test of the models. Transitions from vapor to liquid are predicted to occur for chemical potentials that are 10%–15% higher for CMB models than for QMB models, and a ranking of the force fields is provided by comparing the predictions for the vapor pressure to the experimental data. QMB models also reveal the formation of a gap in the electronic density of states of the coexisting liquid at high temperatures. Subjecting Si to a nanoscopic confinement has a dramatic effect on the phase diagram with, e.g. at 6000 K, a decrease in liquid densities by about 50% for both CMB and QMB models and an increase in vapor densities between 90% (CMB) and 170% (QMB). The results presented here provide a full picture of the impact of the strategy (CMB or QMB) chosen to model many-body effects on the thermodynamic properties of the fluid phases of Si.« less

  4. Brief Behavioral Therapy for Pediatric Anxiety and Depression: Piloting an Integrated Treatment Approach

    ERIC Educational Resources Information Center

    Weersing, V. Robin; Gonzalez, Araceli; Campo, John V.; Lucas, Amanda N.

    2008-01-01

    Mood and anxiety disorders in youth are disabling, distressing, and prevalent. Furthermore, depression and anxiety frequently co-exist, may share several etiological factors, and respond to similar interventions. In this paper, we report preliminary results from a treatment adaptation project designed to condense existing cognitive behavioral…

  5. Arithmetic Facts Storage Deficit: The Hypersensitivity-to-Interference in Memory Hypothesis

    ERIC Educational Resources Information Center

    De Visscher, Alice; Noël, Marie-Pascale

    2014-01-01

    Dyscalculia, or mathematics learning disorders, is currently known to be heterogeneous (Wilson & Dehaene, 2007). While various profiles of dyscalculia coexist, a general and persistent hallmark of this math learning disability is the difficulty in memorizing arithmetic facts (Geary, Hoard & Hamson, 1999; Jordan & Montani, 1997; Slade…

  6. Testing the Robustness of the Diagnostic Overshadowing Bias.

    ERIC Educational Resources Information Center

    Spengler, Paul M.; And Others

    1990-01-01

    The diagnostic overshadowing bias (tendency for a diagnosis of mental retardation to overshadow a coexisting psychopathological disorder) was examined with 57 rehabilitation counselors. Diagnostic overshadowing was found with individuals with an intelligence quotient (IQ) of 58 but not with those having IQs of 70 to 80. Counselor experience with…

  7. HIV and Communication

    ERIC Educational Resources Information Center

    McNeilly, L.G.

    2005-01-01

    The human immunodeficiency virus (HIV) continues to plague many countries across the globe, including the United States, Africa, China and India. Children and adults have been infected with HIV, and both populations can present with communication disorders that coexist with the presence of the virus. The purpose of this paper is to present an…

  8. Sensational Stars with Autism

    ERIC Educational Resources Information Center

    Simmons, Karen; Miller, Lucy Jane

    2008-01-01

    Sensory processing refers to the way the brain takes incoming sensory messages, converts them into meaningful messages, then makes a response. If the responses are disorganized or inappropriate given the sensory input, sensory processing disorder (SPD) may co-exist with autism. If a child has an occasional atypical response to sensation, he or she…

  9. Electrophysiological Correlates of Semantic Processing in Williams Syndrome

    ERIC Educational Resources Information Center

    Pinheiro, Ana P.; Galdo-Alvarez, Santaigo; Sampaio, Adriana; Niznikiewicz, Margaret; Goncalves, Oscar F.

    2010-01-01

    Williams syndrome (WS), a genetic neurodevelopmental disorder due to microdeletion in chromosome 7, has been described as a syndrome with an intriguing socio-cognitive phenotype. Cognitively, the relative preservation of language and face processing abilities coexists with severe deficits in visual-spatial tasks, as well as in tasks involving…

  10. A snapshot of mantle metasomatism: Trace element analysis of coexisting fluid (LA-ICP-MS) and silicate (SIMS) inclusions in fibrous diamonds

    NASA Astrophysics Data System (ADS)

    Tomlinson, E. L.; Müller, W.; EIMF

    2009-03-01

    We have determined the trace element compositions of coexisting fluid (carbonate-K-chloride-H 2O) and single-phase mineral inclusions in peridotitic (Cr-diopside) and eclogitic (omphacite, garnet) inclusions in fibrous diamonds from the Panda kimberlite (Slave craton, Canada). These diamonds provide a unique insight into the nature of the metasomatic agent, the metasomatised minerals and the pre-metasomatic protolith. The fluid component is strongly enriched in light rare earth elements (LREE) and large ion lithophile elements (LILE). Co-existing peridotitic minerals record a melt extraction event (high Cr and Ni) in the protolith prior to the influx of the trapped metasomatic fluid. The silicate minerals are also strongly enriched in LREE. Calculated partition coefficients agree with experimentally determined values in the literature, despite the complex composition of the natural fluid. This indicates that the minerals have re-equilibrated with the metasomatic fluid. The trace element compositions of the mineral inclusions are comparable to many equivalent phases in monocrystalline diamonds. This suggests that the metasomatic fluid and the process recorded in these samples may also be responsible for the growth of some types of monocrystalline diamonds.

  11. Magnetisation studies of phase co-existence in Gd{sub 1-x}Ca{sub x}BaCo{sub 2}O{sub 5.5}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thirumurugan, N.; Bharathi, A., E-mail: bharathi@igcar.gov.in; Arulraj, A.

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer The series Gd{sub 1-x}Ca{sub x}BaCo{sub 2}O{sub 5.5} was synthesised by solid state reaction. Black-Right-Pointing-Pointer Magnetisation studies were carried out in the 4-300 K temperature range in magnetic fields upto 16 Tesla. Black-Right-Pointing-Pointer Results were used to formulate the T versus Ca fraction, phase diagram. Black-Right-Pointing-Pointer Evidence for Magnet-electronic phase separation is shown for the first time in the compound. -- Abstract: Magnetic properties of hole doped, oxygen deficient double perovskite compounds, Gd{sub 1-x}Ca{sub x}BaCo{sub 2}O{sub 5.5}, have been investigated. Ferromagnetic transition temperatures increase and the anti-ferromagnetic transition temperatures decrease with Ca substitution leading to stabilisation of ferromagnetisim formore » x {>=} 0.05. A detailed study of the ferromagnetic phase indicates the presence of double hysterisis loops for Ca fractions, 0.05 {<=} x {<=} 0.2 in the 50-200 K temperature range, suggestive of the co-existence of two ferromagnetic phases with different co-ercivities. Based on the magnetisation and transport measurements a phase diagram is proposed for Ca doped GdBaCo{sub 2}O{sub 5.5}.« less

  12. Influence of the sintering temperature on the electrical properties of Ce-doped WO3 ceramics prepared from nano-powders

    NASA Astrophysics Data System (ADS)

    Dong, Liang; Chen, Han-Jun; Wang, Yu; Li, De-Zhu; Li, Tong-Ye; Zhao, Yong

    2007-04-01

    Using a nm-level powder fabricated by a wet chemical method as precursor, the CeO2-doped WO3 ceramics were prepared by the conventional solid state reaction at sintering temperatures from 600 to 1100 °C. The x-ray diffraction analysis reveals the coexistence of different WO3 phases in the samples sintered at temperatures below 900 °C, whereas a single phase appears in the samples sintered above 1000 °C. No new Ce-W compound appears. As the sintering temperature increases, the electrical properties of the samples display an interesting transformation from linear to nonlinear behaviour. The measurements of scanning electron microscope, complex impedance and electrical stability indicate that a lot of grain boundary regions in the samples sintered at low temperatures strongly influences the electrical transportation. Therefore, the electrical nonlinearity is due to a basic process controlled by the back-to-back Schottky barriers at grain boundaries with suitable thickness as well as the coexistence of phases.

  13. Alite-ye'elimite cement: Synthesis and mineralogical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Suhua; Snellings, Ruben; Li, Xuerun

    2013-03-15

    Alite-ye'elimite cement is an alternative cement that combines desirable characteristics of calcium sulfoaluminate cements and Portland cement in that it shows improved strength development at early age while retaining high portlandite contents. The key problem in the clinkering process is to produce the alite-ye'elimite phase assemblage so that both phases can co-exist. In this study, a new synthesis method is proposed to achieve the coexistence of alite and ye'elimite consisting of a secondary heat treatment step at 1250 °C after regular Portland clinker firing at 1450 °C. Quantitative X-ray powder diffraction and electron microscopy were used to analyze the phasemore » composition of clinker before and after the secondary heat treatment. The results show that ye'elimite develops during secondary heat treatment of calcium sulphate enriched clinker by reaction of C{sub 3}A and sulphate phases. Additional ferrite is formed as result of rejection of Fe originally in solid solution with C{sub 3}A during ye'elimite formation.« less

  14. Evidence for Coexistence of Bulk Superconductivity and Itinerant Antiferromagnetism in the Heavy Fermion System CeCo(In1−xCdx)5

    PubMed Central

    Howald, Ludovic; Stilp, Evelyn; de Réotier, Pierre Dalmas; Yaouanc, Alain; Raymond, Stéphane; Piamonteze, Cinthia; Lapertot, Gérard; Baines, Christopher; Keller, Hugo

    2015-01-01

    In the generic phase diagram of heavy fermion systems, tuning an external parameter such as hydrostatic or chemical pressure modifies the superconducting transition temperature. The superconducting phase forms a dome in the temperature—tuning parameter phase diagram, which is associated with a maximum of the superconducting pairing interaction. Proximity to antiferromagnetism suggests a relation between the disappearance of antiferromagnetic order and superconductivity. We combine muon spin rotation, neutron scattering, and x-ray absorption spectroscopy techniques to gain access to the magnetic and electronic structure of CeCo(In1−xCdx)5 at different time scales. Different magnetic structures are obtained that indicate a magnetic order of itinerant character, coexisting with bulk superconductivity. The suppression of the antiferromagnetic order appears to be driven by a modification of the bandwidth/carrier concentration, implying that the electronic structure and consequently the interplay of superconductivity and magnetism is strongly affected by hydrostatic and chemical pressure. PMID:26224422

  15. Giant Piezoelectricity and High Curie Temperature in Nanostructured Alkali Niobate Lead-Free Piezoceramics through Phase Coexistence.

    PubMed

    Wu, Bo; Wu, Haijun; Wu, Jiagang; Xiao, Dingquan; Zhu, Jianguo; Pennycook, Stephen J

    2016-11-30

    Because of growing environmental concerns, the development of lead-free piezoelectric materials with enhanced properties has become of great interest. Here, we report a giant piezoelectric coefficient (d 33 ) of 550 pC/N and a high Curie temperature (T C ) of 237 °C in (1-x-y)K 1-w Na w Nb 1-z Sb z O 3- xBiFeO 3- yBi 0.5 Na 0.5 ZrO 3 (KN w NS z -xBF-yBNZ) ceramics by optimizing x, y, z, and w. Atomic-resolution polarization mapping by Z-contrast imaging reveals the intimate coexistence of rhombohedral (R) and tetragonal (T) phases inside nanodomains, that is, a structural origin for the R-T phase boundary in the present KNN system. Hence, the physical origin of high piezoelectric performance can be attributed to a nearly vanishing polarization anisotropy and thus low domain wall energy, facilitating easy polarization rotation between different states under an external field.

  16. Mesoscopic superconductivity and high spin polarization coexisting at metallic point contacts on Weyl semimetal TaAs

    PubMed Central

    Aggarwal, Leena; Gayen, Sirshendu; Das, Shekhar; Kumar, Ritesh; Süß, Vicky; Felser, Claudia; Shekhar, Chandra; Sheet, Goutam

    2017-01-01

    A Weyl semimetal is a topologically non-trivial phase of matter that hosts mass-less Weyl fermions, the particles that remained elusive for more than 80 years since their theoretical discovery. The Weyl semimetals exhibit unique transport properties and remarkably high surface spin polarization. Here we show that a mesoscopic superconducting phase with critical temperature Tc=7 K can be realized by forming metallic point contacts with silver (Ag) on single crystals of TaAs, while neither Ag nor TaAs are superconductors. Andreev reflection spectroscopy of such point contacts reveals a superconducting gap of 1.2 meV that coexists with a high transport spin polarization of 60% indicating a highly spin-polarized supercurrent flowing through the point contacts on TaAs. Therefore, apart from the discovery of a novel mesoscopic superconducting phase, our results also show that the point contacts on Weyl semimetals are potentially important for applications in spintronics. PMID:28071685

  17. Prevalence of causes of insomnia in primary care: a cross-sectional study

    PubMed Central

    Arroll, Bruce; Fernando, Antonio; Falloon, Karen; Goodyear-Smith, Felicity; Samaranayake, Chinthaka; Warman, Guy

    2012-01-01

    Background As a result of a research interest in primary insomnia, the prevalence of other causes of insomnia in primary care must be ascertained. No source was found in the literature. It is also essential to know the epidemiology of the common causes of a condition to make an accurate diagnosis in primary care. Aim To determine the prevalence of causes of insomnia in primary care, as part of a method of identifying patients with primary insomnia. Design and setting Cross-sectional study in three general practices in Auckland, New Zealand. Method Consecutive patients from the waiting room were asked to complete a nine-page questionnaire on possible causes of insomnia. Results In total, 1517 patients were approached and 955 completed the nine-page questionnaire (63%). Of the 41% (388) who reported difficulty with sleeping, primary insomnia occurred in 12% (45) of the population (95% confidence interval = 9% to 15%); 50% (195) had depression, 48% (185) had anxiety and 43% (165) had general (physical) health problems. Obstructive sleep apnoea occurred in 9% (34) and delayed sleep phase disorder in 2% (7). Only primary insomnia and delayed sleep phase disorder are mutually exclusive; the others can co-exist. Conclusion This is the first description of the prevalence of causes of insomnia in primary care. It is hoped that the focus on primary insomnia will result in more behavioural treatments and lower the use of hypnotics in primary care; it should also assist in the appropriate detection and treatment of other causes of insomnia in primary care. PMID:22520782

  18. Management of "dual diagnosis" patients : consensus, controversies and considerations.

    PubMed

    Basu, D; Gupta, N

    2000-01-01

    The term 'dual diagnosis' denotes the coexistence of substance use disorder(s) and other, non-substance-use, psychiatric disorder(s). The last two decades, and especially the 1990s, have witnessed tremendous research and clinical interest in this previously neglected area. India, however, lags behind, inspite of indications that the problem exists here too. The current approach to managing such patients is the 'integrated treatment model' in which the same clinician (or team of clinicians) provides treatment for both the disorders at the same time, treating both with equal understanding and importance. Both pharmacotherapy as well as psychosocial therapies are specifically designed keeping in mind the 'integrated' philosophy of treatment. The specific principles and components are described Areas of difficulty, uncertainty, and future considerations are highlighted, with a note on the Indian setting.

  19. Overlap between functional GI disorders and other functional syndromes: what are the underlying mechanisms?

    PubMed Central

    KIM, S. E.; CHANG, L.

    2013-01-01

    Background Irritable bowel syndrome and other gastrointestinal (GI) and non-GI disorders such as functional dyspepsia, fibromyalgia, temporomandibular joint disorder, interstitial cystitis/painful bladder syndrome, and chronic fatigue syndrome are known as functional pain syndromes. They commonly coexist within the same individual. The pathophysiologic mechanisms of these disorders are not well understood, but it has been hypothesized that they share a common pathogenesis. Purpose The objective of this review is to discuss the proposed pathophysiologic mechanisms, which have been similarly studied in these conditions. These mechanisms include enhanced pain perception, altered regional brain activation, infectious etiologies, dysregulations in immune and neuroendocrine function, and genetic susceptibility. Studies suggest that these functional disorders are multifactorial, but factors which increase the vulnerability of developing these conditions are shared. PMID:22863120

  20. Treatment of personality disorder.

    PubMed

    Bateman, Anthony W; Gunderson, John; Mulder, Roger

    2015-02-21

    The evidence base for the effective treatment of personality disorders is insufficient. Most of the existing evidence on personality disorder is for the treatment of borderline personality disorder, but even this is limited by the small sample sizes and short follow-up in clinical trials, the wide range of core outcome measures used by studies, and poor control of coexisting psychopathology. Psychological or psychosocial intervention is recommended as the primary treatment for borderline personality disorder and pharmacotherapy is only advised as an adjunctive treatment. The amount of research about the underlying, abnormal, psychological or biological processes leading to the manifestation of a disordered personality is increasing, which could lead to more effective interventions. The synergistic or antagonistic interaction of psychotherapies and drugs for treating personality disorder should be studied in conjunction with their mechanisms of change throughout the development of each. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. CEREBRAL BLOOD FLOW AND METABOLISM IN ANXIETY AND ANXIETY DISORDERS

    PubMed Central

    Mathew, Roy J.

    1994-01-01

    Anxiety disorders are some of the commonest psychiatric disorders and anxiety commonly co-exists with other psychiatric conditions. Anxiety can also be a normal emotion. Thus, study of the neurobiological effects of anxiety is of considerable significance. In the normal brain, cerebral blood flow (CBF) and metabolism (CMR) serve as indices of brain function. CBF/CMR research is expected to provide new insight into alterations in brain function in anxiety disorders and other psychiatric disorders. Possible associations between stress I anxiety I panic and cerebral ischemia I stroke give additional significance to the effects of anxiety on CBF. With the advent of non-invasive techniques, study of CBF/CMR in anxiety disorders became easier. A large numbers of research reports are available on the effects of stress, anxiety and panic on CBF/CMR in normals and anxiety disorder patients. This article reviews the available human research on this topic. PMID:21743685

  2. Trauma exposure and PTSD in women with schizophrenia and coexisting substance use disorders: comparisons to women with severe depression and substance use disorders.

    PubMed

    Aakre, Jennifer M; Brown, Clayton H; Benson, Kathleen M; Drapalski, Amy L; Gearon, Jean S

    2014-12-30

    The present study compared rates of trauma exposure and PTSD among three groups of women at high trauma risk: those with substance use disorders (SUD) and schizophrenia (n=42), those with SUD and severe, nonpsychotic depression (n=38), and those with SUD and no other DSM-IV Axis I condition (n=37). We hypothesized that exposure to traumatic stressors and current diagnosis of PTSD would be more common in women with schizophrenia and SUD, when compared to the other two groups. Results indicate that women with schizophrenia and SUD had a more extensive trauma history than women with SUD only, and were also more likely to have PTSD. Women with schizophrenia had a fourfold greater likelihood of meeting criteria for current PTSD than were women with severe, nonpsychotic depression when potential confounds of age, race, education, severity of trauma history, and childhood trauma exposure were controlled. These results lend support to the possibility that women with psychosis have an elevated vulnerability to PTSD symptomology when exposed to life stressors that is distinct from the vulnerability associated with coexisting nonpsychotic SMI. The psychological sequelae of trauma are substantial and should be addressed in women seeking treatment for schizophrenia and problematic substance use.

  3. A case of seropositive Neuromyelitis Optica in a paediatric patient with co-existing acute nephrotic syndrome.

    PubMed

    Volkman, Thomas; Hemingway, Cheryl

    2017-11-01

    Neuromyelitis optica (NMO) and NMO spectrum disorder (NMOSD) is a rare relapsing autoimmune disease of the central nervous system constituting less than 1% of demyelinating diseases (Jeffery and Buncic, 1996). It preferentially affects the optic nerves and spinal cord, with the brain parenchyma generally spared. Demyelinating lesions are characterised by longitudinally extensive transverse myelitis (LETM) and often longitudinally extensive optic neuritis. Following the discovery of a novel pathogenic antibody, Aquaporin 4 in 2004 (Lennon et al., 2004) this disease has been seen as a separate entity from Multiple Sclerosis (MS). We report the case of a severe AQP4 IgG case of NMO in a 10 year old child. This case unusually had a coexisting diagnosis of acute nephrotic syndrome which has only been reported once previously in the literature 2 . This article will examine some of the treatment challenges and the spectrum of co-existing autoimmune disease in NMOSD. Copyright © 2017. Published by Elsevier B.V.

