Sample records for disordered pore matrices

  1. Effect of Polydispersity on Diffusion in Random Obstacle Matrices

    NASA Astrophysics Data System (ADS)

    Cho, Hyun Woo; Kwon, Gyemin; Sung, Bong June; Yethiraj, Arun

    2012-10-01

    The dynamics of tracers in disordered matrices is of interest in a number of diverse areas of physics such as the biophysics of crowding in cells and cell membranes, and the diffusion of fluids in porous media. To a good approximation the matrices can be modeled as a collection of spatially frozen particles. In this Letter, we consider the effect of polydispersity (in size) of the matrix particles on the dynamics of tracers. We study a two dimensional system of hard disks diffusing in a sea of hard disk obstacles, for different values of the polydispersity of the matrix. We find that for a given average size and area fraction, the diffusion of tracers is very sensitive to the polydispersity. We calculate the pore percolation threshold using Apollonius diagrams. The diffusion constant, D, follows a scaling relation D˜(ϕc-ϕm)μ-β for all values of the polydispersity, where ϕm is the area fraction and ϕc is the value of ϕm at the percolation threshold.

  2. Effect of polydispersity on diffusion in random obstacle matrices.

    PubMed

    Cho, Hyun Woo; Kwon, Gyemin; Sung, Bong June; Yethiraj, Arun

    2012-10-12

    The dynamics of tracers in disordered matrices is of interest in a number of diverse areas of physics such as the biophysics of crowding in cells and cell membranes, and the diffusion of fluids in porous media. To a good approximation the matrices can be modeled as a collection of spatially frozen particles. In this Letter, we consider the effect of polydispersity (in size) of the matrix particles on the dynamics of tracers. We study a two dimensional system of hard disks diffusing in a sea of hard disk obstacles, for different values of the polydispersity of the matrix. We find that for a given average size and area fraction, the diffusion of tracers is very sensitive to the polydispersity. We calculate the pore percolation threshold using Apollonius diagrams. The diffusion constant, D, follows a scaling relation D~(φ(c)-φ(m))(μ-β) for all values of the polydispersity, where φ(m) is the area fraction and φ(c) is the value of φ(m) at the percolation threshold.

  3. Effect of pore size of three-dimensionally ordered macroporous chitosan-silica matrix on solubility, drug release, and oral bioavailability of loaded-nimodipine.

    PubMed

    Gao, Yikun; Xie, Yuling; Sun, Hongrui; Zhao, Qinfu; Zheng, Xin; Wang, Siling; Jiang, Tongying

    2016-01-01

    To explore the effect of the pore size of three-dimensionally ordered macroporous chitosan-silica (3D-CS) matrix on the solubility, drug release, and oral bioavailability of the loaded drug. 3D-CS matrices with pore sizes of 180 nm, 470 nm, and 930 nm were prepared. Nimodipine (NMDP) was used as the drug model. The morphology, specific surface area, and chitosan mass ratio of the 3D-CS matrices were characterized before the effect of the pore size on drug crystallinity, solubility, release, and in vivo pharmacokinetics were investigated. With the pore size of 3D-CS matrix decreasing, the drug crystallinity decreased and the aqueous solubility increased. The drug release was synthetically controlled by the pore size and chitosan content of 3D-CS matrix in a pH 6.8 medium, while in a pH 1.2 medium the erosion of the 3D-CS matrix played an important role in the decreased drug release rate. The area under the curve of the drug-loaded 3D-CS matrices with pore sizes of 930 nm, 470 nm, and 180 nm was 7.46-fold, 5.85-fold, and 3.75-fold larger than that of raw NMDP respectively. Our findings suggest that the oral bioavailability decreased with a decrease in the pore size of the matrix.

  4. Big and small: menisci in soil pores affect water pressures, dynamics of groundwater levels, and catchment-scale average matric potentials

    NASA Astrophysics Data System (ADS)

    de Rooij, G. H.

    2010-09-01

    Soil water is confined behind the menisci of its water-air interface. Catchment-scale fluxes (groundwater recharge, evaporation, transpiration, precipitation, etc.) affect the matric potential, and thereby the interface curvature and the configuration of the phases. In turn, these affect the fluxes (except precipitation), creating feedbacks between pore-scale and catchment-scale processes. Tracking pore-scale processes beyond the Darcy scale is not feasible. Instead, for a simplified system based on the classical Darcy's Law and Laplace-Young Law we i) clarify how menisci transfer pressure from the atmosphere to the soil water, ii) examine large-scale phenomena arising from pore-scale processes, and iii) analyze the relationship between average meniscus curvature and average matric potential. In stagnant water, changing the gravitational potential or the curvature of the air-water interface changes the pressure throughout the water. Adding small amounts of water can thus profoundly affect water pressures in a much larger volume. The pressure-regulating effect of the interface curvature showcases the meniscus as a pressure port that transfers the atmospheric pressure to the water with an offset directly proportional to its curvature. This property causes an extremely rapid rise of phreatic levels in soils once the capillary fringe extends to the soil surface and the menisci flatten. For large bodies of subsurface water, the curvature and vertical position of any meniscus quantify the uniform hydraulic potential under hydrostatic equilibrium. During unit-gradient flow, the matric potential corresponding to the mean curvature of the menisci should provide a good approximation of the intrinsic phase average of the matric potential.

  5. Impact of matric potential and pore size distribution on growth dynamics of filamentous and non-filamentous soil bacteria.

    PubMed

    Wolf, Alexandra B; Vos, Michiel; de Boer, Wietse; Kowalchuk, George A

    2013-01-01

    The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to what extent, filamentous bacteria may also display similar advantages over non-filamentous bacteria in soils with low hydraulic connectivity. In addition to allowing for microbial interactions and competition across connected micro-sites, water films also facilitate the motility of non-filamentous bacteria. To examine these issues, we constructed and characterized a series of quartz sand microcosms differing in matric potential and pore size distribution and, consequently, in connection of micro-habitats via water films. Our sand microcosms were used to examine the individual and competitive responses of a filamentous bacterium (Streptomyces atratus) and a motile rod-shaped bacterium (Bacillus weihenstephanensis) to differences in pore sizes and matric potential. The Bacillus strain had an initial advantage in all sand microcosms, which could be attributed to its faster growth rate. At later stages of the incubation, Streptomyces became dominant in microcosms with low connectivity (coarse pores and dry conditions). These data, combined with information on bacterial motility (expansion potential) across a range of pore-size and moisture conditions, suggest that, like their much larger fungal counterparts, filamentous bacteria also use this growth form to facilitate growth and expansion under conditions of low hydraulic conductivity. The sand microcosm system developed and used in this study allowed for precise manipulation of hydraulic properties and pore size distribution, thereby providing a useful approach for future examinations of how these properties influence the composition, diversity and function of soil-borne microbial communities.

  6. The Determination of Metals in Sediment Pore Waters and in 1N HCl-Extracted Sediments by ICP-MS

    USGS Publications Warehouse

    May, T.W.; Wiedmeyer, Ray H.; Brumbaugh, W.G.; Schmitt, C.J.

    1997-01-01

    Concentrations of metals in sediment interstitial water (pore water) and those extractable from sediment with weak acids can provide important information about the bioavailability and toxicological effects of such contaminants. The highly variable nature of metal concentrations in these matrices requires instrumentation with the detection limit capability of graphite furnace atomic absorption and the wide dynamic linear range capability of ICP-OES. These criteria are satisfied with ICP-MS instrumentation. We investigated the performance of ICP-MS in the determination of certain metals from these matrices. The results for three metals were compared to those determined by graphite furnace atomic absorption spectroscopy. It was concluded that ICP-MS was an excellent instrumental approach for the determination of metals in these matrices.

  7. Sructure and dynamics of fluids in micropous and mesoporous earth and engineered materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, David R; Mamontov, Eugene; Rother, Gernot

    2009-01-01

    The behavior of liquids in confined geometries (pores, fractures) typically differs, due to the effects of large internal surfaces and geometri-cal confinement, from their bulk behavior in many ways. Phase transitions (i.e., freezing and capillary condensation), sorption and wetting, and dy-namical properties, including diffusion and relaxation, may be modified, with the strongest changes observed for pores ranging in size from <2 nm to 50 nm the micro- and mesoporous regimes. Important factors influ-encing the structure and dynamics of confined liquids include the average pore size and pore size distribution, the degree of pore interconnection, and the character of the liquid-surfacemore » interaction. While confinement of liq-uids in hydrophobic matrices, such as carbon nanotubes, or near the sur-faces of mixed character, such as many proteins, has also been an area of rapidly growing interest, the confining matrices of interest to earth and ma-terials sciences usually contain oxide structural units and thus are hydro-philic. The pore size distribution and the degree of porosity and inter-connection vary greatly amongst porous matrices. Vycor, xerogels, aerogels, and rocks possess irregular porous structures, whereas mesopor-ous silicas (e.g., SBA-15, MCM-41, MCM-48), zeolites, and layered sys-tems, for instance clays, have high degrees of internal order. The pore type and size may be tailored by means of adjusting the synthesis regimen. In clays, the interlayer distance may depend on the level of hydration. Al-though studied less frequently, matrices such as artificial opals and chry-sotile asbestos represent other interesting examples of ordered porous structures. The properties of neutrons make them an ideal probe for com-paring the properties of bulk fluids with those in confined geometries. In this chapter, we provide a brief review of research performed on liquids confined in materials of interest to the earth and material sciences (silicas, aluminas, zeolites, clays, rocks, etc.), emphasizing those neutron scattering techniques which assess both structural modification and dynamical behav-ior. Quantitative understanding of the complex solid-fluid interactions under different thermodynamic situations will impact both the design of bet-ter substrates for technological applications (e.g., chromatography, fluid capture, storage and release, and heterogeneous catalysis) as well as our fundamental understanding of processes encountered in the environment (i.e., fluid and waste mitigation, carbon sequestration, etc.).« less

  8. Phase Transitions of KIO3 Ferroelectrics in Al2O3-Based Nanoporous Matrices

    NASA Astrophysics Data System (ADS)

    Milinskii, A. Yu.; Baryshnikov, S. V.

    2018-03-01

    Temperature dependences of the linear permittivity ɛ' and the third harmonic amplitude γ3ω of composites prepared by introducing ferroelectrics KIO3 into matrices of porous aluminum oxide Al2O3 with pore sizes of 240 nm were studied. It is found that the IV → III and III → II structural transition temperatures of potassium iodide in Al2O3 pores decrease by 5 K and 24 K, respectively, with respect to bulk KIO3. The measurements of the dielectric properties do not reveal V → IV and II → I phase transitions in the composite samples.

  9. Adsorption on Nanopores of Different Cross Sections Made by Electron Beam Nanolithography.

    PubMed

    Bruschi, Lorenzo; Mistura, Giampaolo; Prasetyo, Luisa; Do, Duong D; Dipalo, Michele; De Angelis, Francesco

    2018-01-09

    Adsorption on nanoporous matrices is characterized by a pronounced hysteresis loop in the adsorption isotherm, when the substrate is loaded and unloaded with adsorbate, the origin of which is a matter of immense debate in the literature. In this work, we report a study of argon adsorption at 85 K on nonconnecting nanopores with one end closed to the surrounding where the effects of different pore cross sections fabricated by electron beam lithography (EBL) are investigated. A polymethylmethacrylate (PMMA) resist is deposited on the electrodes of a sensitive quartz crystal microbalance without degradation of the resonance quality factor or the long-term and short-term stabilities of the device even at cryogenic temperatures. Four different pores' cross sections: circular, square, rectangular, and triangular, are produced from EBL, and the isotherms for these pore shapes exhibit pronounced hysteresis loops whose adsorption and desorption branches are nearly vertical and have almost the same slopes. No difference is observed in the hysteresis loops of the isotherms for the pores with triangular and square cross sections, whereas the hysteresis loop for the pore with circular cross sections is much narrower, suggesting that they are more regular than the other pores. All of these observations suggest that the hysteresis behavior resulted mainly from microscopic geometric irregularities present in these porous matrices.

  10. Hydraulic conductivity of variably saturated porous media: Film and corner flow in angular pore space

    NASA Astrophysics Data System (ADS)

    Tuller, Markus; Or, Dani

    2001-05-01

    Many models for hydraulic conductivity of partially saturated porous media rely on oversimplified representation of the pore space as a bundle of cylindrical capillaries and disregard flow in liquid films. Recent progress in modeling liquid behavior in angular pores of partially saturated porous media offers an alternative framework. We assume that equilibrium liquid-vapor interfaces provide well-defined and stable boundaries for slow laminar film and corner flow regimes in pore space comprised of angular pores connected to slit-shaped spaces. Knowledge of liquid configuration in the assumed geometry facilitates calculation of average liquid velocities in films and corners and enables derivation of pore-scale hydraulic conductivity as a function of matric potential. The pore-scale model is statistically upscaled to represent hydraulic conductivity for a sample of porous medium. Model parameters for the analytical sample-scale expressions are estimated from measured liquid retention data and other measurable medium properties. Model calculations illustrate the important role of film flow, whose contribution dominates capillary flow (in full pores and corners) at relatively high matric potentials (approximately -100 to -300 J kg-1, or -1 to 3 bars). The crossover region between film and capillary flow is marked by a significant change in the slope of the hydraulic conductivity function as often observed in measurements. Model predictions are compared with the widely applied van Genuchten-Mualem model and yield reasonable agreement with measured retention and hydraulic conductivity data over a wide range of soil textural classes.

  11. Interactive Textiles Front End Analysis. Phase 1

    DTIC Science & Technology

    1998-11-01

    demonstrated. Active ultrasound and radar were investigated as means to detect the track of projectiles and acoustic signatures were obtained using...technique was used to incorporate pore-forming proteins into various lipid and protein matrices. At a constant pressure the pore-forming protein when added...report. Polymer Gel Sensors and Devices controlled by Infrared Light and Ultrasound Principle Investigator: Z. Hu North Texas State University

  12. Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes.

    PubMed

    Dolar, Davor; Vuković, Ana; Asperger, Danijela; Kosutić, Kresimir

    2011-01-01

    This study explored the removal of five veterinary pharmaceuticals (VPs) (sulfamethoxazole (SMETOX), trimethoprim (TMP), ciprofloxacin (CIPRO), dexamethasone (DEXA) and febantel (FEBA)) from different water matrices (Milli-Q water, model water, tap water and real pharmaceutical wastewater using four types of nanofiltration (NF) membranes (NF90, NF270, NF and HL) and two reverse osmosis (RO) membranes (LFC-1 and XLE). All VPs were added to different water matrices at a concentration of 10 mg/L. Rejections of VPs and water flux were measured. The rejection increased with increase of molecular weight. The highest rejections were obtained with RO membranes (LFC-1, XLE) and tight NF (NF90) membrane. In general, the rejection of VPs was higher in model water and tap water than in Milli-Q water, but the water flux was lower. This was mainly explained by ion adsorption inside the membranes pores. Narrower pore size counteracted the effect of presence of low concentration of natural organic matter (NOM) in tap water. The NOM was assumed to enhance the adsorption of VPs onto membrane surface, increased the size exclusion and electrostatic repulsion also appeared during the transport. Investigated water matrices had influence on water flux decline due to their complexity.

  13. Self-assembly of an electronically conductive network through microporous scaffolds.

    PubMed

    Sebastian, H Bri; Bryant, Steven L

    2017-06-15

    Electron transfer spanning significant distances through a microporous structure was established via the self-assembly of an electronically conductive iridium oxide nanowire matrix enveloping the pore walls. Microporous formations were simulated using two scaffold materials of varying physical and chemical properties; paraffin wax beads, and agar gel. Following infiltration into the micropores, iridium nanoparticles self-assembled at the pore wall/ethanol interface. Subsequently, cyclic voltammetry was employed to electrochemically crosslink the metal, erecting an interconnected, and electronically conductive metal oxide nanowire matrix. Electrochemical and spectral characterization techniques confirmed the formation of oxide nanowire matrices encompassing lengths of at least 1.6mm, 400× distances previously achieved using iridium nanoparticles. Nanowire matrices were engaged as biofuel cell anodes, where electrons were donated to the nanowires by a glucose oxidizing enzyme. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Architectured Nanomembranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sturgeon, Matthew R.; Hu, Michael Z.

    2017-07-01

    This paper has reviewed the frontier field of “architectured membranes” that contains anisotropic oriented porous nanostructures of inorganic materials. Three example types of architectured membranes were discussed with some relevant results from our own research: (1) anodized thin-layer titania membranes on porous anodized aluminum oxide (AAO) substrates of different pore sizes, (2) porous glass membranes on alumina substrate, and (3) guest-host membranes based on infiltration of yttrium-stabilized zirconia inside the pore channels of AAO matrices.

  15. Physicochemical controls on absorbed water film thickness in unsaturated geological media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokunaga, T.

    2011-06-14

    Adsorbed water films commonly coat mineral surfaces in unsaturated soils and rocks, reducing flow and transport rates. Therefore, it is important to understand how adsorbed film thickness depends on matric potential, surface chemistry, and solution chemistry. Here, the problem of adsorbed water film thickness is examined through combining capillary scaling with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Novel aspects of this analysis include determining capillary influences on film thicknesses, and incorporating solution chemistry-dependent electrostatic potential at air-water interfaces. Capillary analysis of monodisperse packings of spherical grains provided estimated ranges of matric potentials where adsorbed films are stable, and showed that pendular ringsmore » within drained porous media retain most of the 'residual' water except under very low matric potentials. Within drained pores, capillary contributions to thinning of adsorbed films on spherical grains are shown to be small, such that DLVO calculations for flat surfaces are suitable approximations. Hamaker constants of common soil minerals were obtained to determine ranges of the dispersion component to matric potential-dependent film thickness. The pressure component associated with electrical double layer forces was estimated using the compression and linear superposition approximations. The pH-dependent electrical double layer pressure component is the dominant contribution to film thicknesses at intermediate values of matric potential, especially in lower ionic strength solutions (< 10 mol m{sup -3}) on surfaces with higher magnitude electrostatic potentials (more negative than - 50 mV). Adsorbed water films are predicted to usually range in thickness from 1 to 20 nm in drained pores and fractures of unsaturated environments.« less

  16. Physicochemical controls on adsorbed water film thickness in unsaturated geological media

    NASA Astrophysics Data System (ADS)

    Tokunaga, Tetsu K.

    2011-08-01

    Adsorbed water films commonly coat mineral surfaces in unsaturated soils and rocks, reducing flow and transport rates. Therefore, it is important to understand how adsorbed film thickness depends on matric potential, surface chemistry, and solution chemistry. Here the problem of adsorbed water film thickness is examined by combining capillary scaling with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Novel aspects of this analysis include determining capillary influences on film thicknesses and incorporating solution chemistry-dependent electrostatic potential at air-water interfaces. Capillary analysis of monodisperse packings of spherical grains provided estimated ranges of matric potentials where adsorbed films are stable and showed that pendular rings within drained porous media retain most of the "residual" water except under very low matric potentials. Within drained pores, capillary contributions to thinning of adsorbed films on spherical grains are shown to be small, such that DLVO calculations for flat surfaces are suitable approximations. Hamaker constants of common soil minerals were obtained to determine ranges of the dispersion component to matric potential-dependent film thickness. The pressure component associated with electrical double-layer forces was estimated using the compression and linear superposition approximations. The pH-dependent electrical double-layer pressure component is the dominant contribution to film thicknesses at intermediate values of matric potential, especially in lower ionic strength solutions (<10 mol m-3) on surfaces with higher-magnitude electrostatic potentials (more negative than ≈-50 mV). Adsorbed water films are predicted to usually range in thickness from ≈1 to 20 nm in drained pores and fractures of unsaturated environments.

  17. The phenotype of cancer cell invasion controlled by fibril diameter and pore size of 3D collagen networks.

    PubMed

    Sapudom, Jiranuwat; Rubner, Stefan; Martin, Steve; Kurth, Tony; Riedel, Stefanie; Mierke, Claudia T; Pompe, Tilo

    2015-06-01

    The behavior of cancer cells is strongly influenced by the properties of extracellular microenvironments, including topology, mechanics and composition. As topological and mechanical properties of the extracellular matrix are hard to access and control for in-depth studies of underlying mechanisms in vivo, defined biomimetic in vitro models are needed. Herein we show, how pore size and fibril diameter of collagen I networks distinctively regulate cancer cell morphology and invasion. Three-dimensional collagen I matrices with a tight control of pore size, fibril diameter and stiffness were reconstituted by adjustment of concentration and pH value during matrix reconstitution. At first, a detailed analysis of topology and mechanics of matrices using confocal laser scanning microscopy, image analysis tools and force spectroscopy indicate pore size and not fibril diameter as the major determinant of matrix elasticity. Secondly, by using two different breast cancer cell lines (MDA-MB-231 and MCF-7), we demonstrate collagen fibril diameter--and not pore size--to primarily regulate cell morphology, cluster formation and invasion. Invasiveness increased and clustering decreased with increasing fibril diameter for both, the highly invasive MDA-MB-231 cells with mesenchymal migratory phenotype and the MCF-7 cells with amoeboid migratory phenotype. As this behavior was independent of overall pore size, matrix elasticity is shown to be not the major determinant of the cell characteristics. Our work emphasizes the complex relationship between structural-mechanical properties of the extracellular matrix and invasive behavior of cancer cells. It suggests a correlation of migratory and invasive phenotype of cancer cells in dependence on topological and mechanical features of the length scale of single fibrils and not on coarse-grained network properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effect of matrix composition and process conditions on casein-gelatin beads floating properties.

    PubMed

    Bulgarelli, E; Forni, F; Bernabei, M T

    2000-04-05

    Casein-gelatin beads have been prepared by emulsification extraction method and cross-linked with D,L-glyceraldehyde in an acetone-water mixture 3:1 (v/v). Casein emulsifying properties cause air bubble incorporation and the formation of large holes in the beads. The high porosity of the matrix influences the bead properties such as drug loading, drug release and floatation. These effects have been stressed by comparison with low porous beads, artificially prepared without cavities. The percentage of casein in the matrix increases the drug loading of both low and high porous matrices, although the loading of high porous matrices is lower than that of low porous matrices. As a matter of fact, the drug should be more easily removed during washing and recovery because of the higher superficial pore area of the beads. This can explain the drug release rate increase, observed in high porous matrix, in comparison with beads without cavities. This is due to the rapid diffusion of the drug through water filled pores. The study shows that cavities act as an air reservoir and enable beads to float. Therefore, casein seems to be a material suitable to the inexpensive formation of an air reservoir for floating systems.

  19. Role of reduced precursor and solvolytic reagent molar ratio on preparation and properties of ionogel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Abhishek Kumar; Verma, Yogendra Lal; Singh, Manish Pratap

    In the present study, ionogels have been synthesized by immobilizing IL (1-ethyl-3-methylimidazolium tetrafluoroborate) in silica gel matrices using non-aqueous route. In this process, tetraethyl orho-silane (TEOS) as a precursor to silicon dioxide and formic acid as a solvolytic gelating reagent in reduced molar ratio 1:4 were used. We find that reduced molar concentration of formic acid results the formation of ionogels having less number of closed pores (totally isolated from their neighbours), larger density and stable monolithic form. TEM and SEM measurements are used to visualize the morphology of sample and closed pores present in the sample. N{sub 2}-sorption measurementmore » is used to measure the pore parameters of the silica matrices which shows the mesoporous structure. DSC and TGA results show the change in phase transition temperature and thermal stability of IL upon confinement in silica matrices. Moreover, ionic conductivity of bulk and confined IL is measured using impedance spectroscopy and it has been found that it increases with increasing the temperature as well as concentration of IL in ionogels. Apart from these characterization techniques, ionogels have been characterized using FTIR and fluorescence spectroscopy which exhibit the change in vibrational frequencies and fluorescence behaviour of confined IL. - Highlights: • Synthesis of stable ionogel using non-hydrolytic route with reduced precursor and solvolytic reagent molar ratio. • Ionogels are free from entrapped residual reaction product. • The ionogels synthesized with higher amount of ionic liquids show bulk liquid like electrical behaviour.« less

  20. Physically based estimation of soil water retention from textural data: General framework, new models, and streamlined existing models

    USGS Publications Warehouse

    Nimmo, J.R.; Herkelrath, W.N.; Laguna, Luna A.M.

    2007-01-01

    Numerous models are in widespread use for the estimation of soil water retention from more easily measured textural data. Improved models are needed for better prediction and wider applicability. We developed a basic framework from which new and existing models can be derived to facilitate improvements. Starting from the assumption that every particle has a characteristic dimension R associated uniquely with a matric pressure ?? and that the form of the ??-R relation is the defining characteristic of each model, this framework leads to particular models by specification of geometric relationships between pores and particles. Typical assumptions are that particles are spheres, pores are cylinders with volume equal to the associated particle volume times the void ratio, and that the capillary inverse proportionality between radius and matric pressure is valid. Examples include fixed-pore-shape and fixed-pore-length models. We also developed alternative versions of the model of Arya and Paris that eliminate its interval-size dependence and other problems. The alternative models are calculable by direct application of algebraic formulas rather than manipulation of data tables and intermediate results, and they easily combine with other models (e.g., incorporating structural effects) that are formulated on a continuous basis. Additionally, we developed a family of models based on the same pore geometry as the widely used unsaturated hydraulic conductivity model of Mualem. Predictions of measurements for different suitable media show that some of the models provide consistently good results and can be chosen based on ease of calculations and other factors. ?? Soil Science Society of America. All rights reserved.

  1. Disorder-induced stiffness degradation of highly disordered porous materials

    NASA Astrophysics Data System (ADS)

    Laubie, Hadrien; Monfared, Siavash; Radjaï, Farhang; Pellenq, Roland; Ulm, Franz-Josef

    2017-09-01

    The effective mechanical behavior of multiphase solid materials is generally modeled by means of homogenization techniques that account for phase volume fractions and elastic moduli without considering the spatial distribution of the different phases. By means of extensive numerical simulations of randomly generated porous materials using the lattice element method, the role of local textural properties on the effective elastic properties of disordered porous materials is investigated and compared with different continuum micromechanics-based models. It is found that the pronounced disorder-induced stiffness degradation originates from stress concentrations around pore clusters in highly disordered porous materials. We identify a single disorder parameter, φsa, which combines a measure of the spatial disorder of pores (the clustering index, sa) with the pore volume fraction (the porosity, φ) to scale the disorder-induced stiffness degradation. Thus, we conclude that the classical continuum micromechanics models with one spherical pore phase, due to their underlying homogeneity assumption fall short of addressing the clustering effect, unless additional texture information is introduced, e.g. in form of the shift of the percolation threshold with disorder, or other functional relations between volume fractions and spatial disorder; as illustrated herein for a differential scheme model representative of a two-phase (solid-pore) composite model material.

  2. Intrinsically disordered proteins aggregate at fungal cell-to-cell channels and regulate intercellular connectivity.

    PubMed

    Lai, Julian; Koh, Chuan Hock; Tjota, Monika; Pieuchot, Laurent; Raman, Vignesh; Chandrababu, Karthik Balakrishna; Yang, Daiwen; Wong, Limsoon; Jedd, Gregory

    2012-09-25

    Like animals and plants, multicellular fungi possess cell-to-cell channels (septal pores) that allow intercellular communication and transport. Here, using a combination of MS of Woronin body-associated proteins and a bioinformatics approach that identifies related proteins based on composition and character, we identify 17 septal pore-associated (SPA) proteins that localize to the septal pore in rings and pore-centered foci. SPA proteins are not homologous at the primary sequence level but share overall physical properties with intrinsically disordered proteins. Some SPA proteins form aggregates at the septal pore, and in vitro assembly assays suggest aggregation through a nonamyloidal mechanism involving mainly α-helical and disordered structures. SPA loss-of-function phenotypes include excessive septation, septal pore degeneration, and uncontrolled Woronin body activation. Together, our data identify the septal pore as a complex subcellular compartment and focal point for the assembly of unstructured proteins controlling diverse aspects of intercellular connectivity.

  3. Phonon bottleneck identification in disordered nanoporous materials

    NASA Astrophysics Data System (ADS)

    Romano, Giuseppe; Grossman, Jeffrey C.

    2017-09-01

    Nanoporous materials are a promising platform for thermoelectrics in that they offer high thermal conductivity tunability while preserving good electrical properties, a crucial requirement for high-efficiency thermal energy conversion. Understanding the impact of the pore arrangement on thermal transport is pivotal to engineering realistic materials, where pore disorder is unavoidable. Although there has been considerable progress in modeling thermal size effects in nanostructures, it has remained a challenge to screen such materials over a large phase space due to the slow simulation time required for accurate results. We use density functional theory in connection with the Boltzmann transport equation to perform calculations of thermal conductivity in disordered porous materials. By leveraging graph theory and regressive analysis, we identify the set of pores representing the phonon bottleneck and obtain a descriptor for thermal transport, based on the sum of the pore-pore distances between such pores. This approach provide a simple tool to estimate phonon suppression in realistic porous materials for thermoelectric applications and enhance our understanding of heat transport in disordered materials.

  4. NMR-based diffusion pore imaging.

    PubMed

    Laun, Frederik Bernd; Kuder, Tristan Anselm; Wetscherek, Andreas; Stieltjes, Bram; Semmler, Wolfhard

    2012-08-01

    Nuclear magnetic resonance (NMR) diffusion experiments offer a unique opportunity to study boundaries restricting the diffusion process. In a recent Letter [Phys. Rev. Lett. 107, 048102 (2011)], we introduced the idea and concept that such diffusion experiments can be interpreted as NMR imaging experiments. Consequently, images of closed pores, in which the spins diffuse, can be acquired. In the work presented here, an in-depth description of the diffusion pore imaging technique is provided. Image artifacts due to gradient profiles of finite duration, field inhomogeneities, and surface relaxation are considered. Gradients of finite duration lead to image blurring and edge enhancement artifacts. Field inhomogeneities have benign effects on diffusion pore images, and surface relaxation can lead to a shrinkage and shift of the pore image. The relation between boundary structure and the imaginary part of the diffusion weighted signal is analyzed, and it is shown that information on pore coherence can be obtained without the need to measure the phase of the diffusion weighted signal. Moreover, it is shown that quite arbitrary gradient profiles can be used for diffusion pore imaging. The matrices required for numerical calculations are stated and provided as supplemental material.

  5. Correlation Study of PVDF Membrane Morphology with Protein Adsorption: Quantitative Analysis by FTIR/ATR Technique

    NASA Astrophysics Data System (ADS)

    Ideris, N.; Ahmad, A. L.; Ooi, B. S.; Low, S. C.

    2018-05-01

    Microporous PVDF membranes were used as protein capture matrices in immunoassays. Because the most common labels in immunoassays were detected based on the colour change, an understanding of how protein concentration varies on different PVDF surfaces was needed. Herein, the correlation between the membrane pore size and protein adsorption was systematically investigated. Five different PVDF membrane morphologies were prepared and FTIR/ATR was employed to accurately quantify the surface protein concentration on membranes with small pore sizes. SigmaPlot® was used to find a suitable curve fit for protein adsorption and membrane pore size, with a high correlation coefficient, R2, of 0.9971.

  6. Morphological effects of porous poly-d,l-lactic acid/hydroxyapatite scaffolds produced by supercritical CO2 foaming on their mechanical performance.

    PubMed

    Rouholamin, Davood; van Grunsven, William; Reilly, Gwendolen C; Smith, Patrick J

    2016-08-01

    A novel supercritical CO2 foaming technique was used to fabricate scaffolds of controllable morphology and mechanical properties, with the potential to tailor the scaffolds to specific tissue engineering applications. Biodegradable scaffolds are widely used as temporary supportive structures for bone regeneration. The scaffolds must provide a sufficient mechanical support while allowing cell attachment and growth as well as metabolic activities. In this study, supercritical CO2 foaming was used to prepare fully interconnected porous scaffolds of poly-d,l-lactic acid and poly-d,l-lactic acid/hydroxyapatite. The morphological, mechanical and cell behaviours of the scaffolds were measured to examine the effect of hydroxyapatite on these properties. These scaffolds showed an average porosity in the range of 86%-95%, an average pore diameter of 229-347 µm and an average pore interconnection of 103-207 µm. The measured porosity, pore diameter, and interconnection size are suitable for cancellous bone regeneration. Compressive strength and modulus of up to 36.03 ± 5.90 and 37.97 ± 6.84 MPa were measured for the produced porous scaffolds of various compositions. The mechanical properties presented an improvement with the addition of hydroxyapatite to the structure. The relationship between morphological and mechanical properties was investigated. The matrices with different compositions were seeded with bone cells, and all the matrices showed a high cell viability and biocompatibility. The number of cells attached on the matrices slightly increased with the addition of hydroxyapatite indicating that hydroxyapatite improves the biocompatibility and proliferation of the scaffolds. The produced poly-d,l-lactic acid/hydroxyapatite scaffolds in this study showed a potential to be used as bone graft substitutes. © IMechE 2016.

  7. Fabrication of mesoporous silica for ultra-low-k interlayer dielectrics

    NASA Astrophysics Data System (ADS)

    Fujii, Nobutoshi; Kohmura, Kazuo; Nakayama, Takahiro; Tanaka, Hirofumi; Hata, Nobuhiro; Seino, Yutaka; Kikkawa, Takamaro

    2005-11-01

    We have developed sol-gel self-assembly techniques to control the pore structure and diameter of ultra-low-k interlayer dielectric (ILD) films. Porous silica films have been fabricated using cationic and nonionic surfactants as templates, resulting in 2D-hexagonal and disordered pore structures, respectively. The disordered mesoporous silica film has a worm-hole like network of pore channels having a uniform diameter. Precursors of the mesoporous silica films were synthesized by use of tetraethyl-orthosilicate (TEOS), inorganic acid, water, ethanol and various surfactants. The surfactants used were cationic alkyltrimethyl-ammonium (ATMA) chloride surfactants for 2D-hexagonal pores and nonionic tri-block copolymer for disordered structures. Dimethyldiethoxysilane (DMDEOS) was added for forming the disordered mesoporous silica. The disordered cylindrical pore structure with a uniform pore size was fabricated by controlling the static electrical interaction between the surfactant and the silica oligomer with methyl group of DMDEOS. Tetramethylcycrotetrasiloxane (TMCTS) vapor treatment was developed, which improved the mechanical strength of mesoporous silica films. The TMCTS polymer covered the pore wall surface and cross-linked to passivate the mechanical defects in the silica wall. Significant enhancement of mechanical strength was demonstrated by TMCTS vapor treatment. The porous silica film modified with a catalyst and a plasma treatment achieved higher mechanical strength and lower dielectric constant than conventional porous silica films because the TMCTS vapor treatment was more effective for mechanical reinforcement and hydrophobicity.

  8. Intrinsically disordered proteins aggregate at fungal cell-to-cell channels and regulate intercellular connectivity

    PubMed Central

    Lai, Julian; Koh, Chuan Hock; Tjota, Monika; Pieuchot, Laurent; Raman, Vignesh; Chandrababu, Karthik Balakrishna; Yang, Daiwen; Wong, Limsoon; Jedd, Gregory

    2012-01-01

    Like animals and plants, multicellular fungi possess cell-to-cell channels (septal pores) that allow intercellular communication and transport. Here, using a combination of MS of Woronin body-associated proteins and a bioinformatics approach that identifies related proteins based on composition and character, we identify 17 septal pore-associated (SPA) proteins that localize to the septal pore in rings and pore-centered foci. SPA proteins are not homologous at the primary sequence level but share overall physical properties with intrinsically disordered proteins. Some SPA proteins form aggregates at the septal pore, and in vitro assembly assays suggest aggregation through a nonamyloidal mechanism involving mainly α-helical and disordered structures. SPA loss-of-function phenotypes include excessive septation, septal pore degeneration, and uncontrolled Woronin body activation. Together, our data identify the septal pore as a complex subcellular compartment and focal point for the assembly of unstructured proteins controlling diverse aspects of intercellular connectivity. PMID:22955885

  9. Cavitation and pore blocking in nanoporous glasses.

    PubMed

    Reichenbach, C; Kalies, G; Enke, D; Klank, D

    2011-09-06

    In gas adsorption studies, porous glasses are frequently referred to as model materials for highly disordered mesopore systems. Numerous works suggest that an accurate interpretation of physisorption isotherms requires a complete understanding of network effects upon adsorption and desorption, respectively. The present article deals with nitrogen and argon adsorption at different temperatures (77 and 87 K) performed on a series of novel nanoporous glasses (NPG) with different mean pore widths. NPG samples contain smaller mesopores and significantly higher microporosity than porous Vycor glass or controlled pore glass. Since the mean pore width of NPG can be tuned sensitively, the evolution of adsorption characteristics with respect to a broadening pore network can be investigated starting from the narrowest nanopore width. With an increasing mean pore width, a H2-type hysteresis develops gradually which finally transforms into a H1-type. In this connection, a transition from a cavitation-induced desorption toward desorption controlled by pore blocking can be observed. Furthermore, we find concrete hints for a pore size dependence of the relative pressure of cavitation in highly disordered pore systems. By comparing nitrogen and argon adsorption, a comprehensive insight into adsorption mechanisms in novel disordered materials is provided. © 2011 American Chemical Society

  10. Efficiency of fly ash belite cement and zeolite matrices for immobilizing cesium.

    PubMed

    Goñi, S; Guerrero, A; Lorenzo, M P

    2006-10-11

    The efficiency of innovative matrices for immobilizing cesium is presented in this work. The matrix formulation included the use of fly ash belite cement (FABC-2-W) and gismondine-type Na-P1 zeolite, both of which are synthesized from fly ash of coal combustion. The efficiency for immobilizing cesium is evaluated from the leaching test ANSI/ANS 16.1-1986 at the temperature of 40 degrees C, from which the apparent diffusion coefficient of cesium is obtained. Matrices with 100% of FABC-2-W are used as a reference. The integrity of matrices is evaluated by porosity and pore-size distribution from mercury intrusion porosimetry, X-ray diffraction and nitrogen adsorption analyses. Both matrices can be classified as good solidify systems for cesium, specially the FABC-2-W/zeolite matrix in which the replacement of 50% of belite cement by the gismondine-type Na-P1 zeolite caused a decrease of two orders of magnitude of cesium mean Effective Diffusion Coefficient (D(e)) (2.8e-09 cm(2)/s versus 2.2e-07 cm(2)/s, for FABC-2-W/zeolite and FABC-2-W matrices, respectively).

  11. Electrospun Poly(lactic acid-co-glycolic acid) Scaffolds for Skin Tissue Engineering

    PubMed Central

    Kumbar, Sangamesh G.; Nukavarapu, Syam Prasad; James, Roshan; Nair, Lakshmi S.; Laurencin, Cato T.

    2008-01-01

    Electrospun fiber matrices composed of scaffolds of varying fiber diameters were investigated for potential application of severe skin loss. Few systematic studies have been performed to examine the effect of varying fiber diameter electrospun fiber matrices for skin regeneration. The present study reports the fabrication of poly[lactic acid-co-glycolic acid] (PLAGA) matrices with fiber diameters of 150–225, 200–300, 250–467, 500–900, 600–1200, 2500–3000 and 3250–6000 nm via electrospinning. All fiber matrices found to have a tensile modulus from 39.23 ± 8.15 to 79.21 ± 13.71 MPa which falls in the range for normal human skin. Further, the porous fiber matrices have porosity between 38–60 % and average pore diameters between 10–14µm. We evaluated the efficacy of these biodegradable fiber matrices as skin substitutes by seeding them with human skin fibroblasts (hSF). Human skin fibroblasts acquired a well spread morphology and showed significant progressive growth on fiber matrices in the 350–1100 nm diameter range. Collagen type III gene expression was significantly up-regulated in hSF seeded on matrices with fiber diameters in the range of 350–1100 nm. Based on the need, the proposed fiber skin substitutes can be successfully fabricated and optimized for skin fibroblast attachment and growth. PMID:18639927

  12. Phonons in Confinement and the Boson Peak Using Nuclear Inelastic Absorption

    NASA Astrophysics Data System (ADS)

    Asthalter, T.; Bauer, M.; van Bürck, U.; Sergueev, I.; Franz, H.; Chumakov, A. I.

    2002-12-01

    We have applied nuclear inelastic absorption (NIA) to the molecular glass former dibutylphthalate/ferrocene, both in bulk and in nanoporous matrices having pore sizes of 50 and 25 Å, respectively. The quantity g(E)/E 2, where g(E) is the vibrational phonon density of states (VDOS) of the resonant nuclei, exhibits a pronounced maximum at low energies. Confinement in pores leads to a suppression of the VDOS below 1.5 meV, independent of the pore size. Also in the scaled heat capacity C(T)/T 3, we observe a decrease of the peak maximum for low temperatures. Our observations are discussed in the light of experimental and theoretical results on nanocrystals and a recent theoretical model for the boson peak.

  13. Effect of rainfall infiltration into unsaturated soil using soil column

    NASA Astrophysics Data System (ADS)

    Ibrahim, A.; Mukhlisin, M.; Jaafar, O.

    2018-02-01

    Rainfall especially in tropical region caused infiltration to the soil slope. The infiltration may change pore water pressure or matric suction of the soil. The event of rainfall infiltration into soil is a complex mechanism. Therefore, the main objectives of this research paper is to study the influence of rainfall intensity and duration that changed pore water pressure to soil. There are two types of soils used in this study; forest soil and kaolin. Soil column apparatus is used for experiments. Rainfall were applied to the soil and result for 3, 6, 12, 24, 72, 120 and 168 hours were retrieved. Result shows that for the both types of soil, the negative pore water pressures were increased during wetting process and gradually decreased towards drying process. The results also show that pore water pressure at top part was increased greatly as the wetting process started compared to the middle and bottom part of the column.

  14. A new phase of disordered phonons modelled by random matrices

    NASA Astrophysics Data System (ADS)

    Schmittner, Sebastian; Zirnbauer, Martin

    2015-03-01

    Starting from the clean harmonic crystal and not invoking two-level systems, we propose a model for phonons in a disordered solid. In this model the strength of mass and spring constant disorder can be increased separately. Both types of disorder are modelled by random matrices that couple the degrees of freedom locally. Treated in coherent potential approximation (CPA), the speed of sound decreases with increasing disorder until it reaches zero at finite disorder strength. There, a critical transition to a strong disorder phase occurs. In this novel phase, we find the density of states at zero energy in three dimensions to be finite, leading to a linear temperature dependence of the heat capacity, as observed experimentally for vitreous systems. For any disorder strength, our model is stable, i.e. masses and spring constants are positive, and there are no runaway dynamics. This is ensured by using appropriate probability distributions, inspired by Wishart ensembles, for the random matrices. The CPA self-consistency equations are derived in a very accessible way using planar diagrams. The talk focuses on the model and the results. The first author acknowledges financial support by the Deutsche Telekom Stiftung.

  15. Dynamics of water in LiCl and CaCl 2 aqueous solutions confined in silica matrices: A backscattering neutron spectroscopy study

    NASA Astrophysics Data System (ADS)

    Mamontov, E.; Cole, D. R.; Dai, S.; Pawel, M. D.; Liang, C. D.; Jenkins, T.; Gasparovic, G.; Kintzel, E.

    2008-09-01

    Backscattering neutron spectroscopy was used to probe the dynamics of water molecules in LiCl and CaCl 2 aqueous solutions confined in 2.7, 1.9, and 1.4 nm diameter pores of various silica matrices. The pore size of 2.7 nm was found to be sufficiently large for the confined liquids to exhibit characteristic traits of bulk behavior, such as a freezing-melting transition and a phase separation. On the other hand, none of the fluids in the 1.4 nm pores exhibited a clear freezing-melting transition; instead, their dynamics at low temperatures gradually became too slow for the nanosecond resolution of the experiment. The greatest suppression of water mobility was observed in the CaCl 2 solutions, which suggests that cation charge and perhaps the cation hydration environment have a profound influence on the dynamics of the water molecules. Quasielastic neutron scattering measurements of pure H 2O and 1 m LiCl-H 2O solution confined in 1.9 nm pores revealed a dynamic transition in both liquids at practically the same temperature of 225-226 K, even though the dynamics of the solution at room temperature appeared to slow down by more than an order of magnitude compared to the pure water. The observation of the dynamic transition in the solution suggests that this transition may be a universal feature of water governed by processes acting on the local scale, such as a change in the hydrogen bonding.

  16. Enhancing purification efficiency of affinity functionalized composite agarose micro beads using Fe3O4 nanoparticles.

    PubMed

    Amiri, S; Mehrnia, M R; Roudsari, F Pourasgharian

    2017-01-15

    In this work, a series of magnetic and nonmagnetic agarose matrices were fabricated for protein purification. Certain amounts of Fe 3 O 4 nanoparticles were encapsulated in agarose beads to form composite magnetic matrices with enhanced purification efficiency. Structure and morphology of prepared matrices were studied by optical and scanning electron microscopes, FT-IR, and BET-BJH analysis. The prepared matrices had regular spherical shape, followed by a uniform size distribution. By nanoparticles addition, the number of mesopores decreased while population of pores with radius ≤10nm increased; thus, higher specific area achieved. According to VSM results, magnetization degree was one of the characteristics affected by agarose content of the beads. A dye ligand, Cibacron Blue F3GA (CB), was covalently bound to beads to adsorb Bovine serum albumin. CB concentration was determined by elemental analysis. It was shown that magnetic beads hold higher CB concentrations than nonmagnetic ones due to higher specific area. As a result, magnetic 8%-agarose beads had the highest affinity adsorption capacity in static experiments. Moreover, breakthrough curves were monitored to calculate dynamic binding capacity. And, it was shown that magnetic 4%-agarose had the highest adsorbing amount (6.00mg/mL). It was implied that pore diffusion in magnetic 4%-agarose may be the reason for higher dynamic capacity. Plus, column efficiency was evaluated. It was revealed that all magnetic beads had lower HETP (0.11, 0.12 and 0.11cm for magnetic 4, 6, and 8%-agarose beads) than nonmagnetic ones (P-value<0.05). Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The Influence of Carbonaceous Matrices and Electrocatalytic MnO₂ Nanopowders on Lithium-Air Battery Performances.

    PubMed

    Minguzzi, Alessandro; Longoni, Gianluca; Cappelletti, Giuseppe; Pargoletti, Eleonora; Di Bari, Chiara; Locatelli, Cristina; Marelli, Marcello; Rondinini, Sandra; Vertova, Alberto

    2016-01-06

    Here, we report new gas diffusion electrodes (GDEs) prepared by mixing two different pore size carbonaceous matrices and pure and silver-doped manganese dioxide nanopowders, used as electrode supports and electrocatalytic materials, respectively. MnO₂ nanoparticles are finely characterized in terms of structural (X-ray powder diffraction (XRPD), energy dispersive X-ray (EDX)), morphological (SEM, high-angle annular dark field (HAADF)-scanning transmission electron microscopy (STEM)/TEM), surface (Brunauer Emmet Teller (BET)-Barrett Joyner Halenda (BJH) method) and electrochemical properties. Two mesoporous carbons, showing diverse surface areas and pore volume distributions, have been employed. The GDE performances are evaluated by chronopotentiometric measurements to highlight the effects induced by the adopted materials. The best combination, hollow core mesoporous shell carbon (HCMSC) with 1.0% Ag-doped hydrothermal MnO₂ (M_hydro_1.0%Ag) allows reaching very high specific capacity close to 1400 mAh·g -1 . Considerably high charge retention through cycles is also observed, due to the presence of silver as a dopant for the electrocatalytic MnO₂ nanoparticles.

  18. The Influence of Carbonaceous Matrices and Electrocatalytic MnO2 Nanopowders on Lithium-Air Battery Performances

    PubMed Central

    Minguzzi, Alessandro; Longoni, Gianluca; Cappelletti, Giuseppe; Pargoletti, Eleonora; Di Bari, Chiara; Locatelli, Cristina; Marelli, Marcello; Rondinini, Sandra; Vertova, Alberto

    2016-01-01

    Here, we report new gas diffusion electrodes (GDEs) prepared by mixing two different pore size carbonaceous matrices and pure and silver-doped manganese dioxide nanopowders, used as electrode supports and electrocatalytic materials, respectively. MnO2 nanoparticles are finely characterized in terms of structural (X-ray powder diffraction (XRPD), energy dispersive X-ray (EDX)), morphological (SEM, high-angle annular dark field (HAADF)-scanning transmission electron microscopy (STEM)/TEM), surface (Brunauer Emmet Teller (BET)-Barrett Joyner Halenda (BJH) method) and electrochemical properties. Two mesoporous carbons, showing diverse surface areas and pore volume distributions, have been employed. The GDE performances are evaluated by chronopotentiometric measurements to highlight the effects induced by the adopted materials. The best combination, hollow core mesoporous shell carbon (HCMSC) with 1.0% Ag-doped hydrothermal MnO2 (M_hydro_1.0%Ag) allows reaching very high specific capacity close to  1400 mAh·g−1. Considerably high charge retention through cycles is also observed, due to the presence of silver as a dopant for the electrocatalytic MnO2 nanoparticles. PMID:28344267

  19. Spatial structure of disordered proteins dictates conductance and selectivity in nuclear pore complex mimics

    PubMed Central

    Frey, Steffen; Dwarkasing, Arvind; Versloot, Roderick; van der Giessen, Erik

    2018-01-01

    Nuclear pore complexes (NPCs) lined with intrinsically disordered FG-domains act as selective gatekeepers for molecular transport between the nucleus and the cytoplasm in eukaryotic cells. The underlying physical mechanism of the intriguing selectivity is still under debate. Here, we probe the transport of ions and transport receptors through biomimetic NPCs consisting of Nsp1 domains attached to the inner surface of solid-state nanopores. We examine both wildtype FG-domains and hydrophilic SG-mutants. FG-nanopores showed a clear selectivity as transport receptors can translocate across the pore whereas other proteins cannot. SG mutant pores lack such selectivity. To unravel this striking difference, we present coarse-grained molecular dynamics simulations that reveal that FG-pores exhibit a high-density, nonuniform protein distribution, in contrast to a uniform and significantly less-dense protein distribution in the SG-mutant. We conclude that the sequence-dependent density distribution of disordered proteins inside the NPC plays a key role for its conductivity and selective permeability. PMID:29442997

  20. Visualizing and Quantifying Bioaccessible Pores in Field-Aged Petroleum Hydrocarbon-Contaminated Clay Soils Using Synchrotron-based X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Chang, W.; Kim, J.; Zhu, N.; McBeth, J. M.

    2015-12-01

    Microbial hydrocarbon degradation is environmentally significant and applicable to contaminated site remediation practices only when hydrocarbons (substrates) are physically bioaccessible to bacteria in soil matrices. Powerful X-rays are produced by synchrotron radiation, allowing for bioaccessible pores in soil (larger than 4 microns), where bacteria can be accommodated, colonize and remain active, can be visualized at a much higher resolution. This study visualized and quantified such bioaccessible pores in intact field-aged, oil-contaminated unsaturated soil fractions, and examined the relationship between the abundance of bioaccessible pores and hydrocarbon biodegradation. Using synchrotron-based X-ray Computed Tomography (CT) at the Canadian Light Source, a large dataset of soil particle characteristics, such as pore volumes, surface areas, number of pores and pore size distribution, was generated. Duplicate samples of five different soil fractions with different soil aggregate sizes and water contents (13, 18 and 25%) were examined. The method for calculating the number and distribution of bioaccessible pores using CT images was validated using the known porosity of Ottawa sand. This study indicated that the distribution of bioaccessible pore sizes in soil fractions are very closely related to microbial enhancement. A follow-up aerobic biodegradation experiment for the soils at 17 °C (average site temperature) over 90 days confirmed that a notable decrease in hydrocarbon concentrations occurred in soils fractions with abundant bioaccessible pores and with a larger number of pores between 10 and 100 μm. The hydrocarbon degradation in bioactive soil fractions was extended to relatively high-molecular-weight hydrocarbons (C16-C34). This study provides quantitative information about how internal soil pore characteristics can influence bioremediation performance.

  1. Characterization of internal structure of hydrated agar and gelatin matrices by cryo-SEM.

    PubMed

    Rahbani, Janane; Behzad, Ali R; Khashab, Niveen M; Al-Ghoul, Mazen

    2013-02-01

    There has been a considerable interest in recent years in developing polymer gel matrices for many important applications such as 2DE for quantization and separation of a variety of proteins and drug delivery system to control the release of active agents. However, a well-defined knowledge of the ultrastructures of the gels has been elusive. In this study, we report the characterization of two different polymers used in 2DE: Gelatin, a naturally occurring polymer derived from collagen (protein) and agar, a polymer of polysaccharide (sugar) origin. Low-temperature SEM is used to examine the internal structure of these gels in their frozen natural hydrated states. Results of this study show that both polymers have an array of hollow cells that resembles honeycomb structures. While agar pores are almost circular, the corresponding Gaussian curve is very broad exhibiting a range of radii from nearly 370 to 700 nm. Gelatin pores are smaller and more homogeneous reflecting a narrower distribution from nearly 320 to 650 nm. Overall, these ultrastructural findings could be used to correlate with functions of the polymers. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Stabilization of the Amorphous Ezetimibe Drug by Confining Its Dimension.

    PubMed

    Knapik, J; Wojnarowska, Z; Grzybowska, K; Jurkiewicz, K; Stankiewicz, A; Paluch, M

    2016-04-04

    The purpose of this paper is to investigate the influence of nanoconfinement on the molecular mobility, as well as on the physical stability, of amorphous ezetimibe drug. Two guest/host systems, ezetimibe-Aeroperl 300 and ezetimibe-Neusilin US2, were prepared and studied using various experimental techniques, such as X-ray diffraction (XRD), differential scanning calorimetry (DSC), and broadband dielectric spectroscopy (BDS). Our investigation has shown that the molecular mobility of the examined anticholesterol agent incorporated into nanopore matrices strongly depends on the pore size of the host system. Moreover, it was found that the amorphous ezetimibe confined in 30 nm pores of Aeroperl 300 has a tendency to recrystallize, while the drug incorporated into the smaller--5 nm--pores of Neusilin US2 is not able to crystallize. It has been shown that this significant stabilization of ezetimibe drug can be achieved by an interplay of three factors: changes in molecular dynamics of the confined amorphous drug, the immobilization effect of pore walls on a part of ezetimibe molecules, and the use of host materials with pores that are smaller than the critical size of the drug crystal nuclei.

  3. Hysteresis of liquid adsorption in porous media by coarse-grained Monte Carlo with direct experimental validation

    NASA Astrophysics Data System (ADS)

    Zeidman, Benjamin D.; Lu, Ning; Wu, David T.

    2016-05-01

    The effects of path-dependent wetting and drying manifest themselves in many types of physical systems, including nanomaterials, biological systems, and porous media such as soil. It is desirable to better understand how these hysteretic macroscopic properties result from a complex interplay between gasses, liquids, and solids at the pore scale. Coarse-Grained Monte Carlo (CGMC) is an appealing approach to model these phenomena in complex pore spaces, including ones determined experimentally. We present two-dimensional CGMC simulations of wetting and drying in two systems with pore spaces determined by sections from micro X-ray computed tomography: a system of randomly distributed spheres and a system of Ottawa sand. Results for the phase distribution, water uptake, and matric suction when corrected for extending to three dimensions show excellent agreement with experimental measurements on the same systems. This supports the hypothesis that CGMC can generate metastable configurations representative of experimental hysteresis and can also be used to predict hysteretic constitutive properties of particular experimental systems, given pore space images.

  4. Hysteresis of liquid adsorption in porous media by coarse-grained Monte Carlo with direct experimental validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeidman, Benjamin D.; Lu, Ning; Wu, David T., E-mail: dwu@mines.edu

    2016-05-07

    The effects of path-dependent wetting and drying manifest themselves in many types of physical systems, including nanomaterials, biological systems, and porous media such as soil. It is desirable to better understand how these hysteretic macroscopic properties result from a complex interplay between gasses, liquids, and solids at the pore scale. Coarse-Grained Monte Carlo (CGMC) is an appealing approach to model these phenomena in complex pore spaces, including ones determined experimentally. We present two-dimensional CGMC simulations of wetting and drying in two systems with pore spaces determined by sections from micro X-ray computed tomography: a system of randomly distributed spheres andmore » a system of Ottawa sand. Results for the phase distribution, water uptake, and matric suction when corrected for extending to three dimensions show excellent agreement with experimental measurements on the same systems. This supports the hypothesis that CGMC can generate metastable configurations representative of experimental hysteresis and can also be used to predict hysteretic constitutive properties of particular experimental systems, given pore space images.« less

  5. Fibril growth kinetics link buffer conditions and topology of 3D collagen I networks.

    PubMed

    Kalbitzer, Liv; Pompe, Tilo

    2018-02-01

    Three-dimensional fibrillar networks reconstituted from collagen I are widely used as biomimetic scaffolds for in vitro and in vivo cell studies. Various physicochemical parameters of buffer conditions for in vitro fibril formation are well known, including pH-value, ion concentrations and temperature. However, there is a lack of a detailed understanding of reconstituting well-defined 3D network topologies, which is required to mimic specific properties of the native extracellular matrix. We screened a wide range of relevant physicochemical buffer conditions and characterized the topology of the reconstituted 3D networks in terms of mean pore size and fibril diameter. A congruent analysis of fibril formation kinetics by turbidimetry revealed the adjustment of the lateral growth phase of fibrils by buffer conditions to be key in the determination of pore size and fibril diameter of the networks. Although the kinetics of nucleation and linear growth phase were affected by buffer conditions as well, network topology was independent of those two growth phases. Overall, the results of our study provide necessary insights into how to engineer 3D collagen matrices with an independent control over topology parameters, in order to mimic in vivo tissues in in vitro experiments and tissue engineering applications. The study reports a comprehensive analysis of physicochemical conditions of buffer solutions to reconstitute defined 3D collagen I matrices. By a combined analysis of network topology, i.e., pore size and fibril diameter, and the kinetics of fibril formation we can reveal the dependence of 3D network topology on buffer conditions, such as pH-value, phosphate concentration and sodium chloride content. With those results we are now able to provide engineering strategies to independently tune the topology parameters of widely used 3D collagen scaffolds based on the buffer conditions. By that, we enable the straightforward mimicking of extracellular matrices of in vivo tissues for in vitro cell culture experiments and tissue engineering applications. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Mesoporous carbon spheres with controlled porosity for high-performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Wang, Dexian; Fu, Aiping; Li, Hongliang; Wang, Yiqian; Guo, Peizhi; Liu, Jingquan; Zhao, Xiu Song

    2015-07-01

    Mesoporous carbon (MC) spheres with hierarchical pores, controlled pore volume and high specific surface areas have been prepared by a mass-producible spray drying assisted template method using sodium alginate as carbon precursor and commercial colloidal silica particles as hard template. The resulting MC spheres, possessing hierarchical pores in the range of 3-30 nm, are employed as conductive matrices for the preparation of cathode materials for lithium-sulfur batteries. A high pressure induced one-step impregnation of elemental sulfur into the pore of the MC spheres has been exploited. The electrochemical performances of sulfur-impregnated MC spheres (S-MC) derived from MC spheres with different pore volume and specific surface area but with the same sulfur loading ratio of 60 wt% (S-MC-X-60) have been investigated in details. The S-MC-4-60 composite cathode material displayed a high initial discharge capacity of 1388 mAhg-1 and a good cycling stability of 857 mAhg-1 after 100 cycles at 0.2C, and shows also excellent rate capability of 864 mAhg-1 at 2C. More importantly, the sulfur loading content in MC-4 spheres can reach as high as 80%, and it still can deliver a capacity of 569 mAhg-1 after 100 cycles at 0.2C.

  7. Physical and hydraulic properties of baked ceramic aggregates used for plant growth medium

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan L.; Kluitenberg, Gerard J.; Jones, Scott B.; Daidzic, Nihad E.; Reddi, Lakshmi N.; Xiao, Ming; Tuller, Markus; Newman, Rebecca M.; Or, Dani; Alexander, J. Iwan. D.

    2005-01-01

    Baked ceramic aggregates (fritted clay, arcillite) have been used for plant research both on the ground and in microgravity. Optimal control of water and air within the root zone in any gravity environment depends on physical and hydraulic properties of the aggregate, which were evaluated for 0.25-1-mm and 1-2-mm particle size distributions. The maximum bulk densities obtained by any packing technique were 0.68 and 0.64 g cm-3 for 0.25-1-mm and 1-2-mm particles, respectively. Wettable porosity obtained by infiltration with water was approximately 65%, substantially lower than total porosity of approximately 74%. Aggregate of both particle sizes exhibited a bimodal pore size distribution consisting of inter-aggregate macropores and intra-aggregate micropores, with the transition from macro- to microporosity beginning at volumetric water content of approximately 36% to 39%. For inter-aggregate water contents that support optimal plant growth there is 45% change in water content that occurs over a relatively small matric suction range of 0-20 cm H2O for 0.25-1-mm and 0 to -10 cm H2O for 1-2-mm aggregate. Hysteresis is substantial between draining and wetting aggregate, which results in as much as a approximately 10% to 20% difference in volumetric water content for a given matric potential. Hydraulic conductivity was approximately an order of magnitude higher for 1-2-mm than for 0.25-1-mm aggregate until significant drainage of the inter-aggregate pore space occurred. The large change in water content for a relatively small change in matric potential suggests that significant differences in water retention may be observed in microgravity as compared to earth.

  8. Filtration device for rapid separation of biological particles from complex matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sangil; Naraghi-Arani, Pejman; Liou, Megan

    2018-01-09

    Methods and systems for filtering of biological particles are disclosed. Filtering membranes separate adjacent chambers. Through osmotic or electrokinetic processes, flow of particles is carried out through the filtering membranes. Cells, viruses and cell waste can be filtered depending on the size of the pores of the membrane. A polymer brush can be applied to a surface of the membrane to enhance filtering and prevent fouling.

  9. Physicochemical properties of 3D collagen-CS scaffolds for potential use in neural tissue engineering.

    PubMed

    Pietrucha, Krystyna

    2015-09-01

    Collagen-based composite scaffolds have considerable potential due to their well-known ability to regenerate skin, bone and cartilage. However, the precise composition and structure of scaffolds that optimize their interaction with neural cells remains incompletely understood and yet to be explored. In the present study, a new family of bi-component 3D scaffolds consisting of collagen (Col) and chondroitin sulphate (CS) were synthesized using a two-stage process: multiple freeze-drying followed by carbodiimide modification. Col-CS matrices had an average pore diameter of 31 μm and a relatively high surface area to pore volume ratio. Importantly, the FTIR data indicated that the ratio between the intensity of amide III and 1452 cm(-1) for Col-CS scaffold was 0.87, which indicates that the Col triple helix was preserved during the formation of the bond between Col and CS. All experiments also clearly showed that the Col-CS matrices have a lower enzyme sensitivity and higher thermal resistance than Col alone. These differences are likely due to the relatively large amount of CS in the collagen sponges, which hinders access for attack at specific active sites of the Col triple helix. Improved binary composite scaffolds were designed for neural tissue engineering applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Formulation and characterization of a porous, elastomeric biomaterial for vocal fold tissue engineering research

    PubMed Central

    Gaston, Joel; Bartlett, Rebecca S.; Klemuk, Sarah A.