  4. Phase behavior of Langmuir monolayers with ionic molecular heads: Molecular simulations

    NASA Astrophysics Data System (ADS)

    González-Castro, Carlos A.; Ramírez-Santiago, Guillermo

    2015-03-01

    We carried out Monte Carlo simulations in the N ,Π,T ensemble of a Langmuir monolayer coarse-grained molecular model. Considering that the hydrophilic groups can be ionized by modulating acid-base interactions, here we study the phase behavior of a model that incorporates the short-range steric and long-range ionic interactions. The simulations were carried out in the reduced temperature range 0.1 ≤T*<4.0 , where there is a competition of these interactions. Different order parameters were calculated and analyzed for several values of the reduced surface pressure in the interval, 1 ≤Π*≤40. For most of the surface pressures two directions of molecular tilt were found: (i) towards the nearest neighbor (NN) at low temperatures, T*<0.7, and most of the values of Π* and (ii) towards next-nearest neighbors (NNN) in the temperature interval 0.7 ≤T*<1.1 for Π*<25. We also found the coexistence of the NN and NNN at intermediate temperatures and Π*>25 . A low-temperature reentrant disorder-order-disorder transition in the positions of the molecular heads and in the collective tilt of the tails was found for all the surface pressure values. It was also found that the molecular tails arranged forming "rotating patterns" in the temperature interval, 0.5

  5. Effect of neurosteroids on a model lipid bilayer including cholesterol: An Atomic Force Microscopy study.

    PubMed

    Sacchi, Mattia; Balleza, Daniel; Vena, Giulia; Puia, Giulia; Facci, Paolo; Alessandrini, Andrea

    2015-05-01

    Amphiphilic molecules which have a biological effect on specific membrane proteins, could also affect lipid bilayer properties possibly resulting in a modulation of the overall membrane behavior. In light of this consideration, it is important to study the possible effects of amphiphilic molecule of pharmacological interest on model systems which recapitulate some of the main properties of the biological plasma membranes. In this work we studied the effect of a neurosteroid, Allopregnanolone (3α,5α-tetrahydroprogesterone or Allo), on a model bilayer composed by the ternary lipid mixture DOPC/bSM/chol. We chose ternary mixtures which present, at room temperature, a phase coexistence of liquid ordered (Lo) and liquid disordered (Ld) domains and which reside near to a critical point. We found that Allo, which is able to strongly partition in the lipid bilayer, induces a marked increase in the bilayer area and modifies the relative proportion of the two phases favoring the Ld phase. We also found that the neurosteroid shifts the miscibility temperature to higher values in a way similarly to what happens when the cholesterol concentration is decreased. Interestingly, an isoform of Allo, isoAllopregnanolone (3β,5α-tetrahydroprogesterone or isoAllo), known to inhibit the effects of Allo on GABAA receptors, has an opposite effect on the bilayer properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Coexistence of Weak Ferromagnetism and Ferroelectricity in the High Pressure LiNbO3-Type Phase of FeTiO3

    NASA Astrophysics Data System (ADS)

    Varga, T.; Kumar, A.; Vlahos, E.; Denev, S.; Park, M.; Hong, S.; Sanehira, T.; Wang, Y.; Fennie, C. J.; Streiffer, S. K.; Ke, X.; Schiffer, P.; Gopalan, V.; Mitchell, J. F.

    2009-07-01

    We report the magnetic and electrical characteristics of polycrystalline FeTiO3 synthesized at high pressure that is isostructural with acentric LiNbO3 (LBO). Piezoresponse force microscopy, optical second harmonic generation, and magnetometry demonstrate ferroelectricity at and below room temperature and weak ferromagnetism below ˜120K. These results validate symmetry-based criteria and first-principles calculations of the coexistence of ferroelectricity and weak ferromagnetism in a series of transition metal titanates crystallizing in the LBO structure.

  7. Coexistence of weak ferromagnetism and ferroelectricity in the high pressure LiNbO3-type phase of FeTiO3.

    PubMed

    Varga, T; Kumar, A; Vlahos, E; Denev, S; Park, M; Hong, S; Sanehira, T; Wang, Y; Fennie, C J; Streiffer, S K; Ke, X; Schiffer, P; Gopalan, V; Mitchell, J F

    2009-07-24

    We report the magnetic and electrical characteristics of polycrystalline FeTiO_{3} synthesized at high pressure that is isostructural with acentric LiNbO_{3} (LBO). Piezoresponse force microscopy, optical second harmonic generation, and magnetometry demonstrate ferroelectricity at and below room temperature and weak ferromagnetism below approximately 120 K. These results validate symmetry-based criteria and first-principles calculations of the coexistence of ferroelectricity and weak ferromagnetism in a series of transition metal titanates crystallizing in the LBO structure.

  8. Observation of magnetic phase segregation in an antiferromagnet

    NASA Astrophysics Data System (ADS)

    Neumeier, J. J.; Cohn, J. L.

    2000-03-01

    Magnetic phase segregation in an antiferromagnet is investigated through electron doping of CaMnO3 and magnetization measurements which reveal G-type antiferromagnetism, local ferrimagnetism, local ferromagnetism, and C-type antiferromagnetism; up to three of these phases coexist at any one doped-electron concentration. The magnetic properties are strongly correlated with the electron mobility. These results confirm that the addition of electrons to an antiferromagnet can promote phase segregation. Work at the University of Miami was supported by NSF Grant No. DMR-9631236.

  9. Dementia and depression: two frequent disorders of the aged in primary health care in Greece.

    PubMed

    Argyriadou, S; Melissopoulou, H; Krania, E; Karagiannidou, A; Vlachonicolis, I; Lionis, C

    2001-02-01

    Dementia and depression are very common disorders among elderly people and their presence decreases the well-being of the aged. The purpose of this study was to assess the magnitude of dementia and depression among elderly people living in different settings in the catchment area of the Chrisoupolis health centre (HCCh) in northern Greece. A total of 536 patients aged 65 years and over, including 48 subjects living in an old people's home, 75 subjects who were taking part in the activities of the open centre for the elderly and 413 subjects randomly selected from those visiting the HCCh, were interviewed by the primary health care team of the HCCh. Medical and family history data were recorded, while cognitive and mood disorders were assessed by using the Mini Mental State Examination and Geriatric Depression Screening Scale. At the time of the examination, 37.6% of the men and 41.6% of the women showed various degrees of cognitive impairment, while 29.9% of the women and 19.6% of the men showed mild to moderate depression. Diabetes mellitus and hypertension frequently were found to co-exist with depression and dementia. The results reaffirm that there is a high prevalence of the studied mental disorders in older patients in the out-patient setting in Greece. A set of recommendations to Greek GPs has now been formulated, with specific emphasis on the use of different screening tools and the appropriate treatment of the most frequently co-existing chronic diseases.

  10. Phase Equilibria of the Brine Systems Containing Strontium and Calcium Ions

    NASA Astrophysics Data System (ADS)

    Wang, Xia; Zhao, Kaiyu; Li, Long; Guo, Yafei; Meng, Lingzong; Deng, Tianlong

    2017-12-01

    It is well known that the comprehensive utilization of the Salt Lake resources successfully must be guided corresponding to the aqueous phase equilibria and phase diagrams. Researches on the phase relationships of brine systems containing calcium and strontium ions are essential to promote the development for the relative resources discovered in China at recent years. In this paper, the phase equilibria of calcium-containing systems, strontium-containing systems and calcium-strontium coexisted brine systems around the world were reviewed. The problems existed recently and new trends in future were point out.

  11. Vibrational properties of Ni-Mn-Ga shape memory alloy in the martensite phases

    NASA Astrophysics Data System (ADS)

    Ener, Semih; Mehaddene, Tarik; Pedersen, Björn; Leitner, Michael; Neuhaus, Jürgen; Petry, Winfried

    2013-12-01

    Studying the phonon dispersion of the ferromagnetic shape memory alloy system Ni-Mn-Ga gives insight into the mechanism of the martensite transition and the forces driving the transition. Transformation of austenite single crystals under uniaxial stress results in the coexistence of two martensitic variants with perpendicular modulation vector. Here we report on inelastic neutron scattering studies of martensite crystals with off-stoichiometric compositions, varying from non-modulated (NM) to five- (5M) and seven- (7M) layer modulated martensite phases. Both the 5M and 7M crystals show fully commensurate satellite peaks along [\\xi \\bar {\\xi } 0], corresponding to the five- and seven-layer modulation. These superstructure peaks become Γ-points of the modulated structure. Due to the coexistence of two variants within the (001) plane, both new acoustic phonons reflecting the modulation vector [\\xi \\bar {\\xi } 0] and acoustic TA2[ξξ0] phonons corresponding to the non-modulated direction are observed. The latter display a pronounced softening around ξ = 0.2-0.4 when approaching the martensite-austenite transition from above and below, i.e. this soft mode has lowest frequency at the transition temperature. Overall the phonon dispersion of the austenite and martensite phase resemble each other very much. The coexistence of two martensitic variants after uniaxial transformation explains the particular behaviour of the low-energy excitations, in contrast to previous interpretations involving charge-density waves and associated phason modes.

  12. The phase behavior of cationic lipid-DNA complexes.

    PubMed Central

    May, S; Harries, D; Ben-Shaul, A

    2000-01-01

    We present a theoretical analysis of the phase behavior of solutions containing DNA, cationic lipids, and nonionic (helper) lipids. Our model allows for five possible structures, treated as incompressible macroscopic phases: two lipid-DNA composite (lipoplex) phases, namely, the lamellar (L(alpha)(C)) and hexagonal (H(II)(C)) complexes; two binary (cationic/neutral) lipid phases, that is, the bilayer (L(alpha)) and inverse-hexagonal (H(II)) structures, and uncomplexed DNA. The free energy of the four lipid-containing phases is expressed as a sum of composition-dependent electrostatic, elastic, and mixing terms. The electrostatic free energies of all phases are calculated based on Poisson-Boltzmann theory. The phase diagram of the system is evaluated by minimizing the total free energy of the three-component mixture with respect to all the compositional degrees of freedom. We show that the phase behavior, in particular the preferred lipid-DNA complex geometry, is governed by a subtle interplay between the electrostatic, elastic, and mixing terms, which depend, in turn, on the lipid composition and lipid/DNA ratio. Detailed calculations are presented for three prototypical systems, exhibiting markedly different phase behaviors. The simplest mixture corresponds to a rigid planar membrane as the lipid source, in which case, only lamellar complexes appear in solution. When the membranes are "soft" (i.e., low bending modulus) the system exhibits the formation of both lamellar and hexagonal complexes, sometimes coexisting with each other, and with pure lipid or DNA phases. The last system corresponds to a lipid mixture involving helper lipids with strong propensity toward the inverse-hexagonal phase. Here, again, the phase diagram is rather complex, revealing a multitude of phase transitions and coexistences. Lamellar and hexagonal complexes appear, sometimes together, in different regions of the phase diagram. PMID:10733951

  13. Clinical Management of ADHD in a Family Medicine Residency Program: Comparison with AAP Guidelines.

    PubMed

    Skelley, Jessica W; Carpenter, P Chase; Morehead, M Shawn; Murphy, Patrick L

    2016-06-01

    Attention-deficit/hyperactivity disorder (ADHD) is the most common neurobehavioral disorder. Research has shown that even with the growing incidence of children diagnosed as having ADHD, physicians may find providing optimal care to these patients challenging. Our objective was to contrast existing clinical management of ADHD in a family medicine setting with published American Academy of Pediatrics guidelines and review the literature pertinent to differences. A report was generated for all visits with "ADHD" or "ADD" (attention-deficit disorder) as a current or past medical problem that had been addressed at the family medicine clinic from July 2012 to June 2014. A total of 60 pediatric patients were identified. A retrospective chart review of clinical practice and management patterns for these patients was completed using a standardized data collection form based on the 2011 ADHD treatment guidelines set by the American Academy of Pediatrics. Fifty-seven (95%) patients had documentation of at least one core symptom of ADHD, and 27 (45%) patients had documentation of these symptoms in more than one setting (clinic/school/home). Only 30 (50%) patients were assessed at the initial ADHD visit for coexisting conditions. Coexisting conditions were found to be present in 20 (33.3%) patients. Of these 20 patients, coexisting conditions were not addressed during the visit in 12 (60%) patients before drug therapy for ADHD was initially prescribed. Behavioral therapy was initiated as first-line monotherapy in one of the nine preschool-age patients (4-5 years old). Fifty-two (86.7%) patients received a preferred initial medication as identified by guidelines, and 41 (78.8%) of those patients received an appropriate initial dose. Fifty-one (85%) patients were assessed for improvement of symptoms, and 39 (65%) were assessed for adverse events. Of 62 documented medication adjustments, 54 (87.1%) adjustments coincided with current practice guidelines. Sixteen (26.7%) patients were referred to mental health specialists. This retrospective review identified areas of strength and weakness for attending physicians and medical residents in the diagnosis, evaluation, and treatment of children with ADHD. A significant need was identified for more physician-focused education on the evaluation of coexisting conditions and long-term management associated with ADHD therapy. Further training in the initiation of behavioral therapy as a first-line treatment above drug therapy and proper medication selection in children aged 4 to 5 years also are recommended.

  14. Advances in esophageal motor disorders.

    PubMed

    Smout, André Jpm

    2008-07-01

    Esophageal motor disorders, often leading to dysphagia and chest pain, continue to pose diagnostic and therapeutic problems. In the past 12 months important new information regarding esophageal motor disorders was published. This information will be reviewed in this paper. A number of studies have addressed the issue of heterogeneity in achalasia, the best defined esophageal motility disorder. The spastic esophageal motility disorders nutcracker esophagus and diffuse esophageal spasm may coexist with gastroesophageal reflux disease, which has consequences for the management of patients with these disorders. The entity labelled ineffective esophageal motility is associated with reflux esophagitis, but also with morbid obesity. For the detection of disordered transit caused by ineffective esophageal motility, application of intraluminal impedance monitoring in conjunction with manometry leads to improved diagnosis. New data on the effect of Nissen fundoplication on esophageal motility were published during the last year. Recent knowledge on the heterogeneity of achalasia and the association of spastic esophageal motor disorders and ineffective motility with reflux disease will help the clinician in the management of patients with these disorders.

  15. [Raman studies of nanocrystalline BaTiO3 ceramics].

    PubMed

    Xiao, Chang-jiang; Jin, Chang-qing; Wang, Xiao-hui

    2008-12-01

    High pressure can significantly increase the densification. Further, during the high pressure assisted sintering, the nucleation rate is increased due to reduced energy barrier and the growth rate is suppressed due to the decreased diffusivity. Thus high pressure enables the specimen to be fabricated with relatively lower temperature and shorter sintering period that assures to obtain dense nanocrystalline ceramics. Dense nanocrystalline BaTiO3 ceramics with uniform grain sizes of 60 and 30 nm, respectively, were obtained by pressure assisted sintering. The crystal structure and phase transitions were investigated by Raman scattering at temperatures ranging from -190 to 200 degrees C. The Raman results indicated that the evolution of Raman spectrum with grain size is characterized by an intensity decrease, a broadening of the line width, a frequency shift, and the disappearance of the Raman mode. With increasing temperature, similar to 3 mm BaTiO3 normal ceramics, the successive phase transitions from rhombohedral to orthorhombic, orthorhombic to tetragonal, and tetragonal to cubic were also observed in nanocrystalline BaTiO3 ceramics. In addition, when particle size is reduced to the nanoscale, one will find some unusual physical properties in nanocrystalline ceramics, compared with those of coarse-grained BaTiO3 ceramics. The different coexistences of multiphase were found at different temperature. Especially, the ferroelectric tetragonal and orthorhombic phase can coexist at room temperature in nanocrystalline BaTiO3 ceramics. The phenomenon can be explained by the internal stress. The coexistences of different ferroelectric phases at room temperature indicate that the critical grain size for the disappearance of ferroelectricity in nanocrystalline BaTiO3 ceramics fabricated by pressure assisted sintering is below 30 nm.

  16. Polythelia associated with disturbances of cardiac conduction.

    PubMed

    Máté, K; Horváth, J; Schmidt, J; Kulcsár, M; Erdei, M; Bálint, Z S; Nagy, M

    1979-01-01

    The authors examined three groups of persons (hospitalized patients, outpatients, and school girls) and conclude that in the cases of polythelia the cardiac conduction disturbances occur considerably more frequently than in persons without polythelia. When polythelia and conduction disturbances occur frequently in a family, the coexistence of both disorders is most probably of hereditary origin.

  17. Sjögren syndrome and neuromyelitis optica spectrum disorder co-exist in a common autoimmune milieu.

    PubMed

    Carvalho, Diogo C; Tironi, Tauana S; Freitas, Denise S; Kleinpaul, Rodrigo; Talim, Natalia C; Lana-Peixoto, Marco A

    2014-08-01

    The relationship between Sjögren's syndrome (SS) and neuromyelitis optica spectrum disorder (NMOSD) is not completely understood. We report two patients with both conditions and review 47 other previously reported cases meeting currently accepted diagnostic criteria, from 17 articles extracted from PubMed. Out of 44 patients whose gender was informed, 42 were females. Mean age at onset of neurological manifestation was 36.2 years (10-74). Serum anti-AQP4-IgG was positive in 32 patients, borderline in 1, and negative in 4. Our Case 1 was seronegative for AQP4-IgG and had no non-organ-specific autoantibodies other than anti-SSB antibodies. Our Case 2 had serum anti-AQP4, anti-SSA/SSB, anti-thyreoglobulin and anti-acethylcholine-receptor antibodies, as well as clinical hypothyreoidism, but no evidence of myasthenia gravis. Our Cases and others, as previously reported in literature, with similar heterogeneous autoimmune response to aquaporin-4, suggest that SS and NMO co-exist in a common autoimmune milieu which is not dependent on aquaporin-4 autoimmunity.

  18. FSCS Reveals the Complexity of Lipid Domain Dynamics in the Plasma Membrane of Live Cells.

    PubMed

    Nicovich, Philip R; Kwiatek, Joanna M; Ma, Yuanqing; Benda, Aleš; Gaus, Katharina

    2018-06-19

    The coexistence of lipid domains with different degrees of lipid packing in the plasma membrane of mammalian cells has been postulated, but direct evidence has so far been challenging to obtain because of the small size and short lifetime of these domains in live cells. Here, we use fluorescence spectral correlation spectroscopy in conjunction with a probe sensitive to the membrane environment to quantify spectral fluctuations associated with dynamics of membrane domains in live cells. With this method, we show that membrane domains are present in live COS-7 cells and have a lifetime lower bound of 5.90 and 14.69 ms for the ordered and disordered phases, respectively. Comparisons to simulations indicate that the underlying mechanism of these fluctuations is complex but qualitatively described by a combination of dye diffusion between membrane domains as well as the motion of domains within the membrane. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Effects of a 6-week, individualized, supervised exercise program for people with bleeding disorders and hemophilic arthritis.

    PubMed

    Mulvany, Ruth; Zucker-Levin, Audrey R; Jeng, Michael; Joyce, Catherine; Tuller, Janet; Rose, Jonathan M; Dugdale, Marion

    2010-04-01

    People with bleeding disorders may develop severe arthritis due to joint hemorrhages. Exercise is recommended for people with bleeding disorders, but guidelines are vague and few studies document efficacy. In this study, 65% of people with bleeding disorders surveyed reported participating in minimal exercise, and 50% indicated a fear of exercise-induced bleeding, pain, or physical impairment. The purpose of this study was to examine the feasibility, safety, and efficacy of a professionally designed, individualized, supervised exercise program for people with bleeding disorders. A single-group, pretest-posttest clinical design was used. Thirty-three patients (3 female, 30 male; 7-57 years of age) with mild to severe bleeding disorders were enrolled in the study. Twelve patients had co-existing illnesses, including HIV/AIDS, hepatitis, diabetes, fibromyalgia, neurofibromatosis, osteopenia, osteogenesis imperfecta, or cancer. Pre- and post-program measures included upper- and lower-extremity strength (force-generating capacity), joint range of motion, joint and extremity circumference, and distance walked in 6 minutes. Each patient was prescribed a 6-week, twice-weekly, individualized, supervised exercise program. Twenty participants (61%) completed the program. Pre- and post-program data were analyzed by paired t tests for all participants who completed the program. No exercise-induced injuries, pain, edema, or bleeding episodes were reported. Significant improvements occurred in joint motion, strength, and distance walked in 6 minutes, with no change in joint circumference. The greatest gains were among the individuals with the most severe joint damage and coexisting illness. Limitations included a small sample size with concomitant disease, which is common to the population, and a nonblinded examiner. A professionally designed and supervised, individualized exercise program is feasible, safe, and beneficial for people with bleeding disorders, even in the presence of concomitant disease. A longitudinal study with a larger sample size, a blinded examiner, and a control group is needed to confirm the results.

  20. The prevalence of transpancreatic common hepatic artery and coexisting variant anatomy.

    PubMed

    Ishigami, Kousei; Nishie, Akihiro; Asayama, Yoshiki; Ushijima, Yasuhiro; Takayama, Yukihisa; Okamoto, Daisuke; Fujita, Nobuhiro; Yoshizumi, Tomoharu; Harimoto, Norifumi; Ohtsuka, Takao; Nakata, Kohei; Honda, Hiroshi

    2018-05-01

    We studied the prevalence of the transpancreatic common hepatic artery (tp-CHA) and coexisting variant anatomy. The study group comprised 788 consecutive liver transplant donor candidates who had undergone thin-section multidetector-row computed tomography (MDCT) studies to investigate vascular anatomy. Multiplanar reformatted (MPR) images obtained from the arterial phase were retrospectively reviewed to assess the presence/absence of the tp-CHA. Five cases of tp-CHA with pancreaticobiliary tumors were also included in an investigation of the presence/absence of variant hepatic arteries, celiac stenosis, and circumportal pancreas. Three of the 788 (0.38%) donor candidates had a tp-CHA. Overall, eight tp-CHA cases were assessed for coexisting variant anatomy. Seven of these eight cases had a hepatomesenteric trunk, six had celiac stenosis, and two had a circumportal pancreas. The prevalence of the tp-CHA was 0.38% (approx. one in 260 in normal populations). A tp-CHA can commonly be associated with a hepatomesenteric trunk and celiac stenosis. A circumportal pancreas can also coexist with a tp-CHA. Clin. Anat. 31:598-604, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Complex transitions between spike, burst or chaos synchronization states in coupled neurons with coexisting bursting patterns

    NASA Astrophysics Data System (ADS)

    Gu, Hua-Guang; Chen, Sheng-Gen; Li, Yu-Ye

    2015-05-01

    We investigated the synchronization dynamics of a coupled neuronal system composed of two identical Chay model neurons. The Chay model showed coexisting period-1 and period-2 bursting patterns as a parameter and initial values are varied. We simulated multiple periodic and chaotic bursting patterns with non-(NS), burst phase (BS), spike phase (SS), complete (CS), and lag synchronization states. When the coexisting behavior is near period-2 bursting, the transitions of synchronization states of the coupled system follows very complex transitions that begins with transitions between BS and SS, moves to transitions between CS and SS, and to CS. Most initial values lead to the CS state of period-2 bursting while only a few lead to the CS state of period-1 bursting. When the coexisting behavior is near period-1 bursting, the transitions begin with NS, move to transitions between SS and BS, to transitions between SS and CS, and then to CS. Most initial values lead to the CS state of period-1 bursting but a few lead to the CS state of period-2 bursting. The BS was identified as chaos synchronization. The patterns for NS and transitions between BS and SS are insensitive to initial values. The patterns for transitions between CS and SS and the CS state are sensitive to them. The number of spikes per burst of non-CS bursting increases with increasing coupling strength. These results not only reveal the initial value- and parameter-dependent synchronization transitions of coupled systems with coexisting behaviors, but also facilitate interpretation of various bursting patterns and synchronization transitions generated in the nervous system with weak coupling strength. Project supported by the National Natural Science Foundation of China (Grant Nos. 11372224 and 11402039) and the Fundamental Research Funds for Central Universities designated to Tongji University (Grant No. 1330219127).

  2. Coexistence of Trisomy 13 and SRY (-) XX Ovotesticular Disorder of Sex Development.

    PubMed

    Ürel Demir, Gizem; Doğan, Özlem Akgün; Şimşek Kiper, Pelin Özlem; Utine, Gülen Eda; Boduroğlu, Koray; Gucer, Safak; Alikaşifoğlu, Mehmet

    2017-12-01

    Ovotesticular disorder of sex development (OT-DSD) is a rare disorder of sexual differentiation characterized by the presence of both testicular and ovarian tissue in an individual and the majority of cases have been reported with 46,XX karyotype. In 46,XX cases, testicular differentiation may occur due to the translocation of SRY to the X chromosome or to an autosome. Herein, we present a female newborn with a combination of trisomy 13 and SRY (-) XX OT-DSD. Trisomy 13 is a relatively common and well-known chromosomal disorder in which disorders of sexual differentiation are not frequent. In the absence of SRY, overexpression of pro-testis genes, or decreased expression of pro-ovarian/anti-testis genes have been suggested as underlying mechanisms of testicular formation. The findings in this patient were suggestive of an underlying genomic disorder associated with FGF9 and/or SPRY2.

  3. Experimental Constraints on the Partitioning and Valence of V and Cr in Garnet and Coexisting Glass

    NASA Technical Reports Server (NTRS)

    Righter, K.; Sutton, S.; Berthet, S.; Newville, M.

    2008-01-01

    A series of experiments with garnet and coexisting melt have been carried out across a range of oxygen fugacities (near hematite-magnetite (HM) to below the iron-wustite (IW) buffers) at 1.7 GPa to study the partitioning and valence of Cr and V in both phases. Experiments were carried out in a non end loaded piston cylinder apparatus, and the run products were analyzed with electron microprobe and xray absorption near edge structure (XANES) analysis at beamline 13-ID at the Advanced Photon Source of Argonne National Lab. The valence of vanadium and chromium were determined using the position and intensity of the Ka pre-edge peaks, calibrated on a series of Cr and Vbearing standard glasses. This technique has been applied to V and Cr in glasses and V in spinels previously, and in these isotropic phases there are no orientational effects on the XANES spectra (Righter et al., 2006, Amer. Mineral. 91, 1643-1656). We also now demonstrate this to be true for V and Cr in garnet. Also, previous work has shown that V has a higher valence in the glass (or melt) than in the coexisting spinel. This is also true for V in garnet-glass pairs in this study. Vanadium valence in garnets varies from 2.7 below the IW buffer to 3.7 near HM, and for coexisting glass it varies from 3.2 to 4.3. Vanadium valence measured in some natural garnets from mantle localities indicates V in the more reduced range at 2.5. Comparisons will be made between fO2 estimated from V valence and other methods for garnet-bearing mantle samples. In contrast, Cr valence measured in garnet and coexisting glass for all experimental and natural samples is 2.9- 3.0, suggesting that the valence of Cr does not vary within either phase across a large fO2 range. These results demonstrate that while V varies from 2+ to 3+ to 4+ in garnet-melt systems, Cr does not, and this will ultimately affect the partitioning behavior of these two elements in natural systems. Garnet/melt D(Cr) are between 12 and 17 across this range of fO2, whereas D(V) has the highest partition coefficient approx.3, near the IW buffer where the valence of V is almost entirely 3+.

  4. Effects of configurational disorder on the elastic properties of icosahedral boron-rich alloys based on B{sub 6}O, B{sub 13}C{sub 2}, and B{sub 4}C, and their mixing thermodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ektarawong, A., E-mail: anekt@ifm.liu.se; Hultman, L.; Birch, J.

    The elastic properties of alloys between boron suboxide (B{sub 6}O) and boron carbide (B{sub 13}C{sub 2}), denoted by (B{sub 6}O){sub 1−x}(B{sub 13}C{sub 2}){sub x}, as well as boron carbide with variable carbon content, ranging from B{sub 13}C{sub 2} to B{sub 4}C are calculated from first-principles. Furthermore, the mixing thermodynamics of (B{sub 6}O){sub 1−x}(B{sub 13}C{sub 2}){sub x} is studied. A superatom-special quasirandom structure approach is used for modeling different atomic configurations, in which effects of configurational disorder between the carbide and suboxide structural units, as well as between boron and carbon atoms within the units, are taken into account. Elastic propertiesmore » calculations demonstrate that configurational disorder in B{sub 13}C{sub 2}, where a part of the C atoms in the CBC chains substitute for B atoms in the B{sub 12} icosahedra, drastically increase the Young’s and shear modulus, as compared to an atomically ordered state, B{sub 12}(CBC). These calculated elastic moduli of the disordered state are in excellent agreement with experiments. Configurational disorder between boron and carbon can also explain the experimentally observed almost constant elastic moduli of boron carbide as the carbon content is changed from B{sub 4}C to B{sub 13}C{sub 2}. The elastic moduli of the (B{sub 6}O){sub 1−x}(B{sub 13}C{sub 2}){sub x} system are also practically unchanged with composition if boron-carbon disorder is taken into account. By investigating the mixing thermodynamics of the alloys, in which the Gibbs free energy is determined within the mean-field approximation for the configurational entropy, we outline the pseudo-binary phase diagram of (B{sub 6}O){sub 1−x}(B{sub 13}C{sub 2}){sub x}. The phase diagram reveals the existence of a miscibility gap at all temperatures up to the melting point. Also, the coexistence of B{sub 6}O-rich as well as ordered or disordered B{sub 13}C{sub 2}-rich domains in the material prepared through equilibrium routes is predicted.« less

  5. Psychiatric emergencies (part II): psychiatric disorders coexisting with organic diseases.

    PubMed

    Testa, A; Giannuzzi, R; Sollazzo, F; Petrongolo, L; Bernardini, L; Dain, S

    2013-02-01

    In this Part II psychiatric disorders coexisting with organic diseases are discussed. "Comorbidity phenomenon" defines the not univocal interrelation between medical illnesses and psychiatric disorders, each other negatively influencing morbidity and mortality. Most severe psychiatric disorders, such as schizophrenia, bipolar disorder and depression, show increased prevalence of cardiovascular disease, related to poverty, use of psychotropic medication, and higher rate of preventable risk factors such as smoking, addiction, poor diet and lack of exercise. Moreover, psychiatric and organic disorders can develop together in different conditions of toxic substance and prescription drug use or abuse, especially in the emergency setting population. Different combinations with mutual interaction of psychiatric disorders and substance use disorders are defined by the so called "dual diagnosis". The hypotheses that attempt to explain the psychiatric disorders and substance abuse relationship are examined: (1) common risk factors; (2) psychiatric disorders precipitated by substance use; (3) psychiatric disorders precipitating substance use (self-medication hypothesis); and (4) synergistic interaction. Diagnostic and therapeutic difficulty concerning the problem of dual diagnosis, and legal implications, are also discussed. Substance induced psychiatric and organic symptoms can occur both in the intoxication and withdrawal state. Since ancient history, humans selected indigene psychotropic plants for recreational, medicinal, doping or spiritual purpose. After the isolation of active principles or their chemical synthesis, higher blood concentrations reached predispose to substance use, abuse and dependence. Abuse substances have specific molecular targets and very different acute mechanisms of action, mainly involving dopaminergic and serotoninergic systems, but finally converging on the brain's reward pathways, increasing dopamine in nucleus accumbens. The most common substances producing an addiction status may be assembled in depressants (alcohol, benzodiazepines, opiates), stimulants (cocaine, amphetamines, nicotine, caffeine, modafinil), hallucinogens (mescaline, LSD, ecstasy) and other substances (cannabis, dissociatives, inhalants). Anxiety disorders can occur in intoxication by stimulants, as well as in withdrawal syndrome, both by stimulants and sedatives. Substance induced mood disorders and psychotic symptoms are as much frequent conditions in ED, and the recognition of associated organic symptoms may allow to achieve diagnosis. Finally, psychiatric and organic symptoms may be caused by prescription and doping medications, either as a direct effect or after withdrawal. Adverse drug reactions can be divided in type A, dose dependent and predictable, including psychotropic drugs and hormones; and type B, dose independent and unpredictable, usually including non psychotropic drugs, more commonly included being cardiovascular, antibiotics, anti-inflammatory and antineoplastic medications.

  6. Temperature dependent infrared nano-imaging of La0.67Sr0.33MnO3 thin film

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Huffman, T. J.; Hae Kwak, In; Biswas, Amlan; Qazilbash, M. M.

    2018-01-01

    We investigate the temperature dependence of infrared properties at nanometer length scales in La0.67Sr0.33MnO3 (LSMO) thin film with a thickness of 47 unit cells grown on SrTiO3 substrate. The infrared nano-imaging experiments were performed using a near-field optical microscope in conjunction with a variable temperature heating stage. The near-field infrared data is consistent with the bulk of the LSMO film undergoing the thermally-driven non-percolative second-order transition from a metallic, ferromagnetic phase to an insulating, paramagnetic phase. We find persistent infrared contrast on the nanoscale that is independent of temperature and which we attribute to two novel phases with different conductivities coexisting in the vicinity of the film-substrate interface. These two coexisting phases at the film-substrate interface do not undergo the metal-insulator transition (MIT) and hence are different from the metallic, ferromagnetic and insulating, paramagnetic phases in the bulk of the film. At temperatures approaching the nominal MIT temperature, repeated scans of the same microscopic area at constant temperature reveal bimodal fluctuation of the near-field infrared amplitude. We interpret this phenomenon as slow, critical fluctuations of the conductivity in the bulk of the LSMO film.

  7. Separating the effects of repulsive and attractive forces on the phase diagram, interfacial, and critical properties of simple fluids

    NASA Astrophysics Data System (ADS)

    Fuentes-Herrera, M.; Moreno-Razo, J. A.; Guzmán, O.; López-Lemus, J.; Ibarra-Tandi, B.

    2016-06-01

    Molecular simulations in the canonical and isothermal-isobaric ensembles were performed to study the effect of varying the shape of the intermolecular potential on the phase diagram, critical, and interfacial properties of model fluids. The molecular interactions were modeled by the Approximate Non-Conformal (ANC) theory potentials. Unlike the Lennard-Jones or Morse potentials, the ANC interactions incorporate parameters (called softnesses) that modulate the steepness of the potential in their repulsive and attractive parts independently. This feature allowed us to separate unambiguously the role of each region of the potential on setting the thermophysical properties. In particular, we found positive linear correlation between all critical coordinates and the attractive and repulsive softness, except for the critical density and the attractive softness which are negatively correlated. Moreover, we found that the physical properties related to phase coexistence (such as span of the liquid phase between the critical and triple points, variations in the P-T vaporization curve, interface width, and surface tension) are more sensitive to changes in the attractive softness than to the repulsive one. Understanding the different roles of attractive and repulsive forces on phase coexistence may contribute to developing more accurate models of liquids and their mixtures.

  8. Separating the effects of repulsive and attractive forces on the phase diagram, interfacial, and critical properties of simple fluids.

    PubMed

    Fuentes-Herrera, M; Moreno-Razo, J A; Guzmán, O; López-Lemus, J; Ibarra-Tandi, B

    2016-06-07

    Molecular simulations in the canonical and isothermal-isobaric ensembles were performed to study the effect of varying the shape of the intermolecular potential on the phase diagram, critical, and interfacial properties of model fluids. The molecular interactions were modeled by the Approximate Non-Conformal (ANC) theory potentials. Unlike the Lennard-Jones or Morse potentials, the ANC interactions incorporate parameters (called softnesses) that modulate the steepness of the potential in their repulsive and attractive parts independently. This feature allowed us to separate unambiguously the role of each region of the potential on setting the thermophysical properties. In particular, we found positive linear correlation between all critical coordinates and the attractive and repulsive softness, except for the critical density and the attractive softness which are negatively correlated. Moreover, we found that the physical properties related to phase coexistence (such as span of the liquid phase between the critical and triple points, variations in the P-T vaporization curve, interface width, and surface tension) are more sensitive to changes in the attractive softness than to the repulsive one. Understanding the different roles of attractive and repulsive forces on phase coexistence may contribute to developing more accurate models of liquids and their mixtures.

  9. Damped spin waves in the intermediate ordered phases in Ni 3V 2O 8

    DOE PAGES

    Ehlers, Georg; Podlesnyak, Andrey A.; Frontzek, Matthias D.; ...

    2015-06-09

    Here, spin dynamics in the intermediate ordered phases (between 4 and 9 K) in Ni 3V 2O 8 have been studied with inelastic neutron scattering. It is found that the spin waves are very diffuse, indicative of short lived correlations and the coexistence of paramagnetic moments with the long-range ordered state.

  10. Volatiles in the deep Earth: An experimental study using the laser-heated diamond cell

    NASA Technical Reports Server (NTRS)

    Li, Xiaoyuan; Jeanloz, Raymond; Nguyen, Jeffrey H.

    1994-01-01

    Experiments with the laser-heated diamond cell show that H2O and CO2 can be stabilized within crystalline mineral structures of the lower-mantle, and hence can be present at relatively non-volatile components of the Earth's deep interior. Samples quenched from high pressures and temperatures document that the MgCO3-FeCO3 magnesite-siderite solid-solution is stable and coexists with (Mg,Fe)SiO3 perovskite at 30-40 GPa and approximately 1500-2000 K. In contrast, H2O combines with the silicate to form (Mg,Fe)SiH2O4 phase D, coexisting with (Mg,Fe)SiO3 perovskite at these conditions. If enough water is present, phase D can become the predominant phase in the MgSiO3-H2O system at lower-mantle conditions. Our work extends previous studies to Fe-bearing compositions and to the pressures of the mid-lower mantle. Thus, the results of high-pressure experiments suggest that both H2O and CO2 can be abundant in the Earth's lower mantle, being present in stable hydroxisilicate and carbonate phases.

  11. Communication: Phase diagram of C36 by atomistic molecular dynamics and thermodynamic integration through coexistence regions

    NASA Astrophysics Data System (ADS)

    Abramo, M. C.; Caccamo, C.; Costa, D.; Munaò, G.

    2014-09-01

    We report an atomistic molecular dynamics determination of the phase diagram of a rigid-cage model of C36. We first show that free energies obtained via thermodynamic integrations along isotherms displaying "van der Waals loops," are fully reproduced by those obtained via isothermal-isochoric integration encompassing only stable states. We find that a similar result also holds for isochoric paths crossing van der Waals regions of the isotherms, and for integrations extending to rather high densities where liquid-solid coexistence can be expected to occur. On such a basis we are able to map the whole phase diagram of C36, with resulting triple point and critical temperatures about 1770 K and 2370 K, respectively. We thus predict a 600 K window of existence of a stable liquid phase. Also, at the triple point density, we find that the structural functions and the diffusion coefficient maintain a liquid-like character down to 1400-1300 K, this indicating a wide region of possible supercooling. We discuss why all these features might render possible the observation of the melting of C36 fullerite and of its liquid state, at variance with what previously experienced for C60.

  12. Membrane solubilisation and reconstitution by octylglucoside: comparison of synthetic lipid and natural lipid extract by isothermal titration calorimetry.

    PubMed

    Krylova, Oxana O; Jahnke, Nadin; Keller, Sandro

    2010-08-01

    We have studied the solubilisation and reconstitution of lipid membranes composed of either synthetic phosphatidylcholine or Escherichia. coli polar lipid extract by the non-ionic detergent octylglucoside. For both lipid systems, composition-dependent transformations of unilamellar vesicles into micelles or vice versa were followed by high-sensitivity isothermal titration calorimetry. Data obtained over a range of detergent and lipid concentrations could be rationalised in terms of a three-stage phase separation model involving bilayer, bilayer/micelle coexistence, and micellar ranges, yielding the detergent/lipid phase diagrams and the bilayer-to-micelle partition coefficients of both detergent and lipid. The most notable difference between the lipids investigated was a substantial widening of the bilayer/micelle coexistence range for E. coli lipid, which was due to an increased preference of the detergent and a decreased affinity of the lipid for the micellar phase as compared with the bilayer phase. These effects on the bilayer-to-micelle partition coefficients could be explained by the high proportion in E. coli membranes of lipids possessing negative spontaneous curvature, which hampers both their transfer into strongly curved micellar structures as well as the insertion of detergent into condensed bilayers.

  13. Creation and Annihilation of Skyrmions in the Frustrated Magnets with Competing Exchange Interactions.

    PubMed

    Hu, Yong; Chi, Xiaodan; Li, Xuesi; Liu, Yan; Du, An

    2017-11-22

    In triangular-lattice magnets, the coexistence of third-neighbor antiferromagnetic and nearest-neighbor ferromagnetic exchange interactions can induce rich magnetic phases including noncoplanar skyrmion crystals. Based on Monte Carlo simulation, we studied the dependence of magnetic phase transition on exchange interaction strength. Under the consideration of uniaxial anisotropy and magnetic field both perpendicular to the film plane, a large antiferromagnetic exchange interaction induces a high frustration. When the value of antiferromagnetic exchange interaction is one and a half times larger than the ferromagnetic one, a magnetic phase composed of canting spin stripes, never observed in the chiral magnets, forms. Interestingly, different canting spin stripes along three 120 degree propagation directions may coexist randomly in a magnetic phase, attesting that the canting spin stripes are three-fold degenerate states akin to helices and the multiple state of canting spin stripes is a circular configuration with zero skyrmion charge number. Moreover, skyrmions and antiskyrmions can be observed simultaneously in the configuration at the low temperature nearly close to 0 K, and their configuration and diameter properties are discussed. Finally, the mechanisms of skyrmion creation and annihilation are properly interpreted by comparing exchange and Zeeman energy terms.