    2014-01-01

    Objectives Biomaterials able to mimic the mechanical properties of vocal fold tissue may be particularly useful for furnishing three dimensional microenvironment allowing for in vitro investigation of cell and molecular responses to vibration. Motivated by the dearth of biomaterials available to be used in an in vitro model for vocal fold tissue, we investigated polyether polyurethane (PEU) matrices which are porous, mechanically tuneable biomaterials that are inexpensive and require only standard laboratory equipment for fabrication. Methods Rheology, dynamic mechanical analysis and scanning electron microscopy were performed on PEU matrices at 5%, 10% and 20% w/v mass concentrations. Results For 5%, 10%, and 20% w/v concentrations, shear storage modulus were 2 kPa, 3.4 kPa, and 6 kPa, respectively with shear loss modulus being 0.2 kPa, 0.38 kPa and 0.62 kPa, respectively. Storage modulus responded to applied frequency as a linear function. Mercury intrusion porosimetry revealed that all three mass concentrations of PEU have similar overall percent porosity, but differ in pore architecture. Conclusions 20 µm diameter pores are ideal for cell seeding, and range of mechanical properties indicates that the higher mass concentration PEU formulations are best suited for mimicking the viscoelastic properties of vocal fold tissue for in vitro research. PMID:24944281

  11. Electrolyte matrix in a molten carbonate fuel cell stack

    DOEpatents

    Reiser, C.A.; Maricle, D.L.

    1987-04-21

    A fuel cell stack is disclosed with modified electrolyte matrices for limiting the electrolytic pumping and electrolyte migration along the stack external surfaces. Each of the matrices includes marginal portions at the stack face of substantially greater pore size than that of the central body of the matrix. Consequently, these marginal portions have insufficient electrolyte fill to support pumping or wicking of electrolyte from the center of the stack of the face surfaces in contact with the vertical seals. Various configurations of the marginal portions include a complete perimeter, opposite edge portions corresponding to the air plenums and tab size portions corresponding to the manifold seal locations. These margins will substantially limit the migration of electrolyte to and along the porous manifold seals during operation of the electrochemical cell stack. 6 figs.

  12. Electrolyte matrix in a molten carbonate fuel cell stack

    DOEpatents

    Reiser, Carl A.; Maricle, Donald L.

    1987-04-21

    A fuel cell stack is disclosed with modified electrolyte matrices for limiting the electrolytic pumping and electrolyte migration along the stack external surfaces. Each of the matrices includes marginal portions at the stack face of substantially greater pore size than that of the central body of the matrix. Consequently, these marginal portions have insufficient electrolyte fill to support pumping or wicking of electrolyte from the center of the stack of the face surfaces in contact with the vertical seals. Various configurations of the marginal portions include a complete perimeter, opposite edge portions corresponding to the air plenums and tab size portions corresponding to the manifold seal locations. These margins will substantially limit the migration of electrolyte to and along the porous manifold seals during operation of the electrochemical cell stack.

  13. Agarose drug delivery systems upgraded by surfactants inclusion: critical role of the pore architecture.

    PubMed

    Marras-Marquez, T; Peña, J; Veiga-Ochoa, M D

    2014-03-15

    Anionic or non-ionic surfactants have been introduced in agarose-based hydrogels aiming to tailor the release of drugs with different solubility. The release of a hydrophilic model drug, Theophylline, shows the predictable release enhancement that varies depending on the surfactant. However, when the hydrophobic Tolbutamide is considered, an unexpected retarded release is observed. This effect can be explained not only considering the interactions established between the drug loaded micelles and agarose but also to the alteration of the freeze-dried hydrogels microstructure. It has been observed that the modification of the porosity percentage as well as the pore size distribution during the lyophilization plays a critical role in the different phenomena that take place as soon as desiccated hydrogel is rehydrated. The possibility of tailoring the pore architecture as a function of the surfactant nature and percentage can be applied from drug control release to the widespread and growing applications of materials based on hydrogel matrices. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Correlation effects during liquid infiltration into hydrophobic nanoporous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borman, V. D., E-mail: vdborman@mephi.ru; Belogorlov, A. A.; Byrkin, V. A.

    To explain the thermal effects observed during the infiltration of a nonwetting liquid into a disordered nanoporous medium, we have constructed a model that includes correlation effects in a disordered medium. It is based on analytical methods of the percolation theory. The infiltration of a porous medium is considered as the infiltration of pores in an infinite cluster of interconnected pores. Using the model of randomly situated spheres (RSS), we have been able to take into account the correlation effect of the spatial arrangement and connectivity of pores in the medium. The other correlation effect of the mutual arrangement ofmore » filled and empty pores on the shell of an infinite percolation cluster of filled pores determines the infiltration fluctuation probability. This probability has been calculated analytically. Allowance for these correlation effects during infiltration and defiltration makes it possible to suggest a physical mechanism of the contact angle hysteresis and to calculate the dependences of the contact angles on the degree of infiltration, porosity of the medium, and temperature. Based on the suggested model, we have managed to describe the temperature dependences of the infiltration and defiltration pressures and the thermal effects that accompany the absorption of energy by disordered porous medium-nonwetting liquid systems with various porosities in a unified way.« less

  15. Effects of polymer graft properties on protein adsorption and transport in ion exchange chromatography: a multiscale modeling study.

    PubMed

    Basconi, Joseph E; Carta, Giorgio; Shirts, Michael R

    2015-04-14

    Multiscale simulation is used to study the adsorption of lysozyme onto ion exchangers obtained by grafting charged polymers into a porous matrix, in systems with various polymer properties and strengths of electrostatic interaction. Molecular dynamics simulations show that protein partitioning into the polymer-filled pore space increases with the overall charge content of the polymers, while the diffusivity in the pore space decreases. However, the combination of greatly increased partitioning and modestly decreased diffusion results in macroscopic transport rates that increase as a function of charge content, as the large concentration driving force due to enhanced pore space partitioning outweighs the reduction in the pore space diffusivity. Matrices having greater charge associated with the grafted polymers also exhibit more diffuse intraparticle concentration profiles during transient adsorption. In systems with a high charge content per polymer and a low protein loading, the polymers preferentially partition toward the surface due to favorable interactions with the surface-bound protein. These results demonstrate the potential of multiscale modeling to illuminate qualitative trends between molecular properties and the adsorption equilibria and kinetic properties observable on macroscopic scales.

  16. Porous Carriers for Controlled/Modulated Drug Delivery

    PubMed Central

    Ahuja, G.; Pathak, K.

    2009-01-01

    Considerable research efforts have been directed in recent years towards the development of porous carriers as controlled drug delivery matrices because of possessing several features such as stable uniform porous structure, high surface area, tunable pore size and well-defined surface properties. Owing to wide range of useful properties porous carriers have been used in pharmaceuticals for many purposes including development of floating drug delivery systems, sustained drug delivery systems. Various types of pores like open, closed, transport and blind pores in the porous solid allow them to adsorb drugs and release them in a more reproducible and predictable manner. Pharmaceutically exploited porous adsorbents includes, silica (mesoporous), ethylene vinyl acetate (macroporous), polypropylene foam powder (microporous), titanium dioxide (nanoporous). When porous polymeric drug delivery system is placed in contact with appropriate dissolution medium, release of drug to medium must be preceded by the drug dissolution in the water filled pores or from surface and by diffusion through the water filled channels. The porous carriers are used to improve the oral bioavailability of poorly water soluble drugs, to increase the dissolution of relatively insoluble powders and conversion of crystalline state to amorphous state. PMID:20376211

  17. Probing the intrinsically oil-wet surfaces of pores in North Sea chalk at subpore resolution.

    PubMed

    Hassenkam, T; Skovbjerg, L L; Stipp, S L S

    2009-04-14

    Pore surface properties control oil recovery. This is especially true for chalk reservoirs, where pores are particularly small. Wettability, the tendency for a surface to cover itself with fluid, is traditionally defined by the angle a droplet makes with a surface, but this macroscopic definition is meaningless when the particles are smaller than even the smallest droplet. Understanding surface wetting, at the pore scale, will provide clues for more effective oil recovery. We used a special mode of atomic force microscopy and a hydrophobic tip to collect matrices of 10,000 force curves over 5- x 5-mum(2) areas on internal pore surfaces and constructed maps of topography, adhesion, and elasticity. We investigated chalk samples from a water-bearing formation in the Danish North Sea oil fields that had never seen oil. Wettability and elasticity were inhomogeneous over scales of 10s of nanometers, smaller than individual chalk particles. Some areas were soft and hydrophobic, whereas others showed no correlation between hardness and adhesion. We conclude that the macroscopic parameter, "wetting," averages the nanoscopic behavior along fluid pathways, and "mixed-wet" samples have patches with vastly different properties. Development of reservoir hydrophobicity has been attributed to infiltrating oil, but these new results prove that wettability and elasticity are inherent properties of chalk. Their variability, even on single particles, must result from material originally present during sedimentation or material sorbed from the pore fluid some time later.

  18. Probing the intrinsically oil-wet surfaces of pores in North Sea chalk at subpore resolution

    PubMed Central

    Hassenkam, T.; Skovbjerg, L. L.; Stipp, S. L. S.

    2009-01-01

    Pore surface properties control oil recovery. This is especially true for chalk reservoirs, where pores are particularly small. Wettability, the tendency for a surface to cover itself with fluid, is traditionally defined by the angle a droplet makes with a surface, but this macroscopic definition is meaningless when the particles are smaller than even the smallest droplet. Understanding surface wetting, at the pore scale, will provide clues for more effective oil recovery. We used a special mode of atomic force microscopy and a hydrophobic tip to collect matrices of 10,000 force curves over 5- × 5-μm2 areas on internal pore surfaces and constructed maps of topography, adhesion, and elasticity. We investigated chalk samples from a water-bearing formation in the Danish North Sea oil fields that had never seen oil. Wettability and elasticity were inhomogeneous over scales of 10s of nanometers, smaller than individual chalk particles. Some areas were soft and hydrophobic, whereas others showed no correlation between hardness and adhesion. We conclude that the macroscopic parameter, “wetting,” averages the nanoscopic behavior along fluid pathways, and “mixed-wet” samples have patches with vastly different properties. Development of reservoir hydrophobicity has been attributed to infiltrating oil, but these new results prove that wettability and elasticity are inherent properties of chalk. Their variability, even on single particles, must result from material originally present during sedimentation or material sorbed from the pore fluid some time later. PMID:19321418

  19. Are faults preferential flow paths through semiarid and arid vadose zones?

    NASA Astrophysics Data System (ADS)

    Sigda, John M.; Wilson, John L.

    2003-08-01

    Numerous faults crosscut the poorly lithified, basin-fill sands found in New Mexico's Rio Grande rift and in other extensional regimes. The deformational processes that created these faults sharply reduced both fault porosity and fault saturated hydraulic conductivity by altering grains and pores, particularly in structures referred to as deformation bands. The resulting pore distribution changes, which create barriers to saturated flow, should enhance fault unsaturated flow relative to parent sand under the relatively dry conditions of the semiarid southwest. We report the first measurements of unsaturated hydraulic properties for undisturbed fault materials, using samples from a small-displacement normal fault and parent sands in the Bosque del Apache Wildlife Refuge, central New Mexico. Fault samples were taken from a narrow zone of deformation bands. The unsaturated flow apparatus (UFA) centrifuge system was used to measure both relative permeability and moisture retention curves. We compared these relations and fitted hydraulic conductivity-matric potential models to test whether the fault has significantly different unsaturated hydraulic properties than its parent sand. Saturated conductivity is 3 orders of magnitude less in the fault than the undeformed sand. As matric potential decreases from 0 to -200 cm, unsaturated conductivity decreases roughly 1 order of magnitude in the fault but 5-6 orders of magnitude in undeformed sands. Fault conductivity is greater by 2-6 orders of magnitude at matric potentials between -200 and -1000 cm, which are typical potentials for semiarid and arid vadose zones. Fault deformation bands have much higher air-entry matric potential values than parent sands and remain close to saturation well after the parent sands have begun to approach residual moisture content. Under steady state, one-dimensional, gravity-driven flow conditions, moisture transport and solute advection is 102-106 times larger in the fault material than parent sands. Faults are sufficiently conductive to hasten the downward movement of water and solutes through vadose-zone sands under semiarid and arid conditions like those in the Rio Grande rift, thereby potentially enhancing recharge, contaminant migration, and diagenesis.

  20. Study on the properties of chromium residue-cement matrices (CRCM) and the influences of superplasticizers on chromium(VI)-immobilising capability of cement matrices.

    PubMed

    Shi, Hui-Sheng; Kan, Li-Li

    2009-03-15

    The study of cementitious activity of chromium residue (CR) was carried out to formulate the properties of chromium residue-cement matrices (CRCM) by blending CR with Ordinary Portland Cement (OPC). The particle size distribution, microstructures of CR were investigated by some apparatuses, and physical properties, leaching behavior of hexavalent chromium [Cr(VI)] of CRCM were also determined by some experiments. Three types of commonly used superplasticizers (sulphonated acetone formaldehyde superplasticizer (J1), polycarboxylate-based superplasticizer (J2) and naphthalene superplasticizer (J3)) were chosen to investigate their influences on the physical properties and the Cr(VI)-immobilisation in the leachate of the CRCM hardened pastes. The results show that the CR has a certain cementitious activity. The incorporation of CR improves the pore size distribution of CRCM. The Cr(VI) concentrations in the leachate of CRCM significantly decrease by incorporation of J2. Among three superplasticizers, J2 achieves lowest Cr(VI) leaching ratio. Based on this study, it is likely to develop CR as a potential new additive used in cement-based materials.

  1. [Methylphenidate in the treatment of children with attention-deficit hyperactivity disorder: monitoring in biological matrices].

    PubMed

    Papaseit, E; García-Algar, O; Simó, S; Pichini, S; Farré, M

    2013-02-01

    Attention-deficit hyperactivity disorder (ADHD) has emerged in the last few years as the most commonly diagnosed and treated psychiatric disorder in the paediatric population. In 1980's, methylphenidate (MFD) a psychomotor stimulant drug, was approved in Spain for the symptomatic therapy of ADHD. Since then, MFD has become one of the most extensively prescribed and studied treatment for ADHD both in children and adults. In this paper, the main pharmacological issues of MFD are reviewed, focusing on its pharmacokinetics in conventional (blood and urine) and non-conventional (hair, oral fluid and sweat) biological matrices, its pharmaceutical preparations, therapeutic levels and side effects. Copyright © 2012 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  2. Chlorophyll a Covalently Bonded to Organo-Modified Translucent Silica Xerogels: Optimizing Fluorescence and Maximum Loading.

    PubMed

    García-Sánchez, M A; Serratos, I N; Sosa, R; Tapia-Esquivel, T; González-García, F; Rojas-González, F; Tello-Solís, S R; Palacios-Enriquez, A Y; Esparza Schulz, J M; Arrieta, A

    2016-07-22

    Chlorophyll is a pyrrolic pigment with important optical properties, which is the reason it has been studied for many years. Recently, interest has been rising with respect to this molecule because of its outstanding physicochemical properties, particularly applicable to the design and development of luminescent materials, hybrid sensor systems, and photodynamic therapy devices for the treatment of cancer cells and bacteria. More recently, our research group has been finding evidence for the possibility of preserving these important properties of substrates containing chlorophyll covalently incorporated within solid pore matrices, such as SiO₂, TiO₂ or ZrO₂ synthesized through the sol-gel process. In this work, we study the optical properties of silica xerogels organo-modified on their surface with allyl and phenyl groups and containing different concentrations of chlorophyll bonded to the pore walls, in order to optimize the fluorescence that these macrocyclic species displays in solution. The intention of this investigation was to determine the maximum chlorophyll a concentration at which this molecule can be trapped inside the pores of a given xerogel and to ascertain if this pigment remains trapped as a monomer, a dimer, or aggregate. Allyl and phenyl groups were deposited on the surface of xerogels in view of their important effects on the stability of the molecule, as well as over the fluorescence emission of chlorophyll; however, these organic groups allow the trapping of either chlorophyll a monomers or dimers. The determination of the above parameters allows finding the most adequate systems for subsequent in vitro or in vivo studies. The characterization of the obtained xerogels was performed through spectroscopic absorption, emission and excitation spectra. These hybrid systems can be employed as mimics of natural systems; the entrapment of chlorophyll inside pore matrices indicates that it is possible to exploit some of the most physicochemical properties of trapped chlorophyll for diverse technological applications. The data herein collected suggest the possibility of applying the developed methodology to other active, captive molecules in order to synthesize new hybrid materials with optimized properties, suitable to be applied in diverse technological fields.

  3. Thermo-Oxidative Degradation Of SiC/Si3N4 Composites

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Batt, Ramakrishna T.; Rokhlin, Stanislav I.

    1995-01-01

    Experimental study conducted on thermo-oxidative degradation of composite-material specimens made of silicon carbide fibers in matrices of reaction-bonded silicon nitride. In SiC/Si3N4 composites of study, interphase is 3-micrometers-thick carbon-rich coat on surface of each SiC fiber. Thermo-oxidative degradation of these composites involves diffusion of oxygen through pores of composites to interphases damaged by oxidation. Nondestructive tests reveal critical exposure times.

  4. 3D bioprinting matrices with controlled pore structure and release function guide in vitro self-organization of sweat gland.

    PubMed

    Liu, Nanbo; Huang, Sha; Yao, Bin; Xie, Jiangfan; Wu, Xu; Fu, Xiaobing

    2016-10-03

    3D bioprinting matrices are novel platforms for tissue regeneration. Tissue self-organization is a critical process during regeneration that implies the features of organogenesis. However, it is not clear from the current evidences whether 3D printed construct plays a role in guiding tissue self-organization in vitro. Based on our previous study, we bioprinted a 3D matrix as the restrictive niche for direct sweat gland differentiation of epidermal progenitors by different pore structure (300-μm or 400-μm nozzle diameters printed) and reported a long-term gradual transition of differentiated cells into glandular morphogenesis occurs within the 3D construct in vitro. At the initial 14-day culture, an accelerated cell differentiation was achieved with inductive cues released along with gelatin reduction. After protein release completed, the 3D construct guide the self-organized formation of sweat gland tissues, which is similar to that of the natural developmental process. However, glandular morphogenesis was only observed in 300-μm-printed constructs. In the absence of 3D architectural support, glandular morphogenesis was not occurred. This striking finding made us to identify a previously unknown role of the 3D-printed structure in glandular tissue regeneration, and this self-organizing strategy can be applied to forming other tissues in vitro.

  5. Electrophoresis of DNA in agarose gels, polyacrylamide gels and in free solution

    PubMed Central

    Stellwagen, Nancy C.

    2009-01-01

    This review describes the electrophoresis of curved and normal DNA molecules in agarose gels, polyacrylamide gels and in free solution. These studies were undertaken to clarify why curved DNA molecules migrate anomalously slowly in polyacrylamide gels but not in agarose gels. Two milestone papers are cited, in which Ferguson plots were used to estimate the effective pore size of agarose and polyacrylamide gels. Subsequent studies on the effect of the electric field on agarose and polyacrylamide gel matrices, DNA interactions with the two gel matrices, and the effect of curvature on the free solution mobility of DNA are also described. The combined results suggest that the anomalously slow mobilities observed for curved DNA molecules in polyacrylamide gels are due primarily to preferential interactions of curved DNAs with the polyacrylamide gel matrix; the restrictive pore size of the matrix is of lesser importance. In free solution, DNA mobilities increase with increasing molecular mass until leveling off at a plateau value of (3.17 ± 0.01) × 10-4 cm2/Vs in 40 mM Tris-acetate-EDTA buffer at 20°C. Curved DNA molecules migrate anomalously slowly in free solution as well as in polyacrylamide gels, explaining why the Ferguson plots of curved and normal DNAs containing the same number of base pairs extrapolate to different mobilities at zero gel concentration. PMID:19517510

  6. Fractal analysis and its impact factors on pore structure of artificial cores based on the images obtained using magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Wang, Heming; Liu, Yu; Song, Yongchen; Zhao, Yuechao; Zhao, Jiafei; Wang, Dayong

    2012-11-01

    Pore structure is one of important factors affecting the properties of porous media, but it is difficult to describe the complexity of pore structure exactly. Fractal theory is an effective and available method for quantifying the complex and irregular pore structure. In this paper, the fractal dimension calculated by box-counting method based on fractal theory was applied to characterize the pore structure of artificial cores. The microstructure or pore distribution in the porous material was obtained using the nuclear magnetic resonance imaging (MRI). Three classical fractals and one sand packed bed model were selected as the experimental material to investigate the influence of box sizes, threshold value, and the image resolution when performing fractal analysis. To avoid the influence of box sizes, a sequence of divisors of the image was proposed and compared with other two algorithms (geometric sequence and arithmetic sequence) with its performance of partitioning the image completely and bringing the least fitted error. Threshold value selected manually and automatically showed that it plays an important role during the image binary processing and the minimum-error method can be used to obtain an appropriate or reasonable one. Images obtained under different pixel matrices in MRI were used to analyze the influence of image resolution. Higher image resolution can detect more quantity of pore structure and increase its irregularity. With benefits of those influence factors, fractal analysis on four kinds of artificial cores showed the fractal dimension can be used to distinguish the different kinds of artificial cores and the relationship between fractal dimension and porosity or permeability can be expressed by the model of D = a - bln(x + c).

  7. Random matrices and condensation into multiple states

    NASA Astrophysics Data System (ADS)

    Sadeghi, Sina; Engel, Andreas

    2018-03-01

    In the present work, we employ methods from statistical mechanics of disordered systems to investigate static properties of condensation into multiple states in a general framework. We aim at showing how typical properties of random interaction matrices play a vital role in manifesting the statistics of condensate states. In particular, an analytical expression for the fraction of condensate states in the thermodynamic limit is provided that confirms the result of the mean number of coexisting species in a random tournament game. We also study the interplay between the condensation problem and zero-sum games with correlated random payoff matrices.

  8. Structures and textures of the Murchison and Mighei carbonaceous chondrite matrices

    NASA Technical Reports Server (NTRS)

    Mackinnon, I. D. R.

    1980-01-01

    High-resolution transmission electron microscopy has confirmed earlier observations that the character of the Murchison and Mighei fine-grained matrices is complex in mineralogy and texture. Layer structure minerals occur as planar laths, rounded grains or subhedral grains, and range in size from less than 100 A to about 1 micrometer. Serpentine-type and brucite-type structures predominate in the CM matrices. The occurrence of Povlen chrysolite and a vein of disordered mixed-layer and brucite-type material cutting a large lizardite-type grain suggests that at least some of the matrix materials were formed by alteration of preexisting material.

  9. The performance of silk scaffolds in a rat model of augmentation cystoplasty.

    PubMed

    Seth, Abhishek; Chung, Yeun Goo; Gil, Eun Seok; Tu, Duong; Franck, Debra; Di Vizio, Dolores; Adam, Rosalyn M; Kaplan, David L; Estrada, Carlos R; Mauney, Joshua R

    2013-07-01

    The diverse processing plasticity of silk-based biomaterials offers a versatile platform for understanding the impact of structural and mechanical matrix properties on bladder regenerative processes. Three distinct groups of 3-D matrices were fabricated from aqueous solutions of Bombyx mori silk fibroin either by a gel spinning technique (GS1 and GS2 groups) or a solvent-casting/salt-leaching method in combination with silk film casting (FF group). SEM analyses revealed that GS1 matrices consisted of smooth, compact multi-laminates of parallel-oriented silk fibers while GS2 scaffolds were composed of porous (pore size range, 5-50 μm) lamellar-like sheets buttressed by a dense outer layer. Bi-layer FF scaffolds were comprised of porous foams (pore size, ~400 μm) fused on their external face with a homogenous, nonporous silk film. Silk groups and small intestinal submucosa (SIS) matrices were evaluated in a rat model of augmentation cystoplasty for 10 weeks of implantation and compared to cystotomy controls. Gross tissue evaluations revealed the presence of intra-luminal stones in all experimental groups. The incidence and size of urinary calculi was the highest in animals implanted with gel spun silk matrices and SIS with frequencies ≥57% and stone diameters of 3-4 mm. In contrast, rats augmented with FF scaffolds displayed substantially lower rates (20%) and stone size (2 mm), similar to the levels observed in controls (13%, 2 mm). Histological (hematoxylin and eosin, Masson's trichrome) and immunohistochemical (IHC) analyses showed comparable extents of smooth muscle regeneration and contractile protein (α-smooth muscle actin and SM22α) expression within defect sites supported by all matrix groups similar to controls. Parallel evaluations demonstrated the formation of a transitional, multi-layered urothelium with prominent uroplakin and p63 protein expression in all experimental groups. De novo innervation and vascularization processes were evident in all regenerated tissues indicated by Fox3-positive neuronal cells and vessels lined with CD31 expressing endothelial cells. In comparison to other biomaterial groups, cystometric analyses at 10 weeks post-op revealed that animals implanted with the FF matrix configuration displayed superior urodynamic characteristics including compliance, functional capacity, as well as spontaneous non voiding contractions consistent with control levels. Our data demonstrate that variations in scaffold processing techniques can influence the in vivo functional performance of silk matrices in bladder reconstructive procedures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Compartmentalization and Functionality of Nuclear Disorder: Intrinsic Disorder and Protein-Protein Interactions in Intra-Nuclear Compartments

    PubMed Central

    Meng, Fanchi; Na, Insung; Kurgan, Lukasz; Uversky, Vladimir N.

    2015-01-01

    The cell nucleus contains a number of membrane-less organelles or intra-nuclear compartments. These compartments are dynamic structures representing liquid-droplet phases which are only slightly denser than the bulk intra-nuclear fluid. They possess different functions, have diverse morphologies, and are typically composed of RNA (or, in some cases, DNA) and proteins. We analyzed 3005 mouse proteins localized in specific intra-nuclear organelles, such as nucleolus, chromatin, Cajal bodies, nuclear speckles, promyelocytic leukemia (PML) nuclear bodies, nuclear lamina, nuclear pores, and perinuclear compartment and compared them with ~29,863 non-nuclear proteins from mouse proteome. Our analysis revealed that intrinsic disorder is enriched in the majority of intra-nuclear compartments, except for the nuclear pore and lamina. These compartments are depleted in proteins that lack disordered domains and enriched in proteins that have multiple disordered domains. Moonlighting proteins found in multiple intra-nuclear compartments are more likely to have multiple disordered domains. Protein-protein interaction networks in the intra-nuclear compartments are denser and include more hubs compared to the non-nuclear proteins. Hubs in the intra-nuclear compartments (except for the nuclear pore) are enriched in disorder compared with non-nuclear hubs and non-nuclear proteins. Therefore, our work provides support to the idea of the functional importance of intrinsic disorder in the cell nucleus and shows that many proteins associated with sub-nuclear organelles in nuclei of mouse cells are enriched in disorder. This high level of disorder in the mouse nuclear proteins defines their ability to serve as very promiscuous binders, possessing both large quantities of potential disorder-based interaction sites and the ability of a single such site to be involved in a large number of interactions. PMID:26712748

  11. Scalability of transport parameters with pore sizes in isodense disordered media

    NASA Astrophysics Data System (ADS)

    Reginald, S. William; Schmitt, V.; Vallée, R. A. L.

    2014-09-01

    We study light multiple scattering in complex disordered porous materials. High internal phase emulsion-based isodense polystyrene foams are designed. Two types of samples, exhibiting different pore size distributions, are investigated for different slab thicknesses varying from L = 1 \\text{mm} to 10 \\text{mm} . Optical measurements combining steady-state and time-resolved detection are used to characterize the photon transport parameters. Very interestingly, a clear scalability of the transport mean free path \\ellt with the average size of the pores S is observed, featuring a constant velocity of the transport energy in these isodense structures. This study strongly motivates further investigations into the limits of validity of this scalability as the scattering strength of the system increases.

  12. Effects of prolonged soil drought on CH4 oxidation in a temperate spruce forest

    NASA Astrophysics Data System (ADS)

    Borken, W.; Brumme, R.; Xu, Y.-J.

    2000-03-01

    Our objective was to determine potential impacts of changes in rainfall amount and distribution on soil CH4 oxidation in a temperate forest ecosystem. We constructed a roof below the canopy of a 65-year-old Norway spruce forest (Picea abies (L.) Karst.) and simulated two climate change scenarios: (1) an extensively prolonged summer drought of 172 days followed by a rewetting period of 19 days in 1993 and (2) a less intensive summer drought of 108 days followed by a rewetting period of 33 days in 1994. CH4 oxidation, soil matric potential, and soil temperature were measured hourly to daily over a 2-year period. The results showed that annual CH4 oxidation in the drought experiment increased by 102% for the climate change scenario 1 and by 41% for the climate change scenario 2, compared to those of the ambient plot (1.33 kg CH4 ha-1 in 1993 and 1.65 kg CH4 ha-1 in 1994). We tested the relationships between CH4 oxidation rates, water-filled pore space (WFPS), soil matric potential, gas diffusivity, and soil temperature. Temporal variability in the CH4 oxidation rates corresponded most closely to soil matric potential. Employing soil matric potential and soil temperature, we developed a nonlinear model for estimating CH4 oxidation rates. Modeled results were in strong agreement with the measured CH4 oxidation for the ambient (r2 = 0.80) and drought plots (r2 = 0.89) over two experimental years, suggesting that soil matric potential is a highly reliable parameter for modeling CH4 oxidation rate.

  13. Synthesis of Mesoporous Metal Oxides by Structure Replication: Thermal Analysis of Metal Nitrates in Porous Carbon Matrices

    PubMed Central

    Weinberger, Christian; Roggenbuck, Jan; Hanss, Jan; Tiemann, Michael

    2015-01-01

    A variety of metal nitrates were filled into the pores of an ordered mesoporous CMK-3 carbon matrix by solution-based impregnation. Thermal conversion of the metal nitrates into the respective metal oxides, and subsequent removal of the carbon matrix by thermal combustion, provides a versatile means to prepare mesoporous metal oxides (so-called nanocasting). This study aims to monitor the thermally induced processes by thermogravimetric analysis (TGA), coupled with mass ion detection (MS). The highly dispersed metal nitrates in the pores of the carbon matrix tend to react to the respective metal oxides at lower temperature than reported in the literature for pure, i.e., carbon-free, metal nitrates. The subsequent thermal combustion of the CMK-3 carbon matrix also occurs at lower temperature, which is explained by a catalytic effect of the metal oxides present in the pores. This catalytic effect is particularly strong for oxides of redox active metals, such as transition group VII and VIII metals (Mn, Fe, Co, Ni), Cu, and Ce. PMID:28347073

  14. Changes in the Coherent Dynamics of Nanoconfined Room Temperature Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Vallejo, Kevin; Cano, Melissa; Li, Song; Rotner, Gernot; Faraone, Antonio; Banuelos, Jose

    Confinement and temperature effects on the coherent dynamics of the room temperature ionic liquid (RTIL) [C10MPy+] [Tf2N-] were investigated using neutron spin-echo (NSE) in two silica matrices with different pore size. Several intermolecular forces give rise to the bulk molecular structure between anions and cations. NSE provided dynamics (via the coherent intermediate scattering function) in the time range of 0.004 to 10 ns, and at Q-values corresponding to intermediate range ordering and inter- and intra-molecular length scales of the RTIL. Pore wall effects were delineated by comparing bulk RTIL dynamics with those of the confined fluid in 2.8 nm and 8 nm pores. Analytical models were applied to the experimental data to extract decay times and amplitudes of each component. We find a fast relaxation outside the experiment time window, a primary relaxation, and slow, surface-induced dynamics, which all speed up with increased temperature, however, the temperature dependence differs between bulk and confinement. This study sheds light on the structure and dynamics of RTILs and is relevant to the optimization of RTILs for green technologies and applications.

  15. Mesoporous Aluminosilicates as a Host and Reactor for Preparation of Ordered Metal Nanowires

    NASA Astrophysics Data System (ADS)

    Eliseev, A. A.; Napolskii, K. S.; Kolesnik, I. V.; Kolenko, Yu. V.; Lukashin, A. V.; Gornert, P.; Tretyakov, Yu. D.

    The creation of functional nanomaterials with the controlled properties is emerging as a new area of great technological and scientific interest, in particular, it is a key technology for developing novel high-density data storage devices. Today, no other technology can compete with magnetic carriers in information storage density and access rate. However, usually very small (10-1000 nm3) magnetic nanoparticles shows para- or superparamagnetic properties, with very low blocking temperatures and no coercitivity at normal conditions. One possible solution of this problem is preparation of highly anisotropic nanostructures. From the other hand, the use of purely nanocrystalline systems is limited because of their low stability and tendency to form aggregates. These problems could be solved by encapsulation of nanoparticles to a chemically inert matrix. One of the promising matrices for preparation of highly anisotropic magnetic nanoparticles is mesoporous silica or mesoporous aluminosilicates. Mesoporous silica is an amorphous SiO2 with a highly ordered uniform pore structure (the pore diameter can be controllably varied from 2 to 50 nm). This pore system is a perfect reactor for synthesis of nanocomposites due to the limitation of reaction zone by the pore walls. One could expect that size and shape of nanoparticles incorporated into mesoporous silica to be consistent with the dimensions of the porous framework.

  16. Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration

    PubMed Central

    Phipps, Matthew C.; Clem, William C.; Grunda, Jessica M.; Clines, Gregory A.; Bellis, Susan L.

    2012-01-01

    Bone-mimetic electrospun scaffolds consisting of polycaprolactone (PCL), collagen I and nanoparticulate hydroxyapatite (HA) have previously been shown to support the adhesion, integrin-related signaling and proliferation of mesenchymal stem cells (MSCs), suggesting these matrices serve as promising degradable substrates for osteoregeneration. However, the small pore sizes in electrospun scaffolds hinder cell infiltration in vitro and tissue-ingrowth into the scaffold in vivo, limiting their clinical potential. In this study, three separate techniques were evaluated for their capability to increase the pore size of the PCL/col I/nanoHA scaffolds: limited protease digestion, decreasing the fiber packing density during electro-spinning, and inclusion of sacrificial fibers of the water-soluble polymer PEO. The PEO sacrificial fiber approach was found to be the most effective in increasing scaffold pore size. Furthermore, the use of sacrificial fibers promoted increased MSC infiltration into the scaffolds, as well as greater infiltration of endogenous cells within bone upon placement of scaffolds within calvarial organ cultures. These collective findings support the use of sacrificial PEO fibers as a means to increase the porosity of complex, bone-mimicking electrospun scaffolds, thereby enhancing tissue regenerative processes that depend upon cell infiltration, such as vascularization and replacement of the scaffold with native bone tissue. PMID:22014462

  17. Altered brain structural networks in attention deficit/hyperactivity disorder children revealed by cortical thickness.

    PubMed

    Liu, Tian; Chen, Yanni; Li, Chenxi; Li, Youjun; Wang, Jue

    2017-07-04

    This study investigated the cortical thickness and topological features of human brain anatomical networks related to attention deficit/hyperactivity disorder. Data were collected from 40 attention deficit/hyperactivity disorder children and 40 normal control children. Interregional correlation matrices were established by calculating the correlations of cortical thickness between all pairs of cortical regions (68 regions) of the whole brain. Further thresholds were applied to create binary matrices to construct a series of undirected and unweighted graphs, and global, local, and nodal efficiencies were computed as a function of the network cost. These experimental results revealed abnormal cortical thickness and correlations in attention deficit/hyperactivity disorder, and showed that the brain structural networks of attention deficit/hyperactivity disorder subjects had inefficient small-world topological features. Furthermore, their topological properties were altered abnormally. In particular, decreased global efficiency combined with increased local efficiency in attention deficit/hyperactivity disorder children led to a disorder-related shift of the network topological structure toward regular networks. In addition, nodal efficiency, cortical thickness, and correlation analyses revealed that several brain regions were altered in attention deficit/hyperactivity disorder patients. These findings are in accordance with a hypothesis of dysfunctional integration and segregation of the brain in patients with attention deficit/hyperactivity disorder and provide further evidence of brain dysfunction in attention deficit/hyperactivity disorder patients by observing cortical thickness on magnetic resonance imaging.

  18. Impact of nanoconfinement on the diisopropylammonium chloride (C6H16ClN) organic ferroelectric

    NASA Astrophysics Data System (ADS)

    Baryshnikov, S. V.; Charnaya, E. V.; Milinskiy, A. Yu.; Parfenov, V. A.; Egorova, I. V.

    2018-03-01

    The dielectric studies of diisopropylammonium chloride (DIPAC) nanoparticles embedded into opal and MCM-41 silica matrices are presented. It is shown that the ferroelectric phase transition shifts to low temperatures and broadens for DIPAC within the opal pores compared to bulk. The thermal hysteresis of the transition increases under opal nanoconfinement. No anomalies of the permittivity relevant to the ferroelectric transition are observed for DIPAC within the MCM-41 molecular sieves likely due to formation of the amorphous phase.

  19. Infiltration behaviour of liquids over fibres or woven

    NASA Astrophysics Data System (ADS)

    Martinez, M. A.; Abenojar, J.; Enciso, B.; Lopez de Armentia, S.

    2018-05-01

    The high porosity of fabrics and fibres have hindered the study of the interaction between fluids and those kind of materials. In order to understand penetration mechanisms of polymeric matrices or woven sealing, some properties such as wettability or capillarity must be analysed. The fluid speed through some woven could be compared with metallic meshes in those is easy to determine pores size. In this work it is tried to solve these problems from a theoretical point of view by using hydrostatic laws and capillarity effect.

  20. Porous Structure Design of Polymeric Membranes for Gas Separation

    DOE PAGES

    Zhang, Jinshui; Schott, Jennifer Ann; Mahurin, Shannon Mark; ...

    2017-04-04

    High-performance polymeric membranes for gas separation are of interest for molecular-level separations in industrial-scale chemical, energy and environmental processes. To overcome the inherent trade-off relationship between permeability and selectivity, the creation of permanent microporosity in polymeric matrices is highly desirable because the porous structures can provide a high fractional free volume to facilitate gas transport through the dense layer. In this feature article, recent developments in the formation of porous polymeric membranes and potential strategies for pore structure design are reviewed.

  1. Dispersion in 2D network: Effects of mixing rule at nodes and molecular diffusion

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Tao, Q.; Li, M.

    2017-12-01

    We simulate solute transport in 2D network backbone characterized by pore connectivity and pore heterogeneity by particle-tracking method. In order to ensure the dispersion coefficient reaching an asymptotic value, we upscale dispersion from pore-scale to meter-scale by using periodic boundary condition. As comparison, two different flow mechanisms without or with dispersion in a capillary tube, namely mean flow and Taylor-Aris dispersion, are introduced to investigate the evolution of solute spreading. The longitudinal dispersion coefficient DLM without dispersion in a pipe can roughly be regarded as a parameter to quantify the impact of microscopic structure of porous media on solute spreading, which is smaller than that value DL of Taylor-Aris dispersion. The difference between them decreases with the enhancement of the disorder. The mixing rule at nodes has a minor effect on longitudinal spreading, but has a significant effect on transverse spreading, especially for the nearly homogeneous media. An increase of the disorder in network achieved by increasing pore size heterogeneity or/and decreasing pore connectivity diminishes the difference between two mixing rules. Besides, the evolution of longitudinal dispersion coefficient over diffusion presents three different patterns at different velocities for homogenous media, such as monotonically increasing trend, decreasing first and then increasing trend and monotonically decreasing trend. But all are replaced by power law for a high disorder. The simulation results also accurately predict the experimental dependence of the longitudinal coefficient on Peclet number Pe.

  2. Closing the loop of the soil water retention curve

    USGS Publications Warehouse

    Lu, Ning; Alsherif, N; Wayllace, Alexandra; Godt, Jonathan W.

    2015-01-01

    The authors, to their knowledge for the first time, produced two complete principal soil water retention curves (SWRCs) under both positive and negative matric suction regimes. An innovative testing technique combining the transient water release and imbibition method (TRIM) and constant flow method (CFM) was used to identify the principal paths of SWRC in the positive pore-water pressure regime under unsaturated conditions. A negative matric suction of 9.8 kPa is needed to reach full saturation or close the loop of the SWRC for a silty soil. This work pushes the understanding of the interaction of soil and water into new territory by quantifying the boundaries of the SWRC over the entire suction domain, including both wetting and drying conditions that are relevant to field conditions such as slope wetting under heavy rainfall or rapid groundwater table rise in earthen dams or levees.

  3. Efficient, massively parallel eigenvalue computation

    NASA Technical Reports Server (NTRS)

    Huo, Yan; Schreiber, Robert

    1993-01-01

    In numerical simulations of disordered electronic systems, one of the most common approaches is to diagonalize random Hamiltonian matrices and to study the eigenvalues and eigenfunctions of a single electron in the presence of a random potential. An effort to implement a matrix diagonalization routine for real symmetric dense matrices on massively parallel SIMD computers, the Maspar MP-1 and MP-2 systems, is described. Results of numerical tests and timings are also presented.

  4. Development of electrospun bone-mimetic matrices for bone regenerative applications

    NASA Astrophysics Data System (ADS)

    Phipps, Matthew Christopher

    Although bone has a dramatic capacity for regeneration, certain injuries and procedures present defects that are unable to heal properly, requiring surgical intervention to induce and support osteoregeneration. Our research group has hypothesized that the development of a biodegradable material that mimics the natural composition and architecture of bone extracellular matrix has the potential to provide therapeutic benefit to these patients. Utilizing a process known as electrospinning, our lab has developed a bone-mimetic matrix (BMM) consisting of composite nanofibers of the mechanically sta-ble polymer polycaprolactone (PCL), and the natural bone matrix molecules type-I colla-gen and hydroxyapatite nanocrystals (HA). We herein show that BMMs supported great-er adhesion, proliferation, and integrin activation of mesenchymal stem cells (MSCs), the multipotent bone-progenitor cells within bone marrow and the periosteum, in comparison to electrospun PCL alone. These cellular responses, which are essential early steps in the process of bone regeneration, highlight the benefits of presenting cells with natural bone molecules. Subsequently, evaluation of new bone formation in a rat cortical tibia defect showed that BMMs are highly osteoconductive. However, these studies also revealed the inability of endogenous cells to migrate within electrospun matrices due to the inherently small pore sizes. To address this limitation, which will negatively impact the rate of scaf-fold-to-bone turnover and inhibit vascularization, sacrificial fibers were added to the ma-trix. The removal of these fibers after fabrication resulted in BMMs with larger pores, leading to increased infiltration of MSCs and endogenous bone cells. Lastly, we evaluat-ed the potential of our matrices to stimulate the recruitment of MSCs, a vital step in bone healing, through the sustained delivery of platelet derived growth factor-BB (PDGF-BB). BMMs were found to adsorb and subsequently release greater quantities of PDGF-BB, compared to PCL scaffolds, over an 8-week interval. The released PDGF-BB retained its bioactivity, stimulating MSC chemotaxis in two separate assays. Collectively, these re-sults suggest that electrospun matrices incorporating the bone matrix molecules collagen I and HA, with sacrificial fibers, provide a favorable scaffold for MSC survival and infil-tration as well as the ability to sequester PDGF-BB from solution, leading to sustained local delivery and MSC chemotaxis.

  5. Fundamental study of CO2-H2O-mineral interactions for carbon sequestration, with emphasis on the nature of the supercritical fluid-mineral interface.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Charles R.; Dewers, Thomas A.; Heath, Jason E.

    2013-09-01

    In the supercritical CO2-water-mineral systems relevant to subsurface CO2 sequestration, interfacial processes at the supercritical fluid-mineral interface will strongly affect core- and reservoir-scale hydrologic properties. Experimental and theoretical studies have shown that water films will form on mineral surfaces in supercritical CO2, but will be thinner than those that form in vadose zone environments at any given matric potential. The theoretical model presented here allows assessment of water saturation as a function of matric potential, a critical step for evaluating relative permeabilities the CO2 sequestration environment. The experimental water adsorption studies, using Quartz Crystal Microbalance and Fourier Transform Infrared Spectroscopymore » methods, confirm the major conclusions of the adsorption/condensation model. Additional data provided by the FTIR study is that CO2 intercalation into clays, if it occurs, does not involve carbonate or bicarbonate formation, or significant restriction of CO2 mobility. We have shown that the water film that forms in supercritical CO2 is reactive with common rock-forming minerals, including albite, orthoclase, labradorite, and muscovite. The experimental data indicate that reactivity is a function of water film thickness; at an activity of water of 0.9, the greatest extent of reaction in scCO2 occurred in areas (step edges, surface pits) where capillary condensation thickened the water films. This suggests that dissolution/precipitation reactions may occur preferentially in small pores and pore throats, where it may have a disproportionately large effect on rock hydrologic properties. Finally, a theoretical model is presented here that describes the formation and movement of CO2 ganglia in porous media, allowing assessment of the effect of pore size and structural heterogeneity on capillary trapping efficiency. The model results also suggest possible engineering approaches for optimizing trapping capacity and for monitoring ganglion formation in the subsurface.« less

  6. Methane and CO2 Adsorption and Transport in Carbon-based Systems from Experiments and Molecular Simulation

    NASA Astrophysics Data System (ADS)

    Wilcox, Jennifer; Firouzi, Mahnaz; Rupp, Erik; Haghapanah, Reza; Wang, Beibei

    2013-04-01

    Carbon capture and sequestration is one strategy that could potentially mitigate gigatons of CO2 emissions per year; however, technical obstacles have thus far hindered wide-scale deployment of this strategy. To design efficient and reliable strategies for either carbon capture or sequestration at the full-scale, one needs to understand the chemical and physical properties of CO2 and its interaction with its local surroundings at the molecular-scale. To investigate the chemical and physical properties of CO2 and its local surroundings at the molecular-scale, surface characterization studies are carried out alongside theoretical model efforts. Experimental investigation of CO2 interactions with organic-based porous materials ranging in complexity from functionalized graphene and activated carbon to various-rank coal and gas shale samples to create a set of realistic models that take into account both surface and pore heterogeneity. Integration of theory and experiments takes place to allow for the relevant physics at the molecular-level to be revealed. Determining adsorption and transport phenomena of CO2 (and mixtures, including H2O, and CH4) within the model pore systems can be used to understand the complex pore matrices of carbon-based sorbents, coal, and the organic components of gas shale that are crucial to determining their carbon capture or sequestration potential. Non-equilibrium molecular dynamics (NEMD) simulations of pure carbon dioxide, methane, helium and their mixtures have been carried out in carbon slit pores to investigate gas slippage and Klinkenberg effects in the organic matrices of coal and gas shale rocks. NEMD techniques are ideally suited for the experimental situation in which an external driving force, such as a chemical potential or pressure gradient, are applied on the system. Simulations have been conducted to determine the effect of pore size and exposure to an external potential on the velocity profile and slip-stick boundary conditions. The simulations indicate that molecule-wall collisions influence the velocity profile, which deviates significantly from the Navier-Stokes hydrodynamic prediction for micro and mesopores. Also, the shape of the velocity profile is found to be independent of the applied pressure gradient in micropores. The results indicate that the velocity profile is uniform for pore sizes less than 2 nm (micropores). As pore sizes increase to 10 nm, parabolic profiles are observed due to the reduced interaction of gas molecules with the pore walls. Interestingly, in small pores unlike in large pores, the gas velocity at the walls is non-zero and predicted gas transport is somewhat enhanced as the gas flow transitions from a parabolic velocity profile to plug-flow. In addition, a 3-D pore network, representative of porous carbon-based materials, has been generated atomistically using the Voronoi tessellation method. Simulations have been carried out to determine the effect of the pore structure and modeled viscosity on permeability and Klinkenberg parameters. The use of the bulk-phase viscosity for estimating the permeability of CO2 in units of Darcy in a 3-D micropore network is not an appropriate assumption as it significantly underestimates the CO2 permeability given that CO2 is an adsorbing gas with strong pore wall interactions. On the other hand, since the transport properties of CH4 are less influenced by the pore walls compared with CO2, the use of the bulk-phase CH4 viscosity estimates are a reasonable assumption. The application of this work is to advance our understanding of gas transport and to provide insight into mechanisms of gas-surface interactions in the complex natural systems such as gas shale so that we can make accurate capacity estimates in addition to assisting in enhancing natural gas recovery from these systems. These results will potentially have important implications on CO2 adsorption and transport in carbon-based materials and geologic formations and may provide an understanding of the limitations of the use of bulk-phase fluid viscosities to model transport properties for nanoconfined fluids.

  7. Nanopatterned submicron pores as a shield for nonspecific binding in surface plasmon resonance-based sensing.

    PubMed

    Raz, Sabina Rebe; Marchesini, Gerardo R; Bremer, Maria G E G; Colpo, Pascal; Garcia, Cesar Pascual; Guidetti, Guido; Norde, Willem; Rossi, Francois

    2012-11-21

    We present a novel approach to tackle the most common drawback of using surface plasmon resonance for analyte screening in complex biological matrices--the nonspecific binding to the sensor chip surface. By using a perforated membrane supported by a polymeric gel structure at the evanescent wave penetration depth, we have fabricated a non-fouling sieve above the sensing region. The sieve shields the evanescent wave from nonspecific interactions which interfere with SPR sensing by minimizing the fouled area of the polymeric gel and preventing the translocation of large particles, e.g. micelles or aggregates. The nanopatterned macropores were fabricated by means of colloidal lithography and plasma enhanced chemical vapor deposition of a polyethylene oxide-like film on top of a polymeric gel matrix commonly used in surface plasmon resonance analysis. The sieve was characterized using surface plasmon resonance imaging, contact angle, atomic force microscopy and scanning electron microscopy. The performance of the sieve was studied using an immunoassay for detection of antibiotic residues in full fat milk and porcine serum. The non-fouling membrane presented pores in the 92-138 nm range organized in a hexagonal crystal lattice with a clearance of about 5% of the total surface. Functionally, the membrane with the nanopatterned macropores showed significant improvements in immunoassay robustness and sensitivity in untreated complex samples. The utilization of the sensor built-in sieve for measurements in complex matrices offers reduction in pre-analytical sample preparation steps and thus shortens the total analysis time.

  8. PVP VA64 as a novel release-modifier for sustained-release mini-matrices prepared via hot melt extrusion.

    PubMed

    Li, Yongcheng; Lu, Ming; Wu, Chuanbin

    2017-11-10

    The purpose of this study was to explore poly(vinylpyrrolidone-co-vinyl acetate) (PVP VA64) as a novel release-modifier to tailor the drug release from ethylcellulose (EC)-based mini-matrices prepared via hot melt extrusion (HME). Quetiapine fumarate (QF) was selected as model drug. QF/EC/PVP VA64 mini-matrices were extruded with 30% drug loading. The physical state of QF in extruded mini-matrices was characterized using differential scanning calorimetry, X-ray powder diffraction, and confocal Raman microscopy. The release-controlled ability of PVP VA64 was investigated and compared with that of xanthan gum, crospovidone, and low-substituted hydroxypropylcellulose. The influences of PVP VA64 content and processing temperature on QF release behavior and mechanism were also studied. The results indicated QF dispersed as the crystalline state in all mini-matrices. The release of QF from EC was very slow as only 4% QF was released in 24 h. PVP VA64 exhibited the best ability to enhance the drug release as compared with other three release-modifiers. The drug release increased to 50-100% in 24 h with the addition of 20-40% PVP VA64. Increasing processing temperature slightly slowed down the drug release by decreasing free volume and pore size. The release kinetics showed good fit with the Ritger-Peppas model. The values of release exponent (n) increased as PVP VA64 is added (0.14 for pure EC, 0.41 for 20% PVP VA64, and 0.61 for 40% PVP VA64), revealing that the addition of PVP VA64 enhanced the erosion mechanism. This work presented a new polymer blend system of EC with PVP VA64 for sustained-release prepared via HME.

  9. The Role of Ion Selectivity of the Fusion Pore on Transmission and the Exocytosis of Neurotransmitters and Hormones

    NASA Astrophysics Data System (ADS)

    Delacruz, Joannalyn Bongar

    Healthy nervous system function depends on proper transmission. Synaptic transmission occurs by the release of transmitters from vesicles that fuse to the plasma membrane of a pre-synaptic cell. Regulated release of neurotransmitters, neuropeptides, and hormones occurs by exocytosis, initiated by the formation of the fusion pore. The initial fusion pore has molecular dimensions with a diameter of 1-2 nm and a rapid lifetime on the millisecond time scale. It connects the vesicular lumen and extracellular space, serving as an important step for regulating the release of charged transmitters. Comprehending the molecular structure and biophysical properties of the fusion pore is essential for a mechanistic understanding of vesicle-plasma membrane fusion and transmitter release. Release of charged transmitter molecules such as glutamate, acetylcholine, dopamine, or noradrenaline through a narrow fusion pore requires compensation of change in charge. Transmitter release through the fusion pore is therefore an electrodiffusion process. If the fusion pore is selective for specific ions, then its selectivity will affect the rate of transmitter release via the voltage gradient that develops across the fusion pore. The elucidation of these mechanisms can lead to a better understanding of nervous system cell biology, neural and endocrine signaling, learning, memory, motor control, sensory function and integration, and in particular synaptic transmission. This investigation can advance our understanding of neurological disorders in which noradrenergic and dopaminergic exocytosis is disturbed, leading to neurological consequences of developmental disorders, epilepsy, Parkinson's disease, and other neurodegenerative diseases. Ultimately, understanding the role of selectivity in the fusion pore and its effects on exocytosis can contribute to the development of more effective therapies. This study investigates the selectivity of the fusion pore by observing the effects of ion influx and efflux through the fusion pore. The experiments reveal negatively charged transmitter release can occur through a fusion pore at larger conductance values, past a threshold range. Narrow fusion pores with lower conductance values favor cation selectivity, which would accelerate the release of positively charged transmitters such as acetylcholine in the neuromuscular junction. However, release of negatively charged neurotransmitters such as glutamate can occur if an expanded fusion pore mediates release of this fast major excitatory transmitter. The intention of this research is to expand our understanding of the nervous system, which can contribute to healthy shifts in our clinical and educational interventions that are commonly delivered.

  10. Thermodynamic characterization of the multivalent interactions underlying rapid and selective translocation through the nuclear pore complex

    PubMed Central

    Hayama, Ryo; Sparks, Samuel; Hecht, Lee M.; Dutta, Kaushik; Karp, Jerome M.; Cabana, Christina M.; Rout, Michael P.; Cowburn, David

    2018-01-01

    Intrinsically disordered proteins (IDPs) play important roles in many biological systems. Given the vast conformational space that IDPs can explore, the thermodynamics of the interactions with their partners is closely linked to their biological functions. Intrinsically disordered regions of Phe–Gly nucleoporins (FG Nups) that contain multiple phenylalanine–glycine repeats are of particular interest, as their interactions with transport factors (TFs) underlie the paradoxically rapid yet also highly selective transport of macromolecules mediated by the nuclear pore complex. Here, we used NMR and isothermal titration calorimetry to thermodynamically characterize these multivalent interactions. These analyses revealed that a combination of low per-FG motif affinity and the enthalpy–entropy balance prevents high-avidity interaction between FG Nups and TFs, whereas the large number of FG motifs promotes frequent FG–TF contacts, resulting in enhanced selectivity. Our thermodynamic model underlines the importance of functional disorder of FG Nups. It helps explain the rapid and selective translocation of TFs through the nuclear pore complex and further expands our understanding of the mechanisms of “fuzzy” interactions involving IDPs. PMID:29374059

  11. Mechanism of drug release from silica-gelatin aerogel-Relationship between matrix structure and release kinetics.

    PubMed

    Veres, Péter; Kéri, Mónika; Bányai, István; Lázár, István; Fábián, István; Domingo, Concepción; Kalmár, József

    2017-04-01

    Specific features of a silica-gelatin aerogel (3 wt.% gelatin content) in relation to drug delivery has been studied. It was confirmed that the release of both ibuprofen (IBU) and ketoprofen (KET) is about tenfold faster from loaded silica-gelatin aerogel than from pure silica aerogel, although the two matrices are structurally very similar. The main goal of the study was to understand the mechanistic background of the striking difference between the delivery properties of these closely related porous materials. Hydrated and dispersed silica-gelatin aerogel has been characterized by NMR cryoporometry, diffusiometry and relaxometry. The pore structure of the silica aerogel remains intact when it disintegrates in water. In contrast, dispersed silica-gelatin aerogel develops a strong hydration sphere, which reshapes the pore walls and deforms the pore structure. The drug release kinetics was studied on a few minutes time scale with 1s time resolution. Simultaneous evaluation of all relevant kinetic and structural information confirmed that strong hydration of the silica-gelatin skeleton facilitates the rapid desorption and dissolution of the drugs from the loaded aerogel. Such a driving force is not operative in pure silica aerogels. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Microfluidic Foaming: A Powerful Tool for Tailoring the Morphological and Permeability Properties of Sponge-like Biopolymeric Scaffolds.

    PubMed

    Costantini, Marco; Colosi, Cristina; Jaroszewicz, Jakub; Tosato, Alessia; Święszkowski, Wojciech; Dentini, Mariella; Garstecki, Piotr; Barbetta, Andrea

    2015-10-28

    Ordered porous polymeric materials can be engineered to present highly ordered pore arrays and uniform and tunable pore size. These features prompted a number of applications in tissue engineering, generation of meta materials, and separation and purification of biomolecules and cells. Designing new and efficient vistas for the generation of ordered porous materials is an active area of research. Here we investigate the potential of microfluidic foaming within a flow-focusing (FF) geometry in producing 3D regular sponge-like polymeric matrices with tailored morphological and permeability properties. The challenge in using microfluidic systems for the generation of polymeric foams is in the high viscosity of the continuous phase. We demonstrate that as the viscosity of the aqueous solution increases, the accessible range of foam bubble fraction (Φb) and bubble diameter (Db) inside the microfluidic chip tend to narrow progressively. This effect limits the accessible range of geometric properties of the resulting materials. We further show that this problem can be rationally tackled by appropriate choice of the concentration of the polymer. We demonstrate that via such optimization, the microfluidic assisted synthesis of porous materials becomes a facile and versatile tool for generation of porous materials with a wide range of pore size and pore volume. Moreover, we demonstrate that the size of interconnects among pores-for a given value of the gas fraction-can be tailored through the variation of surfactant concentration. This, in turn, affects the permeability of the materials, a factor of key importance in flow-through applications and in tissue engineering.

  13. Encoding the structure of many-body localization with matrix product operators

    NASA Astrophysics Data System (ADS)

    Pekker, David; Clark, Bryan K.

    2017-01-01

    Anderson insulators are noninteracting disordered systems which have localized single-particle eigenstates. The interacting analog of Anderson insulators are the many-body localized (MBL) phases. The spectrum of the many-body eigenstates of an Anderson insulator is efficiently represented as a set of product states over the single-particle modes. We show that product states over matrix product operators of small bond dimension is the corresponding efficient description of the spectrum of an MBL insulator. In this language all of the many-body eigenstates are encoded by matrix product states (i.e., density matrix renormalization group wave functions) consisting of only two sets of low bond dimension matrices per site: the Gi matrices corresponding to the local ground state on site i and the Ei matrices corresponding to the local excited state. All 2n eigenstates can be generated from all possible combinations of these sets of matrices.

  14. Nanoporous Thermosets with Percolating Pores from Block Polymers Chemically Fixed above the Order–Disorder Transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vidil, Thomas; Hampu, Nicholas; Hillmyer, Marc A.

    A lamellar diblock polymer combining a cross-linkable segment with a chemically etchable segment was cross-linked above its order–disorder temperature (TODT) to kinetically trap the morphology associated with the fluctuating disordered state. After removal of the etchable block, evaluation of the resulting porous thermoset allows for an unprecedented experimental characterization of the trapped disordered phase. Through a combination of small-angle X-ray scattering, nitrogen sorption, scanning electron microscopy, and electron tomography experiments we demonstrate that the nanoporous structure exhibits a narrow pore size distribution and a high surface to volume ratio and is bicontinuous over a large sample area. Together with themore » processability of the polymeric starting material, the proposed system combines attractive attributes for many advanced applications. In particular, it was used to design new composite membranes for the ultrafiltration of water.« less

  15. The Effects of Air-Cooled Blast Furnace Slag (ACBFS) Aggregate on the Chemistry of Pore Solution and the Interfacial Transition Zone

    NASA Astrophysics Data System (ADS)

    Panchmatia, Parth

    Numerous laboratory and field studies have demonstrated that concrete incorporating air cooled blast furnace slag (ACBFS) aggregate showed a higher degree of infilling of voids with ettringite as opposed to concrete prepared using naturally mined carbonate aggregates when exposed to similar environmental conditions. This observation prompted some to link the deterioration observed in the ACBFS aggregate concrete structures to the compromised freeze-thaw resistance due to infilling of air voids. Concerns about the release of sulfur from ACBFS aggregate into the pore solution of concrete had been presented as the reason for the observed ettringite deposits in the air voids. However, literature quantifying the influence of ACBFS aggregate on the chemistry of the pore solution of concrete is absent. Therefore, the main purpose of this research was to quantify the effects of ACBFS aggregate on the chemistry of the pore solution of mortars incorporating them. Coarse and crushed ACBFS aggregates were submerged in artificial pore solutions (APSs) representing pore solutions of 3-day, 7-day, and 28-day hydrated plain, binary, and ternary paste systems. The change in the chemistry of these artificial pore solutions was recorded to quantify the chemical contribution of ACBFS aggregate to the pore solution of concrete. It was observed that the sulfate concentration of all APSs increased once they were in contact with either coarse or crushed ACBFS aggregate. After 28 days of contact, the increase in sulfate concentration of the APSs ranged from 4.85 - 12.23 mmol/L and 14.21 - 16.87 mmol/L for contact with coarse and crushed ACBFS aggregate, respectively. More than 40% of the total sulfate that was released by the ACBFS aggregate occurred during the first 72 hours (3 days) of its contact with the APSs. There was little or no difference in the amount of sulfate released from ACBFS aggregate in the different types of APSs. In other words, the type of binder solution from which pore solution was extracted had no effect on the amount of sulfate that was released when it was in contact with ACBFS aggregate. The relatively quick release of sulfur from ACBFS aggregate into the APSs prompted investigation of the chemical composition of the pore solution of mortar (at early stages of hydration) incorporating ACBFS aggregate. The chemical composition of the pore solutions obtained from mortars prepared using ACBFS aggregate and plain and binary paste matrices was compared those of mortars prepared using Ottawa sand and plain and binary paste matrices. After 7 days of hydration, the sulfur (S) concentration of the pore solution extracted from mortars prepared using ACBFS aggregate was 3.4 - 5.6 times greater than that obtained from corresponding mortars (i.e. mortars with the same paste matrix) prepared using Ottawa sand. Binary mortars containing fly ash (FA) showed the lowest S content after 7 days of hydration amongst all mortars prepared using ACBFS aggregate. On the other hand, binary mortars prepared using slag cement (SC) and ACBFS aggregate had the highest S concentration after 7 days of hydration. These effects on the S concentration in the pore solutions can be explained by the difference in the chemical makeup of the binders, and not because of different rate of release of S from ACBFS into the pore solution. In addition, TGA analysis of 7-day hydrated mortars revealed that the ettringite, monosulfate, and calcium hydroxide content was lower in mortars prepared using ACBFS aggregate as opposed to those prepared using Ottawa sand. This could be because of the low degree of hydration in mortars with ACBFS aggregate because of the high sulfate concentration in its pore solution. The properties of the interfacial transition zone (ITZ), i.e. the zone in the vicinity of the aggregate surface, depends on the property of the aggregate such as its porosity and texture. Therefore, it is expected that the properties of ITZ around the ACBFS particle, which is porous and proven to contribute sulfate, be different from the ITZ around the naturally mined siliceous aggregate. Image analysis conducted on backscattered images obtained using scanning electron microscope revealed that the ITZ of naturally mined siliceous aggregate was more porous compared to the ITZ of ACBFS aggregate. In addition, calcium hydroxide deposits were more frequent and larger in size in the ITZ around siliceous sand than in the case of the ITZ around the ACBFS aggregate.