  14. Energy barrier of bcc-fcc phase transition via the Bain path in Yukawa system

    NASA Astrophysics Data System (ADS)

    Kiyokawa, Shuji

    2018-05-01

    In the Yukawa system with the dimensionless screening parameter κ>1.5 , when bcc-fcc transition occurs via Bain path, we show that spontaneous transitions do not occur even if the system temperature reaches the transition point of bcc-fcc because it is necessary to increase once the free energy in the process of transition from bcc to fcc through Bain deformation. Here, we refer the temporary increment of the free energy during Bain deformation as Bain barrier. Since there are the Bain barriers at the transitions between bcc and fcc phases, these phases may coexist as metastable state in the wide region (not a coexistence line) of κ and the coupling constant Γ. We study the excess energy of the system and the free energy difference between bcc and fcc phases by the Monte Carlo method, where the simulation box is divided into a large number of elements with small volume and a particle in the box is restricted be placed in one of these elements. By this method, we can tabulate the values of the interparticle potential and can calculate the internal energy fast and precisely.

  15. Study of density distribution in a near-critical simple fluid (19-IML-1)

    NASA Technical Reports Server (NTRS)

    Michels, Teun

    1992-01-01

    This experiment uses visual observation, interferometry, and light scattering techniques to observe and analyze the density distribution in SF6 above and below the critical temperature. Below the critical temperature, the fluid system is split up into two coexisting phases, liquid and vapor. The spatial separation of these phases on earth, liquid below and vapor above, is not an intrinsic property of the fluid system; it is merely an effect of the action of the gravity field. At a fixed temperature, the density of each of the coexisting phases is in principle fixed. However, near T sub c where the fluid is strongly compressible, gravity induced hydrostatic forces will result in a gradual decrease in density with increasing height in the sample container. This hydrostatic density profile is even more pronounced in the one phase fluid at temperatures slightly above T sub c. The experiment is set up to study the intrinsic density distributions and equilibration rates of a critical sample in a small container. Interferometry will be used to determine local density and thickness of surface and interface layers. The light scattering data will reveal the size of the density fluctuations on a microscopic scale.

  16. Evolution of structure and magnetic properties for BaFe11.9Al0.1O19 hexaferrite in a wide temperature range

    NASA Astrophysics Data System (ADS)

    Trukhanov, A. V.; Trukhanov, S. V.; Panina, L. V.; Kostishyn, V. G.; Kazakevich, I. S.; Trukhanov, An. V.; Trukhanova, E. L.; Natarov, V. O.; Turchenko, V. A.; Salem, M. M.; Balagurov, A. M.

    2017-03-01

    M-type BaFe11.9Al0.1O19 hexaferrite was successfully synthesized by solid state reactions. Precision investigations of crystal and magnetic structures of BaFe11.9Al0.1O19 powder by neutron diffraction in the temperature range 4.2-730 K have been performed. Magnetic and electrical properties investigations were carried out in the wide temperature range. Neutron powder diffraction data were successfully refined in approximation for both space groups (SG): centrosymmetric #194 (standard non-polar phase) and non-centrosymmetric #186 (polar phase). It has been shown that at low temperatures (below room temperature) better fitting results (value χ2) were for the polar phase (SG: #186) or for the two phases coexistence (SG: #186 and SG: #194). At high temperatures (400-730 K) better fitting results were for SG: #194. It was established coexistence of the dual ferroic properties (specific magnetization and spontaneous polarization) at room temperature. Strong correlation between magnetic and electrical subsystems was demonstrated (magnetoelectrical effect). Temperature dependences of the spontaneous polarization, specific magnetization and magnetoelectrical effect were investigated.

  17. Family relationships of adults with borderline personality disorder.

    PubMed

    Allen, D M; Farmer, R G

    1996-01-01

    Current, ongoing interactions between adults exhibiting borderline personality disorder (BPD) traits and their families of origin may influence and maintain self-destructive behavior. Family interactions in such patients are often characterized by coexisting extremes of overinvolvement and underinvolvement by parental figures. Such parental behavior may trigger preexisting role relationship schemata in vulnerable individuals. Negative family reactions to new behavior patterns may make change difficult. A model for how present-day interpersonal patterns lead to self-destructive behavior, based on clinical observations, is proposed and case examples are presented.

  18. Bimetallic MOFs (H 3O) x[Cu(MF 6)(pyrazine) 2]·(4-x)H 2O (M = V 4+, x = 0; M = Ga 3+, x = 1): co-existence of ordered and disordered quantum spins in the V 4+ system

    DOE PAGES

    Manson, Jamie L.; Schlueter, John A.; Garrett, Kerry E.; ...

    2016-09-27

    We present that these title compounds are bimetallic MOFs containing [Cu(pyz) 2] 2+ square lattices linked by MF 6 n-octahedra. In each, only the Cu 2+ spins exhibit long-range magnetic order below 3.5 K (M = V 4+) and 2.6 K (M = Ga 3+). The V 4+ spins remain disordered down to 0.5 K.

  19. High probability of comorbidities in bronchial asthma in Germany.

    PubMed

    Heck, S; Al-Shobash, S; Rapp, D; Le, D D; Omlor, A; Bekhit, A; Flaig, M; Al-Kadah, B; Herian, W; Bals, R; Wagenpfeil, S; Dinh, Q T

    2017-04-21

    Clinical experience has shown that allergic and non-allergic respiratory, metabolic, mental, and cardiovascular disorders sometimes coexist with bronchial asthma. However, no study has been carried out that calculates the chance of manifestation of these disorders with bronchial asthma in Saarland and Rhineland-Palatinate, Germany. Using ICD10 diagnoses from health care institutions, the present study systematically analyzed the co-prevalence and odds ratios of comorbidities in the asthma population in Germany. The odds ratios were adjusted for age and sex for all comorbidities for patients with asthma vs. without asthma. Bronchial asthma was strongly associated with allergic and with a lesser extent to non-allergic comorbidities: OR 7.02 (95%CI:6.83-7.22) for allergic rhinitis; OR 4.98 (95%CI:4.67-5.32) allergic conjunctivitis; OR 2.41 (95%CI:2.33-2.52) atopic dermatitis; OR 2.47 (95%CI:2.16-2.82) food allergy, and OR 1.69 (95%CI:1.61-1.78) drug allergy. Interestingly, increased ORs were found for respiratory diseases: 2.06 (95%CI:1.64-2.58) vocal dysfunction; 1.83 (95%CI:1.74-1.92) pneumonia; 1.78 (95%CI:1.73-1.84) sinusitis; 1.71 (95%CI:1.65-1.78) rhinopharyngitis; 2.55 (95%CI:2.03-3.19) obstructive sleep apnea; 1.42 (95%CI:1.25-1.61) pulmonary embolism, and 3.75 (95%CI:1.64-8.53) bronchopulmonary aspergillosis. Asthmatics also suffer from psychiatric, metabolic, cardiac or other comorbidities. Myocardial infarction (OR 0.86, 95%CI:0.79-0.94) did not coexist with asthma. Based on the calculated chances of manifestation for these comorbidities, especially allergic and respiratory, to a lesser extent also metabolic, cardiovascular, and mental disorders should be taken into consideration in the diagnostic and treatment strategy of bronchial asthma. PREVALENCE OF CO-EXISTING DISEASES IN GERMANY: Patients in Germany with bronchial asthma are highly likely to suffer from co-existing diseases and their treatments should reflect this. Quoc Thai Dinh at Saarland University Hospital in Homburg, Germany, and co-workers conducted a large-scale study of patients presenting with bronchial asthma in the Saarland region between 2009 and 2012. Patients with asthma made up 5.4% of the region's total population, with a higher prevalence occurring in females. They found that bronchial asthma was strongly associated with allergic comorbidities such as rhinitis. Indeed, asthmatic patients had a seven times higher chance to suffer from allergic rhinitis than the rest of the population, and were at higher risk of respiratory diseases like pneumonia and obstructive sleep apnea syndrome. Further associations included cardiovascular, metabolic and mental disorders. Dinh's team call for asthma treatments to take such comorbidities into account.

  20. The finite-size effect in thin liquid crystal systems

    NASA Astrophysics Data System (ADS)

    Śliwa, I.

    2018-05-01

    Effects of surface ordering in liquid crystal systems confined between cell plates are of great theoretical and experimental interest. Liquid crystals introduced in thin cells are known to be strongly stabilized and ordered by cell plates. We introduce a new theoretical method for analyzing the effect of surfaces on local molecular ordering in thin liquid crystal systems with planar geometry of the smectic layers. Our results show that, due to the interplay between pair long-range intermolecular forces and nonlocal, relatively short-range, surface interactions, both orientational and translational orders of liquid crystal molecules across confining cells are very complex. In particular, it is demonstrated that the SmA, nematic, and isotropic phases can coexist. The phase transitions from SmA to nematic, as well as from nematic to isotropic phases, occur not simultaneously in the whole volume of the system but begin to appear locally in some regions of the LC sample. Phase transition temperatures are demonstrated to be strongly affected by the thickness of the LC system. The dependence of the corresponding shifts of phase transition temperatures on the layer number is shown to exhibit a power law character. This new type of scaling behavior is concerned with the coexistence of local phases in finite systems. The influence of a specific character of interactions of molecules with surfaces and other molecules on values of the resulting critical exponents is also analyzed.

  1. Probing mixed tetragonal/rhombohedral-like monoclinic phases in strained bismuth ferrite films by optical second harmonic generation

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Denev, Sava; Zeches, Robert J.; Vlahos, Eftihia; Podraza, Nikolas J.; Melville, Alexander; Schlom, Darrell G.; Ramesh, R.; Gopalan, Venkatraman

    2010-09-01

    Epitaxial strain can induce the formation of morphotropic phase boundary in lead free ferroelectrics like bismuth ferrite, thereby enabling the coexistence of tetragonal and rhombohedral phases in the same film. The relative ratio of these phases is governed by the film thickness and theoretical studies suggest that there exists a monoclinic distortion of both the tetragonal as well as the rhombohedral unit cells due to imposed epitaxial strain. In this work we show that optical second harmonic generation can distinguish the tetragonal-like phase from the rhombohedral-like phase and enable detection of monoclinic distortion in only a pure tetragonal-like phase.

  2. Evidence for a primary autoimmune type of diabetes mellitus.

    PubMed

    Bottazzo, G F; Cudworth, A G; Moul, D J; Doniach, D; Festenstein, H

    1978-11-04

    Sixty-eight patients with longstanding diabetes and persistent islet-cell antibody and 35 with coexistent diabetes and Graves's disease or primary myxoedema were studied with particular reference to the HLA system and autoantibody patterns. A higher incidence of HLA-B8 than normal was observed in the two groups. An additive relative risk exists when type I diabetes and autoimmune thyroid disease coexist, indicating that different HLA-linked genes may confer susceptibility to the pancreatic and thyroid disorders. Other characteristics, including female predominance, a later onset of diabetes, and a strong family history of autoimmune endocrinopathy, provide further evidence that this form of diabetes is aetiologically distinct from that generally seen in children. These results support the hypothesis of a primary autoimmune type of diabetes mellitus.

  3. Melt inclusions in veins: linking magmas and porphyry Cu deposits.

    PubMed

    Harris, Anthony C; Kamenetsky, Vadim S; White, Noel C; van Achterbergh, Esmé; Ryan, Chris G

    2003-12-19

    At a porphyry copper-gold deposit in Bajo de la Alumbrera, Argentina, silicate-melt inclusions coexist with hypersaline liquid- and vapor-rich inclusions in the earliest magmatic-hydrothermal quartz veins. Copper concentrations of the hypersaline liquid and vapor inclusions reached maxima of 10.0 weight % (wt %) and 4.5 wt %, respectively. These unusually copper-rich inclusions are considered to be the most primitive ore fluid found thus far. Their preservation with coexisting melt allows for the direct quantification of important oreforming processes, including determination of bulk partition coefficients of metals from magma into ore-forming magmatic volatile phases.

  4. Asymmetry in electrical coupling between neurons alters multistable firing behavior

    NASA Astrophysics Data System (ADS)

    Pisarchik, A. N.; Jaimes-Reátegui, R.; García-Vellisca, M. A.

    2018-03-01

    The role of asymmetry in electrical synaptic connection between two neuronal oscillators is studied in the Hindmarsh-Rose model. We demonstrate that the asymmetry induces multistability in spiking dynamics of the coupled neuronal oscillators. The coexistence of at least three attractors, one chaotic and two periodic orbits, for certain coupling strengths is demonstrated with time series, phase portraits, bifurcation diagrams, basins of attraction of the coexisting states, Lyapunov exponents, and standard deviations of peak amplitudes and interspike intervals. The experimental results with analog electronic circuits are in good agreement with the results of numerical simulations.

  5. Toward a Narrower, More Pragmatic View of Developmental Dyspraxia

    PubMed Central

    Steinman, Kyle J.; Mostofsky, Stewart H.; Denckla, Martha B.

    2010-01-01

    Apraxia traditionally refers to impaired ability to carry out skilled movements in the absence of fundamental sensorimotor, language, or general cognitive impairment sufficient to preclude them. The child neurology literature includes a much broader and varied usage of the term developmental dyspraxia. It has been used to describe a wide range of motor symptoms, including clumsiness and general coordination difficulties, in various developmental disorders (including autistic spectrum disorders, developmental language disorders, and perinatal stroke). We argue for the need to restrict use of the term developmental dyspraxia to describe impaired performance of skilled gestures, recognizing that, unlike acquired adult-onset apraxia, coexisting sensory and motor problems may also be present. PMID:20032517

  6. Non-equilibrium surface tension of the vapour-liquid interface of active Lennard-Jones particles

    NASA Astrophysics Data System (ADS)

    Paliwal, Siddharth; Prymidis, Vasileios; Filion, Laura; Dijkstra, Marjolein

    2017-08-01

    We study a three-dimensional system of self-propelled Brownian particles interacting via the Lennard-Jones potential. Using Brownian dynamics simulations in an elongated simulation box, we investigate the steady states of vapour-liquid phase coexistence of active Lennard-Jones particles with planar interfaces. We measure the normal and tangential components of the pressure tensor along the direction perpendicular to the interface and verify mechanical equilibrium of the two coexisting phases. In addition, we determine the non-equilibrium interfacial tension by integrating the difference of the normal and tangential components of the pressure tensor and show that the surface tension as a function of strength of particle attractions is well fitted by simple power laws. Finally, we measure the interfacial stiffness using capillary wave theory and the equipartition theorem and find a simple linear relation between surface tension and interfacial stiffness with a proportionality constant characterized by an effective temperature.

  7. Chimera and phase-cluster states in populations of coupled chemical oscillators

    NASA Astrophysics Data System (ADS)

    Tinsley, Mark R.; Nkomo, Simbarashe; Showalter, Kenneth

    2012-09-01

    Populations of coupled oscillators may exhibit two coexisting subpopulations, one with synchronized oscillations and the other with unsynchronized oscillations, even though all of the oscillators are coupled to each other in an equivalent manner. This phenomenon, discovered about ten years ago in theoretical studies, was then further characterized and named the chimera state after the Greek mythological creature made up of different animals. The highly counterintuitive coexistence of coherent and incoherent oscillations in populations of identical oscillators, each with an equivalent coupling structure, inspired great interest and a flurry of theoretical activity. Here we report on experimental studies of chimera states and their relation to other synchronization states in populations of coupled chemical oscillators. Our experiments with coupled Belousov-Zhabotinsky oscillators and corresponding simulations reveal chimera behaviour that differs significantly from the behaviour found in theoretical studies of phase-oscillator models.

  8. Analysis and observation of moving domain fronts in a ring of coupled electronic self-oscillators

    NASA Astrophysics Data System (ADS)

    English, L. Q.; Zampetaki, A.; Kevrekidis, P. G.; Skowronski, K.; Fritz, C. B.; Abdoulkary, Saidou

    2017-10-01

    In this work, we consider a ring of coupled electronic (Wien-bridge) oscillators from a perspective combining modeling, simulation, and experimental observation. Following up on earlier work characterizing the pairwise interaction of Wien-bridge oscillators by Kuramoto-Sakaguchi phase dynamics, we develop a lattice model for a chain thereof, featuring an exponentially decaying spatial kernel. We find that for certain values of the Sakaguchi parameter α, states of traveling phase-domain fronts involving the coexistence of two clearly separated regions of distinct dynamical behavior, can establish themselves in the ring lattice. Experiments and simulations show that stationary coexistence domains of synchronization only manifest themselves with the introduction of a local impurity; here an incoherent cluster of oscillators can arise reminiscent of the chimera states in a range of systems with homogeneous oscillators and suitable nonlocal interactions between them.

  9. Pressure-composition relations for coexisting gases and liquids and the critical points in the system NaCl-H2O at 450, 475, and 500°C

    USGS Publications Warehouse

    Rosenbauer, Robert J.; Bischoff, James L.

    1987-01-01

    Pressure-temperature-composition (P, T, x) relations for the co-existing vapor and liquid phases in the system NaCl-H2O were determined experimentally at 450, 475, and 500°C. Data for each isotherm includeP-x relations near the critical point and extend to the three-phase assemblage vapor-liquid-halite on the vapor side. On the liquid side the P-x data range from the critical point to the room-temperature halite saturation point (~25 wt.% NaCl). Critical pressures were calculated from measured pressures and compositions and classical theory. The results generally support the few data points of Urusova (1974, 1975) and Ölander and Liander (1950) but differ markedly from the extensive data of Sourirajan andKennedy (1962).

  10. Topological Dirac line nodes and superconductivity coexist in SnSe at high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xuliang; Lu, Pengchao; Wang, Xuefei

    2017-10-01

    We report on the discovery of a pressure-induced topological and superconducting phase of SnSe, a material which attracts much attention recently due to its superior thermoelectric properties. In situ high-pressure electrical transport and synchrotron x-ray diffraction measurements show that the superconductivity emerges along with the formation of a CsCl-type structural phase of SnSe above around 27 GPa, with a maximum critical temperature of 3.2 K at 39 GPa. Based on ab initio calculations, this CsCl-type SnSe is predicted to be a Dirac line-node (DLN) semimetal in the absence of spin-orbit coupling, whose DLN states are protected by the coexistence ofmore » time-reversal and inversion symmetries. These results make CsCl-type SnSe an interesting model platform with simple crystal symmetry to study the interplay of topological physics and superconductivity.« less

  11. Warm ''pasta'' phase in the Thomas-Fermi approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avancini, Sidney S.; Menezes, Debora P.; Chiacchiera, Silvia

    In the present article, the 'pasta' phase is studied at finite temperatures within a Thomas-Fermi (TF) approach. Relativistic mean-field models, both with constant and density-dependent couplings, are used to describe this frustrated system. We compare the present results with previous ones obtained within a phase-coexistence description and conclude that the TF approximation gives rise to a richer inner ''pasta'' phase structure and the homogeneous matter appears at higher densities. Finally, the transition density calculated within TF is compared with the results for this quantity obtained with other methods.

  12. Coexistence of superconductivity and magnetism by chemical design

    NASA Astrophysics Data System (ADS)

    Coronado, Eugenio; Martí-Gastaldo, Carlos; Navarro-Moratalla, Efrén; Ribera, Antonio; Blundell, Stephen J.; Baker, Peter J.

    2010-12-01

    Although the coexistence of superconductivity and ferromagnetism in one compound is rare, some examples of such materials are known to exist. Methods to physically prepare hybrid structures with both competing phases are also known, which rely on the nanofabrication of alternating conducting layers. Chemical methods of building up hybrid materials with organic molecules (superconducting layers) and metal complexes (magnetic layers) have provided examples of superconductivity with some magnetic properties, but not fully ordered. Now, we report a chemical design strategy that uses the self assembly in solution of macromolecular nanosheet building blocks to engineer the coexistence of superconductivity and magnetism in [Ni0.66Al0.33(OH)2][TaS2] at ~4 K. The method is further demonstrated in the isostructural [Ni0.66Fe0.33(OH)2][TaS2], in which the magnetic ordering is shifted from 4 K to 16 K.

  13. Coexistence Curve of Perfluoromethylcyclohexane-Isopropyl Alcohol

    NASA Technical Reports Server (NTRS)

    Jacobs, D. T.; Kuhl, D. E.; Selby, C. E.

    1996-01-01

    The coexistence curve of the binary fluid mixture perfluoromethylcyclohexane-isopropyl alcohol was determined by precisely measuring the refractive index both above and below its upper critical consolute point. Sixty-seven two-phase data points were obtained over a wide range of reduced temperatures, 10(exp -5) less than t less than 2.5 x 10(exp -1), to determine the location of the critical point: critical temperature=89.901 C, and critical composition = 62.2% by volume perfluoromethylcyclohexane. These data were analyzed to determine the critical exponent 8 close to the critical point, the amplitude B, and the anomaly in the diameter. The volume-fraction coexistence curve is found to be as symmetric as any composition like variable. Correction to scaling is investigated as well as the need for a crossover theory. A model is proposed that describes the asymptotic approach to zero of the effective exponent Beta, which allows an estimation of the temperature regime free of crossover effects.

  14. Fluctuation driven electroweak phase transition

    NASA Technical Reports Server (NTRS)

    Gleiser, Marcelo; Kolb, Edward W.

    1991-01-01

    We examine the dynamics of the electroweak phase transition in the early Universe. For Higgs masses in the range 46 less than or = M sub H less than or = 150 GeV and top quark masses less than 200 GeV, regions of symmetric and asymmetric vacuum coexist to below the critical temperature, with thermal equilibrium between the two phases maintained by fluctuations of both phases. We propose that the transition to the asymmetric vacuum is completed by percolation of these subcritical fluctuations. Our results are relevant to scenarios of baryogenesis that invoke a weakly first-order phase transition at the electroweak scale.

  15. Fluctuation-driven electroweak phase transition. [in early universe

    NASA Technical Reports Server (NTRS)

    Gleiser, Marcelo; Kolb, Edward W.

    1992-01-01

    We examine the dynamics of the electroweak phase transition in the early Universe. For Higgs masses in the range 46 less than or = M sub H less than or = 150 GeV and top quark masses less than 200 GeV, regions of symmetric and asymmetric vacuum coexist to below the critical temperature, with thermal equilibrium between the two phases maintained by fluctuations of both phases. We propose that the transition to the asymmetric vacuum is completed by percolation of these subcritical fluctuations. Our results are relevant to scenarios of baryogenesis that invoke a weakly first-order phase transition at the electroweak scale.

  16. Chromonic liquid crystalline nematic phase exhibited in binary mixture of two liquid crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Govindaiah, T. N., E-mail: tngovi.phy@gmail.com; Sreepad, H. R.; Sridhar, K. N.

    2015-06-24

    A binary mixture of abietic acid and orthophosphoric acid (H{sub 3}PO{sub 4}) exhibits co-existence of biphasic region of Nematic+Isotropic (N+I), lyotropic Nematic (ND) and Smectic-G (SmG) phases. The mixture exhibits N+I, N and SmG phases at different concentrations and at different temperatures. Mixtures with all concentrations of abietic acid exhibit I→N+I→N→SmG phases sequentially when the specimen is cooled from its isotropic melt. These phases have been characterized by using differential scanning calorimetric, X-ray diffraction, and optical texture studies.

  17. Tunable Mode Coupling in Nanocontact Spin-Torque Oscillators

    DOE PAGES

    Zhang, Steven S. -L.; Iacocca, Ezio; Heinonen, Olle

    2017-07-27

    Recent experiments on spin-torque oscillators have revealed interactions between multiple magneto-dynamic modes, including mode coexistence, mode hopping, and temperature-driven crossover between modes. The initial multimode theory indicates that a linear coupling between several dominant modes, arising from the interaction of the subdynamic system with a magnon bath, plays an essential role in the generation of various multimode behaviors, such as mode hopping and mode coexistence. In this work, we derive a set of rate equations to describe the dynamics of coupled magneto-dynamic modes in a nanocontact spin-torque oscillator. Here, expressions for both linear and nonlinear coupling terms are obtained, whichmore » allow us to analyze the dependence of the coupled dynamic behaviors of modes on external experimental conditions as well as intrinsic magnetic properties. For a minimal two-mode system, we further map the energy and phase difference of the two modes onto a two-dimensional phase space and demonstrate in the phase portraits how the manifolds of periodic orbits and fixed points vary with an external magnetic field as well as with the temperature.« less

  18. Tunable Mode Coupling in Nanocontact Spin-Torque Oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Steven S. -L.; Iacocca, Ezio; Heinonen, Olle

    Recent experiments on spin-torque oscillators have revealed interactions between multiple magneto-dynamic modes, including mode coexistence, mode hopping, and temperature-driven crossover between modes. The initial multimode theory indicates that a linear coupling between several dominant modes, arising from the interaction of the subdynamic system with a magnon bath, plays an essential role in the generation of various multimode behaviors, such as mode hopping and mode coexistence. In this work, we derive a set of rate equations to describe the dynamics of coupled magneto-dynamic modes in a nanocontact spin-torque oscillator. Here, expressions for both linear and nonlinear coupling terms are obtained, whichmore » allow us to analyze the dependence of the coupled dynamic behaviors of modes on external experimental conditions as well as intrinsic magnetic properties. For a minimal two-mode system, we further map the energy and phase difference of the two modes onto a two-dimensional phase space and demonstrate in the phase portraits how the manifolds of periodic orbits and fixed points vary with an external magnetic field as well as with the temperature.« less

  19. Pathways through equilibrated states with coexisting phases for gas hydrate formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malolepsza, Edyta; Keyes, Tom

    Under ambient conditions, water freezes to either hexagonal ice or a hexagonal/cubic composite ice. The presence of hydrophobic guest molecules introduces a competing pathway: gas hydrate formation, with the guests in clathrate cages. Here, the pathways of the phase transitions are sought as sequences of states with coexisting phases, using a generalized replica exchange algorithm designed to sample them in equilibrium, avoiding nonequilibrium processes. For a dilute solution of methane in water under 200 atm, initializing the simulation with the full set of replicas leads to methane trapped in hexagonal/cubic ice, while gradually adding replicas with decreasing enthalpy produces themore » initial steps of hydrate growth. Once a small amount of hydrate is formed, water rearranges to form empty cages, eventually transforming the remainder of the system to metastable β ice, a scaffolding for hydrates. It is suggested that configurations with empty cages are reaction intermediates in hydrate formation when more guest molecules are available. Furthermore, free energy profiles show that methane acts as a catalyst reducing the barrier for β ice versus hexagonal/cubic ice formation.« less

  20. Pathways through equilibrated states with coexisting phases for gas hydrate formation

    DOE PAGES

    Malolepsza, Edyta; Keyes, Tom

    2015-12-01

    Under ambient conditions, water freezes to either hexagonal ice or a hexagonal/cubic composite ice. The presence of hydrophobic guest molecules introduces a competing pathway: gas hydrate formation, with the guests in clathrate cages. Here, the pathways of the phase transitions are sought as sequences of states with coexisting phases, using a generalized replica exchange algorithm designed to sample them in equilibrium, avoiding nonequilibrium processes. For a dilute solution of methane in water under 200 atm, initializing the simulation with the full set of replicas leads to methane trapped in hexagonal/cubic ice, while gradually adding replicas with decreasing enthalpy produces themore » initial steps of hydrate growth. Once a small amount of hydrate is formed, water rearranges to form empty cages, eventually transforming the remainder of the system to metastable β ice, a scaffolding for hydrates. It is suggested that configurations with empty cages are reaction intermediates in hydrate formation when more guest molecules are available. Furthermore, free energy profiles show that methane acts as a catalyst reducing the barrier for β ice versus hexagonal/cubic ice formation.« less

  1. Bright and photostable push-pull pyrene dye visualizes lipid order variation between plasma and intracellular membranes.

    PubMed

    Niko, Yosuke; Didier, Pascal; Mely, Yves; Konishi, Gen-ichi; Klymchenko, Andrey S

    2016-01-11

    Imaging lipid organization in cell membranes requires advanced fluorescent probes. Here, we show that a recently synthesized push-pull pyrene (PA), similarly to popular probe Laurdan, changes the emission maximum as a function of lipid order, but outperforms it by spectroscopic properties. In addition to red-shifted absorption compatible with common 405 nm diode laser, PA shows higher brightness and much higher photostability than Laurdan in apolar membrane environments. Moreover, PA is compatible with two-photon excitation at wavelengths >800 nm, which was successfully used for ratiometric imaging of coexisting liquid ordered and disordered phases in giant unilamellar vesicles. Fluorescence confocal microscopy in Hela cells revealed that PA efficiently stains the plasma membrane and the intracellular membranes at >20-fold lower concentrations, as compared to Laurdan. Finally, ratiometric imaging using PA reveals variation of lipid order within different cellular compartments: plasma membranes are close to liquid ordered phase of model membranes composed of sphingomyelin and cholesterol, while intracellular membranes are much less ordered, matching well membranes composed of unsaturated phospholipids without cholesterol. These differences in the lipid order were confirmed by fluorescence lifetime imaging (FLIM) at the blue edge of PA emission band. PA probe constitutes thus a new powerful tool for biomembrane research.

  2. Control of gel swelling and phase separation of weakly charged thermoreversible gels by salt addition

    PubMed Central

    Solis, Francisco J.; Vernon, Brent

    2009-01-01

    Doping of thermoreversible polymer gels with charged monomers provides a way to control phase separation and gelation conditions by coupling the properties of the gel with a tunable ionic environment. We analyze the dependence of the gelation and phase separation conditions on the amount of salt present using a mean field model of weakly charged associative polymers. The ions and co-ions present are explicitly considered at the mean field level, and we determine their concentrations in the different equilibrium phases when the system undergoes phase separation. For weak polymer charge, the entropic contributions of the ions to the free energy of the system play a central role in the determination of the location of phase equilibrium. In the simplest case, when the associative interaction responsible for gel formation is independent of the electrostatic interaction, the addition of salt changes the polymer equilibrium concentrations and indirectly changes the measurable swelling of the gel. We construct phase diagrams of these systems showing the location of the coexistence region, the gel-sol boundary and the location of the tie-lines. We determine the swelling of the gel within the co-existence region. Our main result is that the description of the effect of the salt on the properties of the weakly charged gel can be described through an extra contribution to the effective immiscibility parameter χ proportional to the square of the doping degree f2 and to the inverse square of the added salt concentration s−2. PMID:19759854

  3. Can widespread hypersensitivity in carpal tunnel syndrome be substantiated if neck and arm pain are absent?

    PubMed

    Schmid, A B; Soon, B T C; Wasner, G; Coppieters, M W

    2012-02-01

    Recent studies demonstrated that patients with carpal tunnel syndrome (CTS) have signs of thermal and mechanical hyperalgesia in extra-median territories suggesting an involvement of central pain mechanisms. As previous studies included patients with shoulder/arm symptoms or neck pain, a potential influence of these coexisting disorders cannot be excluded. This study therefore evaluated whether widespread sensory changes (hypoesthesia or hyperalgesia) are present in patients with unilateral CTS in the absence of coexisting disorders. Twenty-six patients with unilateral CTS with symptoms localised to their hand and 26 healthy controls participated in the study. A comprehensive quantitative sensory testing (QST) protocol including thermal and mechanical detection and pain thresholds was performed over the hands (median, ulnar and radial innervation area), lateral elbows, neck and tibialis anterior muscle. Patients with CTS demonstrated thermal and mechanical hypoesthesia in the hand but not at distant sites. Thermal or mechanical hyperalgesia was not identified at any location with traditional QST threshold testing. However, patients with CTS rated the pain during thermal pain testing significantly higher than healthy participants. This was especially apparent for heat pain ratings which were elevated not only in the affected hand but also in the neck and tibialis anterior muscle. In conclusion, CTS alone in the absence of coexisting neck and arm pain does not account for sensory changes outside the affected hand as determined by traditional QST threshold testing. Elevated pain ratings may however be an early indication of central pain mechanisms. © 2011 European Federation of International Association for the Study of Pain Chapters.

  4. Initial growth and topography of 4,4'-biphenyldicarboxylic acid on Cu(001)

    NASA Astrophysics Data System (ADS)

    Poelsema, Bene; Schwarz, Daniel; van Gastel, Raoul; Zandvliet, Harold J. W.

    2013-03-01

    We have investigated nucleation and initial growth of BDA on Cu(001) at 300 - 410K, using LEEM and μLEED. BDA condenses in a 2D supramolecular c(8 ×8) network of lying molecules. The dehydrogenated molecules form hydrogen bonds with perpendicular adjacent ones. First, the adsorbed BDA molecules form a disordered dilute phase and at a sufficiently high density, the c(8 ×8) crystalline phase nucleates. From the equilibrium densities at different temperatures we obtain the 2D phase diagram. The phase coexistence line provides a cohesive energy of 0.35 eV. LEEM allows a detailed study of nucleation and growth of BDA on Cu(001) at low supersaturation. The real time microscopic information allows a direct visualization of near-critical nuclei. At 332 K and a deposition rate of 1.4 x 10-6ML/s we find a critical nucleus size about 600 nm2. The corresponding value obtained from classic nucleation theory corresponds nicely with this direct result. We estimate the Gibbs free energy for nucleation under these conditions at 4 eV. The size fluctuations are an order of magnitude stronger than expected. At 410 K the influence of steps on the growth process becomes evident: domain growth is terminated by steps even when they are permeable for individual molecules. This leads to a novel Mullins-Sekerka type of growth instability: the growth is very fast along the steps and less fast perpendicular to the steps. The large solid angle at the advancing edge of the condensate dictates the high growth rate along the step.

  5. Fulminant hemolysis in glucose-6-phosphate dehydrogenase deficiency.

    PubMed

    Moiz, Bushra; Ali, Sidra Asad

    2018-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked disorder affecting some 400 million people worldwide. Though clinically silent, it may result in hemolysis on oxidative stress induced by drugs or infections. Viral hepatitis A with coexisting G6PD deficiency can be devastating associated with severe hemolysis, anemia, renal failure, and hepatic encephalopathy.

  6. PTSD co-morbid with HIV: Separate but equal, or two parts of a whole?

    PubMed

    Neigh, Gretchen N; Rhodes, Siara T; Valdez, Arielle; Jovanovic, Tanja

    2016-08-01

    Approximately 30 million people currently live with HIV worldwide and the incidence of stress-related disorders, such as post-traumatic stress disorder (PTSD), is elevated among people living with HIV as compared to those living without the virus. PTSD is a severely debilitating, stress-related psychiatric illness associated with trauma exposure. Patients with PTSD experience intrusive and fearful memories as well as flashbacks and nightmares of the traumatic event(s) for much of their lives, may avoid other people, and may be constantly on guard for new negative experiences. This review will delineate the information available to date regarding the comorbidity of PTSD and HIV and discuss the biological mechanisms which may contribute to the co-existence, and potential interaction of, these two disorders. Both HIV and PTSD are linked to altered neurobiology within areas of the brain involved in the startle response and altered function of the hypothalamic-pituitary-adrenal axis. Collectively, the data highlighted suggest that PTSD and HIV are more likely to actively interact than to simply co-exist within the same individual. Multi-faceted interactions between PTSD and HIV have the potential to alter response to treatment for either independent disorder. Therefore, it is of great importance to advance the understanding of the neurobiological substrates that are altered in comorbid PTSD and HIV such that the most efficacious treatments can be administered to improve both mental and physical health and reduce the spread of HIV. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. [Body dysmorphic disorder: clinical aspects, nosological dimensions and controversies with anorexia nervosa].

    PubMed

    Behar, Rosa; Arancibia, Marcelo; Heitzer, Cristóbal; Meza, Nicolás

    2016-05-01

    There is strong evidence about the co-existence of body dysmorphic disorder (BDD) and eating disorders (ED), particularly with anorexia nervosa (AN). An exhaustive review of the specialised literature regarding these disorders was carried out. The results show that their co-occurrence implies a more complex diagnosis and treatment, a more severe clinical symptomatology and a worse prognosis and outcome. Both disorders display common similarities, differences and comorbidities, which allow authors to classify them in different nosological spectra (somatomorphic, anxious, obsessive-compulsive, affective and psychotic). Their crossover involves higher levels of body dissatisfaction and body image distortion, depression, suicidal tendency, personality disorders, substance use/abuse, obsessive-compulsive disorder, social phobia, alexithymia and childhood abuse or neglect background. Treatment including cognitive-behavioral psychotherapy and selective reuptake serotonin inhibitors are effective for both, BDD and ED; nevertheless, plastic surgery could exacerbate BDD. Clinical traits of BDD must be systematically detected in patients suffering from ED and vice versa.

  8. Personality disorder and alcohol treatment outcome: systematic review and meta-analysis.

    PubMed

    Newton-Howes, Giles M; Foulds, James A; Guy, Nicola H; Boden, Joseph M; Mulder, Roger T

    2017-07-01

    Background Personality disorders commonly coexist with alcohol use disorders (AUDs), but there is conflicting evidence on their association with treatment outcomes. Aims To determine the size and direction of the association between personality disorder and the outcome of treatment for AUD. Method We conducted a systematic review and meta-analysis of randomised trials and longitudinal studies. Results Personality disorders were associated with more alcohol-related impairment at baseline and less retention in treatment. However, during follow-up people with a personality disorder showed a similar amount of improvement in alcohol outcomes to that of people without such disorder. Synthesis of evidence was hampered by variable outcome reporting and a low quality of evidence overall. Conclusions Current evidence suggests the pessimism about treatment outcomes for this group of patients may be unfounded. However, there is an urgent need for more consistent and better quality reporting of outcomes in future studies in this area. © The Royal College of Psychiatrists 2017.

  9. Heterogeneity in magnetic complex oxides

    NASA Astrophysics Data System (ADS)

    Arenholz, Elke

    Heterogeneity of quantum materials on the nanoscale can result from the spontaneous formation of regions with distinct atomic, electronic and/or magnetic order, and indicates coexistence of competing quantum phases. In complex oxides, the subtle interplay of lattice, charge, orbital, and spin degrees of freedom gives rise to especially rich phase diagrams. For example, coexisting conducting and insulating phases can occur near metal-insulator transitions, colossal magnetoresistance can emerge where ferromagnetic and antiferromagnetic domains compete, and charge-ordered and superconducting regions are present simultaneously in materials exhibiting high-temperature superconductivity. Additionally, externally applied fields (electric, magnetic, or strain) or other external excitations (light or heat) can tip the energy balance towards one phase, or support heterogeneity and phase coexistence and provide the means to perturb and tailor quantum heterogeneity at the nanoscale. Engineering nanomaterials, with structural, electronic and magnetic characteristics beyond what is found in bulk materials, is possible today through the technique of thin film epitaxy, effectively a method of `spray painting' atoms on single crystalline substrates to create precisely customized layered structures with atomic arrangements defined by the underlying substrate. Charge transfer and spin polarization across interfaces as well as imprinting nanoscale heterogeneity between adjacent layers lead to intriguing and important new phenomena testing our understanding of basic physics and creating new functionalities. Moreover, the abrupt change of orientation of an order parameter between nanoscale domains can lead to unique phases that are localized at domain walls, including conducting domain walls in insulating ferroelectrics, and ferromagnetic domain walls in antiferromagnets. Here we present our recent results on tailoring the electronic anisotropy of multiferroic heterostructures by imprinting the BiFeO3 domain pattern in an adjacent La0.7Sr0.3MnO3 layer, understanding the metal-insulator transition in strained VO2 thin films and identifying a three-dimensional quasi-long-range electronic supermodulation in YBa2Cu3O7-x/La0.7Ca0.3MnO3 heterostructures. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  10. Solutions for correlations along the coexistence curve and at the critical point of a kagomé lattice gas with three-particle interactions

    NASA Astrophysics Data System (ADS)

    Barry, J. H.; Muttalib, K. A.; Tanaka, T.