  16. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    NASA Astrophysics Data System (ADS)

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-11-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils.

  17. Nanowired three-dimensional cardiac patches

    NASA Astrophysics Data System (ADS)

    Dvir, Tal; Timko, Brian P.; Brigham, Mark D.; Naik, Shreesh R.; Karajanagi, Sandeep S.; Levy, Oren; Jin, Hongwei; Parker, Kevin K.; Langer, Robert; Kohane, Daniel S.

    2011-11-01

    Engineered cardiac patches for treating damaged heart tissues after a heart attack are normally produced by seeding heart cells within three-dimensional porous biomaterial scaffolds. These biomaterials, which are usually made of either biological polymers such as alginate or synthetic polymers such as poly(lactic acid) (PLA), help cells organize into functioning tissues, but poor conductivity of these materials limits the ability of the patch to contract strongly as a unit. Here, we show that incorporating gold nanowires within alginate scaffolds can bridge the electrically resistant pore walls of alginate and improve electrical communication between adjacent cardiac cells. Tissues grown on these composite matrices were thicker and better aligned than those grown on pristine alginate and when electrically stimulated, the cells in these tissues contracted synchronously. Furthermore, higher levels of the proteins involved in muscle contraction and electrical coupling are detected in the composite matrices. It is expected that the integration of conducting nanowires within three-dimensional scaffolds may improve the therapeutic value of current cardiac patches.

  18. Evolutionary Games with Randomly Changing Payoff Matrices

    NASA Astrophysics Data System (ADS)

    Yakushkina, Tatiana; Saakian, David B.; Bratus, Alexander; Hu, Chin-Kun

    2015-06-01

    Evolutionary games are used in various fields stretching from economics to biology. In most of these games a constant payoff matrix is assumed, although some works also consider dynamic payoff matrices. In this article we assume a possibility of switching the system between two regimes with different sets of payoff matrices. Potentially such a model can qualitatively describe the development of bacterial or cancer cells with a mutator gene present. A finite population evolutionary game is studied. The model describes the simplest version of annealed disorder in the payoff matrix and is exactly solvable at the large population limit. We analyze the dynamics of the model, and derive the equations for both the maximum and the variance of the distribution using the Hamilton-Jacobi equation formalism.

  19. Cu0-loaded SBA-15@ZnO with improved electrical properties and affinity towards hydrogen

    NASA Astrophysics Data System (ADS)

    Bouazizi, N.; Louhichi, S.; Ouargli, R.; Bargougui, R.; Vieillard, J.; Derf, F. Le; Azzouz, A.

    2017-05-01

    A core-shell material was prepared using SBA-15 crystallites as cores for the growth of a ZnO shell, followed by Cu0 dispersion. The resulting Cu/SBA-15@ZnO nanostructure displayed higher specific surface area (SSA) and higher number of smaller pores as compared to the starting materials. Dispersion of fine Cu0NPs induced a compaction of the host matrice and a marked decay of the hydrophilic character, explained in terms of the involvement of terminal hydroxyl groups in competitive sbnd HO:Cu interaction at the expense of H-bridges with water. Heating at 400-450 °C seems to trigger ZnO dehydroxylation with possible self-polycondensation and/or the formation of Si-O-Zn bridges. This is an additional explanation of the significant SSA increase and decrease in the average pore diameter. Both ZnO and Cu0NP incorporation induced shifts in the UV-vis absorption band towards higher wavelengths, indicating a decrease in the optical band gap energy and an improvement of the conductance properties. As compared to ZnO, Cu0NPs produced stronger improvement of the conductance, which was found to increase with higher frequencies. Cu/SBA-15@ZnO also displayed higher affinity towards hydrogen as compared to SBA-15@ZnO and SBA-15 at ambient conditions. These outstanding properties combined to an appreciable thermal stability are worth to be prone to deeper investigations, because they can open promising prospects for Cu/SBA-15@ZnO as sensor, electrode material, electrocatalyst and/or hydrogen capture matrice.

  20. Eigenpairs of Toeplitz and Disordered Toeplitz Matrices with a Fisher-Hartwig Symbol

    NASA Astrophysics Data System (ADS)

    Movassagh, Ramis; Kadanoff, Leo P.

    2017-05-01

    Toeplitz matrices have entries that are constant along diagonals. They model directed transport, are at the heart of correlation function calculations of the two-dimensional Ising model, and have applications in quantum information science. We derive their eigenvalues and eigenvectors when the symbol is singular Fisher-Hartwig. We then add diagonal disorder and study the resulting eigenpairs. We find that there is a "bulk" behavior that is well captured by second order perturbation theory of non-Hermitian matrices. The non-perturbative behavior is classified into two classes: Runaways type I leave the complex-valued spectrum and become completely real because of eigenvalue attraction. Runaways type II leave the bulk and move very rapidly in response to perturbations. These have high condition numbers and can be predicted. Localization of the eigenvectors are then quantified using entropies and inverse participation ratios. Eigenvectors corresponding to Runaways type II are most localized (i.e., super-exponential), whereas Runaways type I are less localized than the unperturbed counterparts and have most of their probability mass in the interior with algebraic decays. The results are corroborated by applying free probability theory and various other supporting numerical studies.

  1. An injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds.

    PubMed

    Kramschuster, Adam; Turng, Lih-Sheng

    2010-02-01

    In this research, injection molding was combined with a novel material combination, supercritical fluid processing, and particulate leaching techniques to produce highly porous and interconnected structures that have the potential to act as scaffolds for tissue engineering applications. The foamed structures, molded with polylactide (PLA) and polyvinyl alcohol (PVOH) with salt as the particulate, were processed without the aid of organic solvents, which can be detrimental to tissue growth. The pore size in the scaffolds is controlled by salt particulates and interconnectivity is achieved by the co-continuous blending morphology of biodegradable PLA matrix with water-soluble PVOH. Carbon dioxide (CO(2)) at the supercritical state is used to serve as a plasticizer, thereby imparting moldability of blends even with an ultra high salt particulate content, and allows the use of low processing temperatures, which are desirable for temperature-sensitive biodegradable polymers. Interconnected pores of approximately 200 microm in diameter and porosities of approximately 75% are reported and discussed.

  2. Large-deviation theory for diluted Wishart random matrices

    NASA Astrophysics Data System (ADS)

    Castillo, Isaac Pérez; Metz, Fernando L.

    2018-03-01

    Wishart random matrices with a sparse or diluted structure are ubiquitous in the processing of large datasets, with applications in physics, biology, and economy. In this work, we develop a theory for the eigenvalue fluctuations of diluted Wishart random matrices based on the replica approach of disordered systems. We derive an analytical expression for the cumulant generating function of the number of eigenvalues IN(x ) smaller than x ∈R+ , from which all cumulants of IN(x ) and the rate function Ψx(k ) controlling its large-deviation probability Prob[IN(x ) =k N ] ≍e-N Ψx(k ) follow. Explicit results for the mean value and the variance of IN(x ) , its rate function, and its third cumulant are discussed and thoroughly compared to numerical diagonalization, showing very good agreement. The present work establishes the theoretical framework put forward in a recent letter [Phys. Rev. Lett. 117, 104101 (2016), 10.1103/PhysRevLett.117.104101] as an exact and compelling approach to deal with eigenvalue fluctuations of sparse random matrices.

  3. Removal of basic dye (methylene blue) from wastewaters utilizing beer brewery waste.

    PubMed

    Tsai, Wen-Tien; Hsu, Hsin-Chieh; Su, Ting-Yi; Lin, Keng-Yu; Lin, Chien-Ming

    2008-06-15

    In the work, the beer brewery waste has been shown to be a low-cost adsorbent for the removal of basic dye from the aqueous solution as compared to its precursor (i.e., diatomite) based on its physical and chemical characterizations including surface area, pore volume, scanning electron microscopy (SEM), and non-mineral elemental analyses. The pore properties of this waste were significantly larger than those of its raw material, reflecting that the trapped organic matrices contained in the waste probably provided additional adsorption sites and/or adsorption area. The results of preliminary adsorption kinetics showed that the diatomite waste could be directly used as a potential adsorbent for removal of methylene blue on the basis of its adsorption-biosorption mechanisms. The adsorption parameters thus obtained from the pseudo-second-order model were in accordance with their pore properties. From the results of adsorption isotherm at 298 K and the applicability examinations in treating industrial wastewater containing basic dye, it was further found that the adsorption capacities of diatomite waste were superior to those of diatomite, which were also in good agreement with their corresponding physical properties. From the results mentioned above, it is feasible to utilize the food-processing waste for removing dye from the industrial dying wastewater.

  4. Peculiar spectral statistics of ensembles of trees and star-like graphs

    NASA Astrophysics Data System (ADS)

    Kovaleva, V.; Maximov, Yu; Nechaev, S.; Valba, O.

    2017-07-01

    In this paper we investigate the eigenvalue statistics of exponentially weighted ensembles of full binary trees and p-branching star graphs. We show that spectral densities of corresponding adjacency matrices demonstrate peculiar ultrametric structure inherent to sparse systems. In particular, the tails of the distribution for binary trees share the ‘Lifshitz singularity’ emerging in the one-dimensional localization, while the spectral statistics of p-branching star-like graphs is less universal, being strongly dependent on p. The hierarchical structure of spectra of adjacency matrices is interpreted as sets of resonance frequencies, that emerge in ensembles of fully branched tree-like systems, known as dendrimers. However, the relaxational spectrum is not determined by the cluster topology, but has rather the number-theoretic origin, reflecting the peculiarities of the rare-event statistics typical for one-dimensional systems with a quenched structural disorder. The similarity of spectral densities of an individual dendrimer and of an ensemble of linear chains with exponential distribution in lengths, demonstrates that dendrimers could be served as simple disorder-less toy models of one-dimensional systems with quenched disorder.

  5. Peculiar spectral statistics of ensembles of trees and star-like graphs

    DOE PAGES

    Kovaleva, V.; Maximov, Yu; Nechaev, S.; ...

    2017-07-11

    In this paper we investigate the eigenvalue statistics of exponentially weighted ensembles of full binary trees and p-branching star graphs. We show that spectral densities of corresponding adjacency matrices demonstrate peculiar ultrametric structure inherent to sparse systems. In particular, the tails of the distribution for binary trees share the \\Lifshitz singularity" emerging in the onedimensional localization, while the spectral statistics of p-branching star-like graphs is less universal, being strongly dependent on p. The hierarchical structure of spectra of adjacency matrices is interpreted as sets of resonance frequencies, that emerge in ensembles of fully branched tree-like systems, known as dendrimers. However,more » the relaxational spectrum is not determined by the cluster topology, but has rather the number-theoretic origin, re ecting the peculiarities of the rare-event statistics typical for one-dimensional systems with a quenched structural disorder. The similarity of spectral densities of an individual dendrimer and of ensemble of linear chains with exponential distribution in lengths, demonstrates that dendrimers could be served as simple disorder-less toy models of one-dimensional systems with quenched disorder.« less

  6. Peculiar spectral statistics of ensembles of trees and star-like graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovaleva, V.; Maximov, Yu; Nechaev, S.

    In this paper we investigate the eigenvalue statistics of exponentially weighted ensembles of full binary trees and p-branching star graphs. We show that spectral densities of corresponding adjacency matrices demonstrate peculiar ultrametric structure inherent to sparse systems. In particular, the tails of the distribution for binary trees share the \\Lifshitz singularity" emerging in the onedimensional localization, while the spectral statistics of p-branching star-like graphs is less universal, being strongly dependent on p. The hierarchical structure of spectra of adjacency matrices is interpreted as sets of resonance frequencies, that emerge in ensembles of fully branched tree-like systems, known as dendrimers. However,more » the relaxational spectrum is not determined by the cluster topology, but has rather the number-theoretic origin, re ecting the peculiarities of the rare-event statistics typical for one-dimensional systems with a quenched structural disorder. The similarity of spectral densities of an individual dendrimer and of ensemble of linear chains with exponential distribution in lengths, demonstrates that dendrimers could be served as simple disorder-less toy models of one-dimensional systems with quenched disorder.« less

  7. Microbial dispersal in unsaturated porous media: Characteristics of motile bacterial cell motions in unsaturated angular pore networks

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Ali N.; Or, Dani

    2014-09-01

    The dispersal rates of self-propelled microorganisms affect their spatial interactions and the ecological functioning of microbial communities. Microbial dispersal rates affect risk of contamination of water resources by soil-borne pathogens, the inoculation of plant roots, or the rates of spoilage of food products. In contrast with the wealth of information on microbial dispersal in water replete systems, very little is known about their dispersal rates in unsaturated porous media. The fragmented aqueous phase occupying complex soil pore spaces suppress motility and limits dispersal ranges in unsaturated soil. The primary objective of this study was to systematically evaluate key factors that shape microbial dispersal in model unsaturated porous media to quantify effects of saturation, pore space geometry, and chemotaxis on characteristics of principles that govern motile microbial dispersion in unsaturated soil. We constructed a novel 3-D angular pore network model (PNM) to mimic aqueous pathways in soil for different hydration conditions; within the PNM, we employed an individual-based model that considers physiological and biophysical properties of motile and chemotactic bacteria. The effects of hydration conditions on first passage times in different pore networks were studied showing that fragmentation of aquatic habitats under dry conditions sharply suppresses nutrient transport and microbial dispersal rates in good agreement with limited experimental data. Chemotactically biased mean travel speed of microbial cells across 9 mm saturated PNM was ˜3 mm/h decreasing exponentially to 0.45 mm/h for the PNM at matric potential of -15 kPa (for -35 kPa, dispersal practically ceases and the mean travel time to traverse the 9 mm PNM exceeds 1 year). Results indicate that chemotaxis enhances dispersal rates by orders of magnitude relative to random (diffusive) motions. Model predictions considering microbial cell sizes relative to available liquid pathways sizes were in good agreement with experimental results for unsaturated soils. The new modeling platform enables quantitative consideration of key biophysical factors (e.g., pore space heterogeneities and hydration conditions) governing microbial interactions in 3-D soil pore spaces.

  8. Hydrochromic Approaches to Mapping Human Sweat Pores.

    PubMed

    Park, Dong-Hoon; Park, Bum Jun; Kim, Jong-Man

    2016-06-21

    Hydrochromic materials, which undergo changes in their light absorption and/or emission properties in response to water, have been extensively investigated as humidity sensors. Recent advances in the design of these materials have led to novel applications, including monitoring the water content of organic solvents, water-jet-based rewritable printing on paper, and hydrochromic mapping of human sweat pores. Our interest in this area has focused on the design of hydrochromic materials for human sweat pore mapping. We recognized that materials appropriate for this purpose must have balanced sensitivities to water. Specifically, while they should not undergo light absorption and/or emission transitions under ambient moisture conditions, the materials must have sufficiently high hydrochromic sensitivities that they display responses to water secreted from human sweat pores. In this Account, we describe investigations that we have carried out to develop hydrochromic substances that are suitable for human sweat pore mapping. Polydiacetylenes (PDAs) have been extensively investigated as sensor matrices because of their stimulus-responsive color change property. We found that incorporation of headgroups composed of hygroscopic ions such as cesium or rubidium and carboxylate counterions enables PDAs to undergo a blue-to-red colorimetric transition as well as a fluorescence turn-on response to water. Very intriguingly, the small quantities of water secreted from human sweat pores were found to be sufficient to trigger fluorescence turn-on responses of the hydrochromic PDAs, allowing precise mapping of human sweat pores. Since the hygroscopic ion-containing PDAs developed in the initial stage display a colorimetric transition under ambient conditions that exist during humid summer periods, a new system was designed. A PDA containing an imidazolium ion was found to be stable under all ambient conditions and showed temperature-dependent hydrochromism corresponding to a colorimetric change near body temperature. This feature enables the use of this technique to generate high-quality images of sweat pores. This Account also focuses on the results of the most recent phase of this investigation, which led to the development of a simple yet efficient and reliable technique for sweat pore mapping. The method utilizes a hydrophilic polymer composite film containing fluorescein, a commercially available dye that undergoes a fluorometric response as a result of water-dependent interconversion between its ring-closed spirolactone (nonfluorescent) and ring-opened fluorone (fluorescent) forms. Surface-modified carbon nanodots (CDs) have also been found to be efficient for hydrochromic mapping of human sweat pores. The results discovered by Lou et al. [ Adv. Mater. 2015 , 27 , 1389 ] are also included in this Account. Sweat pore maps obtained from fingertips using these materials were found to be useful for fingerprint analysis. In addition, this hydrochromism-based approach is sufficiently sensitive to enable differentiation between sweat-secreting active pores and inactive pores. As a result, the techniques can be applied to clinical diagnosis of malfunctioning sweat pores. The directions that future research in this area will follow are also discussed.

  9. Fluorescence anisotropy reveals order and disorder of protein domains in the nuclear pore complex.

    PubMed

    Mattheyses, Alexa L; Kampmann, Martin; Atkinson, Claire E; Simon, Sanford M

    2010-09-22

    We present a new approach for studying individual protein domains within the nuclear pore complex (NPC) using fluorescence polarization microscopy. The NPC is a large macromolecular complex, the size and complexity of which presents experimental challenges. Using fluorescence anisotropy and exploiting the symmetry of the NPC and its organization in the nuclear envelope, we have resolved order and disorder of individual protein domains. Fluorescently tagging specific domains of individual nucleoporins revealed both rigid and flexible domains: the tips of the FG domains are disordered, whereas the NPC-anchored domains are ordered. Our technique allows the collection of structural information in vivo, providing the ability to probe the organization of protein domains within the NPC. This has particular relevance for the FG domain nucleoporins, which are crucial for nucleocytoplasmic transport. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Graft copolymers of ethyl methacrylate on waxy maize starch derivatives as novel excipients for matrix tablets: drug release and fronts movement kinetics.

    PubMed

    Marinich, J A; Ferrero, C; Jiménez-Castellanos, M R

    2012-04-01

    A previous paper deals with the physicochemical and technological characterization of novel graft copolymers of ethyl methacrylate (EMA) on waxy maize starch (MS) and hydroxypropylstarch (MHS). The results obtained suggested the potential application of these copolymers as excipients for compressed non-disintegrating matrix tablets. Therefore, the purpose of the present study was to investigate the mechanism governing drug release from matrix systems prepared with the new copolymers and anhydrous theophylline or diltiazem HCl as model drugs with different solubility. The influence of the carbohydrate nature, drying procedure and initial pore network on drug release kinetics was also evaluated. Drug release experiments were performed from free tablets. Radial drug release and fronts movement kinetics were also analysed, and several mathematical models were employed to ascertain the drug release mechanisms. The drug release markedly depends on the drug solubility and the carbohydrate nature but is practically not affected by the drying process and the initial matrix porosity. A faster drug release is observed for matrices containing diltiazem HCl compared with those containing anhydrous theophylline, in accordance with the higher drug solubility and the higher friability of diltiazem matrices. In fact, although diffusion is the prevailing drug release mechanism for all matrices, the erosion mechanism seems to have some contribution in several formulations containing diltiazem. A reduction in the surface exposed to the dissolution medium (radial release studies) leads to a decrease in the drug release rate, but the release mechanism is not essentially modified. The nearly constant erosion front movement confirms the behaviour of these systems as inert matrices where the drugs are released mainly by diffusion through the porous structure. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Permeability of starch gel matrices and select films to solvent vapors.

    PubMed

    Glenn, Gregory M; Klamczynski, Artur P; Ludvik, Charles; Shey, Justin; Imam, Syed H; Chiou, Bor-Sen; McHugh, Tara; DeGrandi-Hoffman, Gloria; Orts, William; Wood, Delilah; Offeman, Rick

    2006-05-03

    Volatile agrochemicals such as 2-heptanone have potential in safely and effectively controlling important agricultural pests provided that they are properly delivered. The present study reports the permeability of starch gel matrices and various coatings, some of which are agricultural-based, that could be used in controlled release devices. Low-density, microcellular starch foam was made from wheat, Dent corn, and high amylose corn starches. The foam density ranged from 0.14 to 0.34 g/cm3, the pore volume ranged from 74 to 89%, and the loading capacity ranged from 2.3 to 7.2 times the foam weight. The compressive properties of the foam were not markedly affected by saturating the pore volume with silicone oil. The vapor transmission rate (VTR) and vapor permeability (VP) were measured in dry, porous starch foam and silicone-saturated starch gels. VTR values were highest in foam samples containing solvents with high vapor pressures. Silicone oil-saturated gels had lower VTR and VP values as compared to the dry foam. However, the silicone oil gel did not markedly reduce the VP for 2-heptanone and an additional vapor barrier or coating was needed to adequately reduce the evaporation rate. The VP of films of beeswax, paraffin, ethylene vinyl alcohol, a fruit film, and a laminate comprised of beeswax and fruit film was measured. The fruit film had a relatively high VP for polar solvents and a very low VP for nonpolar solvents. The laminate film provided a low VP for polar and nonpolar solvents. Perforating the fruit film portion of the laminate provided a method of attaining the target flux rate of 2-heptanone. The results demonstrate that the vapor flux rate of biologically active solvents can be controlled using agricultural materials.

  12. Atomistic Simulations of Pore Formation and Closure in Lipid Bilayers

    PubMed Central

    Bennett, W. F. Drew; Sapay, Nicolas; Tieleman, D. Peter

    2014-01-01

    Cellular membranes separate distinct aqueous compartments, but can be breached by transient hydrophilic pores. A large energetic cost prevents pore formation, which is largely dependent on the composition and structure of the lipid bilayer. The softness of bilayers and the disordered structure of pores make their characterization difficult. We use molecular-dynamics simulations with atomistic detail to study the thermodynamics, kinetics, and mechanism of pore formation and closure in DLPC, DMPC, and DPPC bilayers, with pore formation free energies of 17, 45, and 78 kJ/mol, respectively. By using atomistic computer simulations, we are able to determine not only the free energy for pore formation, but also the enthalpy and entropy, which yields what is believed to be significant new insights in the molecular driving forces behind membrane defects. The free energy cost for pore formation is due to a large unfavorable entropic contribution and a favorable change in enthalpy. Changes in hydrogen bonding patterns occur, with increased lipid-water interactions, and fewer water-water hydrogen bonds, but the total number of overall hydrogen bonds is constant. Equilibrium pore formation is directly observed in the thin DLPC lipid bilayer. Multiple long timescale simulations of pore closure are used to predict pore lifetimes. Our results are important for biological applications, including the activity of antimicrobial peptides and a better understanding of membrane protein folding, and improve our understanding of the fundamental physicochemical nature of membranes. PMID:24411253

  13. Structure and Function of Thermostable Direct Hemolysin (TDH) from Vibrio Parahaemolyticus

    NASA Astrophysics Data System (ADS)

    Hashimoto, Hiroshi; Yamane, Tsutomu; Ikeguchi, Mitsunori; Nakahira, Kumiko; Yanagihara, Itaru

    Thermostable direct hemolysin (TDH) is a major virulence factor of Vibrio parahaemolyticus that causes pandemic food-borne enterocolitis mediated by seafood. TDH exists as a tetramer in solution, and it possesses extreme hemolytic activity. Here, we present the crystal structure of the TDH tetramer at 1.5 Å resolution. The TDH tetramer forms a central pore with dimensions of 23 Å in diameter and ∼50 Å in depth. π-cation interactions between protomers comprising the tetramer were indispensable for hemolytic activity of TDH. The N-terminal region was intrinsically disordered outside the pore. Molecular dynamics (MD) simulations suggested that water molecules permeate freely through the central and side channel pores. These findings imply a novel membrane attachment mechanism by a soluble tetrameric pore-forming toxin.

  14. Biocompatibility of Synthetic Poly(ester urethane)/Polyhedral Oligomeric Silsesquioxane Matrices with Embryonic Stem Cell Proliferation and Differentiation

    PubMed Central

    Guo, Yan-Lin; Wang, Wenshou; Otaigbe, Joshua U.

    2010-01-01

    Incorporation of polyhedral oligomeric silsesquioxanes (POSS) into poly (ester urethane)s (PEU) as a building block results in a PEU/POSS hybrid polymer with increased mechanical strength and thermostability. An attractive feature of the new polymer is that it forms a porous matrix when cast in the form of a thin film, making it potentially useful in tissue engineering. In this study, we present detailed microscopic analysis of the PEU/POSS matrix and demonstrate its biocompatibility with cell culture. The PEU/POSS polymer forms a continuous porous matrix with open pores and interconnected grooves. From SEM image analysis, it is calculated that there are about 950 pores per mm2 of the matrix area with pore size ranging from 1 to 15 μm in diameter. The area occupied by the pores represents approximately 7.6 % of matrix area. Using mouse embryonic stem cells (ESCs), we demonstrate that the PEU/POSS matrix provides excellent support for cell proliferation and differentiation. Under the cell culture condition optimized to maintain self-renewal, ESCs grown on a PEU/POSS matrix exhibit undifferentiated morphology, express pluripotency markers, and have similar growth rate to cells grown on gelatin. When induced for differentiation, ESCs underwent dramatic morphological change, characterized by the loss of clonogenecity and increased cell size with well-expanded cytoskeleton networks. Differentiated cells are able to form a continuous monolayer that is closely embedded on the matrix. The excellent compatibility between the PEU/POSS matrix and ESC proliferation/differentiation demonstrates the potential of using PEU/POSS polymers in future ESC-based tissue engineering. PMID:20213627

  15. Formation of bone-like mineralized matrix by periodontal ligament cells in vivo: a morphological study in rats.

    PubMed

    Hiraga, Toru; Ninomiya, Tadashi; Hosoya, Akihiro; Takahashi, Masafumi; Nakamura, Hiroaki

    2009-01-01

    Periodontal ligament (PDL) is a unique connective tissue that not only connects cementum and alveolar bone to support teeth, but also plays an important role in reconstructing periodontal tissues. Previous studies have suggested that PDL cells have osteogenic potential; however, they lack precise histological examinations. Here, we studied bone-like matrix formation by PDL cells in rats using morphological techniques. Rat and human PDL cells exhibited substantial alkaline phosphatase activity and induced mineralization in vitro. RT-PCR analyses showed that PDL cells expressed the osteoblast markers, Runx2, osterix, and osteocalcin. These results suggest that PDL cells share similar phenotypes with osteoblasts. To examine the bone-like matrix formation in vivo, PDL cells isolated from green fluorescent protein (GFP)-transgenic rats were inoculated with hydroxyapatite (HA) disks into wild-type rats. Five weeks after the implantation, the pores in HA disks were occupied by GFP-positive cells. Mineralized matrix formation was also found on the surface of HA pores. At 12 weeks, some of the pores were filled with bone-like mineralized matrices (BLMM), which were positive for the bone matrix proteins, osteopontin, bone sialoprotein, and osteocalcin. Immunohistochemical examination revealed that most of the osteoblast- and osteocyte-like cells on or in the BLMM were GFP-positive, suggesting that the BLMM were directly formed by the inoculated PDL cells. On the pore surfaces, Sharpey's fiber-like structures embedded in cementum-like mineralized layers were also observed. These results collectively suggest that PDL cells have the ability to form periodontal tissues and could be a useful source for regenerative therapies of periodontal diseases.

  16. Helium in inert matrix dispersion fuels

    NASA Astrophysics Data System (ADS)

    van Veen, A.; Konings, R. J. M.; Fedorov, A. V.

    2003-07-01

    The behaviour of helium, an important decay product in the transmutation chains of actinides, in dispersion-type inert matrix fuels is discussed. A phenomenological description of its accumulation and release in CERCER and CERMET fuel is given. A summary of recent He-implantation studies with inert matrix metal oxides (ZrO 2, MgAl 2O 4, MgO and Al 2O 3) is presented. A general picture is that for high helium concentrations helium and vacancy defects form helium clusters which convert into over-pressurized bubbles. At elevated temperature helium is released from the bubbles. On some occasions thermal stable nano-cavities or nano-pores remain. On the basis of these results the consequences for helium induced swelling and helium storage in oxide matrices kept at 800-1000 °C will be discussed. In addition, results of He-implantation studies for metal matrices (W, Mo, Nb and V alloys) will be presented. Introduction of helium in metals at elevated temperatures leads to clustering of helium to bubbles. When operational temperatures are higher than 0.5 melting temperature, swelling and helium embrittlement might occur.

  17. Analysis of Infiltration-Suction Response in Unsaturated Residual Soil Slope in Gelugor, Penang

    NASA Astrophysics Data System (ADS)

    Ashraf Mohamad Ismail, Mohd; Hasliza Hamzah, Nur; Min, Ng Soon; Hazreek Zainal Abidin, Mohd; Tajudin, Saiful Azhar Ahmad; Madun, Aziman

    2018-04-01

    Rainfall infiltration on residual soil slope may impair slope stability by altering the pore-water pressure in the soil. A study has been carried out on unsaturated residual soil slope in Gelugor, Penang to determine the changes in matric suction of residual soils at different depth due to rainwater infiltration. The sequence of this study includes the site investigation, field instrumentation, laboratory experiment and numerical modeling. Void ratio and porosity of soil were found to be decreasing with depth while the bulk density and dry density of soil increased due to lower porosity of soil at greater depth. Soil infiltration rate and matric suction of all depths decrease with the increase of volumetric water content as well as the degree of saturation. Numerical modeling was used to verify and predict the relationship between infiltration-suction response and degree of saturation. Numerical models can be used to integrate the rainfall scenarios into quantitative landslide hazard assessments. Thus, development plans and mitigation measures can be designed for estimated impacts from hazard assessments based on collected data.

  18. AFM-porosimetry: density and pore volume measurements of particulate materials.

    PubMed

    Sörensen, Malin H; Valle-Delgado, Juan J; Corkery, Robert W; Rutland, Mark W; Alberius, Peter C

    2008-06-01

    We introduced the novel technique of AFM-porosimetry and applied it to measure the total pore volume of porous particles with a spherical geometry. The methodology is based on using an atomic force microscope as a balance to measure masses of individual particles. Several particles within the same batch were measured, and by plotting particle mass versus particle volume, the bulk density of the sample can be extracted from the slope of the linear fit. The pore volume is then calculated from the densities of the bulk and matrix materials, respectively. In contrast to nitrogen sorption and mercury porosimetry, this method is capable of measuring the total pore volume regardless of pore size distribution and pore connectivity. In this study, three porous samples were investigated by AFM-porosimetry: one ordered mesoporous sample and two disordered foam structures. All samples were based on a matrix of amorphous silica templated by a block copolymer, Pluronic F127, swollen to various degrees with poly(propylene glycol). In addition, the density of silica spheres without a template was measured by two independent techniques: AFM and the Archimedes principle.

  19. Prediction of the low-velocity distribution from the pore structure in simple porous media

    NASA Astrophysics Data System (ADS)

    de Anna, Pietro; Quaife, Bryan; Biros, George; Juanes, Ruben

    2017-12-01

    The macroscopic properties of fluid flow and transport through porous media are a direct consequence of the underlying pore structure. However, precise relations that characterize flow and transport from the statistics of pore-scale disorder have remained elusive. Here we investigate the relationship between pore structure and the resulting fluid flow and asymptotic transport behavior in two-dimensional geometries of nonoverlapping circular posts. We derive an analytical relationship between the pore throat size distribution fλ˜λ-β and the distribution of the low fluid velocities fu˜u-β /2 , based on a conceptual model of porelets (the flow established within each pore throat, here a Hagen-Poiseuille flow). Our model allows us to make predictions, within a continuous-time random-walk framework, for the asymptotic statistics of the spreading of fluid particles along their own trajectories. These predictions are confirmed by high-fidelity simulations of Stokes flow and advective transport. The proposed framework can be extended to other configurations which can be represented as a collection of known flow distributions.

  20. Transmission electron microscopy characterization of a large-pore titanium silicate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bozhilov, K.N.; Valtchev, V.P.

    1993-11-01

    The large-pore titanium silicate ETS-10, synthesized with tetramethylammonium, was characterized by means of TEM. The parameters of an orthorhombic unit cell, a = 14.79 [angstrom], b = 14.5 [angstrom], c = 13.06 [angstrom], were determined based on both electron and x-ray diffraction data. A one-dimensional channel structure is proposed, with channels running parallel to [001]. The cations and molecules occupying channel positions display significant positional disorder.

  1. Electrochemical Impedance Spectroscopy for Real-Time Detection of Lipid Membrane Damage Based on a Porous Self-Assembly Monolayer Support.

    PubMed

    Zhang, Meng; Zhai, Qingyu; Wan, Liping; Chen, Li; Peng, Yu; Deng, Chunyan; Xiang, Juan; Yan, Jiawei

    2018-06-19

    Layer-by-layer dissolution and permeable pore formation are two typical membrane damage pathways, which induce membrane function disorder and result in serious disease, such as Alzheimer's disease, Keshan disease, Sickle-cell disease, and so on. To effectively distinguish and sensitively monitor these two typical membrane damage pathways, a facile electrochemical impedance strategy was developed on a porous self-assembly monolayer (pSAM) supported bilayer lipid membrane (BLM). The pSAM was prepared by selectively electrochemical reductive desorption of the mercaptopropionic acid in a mixed mercaptopropionic acid/11-mercaptoundecanoic acid self-assembled monolayer, which created plenty of nanopores with tens of nanometers in diameter and several nanometers in height (defined as inner-pores). The ultralow aspect ratio of the inner-pores was advantageous to the mass transfer of electrochemical probe [Fe(CN) 6 ] 3-/4- , simplifying the equivalent electric circuit for electrochemical impedance spectroscopy analysis at the electrode/membrane interface. [Fe(CN) 6 ] 3-/4- transferring from the bulk solution into the inner-pore induce significant changes of the interfacial impedance properties, improving the detection sensitivity. Based on these, the different membrane damage pathways were effectively distinguished and sensitively monitored with the normalized resistance-capacitance changes of inner-pore-related parameters including the electrolyte resistance within the pore length ( R pore ) and the metal/inner-pore interfacial capacitance ( C pore ) and the charge-transfer resistance ( R ct-in ) at the metal/inner-pore interface.

  2. Improved transfer of graphene for gated Schottky-junction, vertical, organic, field-effect transistors.

    PubMed

    Lemaitre, Maxime G; Donoghue, Evan P; McCarthy, Mitchell A; Liu, Bo; Tongay, Sefaattin; Gila, Brent; Kumar, Purushottam; Singh, Rajiv K; Appleton, Bill R; Rinzler, Andrew G

    2012-10-23

    An improved process for graphene transfer was used to demonstrate high performance graphene enabled vertical organic field effect transistors (G-VFETs). The process reduces disorder and eliminates the polymeric residue that typically plagues transferred films. The method also allows for purposely creating pores in the graphene of a controlled areal density. Transconductance observed in G-VFETs fabricated with a continuous (pore-free) graphene source electrode is attributed to modulation of the contact barrier height between the graphene and organic semiconductor due to a gate field induced Fermi level shift in the low density of electronic-states graphene electrode. Pores introduced in the graphene source electrode are shown to boost the G-VFET performance, which scales with the areal pore density taking advantage of both barrier height lowering and tunnel barrier thinning. Devices with areal pore densities of 20% exhibit on/off ratios and output current densities exceeding 10(6) and 200 mA/cm(2), respectively, at drain voltages below 5 V.

  3. Tensiometers—Theory, construction, and use

    USGS Publications Warehouse

    Stannard, D.I.

    1992-01-01

    Standard tensiometers are used to measure matric potential as low as −870 cm of water in the unsaturated zone by creating a saturated hydraulic link between the soil water and a pressure sensor. The direction and, in some cases, quantity of water flux can be determined using multiple installations.A variety of commercial and fabricated tensiometers are commonly used. Saturated porous ceramic materials, which form an interface between the soil water and the bulk water inside the instrument, are available in many shapes, sizes, and pore diameters. A gage, manometer, or electronic pressure transducer is connected to the porous material with small- or large-diameter tubing. Selection of these components allows the user to optimize one or more characteristics, such as accuracy, versatility, response time, durability, maintenance, extent of data collection, and cost.Special designs have extended the normal capabilities of tensiometers, allowing measurement in cold or remote areas, measurement of matric potential as low as −153 m of water (−15 bars), measurement at depths as deep as 6 m (recorded at land surface), and automatic measurement using as many as 22 tensiometers connected to a single pressure transducer.Continuous hydraulic connection between the porous material and soil, and minimal disturbance of the natural infiltration pattern are necessary for successful installation. Avoidance of errors caused by air invasion, nonequilibrium of the instrument, or pressure-sensor inaccuracy will produce reliable values of matric potential, a first step in characterizing unsaturated flow.

  4. Low Cost Fabrication of Silicon Carbide Based Ceramics and Fiber Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.; Levine, S. R.

    1995-01-01

    A low cost processing technique called reaction forming for the fabrication of near-net and complex shaped components of silicon carbide based ceramics and composites is presented. This process consists of the production of a microporous carbon preform and subsequent infiltration with liquid silicon or silicon-refractory metal alloys. The microporous preforms are made by the pyrolysis of a polymerized resin mixture with very good control of pore volume and pore size thereby yielding materials with tailorable microstructure and composition. Mechanical properties (elastic modulus, flexural strength, and fracture toughness) of reaction-formed silicon carbide ceramics are presented. This processing approach is suitable for various kinds of reinforcements such as whiskers, particulates, fibers (tows, weaves, and filaments), and 3-D architectures. This approach has also been used to fabricate continuous silicon carbide fiber reinforced ceramic composites (CFCC's) with silicon carbide based matrices. Strong and tough composites with tailorable matrix microstructure and composition have been obtained. Microstructure and thermomechanical properties of a silicon carbide (SCS-6) fiber reinforced reaction-formed silicon carbide matrix composites are discussed.

  5. Iron Oxide Silica Derived from Sol-Gel Synthesis

    PubMed Central

    Darmawan, Adi; Smart, Simon; Julbe, Anne; Diniz da Costa, João Carlos

    2011-01-01

    In this work we investigate the effect of iron oxide embedded in silica matrices as a function of Fe/Si molar ratio and sol pH. To achieve homogeneous dispersion of iron oxide particles, iron nitrate nonahydrate was dissolved in hydrogen peroxide and was mixed with tetraethyl orthosilicate and ethanol in a sol-gel synthesis method. Increasing the calcination temperature led to a reduction in surface area, although the average pore radius remained almost constant at about 10 Å, independent of the Fe/Si molar ratio or sol pH. Hence, the densification of the matrix was accompanied by similar reduction in pore volume. However, calcination at 700 °C resulted in samples with similar surface area though the iron oxide content increased from 5% to 50% Fe/Si molar ratio. As metal oxide particles have lower surface area than polymeric silica structures, these results strongly suggest that the iron oxides opposed the silica structure collapse. The effect of sol pH was found to be less significant than the Fe/Si molar ratio in the formation of molecular sieve structures derived from iron oxide silica. PMID:28879999

  6. Characterizing liquid redistribution in a biphasic vibrating vocal fold using finite element analysis

    PubMed Central

    Kvit, Anton A.; Devine, Erin E.; Vamos, Andrew C.; Tao, Chao; Jiang, Jack J.

    2015-01-01

    OBJECTIVE Vocal fold tissue is biphasic and consists of a solid extracellular matric skeleton swelled with interstitial fluid. Interactions between the liquid and solid impact the material properties and stress response of the tissue. The objective of this study was to model the movement of liquid during vocal fold vibration and estimate the volume of liquid accumulation and stress experienced by the tissue near the anterior-posterior midline, where benign lesions are observed to form. METHODS A three-dimensional biphasic finite element model of a single vocal fold was built to solve for the liquid velocity, pore pressure, and von Mises stress during and just after vibration using the commercial finite element software COMSOL Multiphysics (Version 4.3a, 2013, Structural Mechanics and Subsurface Flow Modules). Vibration was induced by applying direct-load pressures to the subglottal and intraglottal surfaces. Pressure ranges, frequency and material parameters were chosen based on those reported in the literature. Post-processing included liquid velocity, pore pressure and von Mises stress calculations, as well as the frequency-stress and amplitude-stress relationships. RESULTS Resulting time-averaged velocity vectors during vibration indicated liquid movement towards the midline of the fold, as upwards movement in the inferior-superior direction. Pore pressure and von Misses stresses were higher in this region just following vibration. A linear relationship was found between the amplitude and pore pressure, while a nonlinear relationship was found between the frequency and pore pressure. CONCLUSIONS While this study had certain computational simplifications, it is the first biphasic finite element model to employ a realistic geometry and demonstrated the ability to characterize liquid movement due to vibration. Results indicate that there is a significant amount of liquid that accumulates at the midline, however the role of this accumulation still requires investigation. Further investigation of these mechanical factors may lend insight into the mechanism of benign lesion formation. PMID:25619469

  7. Effects of pore topology and iron oxide core on doxorubicin loading and release from mesoporous silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Ronhovde, Cicily J.; Baer, John; Larsen, Sarah C.

    2017-06-01

    Mesoporous silica nanoparticles (MSNs) have a network of pores that give rise to extremely high specific surface areas, making them attractive materials for applications such as adsorption and drug delivery. The pore topology can be readily tuned to achieve a variety of structures such as the hexagonally ordered Mobil Crystalline Material 41 (MCM-41) and the disordered "wormhole" (WO) mesoporous silica (MS) structure. In this work, the effects of pore topology and iron oxide core on doxorubicin loading and release were investigated using MSNs with pore diameters of approximately 3 nm and sub-100 nm particle diameters. The nanoparticles were loaded with doxorubicin, and the drug release into phosphate-buffered saline (PBS, 10 mM, pH 7.4) at 37 °C was monitored by fluorescence spectroscopy. The release profiles were fit using the Peppas model. The results indicated diffusion-controlled release for all samples. Statistically significant differences were observed in the kinetic host-guest parameters for each sample due to the different pore topologies and the inclusion of an iron oxide core. Applying a static magnetic field to the iron oxide core WO-MS shell materials did not have a significant impact on the doxorubicin release. This is the first time that the effects of pore topology and iron oxide core have been isolated from pore diameter and particle size for these materials.

  8. Anodic Aluminum Oxide (AAO) Membranes for Cellular Devices

    NASA Astrophysics Data System (ADS)

    Ventura, Anthony P.

    Anodic Aluminum Oxide (AAO) membranes can be fabricated with a highly tunable pore structure making them a suitable candidate for cellular hybrid devices with single-molecule selectivity. The objective of this study was to characterize the cellular response of AAO membranes with varying pore sizes to serve as a proof-of-concept for an artificial material/cell synapse system. AAO membranes with pore diameters ranging from 34-117 nm were achieved via anodization at a temperature of -1°C in a 2.7% oxalic acid electrolyte. An operating window was established for this setup to create membranes with through-pore and disordered pore morphologies. C17.2 neural stem cells were seeded onto the membranes and differentiated via serum withdrawal. The data suggests a highly tunable correlation between AAO pore diameter and differentiated cell populations. Analysis of membranes before and after cell culture indicated no breakdown of the through-pore structure. Immunocytochemistry (ICC) showed that AAO membranes had increased neurite outgrowth when compared to tissue culture treated (TCT) glass, and neurite outgrowth varied with pore diameter. Additionally, lower neuronal percentages were found on AAO as compared to TCT glass; however, neuronal population was also found to vary with pore diameter. Scanning electron microscopy (SEM) and ICC images suggested the presence of a tissue-like layer with a mixed-phenotype population. AAO membranes appear to be an excellent candidate for cellular devices, but more work must be completed to understand the surface chemistry of the AAO membranes as it relates to cellular response.

  9. In situ measurement of soil moisture and pore-water pressures in an 'incipient' landslide: Lake Tutira, New Zealand.

    PubMed

    Hawke, Richard; McConchie, Jack

    2011-02-01

    The immediate cost of shallow regolith landslides in New Zealand has been estimated to exceed US$33M annually. Since the majority of these landslides occur during prolonged wet conditions, or intense rainstorms, moisture conditions are a critical control. The nature, dynamics, and character of soil moisture conditions, and the piezometric response to rainfall, have been recorded within an 'incipient' landslide for more than 5 years. The study site, on pastoral hill country within the Lake Tutira catchment in northern Hawkes Bay, is typical of large areas of New Zealand episodically affected by extensive landsliding. Detailed continuous measurements show that both the soil moisture and piezometric response within the regolith are highly storm- and site-specific. The development of positive pore pressures is infrequent; they form only during intense rainstorms, and persist for a short time. The hydraulic response of the soil is primarily a function of storm characteristics, but this response can be modified by antecedent moisture conditions, topographic position, and heterogeneity of soil properties. Stability analysis shows that most slopes in the study area are significantly steeper than can be explained by the frictional strength of the regolith. Measured hydraulic conditions also show that positive pore-water pressures alone do not trigger slope instability. A recent slope failure followed a period of extremely high antecedent moisture conditions, and occurred when maximum soil moisture conditions, though not pore-water pressures, were recorded. Increased moisture content of the regolith reduces matric tension, and therefore effective cohesion of the soil. This cohesion is critical to maintaining stability of the regolith on these slopes. Copyright © 2009 Elsevier Ltd. All rights reserved.

  10. Synthesis and Characterization of N-Doped Porous TiO2 Hollow Spheres and Their Photocatalytic and Optical Properties

    PubMed Central

    Li, Hongliang; Liu, Hui; Fu, Aiping; Wu, Guanglei; Xu, Man; Pang, Guangsheng; Guo, Peizhi; Liu, Jingquan; Zhao, Xiu Song

    2016-01-01

    Three kinds of N-doped mesoporous TiO2 hollow spheres with different N-doping contents, surface area, and pore size distributions were prepared based on a sol–gel synthesis and combined with a calcination process. Melamine formaldehyde (MF) microspheres have been used as sacrificial template and cetyltrimethyl ammonium bromide (CTAB) or polyvinylpyrrolidone (PVP) was selected as pore-directing agent. Core–shell intermediate spheres of titania-coated MF with diameters of 1.2–1.6 μm were fabricated by varying the volume concentration of TiO2 precursor from 1 to 3 vol %. By calcining the core–shell composite spheres at 500 °C for 3 h in air, an in situ N-doping process occurred upon the decomposition of the MF template and CTAB or PVP pore-directing surfactant. N-doped mesoporous TiO2 hollow spheres with sizes in the range of 0.4–1.2 μm and shell thickness from 40 to 110 nm were obtained. The composition and N-doping content, thermal stability, morphology, surface area and pore size distribution, wall thickness, photocatalytic activities, and optical properties of the mesoporous TiO2 hollow spheres derived from different conditions were investigated and compared based on Fourier-transformation infrared (FTIR), SEM, TEM, thermogravimetric analysis (TGA), nitrogen adsorption–desorption, and UV–vis spectrophotoscopy techniques. The influences of particle size, N-doping, porous, and hollow characteristics of the TiO2 hollow spheres on their photocatalytic activities and optical properties have been studied and discussed based on the composition analysis, structure characterization, and optical property investigation of these hollow spherical TiO2 matrices. PMID:28773967

  11. Facile synthesis of highly stable and well-dispersed mesoporous ZrO(2)/carbon composites with high performance in oxidative dehydrogenation of ethylbenzene.

    PubMed

    Li, Qiang; Xu, Jie; Wu, Zhangxiong; Feng, Dan; Yang, Jianping; Wei, Jing; Wu, Qingling; Tu, Bo; Cao, Yong; Zhao, Dongyuan

    2010-09-28

    Highly ordered mesoporous ZrO(2)/carbon (FDU-15) composites have been synthesized via a facile evaporation induced triconstituent co-assembly (EISA) approach by using Pluronic F127 as a template and zirconium oxychloride octahydrate and resol as Zr and carbon sources. The synthesized mesoporous composites exhibit a highly ordered two-dimensional (2-D) hexagonal mesostructure with relatively high specific surface areas (up to 947 m(2) g(-1)), pore sizes around 3.8 nm and high pore volumes (up to 0.71 cm(3) g(-1)). The results clearly show that the crystalline zirconia nanoparticles (ca. 1.9-3.9 nm) are well-dispersed in amorphous matrices of the ordered mesoporous carbon FDU-15 materials, which construct the nanocomposites. The ordered mesostructures of the obtained ZrO(2)/FDU-15 composites can be well-retained even at the high pyrolysis temperature (up to 900 degrees C), suggesting a high thermal stability. The zirconia content of the ZrO(2)/FDU-15 composites can be tunable in a wide range (up to 47%). Moreover, the resultant mesoporous ZrO(2)/FDU-15 composites exhibit high catalytic activity in oxidative dehydrogenation (ODH) of ethylbenzene (EB) to styrene (ST), with high ethylbenzene conversion (59.6%) and styrene selectivity (90.4%), which is mainly attributed to the synergistic catalytic effect between the oxygen-containing groups located on the carbon pore walls and weakly basic sites of the nanocrystalline ZrO(2). Furthermore, the high specific surface areas and opening pore channels are also responsible for their high catalytic activity. Therefore, it is a very promising catalyst material in styrene production on an industrial scale.

  12. Dielectric properties of magnetic-ferroelectric CoO-NaNO2-porous glass nanocomposite

    NASA Astrophysics Data System (ADS)

    Koroleva, E. Yu.; Burdin, D. Yu.; Kumzerov, Yu. A.; Sysoeva, A. A.; Filimonov, A. V.; Vakhrushev, S. B.

    2017-10-01

    Dielectric properties of the nanostructured multiferroic composite on the basis of silicate porous glass simultaneously filled with ferromagnetic (cobalt oxide CoO) and ferroelectric (sodium nitrite) materials have been investigated in wide temperature (270-570 K) and frequency (10-1-107 Hz) ranges. The mean diameter of pores in the matrix is 7 ± 1 nm. The magnetic material particles are synthesized directly in the pores of the glass matrix and occupy about 10% of the pore volume. The porous glass is well wetted with NaNO2. The latter easily infiltrates into the glass and occupies 90% of the remaining unfilled pore volume. The dielectric response of matrices filled with both the components together and with each component separately is studied. An analysis of the obtained data makes it possible to reveal the contributions of individual components into the dielectric response of the composite and the influence of the confined geometry on their dielectric properties. It is found that the incorporation of CoO nanoparticles leads to an order of magnitude increase in the dielectric permittivity and electrical conductivity of the two-component composite in comparison with these values for the composite filled solely with sodium nitrite and to a decrease in the activation energy over the entire studied temperature range. These studies are of interest not only as a preliminary investigation prior to the study of the effect of a magnetic field on the dielectric properties of the synthesized composite, but are of independent physical interest as well, since they allow one to determine the influence of the confined geometry on the dielectric properties of magnetic metal oxides and on the of their phase transition parameters.

  13. Structure and Functional Characterization of Vibrio parahaemolyticus Thermostable Direct Hemolysin*

    PubMed Central

    Yanagihara, Itaru; Nakahira, Kumiko; Yamane, Tsutomu; Kaieda, Shuji; Mayanagi, Kouta; Hamada, Daizo; Fukui, Takashi; Ohnishi, Kiyouhisa; Kajiyama, Shin'ichiro; Shimizu, Toshiyuki; Sato, Mamoru; Ikegami, Takahisa; Ikeguchi, Mitsunori; Honda, Takeshi; Hashimoto, Hiroshi

    2010-01-01

    Thermostable direct hemolysin (TDH) is a major virulence factor of Vibrio parahaemolyticus that causes pandemic foodborne enterocolitis mediated by seafood. TDH exists as a tetramer in solution, and it possesses extreme hemolytic activity. Here, we present the crystal structure of the TDH tetramer at 1.5 Å resolution. The TDH tetramer forms a central pore with dimensions of 23 Å in diameter and ∼50 Å in depth. π-Cation interactions between protomers comprising the tetramer were indispensable for hemolytic activity of TDH. The N-terminal region was intrinsically disordered outside of the pore. Molecular dynamic simulations suggested that water molecules permeate freely through the central and side channel pores. Electron micrographs showed that tetrameric TDH attached to liposomes, and some of the tetramer associated with liposome via one protomer. These findings imply a novel membrane attachment mechanism by a soluble tetrameric pore-forming toxin. PMID:20335168

  14. A streamline splitting pore-network approach for computationally inexpensive and accurate simulation of transport in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehmani, Yashar; Oostrom, Martinus; Balhoff, Matthew

    2014-03-20

    Several approaches have been developed in the literature for solving flow and transport at the pore-scale. Some authors use a direct modeling approach where the fundamental flow and transport equations are solved on the actual pore-space geometry. Such direct modeling, while very accurate, comes at a great computational cost. Network models are computationally more efficient because the pore-space morphology is approximated. Typically, a mixed cell method (MCM) is employed for solving the flow and transport system which assumes pore-level perfect mixing. This assumption is invalid at moderate to high Peclet regimes. In this work, a novel Eulerian perspective on modelingmore » flow and transport at the pore-scale is developed. The new streamline splitting method (SSM) allows for circumventing the pore-level perfect mixing assumption, while maintaining the computational efficiency of pore-network models. SSM was verified with direct simulations and excellent matches were obtained against micromodel experiments across a wide range of pore-structure and fluid-flow parameters. The increase in the computational cost from MCM to SSM is shown to be minimal, while the accuracy of SSM is much higher than that of MCM and comparable to direct modeling approaches. Therefore, SSM can be regarded as an appropriate balance between incorporating detailed physics and controlling computational cost. The truly predictive capability of the model allows for the study of pore-level interactions of fluid flow and transport in different porous materials. In this paper, we apply SSM and MCM to study the effects of pore-level mixing on transverse dispersion in 3D disordered granular media.« less

  15. Modeling of submicrometer aerosol penetration through sintered granular membrane filters.

    PubMed

    Marre, Sonia; Palmeri, John; Larbot, André; Bertrand, Marielle

    2004-06-01

    We present a deep-bed aerosol filtration model that can be used to estimate the efficiency of sintered granular membrane filters in the region of the most penetrating particle size. In this region the capture of submicrometer aerosols, much smaller than the filter pore size, takes place mainly via Brownian diffusion and direct interception acting in synergy. By modeling the disordered sintered grain packing of such filters as a simple cubic lattice, and mapping the corresponding 3D connected pore volume onto a discrete cylindrical pore network, the efficiency of a granular filter can be estimated, using new analytical results for the efficiency of cylindrical pores. This model for aerosol penetration in sintered granular filters includes flow slip and the kinetics of particle capture by the pore surface. With a unique choice for two parameters, namely the structural tortuosity and effective kinetic coefficient of particle adsorption, this semiempirical model can account for the experimental efficiency of a new class of "high-efficiency particulate air" ceramic membrane filters as a function of particle size over a wide range of filter thickness and texture (pore size and porosity) and operating conditions (face velocity).

  16. Assessment of critical path analyses of the relationship between permeability and electrical conductivity of pore networks

    NASA Astrophysics Data System (ADS)

    Skaggs, Todd H.

    2011-10-01

    Critical path analysis (CPA) is a method for estimating macroscopic transport coefficients of heterogeneous materials that are highly disordered at the micro-scale. Developed originally to model conduction in semiconductors, numerous researchers have noted that CPA might also have relevance to flow and transport processes in porous media. However, the results of several numerical investigations of critical path analysis on pore network models raise questions about the applicability of CPA to porous media. Among other things, these studies found that (i) in well-connected 3D networks, CPA predictions were inaccurate and became worse when heterogeneity was increased; and (ii) CPA could not fully explain the transport properties of 2D networks. To better understand the applicability of CPA to porous media, we made numerical computations of permeability and electrical conductivity on 2D and 3D networks with differing pore-size distributions and geometries. A new CPA model for the relationship between the permeability and electrical conductivity was found to be in good agreement with numerical data, and to be a significant improvement over a classical CPA model. In sufficiently disordered 3D networks, the new CPA prediction was within ±20% of the true value, and was nearly optimal in terms of minimizing the squared prediction errors across differing network configurations. The agreement of CPA predictions with 2D network computations was similarly good, although 2D networks are in general not well-suited for evaluating CPA. Numerical transport coefficients derived for regular 3D networks of slit-shaped pores were found to be in better agreement with experimental data from rock samples than were coefficients derived for networks of cylindrical pores.

  17. Chemotaxis and flow disorder shape microbial dispersion in porous media

    NASA Astrophysics Data System (ADS)

    De Anna, Pietro; Yawata, Yutaka; Stocker, Roman; Juanes, Ruben

    2017-04-01

    Bacteria drive a plethora of natural processes in the subsurface, consuming organic matter and catalysing chemical reactions that are key to global elemental cycles. These macro-scale consequences result from the collective action of individual bacteria at the micro-scale, which are modulated by the highly heterogeneous subsurface environment, dominated by flow disorder and strong chemical gradients. Yet, despite the generally recognized importance of these microscale processes, microbe-host medium interaction at the pore scale remain poorly characterized and understood. Here, we introduce a microfluidic model system to directly image and quantify the role of cell motility on bacterial dispersion and residence time in confined, porous, media. Using the soil-dwelling bacterium Bacillus subtilis and the common amino acid serine as a resource, we observe that chemotaxis in highly disordered and confined physico-chemical environment affords bacteria an increase in their ability to persistently occupy the host medium. Our findings illustrate that the interplay between bacterial behaviour and pore-scale disorder in fluid velocity and nutrient concentration directly impacts the residence time, transport and bio-geo-chemical transformation rates of biota in the subsurface, and thus likely the processes they mediate.

  18. Inertial Effects on Flow and Transport in Heterogeneous Porous Media.

    PubMed

    Nissan, Alon; Berkowitz, Brian

    2018-02-02

    We investigate the effects of high fluid velocities on flow and tracer transport in heterogeneous porous media. We simulate fluid flow and advective transport through two-dimensional pore-scale matrices with varying structural complexity. As the Reynolds number increases, the flow regime transitions from linear to nonlinear; this behavior is controlled by the medium structure, where higher complexity amplifies inertial effects. The result is, nonintuitively, increased homogenization of the flow field, which leads in the context of conservative chemical transport to less anomalous behavior. We quantify the transport patterns via a continuous time random walk, using the spatial distribution of the kinetic energy within the fluid as a characteristic measure.

  19. Substituted amylose matrices for oral drug delivery

    NASA Astrophysics Data System (ADS)

    Moghadam, S. H.; Wang, H. W.; Saddar El-Leithy, E.; Chebli, C.; Cartilier, L.

    2007-03-01

    High amylose corn starch was used to obtain substituted amylose (SA) polymers by chemically modifying hydroxyl groups by an etherification process using 1,2-epoxypropanol. Tablets for drug-controlled release were prepared by direct compression and their release properties assessed by an in vitro dissolution test (USP XXIII no 2). The polymer swelling was characterized by measuring gravimetrically the water uptake ability of polymer tablets. SA hydrophilic matrix tablets present sequentially a burst effect, typical of hydrophilic matrices, and a near constant release, typical of reservoir systems. After the burst effect, surface pores disappear progressively by molecular association of amylose chains; this allows the creation of a polymer layer acting as a diffusion barrier and explains the peculiar behaviour of SA polymers. Several formulation parameters such as compression force, drug loading, tablet weight and insoluble diluent concentration were investigated. On the other hand, tablet thickness, scanning electron microscope analysis and mercury intrusion porosimetry showed that the high crushing strength values observed for SA tablets were due to an unusual melting process occurring during tabletting although the tablet external layer went only through densification, deformation and partial melting. In contrast, HPMC tablets did not show any traces of a melting process.

  20. Chemically Active, Porous 3D-Printed Thermoplastic Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Kent A.; Kennedy, Zachary C.; Arey, Bruce W.

    Metal-organic frameworks (MOFs) exhibit exceptional properties and are widely investigated because of their structural and functional versatility relevant to catalysis, separations, and sensing applications. However, their commercial or large-scale application is often limited by their powder forms. To address this, we report the production of MOF-thermoplastic polymer composites accessed via a standard 3D printer. MOFs (Zeolitic imidazolate framework; ZIF-8) were successfully incorporated homogeneously into both poly(lactic acid) (PLA) and thermoplastic polyurethane (TPU) matrices, extruded into filaments, and utilized for on-demand access to 3D structures by fused-deposition modeling. Printed rigid PLA-MOF composites displayed good structural integrity, high surface area ((SA)avg =more » 531 m2 g-1) and hierarchical pore features. Flexible TPU-MOF composites (SAavg = 706 m2 g-1) were achieved by employing a sacrificial fluoropolymer readily removed post-printing. Critically, embedded particles in the plastic matrices retain their ability to participate in chemical interactions characteristic of the parent MOF. The fabrication strategies can be extended to other MOFs and illustrate the potential of 3D printing to create unique porous and high surface area chemically-active structures.« less

  1. Periodic flow hydrodynamic resistance parameters for woven screen matrices at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Perrella, M. D.; Ghiaasiaan, S. M.

    2017-12-01

    The regenerator is a critical component in all Stirling and Pulse Tube cryocoolers. It generally consists of a microporous metallic or rare-earth filler material contained within a cylindrical shell. Accurate modelling of the hydrodynamic and thermal behaviour of different regenerator materials is crucial to the successful design of cryogenic systems. Previous investigations have used experimental measurements at steady and periodic flow conditions in conjunction with pore-level CFD analysis to determine the pertinent hydrodynamic parameters, namely the Darcy permeability and Forchheimer coefficients. Due to the difficulty associated with experimental measurement at cryogenic temperatures, past investigations were mostly performed at ambient conditions and their results are assumed to be appropriate for cryogenic temperatures. In this study, a regenerator filled with woven screen matrices such as 400 mesh T316 stainless steel were assembled and experimentally tested under periodic helium flow at cryogenic temperatures. The mass flow and pressure drop data were analysed using CFD to determine the dimensionless friction factor, Darcy Permeability and Forchheimer coefficients. These results are compared to previous investigations at ambient temperature conditions, and the relevance of room-temperature models and correlations to cryogenic temperatures is critically assessed.

  2. Influence of surfactants on the release behaviour and structural properties of sol-gel derived silica xerogels embedded with metronidazole.

    PubMed

    Czarnobaj, Katarzyna; Sawicki, Wiesław

    2013-01-01

    The aim of this study was to obtain stable and controlled release silica xerogels containing metronidazole (MT) prepared with surfactants with different charges: cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulphate (SDS) and hydroxypropyl cellulose (HPC), which could be the promising carrier materials used as the implantable drug delivery systems. The xerogels were prepared by the sol-gel method. The influence of various formulation precursors on porosity parameters and drug release were investigated. Addition of surfactants showed a promising result in controlling the MT release. Dissolution study revealed increased release of MT from silica modified SDS and CTAB, whereas the release of MT from silica modified HPC considerably decreased, in comparison with unmodified silica. The addition of surfactants showed slight changes in porosity parameters. All xerogels are characterized by a highly developed surface area (701-642 m(2) g(-1)) and mesoporous structure. The correlation between pore size obtained matrices and release rate of drug was also observed. Based on the presented results of this study, it may be stated that applied xerogel matrices: pure silica and surfactants-modified silica could be promising candidates for the formulation in local delivery systems.