    2008-01-01

    We consider a two-dimensional (d=2) kagomé lattice gas model with attractive three-particle interactions around each triangular face of the kagomé lattice. Exact solutions are obtained for multiparticle correlations along the liquid and vapor branches of the coexistence curve and at criticality. The correlation solutions are also determined along the continuation of the curvilinear diameter of the coexistence region into the disordered fluid region. The method generates a linear algebraic system of correlation identities with coefficients dependent only upon the interaction parameter. Using a priori knowledge of pertinent solutions for the density and elementary triplet correlation, one finds a closed and linearly independent set of correlation identities defined upon a spatially compact nine-site cluster of the kagomé lattice. Resulting exact solution curves of the correlations are plotted and discussed as functions of the temperature and are compared with corresponding results in a traditional kagomé lattice gas having nearest-neighbor pair interactions. An example of application for the multiparticle correlations is demonstrated in cavitation theory.

  11. Ferromagnetic superconductors: A vortex phase in ternary rare-earth compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuper, C.G.; Revzen, M.; Ron, A.

    1980-06-09

    It is shown that the generalized Ginzburg-Landau free-energy functional of Blount and Varma admits self-consistent solutions with quantized-flux vortices, magnetized in a region about the cores. There is a temperature range where the new phase has a lower free energy than either the pure superconducting or ferromagnetic phases; it represents true coexistence of ferromagnetism and superconductivity. The main features of the specific heat and magnetic properties of some rare-earth ternary compounds can be explained qualitatively.

  12. Vapor-liquid coexistence of the Stockmayer fluid in nonuniform external fields.

    PubMed

    Samin, Sela; Tsori, Yoav; Holm, Christian

    2013-05-01

    We investigate the structure and phase behavior of the Stockmayer fluid in the presence of nonuniform electric fields using molecular simulation. We find that an initially homogeneous vapor phase undergoes a local phase separation in a nonuniform field due to the combined effect of the field gradient and the fluid vapor-liquid equilibrium. This results in a high-density fluid condensing in the strong field region. The system polarization exhibits a strong field dependence due to the fluid condensation.

  13. Chest pain, panic disorder and coronary artery disease: a systematic review.

    PubMed

    Soares-Filho, Gastão L F; Arias-Carrión, Oscar; Santulli, Gaetano; Silva, Adriana C; Machado, Sergio; Valenca, Alexandre M; Nardi, Antonio E

    2014-01-01

    Chest pain may be due benign diseases but often suggests an association with coronary artery disease, which justifies a quick search for medical care. However, some people have anxiety disorder with symptoms that resemble clearly an acute coronary syndrome. More specifically, during a panic attack an abrupt feeling of fear accompanied by symptoms such as breathlessness, palpitations and chest pain, makes patients believe they have a heart attack and confuse physicians about the diagnosis. The association between panic disorder and coronary artery disease has been extensively studied in recent years and, although some studies have shown anxiety disorders coexisting or increasing the risk of heart disease, one causal hypothesis is still missing. The aim of this systematic review is to present the various ways in which the scientific community has been investigating the relation between chest pain, panic disorder and coronary artery disease.

  14. Is Dynamic Cerebral Autoregulation Bilaterally Impaired after Unilateral Acute Ischemic Stroke?

    PubMed

    Xiong, Li; Tian, Ge; Lin, Wenhua; Wang, Wei; Wang, Lijuan; Leung, Thomas; Mok, Vincent; Liu, Jia; Chen, Xiangyan; Wong, Ka Sing

    2017-05-01

    Whether dynamic cerebral autoregulation (dCA) is impaired focally in the affected hemisphere or bilaterally in both the affected and nonaffected hemispheres after ischemic stroke remains controversial. We therefore investigated the pattern of dCA in acute ischemic stroke patients with different subtypes. Sixty acute ischemic stroke patients with unilateral anterior circulation infarct [30 with large artery atherosclerosis (LAA), 13 with small vessel disease (SVD), and 17 with coexisting LAA and SVD] and 16 healthy controls were enrolled. Spontaneous arterial blood pressure and cerebral blood flow velocity fluctuations in both bilateral middle cerebral arteries using transcranial Doppler were recorded over 10 minutes. Transfer function analysis was applied to obtain autoregulatory parameters, autoregulation index (ARI), phase difference (PD), and gain. PD was significantly lower on both the ipsilateral and contralateral sides in the LAA group (ipsilateral, 30.74 degrees; contralateral, 29.17 degrees) and the coexisting LAA and SVD group (20.23 degrees; 13.10 degrees) than that in healthy controls (left side, 51.66 degrees; right side, 58.48 degrees) (all P < .05), but there were no significant differences between the 2 sides when compared with each other in all groups. However, in the coexisting LAA and SVD group, phase on both sides was significantly lower when compared with that in the LAA and SVD groups, respectively. The results of ARI were consistent with the findings in PD. The results indicate that dCA is bilaterally impaired in acute ischemic patients with LAA, and the coexisting SVD may aggravate the bilateral impairment of dCA. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  15. Effects of elongation on the phase behavior of the Gay-Berne fluid

    NASA Astrophysics Data System (ADS)

    Brown, Julian T.; Allen, Michael P.; Martín del Río, Elvira; Miguel, Enrique De

    1998-06-01

    In this paper we present a computer simulation study of the phase behavior of the Gay-Berne liquid crystal model, concentrating on the effects of varying the molecular elongation κ. We study a range of length-to-width parameters 3<=κ<=4, using a variety of molecular dynamics and Monte Carlo techniques, obtaining a guide to the phase behavior for each shape studied. We observe vapor (V), isotropic liquid (I), nematic (N), smectic-A (SA) and smectic-B (SB) liquid crystal phases. Within the small range of elongation studied, the phase diagram shows significant changes. On increasing κ, the liquid-vapor critical point moves to lower temperature until it falls below the I-SB coexistence line, around κ=3.4, where liquid-vapor coexistence proves hard to establish. The liquid-vapor critical point seems to be completely absent at κ=4.0. Another dramatic effect is the growth of a stable SA ``island'' in the phase diagram at elongations slightly above κ=3.0. The SA range extends to both higher and lower temperatures as κ is increased. Also as κ is increased, the I-N transition is seen to move to lower density (and pressure) at given temperature. The lowest temperature at which the nematic phase is stable does not vary dramatically with κ. On cooling, no SB-crystal transition can be identified in the equation of state for any of these elongations; we suggest that, on the basis of simulation evidence, SB and crystal are really the same phase for these models.

  16. Are questionnaires reliable in diagnosing sleep-disordered breathing in university students?

    PubMed

    Migacz, E; Wichniak, A; Kukwa, W

    2017-11-01

    This study aimed to screen young adults for sleep-disordered breathing, and compare those with high and low risk for sleep-disordered breathing. A survey based on the Berlin questionnaire was completed by 330 university students, and the results were used to divide them into sleep-disordered breathing positive and sleep-disordered breathing negative groups. A representative group was selected from each cohort (positive group, n = 16; negative group, n = 21), and assessed with sleep study, ENT examination, the Nose Obstruction Symptom Evaluation scale, and the Epworth Sleepiness Scale. Sleep-disordered breathing prevalence was 11.2 per cent in the questionnaire and 24 per cent according to the sleep study. The sleep-disordered breathing positive and negative groups significantly differed in terms of coexisting sleep-disordered breathing symptoms. There were no significant differences between the positive and negative groups with regard to sleep study parameters (apnoea/hypopnoea index, respiratory disturbance index, oxygen desaturation index, snoring intensity) and the Epworth Sleepiness Scale. Subjective and objective diagnostic tools revealed that sleep-disordered breathing is a common problem among young adults.

  17. Effect of Al on stability of DHMS up to the uppermost lower mantle

    NASA Astrophysics Data System (ADS)

    Xu, C.; Inoue, T.

    2017-12-01

    Water plays an important role on Earth. It influences the physical and chemical property of minerals and melts, which further effects the evolution of the Earth. A series of dense hydrous magnesium silicate (DHMS) phases such as phase A (PhA), phase E (PhE), superhydrous phase B (SUB) and phase D (PhD) have been suggested as potential water carriers to transition zone and even to the lower mantle under the conditions present in the cold subducting slabs [e.g. Kawamoto, 2004; Komabayashi and Omori, 2006]. Because of its importance, the DHMS have been widely studied by using different starting materials in MgO-SiO2-H2O system. Recently, the newly reported Al-PhD is stable at temperatures up to 2,000 °C at 26 GPa, which indicates aluminum increases stability regions of DHMS [e.g. Pamato et al., 2015]. To systematically study the effect of Al on the stability of hydrous phases, we use Kawai-type high pressure apparatus to investigate nature clinochlore, which contains about 15 wt% H2O and about 14 wt% Al2O3. The Al-bearing hydrous PhE, SUB and PhD were observed with P-T increasing. Following the P-T path of cold subduction, the phase assemblage PhE + PhD is stable at 14-23 GPa, and even a trace of PhE is detected at 1150°C and 25 GPa coexisting with PhD. The phase SUB is stable between 16-22 GPa coexisting with PhE + PhD. Following the P-T path of hot subduction, the phase assemblage PhE + Gt is observed at 14-18 GPa coexisting with fluid or melt. The phase assemblage SUB + PhD is stable at 18-25 GPa, which may extend to higher pressures and temperatures. Therefore, it is obvious that Al enhances the stabilities of these three hydrous minerals, which are stable even in the hot subducting conditions. On the other hand, the Al substitution mechanism in PhE, SUB and PhD were clarified according to chemical compositional relationship between Mg, Si, Al. This shows that they can hold a significant amount of H (water) in their structure. Our results may indicate that the wide stabilities of Al-bearing DHMS increase the chance of water transportation to deeper mantle after antigorite (serpentine) decomposition at the shallow region of the subduction zone.

  18. Microstructural Investigation, Raman and Magnetic Studies on Chemically Synthesized Nanocrystalline Ni-Doped Gadolinium Oxide (Gd1.90Ni0.10O3- δ )

    NASA Astrophysics Data System (ADS)

    Sarkar, B. J.; Mandal, J.; Dalal, M.; Bandyopadhyay, A.; Satpati, B.; Chakrabarti, P. K.

    2018-03-01

    Nanocrystalline Ni-doped gadolinium oxide (Gd1.90Ni0.10O3- δ , GNO) is synthesized by co-precipitation method. The as-prepared sample is annealed in vacuum at 700°C for 6 h. Analyses of the x-ray diffractogram by Rietveld refinement method, transmission electron microscopy and Raman spectroscopy of GNO recorded at room temperature confirmed the pure crystallographic phase and complete substitution of Ni-ions in Gd2O3 lattice. Magnetization ( M) as a function of temperature ( T) and magnetic field ( H) is measured by a superconducting quantum interference device magnetometer, which suggests the presence of ferromagnetic/antiferromagnetic phases together with a paramagnetic phase. From the M-T curve it can be shown that the ferromagnetic phase dominates over para-/antiferromagnetic phases in the temperature range of 300-100 K, but from 100 K to 50 K, the antiferromagnetic phase dominates over ferro-/paramagnetic phases. Hysteresis loops recorded at different temperatures indicate the presence of weak ferro-/antiferromagnetism, which dominates in the low field region (˜ 4000 Oe), above which magnetization increases linearly. The sharp increase of magnetization in M-T curve observed in the temperature range of 50-5 K confirms the presence of dominating ferromagnetic plus paramagnetic phase over antiferromagnetic part. For the first time a combined formula generated from three-dimensional (3D) spin wave model and Johnston formula is proposed to analyze the coexistence of different magnetic phases in different temperature ranges. Interestingly, the combined formula successfully explains the co-existence of different magnetic phases along with their contribution at different temperatures. The onset of ferromagnetism in Gd1.90Ni0.10O3- δ is explained by oxygen vacancy mediated F-centre exchange (FCE) coupling mechanism.

  19. Co-existence of phenylketonuria either with maple syrup urine disease or Sandhoff disease in two patients from Iran: emphasizing the role of consanguinity.

    PubMed

    Abiri, Maryam; Talebi, Saeed; Uitto, Jouni; Youssefian, Leila; Vahidnezhad, Hassan; Shirzad, Tina; Salehpour, Shadab; Zeinali, Sirous

    2016-10-01

    Most inborn errors of metabolism (IEMs) are inherited in an autosomal recessive manner. IEMs are one of the major concerns in Iran due to its extensive consanguineous marriages. Herein, we report two patients with two co-existent IEMs: a girl affected by classic phenylketonuria (PKU) and maple syrup urine disease (MSUD) and a male patient affected with Sandhoff disease and PKU, where Sandhoff disease was suspected due to the presence of a cherry-red spot in the eyes at 6 months which is unrelated to PKU. Sequencing of candidate genes in the first patient revealed one novel and three recurrent compound heterozygous mutations of p.Ser231Pro and p.Ala300Ser in the PAH gene and p.Glu330Lys and p.Arg170Cys mutations in the BCKDHB gene. Genetic testing results in the second patient showed previously reported homozygous mutations of p.Arg261Gln in the PAH and p.Arg533Cys mutation in the HEXB gene. Genetic testing confirmed the clinical diagnosis of both diseases in both patients. To the best of our knowledge; this is the first report of the co-existence of two distinct genetic disorders in two individuals from Iran. Co-existent different IEMs in patients complicated the clinical diagnosis and management of the diseases.

  20. Shear-induced structural transitions in Newtonian non-Newtonian two-phase flow

    NASA Astrophysics Data System (ADS)

    Cristobal, G.; Rouch, J.; Colin, A.; Panizza, P.

    2000-09-01

    We show the existence under shear flow of steady states in a two-phase region of a brine-surfactant system in which lyotropic dilute lamellar (non-Newtonian) and sponge (Newtonian) phases are coexisting. At high shear rates and low sponge phase-volume fractions, we report on the existence of a dynamic transition corresponding to the formation of a colloidal crystal of multilamellar vesicles (or ``onions'') immersed in the sponge matrix. As the sponge phase-volume fraction increases, this transition exhibits a hysteresis loop leading to a structural bistability of the two-phase flow. Contrary to single phase lamellar systems where it is always 100%, the onion volume fraction can be monitored continuously from 0 to 100 %.

  1. Three-Phase Coexistence in Colloidal Rod-Plate Mixtures.

    PubMed

    Woolston, Phillip; van Duijneveldt, Jeroen S

    2015-09-01

    Aqueous suspensions of clay particles, such as montmorillonite (MMT) platelets and sepiolite (Sep) rods, tend to form gels at concentrations around 1 vol %. For Sep rods, adsorbing sodium polyacrylate to the surface allows for an isotropic-nematic phase separation to be seen instead. Here, MMT is added to such Sep suspensions, resulting in a complex phase behavior. Across a range of clay concentrations, separation into three phases is observed: a lower, nematic phase dominated by Sep rods, a MMT-rich middle layer, which is weakly birefringent and probably a gel, and a dilute top phase. Analysis of phase volumes suggests that the middle layer may contain as much as 6 vol % MMT.

  2. Global asymmetry of fluids and local singularity in the diameter of the coexistence curve.

    PubMed

    Rogankov, Vitaly B; Levchenko, Valeriy I

    2013-05-01

    By combining a measurable vapor-liquid coexistence curve and the extended van der Waals-type of equation of state (EOS) with the additional temperature-dependent coefficient, the phenomenological model of global fluid asymmetry has been developed separately for both coexisting bulk phases in the entire range of subcritical states. It is shown, in particular, that the adequate description of a liquid branch and its near-critical vicinity in terms of appropriate critical exponents and amplitudes connected by the two-scale-factor universal interrelations can be achieved. The asymmetric influence of heterophase fluctuations on the criticality of gaseous states is demonstrated. It is inherently similar to the well-known Fisher's droplet model, which corresponds to the scaling EOS too. The principle of corresponding isotherms has been formulated without any adjustable parameters. An attempt to avoid the use of a locally singular coexistence-curve diameter is proposed in the framework of two alternative models. The accurate vapor-liquid data for two fluid metals, Rb and Cs, as well as two molecular fluids, C(2)H(6) and CO(2), are reanalyzed by the above models to confirm the presumed opportunity.

  3. Analytical Study on the Saturated Polarization Under Electric Field and Phase Equilibrium of Three-Phase Polycrystalline Ferroelectrics by Using the Generalized Inverse-Pole-Figure Model

    NASA Astrophysics Data System (ADS)

    Ju, Kyong-Sik; Ryo, Hyok-Su; Pak, Sung-Nam; Pak, Chang-Su; Ri, Sung-Guk; Ri, Dok-Hwan

    2018-07-01

    By using the generalized inverse-pole-figure model, the numbers of crystalline particles involved in different domain-switching near the triple tetragonal-rhombohedral-orthorhombic (T-R-O) points of three-phase polycrystalline ferroelectrics have been analytically calculated and domain-switching which can bring out phase transformations has been considered. Through polarization by an electric field, different numbers of crystalline particles can be involved in different phase transformations. According to the phase equilibrium conditions, the phase equilibrium compositions of the three phases coexisting near the T-R-O triple point have been evaluated from the results of the numbers of crystalline particles involved in different phase transformations.

  4. Effect of polydispersity, bimodality, and aspect ratio on the phase behavior of colloidal platelet suspensions

    NASA Astrophysics Data System (ADS)

    Martínez-Ratón, Yuri; Velasco, Enrique

    2012-10-01

    We use a fundamental-measure density functional for hard board-like polydisperse particles, in the restricted-orientation approximation, to explain the phase behaviour of platelet colloidal suspensions studied in recent experiments. In particular, we focus our attention on the behavior of the total packing fraction of the mixture, η, in the region of two-phase isotropic-nematic coexistence as a function of mean aspect ratio, polydispersity, and fraction of total volume γ occupied by the nematic phase. In our model, platelets are polydisperse in the square section, of side length σ, but have constant thickness L (and aspect ratio κ ≡ L/⟨σ⟩ < 1, with ⟨σ⟩ the mean side length). Good agreement between our theory and recent experiments is obtained by mapping the real system onto an effective one, with excluded volume interactions but with thicker particles (due to the presence of long-ranged repulsive interactions between platelets). The effect of polydispersity in both shape and particle size has been taken into account by using a size distribution function with an effective mean-square deviation that depends on both polydispersities. We also show that the bimodality of the size distribution function is required to correctly describe the huge two-phase coexistence gap and the nonlinearity of the function γ(η), two important features that these colloidal suspensions exhibit.

  5. Lennard-Jones fluids in two-dimensional nano-pores. Multi-phase coexistence and fluid structure

    NASA Astrophysics Data System (ADS)

    Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim

    2014-03-01

    We present a number of fundamental findings on the wetting behaviour of nano-pores. A popular model for fluid confinement is a one-dimensional (1D) slit pore formed by two parallel planar walls and it exhibits capillary condensation (CC): a first-order phase transition from vapour to capillary-liquid (Kelvin shift). Capping such a pore at one end by a third orthogonal wall forms a prototypical two-dimensional (2D) pore. We show that 2D pores possess a wetting temperature such that below this temperature CC remains of first order, above it becomes a continuous phase transition manifested by a slab of capillary-liquid filling the pore from the capping wall. Continuous CC exhibits hysteresis and can be preceded by a first-order capillary prewetting transition. Additionally, liquid drops can form in the corners of the 2D pore (remnant of 2D wedge prewetting). The three fluid phases, vapour, capillary-liquid slab and corner drops, can coexist at the pore triple point. Our model is based on the statistical mechanics of fluids in the density functional formulation. The fluid-fluid and fluid-substrate interactions are dispersive. We analyze in detail the microscopic fluid structure, isotherms and full phase diagrams. Our findings also suggest novel ways to control wetting of nano-pores. We are grateful to the European Research Council via Advanced Grant No. 247031 for support.

  6. Coexistence of Acute Crescent Glomerulonephritis and IgG4-Related Kidney Disease.

    PubMed

    Lu, Zeyuan; Yin, Jianyong; Bao, Hongda; Jiao, Qiong; Wu, Huijuan; Wu, Rui; Xue, Qin; Wang, Niansong; Zhang, Zhigang; Wang, Feng

    2016-01-01

    IgG4-related disease (IgG4-RD) is a fibroinflammatory disorder that may involve almost each organ or system. IgG4-related kidney disease (IgG4-RKD) refers to renal lesions associated with IgG4-RD. The most frequent morphological type of renal lesions is IgG4-related tubulointerstitial nephritis (IgG4-TIN) which is associated with increased IgG4-positive plasma cell infiltration and interstitial fibrosis. Herein, we present a rare case with coexisting IgG4-RKD and acute crescent glomerulonephritis with concomitant severe tubulointerstitial lesions instead of classic IgG4-TIN. IgG4-RKD and acute crescent glomerulonephritis can occur in the same patient. This case may give us a clearer viewpoint of the disease.