  3. SPECIATION OF ARSENIC IN BIOLOGICAL MATRICES BY AUTOMATED HG-AAS WITH MULTIPLE MICROFLAME QUARTZ TUBE ATOMIZER (MULTIATOMIZER)

    EPA Science Inventory

    Analyses of arsenic (As) species in body fluids and tissues of individuals chronically exposed to inorganic arsenic (iAs) provide essential information about the exposure level and pattern of iAs metabolism. This information facilitates the risk assessment of disorders associated...

  4. Preferential flow from pore to landscape scales

    NASA Astrophysics Data System (ADS)

    Koestel, J. K.; Jarvis, N.; Larsbo, M.

    2017-12-01

    In this presentation, we give a brief personal overview of some recent progress in quantifying preferential flow in the vadose zone, based on our own work and those of other researchers. One key challenge is to bridge the gap between the scales at which preferential flow occurs (i.e. pore to Darcy scales) and the scales of interest for management (i.e. fields, catchments, regions). We present results of recent studies that exemplify the potential of 3-D non-invasive imaging techniques to visualize and quantify flow processes at the pore scale. These studies should lead to a better understanding of how the topology of macropore networks control key state variables like matric potential and thus the strength of preferential flow under variable initial and boundary conditions. Extrapolation of this process knowledge to larger scales will remain difficult, since measurement technologies to quantify macropore networks at these larger scales are lacking. Recent work suggests that the application of key concepts from percolation theory could be useful in this context. Investigation of the larger Darcy-scale heterogeneities that generate preferential flow patterns at the soil profile, hillslope and field scales has been facilitated by hydro-geophysical measurement techniques that produce highly spatially and temporally resolved data. At larger regional and global scales, improved methods of data-mining and analyses of large datasets (machine learning) may help to parameterize models as well as lead to new insights into the relationships between soil susceptibility to preferential flow and site attributes (climate, land uses, soil types).

  5. Molecular diffusion in disordered interfacial media as probed by pulsed field gradients and nuclear magnetic relaxation dispersion

    NASA Astrophysics Data System (ADS)

    Levitz, P.; Korb, J.-P.; Bryant, R. G.

    1999-10-01

    We address the question of probing the fluid dynamics in disordered interfacial media by Pulsed field gradient (PFG) and Magnetic relaxation dispersion (MRD) techniques. We show that the PFG method is useful to separate the effects of morphology from the connectivity in disordered macroporous media. We propose simulations of molecular dynamics and spectral density functions, J(ω), in a reconstructed mesoporous medium for different limiting conditions at the pore surface. An algebraic form is found for J(ω) in presence of a surface diffusion and a local exploration of the pore network. A logarithmic form of J(ω) is found in presence of a pure surface diffusion. We present magnetic relaxation dispersion experiments (MRD) for water and acetone in calibrated mesoporous media to support the main results of our simulations and theories. Nous présentons les avantages respectifs des méthodes de gradients de champs pulsés (PFG) et de relaxation magnétique nucléaire en champs cyclés (MRD) pour sonder la dynamique moléculaire dans les milieux interfaciaux désordonnés. La méthode PFG est utile pour séparer la morphologie et la connectivité dans des milieux macroporeux. Des simulations de diffusion moléculaire et de densité spectrale J(ω) en milieux mésoporeux sont présentées dans différentes conditions limites aux interfaces des pores. Nous trouvons une forme de dispersion algébrique de J(ω) pour une diffusion de surface assistée d'une exploration locale du réseau de pores et une forme logarithmique dans le cas d'une simple diffusion de surface. Les résultats expérimentaux de la méthode MRD pour de l'eau et de l'acétone dans des milieux mésoporeux calibrés supportent les résultats principaux de nos simulations et théories.

  6. Surface Interactions and Confinement of Methane: A High Pressure Magic Angle Spinning NMR and Computational Chemistry Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ok, Salim; Hoyt, David W.; Andersen, Amity

    Characterization and modeling of the molecular-level behavior of simple hydrocarbon gases, such as methane, in the presence of both nonporous and nanoporous mineral matrices allows for predictive understanding of important processes in engineered and natural systems. In this study, we observed changes in local electromagnetic environments of the carbon atoms in methane under conditions of high pressure (up to 130 bar) and moderate temperature (up to 346 K) with 13C magic-angle spinning (MAS) NMR spectroscopy while the methane gas was mixed with two model solid substrates: a fumed nonporous, 12 nm particle size silica and a mesoporous silica with 200more » nm particle size and 4 nm average pore diameter. Examination of the interactions between methane and the silica systems over temperatures and pressures that include the supercritical regime was allowed by a novel high pressure MAS sample containment system, which provided high resolution spectra collected under in situ conditions. There was no significant thermal effects were found for the observed 13C chemical shifts at all pressures studied here (28.2, 32.6, 56.4, 65.1, 112.7, and 130.3 bar) for pure methane. However, the 13C chemical shifts of resonances arising from confined methane changed slightly with changes in temperature in mixtures with mesoporous silica. The chemical shift values of 13C nuclides in methane change measurably as a function of pressure both in the pure state and in mixtures with both silica matrices, with a more pronounced shift when meso-porous silica is present. Molecular-level simulations utilizing GCMC, MD, and DFT confirm qualitatively that the experimentally measured changes are attributed to interactions of methane with the hydroxylated silica surfaces as well as densification of methane within nanopores and on pore surfaces.« less

  7. Surface Interactions and Confinement of Methane: A High Pressure Magic Angle Spinning NMR and Computational Chemistry Study

    DOE PAGES

    Ok, Salim; Hoyt, David W.; Andersen, Amity; ...

    2017-01-18

    Characterization and modeling of the molecular-level behavior of simple hydrocarbon gases, such as methane, in the presence of both nonporous and nanoporous mineral matrices allows for predictive understanding of important processes in engineered and natural systems. In this study, we observed changes in local electromagnetic environments of the carbon atoms in methane under conditions of high pressure (up to 130 bar) and moderate temperature (up to 346 K) with 13C magic-angle spinning (MAS) NMR spectroscopy while the methane gas was mixed with two model solid substrates: a fumed nonporous, 12 nm particle size silica and a mesoporous silica with 200more » nm particle size and 4 nm average pore diameter. Examination of the interactions between methane and the silica systems over temperatures and pressures that include the supercritical regime was allowed by a novel high pressure MAS sample containment system, which provided high resolution spectra collected under in situ conditions. There was no significant thermal effects were found for the observed 13C chemical shifts at all pressures studied here (28.2, 32.6, 56.4, 65.1, 112.7, and 130.3 bar) for pure methane. However, the 13C chemical shifts of resonances arising from confined methane changed slightly with changes in temperature in mixtures with mesoporous silica. The chemical shift values of 13C nuclides in methane change measurably as a function of pressure both in the pure state and in mixtures with both silica matrices, with a more pronounced shift when meso-porous silica is present. Molecular-level simulations utilizing GCMC, MD, and DFT confirm qualitatively that the experimentally measured changes are attributed to interactions of methane with the hydroxylated silica surfaces as well as densification of methane within nanopores and on pore surfaces.« less

  8. Surface Interactions and Confinement of Methane: A High Pressure Magic Angle Spinning NMR and Computational Chemistry Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ok, Salim; Hoyt, David W.; Andersen, Amity

    Characterization and modeling of the molecular-level behavior of simple hydrocarbon gases, such as methane, in the presence of both nonporous and nano-porous mineral matrices allows for predictive understanding of important processes in engineered and natural systems. In this study, changes in local electromagnetic environments of the carbon atoms in methane under conditions of high pressure (up to 130 bar) and moderate temperature (up to 346 K) were observed with 13C magic-angle spinning (MAS) NMR spectroscopy while the methane gas was mixed with two model solid substrates: a fumed non-porous, 12 nm particle size silica and a mesoporous silica with 200more » nm particle size and 4 nm average pore diameter. Examination of the interactions between methane and the silica systems over temperatures and pressures that include the supercritical regime was allowed by a novel high pressure MAS sample containment system, which provided high resolution spectra collected under in situ conditions. For pure methane, no significant thermal effects were found for the observed 13C chemical shifts at all pressures studied here (28.2 bar, 32.6 bar, 56.4 bar, 65.1 bar, 112.7 bar, and 130.3 bar). However, the 13C chemical shifts of resonances arising from confined methane changed slightly with changes in temperature in mixtures with mesoporous silica. The chemical shift values of 13C nuclides in methane change measurably as a function of pressure both in the pure state and in mixtures with both silica matrices, with a more pronounced shift when meso-porous silica is present. Molecular-level simulations utilizing GCMC, MD and DFT confirm qualitatively that the experimentally measured changes are attributed to interactions of methane with the hydroxylated silica surfaces as well as densification of methane within nanopores and on pore surfaces.« less

  9. Alpha Recoil Flux of Radon in Groundwater and its Experimental Measurement

    NASA Astrophysics Data System (ADS)

    Mehta, N.; Harvey, C. F.; Kocar, B. D.

    2016-12-01

    Groundwater Radon (Rn222) activity is primarily controlled by alpha recoil process (radioactive decay), however, evaluating the rate and extent of this process, and its impact on porewater radioactivity, remains uncertain. Numerous factors contribute to this uncertainty, including the spatial distribution of parent radionuclides (e.g. U238, Th232 , Ra226 and Ra228) within native materials, differences in nuclide recoil length in host matrix and the physical structure of the rock strata (pore size distribution and porosity). Here, we experimentally measure Radon activities within porewater contributed through alpha recoil, and analyze its variations as a function of pore structure and parent nuclide distribution within host matrices, including Marcellus shale rock and Serrie-Copper Pegmatite. The shale cores originate from the Marcellus formation in Mckean, Pennsylvania collected at depths ranging from 1000-7000 feet, and the U-Th-rich Pegmatite is obtained from South Platte District, Colorado. Columns are packed with granulated rock of varying surface area (30,000-60,000 cm2/g) and subjected to low salinity sodium chloride solution in a close loop configuration. The activity of Radon (Rn222) and radium (Ra226) in the saline fluid is measured over time to determine recoil supply rates. Mineralogical and trace element data for rock specimens are characterized using XRD and XRF, and detailed geochemical profiles are constructed through total dissolution and analysis using ICP-MS and ICP-OES. Naturally occurring Radium nuclides and its daughters are quantified using a low-energy Germanium detector. The parent nuclide (U238 and Th232) distribution in the host rock is studied using X-Ray Absorption Spectroscopy (XAS). Our study elucidates the contribution of alpha recoil on the appearance and distribution of Radon (Rn222) within porewater of representative rock matrices. Further, we illustrate the effects of chemical and physical heterogeneity on the rate of this process, which may inform models predicting the fate and transport of radionuclides in subsurface environments.

  10. Selective Capture of Cesium and Thallium from Natural Waters and Simulated Wastes with Copper Ferrocyanide Functionalized Mesoporous Silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangvanich, Thanapon; Sukwarotwat, Vichaya; Wiacek, Robert J.

    2010-10-15

    Copper(II) ferrocyanide immobilized inside mesoporous silica MCM-41 supports (Cu-FC-EDA-SAMMSTM) has been evaluated against iron(III) hexacyanoferrate(II) (insoluble Prussian blue) for the sorption of cesium (Cs+) and thallium (Tl+) from natural waters and simulated wastes. The affinities (in term of distribution coefficients, Kd) of both sorbents for Cs and Tl were measured as a function of solution pH, competing cations, and matrices. For the entire pH studied (pH 0.1 to 7.3), Cu-FC-EDA-SAMMS had higher affinities for Cs and Tl (one to two orders of magnitude higher Kd) than Prussian blue and was less negatively impacted by the solution pH, competing cations, andmore » matrices. The adsorption isotherms and kinetics of the two sorbents for Cs and/or Tl were also determined in seawater and simulated acid and alkaline wastes. SAMMS outperformed Prussian blue in terms of maximum adsorption capacity (e.g., 21.7 versus 2.6 mg Cs/g in acid waste stimulant, pH 1.1), and rate (e.g., over 95 wt% of Cs was removed after 2 minutes with SAMMS, while only 75 wt% was removed with Prussian blue). The lower affinity, capacity, and rate of Cs and Tl sorption on Prussian blue than those on Cu-FC-EDA-SAMMS were attributed to the molecular pore sizes, which restrict mass transport, and the insoluble Cs abducts of the Prussian blue, which restrict the ability of neighboring binding sites to further bind Cs ions. On the other hand, the large pores of SAMMS not only enable faster diffusion and faster binding chemistry, but they also allow isolation of binding sites so that one Cs binding event does not impact further Cs binding. In addition, iron (Fe) dissolved from insoluble Prussian blue over 10-fold of that from Cu-FC-EDA-SAMMS after 24 hours of contact time, indicating poorer material stability of Prussian blue.« less

  11. Ensemble characterization of an intrinsically disordered FG-Nup peptide and its F>A mutant in DMSO-d6.

    PubMed

    Reid, Korey M; Sunanda, Punnepalli; Raghothama, S; Krishnan, V V

    2017-11-01

    Intrinsically disordered proteins (IDP) lack a well-defined 3D-structure under physiological conditions, yet, the inherent disorder represented by an ensemble of conformation plays a critical role in many cellular and regulatory processes. Nucleoporins, or Nups, are the proteins found in the nuclear pore complex (NPC). The central pore of the NPC is occupied by Nups, which have phenylalanine-glycine domain repeats and are intrinsically disordered, and therefore are termed FG-Nups. These FG-domain repeats exhibit differing cohesiveness character and differ from least (FG) to most (GLFG) cohesive. The designed FG-Nup is a 25 AA model peptide containing a noncohesive FG-motif flanked by two cohesive GLFG-motifs (WT peptide). Complete NMR-based ensemble characterization of this peptide along with a control peptide with an F>A substitution (MU peptide) are discussed. Ensemble characterization of the NMR-determined models suggests that both the peptides do not have consistent secondary structures and continue to be disordered. Nonetheless, the role of cohesive elements mediated by the GLFG motifs is evident in the WT ensemble of structures that are more compact than the MU peptide. The approach presented here allows an alternate way to investigate the specific roles of distinct amino acid motifs that translate into the long-range organization of the ensemble of structures and in general on the nature of IDPs. © 2017 Wiley Periodicals, Inc.

  12. Entropic trapping of macromolecules by mesoscopic periodic voids in a polymer hydrogel

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Li, Pusheng; Asher, Sanford A.

    1999-01-01

    The separation of macromolecules such as polymers and DNA by means of electrophoresis, gel permeation chromatography or filtration exploits size-dependent differences in the time it takes for the molecules to migrate through a random porous network. Transport through the gel matrices, which usually consist of full swollen crosslinked polymers, depends on the relative size of the macromolecule compared with the pore radius. Sufficiently small molecules are thought to adopt an approximately spherical conformation when diffusing through the gel matrix, whereas larger ones are forced to migrate in a snake-like fashion. Molecules of intermediate size, however, can get temporarily trapped in the largest pores of the matrix, where the molecule can extend and thus maximize its conformational entropy. This `entropic trapping' is thought to increase the dependence of diffusion rate on molecular size. Here we report the direct experimental verification of this phenomenon. Bragg diffraction from a hydrogel containing a periodic array of monodisperse water voids confirms that polymers of different weights partition between the hydrogel matrix and the water voids according to the predictions of the entropic trapping theory. Our approach might also lead to the design of improved separation media based on entropic trapping.

  13. Coverage Dependent Assembly of Anthraquinone on Au(111)

    NASA Astrophysics Data System (ADS)

    Conrad, Brad; Deloach, Andrew; Einstein, Theodore; Dougherty, Daniel

    A study of adsorbate-adsorbate and surface state mediated interactions of anthraquinone (AnQ) on Au(111) is presented. We utilize scanning tunneling microscopy (STM) to characterize the coverage dependence of AnQ structure formation. Ordered structures are observed up to a single monolayer (ML) and are found to be strongly dependent on molecular surface density. While the complete ML forms a well-ordered close-packed layer, for a narrow range of sub-ML coverages irregular close-packed islands are observed to coexist with a disordered pore network linking neighboring islands. This network displays a characteristic pore size and at lower coverages, the soliton walls of the herringbone reconstruction are shown to promote formation of distinct pore nanostructures. We will discuss these nanostructure formations in the context of surface mediated and more direct adsorbate interactions.

  14. The I domain of the AAA+ HslUV protease coordinates substrate binding, ATP hydrolysis, and protein degradation

    PubMed Central

    Sundar, Shankar; Baker, Tania A; Sauer, Robert T

    2012-01-01

    In the AAA+ HslUV protease, substrates are bound and unfolded by a ring hexamer of HslU, before translocation through an axial pore and into the HslV degradation chamber. Here, we show that the N-terminal residues of an Arc substrate initially bind in the HslU axial pore, with key contacts mediated by a pore loop that is highly conserved in all AAA+ unfoldases. Disordered loops from the six intermediate domains of the HslU hexamer project into a funnel-shaped cavity above the pore and are positioned to contact protein substrates. Mutations in these I-domain loops increase KM and decrease Vmax for degradation, increase the mobility of bound substrates, and prevent substrate stimulation of ATP hydrolysis. HslU-ΔI has negligible ATPase activity. Thus, the I domain plays an active role in coordinating substrate binding, ATP hydrolysis, and protein degradation by the HslUV proteolytic machine. PMID:22102327

  15. Excitations in confined helium

    NASA Astrophysics Data System (ADS)

    Apaja, V.; Krotscheck, E.

    2003-05-01

    We design models for helium in matrices such as aerogel, Vycor, or Geltech from a manifestly microscopic point of view. For that purpose, we calculate the dynamic structure function of 4He on Si substrates and between two Si walls as a function of energy, momentum transfer, and the scattering angle. The angle-averaged results are in good agreement with the neutron scattering data; the remaining differences can be attributed to the simplified model used here for the complex pore structure of the materials. A focus of the present work is the detailed identification of coexisting layer modes and bulklike excitations, and, in the case of thick films, ripplon excitations. Involving essentially two-dimensional motion of atoms, the layer modes are sensitive to the scattering angle.

  16. Structure and properties of clinical coralline implants measured via 3D imaging and analysis.

    PubMed

    Knackstedt, Mark Alexander; Arns, Christoph H; Senden, Tim J; Gross, Karlis

    2006-05-01

    The development and design of advanced porous materials for biomedical applications requires a thorough understanding of how material structure impacts on mechanical and transport properties. This paper illustrates a 3D imaging and analysis study of two clinically proven coral bone graft samples (Porites and Goniopora). Images are obtained from X-ray micro-computed tomography (micro-CT) at a resolution of 16.8 microm. A visual comparison of the two images shows very different structure; Porites has a homogeneous structure and consistent pore size while Goniopora has a bimodal pore size and a strongly disordered structure. A number of 3D structural characteristics are measured directly on the images including pore volume-to-surface-area, pore and solid size distributions, chord length measurements and tortuosity. Computational results made directly on the digitized tomographic images are presented for the permeability, diffusivity and elastic modulus of the coral samples. The results allow one to quantify differences between the two samples. 3D digital analysis can provide a more thorough assessment of biomaterial structure including the pore wall thickness, local flow, mechanical properties and diffusion pathways. We discuss the implications of these results to the development of optimal scaffold design for tissue ingrowth.

  17. Cooperative Interactions between Different Classes of Disordered Proteins Play a Functional Role in the Nuclear Pore Complex of Baker’s Yeast

    PubMed Central

    Ando, David; Gopinathan, Ajay

    2017-01-01

    Nucleocytoplasmic transport is highly selective, efficient, and is regulated by a poorly understood mechanism involving hundreds of disordered FG nucleoporin proteins (FG nups) lining the inside wall of the nuclear pore complex (NPC). Previous research has concluded that FG nups in Baker’s yeast (S. cerevisiae) are present in a bimodal distribution, with the “Forest Model” classifying FG nups as either di-block polymer like “trees” or single-block polymer like “shrubs”. Using a combination of coarse-grained modeling and polymer brush modeling, the function of the di-block FG nups has previously been hypothesized in the Di-block Copolymer Brush Gate (DCBG) model to form a higher-order polymer brush architecture which can open and close to regulate transport across the NPC. In this manuscript we work to extend the original DCBG model by first performing coarse grained simulations of the single-block FG nups which confirm that they have a single block polymer structure rather than the di-block structure of tree nups. Our molecular simulations also demonstrate that these single-block FG nups are likely cohesive, compact, collapsed coil polymers, implying that these FG nups are generally localized to their grafting location within the NPC. We find that adding a layer of single-block FG nups to the DCBG model increases the range of cargo sizes which are able to translocate the pore through a cooperative effect involving single-block and di-block FG nups. This effect can explain the puzzling connection between single-block FG nup deletion mutants in S. cerevisiae and the resulting failure of certain large cargo transport through the NPC. Facilitation of large cargo transport via single-block and di-block FG nup cooperativity in the nuclear pore could provide a model mechanism for designing future biomimetic pores of greater applicability. PMID:28068389

  18. Optimization of biodegradable sponges as controlled release drug matrices. I. Effect of moisture level on chitosan sponge mechanical properties.

    PubMed

    Foda, Nagwa H; El-laithy, Hanan M; Tadros, Mina I

    2004-04-01

    Cross-linked chitosan sponges as controlled release drug carrier systems were developed. Tramadol hydrochloride, a centrally acting analgesic, was used as a model drug. The sponges were prepared by freeze-drying 1.25% and 2.5% (w/w) high and low M.wt. chitosan solutions, respectively, using glutaraldehyde as a cross-linking agent. The hardness of the prepared sponges was a function of glutaraldehyde concentration and volume where the optimum concentration that offered accepted sponge consistency was 5%. Below or above 5%, very soft or very hard and brittle sponges were obtained, respectively. The determined drug content in the prepared sponges was uniform and did not deviate markedly from the calculated amount. Scanning electron microscopy (SEM) was used to characterize the internal structures of the sponges. The SEM photos revealed that cross-linked high M.wt. chitosan sponges have larger size surface pores that form connections (channels) with the interior of the sponge than cross-linked low M.wt. ones. Moreover, crystals of the incorporated Tramadol hydrochloride were detected on the lamellae and within pores in both chitosan sponges. Differences in pore size and dissolution medium uptake capacity were crucial factors for the more delayed drug release from cross-linked low M.wt. chitosan sponges over high M.wt. ones at pH 7.4. Kinetic analysis of the release data using linear regression followed the Higuchi diffusion model over 12 hours. Setting storage conditions at room temperature under 80-92% relative humidity resulted in soft, elastic, and compressible sponges.

  19. Depth distribution of sulfonamide antibiotics in pore water of an undisturbed loamy grassland soil.

    PubMed

    Burkhardt, Michael; Stamm, Christian

    2007-01-01

    Despite the concern raised by the detections of veterinary antibiotics like sulfonamides (SA) in the environment, their fate in soils is still not sufficiently understood. In a previous article, we demonstrated that manure may substantially influence losses of SA via runoff from soils. Here, we report on the effect of manure on SA availability in soil pore water. Three sulfonamides (sulfadimidine, sulfadiazine, sulfathiazole) and two tracers (bromide and Brilliant Blue) were either applied in manure or as aqueous solution on grassland plots. After 1 and 3 d contact time, the plots were irrigated with deionized water. One day after irrigation, soil cores were taken and profiles of pore water concentrations were determined. The median SA concentrations of the top layer on manured plots varied between 40 and 60 microg L(-1) and between 10 and 30 microg L(-1) on the controls. For the conservative tracer Br the mass recovery was about 60 to 75% and much lower for the SA (2 to 14%). Apparent distribution coefficients K(d,app) of the SA in the topsoil ranged between 3 and 15 L kg(-1) on the manured plots and between 30 to 35 kg L(-1) on the controls. Below the top layer, the concentration distribution showed a pattern typical for preferential flow. Locally, SA concentrations down to 30- to 50-cm depth were as high as in the top 5 cm with little effect of the two application matrices. In the topmost layer, the data indicate that 10 to 25% of sulfadimidine were transformed to its acetyl-metabolite.

  20. The MCCB impairment profile for schizophrenia outpatients: results from the MATRICS psychometric and standardization study.

    PubMed

    Kern, Robert S; Gold, James M; Dickinson, Dwight; Green, Michael F; Nuechterlein, Keith H; Baade, Lyle E; Keefe, Richard S E; Mesholam-Gately, Raquelle I; Seidman, Larry J; Lee, Cathy; Sugar, Catherine A; Marder, Stephen R

    2011-03-01

    The MATRICS Psychometric and Standardization Study was conducted as a final stage in the development of the MATRICS Consensus Cognitive Battery (MCCB). The study included 176 persons with schizophrenia or schizoaffective disorder and 300 community residents. Data were analyzed to examine the cognitive profile of clinically stable schizophrenia patients on the MCCB. Secondarily, the data were analyzed to identify which combination of cognitive domains and corresponding cut-off scores best discriminated patients from community residents, and patients competitively employed vs. those not. Raw scores on the ten MCCB tests were entered into the MCCB scoring program which provided age- and gender-corrected T-scores on seven cognitive domains. To test for between-group differences, we conducted a 2 (group)×7 (cognitive domain) MANOVA with follow-up independent t-tests on the individual domains. Classification and regression trees (CART) were used for the discrimination analyses. Examination of patient T-scores across the seven cognitive domains revealed a relatively compact profile with T-scores ranging from 33.4 for speed of processing to 39.3 for reasoning and problem-solving. Speed of processing and social cognition best distinguished individuals with schizophrenia from community residents; speed of processing along with visual learning and attention/vigilance optimally distinguished patients competitively employed from those who were not. The cognitive profile findings provide a standard to which future studies can compare results from other schizophrenia samples and related disorders; the classification results point to specific areas and levels of cognitive impairment that may advance work rehabilitation efforts. Published by Elsevier B.V.

  1. The MCCB Impairment Profile for Schizophrenia Outpatients:Results from the MATRICS Psychometric and Standardization Study

    PubMed Central

    Kern, Robert S.; Gold, James M.; Dickinson, Dwight; Green, Michael F.; Nuechterlein, Keith H.; Baade, Lyle E.; Keefe, Richard S. E.; Mesholam-Gately, Raquelle I.; Seidman, Larry J.; Lee, Cathy; Sugar, Catherine A.; Marder, Stephen R.

    2010-01-01

    The MATRICS Psychometric and Standardization Study was conducted as a final stage in the development of the MATRICS Consensus Cognitive Battery (MCCB). The study included 176 persons with schizophrenia or schizoaffective disorder and 300 community residents. Data were analyzed to examine the cognitive profile of clinically stable schizophrenia patients on the MCCB. Secondarily, the data were analyzed to identify which combination of cognitive domains and corresponding cut-off scores best discriminated patients from community residents, and patients competitively employed vs. those not. Raw scores on the ten MCCB tests were entered into the MCCB scoring program which provided age-and gender-corrected T-scores on seven cognitive domains. To test for between-group differences, we conducted a 2 (group) × 7 (cognitive domain) MANOVA with follow-up independent t – tests on the individual domains. Classification and regression trees (CART) were used for the discrimination analyses. Examination of patient T-scores across the seven cognitive domains revealed a relatively compact profile with T-scores ranging from 33.4 for speed of processing to 39.3 for reasoning and problem-solving. Speed of processing and social cognition best distinguished individuals with schizophrenia from community residents; speed of processing along with visual learning and attention/vigilance optimally distinguished patients competitively employed from those who were not. The cognitive profile findings provide a standard to which future studies can compare results from other schizophrenia samples and related disorders; the classification results point to specific areas and levels of cognitive impairment that may advance work rehabilitation efforts. PMID:21159492

  2. What does the Managing Emotions branch of the MSCEIT add to the MATRICS consensus cognitive battery?

    PubMed

    DeTore, Nicole R; Mueser, Kim T; McGurk, Susan R

    2018-02-24

    The Managing Emotions branch of the Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT-ME) was included within the MATRICS Consensus Cognitive Battery (MCCB) as the measure of social cognition, although limited research has examined its associations with psychosocial functioning in people with schizophrenia or other severe mental illnesses. This secondary analysis with 107 participants examined what the MSCEIT-ME contributes to our understanding of functioning in this population, and whether it uniquely predicts psychosocial functioning after controlling for performance on the other MCCB tests and negative symptoms. Performance on the MSCEIT-ME was significantly correlated with all three MCCP factors (processing speed, attention/working memory, learning) within schizophrenia-schizoaffective disorder, bipolar disorder, and other mixed diagnoses groups. Better performance on MSCEIT-ME was associated with better psychosocial functioning on the Quality of Life Scale (QLS) in the schizophrenia-schizoaffective disorder group, but not in the bipolar or other mixed diagnoses groups. In addition, in the schizophrenia-schizoaffective disorder group, after controlling for demographic characteristics in stepwise multiple regression analyses, MSCEIT-ME was the only significant predictor of the QLS total score and the QLS interpersonal relations and intrapsychic foundations subscales, with none of the MCCB factors entering any of the regression models. The MSCEIT-ME may reflect a unique aspect of social cognition that is related to impaired psychosocial functioning in schizophrenia and is not tapped by the other cognitive tests on the MCCB. Further research on the MSCEIT-ME could provide unique insights into the social functioning problems in schizophrenia. Copyright © 2018. Published by Elsevier B.V.

  3. Electrospun Nanofiber Scaffolds and Their Hydrogel Composites for the Engineering and Regeneration of Soft Tissues.

    PubMed

    Manoukian, Ohan S; Matta, Rita; Letendre, Justin; Collins, Paige; Mazzocca, Augustus D; Kumbar, Sangamesh G

    2017-01-01

    Electrospinning has emerged as a simple, elegant, and scalable technique that can be used to fabricate polymeric nanofibers. Pure polymers as well as blends and composites of both natural and synthetic ones have been successfully electrospun into nanofiber matrices for many biomedical applications. Tissue-engineered medical implants, such as polymeric nanofiber scaffolds, are potential alternatives to autografts and allografts, which are short in supply and carry risks of disease transmission. These scaffolds have been used to engineer various soft tissues, including connective tissues, such as skin, ligament, and tendon, as well as nonconnective ones, such as vascular, muscle, and neural tissue. Electrospun nanofiber matrices show morphological similarities to the natural extracellular matrix (ECM), characterized by ultrafine continuous fibers, high surface-to-volume ratios, high porosities, and variable pore-size distributions. The physiochemical properties of nanofiber matrices can be controlled by manipulating electrospinning parameters so that they meet the requirements of a specific application.Nanostructured implants show improved biological performance over bulk materials in aspects of cellular infiltration and in vivo integration, taking advantage of unique quantum, physical, and atomic properties. Furthermore, the topographies of such scaffolds has been shown to dictate cellular attachment, migration, proliferation, and differentiation, which are critical in engineering complex functional tissues with improved biocompatibility and functional performance. This chapter discusses the use of the electrospinning technique in the fabrication of polymer nanofiber scaffolds utilized for the regeneration of soft tissues. Selected scaffolds will be seeded with human mesenchymal stem cells (hMSCs), imaged using scanning electron and confocal microscopy, and then evaluated for their mechanical properties as well as their abilities to promote cell adhesion, proliferation , migration, and differentiation.

  4. In Situ Porous Structures: A Unique Polymer Erosion Mechanism in Biodegradable Dipeptide-based Polyphosphazene and Polyester Blends Producing Matrices for Regenerative Engineering

    PubMed Central

    Deng, Meng; Nair, Lakshmi S.; Nukavarapu, Syam P.; Kumbar, Sangamesh G.; Jiang, Tao; Weikel, Arlin L.; Krogman, Nicholas R.; Allcock, Harry R.; Laurencin, Cato T.

    2011-01-01

    Synthetic biodegradable polymers serve as temporary substrates that accommodate cell infiltration and tissue in-growth in regenerative medicine. To allow tissue in-growth and nutrient transport, traditional three-dimensional (3D) scaffolds must be prefabricated with an interconnected porous structure. Here we demonstrated for the first time a unique polymer erosion process through which polymer matrices evolve from a solid coherent film to an assemblage of microspheres with an interconnected 3D porous structure. This polymer system was developed on the highly versatile platform of polyphosphazene-polyester blends. Co-substituting a polyphosphazene backbone with both hydrophilic glycylglycine dipeptide and hydrophobic 4-phenylphenoxy group generated a polymer with strong hydrogen bonding capacity. Rapid hydrolysis of the polyester component permitted the formation of 3D void space filled with self-assembled polyphosphazene spheres. Characterization of such self-assembled porous structures revealed macropores (10-100 μm) between spheres as well as micro- and nanopores on the sphere surface. A similar degradation pattern was confirmed in vivo using a rat subcutaneous implantation model. 12 weeks of implantation resulted in an interconnected porous structure with 82-87% porosity. Cell infiltration and collagen tissue in-growth between microspheres observed by histology confirmed the formation of an in situ 3D interconnected porous structure. It was determined that the in situ porous structure resulted from unique hydrogen bonding in the blend promoting a three-stage degradation mechanism. The robust tissue in-growth of this dynamic pore forming scaffold attests to the utility of this system as a new strategy in regenerative medicine for developing solid matrices that balance degradation with tissue formation. PMID:21789036

  5. Introduction: energy and the subsurface.

    PubMed

    Christov, Ivan C; Viswanathan, Hari S

    2016-10-13

    This theme issue covers topics at the forefront of scientific research on energy and the subsurface, ranging from carbon dioxide (CO2) sequestration to the recovery of unconventional shale oil and gas resources through hydraulic fracturing. As such, the goal of this theme issue is to have an impact on the scientific community, broadly, by providing a self-contained collection of articles contributing to and reviewing the state-of-the-art of the field. This collection of articles could be used, for example, to set the next generation of research directions, while also being useful as a self-study guide for those interested in entering the field. Review articles are included on the topics of hydraulic fracturing as a multiscale problem, numerical modelling of hydraulic fracture propagation, the role of computational sciences in the upstream oil and gas industry and chemohydrodynamic patterns in porous media. Complementing the reviews is a set of original research papers covering growth models for branched hydraulic crack systems, fluid-driven crack propagation in elastic matrices, elastic and inelastic deformation of fluid-saturated rock, reaction front propagation in fracture matrices, the effects of rock mineralogy and pore structure on stress-dependent permeability of shales, topographic viscous fingering and plume dynamics in porous media convection.This article is part of the themed issue 'Energy and the subsurface'. © 2016 The Author(s).

  6. Introduction: energy and the subsurface

    PubMed Central

    Viswanathan, Hari S.

    2016-01-01

    This theme issue covers topics at the forefront of scientific research on energy and the subsurface, ranging from carbon dioxide (CO2) sequestration to the recovery of unconventional shale oil and gas resources through hydraulic fracturing. As such, the goal of this theme issue is to have an impact on the scientific community, broadly, by providing a self-contained collection of articles contributing to and reviewing the state-of-the-art of the field. This collection of articles could be used, for example, to set the next generation of research directions, while also being useful as a self-study guide for those interested in entering the field. Review articles are included on the topics of hydraulic fracturing as a multiscale problem, numerical modelling of hydraulic fracture propagation, the role of computational sciences in the upstream oil and gas industry and chemohydrodynamic patterns in porous media. Complementing the reviews is a set of original research papers covering growth models for branched hydraulic crack systems, fluid-driven crack propagation in elastic matrices, elastic and inelastic deformation of fluid-saturated rock, reaction front propagation in fracture matrices, the effects of rock mineralogy and pore structure on stress-dependent permeability of shales, topographic viscous fingering and plume dynamics in porous media convection. This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597784

  7. Chemically Active, Porous 3D-Printed Thermoplastic Composites.

    PubMed

    Evans, Kent A; Kennedy, Zachary C; Arey, Bruce W; Christ, Josef F; Schaef, Herbert T; Nune, Satish K; Erikson, Rebecca L

    2018-05-02

    Metal-organic frameworks (MOFs) exhibit exceptional properties and are widely investigated because of their structural and functional versatility relevant to catalysis, separations, and sensing applications. However, their commercial or large-scale application is often limited by their powder forms which make integration into devices challenging. Here, we report the production of MOF-thermoplastic polymer composites in well-defined and customizable forms and with complex internal structural features accessed via a standard three-dimensional (3D) printer. MOFs (zeolitic imidazolate framework; ZIF-8) were incorporated homogeneously into both poly(lactic acid) (PLA) and thermoplastic polyurethane (TPU) matrices at high loadings (up to 50% by mass), extruded into filaments, and utilized for on-demand access to 3D structures by fused deposition modeling. Printed, rigid PLA/MOF composites display a large surface area (SA avg = 531 m 2 g -1 ) and hierarchical pore features, whereas flexible TPU/MOF composites achieve a high surface area (SA avg = 706 m 2 g -1 ) by employing a simple method developed to expose obstructed micropores postprinting. Critically, embedded particles in the plastic matrices retain their ability to participate in chemical interactions characteristic of the parent framework. The fabrication strategies were extended to other MOFs and illustrate the potential of 3D printing to create unique porous and high surface area chemically active structures.

  8. Surface enhanced fluorescence of anti-tumoral drug emodin adsorbed on silver nanoparticles and loaded on porous silicon

    NASA Astrophysics Data System (ADS)

    Hernandez, Margarita; Recio, Gonzalo; Martin-Palma, Raul J.; Garcia-Ramos, Jose V.; Domingo, Concepcion; Sevilla, Paz

    2012-07-01

    Fluorescence spectra of anti-tumoral drug emodin loaded on nanostructured porous silicon have been recorded. The use of colloidal nanoparticles allowed embedding of the drug without previous porous silicon functionalization and leads to the observation of an enhancement of fluorescence of the drug. Mean pore size of porous silicon matrices was 60 nm, while silver nanoparticles mean diameter was 50 nm. Atmospheric and vacuum conditions at room temperature were used to infiltrate emodin-silver nanoparticles complexes into porous silicon matrices. The drug was loaded after adsorption on metal surface, alone, and bound to bovine serum albumin. Methanol and water were used as solvents. Spectra with 1 μm spatial resolution of cross-section of porous silicon layers were recorded to observe the penetration of the drug. A maximum fluorescence enhancement factor of 24 was obtained when protein was loaded bound to albumin, and atmospheric conditions of inclusion were used. A better penetration was obtained using methanol as solvent when comparing with water. Complexes of emodin remain loaded for 30 days after preparation without an apparent degradation of the drug, although a decrease in the enhancement factor is observed. The study reported here constitutes the basis for designing a new drug delivery system with future applications in medicine and pharmacy.

  9. Cytotoxic T Lymphocyte Trafficking and Survival in an Augmented Fibrin Matrix Carrier

    PubMed Central

    Zou, Zhaoxia; Denny, Erin; Brown, Christine E.; Jensen, Michael C.; Li, Gang; Fujii, Tatsuhiro; Neman, Josh; Jandial, Rahul; Chen, Mike

    2012-01-01

    Cell-based therapies have intriguing potential for the treatment of a variety of neurological disorders. One such example is genetically engineered cytotoxic T lymphocytes (CTLs) that are being investigated in brain tumor clinical trials. The development of methods for CTL delivery is critical to their use in the laboratory and clinical setting. In our study, we determined whether CTLs can migrate through fibrin matrices and if their migration, survival, and function could be modulated by adding chemokines to the matrix. Our results indicated that CTLs can freely migrate through fibrin matrices. As expected, the addition of the monocyte chemotactic protein-1 (MCP-1), also known as chemokine C-C motif ligand 2 (CCL2), to the surrounding media increased egress of the CTLs out of the fibrin clot. Interleukin (IL) -2 and/or IL-15 embedded in the matrix enhanced T cell survival and further promoted T cell migration. The interleukin-13 receptor alpha 2 specific (IL-13R alpha2) T cells that traveled out of the fibrin clot retained the capacity to kill U251 glioma cells. In summary, CTLs can survive and migrate robustly in fibrin matrices. These processes can be influenced by modification of matrix constituents. We conclude that fibrin matrices may be suitable T cell carriers and can be used to facilitate understanding of T cell interaction with the surrounding microenvironment. PMID:22496835

  10. Cytotoxic T lymphocyte trafficking and survival in an augmented fibrin matrix carrier.

    PubMed

    Zou, Zhaoxia; Denny, Erin; Brown, Christine E; Jensen, Michael C; Li, Gang; Fujii, Tatsuhiro; Neman, Josh; Jandial, Rahul; Chen, Mike

    2012-01-01

    Cell-based therapies have intriguing potential for the treatment of a variety of neurological disorders. One such example is genetically engineered cytotoxic T lymphocytes (CTLs) that are being investigated in brain tumor clinical trials. The development of methods for CTL delivery is critical to their use in the laboratory and clinical setting. In our study, we determined whether CTLs can migrate through fibrin matrices and if their migration, survival, and function could be modulated by adding chemokines to the matrix. Our results indicated that CTLs can freely migrate through fibrin matrices. As expected, the addition of the monocyte chemotactic protein-1 (MCP-1), also known as chemokine C-C motif ligand 2 (CCL2), to the surrounding media increased egress of the CTLs out of the fibrin clot. Interleukin (IL) -2 and/or IL-15 embedded in the matrix enhanced T cell survival and further promoted T cell migration. The interleukin-13 receptor alpha 2 specific (IL-13R alpha2) T cells that traveled out of the fibrin clot retained the capacity to kill U251 glioma cells. In summary, CTLs can survive and migrate robustly in fibrin matrices. These processes can be influenced by modification of matrix constituents. We conclude that fibrin matrices may be suitable T cell carriers and can be used to facilitate understanding of T cell interaction with the surrounding microenvironment.

  11. Creating Hierarchical Pores by Controlled Linker Thermolysis in Multivariate Metal-Organic Frameworks.

    PubMed

    Feng, Liang; Yuan, Shuai; Zhang, Liang-Liang; Tan, Kui; Li, Jia-Luo; Kirchon, Angelo; Liu, Ling-Mei; Zhang, Peng; Han, Yu; Chabal, Yves J; Zhou, Hong-Cai

    2018-02-14

    Sufficient pore size, appropriate stability, and hierarchical porosity are three prerequisites for open frameworks designed for drug delivery, enzyme immobilization, and catalysis involving large molecules. Herein, we report a powerful and general strategy, linker thermolysis, to construct ultrastable hierarchically porous metal-organic frameworks (HP-MOFs) with tunable pore size distribution. Linker instability, usually an undesirable trait of MOFs, was exploited to create mesopores by generating crystal defects throughout a microporous MOF crystal via thermolysis. The crystallinity and stability of HP-MOFs remain after thermolabile linkers are selectively removed from multivariate metal-organic frameworks (MTV-MOFs) through a decarboxylation process. A domain-based linker spatial distribution was found to be critical for creating hierarchical pores inside MTV-MOFs. Furthermore, linker thermolysis promotes the formation of ultrasmall metal oxide nanoparticles immobilized in an open framework that exhibits high catalytic activity for Lewis acid-catalyzed reactions. Most importantly, this work provides fresh insights into the connection between linker apportionment and vacancy distribution, which may shed light on probing the disordered linker apportionment in multivariate systems, a long-standing challenge in the study of MTV-MOFs.

  12. Coverage dependent molecular assembly of anthraquinone on Au(111)

    NASA Astrophysics Data System (ADS)

    DeLoach, Andrew S.; Conrad, Brad R.; Einstein, T. L.; Dougherty, Daniel B.

    2017-11-01

    A scanning tunneling microscopy study of anthraquinone (AQ) on the Au(111) surface shows that the molecules self-assemble into several structures depending on the local surface coverage. At high coverages, a close-packed saturated monolayer is observed, while at low coverages, mobile surface molecules coexist with stable chiral hexamer clusters. At intermediate coverages, a disordered 2D porous network interlinking close-packed islands is observed in contrast to the giant honeycomb networks observed for the same molecule on Cu(111). This difference verifies the predicted extreme sensitivity [J. Wyrick et al., Nano Lett. 11, 2944 (2011)] of the pore network to small changes in the surface electronic structure. Quantitative analysis of the 2D pore network reveals that the areas of the vacancy islands are distributed log-normally. Log-normal distributions are typically associated with the product of random variables (multiplicative noise), and we propose that the distribution of pore sizes for AQ on Au(111) originates from random linear rate constants for molecules to either desorb from the surface or detach from the region of a nucleated pore.

  13. Coverage dependent molecular assembly of anthraquinone on Au(111).

    PubMed

    DeLoach, Andrew S; Conrad, Brad R; Einstein, T L; Dougherty, Daniel B

    2017-11-14

    A scanning tunneling microscopy study of anthraquinone (AQ) on the Au(111) surface shows that the molecules self-assemble into several structures depending on the local surface coverage. At high coverages, a close-packed saturated monolayer is observed, while at low coverages, mobile surface molecules coexist with stable chiral hexamer clusters. At intermediate coverages, a disordered 2D porous network interlinking close-packed islands is observed in contrast to the giant honeycomb networks observed for the same molecule on Cu(111). This difference verifies the predicted extreme sensitivity [J. Wyrick et al., Nano Lett. 11, 2944 (2011)] of the pore network to small changes in the surface electronic structure. Quantitative analysis of the 2D pore network reveals that the areas of the vacancy islands are distributed log-normally. Log-normal distributions are typically associated with the product of random variables (multiplicative noise), and we propose that the distribution of pore sizes for AQ on Au(111) originates from random linear rate constants for molecules to either desorb from the surface or detach from the region of a nucleated pore.

  14. Iron oxide inside SBA-15 modified with amino groups as reusable adsorbent for highly efficient removal of glyphosate from water

    NASA Astrophysics Data System (ADS)

    Fiorilli, Sonia; Rivoira, Luca; Calì, Giada; Appendini, Marta; Bruzzoniti, Maria Concetta; Coïsson, Marco; Onida, Barbara

    2017-07-01

    Iron oxide clusters were incorporated into amino-functionalized SBA-15 in order to obtain a magnetically recoverable adsorbent. The physical-chemical properties of the material were characterized by FE-SEM, STEM, XRD, TGA, XPS, FT-IR and acid-base titration analysis. Iron oxide nanoparticles were uniformly dispersed into the pore of mesoporous silica and that the adsorbent is characterized high specific surface area (177 m2/g) and accessible porosity. The sorbent was successfully tested for the removal of glyphosate in real water matrices. Despite the significant content of inorganic ions, a quantitative removal of the contaminant was found. The complete regeneration of the sorbent after the adsorption process through diluted NaOH solution was also proved.

  15. Phase diagram of supercooled water confined to hydrophilic nanopores

    NASA Astrophysics Data System (ADS)

    Limmer, David T.; Chandler, David

    2012-07-01

    We present a phase diagram for water confined to cylindrical silica nanopores in terms of pressure, temperature, and pore radius. The confining cylindrical wall is hydrophilic and disordered, which has a destabilizing effect on ordered water structure. The phase diagram for this class of systems is derived from general arguments, with parameters taken from experimental observations and computer simulations and with assumptions tested by computer simulation. Phase space divides into three regions: a single liquid, a crystal-like solid, and glass. For large pores, radii exceeding 1 nm, water exhibits liquid and crystal-like behaviors, with abrupt crossovers between these regimes. For small pore radii, crystal-like behavior is unstable and water remains amorphous for all non-zero temperatures. At low enough temperatures, these states are glasses. Several experimental results for supercooled water can be understood in terms of the phase diagram we present.

  16. Pore configuration landscape of granular crystallization.

    PubMed

    Saadatfar, M; Takeuchi, H; Robins, V; Francois, N; Hiraoka, Y

    2017-05-12

    Uncovering grain-scale mechanisms that underlie the disorder-order transition in assemblies of dissipative, athermal particles is a fundamental problem with technological relevance. To date, the study of granular crystallization has mainly focussed on the symmetry of crystalline patterns while their emergence and growth from irregular clusters of grains remains largely unexplored. Here crystallization of three-dimensional packings of frictional spheres is studied at the grain-scale using X-ray tomography and persistent homology. The latter produces a map of the topological configurations of grains within static partially crystallized packings. Using numerical simulations, we show that similar maps are measured dynamically during the melting of a perfect crystal. This map encodes new information on the formation process of tetrahedral and octahedral pores, the building blocks of perfect crystals. Four key formation mechanisms of these pores reproduce the main changes of the map during crystallization and provide continuous deformation pathways representative of the crystallization dynamics.

  17. Pore configuration landscape of granular crystallization

    NASA Astrophysics Data System (ADS)

    Saadatfar, M.; Takeuchi, H.; Robins, V.; Francois, N.; Hiraoka, Y.

    2017-05-01

    Uncovering grain-scale mechanisms that underlie the disorder-order transition in assemblies of dissipative, athermal particles is a fundamental problem with technological relevance. To date, the study of granular crystallization has mainly focussed on the symmetry of crystalline patterns while their emergence and growth from irregular clusters of grains remains largely unexplored. Here crystallization of three-dimensional packings of frictional spheres is studied at the grain-scale using X-ray tomography and persistent homology. The latter produces a map of the topological configurations of grains within static partially crystallized packings. Using numerical simulations, we show that similar maps are measured dynamically during the melting of a perfect crystal. This map encodes new information on the formation process of tetrahedral and octahedral pores, the building blocks of perfect crystals. Four key formation mechanisms of these pores reproduce the main changes of the map during crystallization and provide continuous deformation pathways representative of the crystallization dynamics.

  18. Anomalously slow relaxation of the system of liquid clusters in a disordered nanoporous medium according to the self-organized criticality scenario

    NASA Astrophysics Data System (ADS)

    Borman, V. D.; Tronin, V. N.; Byrkin, V. A.

    2016-04-01

    We propose a physical model of a relaxation of states of clusters of nonwetting liquid confined in a random nanoporous medium. The relaxation is occurred by the self-organized criticality (SOC) scenario. Process is characterized by waiting for fluctuation necessary for overcoming of a local energy barrier with the subsequent avalanche hydrodynamic extrusion of the liquid by surface forces of the nonwetting frame. The dependence of the interaction between local configurations on the number of filled pores belonging to the infinite percolation cluster of filled pores serves as an internal feedback initiating the SOC process. The calculations give a power-law time dependence of the relative volume θ of the confined liquid θ ∼t-ν (ν ∼ 0.2) as in the picture of relaxation in the mean field approximation. The model of the relaxation of the porous medium with the nonwetting liquid demonstrates possible mechanisms and scenarios of SOC for relaxation of other disordered systems.

  19. DNA origami scaffold for studying intrinsically disordered proteins of the nuclear pore complex.

    PubMed

    Ketterer, Philip; Ananth, Adithya N; Laman Trip, Diederik S; Mishra, Ankur; Bertosin, Eva; Ganji, Mahipal; van der Torre, Jaco; Onck, Patrick; Dietz, Hendrik; Dekker, Cees

    2018-03-02

    The nuclear pore complex (NPC) is the gatekeeper for nuclear transport in eukaryotic cells. A key component of the NPC is the central shaft lined with intrinsically disordered proteins (IDPs) known as FG-Nups, which control the selective molecular traffic. Here, we present an approach to realize artificial NPC mimics that allows controlling the type and copy number of FG-Nups. We constructed 34 nm-wide 3D DNA origami rings and attached different numbers of NSP1, a model yeast FG-Nup, or NSP1-S, a hydrophilic mutant. Using (cryo) electron microscopy, we find that NSP1 forms denser cohesive networks inside the ring compared to NSP1-S. Consistent with this, the measured ionic conductance is lower for NSP1 than for NSP1-S. Molecular dynamics simulations reveal spatially varying protein densities and conductances in good agreement with the experiments. Our technique provides an experimental platform for deciphering the collective behavior of IDPs with full control of their type and position.

  20. Aminopropyl-modified mesoporous molecular sieves as efficient adsorbents for removal of auxins

    NASA Astrophysics Data System (ADS)

    Moritz, Michał; Geszke-Moritz, Małgorzata

    2015-03-01

    In the present study, mesoporous siliceous materials grafted with 3-aminopropyltriethoxysilane (APTES) were examined as sorbents for removal of chosen plant growth factors (auxins) such as 1-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA). Four different types of mesoporous molecular sieves including SBA-15, PHTS, SBA-16 and MCF have been prepared via non-ionic surfactant-assisted soft templating method. Silica molecular sieves were thoroughly characterized by nitrogen adsorption-desorption analysis, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). The maximum adsorption capacity (Qmax) for NAA, IAA and IBA was in the range from 51.0 to 140.8 mg/g and from 4.3 to 7.3 mg/g for aminopropyl-modified adsorbents and pure silicas, respectively. The best adsorption performance was observed for IAA entrapment using both APTES-functionalized SBA-15 and MCF matrices (Qmax of 140.8 and 137.0 mg/g, respectively) which can be ascribed to their larger pore volumes and pore diameters. Moreover, these silicas were characterized by the highest adsorption efficiency exceeding 90% at low pollutant concentration. The experimental points for adsorption of plant growth factors onto aminopropyl-modified mesoporous molecular sieves fitted well to the Langmuir equation.

  1. Pressure-Water Content Relations for a Sandy, Granitic Soil Under Field and Laboratory Conditions

    NASA Astrophysics Data System (ADS)

    Chandler, D. G.; McNamara, J. M.; Gribb, M. M.

    2001-12-01

    A new sensor was developed to measure soil water potential in order to determine the predominant mechanisms of snowmelt delivery to streamflow. The sensors were calibrated for +50 to -300 cm for application on steep granitic slopes and deployed at three depths and 2 locations on a slope in a headwater catchment of the Idaho Batholith throughout the 2001 snowmelt season. Soil moisture was measured simultaneously with Water Content Reflectometers (Cambell Scientific, Logan, UT), that were calibrated in situ with Time Domain Reflectometry measurements. Sensor performance was evaluated in a laboratory soil column via side-by-side monitoring during injection of water with a cone permeameter. Soil characteristic curves were also determined for the field site by multi-step outflow tests. Comparison of the results from the field study to those from the laboratory experiment and to the characteristic curves demonstrate the utility of the new sensor for recording dynamic changes in soil water status. During snowmelt, the sensor responded to both matric potential and bypass-flow pore potential. Large shifts in the pressure record that correspond to changes in the infiltration flux indicate initiation and cessation of macropore flow. The pore pressure records may be used to document the frequency, timing and duration of bypass flow that are not apparent from the soil moisture records.

  2. Implantation of preadipocyte-loaded hyaluronic acid-based scaffolds into nude mice to evaluate potential for soft tissue engineering.

    PubMed

    Hemmrich, Karsten; von Heimburg, Dennis; Rendchen, Raoul; Di Bartolo, Chiara; Milella, Eva; Pallua, Norbert

    2005-12-01

    The reconstruction of soft tissue defects following extensive deep burns or tumor resections remains an unresolved problem in plastic and reconstructive surgery since adequate implant materials are still not available. Preadipocytes, immature precursor cells found between mature adipocytes in adipose tissue, are a potential material for soft tissue engineering since they can proliferate and differentiate into adipose tissue after transplantation. In previous studies, we identified hyaluronan benzyl ester (HYAFF 11) sponges to be promising carrier matrices. This study now evaluates, in vitro and in vivo, a new sponge architecture with pores of 400 microm either made of plain HYAFF 11 or HYAFF 11 coated with the extracellular matrix glycosaminoglycan hyaluronic acid. Human preadipocytes were isolated, seeded onto carriers and implanted into nude athymic mice. Explants harvested after 3, 8, and 12 weeks were examined for macroscopical appearance, thickness, weight, pore structure, histology, and immunohistochemistry. Compared to previous studies, we found better penetration of cells into both types of scaffolds, with more extensive formation of new vessels throughout the construct but with only minor adipose tissue. Our encouraging results contribute towards a better seeded and vascularised scaffold but also show that the enhancement of adipogenic conversion of preadipocytes remains a major task for further in vivo experiments.

  3. Psychological Dissection of Patients Having Dissociative Disorder: A Cross-sectional Study

    PubMed Central

    Reddy, Lohit Somashekar; Patil, N. M.; Nayak, Raghavendra B.; Chate, Sameeran S.; Ansari, Saba

    2018-01-01

    Background: Patients present with dissociative disorders as a decompensation to underlying stressful situation. It is clinically important to evaluate the presence, type, and temporal relation of the stressors resulting in dissociation. Further knowing the sociodemographic and psychological profile of the dissociative patient helps in better management. Materials and Methods: The study included 55 dissociative patients aged between 5 to 45 years. Psychiatric diagnosis was made using ICD-10 DCR. Psychosocial stressors and stressful life events were assessed using presumptive stressful life events scale/life events scale for Indian children and clinical interview. Personality and temperament traits were assessed using medico psychological questionnaire and temperament measurement schedule, respectively. Intelligence quotient (IQ) was assessed using standard progressive matrices and colored progressive matrices. Statistical analysis was done using Epi Info 7 software. Results: All patients had significant psychosocial stressors preceding dissociation. Precipitating factor with temporal association was observed in only 83.64%. Family disharmony (41.82%) followed by education-related problems (29.09%) was the most common psychosocial stressors. 61.82% of the dissociative patients had psychiatric comorbidity. Mean IQ of study sample was 92.47. Dissociative children had high emotionality and energy levels but low sociability, rhythmicity, and distractibility. 50% of the adults were neurotic and had emotionally unstable personality. Conclusion: Dissociative disorders are commonly seen in females, adolescents, and in those from lower socioeconomic status and rural areas. They are always preceded by psychosocial stressors. Most of them have comorbid psychiatric disorders such as depression and anxiety. Neuroticism and emotionally unstable personality traits are common in adult patients while temperamental traits such as low sociability, low rhythmicity, low distractibility, high emotionality, and high energy levels are common in children. PMID:29403129

  4. Psychological Dissection of Patients Having Dissociative Disorder: A Cross-sectional Study.

    PubMed

    Reddy, Lohit Somashekar; Patil, N M; Nayak, Raghavendra B; Chate, Sameeran S; Ansari, Saba

    2018-01-01

    Patients present with dissociative disorders as a decompensation to underlying stressful situation. It is clinically important to evaluate the presence, type, and temporal relation of the stressors resulting in dissociation. Further knowing the sociodemographic and psychological profile of the dissociative patient helps in better management. The study included 55 dissociative patients aged between 5 to 45 years. Psychiatric diagnosis was made using ICD-10 DCR. Psychosocial stressors and stressful life events were assessed using presumptive stressful life events scale/life events scale for Indian children and clinical interview. Personality and temperament traits were assessed using medico psychological questionnaire and temperament measurement schedule, respectively. Intelligence quotient (IQ) was assessed using standard progressive matrices and colored progressive matrices. Statistical analysis was done using Epi Info 7 software. All patients had significant psychosocial stressors preceding dissociation. Precipitating factor with temporal association was observed in only 83.64%. Family disharmony (41.82%) followed by education-related problems (29.09%) was the most common psychosocial stressors. 61.82% of the dissociative patients had psychiatric comorbidity. Mean IQ of study sample was 92.47. Dissociative children had high emotionality and energy levels but low sociability, rhythmicity, and distractibility. 50% of the adults were neurotic and had emotionally unstable personality. Dissociative disorders are commonly seen in females, adolescents, and in those from lower socioeconomic status and rural areas. They are always preceded by psychosocial stressors. Most of them have comorbid psychiatric disorders such as depression and anxiety. Neuroticism and emotionally unstable personality traits are common in adult patients while temperamental traits such as low sociability, low rhythmicity, low distractibility, high emotionality, and high energy levels are common in children.

  5. P-adic model of transport in porous disordered media

    NASA Astrophysics Data System (ADS)

    Khrennikov, Adrei Yu.; Oleschko, Klaudia

    2014-05-01

    The soil porosity and permeability are the most important quantitative indicators of soil dynamics under the land-use change. The main problema in the modeling of this dynamic is still poor correlation between the real measuring data and the mathematical and computer simulation models. In order to overpassed this deep divorce we have designed a new technique, able to compare the data arised from the multiscale image analices and time series of the basic physical properties dynamics in porous media studied in time and space. We present a model of the diffusion reaction type describing transport in disordered porous media, e.g., water or oil flow in a complex network of pores. Our model is based on p-adic representation of such networks. This is a kind of fractal representation. We explore advantages of p- adic representation, namely, the possibility to endow p-adic trees with an algebraic structure and ultrametric topology and, hence, to apply analysis which have (at least some) similarities with ordinary real analysis on the straight line. We present the system of two diffusion reaction equations describing propagation of particles in networks of pores in disordered media. As an application, one can consider water transport through the soil pore Networks, or oil flow through capillaries nets. Under some restrictions on potentials and rate coefficients we found the stationary regime corresponding to water content or concentration of oil in a cluster of capillaries. Usage of p-adic analysis (in particular, p-adic wavelets) gives a possibility to find the stationary solution in the analytic form which makes possible to present a clear pedological or geological picture of the process. The mathematical model elaborated in this paper (Khrennikov, 2013) can be applied to variety of problems from water concentration in aquifers to the problem of formation of oil reservoirs in disordered media with porous structures. Another possible application may have real practical output. In fact, our system of diffusion-reaction equations can be used to model the process of extraction of water or oil from an extended network of capillaries (Khrennikov et al., 2013). The accomplished analyses show that the time series of water content/pressure dynamics in saturated/unsaturated conditions reflect the fractal structure of pores separated by familias base don the seven geometric descriptors which we used for the soils multiscale images (Oleschko et al., 2012). The similar models were applied to the porous media behind the oil flow from wells. These results motivate usage of the fractal and, in particular, p-adic methods of modeling.

  6. Influence of atmospheric deposition on Okefenokee National Wildlife Refuge

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.; Jackson, B.P.

    1995-01-01

    Designation of Okefenokee National Wildlife Refuge (Georgia) as a Class I Air Quality Area affords mandatory protection of the airshed through permit-review processes for planned developments. Rainfall is the major source of water to the swamp, and potential impacts from developments in the airshed are high. To meet management needs for baseline information, chemical contributions from atmospheric deposition and partitioning of anions and cations in various matrices of the swamp, with emphasis on mercury and lead, were determined during this study. Chemistry of rainfall was measured on an event basis from one site and quarterly on surface water, pore water, floc, and sediment from four locations. A sediment core collected from the Refuge interior was sectioned, aged, and analyzed for mercury. Rainfall was acidic (pH 4.7-4.9), with average total and methyl mercury concentrations of 9 ng/L and 0.1 ng/L, respectively. Surface waters were acidic (pH 3.8-4.1), dilute (specific conductance 35-60 pS), and highly organic (dissolved organic carbon 35-50 mg/L). Total mercury was 1-3.5 ng/L in surface and pore water, and methyl mercury was 0.02-0.20 ng/L. Total mercury in sediments and floc was 100-200 ng/g dry weight, and methyl mercury was 4-16 ng/g. Lead was 0-1.7 pg/L in rainfall, not detectable in surface water, 3.4-5.4 pg/L in pore water, and 3.9-4.9 mg/kg in floc and sediment. Historical patterns of mercury deposition showed an increase in total mercury from pre-1800 concentrations of 250 ng/g to 500 ng/g in 1950, with concentrations declining thereafter to present.

  7. In vitro evaluation of the human gingival fibroblast/gingival mesenchymal stem cell dynamics through perforated guided tissue membranes: cell migration, proliferation and membrane stiffness assay.

    PubMed

    Gamal, A Y; Al-Berry, N N; Hassan, A A; Rashed, L A; Iacono, V J

    2017-06-01

    Migration of gingival fibroblasts/gingival mesenchymal stem cells through macro-perforated barrier membranes may allow them to participate positively in periodontal regeneration. The optimal guided tissue membrane perforation diameter that could favor maximum cell migration into the defect area and at the same time act as an occlusive barrier for gingival epithelium and its associated gingival extracellular matrix component is not yet identified. Cultured human gingival fibroblasts/gingival mesenchymal stem cells were placed in the upper chambers of 12-well collagen-coated polytetrafluoroethylene transwells, which were manually perforated with 0.2, 0.4 and 0.7 mm sized pores. The lower chambers of the transwells received blood clot as an attraction medium. The number of cells that have migrated to the lower chambers was calculated. Proliferation of these cells was evaluated using MTT assay. Scanning electron microscopy images were obtained for the lower surfaces of the transwell membranes. Perforated bovine collagen membranes (Tutopatch ® ) were subjected to mechanical testing to determine the tensile strength and modulus of elasticity. Group 3 (0.7 mm) showed significantly higher values for cell migration and proliferation. All groups showed a small degree of extracellular matrix migration through membrane perforations. Scanning electron microscopy evaluation revealed variable numbers of cells in fibrin matrices located mainly around the pore edges. There were non-significant differences between groups regarding mechanical properties. The present study demonstrated that macro-membrane perforations of 0.2, 0.4 and 0.7 mm are suitable pore diameters that could maintain membrane stiffness and allow for cellular migration. However, these membrane perforation diameters did not allow for total gingival connective tissue isolation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Modeling packed bed sorbent systems with the Pore Surface Diffusion Model: Evidence of facilitated surface diffusion of arsenate in nano-metal (hydr)oxide hybrid ion exchange media.

    PubMed

    Dale, Sachie; Markovski, Jasmina; Hristovski, Kiril D

    2016-09-01

    This study explores the possibility of employing the Pore Surface Diffusion Model (PSDM) to predict the arsenic breakthrough curve of a packed bed system operated under continuous flow conditions with realistic groundwater, and consequently minimize the need to conduct pilot scale tests. To provide the nano-metal (hydr)oxide hybrid ion exchange media's performance in realistic water matrices without engaging in taxing pilot scale testing, the multi-point equilibrium batch sorption tests under pseudo-equilibrium conditions were performed; arsenate breakthrough curve of short bed column (SBC) was predicted by the PSDM in the continuous flow experiments; SBC tests were conducted under the same conditions to validate the model. The overlapping Freundlich isotherms suggested that the water matrix and competing ions did not have any denoting effect on sorption capacity of the media when the matrix was changed from arsenic-only model water to real groundwater. As expected, the PSDM provided a relatively good prediction of the breakthrough profile for arsenic-only model water limited by intraparticle mass transports. In contrast, the groundwater breakthrough curve demonstrated significantly faster intraparticle mass transport suggesting to a surface diffusion process, which occurs in parallel to the pore diffusion. A simple selection of DS=1/2 DP appears to be sufficient when describing the facilitated surface diffusion of arsenate inside metal (hydr)oxide nano-enabled hybrid ion-exchange media in presence of sulfate, however, quantification of the factors determining the surface diffusion coefficient's magnitude under different treatment scenarios remained unexplored. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Collagen tissue treated with chitosan solution in H2O/CO2 mixtures: Influence of clathrates hydrates on the structure and mechanical properties.

    PubMed

    Chaschin, Ivan S; Bakuleva, Natalia P; Grigoriev, Timofei E; Krasheninnikov, Sergey V; Nikitin, Lev N

    2017-03-01

    A mixture of water/carbon dioxide is a "green" perspective solvent from the viewpoint of biomedical applications. Clathrate hydrates are formed this solvent under certain conditions and a very interesting question is the impact of clathrates hydrates on the structure and properties of bovine pericardium, which is used in biomedicine, in particular as a main part of biological heart valve prostheses. The aim of the present work is to investigate the influence of clathrates on the structure and mechanical properties of the collagen tissue treated with chitosan in H 2 O/CO 2 mixtures under pressure 3.0-3.5MPa and temperatures 2-4°C. It was first found that the clathrate hydrates in this media due to the strong fluctuations "bomb" collagen tissue of bovine pericardium, which is manifested in the appearance of numerous small gaps (pores) with mean size of 225±25nm and large pores with size of 1-3μ on the surface and within collagen matrices. High porosity leads to averaging characteristics of the organization structure in tissues with different orientation of the collagen fibers. As a result, the mechanical properties of the collagen tissue with a different orientation of the collagen fibrils become similar, which is quite different from their original properties. The structural changes caused by the influence of the environment clathrate hydrates led to a significant decrease of the tensile strength (30-47% in total, p<0.05) and initial elastic moduli (74-83%, p<0.05). However, the final elastic moduli and the maximum tensile virtually unchanged compared to the control. Nevertheless, it was found that the direct deposition of chitosan from the H 2 O/CO 2 mixtures with clathrate improve the mechanical-strength properties of the porous matrices. We believe that these improved mechanical properties are achieved due to particularly deep and uniform impregnation of the collagen matrix with chitosan from its pressurized solutions in H 2 O/CO 2 mixtures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. How Well Can Young People with Asperger's Disorder Recognize Threat and Learn about Affect in Faces?: A Pilot Study

    ERIC Educational Resources Information Center

    Miyahara, Motohide; Ruffman, Ted; Fujita, Chikako; Tsujii, Masatsugu

    2010-01-01

    The abilities to identify threat and learn about affect in facial photographs were compared between a non-autistic university student group (NUS), a matched Asperger's group (MAS) on the Standard Progressive Matrices (SPM), and an unmatched Asperger's group (UAS) who scored lower on the SPM. Participants were given pairs of faces and asked which…

  11. Effects of Inter- and Intra-aggregate Pore Space on the Soil-Gas Diffusivity Behavior in Unsaturated, Undisturbed Volcanic Ash Soils

    NASA Astrophysics Data System (ADS)

    Resurreccion, A. C.; Kawamoto, K.; Komatsu, T.; Moldrup, P.

    2006-12-01

    Volcanic ash soils (Andisols) have a unique dual porosity structure that results in good drainage and high soil- water retention. Despite of the complicated and highly developed soil structure, recent studies have reported a simple, highly linear relation between the soil-gas diffusion coefficient, Dp, and the soil-air content, ɛ, for several Japanese Andisols. In this study, we explain the linear Dp(ɛ) behavior from the effects of the inter- and intra-aggregate pore-size distributions. We couple the bimodal van Genuchten soil-water retention model with a general Dp(ɛ) model, ɛ^{X}, allowing the tortuosity- connectivity factor X to vary with pF (= log(-ψ; the soil-water matric potential in cm H2O)). Measured data suggest that the tortuosity-connectivity parameter X is at the minimum at pF 3 (where X ~ 2, following Buckingham, 1904), equal to the water retention point where a separation of inter- and intra-aggregate effects on Dp is observed. At pF < 3, the X values increased as pF decreased because of inactive/remote air-filled pore space entrapped by the inter-connected water films between inter-aggregate pore spaces. At pF > 3, X increased to a high value at very dry conditions due to remote air-filled space inside the intra-aggregate pores. By combining the complex dual porosity soil-water retention model with the power- law gas diffusivity model using a parabolic X(pF) function, the surprisingly simple linear behavior of Dp with ɛ was captured while the variation of Dp with pF followed a dual s-shaped curve similar to the water retention curve. A simple linear model to predict Dp(ɛ) is suggested, with slope C and threshold soil-air content, ɛth, calculated from the power-law model ɛ^{X} at pF 2 (near field capacity) and at pF 4.1 (near wilting point) using the same X value (= 2.3) at both pF in agreement with measured data. This linear Dp(ɛ) model performed better, especially at dry conditions, compared to the traditionally-used predictive models when tested against several independent Andisol datasets from literature.

  12. Converging on the function of intrinsically disordered nucleoporins in the nuclear pore complex.

    PubMed

    Peleg, Orit; Lim, Roderick Y H

    2010-07-01

    Several biological mechanisms involve proteins or proteinaceous components that are intrinsically disordered. A case in point pertains to the nuclear pore complex (NPC), which regulates molecular transport between the nucleus and the cytoplasm. NPC functionality is dependent on unfolded domains rich in Phe-Gly (FG) repeats (i.e., FG-domains) that collectively act to promote or hinder cargo translocation. To a large extent, our understanding of FG-domain behavior is limited to in vitro investigations given the difficulty to resolve them directly in the NPC. Nevertheless, recent findings indicate a collective convergence towards rationalizing FG-domain function. This review aims to glean further insight into this fascinating problem by taking an objective look at the boundary conditions and contextual details underpinning FG-domain behavior in the NPC. Here, we treat the FG-domains as being commensurate with polymeric chains to address ambiguities such as for instance, how FG-domains tethered to the central channel of the NPC would behave differently as compared with their free-floating counterparts in solution. By bringing such fundamental questions to the fore, this review seeks to illuminate the importance of how such parameters can hold influence over the structure-function relation of intrinsically disordered proteins in the NPC and beyond.

  13. Assessment of critical path analyses of the relationship between permeability and electrical conductivity of pore networks

    USDA-ARS?s Scientific Manuscript database

    Critical path analysis (CPA) is a method for estimating macroscopic transport coefficients of heterogeneous materials that are highly disordered at the micro-scale. Developed originally to model conduction in semiconductors, numerous researchers have noted that CPA might also have relevance to flow ...

  14. Encoding the structure of many-body localization with matrix product operators

    NASA Astrophysics Data System (ADS)

    Pekker, David; Clark, Bryan K.

    2015-03-01

    Anderson insulators are non-interacting disordered systems which have localized single particle eigenstates. The interacting analogue of Anderson insulators are the Many-Body Localized (MBL) phases. The natural language for representing the spectrum of the Anderson insulator is that of product states over the single-particle modes. We show that product states over Matrix Product Operators of small bond dimension is the corresponding natural language for describing the MBL phases. In this language all of the many-body eigenstates are encode by Matrix Product States (i.e. DMRG wave function) consisting of only two sets of low bond-dimension matrices per site: the Gi matrix corresponding to the local ground state on site i and the Ei matrix corresponding to the local excited state. All 2 n eigenstates can be generated from all possible combinations of these matrices.

  15. Confinement of anomalous liquids in nanoporous matrices.

    PubMed

    Strekalova, Elena G; Luo, Jiayuan; Stanley, H Eugene; Franzese, Giancarlo; Buldyrev, Sergey V

    2012-09-07

    Using molecular dynamics simulations, we investigate the effects of different nanoconfinements on complex liquids-e.g., colloids or protein solutions-with density anomalies and a liquid-liquid phase transition (LLPT). In all the confinements, we find a strong depletion effect with a large increase in liquid density near the confining surface. If the nanoconfinement is modeled by an ordered matrix of nanoparticles, we find that the anomalies are preserved. On the contrary, if the confinement is modeled by a disordered matrix of nanoparticles, we find a drastically different phase diagram: the LLPT shifts to lower pressures and temperatures, and the anomalies become weaker, as the disorder increases. We find that the density heterogeneities induced by the disordered matrix are responsible for the weakening of the LLPT and the disappearance of the anomalies.

  16. Clustering and assembly dynamics of a one-dimensional microphase former.

    PubMed

    Hu, Yi; Charbonneau, Patrick

    2018-05-23

    Both ordered and disordered microphases ubiquitously form in suspensions of particles that interact through competing short-range attraction and long-range repulsion (SALR). While ordered microphases are more appealing materials targets, understanding the rich structural and dynamical properties of their disordered counterparts is essential to controlling their mesoscale assembly. Here, we study the disordered regime of a one-dimensional (1D) SALR model, whose simplicity enables detailed analysis by transfer matrices and Monte Carlo simulations. We first characterize the signature of the clustering process on macroscopic observables, and then assess the equilibration dynamics of various simulation algorithms. We notably find that cluster moves markedly accelerate the mixing time, but that event chains are of limited help in the clustering regime. These insights will inspire further study of three-dimensional microphase formers.

  17. Influence of enteric-coated lactose on the release profile of 4-aminopyridine from HPMC matrix tablets.

    PubMed

    Martínez-González, Ilona; Villafuerte-Robles, Leopoldo

    2004-01-01

    A weakly basic experimental drug, 4-aminopyridine, was taken as a model to study the influence of enteric-coated lactose (EL) on the release profile from hydroxypropyl methylcellulose matrices. Powder mixtures were wet-granulated with water. The dried granulation was compressed with a hydraulic press at 85 MPa. Dissolution studies were made using HCl 0.1 N and then phosphate buffer pH 7.4. Dissolution curves were described by M(t)/M(inf) = k*t(N). A trend toward increasing exponent (n) and decreasing release constant (k) values is observed with increasing EL concentrations up to 9%; this is attributed to an increasing obstruction of the diffusion path by isolated EL particles that are insoluble in HCl and are surrounded by a water-filled space. After a critical EL concentration, the water-filled spaces surrounding EL particles percolate, producing the opposite effect, increasing the release constant and decreasing the exponent (n) values as the EL proportion increases from 10% to 50%. EL particles (2% to 9%) decrease the drug and water transport in matrices dissolving in HCl. Thereafter, at pH 7.4, the pores formed by dissolution of EL particles produce the opposite. Both processes contribute to flattening the release profile. Release profiles with decreasing release constant values show a logarithmic trend toward increasing values of the exponent (n), changing from diffusion toward relaxation-erosion-controlled processes.

  18. Construction of a thermoresponsive magnetic porous polymer membrane enzyme reactor for glutaminase kinetics study.

    PubMed

    Zhao, Liping; Qiao, Juan; Moon, Meyong Hee; Qi, Li

    2018-06-16

    Fabrication of polymer membranes with nanopores and a confinement effect toward enzyme immobilization has been an enabling endeavor. In the work reported here, an enzyme reactor based on a thermoresponsive magnetic porous block copolymer membrane was designed and constructed. Reversible addition-fragmentation chain transfer polymerization was used to synthesize the block copolymer, poly(maleic anhydride-styrene-N-isopropylacrylamide), with poly(N-isopropylacrylamide) as the thermoresponsive moiety. The self-assembly property of the block copolymer was used for preparation of magnetic porous thin film matrices with iron oxide nanoparticles. By covalent bonding of glutaminase onto the surface of the membrane matrices and changing the temperature to tune the nanopore size, we observed enhanced enzymolysis efficiency due to the confinement effect. The apparent Michaelis-Menten constant and the maximum rate of the enzyme reactor were determined (K m = 32.3 mM, V max = 33.3 mM min -1 ) by a chiral ligand exchange capillary electrochromatography protocol with L-glutamine as the substrate. Compared with free glutaminase in solution, the proposed enzyme reactor exhibits higher enzymolysis efficiency, greater stability, and greater reusability. Furthermore, the enzyme reactor was applied for a glutaminase kinetics study. The tailored pore sizes and the thermoresponsive property of the block copolymer result in the designed porous membrane based enzyme reactor having great potential for high enzymolysis performance. Graphical abstract ᅟ.

  19. NMR-based diffusion lattice imaging

    NASA Astrophysics Data System (ADS)

    Laun, Frederik Bernd; Müller, Lars; Kuder, Tristan Anselm

    2016-03-01

    Nuclear magnetic resonance (NMR) diffusion experiments are widely employed as they yield information about structures hindering the diffusion process, e.g., about cell membranes. While it has been shown in recent articles that these experiments can be used to determine the shape of closed pores averaged over a volume of interest, it is still an open question how much information can be gained in open well-connected systems. In this theoretical work, it is shown that the full structure information of connected periodic systems is accessible. To this end, the so-called "SEquential Rephasing by Pulsed field-gradient Encoding N Time intervals" (SERPENT) sequence is used, which employs several diffusion encoding gradient pulses with different amplitudes. Two two-dimensional solid matrices that are surrounded by an NMR-visible medium are considered: a hexagonal lattice of cylinders and a rectangular lattice of isosceles triangles.

  20. Control and formation mechanism of extended nanochannel geometry in colloidal mesoporous silica particles.

    PubMed

    Sokolov, I; Kalaparthi, V; Volkov, D O; Palantavida, S; Mordvinova, N E; Lebedev, O I; Owens, J

    2017-01-04

    A large class of colloidal multi-micron mesoporous silica particles have well-defined cylindrical nanopores, nanochannels which self-assembled in the templated sol-gel process. These particles are of broad interest in photonics, for timed drug release, enzyme stabilization, separation and filtration technologies, catalysis, etc. Although the pore geometry and mechanism of pore formation of such particles has been widely investigated at the nanoscale, their pore geometry and its formation mechanism at a larger (extended) scale is still under debate. The extended geometry of nanochannels is paramount for all aforementioned applications because it defines accessibility of nanochannels, and subsequently, kinetics of interaction of the nanochannel content with the particle surrounding. Here we present both experimental and theoretical investigation of the extended geometry and its formation mechanism in colloidal multi-micron mesoporous silica particles. We demonstrate that disordered (and consequently, well accessible) nanochannels in the initially formed colloidal particles gradually align and form extended self-sealed channels. This knowledge allows to control the percentage of disordered versus self-sealed nanochannels, which defines accessibility of nanochannels in such particles. We further show that the observed aligning the channels is in agreement with theory; it is thermodynamically favored as it decreases the Gibbs free energy of the particles. Besides the practical use of the obtained results, developing a fundamental understanding of the mechanisms of morphogenesis of complex geometry of nanopores will open doors to efficient and controllable synthesis that will, in turn, further fuel the practical utilization of these particles.

  1. Physical modelling of the nuclear pore complex

    PubMed Central

    Fassati, Ariberto; Ford, Ian J.; Hoogenboom, Bart W.

    2013-01-01

    Physically interesting behaviour can arise when soft matter is confined to nanoscale dimensions. A highly relevant biological example of such a phenomenon is the Nuclear Pore Complex (NPC) found perforating the nuclear envelope of eukaryotic cells. In the central conduit of the NPC, of ∼30–60 nm diameter, a disordered network of proteins regulates all macromolecular transport between the nucleus and the cytoplasm. In spite of a wealth of experimental data, the selectivity barrier of the NPC has yet to be explained fully. Experimental and theoretical approaches are complicated by the disordered and heterogeneous nature of the NPC conduit. Modelling approaches have focused on the behaviour of the partially unfolded protein domains in the confined geometry of the NPC conduit, and have demonstrated that within the range of parameters thought relevant for the NPC, widely varying behaviour can be observed. In this review, we summarise recent efforts to physically model the NPC barrier and function. We illustrate how attempts to understand NPC barrier function have employed many different modelling techniques, each of which have contributed to our understanding of the NPC.

  2. The factor structure of the Alcohol Use Disorders Identification Test (AUDIT).

    PubMed

    Doyle, Suzanne R; Donovan, Dennis M; Kivlahan, Daniel R

    2007-05-01

    Past research assessing the factor structure of the Alcohol Use Disorders Identification Test (AUDIT) with various exploratory and confirmatory factor analytic techniques has identified one-, two-, and three-factor solutions. Because different factor analytic procedures may result in dissimilar findings, we examined the factor structure of the AUDIT using the same factor analytic technique on two new large clinical samples and on archival data from six samples studied in previous reports. Responses to the AUDIT were obtained from participants who met Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV), criteria for alcohol dependence in two large randomized clinical trials: the COMBINE (Combining Medications and Behavioral Interventions) Study (N = 1,337; 69% men) and Project MATCH (Matching Alcoholism Treatments to Client Heterogeneity; N = 1,711; 76% men). Supplementary analyses involved six correlation matrices of AUDIT data obtained from five previously published articles. Confirmatory factor analyses based on one-, two-, and three-factor models were conducted on the eight correlation matrices to assess the factor structure of the AUDIT. Across samples, analyses supported a correlated, two-factor solution representing alcohol consumption and alcohol-related consequences. The three-factor solution fit the data equally well, but two factors (alcohol dependence and harmful alcohol use) were highly correlated. The one-factor solution did not provide a good fit to the data. These findings support a two-factor solution for the AUDIT (alcohol consumption and alcohol-related consequences). The results contradict the original three-factor design of the AUDIT and the prevalent use of the AUDIT as a one-factor screening instrument with a single cutoff score.

  3. Porous media matric potential and water content measurements during parabolic flight

    NASA Technical Reports Server (NTRS)

    Norikane, Joey H.; Jones, Scott B.; Steinberg, Susan L.; Levine, Howard G.; Or, Dani

    2005-01-01

    Control of water and air in the root zone of plants remains a challenge in the microgravity environment of space. Due to limited flight opportunities, research aimed at resolving microgravity porous media fluid dynamics must often be conducted on Earth. The NASA KC-135 reduced gravity flight program offers an opportunity for Earth-based researchers to study physical processes in a variable gravity environment. The objectives of this study were to obtain measurements of water content and matric potential during the parabolic profile flown by the KC-135 aircraft. The flight profile provided 20-25 s of microgravity at the top of the parabola, while pulling 1.8 g at the bottom. The soil moisture sensors (Temperature and Moisture Acquisition System: Orbital Technologies, Madison, WI) used a heat-pulse method to indirectly estimate water content from heat dissipation. Tensiometers were constructed using a stainless steel porous cup with a pressure transducer and were used to measure the matric potential of the medium. The two types of sensors were placed at different depths in a substrate compartment filled with 1-2 mm Turface (calcined clay). The ability of the heat-pulse sensors to monitor overall changes in water content in the substrate compartment decreased with water content. Differences in measured water content data recorded at 0, 1, and 1.8 g were not significant. Tensiometer readings tracked pressure differences due to the hydrostatic force changes with variable gravity. The readings may have been affected by changes in cabin air pressure that occurred during each parabola. Tensiometer porous membrane conductivity (function of pore size) and fluid volume both influence response time. Porous media sample height and water content influence time-to-equilibrium, where shorter samples and higher water content achieve faster equilibrium. Further testing is needed to develop these sensors for space flight applications.

  4. Removal of norfloxacin in deionized, municipal water and urine using rice (Oryza sativa) and coffee (Coffea arabica) husk wastes as natural adsorbents.

    PubMed

    Paredes-Laverde, Marcela; Silva-Agredo, Javier; Torres-Palma, Ricardo A

    2018-05-01

    The removal of the widely used antibiotic norfloxacin (NOR), the presence of which has been reported in natural water, was evaluated using rice (RH) and coffee (CH) husk wastes as adsorbents. Low particle sizes and natural pH in distilled water favored NOR elimination in both materials. In order to investigate the type of adsorption, the data was adjusted to the Langmuir, Freundlich and Redlich-Peterson isotherms. The best fit for the Langmuir and Redlich-Peterson isotherms suggested a monolayer-type adsorption model. Kinetic models of pseudo first and second order were also evaluated, the latter being the most suitable to represent the NOR adsorption phenomenon. Meanwhile, the intraparticle diffusion model indicated that the adsorption of NOR occurs both at the surface and within the pores of the material. Studies performed on thermodynamic aspects such as activation energy (E a ), enthalpy change (ΔH˚) and Gibbs free energy change (ΔG˚) suggest that the physisorption of the pollutant takes place through a spontaneous endothermic process. Additionally, PZC determination, Boehm method, chemical composition, thermodynamic analysis, and FTIR spectra before and after the adsorption of the antibiotic suggest that in CH adsorbents this occurred mainly through electrostatic interactions, while in RH hydrogen bonds also contributed significantly. Finally, the efficiency of natural adsorbents for the removal of NOR was evaluated in synthetic matrices of municipal wastewater and urine, and promising results were obtained despite the complexity of these matrices. The results presented in this work show the potential application of RH and CH residues as a low-cost alternative for the removal of NOR even in complex matrices. However, despite the similarities between the materials, CH waste showed better properties for the removal of the tested NOR due to its higher surface area, lower PZC and higher number of acid groups. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Study on the response of unsaturated soil slope based on the effects of rainfall intensity and slope angle

    NASA Astrophysics Data System (ADS)

    Ismail, Mohd Ashraf Mohamad; Hamzah, Nur Hasliza

    2017-07-01

    Rainfall has been considered as the major cause of the slope failure. The mechanism leading to slope failures included the infiltration process, surface runoff, volumetric water content and pore-water pressure of the soil. This paper describes a study in which simulated rainfall events were used with 2-dimensional soil column to study the response of unsaturated soil behavior based on different slope angle. The 2-dimensional soil column is used in order to demonstrate the mechanism of the slope failure. These unsaturated soil were tested with four different slope (15°, 25°, 35° and 45°) and subjected to three different rainfall intensities (maximum, mean and minimum). The following key results were obtained: (1) the stability of unsaturated soil decrease as the rainwater infiltrates into the soil. Soil that initially in unsaturated state will start to reach saturated state when rainwater seeps into the soil. Infiltration of rainwater will reduce the matric suction in the soil. Matric suction acts in controlling soil shear strength. Reduction in matric suction affects the decrease in effective normal stress, which in turn diminishes the available shear strength to a point where equilibrium can no longer be sustained in the slope. (2) The infiltration rate of rainwater decreases while surface runoff increase when the soil nearly achieve saturated state. These situations cause the soil erosion and lead to slope failure. (3) The steepness of the soil is not a major factor but also contribute to slope failures. For steep slopes, rainwater that fall on the soil surface will become surface runoff within a short time compare to the water that infiltrate into the soil. While for gentle slopes, water that becomes surface runoff will move slowly and these increase the water that infiltrate into the soil.

  6. An in vitro 3D model using collagen coated gelatin nanofibers for studying breast cancer metastasis.

    PubMed

    Janani, G; Pillai, Mamatha M; Selvakumar, R; Bhattacharyya, Amitava; Sabarinath, C

    2017-02-07

    The study of breast cancer metastasis is limited due to poor knowledge of molecular progression of breast tumor and varied heterogeneity. For a better understanding of tumor metastasis, a reliable 3D in vitro model bridging the gap between 2D cultures and in vivo animal model studies is essential. Our study is focused on two key points: (i) designing a 3D microenvironment for studying metastasis and (ii) simulating the metastasis milieu by inducing epithelial to mesenchymal transition (EMT) and mesenchymal to epithelial transition (MET). An electrospun gelatin nanofiber matrix (EGNF) was fabricated using electrospinning and further dip coated with different concentrations of collagen to obtain surface complexity and mechanical properties, similar to connective tissues. Nanofiber matrices were physically characterized by Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and field-emission scanning electron microscopy (FESEM). The FTIR, AFM, and FESEM results indicated the crosslinking and confirmed the presence of pores in the nanofiber matrices. Comparative studies on biocompatibility, cell attachment, and the proliferation of MCF-7 cells on EGNF and collagen coated gelatin nanofibrous matrix (CCGM) revealed higher cellular attachment and proliferation in CCGM. CCGM with human metastatic breast cancer cell line (MCF-7) was taken to study breast cancer metastasis using estrogen (induces EMT) and progesterone (induces MET) hormones for 24 h. Quantitative real-time PCR was used for quantifying the expression of metastasis related genes, and fluorescence microscopy for verifying the invasion of cells to the matrices. The expression of E-cadherin and matrix metalloproteinase 2 (MMP 2) confirmed the occurrence of EMT and MET. Live cell imaging and cellular attachment showed significant increase of cellular invasion in crosslinked 0.15% CCGM that serves as a suitable non-toxic, biocompatible, and affordable scaffold for studying breast cancer metastasis. Our findings suggested that CCGM can be used as a tissue-like 3D model for studying breast cancer metastatic events in vitro.

  7. Visualizing and Quantifying Pore Scale Fluid Flow Processes With X-ray Microtomography

    NASA Astrophysics Data System (ADS)

    Wildenschild, D.; Hopmans, J. W.; Vaz, C. M.; Rivers, M. L.

    2001-05-01

    When using mathematical models based on Darcy's law it is often necessary to simplify geometry, physics or both and the capillary bundle-of-tubes approach neglects a fundamentally important characteristic of porous solids, namely interconnectedness of the pore space. New approaches to pore-scale modeling that arrange capillary tubes in two- or three-dimensional pore space have been and are still under development: Network models generally represent the pore space by spheres while the pore throats are usually represented by cylinders or conical shapes. Lattice Boltzmann approaches numerically solve the Navier-Stokes equations in a realistic microscopically disordered geometry, which offers the ability to study the microphysical basis of macroscopic flow without the need for a simplified geometry or physics. In addition to these developments in numerical modeling techniques, new theories have proposed that interfacial area should be considered as a primary variable in modeling of a multi-phase flow system. In the wake of this progress emerges an increasing need for new ways of evaluating pore-scale models, and for techniques that can resolve and quantify phase interfaces in porous media. The mechanisms operating at the pore-scale cannot be measured with traditional experimental techniques, however x-ray computerized microtomography (CMT) provides non-invasive observation of, for instance, changing fluid phase content and distribution on the pore scale. Interfacial areas have thus far been measured indirectly, but with the advances in high-resolution imaging using CMT it is possible to track interfacial area and curvature as a function of phase saturation or capillary pressure. We present results obtained at the synchrotron-based microtomography facility (GSECARS, sector 13) at the Advanced Photon Source at Argonne National Laboratory. Cylindrical sand samples of either 6 or 1.5 mm diameter were scanned at different stages of drainage and for varying boundary conditions. A significant difference in fluid saturation and phase distribution was observed for different drainage conditions, clearly showing preferential flow and a dependence on the applied flow rate. For the 1.5 mm sample individual pores and water/air interfaces could be resolved and quantified using image analysis techniques. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under Contract No. W-31-109-Eng-38.

  8. Procyanidins-crosslinked aortic elastin scaffolds with distinctive anti-calcification and biological properties.

    PubMed

    Wang, Xiaoya; Zhai, Wanyin; Wu, Chengtie; Ma, Bing; Zhang, Jiamin; Zhang, Hongfeng; Zhu, Ziyan; Chang, Jiang

    2015-04-01

    Elastin, a main component of decellularized extracellular matrices and elastin-containing materials, has been used for tissue engineering applications due to their excellent biocompatibility. However, elastin is easily calcified, leading to the decrease of life span for elastin-based substitutes. How to inhibit the calcification of elastin-based scaffolds, but maintain their good biocompatibility, still remains significantly challenging. Procyanidins (PC) are a type of natural polyphenols with crosslinking ability. To investigate whether pure elastin could be crosslinked by PC with anti-calcification effect, PC was first used to crosslink aortic elastin. Results show that PC can crosslink elastin and effectively inhibit elastin-initiated calcification. Further experiments reveal the possible mechanisms for the anti-calcification of PC crosslinking including (1) inhibiting inflammation cell attachment, and secretion of inflammatory factors such as MMPs and TNF-α, (2) preventing elastin degradation by elastase, and (3) direct inhibition of mineral nucleation in elastin. Moreover, the PC-crosslinked aortic elastin maintains natural structure with high pore volume (1111 μL/g), large pore size (10-300 μm) and high porosity (75.1%) which facilitates recellularization of scaffolds in vivo, and displays excellent hemocompatibility, anti-thrombus and anti-inflammatory potential. The advantages of PC-crosslinked porous aortic elastin suggested that it can serve as a promising scaffold for tissue engineering. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. (Bio-)remediation of VCHC contaminants in a Technosol under unsaturated conditions.

    PubMed

    Baumgarten, W; Fleige, H; Peth, S; Horn, R

    2013-07-01

    The remediation of dense non-aqueous phase liquids has always been a concern of both public and scientific interest groups. In this research work a modified physical concept of (bio)remediation of a volatile chlorinated hydrocarbon (VCHC) contamination was elaborated under laboratory conditions and modeled with HYDRUS-2D. In field dechlorination is influenced by both physicochemical and hydraulic properties of the substrate, e.g. texture, pore size distribution, pore liquid characteristics, e.g. viscosity, pH, surface tension, and dependent on the degree of saturation of the vadose zone. Undisturbed soil cores (100 cm³) were sampled from a Spolic Technosol. Considering hydraulic properties and functions, unsaturated percolation was performed with vertically and horizontally structured samples. VCHC concentrations were calculated prior, during, and after each percolation cycle. According to laboratory findings, microemulsion showed the most efficient results with regard to flow behavior in the unsaturated porous media and its accessibility for bacteria as nutrient. The efficiency of VCHC remediation could be increased by the application of a modified pump-and-treat system: the injection of bacteria Dehalococcoides ethanogenes with microemulsion, and extraction at a constant matric potential level of -6 kPa. Achieved data was used for HYDRUS-2D simulations, modeling in situ conditions, demonstrating the practical relevance (field scale) of performed unsaturated percolation (core scale), and in order to exclude capillary barrier effects.

  10. Ultra-low thermal conductivities in large-area Si-Ge nanomeshes for thermoelectric applications

    PubMed Central

    Perez-Taborda, Jaime Andres; Muñoz Rojo, Miguel; Maiz, Jon; Neophytou, Neophytos; Martin-Gonzalez, Marisol

    2016-01-01

    In this work, we measure the thermal and thermoelectric properties of large-area Si0.8Ge0.2 nano-meshed films fabricated by DC sputtering of Si0.8Ge0.2 on highly ordered porous alumina matrices. The Si0.8Ge0.2 film replicated the porous alumina structure resulting in nano-meshed films. Very good control of the nanomesh geometrical features (pore diameter, pitch, neck) was achieved through the alumina template, with pore diameters ranging from 294 ± 5nm down to 31 ± 4 nm. The method we developed is able to provide large areas of nano-meshes in a simple and reproducible way, being easily scalable for industrial applications. Most importantly, the thermal conductivity of the films was reduced as the diameter of the porous became smaller to values that varied from κ = 1.54 ± 0.27 W K−1m−1, down to the ultra-low κ = 0.55 ± 0.10 W K−1m−1 value. The latter is well below the amorphous limit, while the Seebeck coefficient and electrical conductivity of the material were retained. These properties, together with our large area fabrication approach, can provide an important route towards achieving high conversion efficiency, large area, and high scalable thermoelectric materials. PMID:27650202

  11. Heterogeneous conversion of CO2 into cyclic carbonates at ambient pressure catalyzed by ionothermal-derived meso-macroporous hierarchical poly(ionic liquid)s† †Electronic supplementary information (ESI) available: Experimental section, details of the IR, 13C NMR and XPS spectra, characterization (1H NMR, 13C NMR, 13C CP-MAS NMR, TG, XRD, SEM, elemental analysis), N2 adsorption–desorption isotherms, pore size distribution, recycling test of the catalyst, comparison of the literature catalytic activity of different heterogeneous catalysts. See DOI: 10.1039/c5sc02050f

    PubMed Central

    Wang, Xiaochen; Zhou, Yu; Guo, Zengjing; Chen, Guojian; Li, Jing; Shi, Yuming; Liu, Yangqing

    2015-01-01

    Meso-macroporous hierarchical poly(ionic liquid)s (MPILs) with extremely high ionic site densities and tunable pore structures were ionothermally synthesized through the free radical self-polymerization of our newly designed rigid bis-vinylimidazolium salt monomer. The synthesis avoided the use of any templates, gave a high yield (>99%) and allowed recycling of the IL solvent; thus it is facile, atom-efficient, environmentally friendly and sustainable. The synthesized MPILs possessed distinctive features of polycation matrices, abundant halogen anions, and large surface areas. They not only presented enhanced CO2 capture, but led to breakthroughs in the heterogeneous catalytic conversion of CO2 into cyclic carbonates: (1) unprecedented high activity at atmospheric pressure and low temperature; (2) good substrate compatibility, even being active towards the extremely inert aliphatic long carbon-chain alkyl epoxides. This result renders the first occasion of a metal–solvent–additive free recyclable heterogeneous cycloaddition of CO2 at such mild conditions. PMID:29861930

  12. Sampling silica and ferrihydrite colloids with fiberglass wicks under unsaturated conditions.

    PubMed

    Shira, Jason M; Williams, Barbara C; Flury, Markus; Czigány, Szabolcs; Tuller, Markus

    2006-01-01

    The suitability of passive capillary samplers (PCAPS) for collection of representative colloid samples under partially saturated conditions was evaluated by investigating the transport of negatively and positively charged colloids in fiberglass wicks. A synthetic pore water solution was used to suspend silica microspheres (330 nm in diameter) and ferrihydrite (172 nm in diameter) for transport experiments on fiberglass wicks. Breakthrough curves were collected for three unsaturated flow rates with silica microspheres and one unsaturated flow rate with ferrihydrite colloids. A moisture characteristic curve, relating tensiometer measurements of matric potential to moisture content, was developed for the fiberglass wick. Results indicate that retention of the silica and the ferrihydrite on the wick occurred; that is, the wicks did not facilitate quantitative sampling of the colloids. For silica microspheres, 90% of the colloids were transmitted through the wicks. For ferrihydrite, 80 to 90% of the colloids were transmitted. The mechanisms responsible for the retention of the colloids on the fiberglass wicks appeared to be physicochemical attachment and not thin-film, triple-phase entrapment, or mechanical straining. Visualization of pathways by iron staining indicates that flow is preferential at the center of twisted bundles of filaments. Although axial preferential flow in PCAPS may enhance their hydraulic suitability for sampling mobile colloids, we conclude that without specific preparation to reduce attachment or retention, fiberglass wicks should only be used for qualitative sampling of pore water colloids.

  13. Tuning and Freezing Disorder in Photonic Crystals using Percolation Lithography.

    PubMed

    Burgess, Ian B; Abedzadeh, Navid; Kay, Theresa M; Shneidman, Anna V; Cranshaw, Derek J; Lončar, Marko; Aizenberg, Joanna

    2016-01-21

    Although common in biological systems, synthetic self-assembly routes to complex 3D photonic structures with tailored degrees of disorder remain elusive. Here we show how liquids can be used to finely control disorder in porous 3D photonic crystals, leading to complex and hierarchical geometries. In these optofluidic crystals, dynamically tunable disorder is superimposed onto the periodic optical structure through partial wetting or evaporation. In both cases, macroscopic symmetry breaking is driven by subtle sub-wavelength variations in the pore geometry. These variations direct site-selective infiltration of liquids through capillary interactions. Incorporating cross-linkable resins into our liquids, we developed methods to freeze in place the filling patterns at arbitrary degrees of partial wetting and intermediate stages of drying. These percolation lithography techniques produced permanent photonic structures with adjustable disorder. By coupling strong changes in optical properties to subtle differences in fluid behavior, optofluidic crystals may also prove useful in rapid analysis of liquids.

  14. Wet-spun, porous, orientational graphene hydrogel films for high-performance supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Kou, Liang; Liu, Zheng; Huang, Tieqi; Zheng, Bingna; Tian, Zhanyuan; Deng, Zengshe; Gao, Chao

    2015-02-01

    Supercapacitors with porous electrodes of graphene macroscopic assembly are supposed to have high energy storage capacity. However, a great number of ``close pores'' in porous graphene electrodes are invalid because electrolyte ions cannot infiltrate. A quick method to prepare porous graphene electrodes with reduced ``close pores'' is essential for higher energy storage. Here we propose a wet-spinning assembly approach based on the liquid crystal behavior of graphene oxide to continuously spin orientational graphene hydrogel films with ``open pores'', which are used directly as binder-free supercapacitor electrodes. The resulting supercapacitor electrodes show better electrochemical performance than those with disordered graphene sheets. Furthermore, three reduction methods including hydrothermal treatment, hydrazine and hydroiodic acid reduction are used to evaluate the specific capacitances of the graphene hydrogel film. Hydrazine-reduced graphene hydrogel film shows the highest capacitance of 203 F g-1 at 1 A g-1 and maintains 67.1% specific capacitance (140 F g-1) at 50 A g-1. The combination of scalable wet-spinning technology and orientational structure makes graphene hydrogel films an ideal electrode material for supercapacitors.Supercapacitors with porous electrodes of graphene macroscopic assembly are supposed to have high energy storage capacity. However, a great number of ``close pores'' in porous graphene electrodes are invalid because electrolyte ions cannot infiltrate. A quick method to prepare porous graphene electrodes with reduced ``close pores'' is essential for higher energy storage. Here we propose a wet-spinning assembly approach based on the liquid crystal behavior of graphene oxide to continuously spin orientational graphene hydrogel films with ``open pores'', which are used directly as binder-free supercapacitor electrodes. The resulting supercapacitor electrodes show better electrochemical performance than those with disordered graphene sheets. Furthermore, three reduction methods including hydrothermal treatment, hydrazine and hydroiodic acid reduction are used to evaluate the specific capacitances of the graphene hydrogel film. Hydrazine-reduced graphene hydrogel film shows the highest capacitance of 203 F g-1 at 1 A g-1 and maintains 67.1% specific capacitance (140 F g-1) at 50 A g-1. The combination of scalable wet-spinning technology and orientational structure makes graphene hydrogel films an ideal electrode material for supercapacitors. Electronic supplementary information (ESI) available: The schematic diagram for fabricating graphene oxide hydrogel films, stress-strain curves and TGA curves of three GHFs, a digital photo of the test device for the two-electrode system, and comparison of the electrochemical performance of our GHF-HZ supercapacitors. See DOI: 10.1039/c4nr07038k

  15. Mental health professionals' natural taxonomies of mental disorders: implications for the clinical utility of the ICD-11 and the DSM-5.

    PubMed

    Reed, Geoffrey M; Roberts, Michael C; Keeley, Jared; Hooppell, Catherine; Matsumoto, Chihiro; Sharan, Pratap; Robles, Rebeca; Carvalho, Hudson; Wu, Chunyan; Gureje, Oye; Leal-Leturia, Itzear; Flanagan, Elizabeth H; Correia, João Mendonça; Maruta, Toshimasa; Ayuso-Mateos, José Luís; de Jesus Mari, Jair; Xiao, Zeping; Evans, Spencer C; Saxena, Shekhar; Medina-Mora, María Elena

    2013-12-01

    To examine the conceptualizations held by psychiatrists and psychologists around the world of the relationships among mental disorders in order to inform decisions about the structure of the classification of mental and behavioral disorders in World Health Organization's International Classification of Diseases and Related Health Problems 11th Revision (ICD-11). 517 mental health professionals in 8 countries sorted 60 cards containing the names of mental disorders into groups of similar disorders, and then formed a hierarchical structure by aggregating and disaggregating these groupings. Distance matrices were created from the sorting data and used in cluster and correlation analyses. Clinicians' taxonomies were rational, interpretable, and extremely stable across countries, diagnostic system used, and profession. Clinicians' consensus classification structure was different from ICD-10 and the American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders 4th Edition (DSM-IV), but in many respects consistent with ICD-11 proposals. The clinical utility of the ICD-11 may be improved by making its structure more compatible with the common conceptual organization of mental disorders observed across diverse global clinicians. © 2013 Wiley Periodicals, Inc.

  16. Random matrix approach to plasmon resonances in the random impedance network model of disordered nanocomposites

    NASA Astrophysics Data System (ADS)

    Olekhno, N. A.; Beltukov, Y. M.

    2018-05-01

    Random impedance networks are widely used as a model to describe plasmon resonances in disordered metal-dielectric and other two-component nanocomposites. In the present work, the spectral properties of resonances in random networks are studied within the framework of the random matrix theory. We have shown that the appropriate ensemble of random matrices for the considered problem is the Jacobi ensemble (the MANOVA ensemble). The obtained analytical expressions for the density of states in such resonant networks show a good agreement with the results of numerical simulations in a wide range of metal filling fractions 0

  17. Advanced morphological analysis of patterns of thin anodic porous alumina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toccafondi, C.; Istituto Italiano di Tecnologia, Department of Nanostructures, Via Morego 30, Genova I 16163; Stępniowski, W.J.

    2014-08-15

    Different conditions of fabrication of thin anodic porous alumina on glass substrates have been explored, obtaining two sets of samples with varying pore density and porosity, respectively. The patterns of pores have been imaged by high resolution scanning electron microscopy and analyzed by innovative methods. The regularity ratio has been extracted from radial profiles of the fast Fourier transforms of the images. Additionally, the Minkowski measures have been calculated. It was first observed that the regularity ratio averaged across all directions is properly corrected by the coefficient previously determined in the literature. Furthermore, the angularly averaged regularity ratio for themore » thin porous alumina made during short single-step anodizations is lower than that of hexagonal patterns of pores as for thick porous alumina from aluminum electropolishing and two-step anodization. Therefore, the regularity ratio represents a reliable measure of pattern order. At the same time, the lower angular spread of the regularity ratio shows that disordered porous alumina is more isotropic. Within each set, when changing either pore density or porosity, both regularity and isotropy remain rather constant, showing consistent fabrication quality of the experimental patterns. Minor deviations are tentatively discussed with the aid of the Minkowski measures, and the slight decrease in both regularity and isotropy for the final data-points of the porosity set is ascribed to excess pore opening and consequent pore merging. - Highlights: • Thin porous alumina is partly self-ordered and pattern analysis is required. • Regularity ratio is often misused: we fix the averaging and consider its spread. • We also apply the mathematical tool of Minkowski measures, new in this field. • Regularity ratio shows pattern isotropy and Minkowski helps in assessment. • General agreement with perfect artificial patterns confirms the good manufacturing.« less

  18. Structural Insights into the Atomistic Mechanisms of Action of Small Molecule Inhibitors Targeting the KCa3.1 Channel Pore

    PubMed Central

    Nguyen, Hai M.; Singh, Vikrant; Pressly, Brandon; Jenkins, David Paul

    2017-01-01

    The intermediate-conductance Ca2+-activated K+ channel (KCa3.1) constitutes an attractive pharmacological target for immunosuppression, fibroproliferative disorders, atherosclerosis, and stroke. However, there currently is no available crystal structure of this medically relevant channel that could be used for structure-assisted drug design. Using the Rosetta molecular modeling suite we generated a molecular model of the KCa3.1 pore and tested the model by first confirming previously mapped binding sites and visualizing the mechanism of TRAM-34 (1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole), senicapoc (2,2-bis-(4-fluorophenyl)-2-phenylacetamide), and NS6180 (4-[[3-(trifluoromethyl)phenyl]methyl]-2H-1,4-benzothiazin-3(4H)-one) inhibition at the atomistic level. All three compounds block ion conduction directly by fully or partially occupying the site that would normally be occupied by K+ before it enters the selectivity filter. We then challenged the model to predict the receptor sites and mechanisms of action of the dihydropyridine nifedipine and an isosteric 4-phenyl-pyran. Rosetta predicted receptor sites for nifedipine in the fenestration region and for the 4-phenyl-pyran in the pore lumen, which could both be confirmed by site-directed mutagenesis and electrophysiology. While nifedipine is thus not a pore blocker and might be stabilizing the channel in a nonconducting conformation or interfere with gating, the 4-phenyl-pyran was found to be a classical pore blocker that directly inhibits ion conduction similar to the triarylmethanes TRAM-34 and senicapoc. The Rosetta KCa3.1 pore model explains the mechanism of action of several KCa3.1 blockers at the molecular level and could be used for structure-assisted drug design. PMID:28126850

  19. Pharmacological Interventions for the MATRICS Cognitive Domains in Schizophrenia: What’s the Evidence?

    PubMed Central

    Vingerhoets, Wilhelmina A. M.; Bloemen, Oswald J. N.; Bakker, Geor; van Amelsvoort, Therese A. M. J.

    2013-01-01

    Schizophrenia is a disabling, chronic psychiatric disorder with a prevalence rate of 0.5–1% in the general population. Symptoms include positive (e.g., delusions, hallucinations), negative (e.g., blunted affect, social withdrawal), as well as cognitive symptoms (e.g., memory and attention problems). Although 75–85% of patients with schizophrenia report cognitive impairments, the underlying neuropharmacological mechanisms are not well understood and currently no effective treatment is available for these impairments. This has led to the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) initiative, which established seven cognitive domains that are fundamentally impaired in schizophrenia. These domains include verbal learning and memory, visual learning and memory, working memory, attention and vigilance, processing speed, reasoning and problem solving, and social cognition. Recently, a growing number of studies have been conducted trying to identify the underlying neuropharmacological mechanisms of cognitive impairments in schizophrenia patients. Specific cognitive impairments seem to arise from different underlying neuropharmacological mechanisms. However, most review articles describe cognition in general and an overview of the mechanisms involved in these seven separate cognitive domains is currently lacking. Therefore, we reviewed the underlying neuropharmacological mechanisms focusing on the domains as established by the MATRICS initiative which are considered most crucial in schizophrenia. PMID:24363646

  20. One-Pot Synthesis of Lithium-Rich Cathode Material with Hierarchical Morphology.

    PubMed

    Luo, Kun; Roberts, Matthew R; Hao, Rong; Guerrini, Niccoló; Liberti, Emanuela; Allen, Christopher S; Kirkland, Angus I; Bruce, Peter G

    2016-12-14

    Lithium-rich transition metal oxides, Li 1+x TM 1-x O 2 (TM, transition metal), have attracted much attention as potential candidate cathode materials for next generation lithium ion batteries because their high theoretical capacity. Here we present the synthesis of Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2 using a facile one-pot resorcinol-formaldehyde method. Structural characterization indicates that the material adopts a hierarchical porous morphology consisting of uniformly distributed small pores and disordered large pore structures. The material exhibits excellent electrochemical cycling stability and a good retention of capacity at high rates. The material has been shown to be both advantageous in terms of gravimetric and volumetric capacities over state of the art commercial cathode materials.

  1. Two New Fluorogenic Aptasensors Based on Capped Mesoporous Silica Nanoparticles to Detect Ochratoxin A

    PubMed Central

    Ribes, Àngela; Santiago‐Felipe, Sara; Bernardos, Andrea; Marcos, M. Dolores; Pardo, Teresa; Sancenón, Félix; Aznar, Elena

    2017-01-01

    Abstract Aptamers have been used as recognition elements for several molecules due to their great affinity and selectivity. Additionally, mesoporous nanomaterials have demonstrated great potential in sensing applications. Based on these concepts, we report herein the use of two aptamer‐capped mesoporous silica materials for the selective detection of ochratoxin A (OTA). A specific aptamer for OTA was used to block the pores of rhodamine B‐loaded mesoporous silica nanoparticles. Two solids were prepared in which the aptamer capped the porous scaffolds by using a covalent or electrostatic approach. Whereas the prepared materials remained capped in water, dye delivery was selectively observed in the presence of OTA. The protocol showed excellent analytical performance in terms of sensitivity (limit of detection: 0.5–0.05 nm), reproducibility, and selectivity. Moreover, the aptasensors were tested for OTA detection in commercial foodstuff matrices, which demonstrated their potential applicability in real samples. PMID:29046860

  2. Hyperpolarization of Frozen Hydrocarbon Gases by Dynamic Nuclear Polarization at 1.2 K.

    PubMed

    Vuichoud, Basile; Canet, Estel; Milani, Jonas; Bornet, Aurélien; Baudouin, David; Veyre, Laurent; Gajan, David; Emsley, Lyndon; Lesage, Anne; Copéret, Christophe; Thieuleux, Chloé; Bodenhausen, Geoffrey; Koptyug, Igor; Jannin, Sami

    2016-08-18

    We report a simple and general method for the hyperpolarization of condensed gases by dynamic nuclear polarization (DNP). The gases are adsorbed in the pores of structured mesoporous silica matrices known as HYPSOs (HYper Polarizing SOlids) that have paramagnetic polarizing agents covalently bound to the surface of the mesopores. DNP is performed at low temperatures and moderate magnetic fields (T = 1.2 K and B0 = 6.7 T). Frequency-modulated microwave irradiation is applied close to the electron spin resonance frequency (f = 188.3 GHz), and the electron spin polarization of the polarizing agents of HYPSO is transferred to the nuclear spins of the frozen gas. A proton polarization as high as P((1)H) = 70% can be obtained, which can be subsequently transferred to (13)C in natural abundance by cross-polarization, yielding up to P((13)C) = 27% for ethylene.

  3. Effect of restricted geometry on the superconducting properties of low-melting metals (Review Article)

    NASA Astrophysics Data System (ADS)

    Kumzerov, Yu. A.; Naberezhnov, A. A.

    2016-11-01

    This is a review of results from studies of the effect of artificially restricted geometry (the size effect) on the superconducting properties of nanoparticles of low-melting metals (Hg, Pb, Sn, In). Restricted geometrical conditions are created by embedding molten metals under high pressure into nanoporous matrices of two types: channel structures based on chrysotile asbestos and porous alkali-borosilicate glasses. Chrysotile asbestos is a system of parallel nanotubes with channel diameters ranging from 2 to 20 nm and an aspect ratio (channel length to diameter) of up to 107. The glasses are a random dendritic three-dimensional system of interconnected channels with a technologically controllable mean diameter of 2-30 nm. Temperature dependences of the resistance and heat capacity in the region of the superconducting transition and the dependences of the critical temperature on the mean pore diameter are obtained. The critical magnetic fields are also determined.

  4. Structure of mono- and bimetallic heterogeneous catalysts based on noble metals obtained by means of fluid technology and metal-vapor synthesis

    NASA Astrophysics Data System (ADS)

    Said-Galiev, E. E.; Vasil'kov, A. Yu.; Nikolaev, A. Yu.; Lisitsyn, A. I.; Naumkin, A. V.; Volkov, I. O.; Abramchuk, S. S.; Lependina, O. L.; Khokhlov, A. R.; Shtykova, E. V.; Dembo, K. A.; Erkey, C.

    2012-10-01

    Monometallic nanocomposites are obtained with the use of supercritical carbon dioxide (fluid technique) and metal-vapor synthesis (MVS), while bimetallic nanocomposites of Pt and Au noble metals and γ-Al2O3 oxide matrix are synthesized by a combination of these two methods. The structures, concentrations, and chemical states of metal atoms in composites are studied by means of small-angle X-ray scattering (SAXS), transparent electron microscopy (TEM), X-ray fluorescent analysis (XFA), and X-ray photoelectron spectroscopy (XPS). The neutral state of metal atoms in clusters is shown by XPS and their size distribution is found according to SAXS; as is shown, it is determined by the pore sizes of the oxide matrices and lies in the range of 1 to 50 nm. The obtained composites manifest themselves as effective catalysts in the oxidation of CO to CO2.

  5. Aromatic–aromatic interactions between residues in KCa3.1 pore helix and S5 transmembrane segment control the channel gating process

    PubMed Central

    Garneau, Line; Klein, Hélène; Lavoie, Marie-France; Brochiero, Emmanuelle; Parent, Lucie

    2014-01-01

    The Ca2+-activated potassium channel KCa3.1 is emerging as a therapeutic target for a large variety of health disorders. One distinguishing feature of KCa3.1 is that the channel open probability at saturating Ca2+ concentrations (Pomax) is low, typically 0.1–0.2 for KCa3.1 wild type. This observation argues for the binding of Ca2+ to the calmodulin (CaM)–KCa3.1 complex, promoting the formation of a preopen closed-state configuration leading to channel opening. We have previously shown that the KCa3.1 active gate is most likely located at the level of the selectivity filter. As Ca2+-dependent gating of KCa3.1 originates from the binding of Ca2+ to CaM in the C terminus, the hypothesis of a gate located at the level of the selectivity filter requires that the conformational change initiated in the C terminus be transmitted to the S5 and S6 transmembrane helices, with a resulting effect on the channel pore helix directly connected to the selectivity filter. A study was thus undertaken to determine to what extent the interactions between the channel pore helix with the S5 and S6 transmembrane segments contribute to KCa3.1 gating. Molecular dynamics simulations first revealed that the largest contact area between the pore helix and the S5 plus S6 transmembrane helices involves residue F248 at the C-terminal end of the pore helix. Unitary current recordings next confirmed that modulating aromatic–aromatic interactions between F248 and W216 of the S5 transmembrane helical segment and/or perturbing the interactions between F248 and residues in S6 surrounding the glycine hinge G274 cause important changes in Pomax. This work thus provides the first evidence for a key contribution of the pore helix in setting Pomax by stabilizing the channel closed configuration through aromatic–aromatic interactions involving F248 of the pore helix. We propose that the interface pore helix/S5 constitutes a promising site for designing KCa3.1 potentiators. PMID:24470490

  6. Fabrication and evaluation of low-cost agarose-zinc nanoporous composite matrix: influence of adsorbent density and size distribution on the performance of expanded beds.

    PubMed

    Asghari, Fateme; Jahanshahi, Mohsen

    2012-09-28

    Expanded bed adsorption (EBA), a promising and practical separation technique for adsorption of nanobioproduct/bioproduct, has been widely studied in the past two decades. The development of adsorbent with the special design for expanded bed process is a challenging course. To reduce the costs of adsorbent preparation, fine zinc powder was used as the inexpensive densifier. A series of matrices named Ag-Zn were prepared by water-in-oil emulsification method. The structure and morphology of the prepared matrix were studied by the optical microscope (OM) and scanning electron microscopy (SEM). The physical properties as a function of zinc powder ratio to agarose slurry were measured. The prepared matrices had regular spherical shape, and followed logarithmic normal size distribution with the range of 75-330 μm, mean diameter of 140.54-191.11 μm, wet density of 1.33-2.01 g/ml, water content of 0.45-0.75, porosity of 0.86-0.97 and pore size of about 40-90 nm. The bed expansion factor at the range of 2-3 was examined. The obtained results indicated that the expansion factor was decreased with increasing of matrix density. In addition, it was found that matrices with large particle size were suitable for high operation flow rate. The hydrodynamic properties were determined in expanded bed by the residence time distribution method (RTD). The effects of flow velocity, expansion factor and density of matrix on the hydrodynamic properties were also investigated. Moreover, the influence of particle size distribution on the performance of expanded bed has been studied. Therefore, three different particle size fractions (65-140, 215-280 and 65-280 μm) were assessed. The results indicated that dispersion in liquid-solid expanded beds increased with increasing flow rate and expansion factor; and matrix with a wide particle size distribution leaded to a reduced axial dispersion compared to matrices with a narrow size distribution. The axial dispersion coefficient also enhanced with the increasing of matrix density. It was found that flow rate was the most essential factor to effect on the hydrodynamic characteristics in the bed. For all the prepared matrices, the values of axial mixing coefficients (D(axl)) were smaller than 1.0 × 10⁻⁵ m²/s when flow velocities in expanded bed were less than 700 cm/h. All the results indicate that the prepared matrix show good expansion and stability in expanded bed; and it is suitable for expanded bed processes as an economical adsorbent. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. NMR 1D-imaging of water infiltration into mesoporous matrices.

    PubMed

    Le Feunteun, Steven; Diat, Olivier; Guillermo, Armel; Poulesquen, Arnaud; Podor, Renaud

    2011-04-01

    It is shown that coupling nuclear magnetic resonance (NMR) 1D-imaging with the measure of NMR relaxation times and self-diffusion coefficients can be a very powerful approach to investigate fluid infiltration into porous media. Such an experimental design was used to study the very slow seeping of pure water into hydrophobic materials. We consider here three model samples of nuclear waste conditioning matrices which consist in a dispersion of NaNO(3) (highly soluble) and/or BaSO(4) (poorly soluble) salt grains embedded in a bitumen matrix. Beyond studying the moisture progression according to the sample depth, we analyze the water NMR relaxation times and self-diffusion coefficients along its 1D-concentration profile to obtain spatially resolved information on the solution properties and on the porous structure at different scales. It is also shown that, when the relaxation or self-diffusion properties are multimodal, the 1D-profile of each water population is recovered. Three main levels of information were disclosed along the depth-profiles. They concern (i) the water uptake kinetics, (ii) the salinity and the molecular dynamics of the infiltrated solutions and (iii) the microstructure of the water-filled porosities: open networks coexisting with closed pores. All these findings were fully validated and enriched by NMR cryoporometry experiments and by performing environmental scanning electronic microscopy observations. Surprisingly, results clearly show that insoluble salts enhance the water progression and thereby increase the capability of the material to uptake water. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Physical modeling of geometrically confined disordered protein assemblies

    NASA Astrophysics Data System (ADS)

    Ando, David

    2015-08-01

    The transport of cargo across the nuclear membrane is highly selective and accomplished by a poorly understood mechanism involving hundreds of nucleoporins lining the inside of the nuclear pore complex (NPC). Currently, there is no clear picture of the overall structure formed by this collection of proteins within the pore, primarily due to their disordered nature and uncertainty regarding the properties of individual nucleoporins. We first study the defining characteristics of the amino acid sequences of nucleoporins through bioinformatics techniques, although bioinformatics of disordered proteins is especially challenging given high mutation rates for homologous proteins and that functionality may not be strongly related to sequence. Here we have performed a novel bioinformatic analysis, based on the spatial clustering of physically relevant features such as binding motifs and charges within disordered proteins, on thousands of FG motif containing nucleoporins (FG nups). The biophysical mechanism by which the critical FG nups regulate nucleocytoplasmic transport has remained elusive, yet our analysis revealed a set of highly conserved spatial features in the sequence structure of individual FG nups, such as the separation, localization, and ordering of FG motifs and charged residues along the protein chain. These sequence features are likely conserved due to a common functionality between species regarding how FG nups functionally regulate traffic, therefore these results constrain current models and eliminate proposed biophysical mechanisms responsible for regulation of nucleocytoplasmic traffic in the NPC which would not result in such a conserved amino acid sequence structure. Additionally, this method allows us to identify potentially functionally analogous disordered proteins across distantly related species. To understand the physical implications of the sequence features on structure and dynamics of the nucleoporins, we performed coarse-grained simulations of nucleoporins to understand their individual polymer properties. Our results indicate that different regions or blocks of an individual NPC protein can have distinctly different forms of disorder and that this property appears to be a conserved functional feature, consistent with the results of our physical bioinformatic analysis. Further simulations of grafted rings of FG nups mimicking the in vivo geometry of the NPC were performed and supplemented with polymer brush modeling to understand how aggregates of FG nups regulate transport in vivo. We found that the block structure at the individual protein level in terms of polymer properties is critical to the formation of a unique higher-order polymer brush architecture that can exist in distinct morphologies depending on the effective interaction energy between the phenylalanine glycine (FG) domains of different nups. Because the interactions between FG domains may be modulated by certain forms of transport factors, our results indicate that transitions between brush morphologies that correspond to open and closed states could play an important role in regulating transport across the NPC, suggesting novel forms of gated transport across membrane pores with wide biomimetic applicability in our Diblock Copolymer Brush Gate model. Previous experimental research has concluded that FG nups from S. cerevisiae are present in a bimodal distribution, with the "Forest Model" classifying FG nups as either diblock polymer like "trees" or single block polymer like "shrubs." Our simulation and polymer brush modeling results indicated that the function of the tree FG nups in the Diblock Copolymer Brush Gate (DCBG) model is to form a higher-order polymer brush architecture which can open and close to regulate transport across the NPC. Here we perform coarse grained simulations of the shrub FG nups which confirm that they have a single block polymer structure rather than the diblock structure of tree nups. Our molecular simulations also demonstrate that these single block FG nups are likely compact collapsed coil polymers, implying that shrubs are generally localized to their grafting location within the NPC. We find that adding a layer of shrub FG nups to the DCBG model increases the range of cargo sizes which are able to translocate the pore through a cooperative effect involving shrub and tree nups. This effect can explain the puzzling connection between shrub FG nup deletion mutants in S. cerevisiae and the resulting failure of certain large cargo transport through the NPC. Facilitation of large cargo transport via single block and diblock FG nup cooperativity in the nuclear pore could provide a model mechanism for designing future biomimetic pores of greater applicability. In summary, this dissertation presents a cohesive body of research that uses a combination of techniques including bioinformatics, coarse grained molecular modeling, and polymer brush theory to understand the properties of individual FG nups and how they behave in aggregate, strongly constraining possible biophysical mechanisms which may play a role in regulating traffic through the NPC. Our results are observed across different species and are consistent with many experimental observations which have been reported. Finally, our DCBG model for NPC function provides testable predictions for future experimental investigation and provides a foundation for the design and commercialization of biomimetic pores for filtering applications in vitro and industrial use.