  7. Otofaciocervical syndrome and metachondromatosis in a girl: Presentation of a novel association and remarks on clinical variability of branchial-arch disorders.

    PubMed

    Salinas-Torres, Victor M; Salinas-Torres, Rafael A

    2016-06-01

    Otofaciocervical syndrome (OFCS) is a rare disorder characterized by facial, ear, branchial, and musculoskeletal anomalies, along with hearing loss and mild intellectual disability. Clinically, its distinction from branchiootorenal syndrome can be difficult. To date, the coexistence of OFCS and metachondromatosis has not been reported. Here, we describe a sporadic patient with both OFCS and metachondromatosis. This novel association prompts us to do some remarks on the clinical variability of branchial-arch disorders; in fact, our observations are consistent with the highly variable expressivity of OFCS and illustrate the need of a more accurate characterization of these branchial-arch disorders. In the meantime, involvement of clavicles, scapulae and shoulders remains a distinctive feature of OFCS. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Comment on "Spontaneous liquid-liquid phase separation of water".

    PubMed

    Limmer, David T; Chandler, David

    2015-01-01

    Yagasaki et al. [Phys. Rev. E 89, 020301 (2014)] present results from a molecular dynamics trajectory illustrating coarsening of ice, which they interpret as evidence of transient coexistence between two distinct supercooled phases of liquid water. We point out that neither two distinct liquids nor criticality are demonstrated in this simulation study. Instead, the illustrated trajectory is consistent with coarsening behaviors analyzed and predicted in earlier work by others.

  9. Thermodynamics of rock forming crystalline solutions

    NASA Technical Reports Server (NTRS)

    Saxena, S. K.

    1971-01-01

    Analysis of phase diagrams and cation distributions within crystalline solutions as means of obtaining thermodynamic data on rock forming crystalline solutions is discussed along with some aspects of partitioning of elements in coexisting phases. Crystalline solutions, components in a silicate mineral, and chemical potentials of these components were defined. Examples were given for calculating thermodynamic mixing functions in the CaW04-SrW04, olivine-chloride solution, and orthopyroxene systems.

  10. Freezing Transition Studies Through Constrained Cell Model Simulation

    NASA Astrophysics Data System (ADS)

    Nayhouse, Michael; Kwon, Joseph Sang-Il; Heng, Vincent R.; Amlani, Ankur M.; Orkoulas, G.

    2014-10-01

    In the present work, a simulation method based on cell models is used to deduce the fluid-solid transition of a system of particles that interact via a pair potential, , which is of the form with . The simulations are implemented under constant-pressure conditions on a generalized version of the constrained cell model. The constrained cell model is constructed by dividing the volume into Wigner-Seitz cells and confining each particle in a single cell. This model is a special case of a more general cell model which is formed by introducing an additional field variable that controls the number of particles per cell and, thus, the relative stability of the solid against the fluid phase. High field values force configurations with one particle per cell and thus favor the solid phase. Fluid-solid coexistence on the isotherm that corresponds to a reduced temperature of 2 is determined from constant-pressure simulations of the generalized cell model using tempering and histogram reweighting techniques. The entire fluid-solid phase boundary is determined through a thermodynamic integration technique based on histogram reweighting, using the previous coexistence point as a reference point. The vapor-liquid phase diagram is obtained from constant-pressure simulations of the unconstrained system using tempering and histogram reweighting. The phase diagram of the system is found to contain a stable critical point and a triple point. The phase diagram of the corresponding constrained cell model is also found to contain both a stable critical point and a triple point.

  11. Relaxor ferroelectricity and electric-field-driven structural transformation in the giant lead-free piezoelectric (Ba ,Ca ) (Ti ,Zr ) O3

    NASA Astrophysics Data System (ADS)

    Brajesh, Kumar; Tanwar, Khagesh; Abebe, Mulualem; Ranjan, Rajeev

    2015-12-01

    There is great interest in lead-free (B a0.85C a0.15 ) (T i0.90Z r0.10 ) O3 (15/10BCTZ) because of its exceptionally large piezoelectric response [Liu and Ren, Phys. Rev. Lett. 103, 257602 (2009), 10.1103/PhysRevLett.103.257602]. In this paper, we have analyzed the nature of: (i) crystallographic phase coexistence at room temperature, (ii) temperature- and field-induced phase transformation to throw light on the atomistic mechanisms associated with the large piezoelectric response of this system. A detailed temperature-dependent dielectric and lattice thermal expansion study proved that the system exhibits a weak dielectric relaxation, characteristic of a relaxor ferroelectric material on the verge of exhibiting a normal ferroelectric-paraelectric transformation. Careful structural analysis revealed that a ferroelectric state at room temperature is composed of three phase coexistences, tetragonal (P 4 m m )+ orthorhombic(Amm 2 )+rhombohedral(R 3 m ) . We also demonstrate that the giant piezoresponse is associated with a significant fraction of the tetragonal phase transforming to rhombohedral. It is argued that the polar nanoregions associated with relaxor ferroelectricity amplify the piezoresponse by providing an additional degree of intrinsic structural inhomogeneity to the system.

  12. Service Delivery for Persons with Blindness or Visual Impairment and Addiction as Coexisting Disabilities: Implications for Addiction Science Education

    ERIC Educational Resources Information Center

    Koch, D. Shane; Shearer, Brenda; Nelipovich, Mike

    2004-01-01

    Although research strongly suggests that individuals who are blind or visually impaired (BVI) experience alcohol and other drug abuse (AODA) disorders at rates higher than those expected within the general population (NAADD, 1999), less is known about specific barriers that influence AODA treatment for these consumers (Koch & Nelipovich, 1999).…

  13. An Open-Label Study of Controlled-Release Melatonin in Treatment of Sleep Disorders in Children with Autism

    ERIC Educational Resources Information Center

    Giannotti, F.; Cortesi, F.; Cerquiglini, A.; Bernabei, P.

    2006-01-01

    Long-term effectiveness of controlled-release melatonin in 25 children, aged 2.6-9.6 years with autism without other coexistent pathologies was evaluated openly. Sleep patterns were studied using Children's Sleep Habits Questionnaire (CSHQ) and sleep diaries at baseline, after 1-3-6 months melatonin treatment and 1 month after discontinuation.…

  14. Genetically diagnosed Birt-Hogg-Dubé syndrome and familial cerebral cavernous malformations in the same individual: a case report.

    PubMed

    Whitworth, James; Stausbøl-Grøn, Brian; Skytte, Anne-Bine

    2017-01-01

    When faced with an unusual clinical feature in a patient with a Mendelian disorder, the clinician may entertain the possibilities of either the feature representing a novel manifestation of that disorder or the co-existence of a different inherited condition. Here we describe an individual with a submandibular oncocytoma, pulmonary bullae and renal cysts as well as multiple cerebral cavernous malformations and haemangiomas. Genetic investigations revealed constitutional mutations in FLCN, associated with Birt-Hogg-Dubé syndrome (BHD) and CCM2, associated with familial cerebral cavernous malformation. Intracranial vascular pathologies (but not cerebral cavernous malformation) have recently been described in a number of individuals with BHD (Kapoor et al. in Fam Cancer 14:595-597, 10.1007/s10689-015-9807-y , 2015) but it is not yet clear whether they represent a genuine part of that conditions' phenotypic spectrum. We suggest that in such instances of potentially novel clinical features, more extensive genetic testing to consider co-existing conditions should be considered where available. The increased use of next generation sequencing applications in diagnostic settings is likely to lead more cases such as this being revealed.

  15. Coexistence of Velocity Renormalization and Ferrimagnetic Fluctuation in the Organic Dirac Electron System α-(BEDT-TTF)2I3

    NASA Astrophysics Data System (ADS)

    Matsuno, Genki; Kobayashi, Akito

    2018-05-01

    We evaluate the uniform spin susceptibility in an extended Hubbard model describing α-(BEDT-TTF)2I3. Employing the Fock-type self-energy with the long-range Coulomb interaction and the random phase approximation with the on-site Coulomb interaction, it is clarified that the characteristic energy scales at which ferrimagnetic fluctuation and velocity renormalization emerge are different. This is why these phenomena coexist while the ferrimagnetic fluctuation is disturbed by the velocity renormalization. In addition, it is found that screening effect to the self-energy is irrelevant in the presence of a strong on-site Coulomb interaction U.

  16. On the phase behavior of hard aspherical particles

    NASA Astrophysics Data System (ADS)

    Miller, William L.; Cacciuto, Angelo

    2010-12-01

    We use numerical simulations to understand how random deviations from the ideal spherical shape affect the ability of hard particles to form fcc crystalline structures. Using a system of hard spheres as a reference, we determine the fluid-solid coexistence pressures of both shape-polydisperse and monodisperse systems of aspherical hard particles. We find that when particles are sufficiently isotropic, the coexistence pressure can be predicted from a linear relation involving the product of two simple geometric parameters characterizing the asphericity of the particles. Finally, our results allow us to gain direct insight into the crystallizability limits of these systems by rationalizing empirical data obtained for analogous monodisperse systems.

  17. Mean field dynamics of the coexistence phase in generalized cyclic competitions

    NASA Astrophysics Data System (ADS)

    Mowlaei, Shahir; Roman, Ahmed; Pleimling, Michel

    2014-03-01

    Multispecies Lotka-Volterra models have been a rich source of inspiration in multidisciplinary areas of research due to their inherent nonlinearity which yields intriguing and complex behavior for a large class of competition schemes. Of particular interest here is a subclass of these models where competition is realized in a cyclic manner through a variety of reactions. The goal is to predict and quantify emerging two-dimensional patterns in the coexistence regime. The focus will further be on a set of models that can be analyzed without using the cumbersome machinery of slow-manifolds. This work is supported by the US National Science Foundation through grant DMR-1205309.

  18. Coexistence of charge density wave and superconductivity in Cu0.10TiSe2

    NASA Astrophysics Data System (ADS)

    Jat, K. S.; Nagpal, V.; Sagar, A. D.; Neha, P.; Patnaik, S.

    2018-04-01

    We report the synthesis and characterization of Cu intercalated TiSe2 superconductor. The resistivity variation with temperature indicates superconducting transition onset at 3.1K and resistivity drops down to zero at 2.1K. The magnetization measurement provides the diamagnetic transition at 3 K. The upper critical field Hc2, lower critical field Hc1, Ginzburg Landau coherence length (ξ) and penetration depth(λ) are estimated to be 0.93 T, 0.01T, 18.8 nm and 181.5 nm respectively. At 100K, CDW type feature is observed. The coexistence of CDW phase and superconductivity is summarized.

  19. Ordering of rods near planar and curved surfaces

    NASA Astrophysics Data System (ADS)

    Izzo, Dora; de Oliveira, Mário J.

    2018-01-01

    We study the orientational profile of a semi-infinite system of cylinders bounded in two different ways: by a flat and by a curved wall. The latter corresponds to the interior of a spherical shell, where the dimensions of the rods are comparable to the radius of curvature of the container: they have to accomodate to fill the available space, leading to a rich orientation profile. In order to study these problems, we make a mapping onto a three-state Potts model on a semi-infinite lattice, which is solved using a mean-field approach; we fix the boundary conditions on the surface and in the bulk. In the case of a curved surface, the increase in the effective volume interactions towards the bulk, due to compression, is obtained by increasing the nearest neighbor interactions. The mean-field equations are iterated numerically and we obtain various interesting results concerning the free energy and the orientation profile. We show that there is always a first order transition and the stability of the coexisting phases is strongly affected by the surface. When the surface is disordered and the bulk ordered, the profile may present a step that depends on the degree of disorder on the surface, on the rate of increase of the particle interactions and on the surface external potential. The existence of this step may be relevant to applications in nanotechnology.

  20. Probing disorder in isometric pyrochlore and related complex oxides

    NASA Astrophysics Data System (ADS)

    Shamblin, Jacob; Feygenson, Mikhail; Neuefeind, Joerg; Tracy, Cameron L.; Zhang, Fuxiang; Finkeldei, Sarah; Bosbach, Dirk; Zhou, Haidong; Ewing, Rodney C.; Lang, Maik

    2016-05-01

    There has been an increased focus on understanding the energetics of structures with unconventional ordering (for example, correlated disorder that is heterogeneous across different length scales). In particular, compounds with the isometric pyrochlore structure, A2B2O7, can adopt a disordered, isometric fluorite-type structure, (A, B)4O7, under extreme conditions. Despite the importance of the disordering process there exists only a limited understanding of the role of local ordering on the energy landscape. We have used neutron total scattering to show that disordered fluorite (induced intrinsically by composition/stoichiometry or at far-from-equilibrium conditions produced by high-energy radiation) consists of a local orthorhombic structural unit that is repeated by a pseudo-translational symmetry, such that orthorhombic and isometric arrays coexist at different length scales. We also show that inversion in isometric spinel occurs by a similar process. This insight provides a new basis for understanding order-to-disorder transformations important for applications such as plutonium immobilization, fast ion conduction, and thermal barrier coatings.

  1. Sleep-disordered breathing in patients with post-traumatic stress disorder.

    PubMed

    Jaoude, Philippe; Vermont, Leah N; Porhomayon, Jahan; El-Solh, Ali A

    2015-02-01

    Post-traumatic stress disorder (PTSD) and sleep-disordered breathing (SDB) are shared by many patients. They both affect sleep and the quality of life of affected subjects. A critical review of the literature supports an association between the two disorders in both combat-related and non-combat-related PTSD. The exact mechanism linking PTSD and SDB is not fully understood. A complex interplay between sleep fragmentation and neuroendocrine pathways is suggested. The overlap of symptoms between PTSD and SDB raises diagnostic challenges that may require a novel approach in the methods used to diagnose the coexisting disorders. Similar therapeutic challenges face patients and providers when treating concomitant PTSD and SDB. Although continuous positive airway pressure therapy imparts a mitigating effect on PTSD symptomatology, lack of both acceptance and adherence are common. Future research should focus on ways to improve adherence to continuous positive airway pressure therapy and on the use of alternative therapeutic methods for treating SDB in patients with PTSD.

  2. Perspective: The Asakura Oosawa model: a colloid prototype for bulk and interfacial phase behavior.

    PubMed

    Binder, Kurt; Virnau, Peter; Statt, Antonia

    2014-10-14

    In many colloidal suspensions, the micrometer-sized particles behave like hard spheres, but when non-adsorbing polymers are added to the solution a depletion attraction (of entropic origin) is created. Since 60 years the Asakura-Oosawa model, which simply describes the polymers as ideal soft spheres, is an archetypical description for the statistical thermodynamics of such systems, accounting for many features of real colloid-polymer mixtures very well. While the fugacity of the polymers (which controls their concentration in the solution) plays a role like inverse temperature, the size ratio of polymer versus colloid radii acts as a control parameter to modify the phase diagram: when this ratio is large enough, a vapor-liquid like phase separation occurs at low enough colloid packing fractions, up to a triple point where a liquid-solid two-phase coexistence region takes over. For smaller size ratios, the critical point of the phase separation and the triple point merge, resulting in a single two-phase coexistence region between fluid and crystalline phases (of "inverted swan neck"-topology, with possibly a hidden metastable phase separation). Furthermore, liquid-crystalline ordering may be found if colloidal particles of non-spherical shape (e.g., rod like) are considered. Also interactions of the particles with solid surfaces should be tunable (e.g., walls coated by polymer brushes), and interfacial phenomena are particularly interesting experimentally, since fluctuations can be studied in the microscope on all length scales, down to the particle level. Due to its simplicity this model has become a workhorse for both analytical theory and computer simulation. Recently, generalizations addressing dynamic phenomena (phase separation, crystal nucleation, etc.) have become the focus of studies.

  3. Perspective: The Asakura Oosawa model: A colloid prototype for bulk and interfacial phase behavior

    NASA Astrophysics Data System (ADS)

    Binder, Kurt; Virnau, Peter; Statt, Antonia

    2014-10-01

    In many colloidal suspensions, the micrometer-sized particles behave like hard spheres, but when non-adsorbing polymers are added to the solution a depletion attraction (of entropic origin) is created. Since 60 years the Asakura-Oosawa model, which simply describes the polymers as ideal soft spheres, is an archetypical description for the statistical thermodynamics of such systems, accounting for many features of real colloid-polymer mixtures very well. While the fugacity of the polymers (which controls their concentration in the solution) plays a role like inverse temperature, the size ratio of polymer versus colloid radii acts as a control parameter to modify the phase diagram: when this ratio is large enough, a vapor-liquid like phase separation occurs at low enough colloid packing fractions, up to a triple point where a liquid-solid two-phase coexistence region takes over. For smaller size ratios, the critical point of the phase separation and the triple point merge, resulting in a single two-phase coexistence region between fluid and crystalline phases (of "inverted swan neck"-topology, with possibly a hidden metastable phase separation). Furthermore, liquid-crystalline ordering may be found if colloidal particles of non-spherical shape (e.g., rod like) are considered. Also interactions of the particles with solid surfaces should be tunable (e.g., walls coated by polymer brushes), and interfacial phenomena are particularly interesting experimentally, since fluctuations can be studied in the microscope on all length scales, down to the particle level. Due to its simplicity this model has become a workhorse for both analytical theory and computer simulation. Recently, generalizations addressing dynamic phenomena (phase separation, crystal nucleation, etc.) have become the focus of studies.

  4. Hydrogen isotope systematics of phase separation in submarine hydrothermal systems: Experimental calibration and theoretical models

    USGS Publications Warehouse

    Berndt, M.E.; Seal, R.R.; Shanks, Wayne C.; Seyfried, W.E.

    1996-01-01

    Hydrogen isotope fractionation factors were measured for coexisting brines and vapors formed by phase separation of NaCl/H2O fluids at temperatures ranging from 399-450??C and pressures from 277-397 bars. It was found that brines are depleted in D compared to coexisting vapors at all conditions studied. The magnitude of hydrogen isotope fractionation is dependent on the relative amounts of Cl in the two phases and can be empirically correlated to pressure using the following relationship: 1000 ln ??(vap-brine) = 2.54(??0.83) + 2.87(??0.69) x log (??P), where ??(vap-brine) is the fractionation factor and ??P is a pressure term representing distance from the critical curve in the NaCl/H2O system. The effect of phase separation on hydrogen isotope distribution in subseafloor hydrothermal systems depends on a number of factors, including whether phase separation is induced by heating at depth or by decompression of hydrothermal fluids ascending to the seafloor. Phase separation in most subseafloor systems appears to be a simple process driven by heating of seawater to conditions within the two-phase region, followed by segregation and entrainment of brine or vapor into a seawater dominated system. Resulting vent fluids exhibit large ranges in Cl concentration with no measurable effect on ??D. Possible exceptions to this include hydrothermal fluids venting at Axial and 9??N on the East Pacific Rise. High ??D values of low Cl fluids venting at Axial are consistent with phase separation taking place at relatively shallow levels in the oceanic crust while negative ??D values in some low Cl fluids venting at 9??N suggest involvement of a magmatic fluid component or phase separation of D-depleted brines derived during previous hydrothermal activity.

  5. Polymorphism in Strontium Tungstate SrWO4 under Quasi-Hydrostatic Compression.

    PubMed

    Santamaria-Perez, David; Errandonea, Daniel; Rodriguez-Hernandez, Placida; Muñoz, Alfonso; Lacomba-Perales, Raul; Polian, Alain; Meng, Yue

    2016-10-03

    The structural and vibrational properties of SrWO 4 have been studied experimentally up to 27 and 46 GPa, respectively, by angle-dispersive synchrotron X-ray diffraction and Raman spectroscopy measurements as well as using ab initio calculations. The existence of four polymorphs upon quasi-hydrostatic compression is reported. The three phase transitions were found at 11.5, 19.0, and 39.5 GPa. The ambient-pressure SrWO 4 tetragonal scheelite-type structure (S.G. I4 1 /a) undergoes a transition to a monoclinic fergusonite-type structure (S.G. I2/a) at 11.5 GPa with a 1.5% volume decrease. Subsequently, at 19.0 GPa, another structural transformation takes place. Our calculations indicate two possible post-fergusonite phases, one monoclinic and the other orthorhombic. In the diffraction experiments, we observed the theoretically predicted monoclinic LaTaO 4 -type phase coexisting with the fergusonite-type phase up to 27 GPa. The coexistence of the two phases and the large volume collapse at the transition confirm a kinetic hindrance typical of first-order phase transitions. Significant changes in Raman spectra suggest a third pressure-induced transition at 39.5 GPa. The conclusions extracted from the experiments are complemented and supported by ab initio calculations. Our data provides insight into the structural mechanism of the first transition, with the formation of two additional W-O contacts. The fergusonite-type phase can be therefore considered as a structural bridge between the scheelite structure, composed of [WO 4 ] tetrahedra, and the new higher pressure phases, which contain [WO 6 ] octahedra. All the observed phases are compatible with the high-pressure structural systematics predicted for ABO 4 compounds using crystal-chemistry arguments such as the diagram proposed by Bastide.

  6. Phase Transitions in a Model of Y-Molecules Abstract

    NASA Astrophysics Data System (ADS)

    Holz, Danielle; Ruth, Donovan; Toral, Raul; Gunton, James

    Immunoglobulin is a Y-shaped molecule that functions as an antibody to neutralize pathogens. In special cases where there is a high concentration of immunoglobulin molecules, self-aggregation can occur and the molecules undergo phase transitions. This prevents the molecules from completing their function. We used a simplified model of 2-Dimensional Y-molecules with three identical arms on a triangular lattice with 2-dimensional Grand Canonical Ensemble. The molecules were permitted to be placed, removed, rotated or moved on the lattice. Once phase coexistence was found, we used histogram reweighting and multicanonical sampling to calculate our phase diagram.

  7. Generalized Dicke Nonequilibrium Dynamics in Trapped Ions

    NASA Astrophysics Data System (ADS)

    Genway, Sam; Li, Weibin; Ates, Cenap; Lanyon, Benjamin P.; Lesanovsky, Igor

    2014-01-01

    We explore trapped ions as a setting to investigate nonequilibrium phases in a generalized Dicke model of dissipative spins coupled to phonon modes. We find a rich dynamical phase diagram including superradiantlike regimes, dynamical phase coexistence, and phonon-lasing behavior. A particular advantage of trapped ions is that these phases and transitions among them can be probed in situ through fluorescence. We demonstrate that the main physical insights are captured by a minimal model and consider an experimental realization with Ca+ ions trapped in a linear Paul trap with a dressing scheme to create effective two-level systems with a tunable dissipation rate.

  8. Context and explicit threat cue modulation of the startle reflex: Preliminary evidence of distinctions between adolescents with principal fear disorders versus distress disorders

    PubMed Central

    Waters, Allison M.; Nazarian, Maria; Mineka, Susan; Zinbarg, Richard E.; Griffith, James W.; Naliboff, Bruce; Ornitz, Edward M.; Craske, Michelle G.

    2014-01-01

    Anxiety and depression are prevalent, impairing disorders. High comorbidity has raised questions about how to define and classify them. Structural models emphasise distinctions between “fear” and “distress” disorders while other initiatives propose they be defined by neurobiological indicators that cut across disorders. This study examined startle reflex (SR) modulation in adolescents with principal fear disorders (specific phobia; social phobia) (n = 20), distress disorders (unipolar depressive disorders, dysthymia, generalized anxiety disorder; post-traumatic stress disorder) (n = 9), and controls (n = 29) during (a) baseline conditions, (b) threat context conditions (presence of contraction pads over the biceps muscle), and (c) an explicit threat cue paradigm involving phases that signalled safety from aversive stimuli (early and late stages of safe phases; early stages of danger phases) and phases that signalled immediate danger of an aversive stimulus (late stages of danger phases). Adolescents with principal fear disorders showed larger SRs than other groups throughout safe phases and early stages of danger phases. SRs did not differ between groups during late danger phases. Adolescents with principal distress disorders showed attenuated SRs during baseline and context conditions compared to other groups. Preliminary findings support initiatives to redefine emotional disorders based on neurobiological functioning. PMID:24679992

  9. How can periodic orbits puzzle out the coexistence of terrestrial planets with giant eccentric ones?

    NASA Astrophysics Data System (ADS)

    Antoniadou, K. I.; Libert, A.-S.

    2017-09-01

    Hitherto unprecedented detections of exoplanets have been triggered by missions and ground based telescopes. The quest of ``exo-Earths'' has become intriguing and the long-term stability of planetary orbits is a crucial factor for the biosphere to evolve. Planets in mean-motion resonances (MMRs) prompt the investigation of the dynamics in the framework of the three-body problem, where the families of stable periodic orbits constitute the backbone of stability domains in phase space. In this talk, we address the question of the possible coexistence of terrestrial planets with a giant companion on circular or eccentric orbit and explore the extent of the stability regions, when both the eccentricity of the outer giant planet and the semi-major axis of the inner terrestrial one vary, i.e. we investigate both non-resonant and resonant configurations. The families of periodic orbits in the restricted three-body problem are computed for the 3/2, 2/1, 5/2, 3/1, 4/1 and 5/1 MMRs. We then construct maps of dynamical stability (DS-maps) to identify the boundaries of the stability domains where such a coexistence is allowed. Guided by the periodic orbits, we delve into regular motion in phase space and propose the essential values of the orbital elements, in order for such configurations to survive long time spans and hence, for observations to be complemented or revised.

  10. State-dependent tardive dyskinesia in manic-depressive illness.

    PubMed Central

    de Potter, R W; Linkowski, P; Mendlewicz, J

    1983-01-01

    We report the occurrence of a drug-resistant tardive dyskinesia coexistent with Parkinsonism-like symptoms in a manic-depressive patient. The tardive dyskinesia completely disappeared during the manic phases and recurred after remission over the course of different mood-cycles. PMID:6136551

  11. Evidence for two spin-glass transitions with magnetoelastic and magnetoelectric couplings in the multiferroic (B i1 -xB ax) (F e1 -xT ix ) O3 system

    NASA Astrophysics Data System (ADS)

    Kumar, Arun; Kaushik, S. D.; Siruguri, V.; Pandey, Dhananjai

    2018-03-01

    For disordered Heisenberg systems with small single ion anisotropy (D ), two spin-glass (SG) transitions below the long-range ordered (LRO) phase transition temperature (Tc) have been predicted theoretically for compositions close to the percolation threshold. Experimental verification of these predictions is still controversial for conventional spin glasses. We show that multiferroic spin-glass systems can provide a unique platform for verifying these theoretical predictions via a study of change in magnetoelastic and magnetoelectric couplings, obtained from an analysis of diffraction data, at the spin-glass transition temperatures (TSG). Results of macroscopic (dc M (H , T ), M(t ), ac susceptibility [χ (ω, T )], and specific heat (Cp)) and microscopic (x-ray and neutron scattering) measurements are presented on disordered BiFe O3 , a canonical Heisenberg system with small single ion anisotropy, which reveal appearance of two spin-glass phases, SG1 and SG2, in coexistence with the LRO phase below the Almeida-Thouless (A-T) and Gabey-Toulouse (G-T) lines. It is shown that the temperature dependence of the integrated intensity of the antiferromagnetic (AFM) peak shows dips with respect to the Brillouin function behavior around the SG1 and SG2 transition temperatures. The temperature dependence of the unit cell volume departs from the Debye-Grüneisen behavior below the SG1 transition and the magnitude of departure increases significantly with decreasing temperature up to the electromagnon driven transition temperature below which a small change of slope occurs followed by another similar change of slope at the SG2 transition temperature. The ferroelectric polarization also changes significantly at the two spin-glass transition temperatures. These results, obtained using microscopic techniques, clearly demonstrate that the SG1 and SG2 transitions occur on the same magnetic sublattice and are intrinsic to the system. We also construct a phase diagram showing all the magnetic phases in the BF-x BT system. While our results on the two spin-glass transitions support the theoretical predictions, they also raise several open questions, which need to be addressed by revisiting the existing theories of spin-glass transitions after taking into account the effect of magnetoelastic and magnetoelectric couplings as well as electromagnons.

  12. Grain-damage hysteresis and plate tectonic states

    NASA Astrophysics Data System (ADS)

    Bercovici, David; Ricard, Yanick

    2016-04-01

    Shear localization in the lithosphere is an essential ingredient for understanding how and why plate tectonics is generated from mantle convection on terrestrial planets. The theoretical model for grain-damage and pinning in two-phase polycrystalline rocks provides a frame-work for understanding lithospheric shear weakening and plate-generation, and is consistent with laboratory and field observations of mylonites. Grain size evolves through the competition between coarsening, which drives grain-growth, and damage, which drives grain reduction. The interface between crystalline phases controls Zener pinning, which impedes grain growth. Damage to the interface enhances the Zener pinning effect, which then reduces grain-size, forcing the rheology into the grain-size-dependent diffusion creep regime. This process thus allows damage and rheological weakening to co-exist, providing a necessary positive self-weakening feedback. Moreover, because pinning inhibits grain-growth it promotes shear-zone longevity and plate-boundary inheritance. However, the suppression of interface damage at low interface curvature (wherein inter-grain mixing is inefficient and other energy sinks of deformational work are potentially more facile) causes a hysteresis effect, in which three possible equilibrium grain-sizes for a given stress coexist: (1) a stable, large-grain, weakly-deforming state, (2) a stable, small-grain, rapidly-deforming state analogous to ultramylonites, and (3) an unstable, intermediate grain-size state perhaps comparable to protomylonites. A comparison of the model to field data suggests that shear-localized zones of small-grain mylonites and ultra-mylonites exist at a lower stress than the co-existing large-grain porphyroclasts, rather than, as predicted by paleopiezometers or paleowattmeters, at a much higher stress; this interpretation of field data thus allows localization to relieve instead of accumulate stress. The model also predicts that a lithosphere that deforms at a given stress can acquire two stable deformation regimes indicative of plate-like flows, i.e., it permits the coexistence of both slowly deforming plate interiors, and rapidly deforming plate boundaries. Earth seems to exist squarely inside the hysteresis loop and thus can have coexisting deformation states, while Venus appears to straddle the end of the loop where only the weakly deforming branch exists.

  13. Phase diagram and criticality of the two-dimensional prisoner's dilemma model

    NASA Astrophysics Data System (ADS)

    Santos, M.; Ferreira, A. L.; Figueiredo, W.

    2017-07-01

    The stationary states of the prisoner's dilemma model are studied on a square lattice taking into account the role of a noise parameter in the decision-making process. Only first neighboring players—defectors and cooperators—are considered in each step of the game. Through Monte Carlo simulations we determined the phase diagrams of the model in the plane noise versus the temptation to defect for a large range of values of the noise parameter. We observed three phases: cooperators and defectors absorbing phases, and a coexistence phase between them. The phase transitions as well as the critical exponents associated with them were determined using both static and dynamical scaling laws.

  14. Surfactant-based critical phenomena in microgravity

    NASA Technical Reports Server (NTRS)

    Kaler, Eric W.; Paulaitis, Michael E.

    1994-01-01

    The objective of this research project is to characterize by experiment and theoretically both the kinetics of phase separation and the metastable structures produced during phase separation in a microgravity environment. The particular systems we are currently studying are mixtures of water, nonionic surfactants, and compressible supercritical fluids at temperatures and pressures where the coexisting liquid phases have equal densities (isopycnic phases). In this report, we describe experiments to locate equilibrium isopycnic phases and to determine the 'local' phase behavior and critical phenomena at nearby conditions of temperature, pressure, and composition. In addition, we report the results of preliminary small angle neutron scattering (SANS) experiments to characterize microstructures that exist in these mixtures at different fluid densities.

  15. Third Law of Thermodynamics and The Shape of the Phase Diagram for Systems With a First-Order Quantum Phase Transition.

    PubMed

    Kirkpatrick, T R; Belitz, D

    2015-07-10

    The third law of thermodynamics constrains the phase diagram of systems with a first-order quantum phase transition. For a zero conjugate field, the coexistence curve has an infinite slope at T=0. If a tricritical point exists at T>0, then the associated tricritical wings are perpendicular to the T=0 plane, but not to the zero-field plane. These results are based on the third law and basic thermodynamics only, and are completely general. As an explicit example we consider the ferromagnetic quantum phase transition in clean metals, where a first-order quantum phase transition is commonly observed.

  16. Coexistence of domains with distinct order and polarity in fluid bacterial membranes.

    PubMed

    Vanounou, Sharon; Pines, Dina; Pines, Ehud; Parola, Abraham H; Fishov, Itzhak

    2002-07-01

    In this study we sought the detection and characterization of bacterial membrane domains. Fluorescence generalized polarization (GP) spectra of laurdan-labeled Escherichia coli and temperature dependencies of both laurdan's GP and fluorescence anisotropy of 1,3-diphenyl-1,3,5-hexatriene (DPH) (rDPH) affirmed that at physiological temperatures, the E. coli membrane is in a liquid-crystalline phase. However, the strong excitation wavelength dependence of rlaurdan at 37 degrees C reflects membrane heterogeneity. Time-resolved fluorescence emission spectra, which display distinct biphasic redshift kinetics, verified the coexistence of two subpopulations of laurdan. In the initial phase, <50 ps, the redshift in the spectral mass center is much faster for laurdan excited at the blue edge (350 nm), whereas at longer time intervals, similar kinetics is observed upon excitation at either blue or red edge (400 nm). Excitation in the blue region selects laurdan molecules presumably located in a lipid domain in which fast intramolecular relaxation and low anisotropy characterize laurdan's emission. In the proteo-lipid domain, laurdan motion and conformation are restricted as exhibited by a slower relaxation rate, higher anisotropy and a lower GP value. Triple-Gaussian decomposition of laurdan emission spectra showed a sharp phase transition in the temperature dependence of individual components when excited in the blue but not in the red region. At least two kinds of domains of distinct polarity and order are suggested to coexist in the liquid-crystalline bacterial membrane: a lipid-enriched and a proteolipid domain. In bacteria with chloramphenicol (Cam)-inhibited protein synthesis, laurdan showed reduced polarity and restoration of an isoemissive point in the temperature-dependent spectra. These results suggest a decrease in membrane heterogeneity caused by Cam-induced domain dissipation.

  17. Single DNA molecules on freestanding and supported cationic lipid bilayers: diverse conformational dynamics controlled by the local bilayer properties

    NASA Astrophysics Data System (ADS)

    Herold, Christoph; Schwille, Petra; Petrov, Eugene P.

    2016-02-01

    We present experimental results on the interaction of DNA macromolecules with cationic lipid membranes with different properties, including freestanding membranes in the fluid and gel state, and supported lipid membranes in the fluid state and under conditions of fluid-gel phase coexistence. We observe diverse conformational dynamics of membrane-bound DNA molecules controlled by the local properties of the lipid bilayer. In case of fluid-state freestanding lipid membranes, the behaviour of DNA on the membrane is controlled by the membrane charge density: whereas DNA bound to weakly charged membranes predominantly behaves as a 2D random coil, an increase in the membrane charge density leads to membrane-driven irreversible DNA collapse and formation of subresolution-sized DNA globules. On the other hand, electrostatic binding of DNA macromolecules to gel-state freestanding membranes leads to completely arrested diffusion and conformational dynamics of membrane-adsorbed DNA. A drastically different picture is observed in case of DNA interaction with supported cationic lipid bilayers: When the supported bilayer is in the fluid state, membrane-bound DNA molecules undergo 2D translational Brownian motion and conformational fluctuations, irrespectively of the charge density of the supported bilayer. At the same time, when the supported cationic membrane shows fluid-gel phase coexistence, membrane-bound DNA molecules are strongly attracted to micrometre-sized gel-phase domains enriched with the cationic lipid, which results in 2D compaction of the membrane-bound macromolecules. This DNA compaction, however, is fully reversible, and disappears as soon as the membrane is heated above the fluid-gel coexistence. We also discuss possible biological implications of our experimental findings.

  18. Effect of OROS methylphenidate on encopresis in children with attention-deficit/hyperactivity disorder.

    PubMed

    Yılmaz, Savaş; Bilgiç, Ayhan; Hergüner, Sabri

    2014-04-01

    Although encopresis shows a high rate of comorbidity in patients with attention-deficit/hyperactivity disorder (ADHD), the etiologic origin of this relationship and the effect of ADHD drugs on encopresis are unclear. In this chart review, we explored the effect of OROS long-acting methylphenidate (MPH) treatment on encopresis in children with ADHD. We also evaluated the relationship between the clinical variables of ADHD and encopresis. The sample consisted of 21 children and adolescents (20 boys and 1 girl) with encopresis and coexisting ADHD 7-15 years of age. Their clinical characteristics and baseline (visit 1) and end of the second months' (visit 2) Conners' Parent Rating Scale (CPRS) subscores were recorded. Retrospective clinician determinations were made using the Clinical Global Impressions-Severity subscale (CGI-S) for encopresis severity and the Clinical Global Impressions-Improvement subscale (CGI-I) for encopresis response. According to the CGI-I, 14 subjects (71.4 %) showed much or very much improvement in their encopresis at the second visit. All of the CPRS scores showed a significant reduction during the second visit. No association was found between the CGI-I score and the changes in any of the CPRS scores. Baseline oppositional defiant disorder (ODD) and conduct disorder (CD) scores were correlated with the CGI-S score; however, no association was found between core ADHD symptom severity and the CGI-S score. With regard to the encopresis outcome, the baseline CD score was negatively correlated with the CGI-I score, and the baseline ODD score was prone to show a negative correlation with the CGI-I score. These results suggest that coexisting behavioral problems may be a vulnerability factor based on the severity of encopresis, and that MPH treatment may have a positive effect on encopresis in children and adolescents with ADHD.

  19. Prevalence of Self-Reported Gluten-Related Disorders and Adherence to a Gluten-Free Diet in Salvadoran Adult Population.

    PubMed

    Ontiveros, Noé; Rodríguez-Bellegarrigue, Cecilia Ivonne; Galicia-Rodríguez, Gerardo; Vergara-Jiménez, Marcela de Jesús; Zepeda-Gómez, Elia María; Arámburo-Galvez, Jesús Gilberto; Gracia-Valenzuela, Martina Hilda; Cabrera-Chávez, Francisco

    2018-04-18

    Gluten-related disorders are not considered of relevance at public health level in Central America. The prevalence of gluten-related disorders, and adherence to a gluten-free diet, remain unknown in the Central American region. We conducted a cross-sectional survey of the Central American population from San Salvador, El Salvador, to estimate the prevalence rates of self-reported gluten-related disorders and adherence to a gluten-free diet. 1326 individuals were surveyed. Self-reported prevalence rates were (95% Confidence Interval): gluten sensitivity 3.1% (2.3–4.2); physician-diagnosed celiac disease 0.15% (0.04–0.5); wheat allergy 0.75% (0.4–1.3); non-celiac gluten sensitivity 0.98% (0.5–1.6). The prevalence rate of adherence to a gluten-free diet was 7.0% (5.7–8.5). Seven self-reported physician diagnosed gluten-sensitive cases informed the co-existence of non-celiac gluten sensitivity with celiac disease and/or wheat allergy. Among the non-self-reported gluten sensitivity individuals following a gluten-free diet, 50% reported that they were seeing a health professional for gluten-free dietary advice. Gluten sensitivity is commonly reported in Salvadoran population, but some health professionals acknowledge the coexistence of wheat allergy, celiac disease, and non-celiac gluten sensitivity. Among studies at population level, the prevalence of adherence to a gluten-free diet in Salvadoran population is the highest reported until now. However, just a few of the gluten-free diet followers were doing it for health-related benefits; the others reported weight control and the perception that the diet is healthier as the main motivation for adopting such a diet.

  20. Vacancy-stabilized crystalline order in hard cubes

    PubMed Central

    Smallenburg, Frank; Filion, Laura; Marechal, Matthieu; Dijkstra, Marjolein

    2012-01-01

    We examine the effect of vacancies on the phase behavior and structure of systems consisting of hard cubes using event-driven molecular dynamics and Monte Carlo simulations. We find a first-order phase transition between a fluid and a simple cubic crystal phase that is stabilized by a surprisingly large number of vacancies, reaching a net vacancy concentration of approximately 6.4% near bulk coexistence. Remarkably, we find that vacancies increase the positional order in the system. Finally, we show that the vacancies are delocalized and therefore hard to detect. PMID:23012241

Top