  9. Stress Transmission and Failure in Disordered Porous Media

    NASA Astrophysics Data System (ADS)

    Laubie, Hadrien; Radjai, Farhang; Pellenq, Roland; Ulm, Franz-Josef

    2017-08-01

    By means of extensive lattice-element simulations, we investigate stress transmission and its relation with failure properties in increasingly disordered porous systems. We observe a non-Gaussian broadening of stress probability density functions under tensile loading with increasing porosity and disorder, revealing a gradual transition from a state governed by single-pore stress concentration to a state controlled by multipore interactions and metric disorder. This effect is captured by the excess kurtosis of stress distributions and shown to be nicely correlated with the second moment of local porosity fluctuations, which appears thus as a (dis)order parameter for the system. By generating statistical ensembles of porous textures with varying porosity and disorder, we derive a general expression for the fracture stress as a decreasing function of porosity and disorder. Focusing on critical sites where the local stress is above the global fracture threshold, we also analyze the transition to failure in terms of a coarse-graining length. These findings provide a general framework which can also be more generally applied to multiphase and structural heterogeneous materials.

  10. Deriving the suction stress of unsaturated soils from water retention curve, based on wetted surface area in pores

    NASA Astrophysics Data System (ADS)

    Greco, Roberto; Gargano, Rudy

    2016-04-01

    The evaluation of suction stress in unsaturated soils has important implications in several practical applications. Suction stress affects soil aggregate stability and soil erosion. Furthermore, the equilibrium of shallow unsaturated soil deposits along steep slopes is often possible only thanks to the contribution of suction to soil effective stress. Experimental evidence, as well as theoretical arguments, shows that suction stress is a nonlinear function of matric suction. The relationship expressing the dependence of suction stress on soil matric suction is usually indicated as Soil Stress Characteristic Curve (SSCC). In this study, a novel equation for the evaluation of the suction stress of an unsaturated soil is proposed, assuming that the exchange of stress between soil water and solid particles occurs only through the part of the surface of the solid particles which is in direct contact with water. The proposed equation, based only upon geometric considerations related to soil pore-size distribution, allows to easily derive the SSCC from the water retention curve (SWRC), with the assignment of two additional parameters. The first parameter, representing the projection of the external surface area of the soil over a generic plane surface, can be reasonably estimated from the residual water content of the soil. The second parameter, indicated as H0, is the water potential, below which adsorption significantly contributes to water retention. For the experimental verification of the proposed approach such a parameter is considered as a fitting parameter. The proposed equation is applied to the interpretation of suction stress experimental data, taken from the literature, spanning over a wide range of soil textures. The obtained results show that in all cases the proposed relationships closely reproduces the experimental data, performing better than other currently used expressions. The obtained results also show that the adopted values of the parameter H0, allowing for a good fitting of the experimental data, are in agreement with the values of water potential marking the limit between capillary and adsorptive soil water retention, which can be estimated from the shape of the water retention curve. Therefore, with the proposed approach, at least in principle it is possible to derive the SSSC directly from the knowledge of the SWRC.

  11. Hydrogen Crystallization in Low-Density Aerogels

    DOE PAGES

    Kucheyev, S. O.; Van Cleve, E.; Johnston, L. T.; ...

    2015-03-17

    Crystallization of liquids confined in disordered low-density nanoporous scaffolds is poorly understood. Here in this work, we use relaxation calorimetry to study the liquid–solid phase transition of H 2 in a series of silica and carbon (nanotube- and graphene-based) aerogels with porosities ≳94%. Results show that freezing temperatures of H 2 inside all the aerogels studied are depressed but do not follow predictions of the Gibbs–Thomson theory based on average pore diameters measured by conventional gas sorption techniques. Instead, we find that, for each material family investigated, the depression of average freezing temperatures scales linearly with the ratio of themore » internal surface area (measured by gas sorption) and the total pore volume derived from the density of aerogel monoliths. The slope of such linear dependences is, however, different for silica and carbon aerogels, which we attribute to microporosity of carbons and the presence of macropores in silica aerogels. In conclusion, our results have important implications for the analysis of pore size distributions of low-density nanoporous materials and for controlling crystallization of fuel layers in targets for thermonuclear fusion energy applications.« less

  12. Shear-induced laning transition in a confined colloidal film

    NASA Astrophysics Data System (ADS)

    Gerloff, Sascha; Vezirov, Tarlan A.; Klapp, Sabine H. L.

    2017-06-01

    Using Brownian dynamics simulations, we investigate a dense system of charged colloids exposed to shear flow in a confined (slit-pore) geometry. The equilibrium system at zero flow consists of three well-pronounced layers with a squarelike crystalline in-plane structure. We demonstrate that, for sufficiently large shear rates, the middle layer separates into two sublayers where the particles organize into moving lanes with opposite velocities. The formation of this "microlaned" state results in a destruction of the applied shear profile; it also has a strong impact on the structure of the system, and on its rheology as measured by the elements of the stress tensor. At higher shear rates, we observe a disordered state and finally a recrystallization reminiscent of the behavior of bilayer films. We also discuss the system size dependence and the robustness of the microlaned state against variations of the slit-pore width. In fact, for a pore width allowing for four layers, we observe a similar shear-induced state in which the system splits into two domains with opposite velocities.

  13. Hydrogen crystallization in low-density aerogels.

    PubMed

    Kucheyev, S O; Van Cleve, E; Johnston, L T; Gammon, S A; Worsley, M A

    2015-04-07

    Crystallization of liquids confined in disordered low-density nanoporous scaffolds is poorly understood. Here, we use relaxation calorimetry to study the liquid-solid phase transition of H2 in a series of silica and carbon (nanotube- and graphene-based) aerogels with porosities ≳94%. Results show that freezing temperatures of H2 inside all the aerogels studied are depressed but do not follow predictions of the Gibbs-Thomson theory based on average pore diameters measured by conventional gas sorption techniques. Instead, we find that, for each material family investigated, the depression of average freezing temperatures scales linearly with the ratio of the internal surface area (measured by gas sorption) and the total pore volume derived from the density of aerogel monoliths. The slope of such linear dependences is, however, different for silica and carbon aerogels, which we attribute to microporosity of carbons and the presence of macropores in silica aerogels. Our results have important implications for the analysis of pore size distributions of low-density nanoporous materials and for controlling crystallization of fuel layers in targets for thermonuclear fusion energy applications.

  14. Structural basis of dual Ca2+/pH regulation of the endolysosomal TRPML1 channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Minghui; Zhang, Wei K.; Benvin, Nicole M.

    The activities of organellar ion channels are often regulated by Ca2+ and H+, which are present in high concentrations in many organelles. Here we report a structural element critical for dual Ca2+/pH regulation of TRPML1, a Ca2+-release channel crucial for endolysosomal function. TRPML1 mutations cause mucolipidosis type IV (MLIV), a severe lysosomal storage disorder characterized by neurodegeneration, mental retardation and blindness. We obtained crystal structures of the 213-residue luminal domain of human TRPML1 containing three missense MLIV-causing mutations. This domain forms a tetramer with a highly electronegative central pore formed by a novel luminal pore loop. Cysteine cross-linking and cryo-EMmore » analyses confirmed that this architecture occurs in the full-length channel. Structure–function studies demonstrated that Ca2+ and H+ interact with the luminal pore and exert physiologically important regulation. The MLIV-causing mutations disrupt the luminal-domain structure and cause TRPML1 mislocalization. Our study reveals the structural underpinnings of TRPML1's regulation, assembly and pathogenesis.« less

  15. The possible crossover effects of NaNO3 confined in porous media: From bulk to clusters

    NASA Astrophysics Data System (ADS)

    Mu, R.; Jin, F.; Morgan, S. H.; Henderson, D. O.; Silberman, E.

    1994-05-01

    Differential scanning calorimetry (DSC) and Raman spectra are reported for NaNO3 bulk and for NaNO3 confined in porous silica with pore radii, rp=2.5, 5, 10, 20 nm. Raman spectra are also given for a 6 M solution of NaNO3. The melting transition for the confined NaNO3 exhibits a 1/rp dependence where rp is the pore radius for rp≳5 nm. No melting transition is observed for NaNO3 confined in 2.5 nm pores. Above this pore size, their appears to be a deviation in the melting transition dependence on rp. The internal modes observed in the Raman spectra for the confined material are in agreement with those of the bulk solid except for a feature observed on the low frequency side of the ν1 band. The external TO mode observed at 100 cm-1 and the librational mode at 175 cm-1 for NaNO3 both decrease in intensity and broaden as rp decreases and both bands disappear at rp=2.5 nm. An additional peak at 70 cm-1 not observed in the solution or bulk NaNO3 spectra appears in the spectra of confined NaNO3 and increases in intensity as rp decreases. We assign this band to a new phase of NaNO3 which is stabilized by the surface hydroxyl groups of the porous silica. For NaNO3 confined in pores, rp≤2.5 nm, we suggest that NaNO3 exists as disordered aggregates.

  16. From mucolipidosis type IV to Ebola: TRPML and two-pore channels at the crossroads of endo-lysosomal trafficking and disease.

    PubMed

    Grimm, Christian; Butz, Elisabeth; Chen, Cheng-Chang; Wahl-Schott, Christian; Biel, Martin

    2017-11-01

    What do lysosomal storage disorders such as mucolipidosis type IV have in common with Ebola, cancer cell migration, or LDL-cholesterol trafficking? LDL-cholesterol, certain bacterial toxins and viruses, growth factors, receptors, integrins, macromolecules destined for degradation or secretion are all sorted and transported via the endolysosomal system (ES). There are several pathways known in the ES, e.g. the degradation, the recycling, or the retrograde trafficking pathway. The ES comprises early and late endosomes, lysosomes and recycling endosomes as well as autophagosomes and lysosome related organelles. Contact sites between the ES and the endoplasmic reticulum or the Golgi apparatus may also be considered part of it. Dysfunction of this complex intracellular machinery can cause or contribute to the development of a number of diseases ranging from neurodegenerative, infectious, or metabolic diseases to retinal and pigmentation disorders as well as cancer and autophagy-related diseases. Endolysosomal ion channels such as mucolipins (TRPMLs) and two-pore channels (TPCs) play an important role in intracellular cation/calcium signaling and homeostasis and appear to critically contribute to the proper function of the endolysosomal trafficking network. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Entry into the nuclear pore complex is controlled by a cytoplasmic exclusion zone containing dynamic GLFG-repeat nucleoporin domains.

    PubMed

    Fiserova, Jindriska; Spink, Matthew; Richards, Shane A; Saunter, Christopher; Goldberg, Martin W

    2014-01-01

    Nuclear pore complexes (NPCs) mediate nucleocytoplasmic movement. The central channel contains proteins with phenylalanine-glycine (FG) repeats, or variations (GLFG, glycine-leucine-phenylalanine-glycine). These are 'intrinsically disordered' and often represent weak interaction sites that become ordered upon interaction. We investigated this possibility during nuclear transport. Using electron microscopy of S. cerevisiae, we show that NPC cytoplasmic filaments form a dome-shaped structure enclosing GLFG domains. GLFG domains extend out of this structure and are part of an 'exclusion zone' that might act as a partial barrier to entry of transport-inert proteins. The anchor domain of a GLFG nucleoporin locates exclusively to the central channel. By contrast, the localisation of the GLFG domains varied between NPCs and could be cytoplasmic, central or nucleoplasmic and could stretch up to 80 nm. These results suggest a dynamic exchange between ordered and disordered states. In contrast to diffusion through the NPC, transport cargoes passed through the exclusion zone and accumulated near the central plane. We also show that movement of cargo through the NPC is accompanied by relocation of GLFG domains, suggesting that binding, restructuring and movement of these domains could be part of the translocation mechanism.

  18. The impact of eszopiclone on sleep and cognition in patients with schizophrenia and insomnia: a double-blind, randomized, placebo-controlled trial.

    PubMed

    Tek, Cenk; Palmese, Laura B; Krystal, Andrew D; Srihari, Vinod H; DeGeorge, Pamela C; Reutenauer, Erin L; Guloksuz, Sinan

    2014-12-01

    Insomnia is frequent in schizophrenia and may contribute to cognitive impairment as well as overuse of weight inducing sedative antipsychotics. We investigated the effects of eszopiclone on sleep and cognition for patients with schizophrenia-related insomnia in a double-blind placebo controlled study, followed by a two-week, single-blind placebo phase. Thirty-nine clinically stable outpatients with schizophrenia or schizoaffective disorder and insomnia were randomized to either 3mg eszopiclone (n=20) or placebo (n=19). Primary outcome measure was change in Insomnia Severity Index (ISI) over 8 weeks. Secondary outcome measure was change in MATRICS Consensus Cognitive Battery (MATRICS). Sleep diaries, psychiatric symptoms, and quality of life were also monitored. ISI significantly improved more in eszopiclone (mean=-10.7, 95% CI=-13.2; -8.2) than in placebo (mean=-6.9, 95% CI=-9.5; -4.3) with a between-group difference of -3.8 (95% CI=-7.5; -0.2). MATRICS score change did not differ between groups. On further analysis there was a significant improvement in the working memory test, letter-number span component of MATRICS (mean=9.8±9.2, z=-2.00, p=0.045) only for subjects with schizophrenia on eszopiclone. There were improvements in sleep diary items in both groups with no between-group differences. Psychiatric symptoms remained stable. Discontinuation rates were similar. Sleep remained improved during single-blind placebo phase after eszopiclone was stopped, but the working memory improvement in patients with schizophrenia was not durable. Eszopiclone stands as a safe and effective alternative for the treatment of insomnia in patients with schizophrenia. Its effects on cognition require further study. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Tales of Dihydrofolate Binding to R67 Dihydrofolate Reductase

    PubMed Central

    2015-01-01

    Homotetrameric R67 dihydrofolate reductase possesses 222 symmetry and a single active site pore. This situation results in a promiscuous binding site that accommodates either the substrate, dihydrofolate (DHF), or the cofactor, NADPH. NADPH interacts more directly with the protein as it is larger than the substrate. In contrast, the p-aminobenzoyl-glutamate tail of DHF, as monitored by nuclear magnetic resonance and crystallography, is disordered when bound. To explore whether smaller active site volumes (which should decrease the level of tail disorder by confinement effects) alter steady state rates, asymmetric mutations that decreased the half-pore volume by ∼35% were constructed. Only minor effects on kcat were observed. To continue exploring the role of tail disorder in catalysis, 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide-mediated cross-linking between R67 DHFR and folate was performed. A two-folate, one-tetramer complex results in the loss of enzyme activity where two symmetry-related K32 residues in the protein are cross-linked to the carboxylates of two bound folates. The tethered folate could be reduced, although with a ≤30-fold decreased rate, suggesting decreased dynamics and/or suboptimal positioning of the cross-linked folate for catalysis. Computer simulations that restrain the dihydrofolate tail near K32 indicate that cross-linking still allows movement of the p-aminobenzoyl ring, which allows the reaction to occur. Finally, a bis-ethylene-diamine-α,γ-amide folate adduct was synthesized; both negatively charged carboxylates in the glutamate tail were replaced with positively charged amines. The Ki for this adduct was ∼9-fold higher than for folate. These various results indicate a balance between folate tail disorder, which helps the enzyme bind substrate while dynamics facilitates catalysis. PMID:26637016

  20. A multi-year field study to evaluate the environmental fate and agronomic effects of insecticide mixtures.

    PubMed

    Whiting, Sara A; Strain, Katherine E; Campbell, Laura A; Young, Bryan G; Lydy, Michael J

    2014-11-01

    A mixture of insecticides used in corn production was monitored over a three-year period in a field study to determine how long each persists in the environment, where each insecticide travels within the corn field, and the efficacy of using soil-applied insecticides with genetically modified corn. The genetically modified corn contained the insecticidal Cry1Ab and Cry3Bb1 proteins (Bt corn) and the Cry1Ab protein was found to persist only during the corn growing season in soil, runoff water, and runoff sediment with highest concentrations measured during pollination. Very low concentrations of Cry1Ab proteins were measured in soil collected in the non-Bt corn field, and no Cry1Ab proteins were detected in shallow groundwater or soil pore water. Clothianidin, a neonicotinoid insecticide used as a seed coating, was detected in all matrices and remained persistent throughout the year in soil pore water. Tefluthrin, a pyrethroid insecticide applied at planting to control corn rootworm larvae (Diabrotica spp., Coleoptera: Chrysomelidae) populations, was consistently detected in soil, runoff water, and runoff sediment during the corn growing season, but was not detected in groundwater or soil pore water. Tefluthrin did not have an effect on root damage from corn rootworm larvae feeding to Bt corn, but did prevent damage to non-Bt corn. A slight reduction in grain yield was observed in the non-Bt, no tefluthrin treatment when compared to all other treatments, but no significant difference in grain yield was observed among Bt corn treatments regardless of soil insecticide application. In the current study, the use of tefluthrin on Bt corn did not significantly affect crop damage or yield, and tefluthrin may travel off-site in runoff water and sediment. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Tuning and Freezing Disorder in Photonic Crystals using Percolation Lithography

    PubMed Central

    Burgess, Ian B.; Abedzadeh, Navid; Kay, Theresa M.; Shneidman, Anna V.; Cranshaw, Derek J.; Lončar, Marko; Aizenberg, Joanna

    2016-01-01

    Although common in biological systems, synthetic self-assembly routes to complex 3D photonic structures with tailored degrees of disorder remain elusive. Here we show how liquids can be used to finely control disorder in porous 3D photonic crystals, leading to complex and hierarchical geometries. In these optofluidic crystals, dynamically tunable disorder is superimposed onto the periodic optical structure through partial wetting or evaporation. In both cases, macroscopic symmetry breaking is driven by subtle sub-wavelength variations in the pore geometry. These variations direct site-selective infiltration of liquids through capillary interactions. Incorporating cross-linkable resins into our liquids, we developed methods to freeze in place the filling patterns at arbitrary degrees of partial wetting and intermediate stages of drying. These percolation lithography techniques produced permanent photonic structures with adjustable disorder. By coupling strong changes in optical properties to subtle differences in fluid behavior, optofluidic crystals may also prove useful in rapid analysis of liquids. PMID:26790372

  2. Hybrid Coatings Enriched with Tetraethoxysilane for Corrosion Mitigation of Hot-Dip Galvanized Steel in Chloride Contaminated Simulated Concrete Pore Solutions

    PubMed Central

    Figueira, Rita B.; Callone, Emanuela; Silva, Carlos J. R.; Pereira, Elsa V.; Dirè, Sandra

    2017-01-01

    Hybrid sol-gel coatings, named U(X):TEOS, based on ureasilicate matrices (U(X)) enriched with tetraethoxysilane (TEOS), were synthesized. The influence of TEOS addition was studied on both the structure of the hybrid sol-gel films as well as on the electrochemical properties. The effect of TEOS on the structure of the hybrid sol-gel films was investigated by solid state Nuclear Magnetic Resonance. The dielectric properties of the different materials were investigated by electrochemical impedance spectroscopy. The corrosion behavior of the hybrid coatings on HDGS was studied in chloride-contaminated simulated concrete pore solutions (SCPS) by polarization resistance measurements. The roughness of the HDGS coated with hybrids was also characterized by atomic force microscopy. The structural characterization of the hybrid materials proved the effective reaction between Jeffamine® and 3-isocyanate propyltriethoxysilane (ICPTES) and indicated that the addition of TEOS does not seem to affect the organic structure or to increase the degree of condensation of the hybrid materials. Despite the apparent lack of influence on the hybrids architecture, the polarization resistance measurements confirmed that TEOS addition improves the corrosion resistance of the hybrid coatings (U(X):TEOS) in chloride-contaminated SCPS when compared to samples prepared without any TEOS (U(X)). This behavior could be related to the decrease in roughness of the hybrid coatings (due TEOS addition) and to the different metal coating interaction resulting from the increase of the inorganic component in the hybrid matrix. PMID:28772667

  3. Optimization of tenofovir release from mucoadhesive vaginal tablets by polymer combination to prevent sexual transmission of HIV.

    PubMed

    Notario-Pérez, Fernando; Cazorla-Luna, Raúl; Martín-Illana, Araceli; Ruiz-Caro, Roberto; Tamayo, Aitana; Rubio, Juan; Veiga, María-Dolores

    2018-01-01

    The use of sustained-release mucoadhesive vaginal tablets of antiretroviral drugs as microbicidal formulations can be an effective strategy for reducing the sexual transmission of HIV from men to women, which is a main problem particularly in low- and middle-income countries. Different polymers (hydroxypropylmethyl cellulose (HPMC), chitosan, guar gum and Eudragit ® RS) have proven some good features for this purpose. At this work, these polymers have been combined in pairs in different proportions to enhance the advantages offered by each one individually. The in vitro release of tenofovir from the matrices, ex vivo mucoadhesive capacity (evaluated on vaginal mucosa) and the degree of swelling in simulated vaginal fluid have been assessed. A multimodal pore size distribution is observed in porosimetry studies -carried out with swelling witnesses-, due to the contribution of polymers with different swelling behaviour to the pore formation, and it is corroborated by scanning electron microscopy. X-ray diffraction technique confirms the changes in crystallinity of the formulation after swelling. We can report that the combination of HPMC and chitosan in the same formulation may be useful for the prevention of sexual transmission of HIV, since tablets can be obtained that remain adhered to the vaginal mucosa for 96h, so the drug is released in a sustained manner for 72h. When the formulation contains more chitosan than HPMC the swelling is moderate, making it more comfortable for women to apply. Copyright © 2017. Published by Elsevier Ltd.

  4. The sintered microsphere matrix for bone tissue engineering: in vitro osteoconductivity studies.

    PubMed

    Borden, Mark; Attawia, Mohamed; Laurencin, Cato T

    2002-09-05

    A tissue engineering approach has been used to design three-dimensional synthetic matrices for bone repair. The osteoconductivity and degradation profile of a novel polymeric bone-graft substitute was evaluated in an in vitro setting. Using the copolymer poly(lactide-co-glycolide) [PLAGA], a sintering technique based on microsphere technology was used to fabricate three-dimensional porous scaffolds for bone regeneration. Osteoblasts and fibroblasts were seeded onto a 50:50 PLAGA scaffold. Morphologic evaluation through scanning electron microscopy demonstrated that both cell types attached and spread over the scaffold. Cells migrated through the matrix using cytoplasmic extensions to bridge the structure. Cross-sectional images indicated that cellular proliferation had penetrated into the matrix approximately 700 microm from the surface. Examination of the surfaces of cell/matrix constructs demonstrated that cellular proliferation had encompassed the pores of the matrix by 14 days of cell culture. With the aim of optimizing polymer composition and polymer molecular weight, a degradation study was conducted utilizing the matrix. The results demonstrate that degradation of the sintered matrix is dependent on molecular weight, copolymer ratio, and pore volume. From this data, it was determined that 75:25 PLAGA with an initial molecular weight of 100,000 has an optimal degradation profile. These studies show that the sintered microsphere matrix has an osteoconductive structure capable of functioning as a cellular scaffold with a degradation profile suitable for bone regeneration. Copyright 2002 Wiley Periodicals, Inc.

  5. Dual Diagnosis Motivational Interviewing: a modification of Motivational Interviewing for substance-abusing patients with psychotic disorders

    PubMed Central

    Martino, Steve; Carroll, Kathleen; Kostas, Demetrios; Perkins, Jennifer; Rounsaville, Bruce

    2013-01-01

    Motivational Interviewing (MI) is a brief treatment approach for helping patients develop intrinsic motivation to change addictive behaviors. While initially developed to target primary substance using populations, professionals are increasingly recognizing the promise this approach has for addressing the motivational dilemmas faced by patients who have co-occurring psychiatric and psychoactive substance use disorders. Unfortunately, this recognition has not lead to a clear explication of how MI might be adopted for specific diagnostic populations of dually diagnosed patients. In this article we describe how we have applied the principles and practices of MI to patients who have psychotic disorders and co-occurring drug or alcohol use problems. Specifically, we provide two supplemental guidelines to augment basic MI principles (adopting an integrated dual diagnosis approach, accommodating cognitive impairments and disordered thinking). We present recommended modifications to primary MI skill sets (simplifying open-ended questions, refining reflective listening skills, heightening emphasis on affirmations, integrating psychiatric issues into personalized feedback and decisional balance matrices). Finally, we highlight other clinical considerations (handling psychotic exacerbation and crisis events, recommended professional qualifications) when using MI with psychotic disordered dually diagnosed patients. PMID:12495791

  6. How Lipid Membranes Affect Pore Forming Toxin Activity.

    PubMed

    Rojko, Nejc; Anderluh, Gregor

    2015-12-15

    Pore forming toxins (PFTs) evolved to permeate the plasma membrane of target cells. This is achieved in a multistep mechanism that usually involves binding of soluble protein monomer to the lipid membrane, oligomerization at the plane of the membrane, and insertion of part of the polypeptide chain across the lipid membrane to form a conductive channel. Introduced pores allow uncontrolled transport of solutes across the membrane, inflicting damage to the target cell. PFTs are usually studied from the perspective of structure-function relationships, often neglecting the important role of the bulk membrane properties on the PFT mechanism of action. In this Account, we discuss how membrane lateral heterogeneity, thickness, and fluidity influence the pore forming process of PFTs. In general, lipid molecules are more accessible for binding in fluid membranes due to steric reasons. When PFT specifically binds ordered domains, it usually recognizes a specific lipid distribution pattern, like sphingomyelin (SM) clusters or SM/cholesterol complexes, and not individual lipid species. Lipid domains were also suggested to act as an additional concentration platform facilitating PFT oligomerization, but this is yet to be shown. The last stage in PFT action is the insertion of the transmembrane segment across the membranes to build the transmembrane pore walls. Conformational changes are a spontaneous process, and sufficient free energy has to be available for efficient membrane penetration. Therefore, fluid bilayers are permeabilized more readily in comparison to highly ordered and thicker liquid ordered lipid phase (Lo). Energetically more costly insertion into the Lo phase can be driven by the hydrophobic mismatch between the thinner liquid disordered phase (Ld) and large protein complexes, which are unable to tilt like single transmembrane segments. In the case of proteolipid pores, membrane properties can directly modulate pore size, stability, and even selectivity. Finally, events associated with pore formation can modulate properties of the lipid membrane and affect its organization. Model membranes do not necessarily reproduce the physicochemical properties of the native cellular membrane, and caution is needed when transferring results from model to native lipid membranes. In this context, the utilization of novel approaches that enable studying PFTs on living cells at a single molecule level should reveal complex protein-lipid membrane interactions in greater detail.

  7. Synthesis of flower-like Boehmite (γ-AlOOH) via a one-step ionic liquid-assisted hydrothermal route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Zhe, E-mail: tangzhe1983@163.com; Liang, Jilei, E-mail: liangjilei_httplan@126.com; Li, Xuehui, E-mail: lxhhmx@163.com

    A simple and novel synthesis process, one-step ionic liquid-assisted hydrothermal synthesis route, has been developed in the work to synthesize Bohemithe (γ-AlOOH) with flower-like structure. The samples were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscope (SEM). Ionic liquid [Omim]{sup +}Cl{sup −}, as a template, plays an important role in the morphology and pore structure of the products due to its strong interactions with reaction particles. With the increase in the dosage of ionic liquid [Omim]{sup +}Cl{sup −}, the morphology of the γ-AlOOH was changed from initial bundles of nanosheets (without ionic liquid) intomore » final well-developed monodispersed 3D flower-like architectures ([Omim]{sup +}Cl{sup −}=72 mmol). The pore structure was also altered gradually from initial disordered slit-like pore into final relatively ordered ink-bottle pore. Furthermore, the proposed formation mechanism and other influencing factors such as reaction temperature and urea on formation and morphology of the γ-AlOOH have also been investigated. - Graphical abstract: The flower-like γ-AlOOH architectures composed by nanosheets with narrow size distribution (1.6–2.2 μm) and uniform pore size (6.92 nm) have been synthesized via a one-step ionic liquid-assisted hydrothermal route. - Highlights: • The γ-AlOOH microflowers were synthesized via an ionic liquid-assisted hydrothermal route. • Ionic liquid plays an important role on the morphology and porous structure of the products. • Ionic liquid can be easily removed from the products and reused in recycling experiments. • A “aggregation–recrystallization–Ostwald Ripening“formation mechanism may occur.« less

  8. Bioceramics and pharmaceuticals: A remarkable synergy

    NASA Astrophysics Data System (ADS)

    Vallet-Regí, María; Balas, Francisco; Colilla, Montserrat; Manzano, Miguel

    2007-09-01

    The research on controlled drug delivery systems using bioceramics as host matrices presents two distinct sides; one route aims at embedding pharmaceuticals in biomaterials designed for the reconstruction or regeneration of living tissues, in order to counteract inflammatory responses, infections, bone carcinomas and so forth, while the other route deals with the more traditional drug introduction systems, i.e. oral administration. The incorporation of pharmaceuticals to bioceramic matrices could be very interesting in clinical practice. It is rather common in these days for an orthopedic surgeon working in bone reconstruction to use bioceramics. An added value to the production of these ceramics would be the optional addition of pharmaceuticals such as antibiotics, anti-inflammatories, anti-carcinogens, etc. In this sense, if we take into account the infections statistics at hip joint prostheses, the incidence varies between 2 and 4%, reaching up to a 45% in bolts used as external fixation. One of the main problems in these situations is the access to the infected area of the bone, in order to deliver the adequate antibiotic. If the pharmaceutical could be included within the implant itself, the added value would be straightforward. And if the bioceramic is bioactive, and therefore precursor of new bone tissue, the capability to introduce peptides, proteins or growth factors at its pores could accelerate the bone regeneration processes. We are facing a fine example of multidisciplinary research, where the so-called transversal supply of knowledge from and between the domains of materials science, biology and medicine will empower the know-how and applications that shall, undoubtedly, give rise to new advances in science and technology.

  9. High-Performance Overall Water Splitting Electrocatalysts Derived from Cobalt-Based Metal–Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Bo; Jiang, Nan; Sheng, Meili

    2015-11-05

    The design of active, robust, and nonprecious electrocatalysts with both H 2 and O 2 evolution reaction (HER and OER) activities for overall water splitting is highly desirable but remains a grand challenge. Here in this article, we report a facile two-step method to synthesize porous Co-P/NC nanopolyhedrons composed of CoP x (a mixture of CoP and Co 2P) nanoparticles embedded in N-doped carbon matrices as electrocatalysts for overall water splitting. The Co-P/NC catalysts were prepared by direct carbonization of Co-based zeolitic imidazolate framework (ZIF-67) followed by phosphidation. Benefiting from the large specific surface area, controllable pore texture, and highmore » nitrogen content of ZIF (a subclass of metal–organic frameworks), the optimal Co-P/NC showed high specific surface area of 183 m 2 g -1 and large mesopores, and exhibited remarkable catalytic performance for both HER and OER in 1.0 M KOH, affording a current density of 10 mA cm -2 at low overpotentials of -154 mV for HER and 319 mV for OER, respectively. Furthermore, a Co-P/NC-based alkaline electrolyzer approached 165 mA cm -2 at 2.0 V, superior to that of Pt/IrO 2 couple, along with strong stability. Various characterization techniques including X-ray absorption spectroscopy (XAS) revealed that the superior activity and strong stability of Co-P/NC originated from its 3D interconnected mesoporosity with high specific surface area, high conductivity, and synergistic effect of CoP x encapsulated within N-doped carbon matrices.« less

  10. Fabrication and Atomic Force Microscopy Characterization of Molecular Composites of Fullerenes in Aerogel Matrix for Optical Limiting

    NASA Technical Reports Server (NTRS)

    Lu, W. J .; Sunkara, H. B.; Shi, D.; Morgan, S. H.; Penn, B.; Frazier, D.; Collins, W. E.

    1998-01-01

    An optical limiter is a device which exhibits a decrease in the transmittance in a material with an increase in intensity of light. Sol-gel techniques offer many advantages in the fabrication of materials. These materials possess many desirable properties for nonlinear optical (NLO) device applications which include transparency, high thermal and chemical stabilities, very low refractive index and dielectric constants. C60 shows a higher excited state absorption cross section than the ground state absorption cross section over the complete visible spectrum, and the spectrum of the excited state absorption of C60 has the same general shape as the ground state absorption. This fact suggests that fullerenes are ideal optical limiting materials. Aerogels are fabricated by sol-gel processing. One of the key issues is the dispersion of fullerenes into small and uniform pores of silica aerogel host matrices. The aerogel network was characterized by Raman spectroscopy. Atomic force microscopy is a technique with many advantages to characterize the aerogel materials. The morphology of the cleaved surface for a C60/aerogel sample shows that there are long paralleled shaped stripes with 20-30 nm in width and about 500 nm in length on the cleaved surface. The cleaved surface also was etched by 5% HF solution for one minutes, and it became smoother after HF etching. The main feature in on the surface is the spherical particles with the size of few nanometers, and no aggregated fullerenes appear. The fullerenes are well dispersed in the aerogel matrices.

  11. Mesoporous silica fillers and resin composition effect on dental composites cytocompatibility.

    PubMed

    Attik, Nina; Hallay, Franck; Bois, Laurence; Brioude, Arnaud; Grosgogeat, Brigitte; Colon, Pierre

    2017-02-01

    Many new dental composites containing mesoporous silica fillers have been developed to improve rheological properties and enhance the resin-filler interface. To investigate the correlation between the cytocompatibility of several dental composites and their composition; two aspects have been considered: presence of bisphenol A (BPA)-glycidyl methacrylate (Bis-GMA) or triethyleneglycol-dimethacrylate (TEGDMA) among the resin monomers and presence of porous particles among the filler blends. Five commercial composites with different resin matrices and mineral fillers were compared to four experimental composites designed without any BPA-based monomers or TEGDMA. Porous fillers, with or without silanation, were added in some of the experimental composites. Two reference resin matrices were also selected. Cytocompatibility with cultured primary human gingival fibroblasts was assessed by confocal laser scanning microscopy with time-lapse imaging. Fourier transform infrared spectroscopy was used to control monomer conversion rate. Conversion rates of the experimental composites ranged from 57% to 71%, a comparable ratio for dental composites. Experimental samples were better tolerated than tested commercial samples not containing TEGDMA and significantly better than those containing TEGDMA. Experimental composites with porous fillers exhibited good cytocompatibility, especially when surfaces were silanated. Cytotoxicity was associated with resin amount and especially resin nature. Composites containing porous fillers might behave as if the resin trapped into pores has no effect on toxicity. The cytotoxicity of composites with and without BPA derivatives was mainly attributed to the release of residual TEGDMA rather than the BPA derivatives. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Influence of hydraulic hysteresis on the mechanical behavior of unsaturated soils and interfaces

    NASA Astrophysics Data System (ADS)

    Khoury, Charbel N.

    Unsaturated soils are commonly widespread around the world, especially at shallow depths from the surface. The mechanical behavior of this near surface soil is influenced by the seasonal variations such as rainfall or drought, which in turn may have a detrimental effect on many structures (e.g. retaining walls, shallow foundations, mechanically stabilized earth walls, soil slopes, and pavements) in contact with it. Thus, in order to better understand this behavior, it is crucial to study the complex relationship between soil moisture content and matric suction (a stress state variable defined as pore air pressure minus pore water pressure) known as the Soil Water Characteristic Curve (SWCC). In addition, the influence of hydraulic hysteresis on the behavior of unsaturated soils, soil-structure interaction (i.e. rough and smooth steel interfaces, soil-geotextile interfaces) and pavement subgrade (depicted herein mainly by resilient modulus, Mr) was also studied. To this end, suction-controlled direct shear tests were performed on soils, rough and smooth steel interfaces and geotextile interface under drying (D) and wetting after drying (DW). The shearing behavior is examined in terms of the two stress state variables, matric suction and net normal stress. Results along the D and DW paths indicated that peak shear strength increased with suction and net normal stress; while in general, the post peak shear strength was not influenced by suction for rough interfaces and no consistent trend was observed for soils and soil-geotextiles interfaces. Contrary to saturated soils, results during shearing at higher suction values (i.e. 25 kPa and above) showed a decrease in water content eventhough the sample exhibited dilation. A behavior postulated to be related to disruption of menisci and/or non-uniformity of pore size which results in an increase in localized pore water pressures. Interestingly, wetting after drying (DW) test results showed higher peak and post peak shear strength than that of the drying (D) tests. This is believed to be the result of many factors such as: (1) cyclic suction stress loading, (2) water content (less on wetting than drying), and (3) type of soil. The cyclic suction loading may have induced irrecoverable plastic strains, resulting in stiffer samples for wetting tests as compared to drying. Additionally, water may be acting as a lubricant and thus resulting in lower shear strength for test samples D with higher water contents than DW samples. Furthermore, various shear strength models were investigated for their applicability to the experimental data. Models were proposed for the prediction of shear strength with suction based on the SWCC. The models are able to predict the shear strength of unsaturated soil and interfaces due to drying and wetting (i.e. hydraulic hysteresis) by relating directly to the SWCC. The proposed models were used and partly validated by predicting different test results from the literature. In addition, an existing elastoplastic constitutive model was investigated and validated by comparing the predicted and experimental (stress-displacement, volume change behavior) results obtained from rough and geotextile interface tests. This study also explores the effect of hydraulic hysteresis on the resilient modulus (Mr) of subgrade soils. Suction-controlled Mr tests were performed on compacted samples along the primary drying, wetting, secondary drying and wetting paths. Two test types were performed to check the effect of cyclic deviatoric stress loading on the results. First, M r tests were performed on the same sample at each suction (i.e. 25, 50, 75, 100 kPa) value along all the paths (drying, wetting etc.). A relationship between resilient modulus (Mr) and matric suction was obtained and identified as the resilient modulus characteristic curve (MRCC). MRCC results indicated that Mr increased with suction along the drying curve. On the other hand, results on the primary wetting indicated higher Mr than that of the primary drying and the secondary drying. The second type of test was performed at selected suction without subjecting the sample to previous Mr tests. Results indicated that Mr compared favorably with the other type of test (i.e. with previous M r testing), which indicates that the cyclic deviatoric stress loading influence was not as significant as the hydraulic hysteresis (i.e. cyclic suction stress loading). A new model to predict the MRCC results during drying and wetting (i.e., hydraulic hysteresis) is proposed based on the SWCC hysteresis. The model predicted favorably the drying and then the wetting results using the SWCC at all stress levels. (Abstract shortened by UMI.)

  13. Fractal avalanche ruptures in biological membranes

    NASA Astrophysics Data System (ADS)

    Gözen, Irep; Dommersnes, Paul; Czolkos, Ilja; Jesorka, Aldo; Lobovkina, Tatsiana; Orwar, Owe

    2010-11-01

    Bilayer membranes envelope cells as well as organelles, and constitute the most ubiquitous biological material found in all branches of the phylogenetic tree. Cell membrane rupture is an important biological process, and substantial rupture rates are found in skeletal and cardiac muscle cells under a mechanical load. Rupture can also be induced by processes such as cell death, and active cell membrane repair mechanisms are essential to preserve cell integrity. Pore formation in cell membranes is also at the heart of many biomedical applications such as in drug, gene and short interfering RNA delivery. Membrane rupture dynamics has been studied in bilayer vesicles under tensile stress, which consistently produce circular pores. We observed very different rupture mechanics in bilayer membranes spreading on solid supports: in one instance fingering instabilities were seen resulting in floral-like pores and in another, the rupture proceeded in a series of rapid avalanches causing fractal membrane fragmentation. The intermittent character of rupture evolution and the broad distribution in avalanche sizes is consistent with crackling-noise dynamics. Such noisy dynamics appear in fracture of solid disordered materials, in dislocation avalanches in plastic deformations and domain wall magnetization avalanches. We also observed similar fractal rupture mechanics in spreading cell membranes.

  14. How to operate a nuclear pore complex by Kap-centric control

    PubMed Central

    Lim, Roderick Y H; Huang, Binlu; Kapinos, Larisa E

    2015-01-01

    Nuclear pore complexes (NPCs) mediate molecular transport between the nucleus and cytoplasm in eukaryotic cells. Tethered within each NPC lie numerous intrinsically disordered proteins known as FG nucleoporins (FG Nups) that are central to this process. Over two decades of investigation has converged on a view that a barrier mechanism consisting of FG Nups rejects non-specific macromolecules while promoting the speed and selectivity of karyopherin (Kaps) receptors (and their cargoes). Yet, the number of NPCs in the cell is exceedingly small compared to the number of Kaps, so that in fact there is a high likelihood the pores are always populated by Kaps. Here, we contemplate a view where Kaps actively participate in regulating the selectivity and speed of transport through NPCs. This so-called “Kap-centric” control of the NPC accounts for Kaps as essential barrier reinforcements that play a prerequisite role in facilitating fast transport kinetics. Importantly, Kap-centric control reconciles both mechanistic and kinetic requirements of the NPC, and in so doing potentially resolves incoherent aspects of FG-centric models. On this basis, we surmise that Kaps prime the NPC for nucleocytoplasmic transport by fine-tuning the NPC microenvironment according to the functional needs of the cell. PMID:26338152

  15. Nup98 FG domains from diverse species spontaneously phase-separate into particles with nuclear pore-like permselectivity

    PubMed Central

    Schmidt, Hermann Broder; Görlich, Dirk

    2015-01-01

    Nuclear pore complexes (NPCs) conduct massive transport mediated by shuttling nuclear transport receptors (NTRs), while keeping nuclear and cytoplasmic contents separated. The NPC barrier in Xenopus relies primarily on the intrinsically disordered FG domain of Nup98. We now observed that Nup98 FG domains of mammals, lancelets, insects, nematodes, fungi, plants, amoebas, ciliates, and excavates spontaneously and rapidly phase-separate from dilute (submicromolar) aqueous solutions into characteristic ‘FG particles’. This required neither sophisticated experimental conditions nor auxiliary eukaryotic factors. Instead, it occurred already during FG domain expression in bacteria. All Nup98 FG phases rejected inert macromolecules and yet allowed far larger NTR cargo complexes to rapidly enter. They even recapitulated the observations that large cargo-domains counteract NPC passage of NTR⋅cargo complexes, while cargo shielding and increased NTR⋅cargo surface-ratios override this inhibition. Their exquisite NPC-typical sorting selectivity and strong intrinsic assembly propensity suggest that Nup98 FG phases can form in authentic NPCs and indeed account for the permeability properties of the pore. DOI: http://dx.doi.org/10.7554/eLife.04251.001 PMID:25562883

  16. Mesoporous zirconium titanium oxides. Part 2: Synthesis, porosity, and adsorption properties of beads.

    PubMed

    Sizgek, G Devlet; Sizgek, Erden; Griffith, Christopher S; Luca, Vittorio

    2008-11-04

    Mesoporous zirconium titanium mixed-oxide beads having disordered wormhole textures and mole fractions of Zr (x) ranging from x=0.25 to 0.67 have been prepared. The bead preparation method combined the forced hydrolysis of mixtures of zirconium-titanium alkoxides in the presence of long-chain carboxylates with external gelation. Uniformly sized beads could be produced in the size range 0.5-1.1 mm by varying the droplet size and viscosity of the mixed-oxide sol, thus making them suitable for large-scale column chromatographic applications. The beads exhibited narrow pore size distributions with similar mean pore diameters of around 3.7 nm. The specific surface areas of the beads were linked to the Zr mole fraction in the precursor solution and were generally greater than 350 m2/g for x=0.5. A combination of scanning transmission electron microscopy and X-ray absorption fine structure analysis indicated that the pore walls of the beads were composed of atomically dispersed Zr and Ti to form a continuous network of Zr-O-Ti bonds. Mass transport in the beads was evaluated by monitoring the kinetics of vanadate and vanadyl adsorption at pH 10.5 and 0.87, respectively.

  17. Phytochemicals prevent mitochondrial membrane permeabilization and protect SH-SY5Y cells against apoptosis induced by PK11195, a ligand for outer membrane translocator protein.

    PubMed

    Wu, Yuqiu; Shamoto-Nagai, Masayo; Maruyama, Wakako; Osawa, Toshihiko; Naoi, Makoto

    2017-01-01

    Epidemiological studies present the beneficial effects of dietary habits on prevention of aging-associated decline of brain function. Phytochemicals, the second metabolites of food, protect neuronal cells from cell death in cellular models of neurodegenerative disorders, and the neuroprotective activity has been ascribed to the anti-oxidant and anti-inflammatory functions. In this paper, the cellular mechanism of neuroprotection by phytochemicals was investigated, using the cellular model of mitochondrial apoptosis induced by PK11195, a ligand of outer membrane translocator protein, in SH-SY5Y cells. PK11195 induced mitochondrial membrane permeabilization with rapid transit production of superoxide (superoxide flashes) and calcium release from mitochondria, and activated apoptosis signal pathway. Study on the structure-activity relationship of astaxanthin, ferulic acid derivatives, and sesame lignans revealed that these phytochemicals inhibited mitochondrial membrane permeabilization and protected cells from apoptosis. Ferulic acid derivatives and sesame lignans inhibited or enhanced the mitochondrial pore formation and cell death by PK11195 according to their amphiphilic properties, not directly depending on the antioxidant activity. Regulation of pore formation at mitochondrial membrane is discussed as a novel mechanism behind neuroprotective activity of phytochemicals in aging and age-associated neurodegenerative disorders, and also behind dual functions of phytochemicals in neuronal and cancer cells.

  18. Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique.

    PubMed

    Ryan, Garrett E; Pandit, Abhay S; Apatsidis, Dimitrios P

    2008-09-01

    One of the main issues in orthopaedic implant design is the fabrication of scaffolds that closely mimic the biomechanical properties of the surrounding bone. This research reports on a multi-stage rapid prototyping technique that was successfully developed to produce porous titanium scaffolds with fully interconnected pore networks and reproducible porosity and pore size. The scaffolds' porous characteristics were governed by a sacrificial wax template, fabricated using a commercial 3D-printer. Powder metallurgy processes were employed to generate the titanium scaffolds by filling around the wax template with titanium slurry. In the attempt to optimise the powder metallurgy technique, variations in slurry concentration, compaction pressure and sintering temperature were investigated. By altering the wax design template, pore sizes ranging from 200 to 400 microm were achieved. Scaffolds with porosities of 66.8 +/- 3.6% revealed compression strengths of 104.4+/-22.5 MPa in the axial direction and 23.5 +/- 9.6 MPa in the transverse direction demonstrating their anisotropic nature. Scaffold topography was characterised using scanning electron microscopy and microcomputed tomography. Three-dimensional reconstruction enabled the main architectural parameters such as pore size, interconnecting porosity, level of anisotropy and level of structural disorder to be determined. The titanium scaffolds were compared to their intended designs, as governed by their sacrificial wax templates. Although discrepancies in architectural parameters existed between the intended and the actual scaffolds, overall the results indicate that the porous titanium scaffolds have the properties to be potentially employed in orthopaedic applications.

  19. Incontinence in children with treated attention-deficit/hyperactivity disorder.

    PubMed

    Niemczyk, J; Equit, M; Hoffmann, L; von Gontard, A

    2015-06-01

    Attention-deficit/hyperactivity disorder (ADHD) and incontinence (nocturnal enuresis, daytime urinary incontinence and fecal incontinence) are common disorders in childhood. Both disorders are strongly associated with each other. ADHD can affect compliance to incontinence therapy in a negative way; it can also affect outcome. The aim of the present study was to assess the prevalence of incontinence, age of bladder and bowel control, and psychological symptoms in children having treatment for ADHD compared to a control group. Forty children having treatment for ADHD (75% boys, mean age 11.4 years) and 43 matched controls (60.5% boys, mean age 10.7 years) were assessed. Their parents filled out questionnaires to assess: child psychopathology (Child Behavior Checklist), incontinence (Parental Questionnaire: Enuresis/Urinary Incontinence; Encopresis Questionnaire - Screening Version) and symptoms of the lower urinary tract (International-Consultation-on-Incontinence-Questionnaire - Pediatric Lower Urinary Tract Symptoms). The ICD-10 diagnoses and children's IQ were measured by standardized instruments (Kinder-DIPS, Coloured Progressive Matrices/Standard Progressive Matrices). Rates of incontinence in the ADHD group (5% nocturnal enuresis, 5% daytime urinary incontinence, 2.5% fecal incontinence) did not differ significantly from incontinence rates in the control group (4.7% daytime urinary incontinence). More children in the ADHD group had Child Behavior Checklist scores in the clinical range. Further ICD-10 disorders were present in eight children with ADHD and in one control child. More children with ADHD had delayed daytime and nighttime bladder control, as well as delayed bowel control, than the controls. The present study showed that if children are treated for their ADHD, according to standard practice guidelines, incontinence rates are similar to those without ADHD. More children with ADHD reached continence at a later age than the controls, which could be an indicator of maturational deficits in the central nervous system. Additionally, children with ADHD showed higher rates of clinically relevant psychological symptoms. This study provides further information of the association between ADHD and incontinence. Treatment of ADHD may be associated with positive effects on incontinence outcomes. Therefore, children with ADHD should always be screened for incontinence problems and children with incontinence problems should also be screened for ADHD if symptoms of hyperactivity, inattention and/or impulsivity are also present. Copyright © 2015 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  20. Liquid Sulfur Impregnation of Microporous Carbon Accelerated by Nanoscale Interfacial Effects

    DOE PAGES

    Pascal, Tod A.; Villaluenga, Irune; Wujcik, Kevin H.; ...

    2017-03-14

    Impregnation of porous carbon matrices with liquid sulfur has been exploited to fabricate composite cathodes for lithium-sulfur batteries, aimed at confining soluble sulfur species near conducting carbon to prevent both loss of active material into the electrolyte and parasitic reactions at the lithium metal anode. Here, through extensive computer simulations, we uncover the strongly favorable interfacial free energy between liquid sulfur and graphitic surfaces that underlies this phenomenon. Previously unexplored curvature-dependent enhancements are shown to favor the filling of smaller pores first and effect a quasi-liquid sulfur phase in microporous domains (diameters <2 nm) that persists ~30° below the expectedmore » freezing point. Evidence of interfacial sulfur on carbon is shown to be a 0.3 eV red shift in the simulated and measured interfacial X-ray absorption spectra. Our results elucidate the critical morphology and thermodynamic properties necessary for future cathode design and highlight the importance of molecular-scale details in defining emergent properties of functional nanoscale interfaces.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pascal, Tod A.; Villaluenga, Irune; Wujcik, Kevin H.

    Impregnation of porous carbon matrices with liquid sulfur has been exploited to fabricate composite cathodes for lithium-sulfur batteries, aimed at confining soluble sulfur species near conducting carbon to prevent both loss of active material into the electrolyte and parasitic reactions at the lithium metal anode. Here, through extensive computer simulations, we uncover the strongly favorable interfacial free energy between liquid sulfur and graphitic surfaces that underlies this phenomenon. Previously unexplored curvature-dependent enhancements are shown to favor the filling of smaller pores first and effect a quasi-liquid sulfur phase in microporous domains (diameters <2 nm) that persists ~30° below the expectedmore » freezing point. Evidence of interfacial sulfur on carbon is shown to be a 0.3 eV red shift in the simulated and measured interfacial X-ray absorption spectra. Our results elucidate the critical morphology and thermodynamic properties necessary for future cathode design and highlight the importance of molecular-scale details in defining emergent properties of functional nanoscale interfaces.« less

  2. Regenerating Articular Tissue by Converging Technologies

    PubMed Central

    Paoluzzi, Luca; Pieper, Jeroen; de Wijn, Joost R.; van Blitterswijk, Clemens A.

    2008-01-01

    Scaffolds for osteochondral tissue engineering should provide mechanical stability, while offering specific signals for chondral and bone regeneration with a completely interconnected porous network for cell migration, attachment, and proliferation. Composites of polymers and ceramics are often considered to satisfy these requirements. As such methods largely rely on interfacial bonding between the ceramic and polymer phase, they may often compromise the use of the interface as an instrument to direct cell fate. Alternatively, here, we have designed hybrid 3D scaffolds using a novel concept based on biomaterial assembly, thereby omitting the drawbacks of interfacial bonding. Rapid prototyped ceramic particles were integrated into the pores of polymeric 3D fiber-deposited (3DF) matrices and infused with demineralized bone matrix (DBM) to obtain constructs that display the mechanical robustness of ceramics and the flexibility of polymers, mimicking bone tissue properties. Ostechondral scaffolds were then fabricated by directly depositing a 3DF structure optimized for cartilage regeneration adjacent to the bone scaffold. Stem cell seeded scaffolds regenerated both cartilage and bone in vivo. PMID:18716660

  3. Open-cell glass crystalline porous material

    DOEpatents

    Anshits, Alexander G.; Sharonova, Olga M.; Vereshchagina, Tatiana A.; Zykova, Irina D.; Revenko, Yurii A.; Tretyakov, Alexander A.; Aloy, Albert S.; Lubtsev, Rem I.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny

    2002-01-01

    An open-cell glass crystalline porous material made from hollow microspheres which are cenospheres obtained from fly ash, having an open-cell porosity of up to 90 vol. % is produced. The cenospheres are separated into fractions based on one or more of grain size, density, magnetic or non-magnetic, and perforated or non-perforated. Selected fractions are molded and agglomerated by sintering with a binder at a temperature below the softening temperature, or without a binder at a temperature about, or above, the softening temperature but below the temperature of liquidity. The porous material produced has an apparent density of 0.3-0.6 g/cm.sup.3, a compressive strength in the range of 1.2-3.5 MPa, and two types of openings: through-flow wall pores in the cenospheres of 0.1-30 micrometers, and interglobular voids between the cenospheres of 20-100 micrometers. The porous material of the invention has properties useful as porous matrices for immobilization of liquid radioactive waste, heat-resistant traps and filters, supports for catalysts, adsorbents and ion-exchangers.

  4. Open-cell glass crystalline porous material

    DOEpatents

    Anshits, Alexander G.; Sharonova, Olga M.; Vereshchagina, Tatiana A.; Zykova, Irina D.; Revenko, Yurii A.; Tretyakov, Alexander A.; Aloy, Albert S.; Lubtsev, Rem I.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny

    2003-12-23

    An open-cell glass crystalline porous material made from hollow microspheres which are cenospheres obtained from fly ash, having an open-cell porosity of up to 90 vol. % is produced. The cenospheres are separated into fractions based on one or more of grain size, density, magnetic or non-magnetic, and perforated or non-perforated. Selected fractions are molded and agglomerated by sintering with a binder at a temperature below the softening temperature, or without a binder at a temperature about, or above, the softening temperature but below the temperature of liquidity. The porous material produced has an apparent density of 0.3-0.6 g/cm.sup.3, a compressive strength in the range of 1.2-3.5 MPa, and two types of openings: through-flow wall pores in the cenospheres of 0.1-30 micrometers, and interglobular voids between the cenospheres of 20-100 micrometers. The porous material of the invention has properties useful as porous matrices for immobilization of liquid radioactive waste, heat-resistant traps and filters, supports for catalysts, adsorbents and ion-exchangers.

  5. Gravity flow and solute dispersion in variably saturated sand

    NASA Astrophysics Data System (ADS)

    Kumahor, Samuel K.; de Rooij, Gerrit H.; Vogel, Hans-Joerg

    2014-05-01

    Solute dispersion in porous media depends on the structure of the velocity field at the pore scale. Hence, dispersion is expected to change with water content and with mean flow velocity. We performed laboratory experiments using a column of repacked fine-grained quartz sand (0.1-0.3 mm grain size) with a porous plate at the bottom to controle the water potential at the lower boundary. We established gravity flow conditions - i.e. constant matric potential and water content throughout the column - for a number of different irrigation rates. We measured breakthrough curves during unit gradient flow for an inert tracer which could be described by the convection-dispersion equation. As the soil water content decreased we observed an initially gradual increase in dispersivity followed by an abrupt increase below a threshold water content (0.19) and pressure head (-38 hPa). This phenomena can be explained by the geometry of phase distribution which was simulated based on Xray-CT images of the porous structure.

  6. Liquid Sulfur Impregnation of Microporous Carbon Accelerated by Nanoscale Interfacial Effects.

    PubMed

    Pascal, Tod A; Villaluenga, Irune; Wujcik, Kevin H; Devaux, Didier; Jiang, Xi; Wang, Dunyang Rita; Balsara, Nitash; Prendergast, David

    2017-04-12

    Impregnation of porous carbon matrices with liquid sulfur has been exploited to fabricate composite cathodes for lithium-sulfur batteries, aimed at confining soluble sulfur species near conducting carbon to prevent both loss of active material into the electrolyte and parasitic reactions at the lithium metal anode. Here, through extensive computer simulations, we uncover the strongly favorable interfacial free energy between liquid sulfur and graphitic surfaces that underlies this phenomenon. Previously unexplored curvature-dependent enhancements are shown to favor the filling of smaller pores first and effect a quasi-liquid sulfur phase in microporous domains (diameters <2 nm) that persists ∼30° below the expected freezing point. Evidence of interfacial sulfur on carbon is shown to be a 0.3 eV red shift in the simulated and measured interfacial X-ray absorption spectra. Our results elucidate the critical morphology and thermodynamic properties necessary for future cathode design and highlight the importance of molecular-scale details in defining emergent properties of functional nanoscale interfaces.

  7. Microsphere-Based Scaffolds for Cartilage Tissue Engineering: Using Sub-critical CO2 as a Sintering Agentξ

    PubMed Central

    Singh, Milind; Sandhu, Brindar; Scurto, Aaron; Berkland, Cory; Detamore, Michael S.

    2009-01-01

    Shape-specific, macroporous tissue engineering scaffolds were fabricated and homogeneously seeded with cells in a single step. This method brings together CO2 polymer processing and microparticle-based scaffolds in a manner that allows each to solve the key limitation of the other. Specifically, microparticle-based scaffolds have suffered from the limitation that conventional microsphere sintering methods (e.g., heat, solvents) are not cytocompatible, yet we have shown that cell viability was sustained with sub-critical (i.e., gaseous) CO2 sintering of microspheres in the presence of cells at near-ambient temperatures. On the other hand, the fused microspheres provided the pore interconnectivity that has eluded supercritical CO2 foaming approaches. Here, fused poly(lactide-co-glycolide) microsphere scaffolds were seeded with human umbilical cord mesenchymal stromal cells to demonstrate the feasibility of utilizing these matrices for cartilage regeneration. We also demonstrated that the approach may be modified to produce thin cell-loaded patches as a promising alternative for skin tissue engineering applications. PMID:19660579

  8. Solidification of ion exchange resins saturated with Na+ ions: Comparison of matrices based on Portland and blast furnace slag cement

    NASA Astrophysics Data System (ADS)

    Lafond, E.; Cau dit Coumes, C.; Gauffinet, S.; Chartier, D.; Stefan, L.; Le Bescop, P.

    2017-01-01

    This work is devoted to the conditioning of ion exchange resins used to decontaminate radioactive effluents. Calcium silicate cements may have a good potential to encapsulate spent resins. However, certain combinations of cement and resins produce a strong expansion of the final product, possibly leading to its full disintegration. The focus is placed on the understanding of the behaviour of cationic resins in the Na+ form in Portland or blast furnace slag (CEM III/C) cement pastes. During hydration of the Portland cement paste, the pore solution exhibits a decrease in its osmotic pressure, which causes a transient expansion of small magnitude of the resins. At 20 °C, this expansion takes place just after setting in a poorly consolidated material and is sufficient to induce cracks. In the CEM III/C paste, swelling of the resins also occurs, but before the end of setting, and induces limited stress in the matrix which is still plastic.

  9. An Analysis of the Max-Min Texture Measure.

    DTIC Science & Technology

    1982-01-01

    PANC 33 D2 Confusion Matrices for Scene A, IR 34 D3 Confusion Matrices for Scene B, PANC 35 D4 Confusion Matrices for Scene B, IR 36 D5 Confusion...Matrices for Scene C, PANC 37 D6 Confusion Matrices for Scene C, IR 38 D7 Confusion Matrices for Scene E, PANC 39 D8 Confusion Matrices for Scene E, IR 40...D9 Confusion Matrices for Scene H, PANC 41 DIO Confusion Matrices for Scene H, JR 42 3 .D 10CnuinMtie o cn ,IR4 AN ANALYSIS OF THE MAX-MIN TEXTURE

  10. Periodic GMP Matrices

    NASA Astrophysics Data System (ADS)

    Eichinger, Benjamin

    2016-07-01

    We recall criteria on the spectrum of Jacobi matrices such that the corresponding isospectral torus consists of periodic operators. Motivated by those known results for Jacobi matrices, we define a new class of operators called GMP matrices. They form a certain Generalization of matrices related to the strong Moment Problem. This class allows us to give a parametrization of almost periodic finite gap Jacobi matrices by periodic GMP matrices. Moreover, due to their structural similarity we can carry over numerous results from the direct and inverse spectral theory of periodic Jacobi matrices to the class of periodic GMP matrices. In particular, we prove an analogue of the remarkable ''magic formula'' for this new class.

  11. Assessing the influence of the rhizosphere on soil hydraulic properties using X-ray computed tomography and numerical modelling

    PubMed Central

    Daly, Keith R.; Mooney, Sacha J.; Bennett, Malcolm J.; Crout, Neil M. J.; Roose, Tiina; Tracy, Saoirse R.

    2015-01-01

    Understanding the dynamics of water distribution in soil is crucial for enhancing our knowledge of managing soil and water resources. The application of X-ray computed tomography (CT) to the plant and soil sciences is now well established. However, few studies have utilized the technique for visualizing water in soil pore spaces. Here this method is utilized to visualize the water in soil in situ and in three-dimensions at successive reductive matric potentials in bulk and rhizosphere soil. The measurements are combined with numerical modelling to determine the unsaturated hydraulic conductivity, providing a complete picture of the hydraulic properties of the soil. The technique was performed on soil cores that were sampled adjacent to established roots (rhizosphere soil) and from soil that had not been influenced by roots (bulk soil). A water release curve was obtained for the different soil types using measurements of their pore geometries derived from CT imaging and verified using conventional methods, such as pressure plates. The water, soil, and air phases from the images were segmented and quantified using image analysis. The water release characteristics obtained for the contrasting soils showed clear differences in hydraulic properties between rhizosphere and bulk soil, especially in clay soil. The data suggest that soils influenced by roots (rhizosphere soil) are less porous due to increased aggregation when compared with bulk soil. The information and insights obtained on the hydraulic properties of rhizosphere and bulk soil will enhance our understanding of rhizosphere biophysics and improve current water uptake models. PMID:25740922

  12. Singular Behavior of the Leading Lyapunov Exponent of a Product of Random {2 × 2} Matrices

    NASA Astrophysics Data System (ADS)

    Genovese, Giuseppe; Giacomin, Giambattista; Greenblatt, Rafael Leon

    2017-05-01

    We consider a certain infinite product of random {2 × 2} matrices appearing in the solution of some 1 and 1 + 1 dimensional disordered models in statistical mechanics, which depends on a parameter ɛ > 0 and on a real random variable with distribution {μ}. For a large class of {μ}, we prove the prediction by Derrida and Hilhorst (J Phys A 16:2641, 1983) that the Lyapunov exponent behaves like {C ɛ^{2 α}} in the limit {ɛ \\searrow 0}, where {α \\in (0,1)} and {C > 0} are determined by {μ}. Derrida and Hilhorst performed a two-scale analysis of the integral equation for the invariant distribution of the Markov chain associated to the matrix product and obtained a probability measure that is expected to be close to the invariant one for small {ɛ}. We introduce suitable norms and exploit contractivity properties to show that such a probability measure is indeed close to the invariant one in a sense that implies a suitable control of the Lyapunov exponent.

  13. Assessing the effects of cocaine dependence and pathological gambling using group-wise sparse representation of natural stimulus FMRI data.

    PubMed

    Ren, Yudan; Fang, Jun; Lv, Jinglei; Hu, Xintao; Guo, Cong Christine; Guo, Lei; Xu, Jiansong; Potenza, Marc N; Liu, Tianming

    2017-08-01

    Assessing functional brain activation patterns in neuropsychiatric disorders such as cocaine dependence (CD) or pathological gambling (PG) under naturalistic stimuli has received rising interest in recent years. In this paper, we propose and apply a novel group-wise sparse representation framework to assess differences in neural responses to naturalistic stimuli across multiple groups of participants (healthy control, cocaine dependence, pathological gambling). Specifically, natural stimulus fMRI (N-fMRI) signals from all three groups of subjects are aggregated into a big data matrix, which is then decomposed into a common signal basis dictionary and associated weight coefficient matrices via an effective online dictionary learning and sparse coding method. The coefficient matrices associated with each common dictionary atom are statistically assessed for each group separately. With the inter-group comparisons based on the group-wise correspondence established by the common dictionary, our experimental results demonstrated that the group-wise sparse coding and representation strategy can effectively and specifically detect brain networks/regions affected by different pathological conditions of the brain under naturalistic stimuli.

  14. Experimentally probing topological order and its breakdown through modular matrices

    NASA Astrophysics Data System (ADS)

    Luo, Zhihuang; Li, Jun; Li, Zhaokai; Hung, Ling-Yan; Wan, Yidun; Peng, Xinhua; Du, Jiangfeng

    2018-02-01

    The modern concept of phases of matter has undergone tremendous developments since the first observation of topologically ordered states in fractional quantum Hall systems in the 1980s. In this paper, we explore the following question: in principle, how much detail of the physics of topological orders can be observed using state of the art technologies? We find that using surprisingly little data, namely the toric code Hamiltonian in the presence of generic disorders and detuning from its exactly solvable point, the modular matrices--characterizing anyonic statistics that are some of the most fundamental fingerprints of topological orders--can be reconstructed with very good accuracy solely by experimental means. This is an experimental realization of these fundamental signatures of a topological order, a test of their robustness against perturbations, and a proof of principle--that current technologies have attained the precision to identify phases of matter and, as such, probe an extended region of phase space around the soluble point before its breakdown. Given the special role of anyonic statistics in quantum computation, our work promises myriad applications both in probing and realistically harnessing these exotic phases of matter.

  15. Formation of Ge nanoparticles in SiO xN y by ion implantation and thermal annealing

    DOE PAGES

    Mirzaei, Sahar; Kremer, F.; Sprouster, D. J.; ...

    2015-10-20

    Germanium nanoparticles embedded within dielectric matrices hold much promise for applications in optoelectronic and electronic devices. Here we investigate the formation of Ge nanoparticles in amorphous SiO 1.67N 0.14 as a function of implanted atom concentration and thermal annealing temperature. Using x-ray absorption spectroscopy and other complementary techniques, we show Ge nanoparticles exhibit significant finite-size effects such that the coordination number decreases and structural disorder increases as the nanoparticle size decreases. While the composition of SiO 1.67N 0.14 is close to that of SiO 2, we demonstrate that the addition of this small fraction of N yields a much reducedmore » nanoparticle size relative to those formed in SiO 2 under comparable implantation and annealing conditions. We attribute this difference to an increase in an atomic density and a much reduced diffusivity of Ge in the oxynitride matrix. Finally, these results demonstrate the potential for tailoring Ge nanoparticle sizes and structural properties in the SiO xN y matrices by controlling the oxynitride stoichiometry.« less

  16. Protic ionic liquid as additive on lipase immobilization using silica sol-gel.

    PubMed

    de Souza, Ranyere Lucena; de Faria, Emanuelle Lima Pache; Figueiredo, Renan Tavares; Freitas, Lisiane dos Santos; Iglesias, Miguel; Mattedi, Silvana; Zanin, Gisella Maria; dos Santos, Onélia Aparecida Andreo; Coutinho, João A P; Lima, Álvaro Silva; Soares, Cleide Mara Faria

    2013-03-05

    Ionic liquids (ILs) have evolved as a new type of non-aqueous solvents for biocatalysis, mainly due to their unique and tunable physical properties. A number of recent review papers have described a variety of enzymatic reactions conducted in IL solutions, on the other hand, to improve the enzyme's activity and stability in ILs; major methods being explored include the enzyme immobilization (on solid support, sol-gel, etc.), protic ionic liquids used as an additive process. The immobilization of the lipase from Burkholderia cepacia by the sol-gel technique using protic ionic liquids (PIL) as additives to protect against inactivation of the lipase due to release of alcohol and shrinkage of the gel during the sol-gel process was investigated in this study. The influence of various factors such as the length of the alkyl chain of protic ionic liquids (monoethanolamine-based) and a concentration range between 0.5 and 3.0% (w/v) were evaluated. The resulting hydrophobic matrices and immobilized lipases were characterised with regard to specific surface area, adsorption-desorption isotherms, pore volume (V(p)) and size (d(p)) according to nitrogen adsorption and scanning electron microscopy (SEM), physico-chemical properties (thermogravimetric - TG, differential scanning calorimetry - DSC and Fourier transform infrared spectroscopy - FTIR) and the potential for ethyl ester and emulsifier production. The total activity yields (Y(a)) for matrices of immobilized lipase employing protic ionic liquids as additives always resulted in higher values compared with the sample absent the protic ionic liquids, which represents 35-fold increase in recovery of enzymatic activity using the more hydrophobic protic ionic liquids. Compared with arrays of the immobilized biocatalyst without additive, in general, the immobilized biocatalyst in the presence of protic ionic liquids showed increased values of surface area (143-245 m(2) g(-1)) and pore size (19-38 Å). Immobilization with protic ionic liquids also favoured reduced mass loss according to TG curves (always less than 42.9%) when compared to the immobilized matrix without protic ionic liquids (45.1%), except for the sample containing 3.0% protic ionic liquids (46.5%), verified by thermogravimetric analysis. Ionic liquids containing a more hydrophobic alkyl group in the cationic moiety were beneficial for recovery of the activity of the immobilized lipase. The physico-chemical characterization confirmed the presence of the enzyme and its immobilized derivatives obtained in this study by identifying the presence of amino groups, and profiling enthalpy changes of mass loss. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Fungible Correlation Matrices: A Method for Generating Nonsingular, Singular, and Improper Correlation Matrices for Monte Carlo Research.

    PubMed

    Waller, Niels G

    2016-01-01

    For a fixed set of standardized regression coefficients and a fixed coefficient of determination (R-squared), an infinite number of predictor correlation matrices will satisfy the implied quadratic form. I call such matrices fungible correlation matrices. In this article, I describe an algorithm for generating positive definite (PD), positive semidefinite (PSD), or indefinite (ID) fungible correlation matrices that have a random or fixed smallest eigenvalue. The underlying equations of this algorithm are reviewed from both algebraic and geometric perspectives. Two simulation studies illustrate that fungible correlation matrices can be profitably used in Monte Carlo research. The first study uses PD fungible correlation matrices to compare penalized regression algorithms. The second study uses ID fungible correlation matrices to compare matrix-smoothing algorithms. R code for generating fungible correlation matrices is presented in the supplemental materials.

  18. Modeling the survival responses of a multi-component biofilm to environmental stress

    NASA Astrophysics Data System (ADS)

    Carles Brangarí, Albert; Manzoni, Stefano; Sanchez-Vila, Xavier; Fernàndez-Garcia, Daniel

    2017-04-01

    Biofilms are consortia of microorganisms embedded in self-produced matrices of biopolymers. The survival of such communities depends on their capacity to improve the environmental conditions of their habitat by mitigating, or even benefitting from some adverse external factors. The mechanisms by which the microbial habitat is regulated remain mostly unknown. However, many studies have reported physiological responses to environmental stresses that include the release of extracellular polymeric substances (EPS) and the induction of a dormancy state. A sound understanding of these capacities is required to enhance the knowledge of the microbial dynamics in soils and its potential role in the carbon cycle, with significant implications for the degradation of contaminants and the emission of greenhouse gases, among others. We present a numerical analysis of the dynamics of soil microbes and their responses to environmental stresses. The conceptual model considers a multi-component heterotrophic biofilm made up of active cells, dormant cells, EPS, and extracellular enzymes. Biofilm distribution and properties are defined at the pore-scale and used to determine nutrient availability and water saturation via feedbacks of biofilm on soil hydraulic properties. The pore space micro-habitat is modeled as a simplified pore-network of cylindrical tubes in which biofilms proliferate. Microbial compartments and most of the carbon fluxes are defined at the bulk level. Microbial processes include the synthesis, decay and detachment of biomass, the activation/deactivation of cells, and the release and reutilization of EPS. Results suggest that the release of EPS and the capacity to enter a dormant state offer clear evolutionary advantages in scenarios characterized by environmental stress. On the contrary, when the conditions are favorable, the diversion of carbon into the production of the aforementioned survival mechanisms does not confer any additional benefit and the population of active cells decline. The proposed model (including complex relations between active biomass and biofilm) has been proved useful to capture the most relevant processes involved in biofilm proliferation and its adaptation to environmental conditions. These aspects are largely neglected in biogeochemical models, but could be relevant in soils where strong feedbacks of microbial activity on hydraulic properties emerge.

  19. Anomalous Debye-like dielectric relaxation of water in micro-sized confined polymeric systems.

    PubMed

    Colosi, C; Costantini, M; Barbetta, A; Cametti, C; Dentini, M

    2013-12-14

    While it is well known that spatial confinement on a nm scale affects the molecular dynamics of water resulting in a hindered dipolar reorientation, question of whether these effects could result at length scales larger than these, i.e., in confined regions of the order of μm or more, is still under debate. Here we use dielectric relaxation spectroscopy techniques to study the relaxation orientation dynamics of water entrapped in different polymeric matrices with pore sizes of the order of 100 μm, analyzing the frequency relaxation behaviour of the dielectric response. Our results show that, contrary to what has been generally thought, even in confinements which are not particularly high such as those realized here, regions typically hundred micrometers in size can affect the water structure, inducing a water phase with properties different from those of bulk water. In particular, we observe a dielectric dispersion centered in the range 10(5)-10(7) Hz, in between the one characteristic of ice (8.3 kHz at T = 0 °C) and the one of bulk water (19.2 GHz at T = 25 °C). The analysis of the dependence on temperature of the relaxation time of this unexpected contribution rules out the possibility that it can be attributed to an interfacial polarization (Maxwell-Wagner effect) and suggests a dipolar Debye-like origin due to a slow-down of the hydrogen-bonded network orientational polarization. Also at these scales, the confinement alters the structure of water, leading to a hindered reorientation. These properties imply that water confined within these polymeric porous matrices is more ordered than bulk water. These findings may be important in order to understand biological processes in cells and in different biological compartments, where water is physiologically confined.

  20. The XTT Cell Proliferation Assay Applied to Cell Layers Embedded in Three-Dimensional Matrix

    PubMed Central

    Huyck, Lynn; Ampe, Christophe

    2012-01-01

    Abstract Cell proliferation, a main target in cancer therapy, is influenced by the surrounding three-dimensional (3D) extracellular matrix (ECM). In vitro drug screening is, thus, optimally performed under conditions in which cells are grown (embedded or trapped) in dense 3D matrices, as these most closely mimic the adhesive and mechanical properties of natural ECM. Measuring cell proliferation under these conditions is, however, technically more challenging compared with two-dimensional (2D) culture and other “3D culture conditions,” such as growth on top of a matrix (pseudo-3D) or in spongy scaffolds with large pore sizes. Consequently, such measurements are only slowly applied on a wider scale. To advance this, we report on the equal quality (dynamic range, background, linearity) of measuring the proliferation of cell layers embedded in dense 3D matrices (collagen, Matrigel) compared with cells in 2D culture using the easy (one-step) and in 2D well-validated, 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT)-assay. The comparison stresses the differences in proliferation kinetics and drug sensitivity of matrix-embedded cells versus 2D culture. Using the specific cell-layer-embedded 3D matrix setup, quantitative measurements of cell proliferation and cell invasion are shown to be possible in similar assay conditions, and cytostatic, cytotoxic, and anti-invasive drug effects can thus be reliably determined and compared in physiologically relevant settings. This approach in the 3D matrix holds promise for improving early-stage, high-throughput drug screening, targeting either highly invasive or highly proliferative subpopulations of cancers or both. PMID:22574651

  1. Simulating Non-Fickian Transport across Péclet Regimes by doing Lévy Flights in the Rank Space of Velocity

    NASA Astrophysics Data System (ADS)

    Most, S.; Dentz, M.; Bolster, D.; Bijeljic, B.; Nowak, W.

    2017-12-01

    Transport in real porous media shows non-Fickian characteristics. In the Lagrangian perspective this leads to skewed distributions of particle arrival times. The skewness is triggered by particles' memory of velocity that persists over a characteristic length. Capturing process memory is essential to represent non-Fickianity thoroughly. Classical non-Fickian models (e.g., CTRW models) simulate the effects of memory but not the mechanisms leading to process memory. CTRWs have been applied successfully in many studies but nonetheless they have drawbacks. In classical CTRWs each particle makes a spatial transition for which each particle adapts a random transit time. Consecutive transit times are drawn independently from each other, and this is only valid for sufficiently large spatial transitions. If we want to apply a finer numerical resolution than that, we have to implement memory into the simulation. Recent CTRW methods use transitions matrices to simulate correlated transit times. However, deriving such transition matrices require transport data of a fine-scale transport simulation, and the obtained transition matrix is solely valid for this single Péclet regime. The CTRW method we propose overcomes all three drawbacks: 1) We simulate transport without restrictions in transition length. 2) We parameterize our CTRW without requiring a transport simulation. 3) Our parameterization scales across Péclet regimes. We do so by sampling the pore-scale velocity distribution to generate correlated transit times as a Lévy flight on the CDF-axis of velocities with reflection at 0 and 1. The Lévy flight is parametrized only by the correlation length. We explicitly model memory including the evolution and decay of non-Fickianity, so it extends from local via pre-asymptotic to asymptotic scales.

  2. Characterization and organic electric-double-layer-capacitor application of KOH activated coal-tar-pitch-based carbons: Effect of carbonization temperature

    NASA Astrophysics Data System (ADS)

    Choi, Poo Reum; Lee, Eunji; Kwon, Soon Hyung; Jung, Ji Chul; Kim, Myung-Soo

    2015-12-01

    The present study reports the influence of pre-carbonization on the properties of KOH-activated coal tar pitch (CTP). The change of crystallinity and pore structure of pre-carbonized CTPs as well as their activated carbons (ACs) as function of pre-carbonization temperature are investigated. The crystallinity of pre-carbonized CTPs increases with increasing the carbonization temperature up to 600 °C, but a disorder occurs during the carbonization around 700 °C and an order happens gradually with increasing the carbonization temperatures in range of 800-1000 °C. The CTPs pre-carbonized at high temperatures are more difficult to be activated with KOH than those pre-carbonized at low temperatures due to the increase of micro-crystalline size and the decrease of surface functional groups. The micro-pores and meso-pores are well developed at around 1.0 nm and 2.4 nm, respectively, as the ACs are pre-carbonized at temperatures of 500-600 °C, exhibiting high specific capacitances as electrode materials for electric double layer capacitor (EDLC). Although the specific surface area (SSA) and pore volume of ACs pre-carbonized at temperatures of 900-1000 °C are extraordinary low (non-porous) as compared to those of AC pre-carbonized at 600 °C, their specific capacitances are comparable to each other. The large specific capacitances with low SSA ACs can be attributed to the structural change resulting from the electrochemical activation during the 1st charge above 2.0 V.

  3. Effect of reduction time on the structure and properties of porous graphene

    NASA Astrophysics Data System (ADS)

    Li, Guoping; Zhang, Chenhui; Zhang, Tianfu; Xia, Min; Luo, Yunjun

    2017-07-01

    Porous graphene with nanoscaled pores on the sheets was prepared by a carbon thermal reduction method, in which the molybdenum oxide nanoparticles generated from the thermal decomposition of molybdate were used as the etching reagent, and the pores were formed on the surface of the reduced graphene oxide under the conditions of 650 °C and a nitrogen atmosphere. The morphology of pores on the graphene sheets may affect their potential applications in various fields, especially in the enhancement of mass transfer. Previous studies have shown that the reduction temperature and the amount of metal oxide are the key factors affecting the morphology of porous graphene, but in fact the reduction time is a more important affecting factor according to the present study. The results of SEM/TEM showed that a disordered large sheet-like structure with wrinkles was obtained at 120 min in the carbon-thermal reaction. The structural integrity of the PG was further destroyed after the reaction time of 140 min, in which the edge exhibited slightly crush and significant fold. The PG exhibited a hollow rod-like structure at the reaction time of 180 min. FTIR, Raman, XRD, and XPS studies were performed to characterize the morphology of porous graphene prepared at different reduction times.

  4. Evaporation-based method for preparing gelatin foams with aligned tubular pore structures.

    PubMed

    Frazier, Shane D; Srubar, Wil V

    2016-05-01

    Gelatin-based foams with aligned tubular pore structures were prepared via liquid-to-gas vaporization of tightly bound water in dehydrated gelatin hydrogels. This study elucidates the mechanism of the foaming process by investigating the secondary (i.e., helical) structure, molecular interactions, and water content of gelatin films before and after foaming using X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry and thermogravimetric analysis (TGA), respectively. Experimental data from gelatin samples prepared at various gelatin-to-water concentrations (5-30 wt.%) substantiate that resulting foam structures are similar in pore diameter (approximately 350 μm), shape, and density (0.05-0.22 g/cm(3)) to those fabricated using conventional methods (e.g., freeze-drying). Helical structures were identified in the films but were not evident in the foamed samples after vaporization (~150 °C), suggesting that the primary foaming mechanism is governed by the vaporization of water that is tightly bound in secondary structures (i.e., helices, β-turns, β-sheets) that are present in dehydrated gelatin films. FTIR and TGA data show that the foaming process leads to more disorder and reduced hydrogen bonding to hydroxyl groups in gelatin and that no thermal degradation of gelatin occurs before or after foaming. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Iron overload causes endolysosomal deficits modulated by NAADP-regulated 2-pore channels and RAB7A

    PubMed Central

    Fernández, Belén; Fdez, Elena; Gómez-Suaga, Patricia; Gil, Fernando; Molina-Villalba, Isabel; Ferrer, Isidro; Patel, Sandip; Churchill, Grant C.; Hilfiker, Sabine

    2016-01-01

    ABSTRACT Various neurodegenerative disorders are associated with increased brain iron content. Iron is known to cause oxidative stress, which concomitantly promotes cell death. Whereas endolysosomes are known to serve as intracellular iron storage organelles, the consequences of increased iron on endolysosomal functioning, and effects on cell viability upon modulation of endolysosomal iron release remain largely unknown. Here, we show that increasing intracellular iron causes endolysosomal alterations associated with impaired autophagic clearance of intracellular protein aggregates, increased cytosolic oxidative stress and increased cell death. These effects are subject to regulation by NAADP, a potent second messenger reported to target endolysosomal TPCNs (2-pore channels). Consistent with endolysosomal iron storage, cytosolic iron levels are modulated by NAADP, and increased cytosolic iron is detected when overexpressing active, but not inactive TPCNs, indicating that these channels can modulate endolysosomal iron release. Cell death triggered by altered intralysosomal iron handling is abrogated in the presence of an NAADP antagonist or when inhibiting RAB7A activity. Taken together, our results suggest that increased endolysosomal iron causes cell death associated with increased cytosolic oxidative stress as well as autophagic impairments, and these effects are subject to modulation by endolysosomal ion channel activity in a RAB7A-dependent manner. These data highlight alternative therapeutic strategies for neurodegenerative disorders associated with increased intracellular iron load. PMID:27383256

  6. CMV matrices in random matrix theory and integrable systems: a survey

    NASA Astrophysics Data System (ADS)

    Nenciu, Irina

    2006-07-01

    We present a survey of recent results concerning a remarkable class of unitary matrices, the CMV matrices. We are particularly interested in the role they play in the theory of random matrices and integrable systems. Throughout the paper we also emphasize the analogies and connections to Jacobi matrices.

  7. An Amorphous Network Model for Capillary Flow and Dispersion in a Partially Saturated Porous Medium

    NASA Astrophysics Data System (ADS)

    Simmons, C. S.; Rockhold, M. L.

    2013-12-01

    Network models of capillary flow are commonly used to represent conduction of fluids at pore scales. Typically, a flow system is described by a regular geometric lattice of interconnected tubes. Tubes constitute the pore throats, while connection junctions (nodes) are pore bodies. Such conceptualization of the geometry, however, is questionable for the pore scale, where irregularity clearly prevails, although prior published models using a regular lattice have demonstrated successful descriptions of the flow in the bulk medium. Here a network is allowed to be amorphous, and is not subject to any particular lattice structure. Few network flow models have treated partially saturated or even multiphase conditions. The research trend is toward using capillary tubes with triangular or square cross sections that have corners and always retain some fluid by capillarity when drained. In contrast, this model uses only circular capillaries, whose filled state is controlled by a capillary pressure rule for the junctions. The rule determines which capillary participate in the flow under an imposed matric potential gradient during steady flow conditions. Poiseuille's Law and Laplace equation are used to describe flow and water retention in the capillary units of the model. A modified conjugate gradient solution for steady flow that tracks which capillary in an amorphous network contribute to fluid conduction was devised for partially saturated conditions. The model thus retains the features of classical capillary models for determining hydraulic flow properties under unsaturated conditions based on distribution of non-interacting tubes, but now accounts for flow exchange at junctions. Continuity of the flow balance at every junction is solved simultaneously. The effective water retention relationship and unsaturated permeability are evaluated for an extensive enough network to represent a small bulk sample of porous medium. The model is applied for both a hypothetically randomly generate network and for a directly measured porous medium structure, by means of xray-CT scan. A randomly generated network has the benefit of providing ensemble averages for sample replicates of a medium's properties, whereas network structure measurements are expected to be more predictive. Dispersion of solute in a network flow is calculate by using particle tracking to determine the travel time breakthrough between inflow and outflow boundaries. The travel time distribution can exhibit substantial skewness that reflects both network velocity variability and mixing dilution at junctions. When local diffusion is not included, and transport is strictly advective, then the skew breakthrough is not due to mobile-immobile flow region behavior. The approach of dispersivity to its asymptotic value with sample size is examined, and may be only an indicator of particular stochastic flow variation. It is not proven that a simplified network flow model can accurately predict the hydraulic properties of a sufficiently large-size medium sample, but such a model can at least demonstrate macroscopic flow resulting from the interaction of physical processes at pore scales.

  8. Basal Cell Carcinoma With Matrical Differentiation: Clinicopathologic, Immunohistochemical, and Molecular Biological Study of 22 Cases.

    PubMed

    Kyrpychova, Liubov; Carr, Richard A; Martinek, Petr; Vanecek, Tomas; Perret, Raul; Chottová-Dvořáková, Magdalena; Zamecnik, Michal; Hadravsky, Ladislav; Michal, Michal; Kazakov, Dmitry V

    2017-06-01

    Basal cell carcinoma (BCC) with matrical differentiation is a fairly rare neoplasm, with about 30 cases documented mainly as isolated case reports. We studied a series of this neoplasm, including cases with an atypical matrical component, a hitherto unreported feature. Lesions coded as BCC with matrical differentiation were reviewed; 22 cases were included. Immunohistochemical studies were performed using antibodies against BerEp4, β-catenin, and epithelial membrane antigen (EMA). Molecular genetic studies using Ion AmpliSeq Cancer Hotspot Panel v2 by massively parallel sequencing on Ion Torrent PGM were performed in 2 cases with an atypical matrical component (1 was previously subjected to microdissection to sample the matrical and BCC areas separately). There were 13 male and 9 female patients, ranging in age from 41 to 89 years. Microscopically, all lesions manifested at least 2 components, a BCC area (follicular germinative differentiation) and areas with matrical differentiation. A BCC component dominated in 14 cases, whereas a matrical component dominated in 4 cases. Matrical differentiation was recognized as matrical/supramatrical cells (n=21), shadow cells (n=21), bright red trichohyaline granules (n=18), and blue-gray corneocytes (n=18). In 2 cases, matrical areas manifested cytologic atypia, and a third case exhibited an infiltrative growth pattern, with the tumor metastasizing to a lymph node. BerEP4 labeled the follicular germinative cells, whereas it was markedly reduced or negative in matrical areas. The reverse pattern was seen with β-catenin. EMA was negative in BCC areas but stained a proportion of matrical/supramatrical cells. Genetic studies revealed mutations of the following genes: CTNNB1, KIT, CDKN2A, TP53, SMAD4, ERBB4, and PTCH1, with some differences between the matrical and BCC components. It is concluded that matrical differentiation in BCC in most cases occurs as multiple foci. Rare neoplasms manifest atypia in the matrical areas. Immunohistochemical analysis for BerEP4, EMA, and β-catenin can be helpful in limited biopsy specimens. From a molecular biological prospective, BCC and matrical components appear to share some of the gene mutations but have differences in others, but this observation must be validated in a large series.

  9. Identifying product order with restricted Boltzmann machines

    NASA Astrophysics Data System (ADS)

    Rao, Wen-Jia; Li, Zhenyu; Zhu, Qiong; Luo, Mingxing; Wan, Xin

    2018-03-01

    Unsupervised machine learning via a restricted Boltzmann machine is a useful tool in distinguishing an ordered phase from a disordered phase. Here we study its application on the two-dimensional Ashkin-Teller model, which features a partially ordered product phase. We train the neural network with spin configuration data generated by Monte Carlo simulations and show that distinct features of the product phase can be learned from nonergodic samples resulting from symmetry breaking. Careful analysis of the weight matrices inspires us to define a nontrivial machine-learning motivated quantity of the product form, which resembles the conventional product order parameter.

  10. A Brief Historical Introduction to Matrices and Their Applications

    ERIC Educational Resources Information Center

    Debnath, L.

    2014-01-01

    This paper deals with the ancient origin of matrices, and the system of linear equations. Included are algebraic properties of matrices, determinants, linear transformations, and Cramer's Rule for solving the system of algebraic equations. Special attention is given to some special matrices, including matrices in graph theory and electrical…

  11. Laminin active peptide/agarose matrices as multifunctional biomaterials for tissue engineering.

    PubMed

    Yamada, Yuji; Hozumi, Kentaro; Aso, Akihiro; Hotta, Atsushi; Toma, Kazunori; Katagiri, Fumihiko; Kikkawa, Yamato; Nomizu, Motoyoshi

    2012-06-01

    Cell adhesive peptides derived from extracellular matrix components are potential candidates to afford bio-adhesiveness to cell culture scaffolds for tissue engineering. Previously, we covalently conjugated bioactive laminin peptides to polysaccharides, such as chitosan and alginate, and demonstrated their advantages as biomaterials. Here, we prepared functional polysaccharide matrices by mixing laminin active peptides and agarose gel. Several laminin peptide/agarose matrices showed cell attachment activity. In particular, peptide AG73 (RKRLQVQLSIRT)/agarose matrices promoted strong cell attachment and the cell behavior depended on the stiffness of agarose matrices. Fibroblasts formed spheroid structures on the soft AG73/agarose matrices while the cells formed a monolayer with elongated morphologies on the stiff matrices. On the stiff AG73/agarose matrices, neuronal cells extended neuritic processes and endothelial cells formed capillary-like networks. In addition, salivary gland cells formed acini-like structures on the soft matrices. These results suggest that the peptide/agarose matrices are useful for both two- and three-dimensional cell culture systems as a multifunctional biomaterial for tissue engineering. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Hybrid Tissue Engineering Scaffolds by Combination of Three-Dimensional Printing and Cell Photoencapsulation.

    PubMed

    Markovic, Marica; Van Hoorick, Jasper; Hölzl, Katja; Tromayer, Maximilian; Gruber, Peter; Nürnberger, Sylvia; Dubruel, Peter; Van Vlierberghe, Sandra; Liska, Robert; Ovsianikov, Aleksandr

    2015-05-01

    Three-dimensional (3D) printing offers versatile possibilities for adapting the structural parameters of tissue engineering scaffolds. However, it is also essential to develop procedures allowing efficient cell seeding independent of scaffold geometry and pore size. The aim of this study was to establish a method for seeding the scaffolds using photopolymerizable cell-laden hydrogels. The latter facilitates convenient preparation, and handling of cell suspension, while distributing the hydrogel precursor throughout the pores, before it is cross-linked with light. In addition, encapsulation of living cells within hydrogels can produce constructs with high initial cell loading and intimate cell-matrix contact, similar to that of the natural extra-cellular matrix (ECM). Three dimensional scaffolds were produced from poly(lactic) acid (PLA) by means of fused deposition modeling. A solution of methacrylamide-modified gelatin (Gel-MOD) in cell culture medium containing photoinitiator Li-TPO-L was used as a hydrogel precursor. Being an enzymatically degradable derivative of natural collagen, gelatin-based matrices are biomimetic and potentially support the process of cell-induced remodeling. Preosteoblast cells MC3T3-E1 at a density of 10 × 10 6 cells per 1 mL were used for testing the seeding procedure and cell proliferation studies. Obtained results indicate that produced constructs support cell survival and proliferation over extended duration of our experiment. The established two-step approach for scaffold seeding with the cells is simple, rapid, and is shown to be highly reproducible. Furthermore, it enables precise control of the initial cell density, while yielding their uniform distribution throughout the scaffold. Such hybrid tissue engineering constructs merge the advantages of rigid 3D printed constructs with the soft hydrogel matrix, potentially mimicking the process of ECM remodeling.

  13. Modifying three-dimensional scaffolds from novel nanocomposite materials using dissolvable porogen particles for use in liver tissue engineering

    PubMed Central

    Fuller, Barry; Seldon, Clare; Davidson, Brian; Seifalian, Alexander

    2013-01-01

    Background: Although hepatocytes have a remarkable regenerative power, the rapidity of acute liver failure makes liver transplantation the only definitive treatment. Attempts to incorporate engineered three-dimensional liver tissue in bioartificial liver devices or in implantable tissue constructs, to treat or bridge patients to self-recovery, were met with many challenges, amongst which is to find suitable polymeric matrices. We studied the feasibility of utilising nanocomposite polymers in three-dimensional scaffolds for hepatocytes. Materials and methods: Hepatocytes (HepG2) were seeded on a flat sheet and in three-dimensional scaffolds made of a nanocomposite polymer (Polyhedral Oligomeric Silsesquioxane [POSS]-modified polycaprolactone urea urethane) alone as well as with porogen particles, i.e. glucose, sodium bicarbonate and sodium chloride. The scaffold architecture, cell attachment and morphology were studied with scanning electron microscopy, and we assessed cell viability and functionality. Results: Cell attachment to the scaffolds was demonstrated. The scaffold made with glucose particles as porogen showed a narrower range of pore size with higher porosity and better inter-pore communications and seemed to encourage near normal cell morphology. There was a steady increase of albumin secretion throughout the experiment while the control (monolayer cell culture) showed a steep decrease after day 7. At the end of the experiment, there was no significant difference in viability and functionality between the scaffolds and the control. Conclusion: In this initial study, porogen particles were used to modify the scaffolds produced from the novel polymer. Although there was no significance against the control in functionality and viability, the demonstrable attachment on scanning electron microscopy suggest potential roles for this polymer and in particular for scaffolds made with glucose particles in liver tissue engineering. PMID:22532408

  14. Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors.

    PubMed

    Lv, Qing; Nair, Lakshmi; Laurencin, Cato T

    2009-12-01

    Dynamic flow culture bioreactor systems have been shown to enhance in vitro bone tissue formation by facilitating mass transfer and providing mechanical stimulation. Our laboratory has developed a biodegradable poly (lactic acid glycolic acid) (PLAGA) mixed scaffold consisting of lighter-than-water (LTW) and heavier-than-water (HTW) microspheres as potential matrices for engineering tissue using a high aspect ratio vessel (HARV) rotating bioreactor system. We have demonstrated enhanced osteoblast differentiation and mineralization on PLAGA scaffolds in the HARV rotating bioreactor system when compared with static culture. The objective of the present study is to improve the mechanical properties and bioactivity of polymeric scaffolds by designing LTW polymer/ceramic composite scaffolds suitable for dynamic culture using a HARV bioreactor. We employed a microsphere sintering method to fabricate three-dimensional PLAGA/nano-hydroxyapatite (n-HA) mixed scaffolds composed of LTW and HTW composite microspheres. The mechanical properties, pore size and porosity of the composite scaffolds were controlled by varying parameters, such as sintering temperature, sintering time, and PLAGA/n-HA ratio. The PLAGA/n-HA (4:1) scaffold sintered at 90 degrees C for 3 h demonstrated the highest mechanical properties and an appropriate pore structure for bone tissue engineering applications. Furthermore, evaluation human mesenchymal stem cells (HMSCs) response to PLAGA/n-HA scaffolds was performed. HMSCs on PLAGA/n-HA scaffolds demonstrated enhanced proliferation, differentiation, and mineralization when compared with those on PLAGA scaffolds. Therefore, PLAGA/n-HA mixed scaffolds are promising candidates for HARV bioreactor-based bone tissue engineering applications. Copyright 2008 Wiley Periodicals, Inc.

  15. Integrating Near-Real Time Hydrologic-Response Monitoring and Modeling for Improved Assessments of Slope Stability Along the Coastal Bluffs of the Puget Sound Rail Corridor, Washington State

    NASA Astrophysics Data System (ADS)

    Mirus, B. B.; Baum, R. L.; Stark, B.; Smith, J. B.; Michel, A.

    2015-12-01

    Previous USGS research on landslide potential in hillside areas and coastal bluffs around Puget Sound, WA, has identified rainfall thresholds and antecedent moisture conditions that correlate with heightened probability of shallow landslides. However, physically based assessments of temporal and spatial variability in landslide potential require improved quantitative characterization of the hydrologic controls on landslide initiation in heterogeneous geologic materials. Here we present preliminary steps towards integrating monitoring of hydrologic response with physically based numerical modeling to inform the development of a landslide warning system for a railway corridor along the eastern shore of Puget Sound. We instrumented two sites along the steep coastal bluffs - one active landslide and one currently stable slope with the potential for failure - to monitor rainfall, soil-moisture, and pore-pressure dynamics in near-real time. We applied a distributed model of variably saturated subsurface flow for each site, with heterogeneous hydraulic-property distributions based on our detailed site characterization of the surficial colluvium and the underlying glacial-lacustrine deposits that form the bluffs. We calibrated the model with observed volumetric water content and matric potential time series, then used simulated pore pressures from the calibrated model to calculate the suction stress and the corresponding distribution of the factor of safety against landsliding with the infinite slope approximation. Although the utility of the model is limited by uncertainty in the deeper groundwater flow system, the continuous simulation of near-surface hydrologic response can help to quantify the temporal variations in the potential for shallow slope failures at the two sites. Thus the integration of near-real time monitoring and physically based modeling contributes a useful tool towards mitigating hazards along the Puget Sound railway corridor.

  16. Preferential flow occurs in unsaturated conditions

    USGS Publications Warehouse

    Nimmo, John R.

    2012-01-01

    Because it commonly generates high-speed, high-volume flow with minimal exposure to solid earth materials, preferential flow in the unsaturated zone is a dominant influence in many problems of infiltration, recharge, contaminant transport, and ecohydrology. By definition, preferential flow occurs in a portion of a medium – that is, a preferred part, whether a pathway, pore, or macroscopic subvolume. There are many possible classification schemes, but usual consideration of preferential flow includes macropore or fracture flow, funneled flow determined by macroscale heterogeneities, and fingered flow determined by hydraulic instability rather than intrinsic heterogeneity. That preferential flow is spatially concentrated associates it with other characteristics that are typical, although not defining: it tends to be unusually fast, to transport high fluxes, and to occur with hydraulic disequilibrium within the medium. It also has a tendency to occur in association with large conduits and high water content, although these are less universal than is commonly assumed. Predictive unsaturated-zone flow models in common use employ several different criteria for when and where preferential flow occurs, almost always requiring a nearly saturated medium. A threshold to be exceeded may be specified in terms of the following (i) water content; (ii) matric potential, typically a value high enough to cause capillary filling in a macropore of minimum size; (iii) infiltration capacity or other indication of incipient surface ponding; or (iv) other conditions related to total filling of certain pores. Yet preferential flow does occur without meeting these criteria. My purpose in this commentary is to point out important exceptions and implications of ignoring them. Some of these pertain mainly to macropore flow, others to fingered or funneled flow, and others to combined or undifferentiated flow modes.

  17. Assessing the influence of the rhizosphere on soil hydraulic properties using X-ray computed tomography and numerical modelling.

    PubMed

    Daly, Keith R; Mooney, Sacha J; Bennett, Malcolm J; Crout, Neil M J; Roose, Tiina; Tracy, Saoirse R

    2015-04-01

    Understanding the dynamics of water distribution in soil is crucial for enhancing our knowledge of managing soil and water resources. The application of X-ray computed tomography (CT) to the plant and soil sciences is now well established. However, few studies have utilized the technique for visualizing water in soil pore spaces. Here this method is utilized to visualize the water in soil in situ and in three-dimensions at successive reductive matric potentials in bulk and rhizosphere soil. The measurements are combined with numerical modelling to determine the unsaturated hydraulic conductivity, providing a complete picture of the hydraulic properties of the soil. The technique was performed on soil cores that were sampled adjacent to established roots (rhizosphere soil) and from soil that had not been influenced by roots (bulk soil). A water release curve was obtained for the different soil types using measurements of their pore geometries derived from CT imaging and verified using conventional methods, such as pressure plates. The water, soil, and air phases from the images were segmented and quantified using image analysis. The water release characteristics obtained for the contrasting soils showed clear differences in hydraulic properties between rhizosphere and bulk soil, especially in clay soil. The data suggest that soils influenced by roots (rhizosphere soil) are less porous due to increased aggregation when compared with bulk soil. The information and insights obtained on the hydraulic properties of rhizosphere and bulk soil will enhance our understanding of rhizosphere biophysics and improve current water uptake models. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Current challenges in quantifying preferential flow through the vadose zone

    NASA Astrophysics Data System (ADS)

    Koestel, John; Larsbo, Mats; Jarvis, Nick

    2017-04-01

    In this presentation, we give an overview of current challenges in quantifying preferential flow through the vadose zone. A review of the literature suggests that current generation models do not fully reflect the present state of process understanding and empirical knowledge of preferential flow. We believe that the development of improved models will be stimulated by the increasingly widespread application of novel imaging technologies as well as future advances in computational power and numerical techniques. One of the main challenges in this respect is to bridge the large gap between the scales at which preferential flow occurs (pore to Darcy scales) and the scale of interest for management (fields, catchments, regions). Studies at the pore scale are being supported by the development of 3-D non-invasive imaging and numerical simulation techniques. These studies are leading to a better understanding of how macropore network topology and initial/boundary conditions control key state variables like matric potential and thus the strength of preferential flow. Extrapolation of this knowledge to larger scales would require support from theoretical frameworks such as key concepts from percolation and network theory, since we lack measurement technologies to quantify macropore networks at these large scales. Linked hydro-geophysical measurement techniques that produce highly spatially and temporally resolved data enable investigation of the larger-scale heterogeneities that can generate preferential flow patterns at pedon, hillslope and field scales. At larger regional and global scales, improved methods of data-mining and analyses of large datasets (machine learning) may help in parameterizing models as well as lead to new insights into the relationships between soil susceptibility to preferential flow and site attributes (climate, land uses, soil types).

  19. Characterization and enhanced nonlinear optical limiting response in carbon nanodots dispersed in solid-state hybrid organically modified silica gel glasses

    NASA Astrophysics Data System (ADS)

    Huang, Li; Zheng, Chan; Guo, Qiaohang; Huang, Dongdong; Wu, Xiukai; Chen, Ling

    2018-02-01

    Freely dispersed carbon nanodots (CNDs) were introduced into a 3-glycidoxy-propyltrimethoxysilane modified silicate gel glass (i.e. an organically modified silica or ORMOSIL) by a highly efficient and simple sol-gel process, which could be easily extended to prepare functional molecules/nanoparticles solid state optoelectronic devices. Scanning electron microscope imaging, Fourier transform infrared spectroscopy, pore structure measurements, ultraviolet-visible spectroscopy, and fluorescence spectroscopy were used to investigate the surface characteristics, structure, texture, and linear optical properties of the CND/SiO2 ORMOSIL gel glasses. Images and UV/Vis spectra confirmed the successful dispersion of CNDs in the ORMOSIL gel glass. The surface characteristics and pore structure of the host SiO2 matrix were markedly changed through the introduction of the CNDs. The linear optical properties of the guest CNDs were also affected by the sol-gel procedure. The nonlinear optical (NLO) properties of the CNDs were investigated by a nanosecond open-aperture Z-scan technique at 532 nm both in liquid and solid matrices. We found that the NLO response of the CNDs was considerably improved after their incorporation into the ORMOSIL gel glasses. Possible enhancement mechanisms were also explored. The nonlinear extinction coefficient gradually increased while the optical limiting (OL) threshold decreased as the CND doping level was increased. This result suggests that the NLO and OL properties of the composite gel glasses can be optimized by tuning the concentration of CNDs in the gel glass matrix. Our findings show that CND/SiO2 ORMOSIL gel glasses are promising candidates for optical limiters to protect sensitive instruments and human eyes from damage caused by high power lasers.

  20. Miscellaneous methods for measuring matric or water potential

    USGS Publications Warehouse

    Scanlon, Bridget R.; Andraski, Brian J.; Bilskie, Jim; Dane, Jacob H.; Topp, G. Clarke

    2002-01-01

    A variety of techniques to measure matric potential or water potential in the laboratory and in the field are described in this section. The techniques described herein require equilibration of some medium whose matric or water potential can be determined from previous calibration or can be measured directly. Under equilibrium conditions the matric or water potential of the medium is equal to that of the soil. The techniques can be divided into: (i) those that measure matric potential and (ii) those that measure water potential (sum of matric and osmotic potentials). Matric potential is determined when the sensor matrix is in direct contact with the soil, so salts are free to diffuse in or out of the sensor matrix, and the equilibrium measurement therefore reflects matric forces acting on the water. Water potential is determined when the sensor is separated from the soil by a vapor gap, so salts are not free to move in or out of the sensor, and the equilibrium measurement reflects the sum of the matric and osmotic forces acting on the water.Seven different techniques are described in this section. Those that measure matric potential include (i) heat dissipation sensors, (ii) electrical resistance sensors, (iii) frequency domain and time domain sensors, and (iv) electro-optical switches. A method that can be used to measure matric potential or water potential is the (v) filter paper method. Techniques that measure water potential include (vi) the Dew Point Potentiameter (Decagon Devices, Inc., Pullman, WA1) (water activity meter) and (vii) vapor equilibration.The first four techniques are electronically based methods for measuring matric potential. Heat dissipation sensors and electrical resistance sensors infer matric potential from previously determined calibration relations between sensor heat dissipation or electrical resistance and matric potential. Frequency-domain and timedomain matric potential sensors measure water content, which is related to matric potential of the sensor through calibration. Electro-optical switches measure changes in light transmission through thin, nylon filters as they absorb or desorb water in response to changes in matric potential. Heat dissipation sensors and electrical resistance sensors are used primarily in the field to provide information on matric potential. Frequency domain matric potential sensors are new and have not been widely used. Time domain matric potential sensors and electro-optical switches are new and have not been commercialized. For the fifth technique, filter paper is used as the standard matrix. The filter paper technique measures matric potential when the filter paper is in direct contact with soil or water potential when separated from soil by a vapor gap. The Dew Point Potentiameter calculates water potential from the measured dew point and sample temperature. The vapor equilibration technique involves equilibration of soil samples with salt solutions of known osmotic potential. The filter paper, Dew Point Potentiameter, and vapor equilibration techniques are generally used in the laboratory to measure water potential of disturbed field samples or to measure water potential for water retention functions.

  1. Fate of Airborne Contaminants in Okefenokee National Wildlife Refuge

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.

    1997-01-01

    Designation of Okefenokee National Wildlife Refuge as a Class I Air Quality Area (given the highest level of protection possible from air pollutants under the Clean Air Act Amendments of 1977) affords mandatory protection of the Refuge's airshed through the permit-review process for planned developments. Rainfall is the major source of water to the swamp, and potential impacts from developments to the airshed are high. To meet management needs for baseline information, chemical contributions from atmospheric deposition and partitioning of anions and cations, with emphasis on mercury and lead, in the various matrices of the Swamp were determined between July 1993 and April 1995. Chemistry of rainfall was determined on an event basis from one site located at Refuge Headquarters. Field samples of surface water, pore water, floc and sediment were collected from four locations on the Refuge: Chesser Prairie, Chase Prairie, Durden Prairie, and the Narrows. A sediment core sample was collected from the Refuge interior at Bluff Lake for aging of mercury deposition. Rainfall was acidic (pH 4.8) with sulfate concentrations averaging 1.2 mg/L and nitrate averaging 0.8 mg/L. Lead in rainfall averaged 1 ?g/L and total and methylmercury concentrations were 11.7 ng/L and 0.025 ng/L, respectively. The drought of 1993 followed by heavy rains during the fall and winter caused a temporary alteration in the cycling and availability of trace-elements within the different matrices of the Swamp. Surface water was acidic (pH 3.8 to 4.1), dilute (specific conductance 35-60 ?S/cm), and highly organic (DOC 35-50 mg/L). Sediment and floc were also highly organic (>90%). Total mercury averaged 3.6 ng/L in surface water, 9.0 ng/L in pore water and about 170 ng/g in floc and sediments. Mercury bioaccumulated in the biota of the Refuge: fish fillets (Centrarchus macropterus, Esox niger, Lepomus gulosus and Amia calva) had >2 ?g/g dry weight, alligators (Alligator mississippiensis) >4 ?g/g dry weight in liver and kidney, and raccoons (Procyon lotor) >16 ?g/g dry weight in the liver and kidney. Lead averaged 1 ?g/L in rainfall, 6.6 ?g/L in surface water, 9.8 ?g/L in pore water, 12.3 ?g/g in floc and 12.5 ?g/g in sediments. Lead in fish muscle was ~0.1 ?g/g and >1.2 ?g/g in bone, alligator kidney had 1.5 ?g/g lead and liver had 3.8 ?g/g; raccoon kidney and liver averaged about 1 ?g/g. Historical patterns of mercury deposition based on 210Pb aging of the core sample showed mercury increased from pre-1800 concentrations of 500 ng/g in the 1950s, with a subsequent decline to current levels. Lead concentrations in the core sample followed a similar pattern as that of mercury. Okefenokee Swamp serves as a sump for the cations and anions deposited through rainfall. Although mercury and lead levels in the biota are not currently acutely hazardous, concentrations are high enough to cause adverse chronic effects on behavioral, physiological or reproductive functions of resident biota, especially piscivorous species. To protect trust resources associated with the Refuge, activities and developments in the airshed that have the potential to increase atmospheric contamination, especially for lead and mercury, should be curtailed.

  2. Genetic code, hamming distance and stochastic matrices.

    PubMed

    He, Matthew X; Petoukhov, Sergei V; Ricci, Paolo E

    2004-09-01

    In this paper we use the Gray code representation of the genetic code C=00, U=10, G=11 and A=01 (C pairs with G, A pairs with U) to generate a sequence of genetic code-based matrices. In connection with these code-based matrices, we use the Hamming distance to generate a sequence of numerical matrices. We then further investigate the properties of the numerical matrices and show that they are doubly stochastic and symmetric. We determine the frequency distributions of the Hamming distances, building blocks of the matrices, decomposition and iterations of matrices. We present an explicit decomposition formula for the genetic code-based matrix in terms of permutation matrices, which provides a hypercube representation of the genetic code. It is also observed that there is a Hamiltonian cycle in a genetic code-based hypercube.

  3. Development of Multiscale Materials in Microfluidic Devices: Case Study for Viral Separation from Whole Blood

    NASA Astrophysics Data System (ADS)

    Surawathanawises, Krissada

    Separation and concentration of nanoscale species play an important role in various fields such as biotechnology, nanotechnology and environmental science. Inevitably, the separation efficiency strongly affects the quality of downstream detections or productions. Innovations in materials science that can separate bionanoparticles efficiently and do not require complex setups, reagents or external fields are highly demanded. This work focuses on developing new materials for the affinity separation of bio-nanoparticles such as viruses or macromolecules from a complex mixture, such as whole blood. To enhance the interaction between target nanoparticles and the capture bed, methods to produce porous matrices with a uniform pore size matching the dimension of targets are studied. Furthermore, regarding viral separation from whole blood, macroporous materials are further patterned into microarrays to allow multiscale separation. Considering the needs in resource-limited settings, these materials are integrated with microfluidic technologies to reduce the volume of samples and reagents, simplify operating processes, and enable the use of inexpensive and portable components. Beyond the application of viral separation as demonstrated in the work, the fundamental study of macroporous material formation and transport in these materials also shed light to the separation of many other nanospecies in multiscale materials. Specifically, two macroporous materials, based on template synthesis, are created in this work. The first type employs porous anodic aluminum oxide (AAO) films as the template to create hexagonal arrays of nanoposts. However, pore sizes and interpore distances (cell size) of ordered porous AAO films are limited by the conventional fabrication process. Moreover, the process usually yields defective pore morphologies and large pore and cell size distributions. To overcome these limitations, a patterning method using nanobead indentation on aluminum substrate prior to anodization is evaluated to control the growth of AAO. Together with controlled anodizing voltages and electrolytic concentrations, AAO pore and cell sizes are shown to be tunable and controllable with narrow size distributions within submicron range. A high degree of order of AAO pore arrangement is also demonstrated. In addition, overall anodization becomes more time-efficient and stable at high anodizing voltages. Secondly, a three-dimensional (3D) assembly of microbeads is used as a template to fabricate a spherical pore network with small interconnected openings. After depositing and drying a suspension containing both micro- and nanobeads, the microbeads assemble into a 3D close-packed structure while the nanobeads fill the interstitial space. When the nanobeads are melted and microbeads are removed, a spherical pore matrix then form with small interconnected openings. Such the opening size is in submicron range can be adjusted depending on the size of microbead. The advantages of the two macroporous materials are not only controllable and tunable pore size, but also high surface-to-volume ratio due to the nanoscale features. With a ratio on the order of ~1 microm-1, the porous materials provide a significantly large binding surface. Computational and experimental results reveal that porous materials with a pore size matching the nanoparticle size are suitable for their capture. Separation of human immunodeficiency virus (HIV) is used as a model and capture yields of ~99 % and ~80 % are achieved in the nanopost structure and spherical pore network, respectively, after treated with a functional chemistry. Hence, the properties of these two macroporous materials are suitable as a size-exclusion and affinity separation for viral particles. To further explore multiscale separation, i.e. capturing viruses from whole blood, micropatterned arrays of macroporous materials have been designed. In this design, a microscale gap allows the passage of microparticles such as blood cells, and the nanoscale pores promote permeation for affinity capture of bionanoparticles. Consequently, particles with a size difference of 3--4 orders of magnitude can be separated in a simple flow-through process. Computational analyses are employed to study the effect of micropattern shape and layout. A half-ring pattern is shown to reduce flow resistance and promote fluid permeation compared to a circular pattern. In the experiment, the micropatterned porous arrays yield around 4 times higher viral capture from whole blood compared with a micropatterned solid array. The micropatterned porous devices are capable of handling a large volume of fluid sample without clogging by cells. Therefore they can be used for nanoparticle concentration. Our study also indicates that the layout of micropatterns can be adjusted to improve the capture yield. For example, an increase in pattern radius, or a decrease in gap distance between each post and in width of half ring will enhance fluid permeation in the porous structure. When combined with downstream detection, these materials integrated into microfluidic platforms can be created as point-of-care diagnostics, as well as other applications for particle separation and analysis. (Abstract shortened by UMI.).

  4. Adsorption and wetting characterization of hydrophobic SBA-15 silicas.

    PubMed

    Bernardoni, Frank; Fadeev, Alexander Y

    2011-04-15

    This work describes adsorption and wetting characterization of hydrophobic ordered mesoporous silicas (OMSs) with the SBA-15 motif. Three synthetic approaches to prepare hydrophobic SBA-15 silicas were explored: grafting with (1) covalently-attached monolayers (CAMs) of C(n)H(2)(n+1)Si(CH(3))(2)N(CH(3))(2), (2) self-assembled monolayers (SAMs) of C(n)H(2)(n+1)Si(OEt)(3), and (3) direct ("one-pot") co-condensation of TEOS with C(n)H(2)(n+1)Si(OEt)(3) in presence of P123 (n=1-18). The materials prepared were characterized by nitrogen adsorption, TEM, and chemical analysis. The surface properties of the materials were assessed by water contact angles (CAs) and by BET C constants. The results showed that, while loadings of the alkyl groups (%C) were comparable, the surface properties and pore ordering of the materials prepared through different methods were quite different. The best quality hydrophobic surfaces were prepared for SBA-15 grafted with CAMs of alkylsilanes. For these materials, the water CAs were above ∼120°/100° (adv/rec) and BET C constants were in the range of ∼15-25, indicating uniform low-energy surfaces of closely packed alkyl groups on external and internal surfaces of the pores respectively. Moreover, surfaces grafted with the long-chained (C(12)-C(18)) silanes showed super-hydrophobic behavior (CAs∼150-180°) and extremely low adhesion for water. The pore uniformity of parental SBA-15 was largely preserved and the pore volume and pore diameter were consistent with the formation of a single layer of alkylsilyl groups inside the pores. Post-synthesis grafting of SBA-15 with SAMs worked not as well as CAMs: the surfaces prepared demonstrated lower water CAs and higher BET C constants, thereby indicating a small amount of accessible polar groups (Si-OH) related to packing constrains for SAMs supported on highly curved surfaces of mesopores. The co-condensation method produced substantially more disordered materials and less hydrophobic surfaces than any of the grafting methods. The surfaces of these materials showed low water CAs and high BET C constants (∼100-200) thereby demonstrating a non-uniform surface coverage and presence of unmodified silica. It is concluded that CAMs chemistry is the most efficient approach in preparation of the functionalized OMS materials with uniform surfaces and pores. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Pulmonary macrophages: Phenomena associated with the particle ``overload`` condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehnert, B.E.; Sebring, R.J.; Oberdoerster, G.

    1993-05-01

    Numerous lines of evidence support the generalization that alveolar macrophage (AM)-mediated particle clearance, or the transport of particle-containing AM from the alveoli out of the lung via the mucociliary apparatus, is a prominent mechanism that determines the pulmonary retention characteristics of relatively insoluble particles. Studies have also shown that the alveolar deposition of excessive burdens of particles with even low intrinsic cytotoxicity can result in impairments of the AM-mediated panicle clearance mechanism and the development of pathologic disorders including pulmonary fibrosis and lung cancer, at least in the lungs of rats. We briefly review evidence consistent with the idea thatmore » the high volumetric loads of particles contained in AM during particle overload conditions underlies their inabilities to translocate from the lung. Using a condition of particle overload brought about by subchronic exposure of rats to ultra-fine titanium dioxide as an experimental model, we have obtained ultrastructural and other evidence that indicates an association between particle overload and: The occurrence of aggregates of particle-containing AM in alveoli, Type II cell hyperplasia in alveoli that contain the AM aggregates, a loss in patent pores of Kohn in alveoli that contain the AM aggregates and show Type II cell hyperplasia, the interstitialization of particles at the sites where these phenomena collectively occur, and the development of fibrosis in alveolar regions where particle interstitialization occurs. The loss of pores of Kohn in the alveoli that contain aggregates of particle-laden AM suggests that these interalveolar pores normally serve as passageways through which AM may migrate to neighboring alveoli as they perform their function of phagocytizing particles that have deposited on the alveolar surface. The pores of Kohn also serve as short-cut pathways for AM to reach the mucociliary apparatus from more distal alveoli.« less

  6. Pulmonary macrophages: Phenomena associated with the particle overload'' condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehnert, B.E.; Sebring, R.J.; Oberdoerster, G.

    1993-01-01

    Numerous lines of evidence support the generalization that alveolar macrophage (AM)-mediated particle clearance, or the transport of particle-containing AM from the alveoli out of the lung via the mucociliary apparatus, is a prominent mechanism that determines the pulmonary retention characteristics of relatively insoluble particles. Studies have also shown that the alveolar deposition of excessive burdens of particles with even low intrinsic cytotoxicity can result in impairments of the AM-mediated panicle clearance mechanism and the development of pathologic disorders including pulmonary fibrosis and lung cancer, at least in the lungs of rats. We briefly review evidence consistent with the idea thatmore » the high volumetric loads of particles contained in AM during particle overload conditions underlies their inabilities to translocate from the lung. Using a condition of particle overload brought about by subchronic exposure of rats to ultra-fine titanium dioxide as an experimental model, we have obtained ultrastructural and other evidence that indicates an association between particle overload and: The occurrence of aggregates of particle-containing AM in alveoli, Type II cell hyperplasia in alveoli that contain the AM aggregates, a loss in patent pores of Kohn in alveoli that contain the AM aggregates and show Type II cell hyperplasia, the interstitialization of particles at the sites where these phenomena collectively occur, and the development of fibrosis in alveolar regions where particle interstitialization occurs. The loss of pores of Kohn in the alveoli that contain aggregates of particle-laden AM suggests that these interalveolar pores normally serve as passageways through which AM may migrate to neighboring alveoli as they perform their function of phagocytizing particles that have deposited on the alveolar surface. The pores of Kohn also serve as short-cut pathways for AM to reach the mucociliary apparatus from more distal alveoli.« less

  7. Levodopa modulates small-world architecture of functional brain networks in Parkinson's disease.

    PubMed

    Berman, Brian D; Smucny, Jason; Wylie, Korey P; Shelton, Erika; Kronberg, Eugene; Leehey, Maureen; Tregellas, Jason R

    2016-11-01

    PD is associated with disrupted connectivity to a large number of distributed brain regions. How the disease alters the functional topological organization of the brain, however, remains poorly understood. Furthermore, how levodopa modulates network topology in PD is largely unknown. The objective of this study was to use resting-state functional MRI and graph theory to determine how small-world architecture is altered in PD and affected by levodopa administration. Twenty-one PD patients and 20 controls underwent functional MRI scanning. PD patients were scanned off medication and 1 hour after 200 mg levodopa. Imaging data were analyzed using 226 nodes comprising 10 intrinsic brain networks. Correlation matrices were generated for each subject and converted into cost-thresholded, binarized adjacency matrices. Cost-integrated whole-brain global and local efficiencies were compared across groups and tested for relationships with disease duration and severity. Data from 2 patients and 4 controls were excluded because of excess motion. Patients off medication showed no significant changes in global efficiency and overall local efficiency, but in a subnetwork analysis did show increased local efficiency in executive (P = 0.006) and salience (P = 0.018) networks. Levodopa significantly decreased local efficiency (P = 0.039) in patients except within the subcortical network, in which it significantly increased local efficiency (P = 0.007). Levodopa modulates global and local efficiency measures of small-world topology in PD, suggesting that degeneration of nigrostriatal neurons in PD may be associated with a large-scale network reorganization and that levodopa tends to normalize the disrupted network topology in PD. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  8. Sorption kinetics of superabsorbent polymers (SAPs) in fresh Portland cement-based pastes visualized and quantified by neutron radiography and correlated to the progress of cement hydration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroefl, Christof, E-mail: christof.schroefl@tu-dresden.de; Mechtcherine, Viktor; Vontobel, Peter

    2015-09-15

    Water sorption of two superabsorbent polymers in cement-based pastes has been characterized by neutron radiography. Cement pastes with W/C of 0.25 and 0.50 and one additionally containing silica fume (W/C = 0.42) were investigated. The SAPs differed in their inherent sorption kinetics in extracted cement pore solution (SAP 1: self-releasing; SAP 2: retentive). Desorption from SAP 1 started very early after paste preparation. Hence, its individual non-retentiveness governs its behavior only. SAP 2 released water into all matrices, but its kinetics were different. In the paste with the highest W/C, some moderate water release was recorded from the beginning. Inmore » the other two pastes, SAP 2 retained its stored liquid during the dormant period, i.e., up to the percolation threshold. Intense desorption then set in and continued throughout the acceleration period. These findings explain the pronouncedly higher efficiency of SAP 2 as internal curing admixture as compared to SAP 1.« less

  9. Lecithin, gelatin and hydrolyzed collagen orally disintegrating films: functional properties.

    PubMed

    Borges, J G; Silva, A G; Cervi-Bitencourt, C M; Vanin, F M; Carvalho, R A

    2016-05-01

    Orally disintegrating films (ODFs) can transport natural active compounds such as ethanol extract of propolis (EEP). This paper aimed to investigate the effect of lecithin on different gelatin and hydrolyzed collagen (HC) polymeric matrices with addition of EEP. ODFs were prepared by casting technique and were characterized (color parameters, water content, mechanical properties, microstructure, disintegration time (DT), infrared spectroscopy (FTIR), contact angle (CA), swelling degree and total phenolic content). The mechanical properties were influenced by HC. The microstructure demonstrated increased porosity and roughness in films with EEP, and the addition of lecithin resulted in an increase in the number of pores. Lecithin-gelatin and lecithin-EEP-gelatin interactions were observed by FTIR. The addition of HC and EEP reduced the DT and CA, and HC and lecithin reduced the swelling capacity. However, the swelling capacity was not affected by presence of EEP. The addition of lecithin to gelatin and HC ODFs may improve the incorporation and the oral transport of active compounds such as EEP. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Identification of carbohydrates by matrix-free material-enhanced laser desorption/ionisation mass spectrometry.

    PubMed

    Hashir, Muhammad Ahsan; Stecher, Guenther; Bakry, Rania; Kasemsook, Saowapak; Blassnig, Bernhard; Feuerstein, Isabel; Abel, Gudrun; Popp, Michael; Bobleter, Ortwin; Bonn, Guenther K

    2007-01-01

    Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) is a sensitive mass spectrometric technique which utilises acidic materials as matrices for laser energy absorption, desorption and ionisation of analytes. These matrix materials produce background signals particularly in the low-mass range and make the detection and identification of small molecules difficult and nearly impossible. To overcome this problem this paper introduces matrix-free material-enhanced laser desorption/ionisation mass spectrometry (mf-MELDI-MS) for the screening and analysis of small molecules such as carbohydrates. For this purpose, 4,4'-azo-dianiline was immobilised on silica gel enabling the absorption of laser energy sufficient for successful desorption and ionisation of low molecular weight compounds. The particle and pore sizes, the solvent system for suspension and the sample preparation procedures have been optimised. The newly synthesised MELDI material delivered excellent spectra with regard to signal-to-noise ratio and detection sensitivity. Finally, wheat straw degradation products and Salix alba L. plant extracts were analysed proving the high performance and excellent behaviour of the introduced material. Copyright (c) 2007 John Wiley & Sons, Ltd.

  11. Development of VEGF-loaded PLGA matrices in association with mesenchymal stem cells for tissue engineering

    PubMed Central

    Rosa, A.R.; Steffens, D.; Santi, B.; Quintiliano, K.; Steffen, N.; Pilger, D.A.; Pranke, P.

    2017-01-01

    The association of bioactive molecules, such as vascular endothelial growth factor (VEGF), with nanofibers facilitates their controlled release, which could contribute to cellular migration and differentiation in tissue regeneration. In this research, the influence of their incorporation on a polylactic-co-glycolic acid (PLGA) scaffold produced by electrospinning on cell adhesion and viability and cytotoxicity was carried out in three groups: 1) PLGA/BSA/VEGF; 2) PLGA/BSA, and 3) PLGA. Morphology, fiber diameter, contact angle, loading efficiency and controlled release of VEGF of the biomaterials, among others, were measured. The nanofibers showed smooth surfaces without beads and with interconnected pores. PLGA/BSA/VEGF showed the smallest water contact angle and VEGF released for up to 160 h. An improvement in cell adhesion was observed for the PLGA/BSA/VEGF scaffolds compared to the other groups and the scaffolds were non-toxic for the cells. Therefore, the scaffolds were shown to be a good strategy for sustained delivery of VEGF and may be a useful tool for tissue engineering. PMID:28793048

  12. Controlling of magnetocaloric effect in Gd2O3@SiO2 nanocomposites by substrate dimensionality and particles' concentration

    NASA Astrophysics Data System (ADS)

    ZeleÅáková, Adriana; Hrubovčák, Pavol; Kapusta, Ondrej; Berkutova, Anna; ZeleÅák, Vladimir; Franco, Victorino

    2018-04-01

    The magnetocaloric effect (MCE) of hybrid nanostructures consisting of fine gadolinium oxide (Gd2O3) nanoparticles with diameter 7 nm and 12 nm loaded into the pores of the periodically ordered mesoporous silica with hexagonal (SBA-15) or cubic (SBA-16) symmetry were investigated. The concentration effect of the added nanoparticles (NPs) and the effect of the silica matrix dimensionality on the structural properties, magnetization M(H), magnetic entropy change ΔSM, and parameters A(T) and B(T) derived from Arrott plots were studied in four samples. Examined nanocomposites exhibited reasonable high values of magnetic entropy change ΔSM varying from 29 J/kgK established for Gd2O3@SBA-15 up to 64 J/kgK observed in Gd2O3@SBA-16 at maximal field change 5 T at low temperatures. This suggests that studied nanocomposites, where diamagnetic silica matrices serve as nanoreactors for growth of Gd2O3 nanoparticles and their symmetry strongly affect magnetic properties of whole composites, could be feasible for cryomagnetic refrigeration applications.

  13. Osteogenic differentiation of mesenchymal progenitor cells in computer designed fibrin-polymer-ceramic scaffolds manufactured by fused deposition modeling.

    PubMed

    Schantz, Jan-Thorsten; Brandwood, Arthur; Hutmacher, Dietmar Werner; Khor, Hwei Ling; Bittner, Katharina

    2005-09-01

    Biomimetic scaffolds offer great potentials in the development of bone analogs for tissue engineering. The studies presented in this paper focus specifically on the osteogenic potential of the novel PCL/CaP matrices and its degradation behavior. Biodegradable Polymer-ceramic Scaffolds were fabricated using the solid free form fabrication technology: Fused Deposition Modeling (FDM). The scaffold architecture was characterized by a honeycomb-like design and a complete interconnectivity of the pores. Human mesenchymal stem cells (MSCs) were seeded together with fibrin glue into PCL/CaP scaffolds and cultured in vitro for periods of up to eight weeks. Cellular adhesion, proliferation and osteogenic differentiation were assessed in these constructs using a range of histological and microscopic techniques. In additional experiments, degradation was assessed by measuring mass loss, diameter change, molecular weight change and by scanning electron micrographs. MSCs were able to adhere, migrate, and differentiate along the osteogenic lineage with in these scaffolds. The PCL/CaP scaffolds showed up to 27 fold increased degradation of compared to PCL scaffolds.

  14. Influence of Filler Pore Structure and Polymer on the Performance of MOF-Based Mixed-Matrix Membranes for CO2 Capture.

    PubMed

    Sabetghadam, Anahid; Liu, Xinlei; Benzaqui, Marvin; Gkaniatsou, Effrosyni; Orsi, Angelica; Lozinska, Magdalena M; Sicard, Clemence; Johnson, Timothy; Steunou, Nathalie; Wright, Paul A; Serre, Christian; Gascon, Jorge; Kapteijn, Freek

    2018-06-04

    To gain insight into the influence of metal-organic framework (MOF) fillers and polymers on membrane performance, eight different composites were studied by combining four MOFs and two polymers. MOF materials (NH 2 -MIL-53(Al), MIL-69(Al), MIL-96(Al) and ZIF-94) with various chemical functionalities, topologies, and dimensionalities of porosity were employed as fillers, and two typical polymers with different permeability-selectivity properties (6FDA-DAM and Pebax) were selected as matrices. The best-performing MOF-polymer composites were prepared by loading 25 wt % of MIL-96(Al) as filler, which improved the permeability and selectivity of 6FDA-DAM to 32 and 10 %, while for Pebax they were enhanced to 25 and 18 %, respectively. The observed differences in membrane performance in the separation of CO 2 from N 2 are explained on the basis of gas solubility, diffusivity properties, and compatibility between the filler and polymer phases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Depolymerization of starch and pectin using superporous matrix supported enzymes.

    PubMed

    Lali, Arvind; Manudhane, Kushal; Motlekar, Nuzhat; Karandikar, Priti

    2002-08-01

    Immobilized enzyme catalyzed biotransformations involving macromolecular substrates and/or products are greatly retarded due to slow diffusion of large substrate molecules in and out of the typical enzyme supports. Slow diffusion of macromolecules into the matrix pores can be speeded up by use of macroporous supports as enzyme carriers. Depolymerization reactions of polysaccharides like starch, pectin, and dextran to their respective low molecular weight products are some of the reactions that can benefit from use of such superporous matrices. In the present work, an indigenously prepared rigid cross-linked cellulose matrix (called CELBEADS) has been used as support for immobilizing alpha amylase (1,4-alpha-D-glucan glucanohydrolase, EC 3.2.1.1.) and pectinase (endo-PG: poly(1,4-alpha-galactouronide) glycanohydrolase, EC 3.2.1.15). The immobilized enzymes were used for starch and pectin hydrolysis respectively, in batch, packed bed and expanded bed modes. The macroporosity of CELBEADS was found to permit through-flow and easy diffusion of substrates pectin and starch to enzyme sites in the porous supports and gave reaction rates comparable to the rates obtained using soluble enzymes.

  16. Simulating immiscible multi-phase flow and wetting with 3D stochastic rotation dynamics (SRD)

    NASA Astrophysics Data System (ADS)

    Hiller, Thomas; Sanchez de La Lama, Marta; Herminghaus, Stephan; Brinkmann, Martin

    2013-11-01

    We use a variant of the mesoscopic particle method stochastic rotation dynamics (SRD) to simulate immiscible multi-phase flow on the pore and sub-pore scale in three dimensions. As an extension to the multi-color SRD method, first proposed by Inoue et al., we present an implementation that accounts for complex wettability on heterogeneous surfaces. In order to demonstrate the versatility of this algorithm, we consider immiscible two-phase flow through a model porous medium (disordered packing of spherical beads) where the substrate exhibits different spatial wetting patterns. We show that these patterns have a significant effect on the interface dynamics. Furthermore, the implementation of angular momentum conservation into the SRD algorithm allows us to extent the applicability of SRD also to micro-fluidic systems. It is now possible to study e.g. the internal flow behaviour of a droplet depending on the driving velocity of the surrounding bulk fluid or the splitting of droplets by an obstacle.

  17. Numerical modeling of interface displacement in heterogeneously wetting porous media

    NASA Astrophysics Data System (ADS)

    Hiller, T.; Brinkmann, M.; Herminghaus, S.

    2013-12-01

    We use the mesoscopic particle method stochastic rotation dynamics (SRD) to simulate immiscible multi-phase flow on the pore and sub-pore scale in three dimensions. As an extension to the standard SRD method, we present an approach on implementing complex wettability on heterogeneous surfaces. We use 3D SRD to simulate immiscible two-phase flow through a model porous medium (disordered packing of spherical beads) where the substrate exhibits different spatial wetting patterns. The simulations are designed to resemble experimental measurements of capillary pressure saturation. We show that the correlation length of the wetting patterns influences the temporal evolution of the interface and thus percolation, residual saturation and work dissipated during the fluid displacement. Our numerical results are in qualitatively good agreement with the experimental data. Besides of modeling flow in porous media, our SRD implementation allows us to address various questions of interfacial dynamics, e.g. the formation of capillary bridges between spherical beads or droplets in microfluidic applications to name only a few.

  18. The molecular mechanism of nuclear transport revealed by atomic-scale measurements

    PubMed Central

    Hough, Loren E; Dutta, Kaushik; Sparks, Samuel; Temel, Deniz B; Kamal, Alia; Tetenbaum-Novatt, Jaclyn; Rout, Michael P; Cowburn, David

    2015-01-01

    Nuclear pore complexes (NPCs) form a selective filter that allows the rapid passage of transport factors (TFs) and their cargoes across the nuclear envelope, while blocking the passage of other macromolecules. Intrinsically disordered proteins (IDPs) containing phenylalanyl-glycyl (FG)-rich repeats line the pore and interact with TFs. However, the reason that transport can be both fast and specific remains undetermined, through lack of atomic-scale information on the behavior of FGs and their interaction with TFs. We used nuclear magnetic resonance spectroscopy to address these issues. We show that FG repeats are highly dynamic IDPs, stabilized by the cellular environment. Fast transport of TFs is supported because the rapid motion of FG motifs allows them to exchange on and off TFs extremely quickly through transient interactions. Because TFs uniquely carry multiple pockets for FG repeats, only they can form the many frequent interactions needed for specific passage between FG repeats to cross the NPC. DOI: http://dx.doi.org/10.7554/eLife.10027.001 PMID:26371551

  19. Optimization of Melatonin Dissolution from Extended Release Matrices Using Artificial Neural Networking.

    PubMed

    Martarelli, D; Casettari, L; Shalaby, K S; Soliman, M E; Cespi, M; Bonacucina, G; Fagioli, L; Perinelli, D R; Lam, J K W; Palmieri, G F

    2016-01-01

    Efficacy of melatonin in treating sleep disorders has been demonstrated in numerous studies. Being with short half-life, melatonin needs to be formulated in extended-release tablets to prevent the fast drop of its plasma concentration. However, an attempt to mimic melatonin natural plasma levels during night time is challenging. In this work, Artificial Neural Networks (ANNs) were used to optimize melatonin release from hydrophilic polymer matrices. Twenty-seven different tablet formulations with different amounts of hydroxypropyl methylcellulose, xanthan gum and Carbopol®974P NF were prepared and subjected to drug release studies. Using dissolution test data as inputs for ANN designed by Visual Basic programming language, the ideal number of neurons in the hidden layer was determined trial and error methodology to guarantee the best performance of constructed ANN. Results showed that the ANN with nine neurons in the hidden layer had the best results. ANN was examined to check its predictability and then used to determine the best formula that can mimic the release of melatonin from a marketed brand using similarity fit factor. This work shows the possibility of using ANN to optimize the composition of prolonged-release melatonin tablets having dissolution profile desired.

  20. Review of analytical methods for the quantification of iodine in complex matrices.

    PubMed

    Shelor, C Phillip; Dasgupta, Purnendu K

    2011-09-19

    Iodine is an essential element of human nutrition. Nearly a third of the global population has insufficient iodine intake and is at risk of developing Iodine Deficiency Disorders (IDD). Most countries have iodine supplementation and monitoring programs. Urinary iodide (UI) is the biomarker used for epidemiological studies; only a few methods are currently used routinely for analysis. These methods either require expensive instrumentation with qualified personnel (inductively coupled plasma-mass spectrometry, instrumental nuclear activation analysis) or oxidative sample digestion to remove potential interferences prior to analysis by a kinetic colorimetric method originally introduced by Sandell and Kolthoff ~75 years ago. The Sandell-Kolthoff (S-K) method is based on the catalytic effect of iodide on the reaction between Ce(4+) and As(3+). No available technique fully fits the needs of developing countries; research into inexpensive reliable methods and instrumentation are needed. There have been multiple reviews of methods used for epidemiological studies and specific techniques. However, a general review of iodine determination on a wide-ranging set of complex matrices is not available. While this review is not comprehensive, we cover the principal developments since the original development of the S-K method. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Cell-adhesive RGD peptide-displaying M13 bacteriophage/PLGA nanofiber matrices for growth of fibroblasts.

    PubMed

    Shin, Yong Cheol; Lee, Jong Ho; Jin, Linhua; Kim, Min Jeong; Oh, Jin-Woo; Kim, Tai Wan; Han, Dong-Wook

    2014-01-01

    M13 bacteriophages can be readily fabricated as nanofibers due to non-toxic bacterial virus with a nanofiber-like shape. In the present study, we prepared hybrid nanofiber matrices composed of poly(lactic-co-glycolic acid, PLGA) and M13 bacteriophages which were genetically modified to display the RGD peptide on their surface (RGD-M13 phage). The surface morphology and chemical composition of hybrid nanofiber matrices were characterized by scanning electron microscopy (SEM) and Raman spectroscopy, respectively. Immunofluorescence staining was conducted to investigate the existence of M13 bacteriophages in RGD-M13 phage/PLGA hybrid nanofibers. In addition, the attachment and proliferation of three different types of fibroblasts on RGD-M13 phage/PLGA nanofiber matrices were evaluated to explore how fibroblasts interact with these matrices. SEM images showed that RGD-M13 phage/PLGA hybrid matrices had the non-woven porous structure, quite similar to that of natural extracellular matrices, having an average fiber diameter of about 190 nm. Immunofluorescence images and Raman spectra revealed that RGD-M13 phages were homogeneously distributed in entire matrices. Moreover, the attachment and proliferation of fibroblasts cultured on RGD-M13 phage/PLGA matrices were significantly enhanced due to enriched RGD moieties on hybrid matrices. These results suggest that RGD-M13 phage/PLGA matrices can be efficiently used as biomimetic scaffolds for tissue engineering applications.

  2. Bayes linear covariance matrix adjustment

    NASA Astrophysics Data System (ADS)

    Wilkinson, Darren J.

    1995-12-01

    In this thesis, a Bayes linear methodology for the adjustment of covariance matrices is presented and discussed. A geometric framework for quantifying uncertainties about covariance matrices is set up, and an inner-product for spaces of random matrices is motivated and constructed. The inner-product on this space captures aspects of our beliefs about the relationship between covariance matrices of interest to us, providing a structure rich enough for us to adjust beliefs about unknown matrices in the light of data such as sample covariance matrices, exploiting second-order exchangeability and related specifications to obtain representations allowing analysis. Adjustment is associated with orthogonal projection, and illustrated with examples of adjustments for some common problems. The problem of adjusting the covariance matrices underlying exchangeable random vectors is tackled and discussed. Learning about the covariance matrices associated with multivariate time series dynamic linear models is shown to be amenable to a similar approach. Diagnostics for matrix adjustments are also discussed.

  3. Long-Term Transport of Cryptosporidium Parvum

    NASA Astrophysics Data System (ADS)

    Andrea, C.; Harter, T.; Hou, L.; Atwill, E. R.; Packman, A.; Woodrow-Mumford, K.; Maldonado, S.

    2005-12-01

    The protozoan pathogen Cryptosporidium parvum is a leading cause of waterborne disease. Subsurface transport and filtration in natural and artificial porous media are important components of the environmental pathway of this pathogen. It has been shown that the oocysts of C. parvum show distinct colloidal properties. We conducted a series of laboratory studies on sand columns (column length: 10 cm - 60 cm, flow rates: 0.7 m/d - 30 m/d, ionic strength: 0.01 - 100 mM, filter grain size: 0.2 - 2 mm, various solution chemistry). Breakthrough curves were measured over relatively long time-periods (hundreds to thousands of pore volumes). We show that classic colloid filtration theory is a reasonable tool for predicting the initial breakthrough, but it is inadequate to explain the significant tailing observed in the breakthrough of C. parvum oocyst through sand columns. We discuss the application of the Continuous Time Random Walk approach to account for the strong tailing that was observed in our experiments. The CTRW is generalized transport modeling framework, which includes the classic advection-dispersion equation (ADE), the fractional ADE, and the multi-rate mass transfer model as special cases. Within this conceptual framework, it is possible to distinguish between the contributions of pore-scale geometrical (physical) disorder and of pore-scale physico-chemical heterogeneities (e.g., of the filtration, sorption, desorption processes) to the transport of C. parvum oocysts.

  4. Diagenesis of Miocene siliceous shales, Temblor Range, California

    USGS Publications Warehouse

    Murata, K.J.; Larson, R.R.

    1975-01-01

    Siliceous Monterey Shale and related shales of the Temblor Range, Calif., are subdivided into three depth-controlled zones characterized by different forms of silica. These are, in descending stratigraphic order: (1) Biogenic opal zone, with remains of diatoms and other siliceous organisms, (2) diagenetic cristobalite zone, and (3) diagenetic quartz zone. Using the top of the youngest marine unit, the overlying Etchegoin Formation, as datum, the transition from biogenic opal to disordered cristobalite occurs within the Monterey Shale of Chico Martinez Creek at -730 m, and the ordered cristobalite-to-microquartz transition at about -2,030 m. Temperatures that prevailed at these transition depths while the sedimentary pile lay at the bottom of the sea are estimated at about 50° and 110°C, respectively. Diagenetic cristobalite manifests, downward through a 1,300-m interval of section, a progressive decrease in its d(101) spacing because of a gradual ordering of its internal structure through adjustments in the solid state. Diagenetic microquartz forms only from well-ordered cristobalite that provides the most appropriate concentration of dissolved silica for precipitation of microquartz. Scanning electron micrographs of the silica mineral in pores of rocks made up of disordered cristobalite show aggregates of well-formed bladed crystals, like those described from deep-sea cherts. The pore silica minerals in rocks made up of ordered cristobalite occur as dendritic growths of poorly formed stubby crystals, and the change in crystal habit could be an external expression of the internal ordering process.

  5. Slide-and-exchange mechanism for rapid and selective transport through the nuclear pore complex.

    PubMed

    Raveh, Barak; Karp, Jerome M; Sparks, Samuel; Dutta, Kaushik; Rout, Michael P; Sali, Andrej; Cowburn, David

    2016-05-03

    Nucleocytoplasmic transport is mediated by the interaction of transport factors (TFs) with disordered phenylalanine-glycine (FG) repeats that fill the central channel of the nuclear pore complex (NPC). However, the mechanism by which TFs rapidly diffuse through multiple FG repeats without compromising NPC selectivity is not yet fully understood. In this study, we build on our recent NMR investigations showing that FG repeats are highly dynamic, flexible, and rapidly exchanging among TF interaction sites. We use unbiased long timescale all-atom simulations on the Anton supercomputer, combined with extensive enhanced sampling simulations and NMR experiments, to characterize the thermodynamic and kinetic properties of FG repeats and their interaction with a model transport factor. Both the simulations and experimental data indicate that FG repeats are highly dynamic random coils, lack intrachain interactions, and exhibit significant entropically driven resistance to spatial confinement. We show that the FG motifs reversibly slide in and out of multiple TF interaction sites, transitioning rapidly between a strongly interacting state and a weakly interacting state, rather than undergoing a much slower transition between strongly interacting and completely noninteracting (unbound) states. In the weakly interacting state, FG motifs can be more easily displaced by other competing FG motifs, providing a simple mechanism for rapid exchange of TF/FG motif contacts during transport. This slide-and-exchange mechanism highlights the direct role of the disorder within FG repeats in nucleocytoplasmic transport, and resolves the apparent conflict between the selectivity and speed of transport.

  6. Inverse Photonic Glasses by Packing Bidisperse Hollow Microspheres with Uniform Cores.

    PubMed

    Kim, Seung-Hyun; Magkiriadou, Sofia; Rhee, Do Kyung; Lee, Doo Sung; Yoo, Pil J; Manoharan, Vinothan N; Yi, Gi-Ra

    2017-07-19

    A major fabrication challenge is producing disordered photonic materials with an angle-independent structural red color. Theoretical work has shown that such a color can be produced by fabricating inverse photonic glasses with monodisperse, nontouching voids in a silica matrix. Here, we demonstrate a route toward such materials and show that they have an angle-independent red color. We first synthesize monodisperse hollow silica particles with precisely controlled shell thickness and then make glassy colloidal structures by mixing two types of hollow particles with the same core size and different shell thicknesses. We then infiltrate the interstices with index-matched polymers, producing disordered porous materials with uniform, nontouching air voids. This procedure allows us to control the light-scattering form factor and structure factor of these porous materials independently, which is not possible to do in photonic glasses consisting of packed solid particles. The structure factor can be controlled by the shell thickness, which sets the distance between pores, whereas the pore size determines the peak wave vector of the form factor, which can be set below the visible range to keep the main structural color pure. By using a binary mixture of 246 and 268 nm hollow silica particles with 180 nm cores in an index-matched polymer matrix, we achieve angle-independent red color that can be tuned by controlling the shell thickness. Importantly, the width of the reflection peak can be kept constant, even for larger interparticle distances.

  7. Aberrant topology of striatum's connectivity is associated with the number of episodes in depression.

    PubMed

    Meng, Chun; Brandl, Felix; Tahmasian, Masoud; Shao, Junming; Manoliu, Andrei; Scherr, Martin; Schwerthöffer, Dirk; Bäuml, Josef; Förstl, Hans; Zimmer, Claus; Wohlschläger, Afra M; Riedl, Valentin; Sorg, Christian

    2014-02-01

    In major depressive disorder, depressive episodes reoccur in ∼60% of cases; however, neural mechanisms of depressive relapse are poorly understood. Depressive episodes are characterized by aberrant topology of the brain's intrinsic functional connectivity network, and the number of episodes is one of the most important predictors for depressive relapse. In this study we hypothesized that specific changes of the topology of intrinsic connectivity interact with the course of episodes in recurrent depressive disorder. To address this hypothesis, we investigated which changes of connectivity topology are associated with the number of episodes in patients, independently of current symptoms and disease duration. Fifty subjects were recruited including 25 depressive patients (two to 10 episodes) and 25 gender- and age-matched control subjects. Resting-state functional magnetic resonance imaging, Harvard-Oxford brain atlas, wavelet-transformation of atlas-shaped regional time-series, and their pairwise Pearson's correlation were used to define individual connectivity matrices. Matrices were analysed by graph-based methods, resulting in outcome measures that were used as surrogates of intrinsic network topology. Topological scores were subsequently compared across groups, and, for patients only, related with the number of depressive episodes and current symptoms by partial correlation analysis. Concerning the whole brain connectivity network of patients, small-world topology was preserved but global efficiency was reduced and global betweenness-centrality increased. Aberrant nodal efficiency and centrality of regional connectivity was found in the dorsal striatum, inferior frontal and orbitofrontal cortex as well as in the occipital and somatosensory cortex. Inferior frontal changes were associated with current symptoms, whereas aberrant right putamen network topology was associated with the number of episodes. Results were controlled for effects of total grey matter volume, medication, and total disease duration. This finding provides first evidence that in major depressive disorder aberrant topology of the right putamen's intrinsic connectivity pattern is associated with the course of depressive episodes, independently of current symptoms, medication status and disease duration. Data suggest that the reorganization of striatal connectivity may interact with the course of episodes in depression thereby contributing to depressive relapse risk.

  8. Large scale GW calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Govoni, Marco; Galli, Giulia

    We present GW calculations of molecules, ordered and disordered solids and interfaces, which employ an efficient contour deformation technique for frequency integration and do not require the explicit evaluation of virtual electronic states nor the inversion of dielectric matrices. We also present a parallel implementation of the algorithm, which takes advantage of separable expressions of both the single particle Green’s function and the screened Coulomb interaction. The method can be used starting from density functional theory calculations performed with semilocal or hybrid functionals. The newly developed technique was applied to GW calculations of systems of unprecedented size, including water/semiconductor interfacesmore » with thousands of electrons.« less

  9. Large Scale GW Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Govoni, Marco; Galli, Giulia

    We present GW calculations of molecules, ordered and disordered solids and interfaces, which employ an efficient contour deformation technique for frequency integration and do not require the explicit evaluation of virtual electronic states nor the inversion of dielectric matrices. We also present a parallel implementation of the algorithm which takes advantage of separable expressions of both the single particle Green's function and the screened Coulomb interaction. The method can be used starting from density functional theory calculations performed with semilocal or hybrid functionals. We applied the newly developed technique to GW calculations of systems of unprecedented size, including water/semiconductor interfacesmore » with thousands of electrons.« less

  10. Large scale GW calculations

    DOE PAGES

    Govoni, Marco; Galli, Giulia

    2015-01-12

    We present GW calculations of molecules, ordered and disordered solids and interfaces, which employ an efficient contour deformation technique for frequency integration and do not require the explicit evaluation of virtual electronic states nor the inversion of dielectric matrices. We also present a parallel implementation of the algorithm, which takes advantage of separable expressions of both the single particle Green’s function and the screened Coulomb interaction. The method can be used starting from density functional theory calculations performed with semilocal or hybrid functionals. The newly developed technique was applied to GW calculations of systems of unprecedented size, including water/semiconductor interfacesmore » with thousands of electrons.« less

  11. Use of job-exposure matrices to estimate occupational exposure to pesticides: A review.

    PubMed

    Carles, Camille; Bouvier, Ghislaine; Lebailly, Pierre; Baldi, Isabelle

    2017-03-01

    The health effects of pesticides have been extensively studied in epidemiology, mainly in agricultural populations. However, pesticide exposure assessment remains a key methodological issue for epidemiological studies. Besides self-reported information, expert assessment or metrology, job-exposure matrices still appear to be an interesting tool. We reviewed all existing matrices assessing occupational exposure to pesticides in epidemiological studies and described the exposure parameters they included. We identified two types of matrices, (i) generic ones that are generally used in case-control studies and document broad categories of pesticides in a large range of jobs, and (ii) specific matrices, developed for use in agricultural cohorts, that generally provide exposure metrics at the active ingredient level. The various applications of these matrices in epidemiological studies have proven that they are valuable tools to assess pesticide exposure. Specific matrices are particularly promising for use in agricultural cohorts. However, results obtained with matrices have rarely been compared with those obtained with other tools. In addition, the external validity of the given estimates has not been adequately discussed. Yet, matrices would help in reducing misclassification and in quantifying cumulated exposures, to improve knowledge about the chronic health effects of pesticides.

  12. Stochastic local operations and classical communication (SLOCC) and local unitary operations (LU) classifications of n qubits via ranks and singular values of the spin-flipping matrices

    NASA Astrophysics Data System (ADS)

    Li, Dafa

    2018-06-01

    We construct ℓ -spin-flipping matrices from the coefficient matrices of pure states of n qubits and show that the ℓ -spin-flipping matrices are congruent and unitary congruent whenever two pure states of n qubits are SLOCC and LU equivalent, respectively. The congruence implies the invariance of ranks of the ℓ -spin-flipping matrices under SLOCC and then permits a reduction of SLOCC classification of n qubits to calculation of ranks of the ℓ -spin-flipping matrices. The unitary congruence implies the invariance of singular values of the ℓ -spin-flipping matrices under LU and then permits a reduction of LU classification of n qubits to calculation of singular values of the ℓ -spin-flipping matrices. Furthermore, we show that the invariance of singular values of the ℓ -spin-flipping matrices Ω 1^{(n)} implies the invariance of the concurrence for even n qubits and the invariance of the n-tangle for odd n qubits. Thus, the concurrence and the n-tangle can be used for LU classification and computing the concurrence and the n-tangle only performs additions and multiplications of coefficients of states.

  13. Matrix computations in MACSYMA

    NASA Technical Reports Server (NTRS)

    Wang, P. S.

    1977-01-01

    Facilities built into MACSYMA for manipulating matrices with numeric or symbolic entries are described. Computations will be done exactly, keeping symbols as symbols. Topics discussed include how to form a matrix and create other matrices by transforming existing matrices within MACSYMA; arithmetic and other computation with matrices; and user control of computational processes through the use of optional variables. Two algorithms designed for sparse matrices are given. The computing times of several different ways to compute the determinant of a matrix are compared.

  14. Complex symmetric matrices with strongly stable iterates

    NASA Technical Reports Server (NTRS)

    Tadmor, E.

    1985-01-01

    Complex-valued symmetric matrices are studied. A simple expression for the spectral norm of such matrices is obtained, by utilizing a unitarily congruent invariant form. A sharp criterion is provided for identifying those symmetric matrices whose spectral norm is not exceeding one: such strongly stable matrices are usually sought in connection with convergent difference approximations to partial differential equations. As an example, the derived criterion is applied to conclude the strong stability of a Lax-Wendroff scheme.

  15. Calculation of controllability and observability matrices for special case of continuous-time multi-order fractional systems.

    PubMed

    Hassanzadeh, Iman; Tabatabaei, Mohammad

    2017-03-28

    In this paper, controllability and observability matrices for pseudo upper or lower triangular multi-order fractional systems are derived. It is demonstrated that these systems are controllable and observable if and only if their controllability and observability matrices are full rank. In other words, the rank of these matrices should be equal to the inner dimension of their corresponding state space realizations. To reduce the computational complexities, these matrices are converted to simplified matrices with smaller dimensions. Numerical examples are provided to show the usefulness of the mentioned matrices for controllability and observability analysis of this case of multi-order fractional systems. These examples clarify that the duality concept is not necessarily true for these special systems. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Fluid intelligence, traits of personality and personality disorders in a cohort of adult KS patients with the classic 47, XXY karyotype.

    PubMed

    Liberato, D; Granato, S; Grimaldi, D; Rossi, F M; Tahani, N; Gianfrilli, D; Anzuini, A; Lenzi, A; Cavaggioni, G; Radicioni, A F

    2017-11-01

    Klinefelter's syndrome (KS) is associated with specific neurobehavioral features and personality traits. The aim of our study was to investigate fluid intelligence, personality traits and personality disorders (PD) and possible correlations with testosterone in a cohort of adult KS patients. We analyzed 58 adult KS patients with the classic 47, XXY karyotype. The Structured Clinical Interview for axis II disorders was used to assess DSM IV personality disorders. Personality traits were assessed using MMPI-2. Fluid intelligence was tested by using Raven's Standard Progressive Matrices (SPM) Test. Testosterone blood concentration was measured by CMIA. PD prevalence was 31%. Four altered MMPI scales (Social Responsibility, Dominance, Ego Strength and Repression) were found in more than 40% of patients. Overcontrolled hostility and MacAndrew Alcoholism Scale-Revised scales were altered in the PD- group only. Biz-Odd Thinking and Post-Traumatic Stress Disorder scale were associated with the presence of personality disorder. The raw SPM score was 44 ± 10.8 without any significant correlation with testosterone. No significant difference in mean age, SPM raw score and MMPI score was observed between eugonadal, hypogonadal and treated patients. Most KS patients had average fluid intelligence. PD prevalence was higher than in the general population. Testosterone was not correlated with fluid intelligence, personality traits or PD, but a reduction in marital distress was observed in treated patients. This could suggest that testosterone therapy can improve physical symptoms and this effect could also improve relationship abilities and wellness awareness.

  17. Pi-Pi contacts are an overlooked protein feature relevant to phase separation

    PubMed Central

    Vernon, Robert McCoy; Chong, Paul Andrew; Tsang, Brian; Kim, Tae Hun; Bah, Alaji; Farber, Patrick; Lin, Hong

    2018-01-01

    Protein phase separation is implicated in formation of membraneless organelles, signaling puncta and the nuclear pore. Multivalent interactions of modular binding domains and their target motifs can drive phase separation. However, forces promoting the more common phase separation of intrinsically disordered regions are less understood, with suggested roles for multivalent cation-pi, pi-pi, and charge interactions and the hydrophobic effect. Known phase-separating proteins are enriched in pi-orbital containing residues and thus we analyzed pi-interactions in folded proteins. We found that pi-pi interactions involving non-aromatic groups are widespread, underestimated by force-fields used in structure calculations and correlated with solvation and lack of regular secondary structure, properties associated with disordered regions. We present a phase separation predictive algorithm based on pi interaction frequency, highlighting proteins involved in biomaterials and RNA processing. PMID:29424691

  18. Acrivos Award Talk

    NASA Astrophysics Data System (ADS)

    Datta, Sujit Sankar

    2015-11-01

    Filtering water and brewing coffee are familiar examples of forcing a fluid through a porous material. Such flows are also crucial to many technological applications, including oil recovery, groundwater remediation, waste CO2 sequestration, and even transporting nutrients through mammalian tissues. I will present an experimental approach by which we directly visualize flow within a disordered 3D porous medium over a broad range of length scales, from the scale of individual pores to that of the entire medium. I will describe how we use this approach to learn about fluctuations and instabilities in single-phase and multi-phase flows.

  19. Almost commuting self-adjoint matrices: The real and self-dual cases

    NASA Astrophysics Data System (ADS)

    Loring, Terry A.; Sørensen, Adam P. W.

    2016-08-01

    We show that a pair of almost commuting self-adjoint, symmetric matrices is close to a pair of commuting self-adjoint, symmetric matrices (in a uniform way). Moreover, we prove that the same holds with self-dual in place of symmetric and also for paths of self-adjoint matrices. Since a symmetric, self-adjoint matrix is real, we get a real version of Huaxin Lin’s famous theorem on almost commuting matrices. Similarly, the self-dual case gives a version for matrices over the quaternions. To prove these results, we develop a theory of semiprojectivity for real C*-algebras and also examine various definitions of low-rank for real C*-algebras.

  20. Analysis of hydrological and geotechnical aspects related to landslides caused by rainfall infiltration

    NASA Astrophysics Data System (ADS)

    Capparelli, Giovanna; La Sala, Gabriella; Vena, Mirko; Donato, Antonio

    2015-04-01

    A landslide is defined as a perceptible downward and outward movement of slope-forming soil, rock, and vegetation under the influence of gravity. Landslides can be triggered by both natural and human-induced changes in the environment. However rainfall is recognized as a major precursor for many types of slope movements. As a result of rainfall events and subsequent infiltration into the subsoil, the soil moisture can be significantly changed with a decrease in matric suction in unsaturated soil layers and/or increase in pore-water pressure in saturated layers. As a consequence, in these cases, the shear strength can be reduced enough to trigger the failure. An effective way to develop such an understanding is by means of computer simulation using numerical model. As part of the project PON "Integrated Early Warning System" our main objective was just to develop a numerical models that was able to consider the relation between rainfall, pore pressure and slope stability taking into account several components, including specific site conditions, mechanical, hydraulic and physical soil properties, local seepage conditions, and the contribution of these to soil strength. In this work the mechanism behind rainfall-triggered landslides is modeled by using combined infiltration, seepage and stability analyses. This method allows the evaluation of the terrain and its response based on geological, physical, hydrogeological and mechanical characteristics. The model is based on the combined use of two modules: an hydraulic module, to analyze the subsoil water circulation due to the rainfall infiltration under transient conditions and a geotechnical module, which provides indications regarding the slope stability. With regard to hydraulic module, variably saturated porous media flows have been modeled by the classical nonlinear Richards equation; in the geotechnical module the differential equilibrium equations have been solved taking into account the linear constitutive equations (plane stress) and strain-displacement relationship. By means of the model it is possible to analyze subsoil water circulation, safety factor of the slope subjected to gravity loading and to the pore pressure calculated from hydraulic module, displacement, strain and stress under the effect of rainfall infiltration. As an application case, the analysis and the representative results obtained for the Torre Orsaia landslide (Campania region - Southern Italy) are described.

  1. Studies on sintering additives for hydroxyapatite, and controlled porosity structures of calcium aluminates and polypropylene-tricalcium phosphate for bone graft applications

    NASA Astrophysics Data System (ADS)

    Kalita, Samar Jyoti

    Tissue engineering has made a significant contribution in developing new biomaterials that can restore the structural features and physiological functions of natural tissues. Various materials, such as metals, ceramics, polymers and composites have been developed for their use in hard tissue engineering applications. Part A of this thesis describes my research on HAp ceramics. HAp, a bioactive ceramic, is known for its osteoconductivity, but shows poor mechanical performance. This program aimed at improving mechanical performance of synthetic HAp by introducing small quantities of various sintering additives. A range of oxide-based sintering additives were selected and prepared. Dense compacts were prepared using a uniaxial press with an average green density of 1.6 g/cc. Results showed that some of these sintering additives improved densification, hardness and compression strength of synthetic HAp compared to the pure composition. A maximum bulk density of 3.06 g/cc was achieved for 2.5 wt% addition of MgO. A Microhardness of 4.9 GPa (505 HV) was measured for 2.5 wt% addition of BaO, and the highest compression strength (220MPa) was reported for 2.5 wt% addition of CaO. Cytotoxicity and cell proliferation studies with a modified human osteoblast (HOB) cell-line (OPC1) proved most of these materials non-toxic and biocompatible. Microscopic observation revealed that bone cells were attached and grew well on most of these ceramic matrices. Part B describes my work on development of controlled porosity polypropylene-tricalcium phosphate composite scaffolds via the fused deposition modeling (FDM) process. Hg-porosimetry was performed to determine pore size and their distribution. Uniaxial compression testing performed on samples with 36 vol% porosity and pore size of 160 mum showed the best compressive strength of 12.7 MPa. Part C includes my research on development of "3-D honeycomb" porous calcium aluminate structures via the indirect FDM process. Samples of 29% and 44% VFP (designed) with average pore size of 300 mum showed compressive strength between 2 and 24 MPa. Cell proliferation studies conducted with OPC1 cells on polymer-ceramic composite scaffolds and porous calcium aluminate structures showed good cell attachment and a steady cell growth behavior during the first three weeks of in vitro analyses.

  2. Incorporation of precious metal nanoparticles into various aerogels by different supercritical deposition methods

    NASA Astrophysics Data System (ADS)

    Saquing, Carl D.

    2005-11-01

    One major hurdle in nanoparticle fabrication is the difficulty in controlling size, distribution and concentration. Conventional methods in nanoparticle formation require high temperatures which lead to particle agglomeration and size broadening, or involve substantial amount of organic solvents. A clean route to supported-nanoparticles fabrication was investigated using various supercritical (SC) based deposition methods. The SC deposition involves the organometallic precursor (OP) (dimethyl(1,5-cyclooctadiene)platinum(II)[CODPtMe 2] or bis(2,2,6,6-tetramethyl-3,5-heptanedionato) (1,5-cyclooctadiene) ruthenium(II)) dissolution in SC fluid and contacting this solution with a substrate. The OP is adsorbed and subsequent reduction of the OP-impregnated substrate produces metal/substrate composites. The various methods were: (1) thermal reduction at atmospheric pressure in an inert atmosphere; (2) thermal reduction in SC carbon dioxide (scCO2); (3) chemical reduction in scCO2 with H2; and (4) chemical reduction at atmospheric pressure with H2. The synthesis of resorcinol-formaldehyde aerogels (RFAs) and carbon aerogels (CAs) was also studied and used as substrates (along with commercial silica aerogels (SAs)) in the SC deposition. The surface area, pore properties, and density of these aerogels were evaluated and the effects of reactant concentration, pyrolysis and SC deposition on these properties were determined. Using a static method, the adsorption isotherms of CODPtMe2 in scCO2 on two CAs with different pore sizes were measured at 28 MPa and 80°C to determine the maximum metal loading and the effect of pore properties on adsorption and to examine the interactions between the three components. The isotherms could be represented by the Langmuir model and the adsorption data indicated a strong CODPtMe2-CA interaction and that almost all the preexistent micropore area was covered with CODPtMe 2 molecules even at adsorption lower than the maximum capacity. The observed strong precursor-substrate interaction was corroborated by thermo-gravimetric analyses and N2 physisorption. Transmission electron microscopy, x-ray diffraction, H2 and CO chemisorption and N2 physisorption were employed to demonstrate the homogeneity of particle dispersion, to determine the morphology, range and variation in particle size within the solid matrices and to fully identify the resultant particles as Pt and Ru metals. (Abstract shortened by UMI.)

  3. Experimental study on pore structure and performance of sintered porous wick

    NASA Astrophysics Data System (ADS)

    He, Da; Wang, Shufan; Liu, Rutie; Wang, Zhubo; Xiong, Xiang; Zou, Jianpeng

    2018-02-01

    Porous wicks were prepared via powder metallurgy using NH4HCO3 powders as pore-forming agent. The pore-forming agent particle size was varied to control the pore structure and equivalent pore size distribution feature of porous wick. The effect of pore-forming agent particle size on the porosity, pore structures, equivalent pore size distribution and capillary pumping performance were investigated. Results show that with the particle size of pore-forming agent decrease, the green density and the volume shrinkage of the porous wicks gradually increase and the porosity reduces slightly. There are two types of pores inside the porous wick, large-sized prefabricated pores and small-sized gap pores. With the particle size of pore-forming agent decrease, the size of the prefabricated pores becomes smaller and the distribution tends to be uniform. Gap pores and prefabricated pores inside the wick can make up different types of pore channels. The equivalent pore size of wick is closely related to the structure of pore channels. Furthermore, the equivalent pore size distribution of wick shows an obvious double-peak feature when the pore-forming agent particle size is large. With the particle size of pore-forming agent decrease, the two peaks of equivalent pore size distribution approach gradually to each other, resulting in a single-peak feature. Porous wick with single-peak feature equivalent pore size distribution possesses the better capillary pumping performances.

  4. Decision Matrices: Tools to Enhance Middle School Engineering Instruction

    ERIC Educational Resources Information Center

    Gonczi, Amanda L.; Bergman, Brenda G.; Huntoon, Jackie; Allen, Robin; McIntyre, Barb; Turner, Sheri; Davis, Jen; Handler, Rob

    2017-01-01

    Decision matrices are valuable engineering tools. They allow engineers to objectively examine solution options. Decision matrices can be incorporated in K-12 classrooms to support authentic engineering instruction. In this article we provide examples of how decision matrices have been incorporated into 6th and 7th grade classrooms as part of an…

  5. 19 CFR 10.90 - Master records and metal matrices.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301, containing...

  6. 19 CFR 10.90 - Master records and metal matrices.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301, containing...

  7. 19 CFR 10.90 - Master records and metal matrices.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301, containing...

  8. 19 CFR 10.90 - Master records and metal matrices.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301, containing...

  9. 19 CFR 10.90 - Master records and metal matrices.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301, containing...

  10. Crosslinked type II collagen matrices: preparation, characterization, and potential for cartilage engineering.

    PubMed

    Pieper, J S; van der Kraan, P M; Hafmans, T; Kamp, J; Buma, P; van Susante, J L C; van den Berg, W B; Veerkamp, J H; van Kuppevelt, T H

    2002-08-01

    The limited intrinsic repair capacity of articular cartilage has stimulated continuing efforts to develop tissue engineered analogues. Matrices composed of type II collagen and chondroitin sulfate (CS), the major constituents of hyaline cartilage, may create an appropriate environment for the generation of cartilage-like tissue. In this study, we prepared, characterized, and evaluated type 11 collagen matrices with and without CS. Type II collagen matrices were prepared using purified, pepsin-treated, type II collagen. Techniques applied to prepare type I collagen matrices were found unsuitable for type II collagen. Crosslinking of collagen and covalent attachment of CS was performed using 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide. Porous matrices were prepared by freezing and lyophilization, and their physico-chemical characteristics (degree of crosslinking, denaturing temperature, collagenase-resistance, amount of CS incorporated) established. Matrices were evaluated for their capacity to sustain chondrocyte proliferation and differentiation in vitro. After 7 d of culture, chondrocytes were mainly located at the periphery of the matrices. In contrast to type I collagen, type II collagen supported the distribution of cells throughout the matrix. After 14 d of culture, matrices were surfaced with a cartilagenous-like layer, and occasionally clusters of chondrocytes were present inside the matrix. Chondrocytes proliferated and differentiated as indicated by biochemical analyses, ultrastructural observations, and reverse transcriptase PCR for collagen types I, II and X. No major differences were observed with respect to the presence or absence of CS in the matrices.

  11. Brain connectome modularity in weight-restored anorexia nervosa and body dysmorphic disorder

    PubMed Central

    Zhang, A; Leow, A; Zhan, L; GadElkarim, J; Moody, T; Khalsa, S; Strober, M; Feusner, JD

    2017-01-01

    Background Anorexia nervosa (AN) and body dysmorphic disorder (BDD) frequently co-occur, and have several overlapping phenomenological features. Little is known about their shared neurobiology. Aims To compare modular organization of brain structural connectivity. Methods We acquired diffusion-weighted magnetic resonance imaging data on unmedicated individuals with BDD (n=29), weight-restored AN (n=24), and healthy controls (HC) (n=31). We constructed connectivity matrices using whole-brain white matter tractography, and compared modular structures across groups. Results AN showed abnormal modularity involving frontal, basal ganglia, and posterior cingulate nodes. There was a trend in BDD for similar abnormalities, but no significant differences compared with AN. In AN, poor insight correlated with longer path length in right caudal anterior cingulate and right posterior cingulate. Conclusions Abnormal network organization patterns in AN, partially shared with BDD, may have implications for understanding integration between reward and habit/ritual formation, as well as conflict monitoring/error detection. PMID:27429183

  12. Mental capacity in patients involuntarily or voluntarily receiving psychiatric treatment for an acute mental disorder.

    PubMed

    Mandarelli, Gabriele; Tarsitani, Lorenzo; Parmigiani, Giovanna; Polselli, Gian M; Frati, Paola; Biondi, Massimo; Ferracuti, Stefano

    2014-07-01

    Despite the growing amount of data, much information is needed on patients' mental capacity to consent to psychiatric treatment for acute mental disorders. The present study was undertaken to compare differences in capacity to consent to psychiatric treatment in patients treated voluntarily and involuntarily and to investigate the role of psychiatric symptoms, competency, and cognitive functioning in determining voluntariness of hospital admission. Involuntary patients were interviewed with the MacArthur Competence Assessment Tool for Treatment (MacCAT-T), the 24-item Brief Psychiatric Rating Scale (BPRS), the Mini Mental State Examination (MMSE) and the Raven's Colored Progressive Matrices, and their data were compared with those for age- and sex-matched voluntary patients. Involuntary patients performed worse in all MacCAT-T subscales. Capacity to consent to treatment varied widely within each group. Overall, involuntary patients have worse consent-related mental capacity than those treated voluntarily, despite capacity to consent to treatment showing a significant variability in both groups. © 2014 American Academy of Forensic Sciences.

  13. Generic dynamical features of quenched interacting quantum systems: Survival probability, density imbalance, and out-of-time-ordered correlator

    NASA Astrophysics Data System (ADS)

    Torres-Herrera, E. J.; García-García, Antonio M.; Santos, Lea F.

    2018-02-01

    We study numerically and analytically the quench dynamics of isolated many-body quantum systems. Using full random matrices from the Gaussian orthogonal ensemble, we obtain analytical expressions for the evolution of the survival probability, density imbalance, and out-of-time-ordered correlator. They are compared with numerical results for a one-dimensional-disordered model with two-body interactions and shown to bound the decay rate of this realistic system. Power-law decays are seen at intermediate times, and dips below the infinite time averages (correlation holes) occur at long times for all three quantities when the system exhibits level repulsion. The fact that these features are shared by both the random matrix and the realistic disordered model indicates that they are generic to nonintegrable interacting quantum systems out of equilibrium. Assisted by the random matrix analytical results, we propose expressions that describe extremely well the dynamics of the realistic chaotic system at different time scales.

  14. Matrices. New Topics for Secondary School Mathematics: Materials and Software.

    ERIC Educational Resources Information Center

    North Carolina School of Science and Mathematics. Dept. of Mathematics and Computer Science.

    This material on matrices is part of "Introduction to College Mathematics" (ICM), designed to prepare high school students who have students who have completed algebra II for the variety of mathematics they will encounter in college and beyond. The concept goals of this unit are to use matrices to model real-world phenomena, to use matrices as…

  15. Generalized matrix summability of a conjugate derived Fourier series.

    PubMed

    Mursaleen, M; Alotaibi, Abdullah

    2017-01-01

    The study of infinite matrices is important in the theory of summability and in approximation. In particular, Toeplitz matrices or regular matrices and almost regular matrices have been very useful in this context. In this paper, we propose to use a more general matrix method to obtain necessary and sufficient conditions to sum the conjugate derived Fourier series.

  16. Rhotrix Vector Spaces

    ERIC Educational Resources Information Center

    Aminu, Abdulhadi

    2010-01-01

    By rhotrix we understand an object that lies in some way between (n x n)-dimensional matrices and (2n - 1) x (2n - 1)-dimensional matrices. Representation of vectors in rhotrices is different from the representation of vectors in matrices. A number of vector spaces in matrices and their properties are known. On the other hand, little seems to be…

  17. Commutative semigroups of real and complex matrices. [with use of the jordan form

    NASA Technical Reports Server (NTRS)

    Brown, D. R.

    1974-01-01

    The computation of divergence is studied. Covariance matrices to be analyzed admit a common diagonalization, or even triangulation. Sufficient conditions are given for such phenomena to take place, the arguments cover both real and complex matrices, and are not restricted to Hermotian or other special forms. Specifically, it is shown to be sufficient that the matrices in question commute in order to admit a common triangulation. Several results hold in the case that the matrices in question form a closed and bounded set, rather than only in the finite case.

  18. Field matric potential sensor

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    2001-01-01

    A method of determining matric potential of a sample, the method comprising placing the sample in a container, the container having an opening; and contacting the sample with a tensiometer via the opening. An apparatus for determining matric potential of a sample, the apparatus comprising a housing configured to receive a sample; a portable matric potential sensing device extending into the housing and having a porous member; and a wall closing the housing to insulate the sample and at least a portion of the matric potential sensing device including the porous member.

  19. Metabolic alterations derived from absence of Two-Pore Channel 1 at cardiac level.

    PubMed

    Garcia-Rua, Vanessa; Feijoo-Bandin, Sandra; Garcia-Vence, Maria; Aragon-Herrera, Alana; Bravo, Susana B; Rodriguez-Penas, Diego; Mosquera-Leal, Ana; Lear, Pamela V; Parrington, John; Alonso, Jana; Rosello-Lleti, Esther; Portoles, Manuel; Rivera, Miguel; Gonzalez-Juanatey, Jose Ramon; Lago, Francisca

    2016-12-01

    Two-pore channels (TPCs or TPCNs) are novel voltage-gated ion channels that have been postulated to act as Ca2+ and/or Na+ channels expressed exclusively in acidic organelles such as endosomes and lysosomes. TPCNs participate in the regulation of diverse biological processes and recently have been proposed to be involved in the pathophysiology of metabolic disorders such as obesity, fatty liver disease and type 2 diabetes mellitus. Due to the importance of these pathologies in the development of cardiovascular diseases, we aimed to study the possible role of two-pore channel 1 (TPCN1) in the regulation of cardiac metabolism. To explore the cardiac function of TPCN1, we developed proteomic approaches as 2-DE-MALDI-MS and LC-MALDI-MS in the cardiac left ventricle of TPCN1 KO and WT mice, and found alterations in several proteins implicated in glucose and fatty acid metabolism in TPCN1 KO vs. WT mice. The results confirmed the altered expression of HFABP, a key fatty acid transport protein, and of enolase and PGK1, the key enzymes in the glycolytic process. Finally, in vitro experiments performed in neonatal rat cardiomyocytes, in which TPCN1 was silenced using siRNAs, confirmed that the downregulation of TPCN1 gene expression increased 2-deoxy-D-[3H]-glucose uptake and GLUT4 mobilization into cell peripherals in cardiac cells. Our results are the first to suggest a potential role for TPCNs in cardiac metabolism regulation.

  20. Therapeutic targeting of two-pore-domain potassium (K(2P)) channels in the cardiovascular system.

    PubMed

    Wiedmann, Felix; Schmidt, Constanze; Lugenbiel, Patrick; Staudacher, Ingo; Rahm, Ann-Kathrin; Seyler, Claudia; Schweizer, Patrick A; Katus, Hugo A; Thomas, Dierk

    2016-05-01

    The improvement of treatment strategies in cardiovascular medicine is an ongoing process that requires constant optimization. The ability of a therapeutic intervention to prevent cardiovascular pathology largely depends on its capacity to suppress the underlying mechanisms. Attenuation or reversal of disease-specific pathways has emerged as a promising paradigm, providing a mechanistic rationale for patient-tailored therapy. Two-pore-domain K(+) (K(2P)) channels conduct outward K(+) currents that stabilize the resting membrane potential and facilitate action potential repolarization. K(2P) expression in the cardiovascular system and polymodal K2P current regulation suggest functional significance and potential therapeutic roles of the channels. Recent work has focused primarily on K(2P)1.1 [tandem of pore domains in a weak inwardly rectifying K(+) channel (TWIK)-1], K(2P)2.1 [TWIK-related K(+) channel (TREK)-1], and K(2P)3.1 [TWIK-related acid-sensitive K(+) channel (TASK)-1] channels and their role in heart and vessels. K(2P) currents have been implicated in atrial and ventricular arrhythmogenesis and in setting the vascular tone. Furthermore, the association of genetic alterations in K(2P)3.1 channels with atrial fibrillation, cardiac conduction disorders and pulmonary arterial hypertension demonstrates the relevance of the channels in cardiovascular disease. The function, regulation and clinical significance of cardiovascular K(2P) channels are summarized in the present review, and therapeutic options are emphasized. © 2016 Authors; published by Portland Press Limited.

  1. Active Sampling Device for Determining Pollutants in Surface and Pore Water - the In Situ Sampler for Biphasic Water Monitoring

    NASA Astrophysics Data System (ADS)

    Supowit, Samuel D.; Roll, Isaac B.; Dang, Viet D.; Kroll, Kevin J.; Denslow, Nancy D.; Halden, Rolf U.

    2016-02-01

    We designed and evaluated an active sampling device, using as analytical targets a family of pesticides purported to contribute to honeybee colony collapse disorder. Simultaneous sampling of bulk water and pore water was accomplished using a low-flow, multi-channel pump to deliver water to an array of solid-phase extraction cartridges. Analytes were separated using either liquid or gas chromatography, and analysis was performed using tandem mass spectrometry (MS/MS). Achieved recoveries of fipronil and degradates in water spiked to nominal concentrations of 0.1, 1, and 10 ng/L ranged from 77 ± 12 to 110 ± 18%. Method detection limits (MDLs) were as low as 0.040-0.8 ng/L. Extraction and quantitation of total fiproles at a wastewater-receiving wetland yielded concentrations in surface water and pore water ranging from 9.9 ± 4.6 to 18.1 ± 4.6 ng/L and 9.1 ± 3.0 to 12.6 ± 2.1 ng/L, respectively. Detected concentrations were statistically indistinguishable from those determined by conventional, more laborious techniques (p > 0.2 for the three most abundant fiproles). Aside from offering time-averaged sampling capabilities for two phases simultaneously with picogram-per-liter MDLs, the novel methodology eliminates the need for water and sediment transport via in situ solid phase extraction.

  2. Dynamics of supercooled confined water measured by deep inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    De Michele, Vincenzo; Romanelli, Giovanni; Cupane, Antonio

    2018-02-01

    In this paper, we present the results of deep inelastic neutron scattering (DINS) measurements on supercooled water confined within the pores (average pore diameter 20 Å) of a disordered hydrophilic silica matrix obtained through hydrolysis and polycondensation of the alkoxide precursor Tetra-Methyl-Ortho-Silicate via the sol-gel method. Experiments were performed at two temperatures (250 K and 210 K, i.e., before and after the putative liquid-liquid transition of supercooled confined water) on a "wet" sample with hydration h 40% w/w, which is high enough to have water-filled pores but low enough to avoid water crystallization. A virtually "dry" sample at h 7% was also investigated to measure the contribution of the silica matrix to the neutron scattering signal. As is well known, DINS measurements allow the determination of the mean kinetic energy and the momentum distribution of the hydrogen atoms in the system and therefore, allow researchers to probe the local structure of supercooled confined water. The main result obtained is that at 210 K the hydrogen mean kinetic energy is equal or even slightly higher than at 250 K. This is at odds with the predictions of a semiempirical harmonic model recently proposed to describe the temperature dependence of the kinetic energy of hydrogen in water. This is a new and very interesting result, which suggests that at 210 K, the water hydrogens experience a stiffer intermolecular potential than at 250 K. This is in agreement with the liquid-liquid transition hypothesis.

  3. The underexposed role of food matrices in probiotic products: Reviewing the relationship between carrier matrices and product parameters.

    PubMed

    Flach, Joost; van der Waal, Mark B; van den Nieuwboer, Maurits; Claassen, Eric; Larsen, Olaf F A

    2017-06-13

    Probiotic microorganisms are increasingly incorporated into food matrices in order to confer proposed health benefits on the consumer. It is important that the health benefits, sensory properties, shelf-life and probiotic gastrointestinal tract (GIT) survival of these products are carefully balanced as they determine functionality and drive consumer acceptance. The strain-specific effects of probiotic species are imperative in this process but carrier matrices may play a pivotal role as well. This study therefore recapitulates the wealth of knowledge on carrier matrices and their interaction with probiotic strains. The most substantiated carrier matrices, factors that influence probiotic functionality and matrix effects on shelf-life, GIT survival and clinical efficacy are reviewed. Results indicate that carrier matrices have a significant impact on the quality of probiotic products. Matrix components, such as proteins, carbohydrates and flavoring agents are shown to alter probiotic efficacy and viability. In vivo studies furthermore revealed strain-dependent matrix effects on the GIT survival of probiotic bacteria. However, only a limited number of studies have specifically addressed the effects of carrier matrices on the aforementioned product-parameters; most studies seem to focus solely on the strain-specific effects of probiotic microorganisms. This hampers the innovation of probiotic products. More human studies, comparing not only different probiotic strains but different carrier matrices as well, are needed to drive the innovation cycle.

  4. Electrospun Zein/PCL Fibrous Matrices Release Tetracycline in a Controlled Manner, Killing Staphylococcus aureus Both in Biofilms and Ex Vivo on Pig Skin, and are Compatible with Human Skin Cells.

    PubMed

    Alhusein, Nour; Blagbrough, Ian S; Beeton, Michael L; Bolhuis, Albert; De Bank, Paul A

    2016-01-01

    To investigate the destruction of clinically-relevant bacteria within biofilms via the sustained release of the antibiotic tetracycline from zein-based electrospun polymeric fibrous matrices and to demonstrate the compatibility of such wound dressing matrices with human skin cells. Zein/PCL triple layered fibrous dressings with entrapped tetracycline were electrospun. The successful entrapment of tetracycline in these dressings was validated. The successful release of bioactive tetracycline, the destruction of preformed biofilms, and the viability of fibroblast (FEK4) cells were investigated. The sustained release of tetracycline from these matrices led to the efficient destruction of preformed biofilms from Staphylococcus aureus MRSA252 in vitro, and of MRSA252 and ATCC 25923 bacteria in an ex vivo pig skin model using 1 × 1 cm square matrices containing tetracycline (30 μg). Human FEK4 cells grew normally in the presence of these matrices. The ability of the zein-based matrices to destroy bacteria within increasingly complex in vitro biofilm models was clearly established. An ex vivo pig skin assay showed that these matrices, with entrapped tetracycline, efficiently kill bacteria and this, combined with their compatibility with a human skin cell line suggest these matrices are well suited for applications in wound healing and infection control.

  5. Core-shell alginate-ghatti gum modified montmorillonite composite matrices for stomach-specific flurbiprofen delivery.

    PubMed

    Bera, Hriday; Ippagunta, Sohitha Reddy; Kumar, Sanoj; Vangala, Pavani

    2017-07-01

    Novel alginate-arabic gum (AG) gel membrane coated alginate-ghatti gum (GG) modified montmorillonite (MMT) composite matrices were developed for intragastric flurbiprofen (FLU) delivery by combining floating and mucoadhesion mechanisms. The clay-biopolymer composite matrices containing FLU as core were accomplished by ionic-gelation technique. Effects of polymer-blend (alginate:GG) ratios and crosslinker (CaCl 2 ) concentrations on drug entrapment efficiency (DEE, %) and cumulative drug release after 8h (Q 8h , %) were studied to optimize the core matrices by a 3 2 factorial design. The optimized matrices (F-O) demonstrated DEE of 91.69±1.43% and Q 8h of 74.96±1.56% with minimum errors in prediction. The alginate-AG gel membrane enveloped optimized matrices (F-O, coated) exhibited superior buoyancy, better ex vivo mucoadhesion and slower drug release rate. The drug release profile of FLU-loaded uncoated and coated optimized matrices was best fitted in Korsmeyer-Peppas model with anomalous diffusion and case-II transport driven mechanism, respectively. The uncoated and coated matrices containing FLU were also characterized for drug-excipients compatibility, drug crystallinity, thermal behaviour and surface morphology. Thus, the newly developed alginate-AG gel membrane coated alginate-GG modified MMT composite matrices are appropriate for intragastric delivery of FLU over an extended period of time with improved therapeutic benefits. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Novel value-added uses for sweet potato juice and flour in polyphenol- and protein-enriched functional food ingredients.

    PubMed

    Grace, Mary H; Truong, An N; Truong, Van-Den; Raskin, Ilya; Lila, Mary Ann

    2015-09-01

    Blackcurrant, blueberry, and muscadine grape juices were efficiently sorbed, concentrated, and stabilized into dry granular ingredient matrices which combined anti-inflammatory and antioxidant fruit polyphenols with sweet potato functional constituents (carotenoids, vitamins, polyphenols, fibers). Total phenolics were highest in blackcurrant-orange sweet potato ingredient matrices (34.03 mg/g), and lowest in muscadine grape-yellow sweet potato matrices (10.56 mg/g). Similarly, anthocyanins were most concentrated in blackcurrant-fortified orange and yellow sweet potato matrices (5.40 and 6.54 mg/g, respectively). Alternatively, other protein-rich edible matrices (defatted soy flour, light roasted peanut flour, and rice protein concentrate) efficiently captured polyphenols (6.09-9.46 mg/g) and anthocyanins (0.77-1.27 mg/g) from purple-fleshed sweet potato juice, with comparable efficiency. Antioxidant activity correlated well with total phenolic content. All formulated ingredient matrices stabilized and preserved polyphenols for up to 24 weeks, even when stored at 37°C. Complexation with juice-derived polyphenols did not significantly alter protein or carbohydrate profiles of the matrices. Sensory evaluation of the ingredient matrices suggested potential uses for a wide range of functional food products.

  7. Chromatographic analysis of Polygalae Radix by online hyphenating pressurized liquid extraction

    NASA Astrophysics Data System (ADS)

    Song, Yuelin; Song, Qingqing; Li, Jun; Shi, Shepo; Guo, Liping; Zhao, Yunfang; Jiang, Yong; Tu, Pengfei

    2016-06-01

    Practicing “green analytical chemistry” is of great importance when profiling the chemical composition of complex matrices. Herein, a novel hybrid analytical platform was developed for direct chemical analysis of complex matrices by online hyphenating pressurized warm water extraction followed by turbulent flow chromatography coupled with high performance liquid chromatography-tandem mass spectrometry (PWWE-TFC-LC-MS/MS). Two parallel hollow guard columns acted as extraction vessels connected to a long narrow polyether ether ketone tube, while warm water served as extraction solvent and was delivered at a flow rate of 2.5 mL/min to generate considerable back pressure at either vessel. A column oven heated both the solvent and crude materials. A TFC column, which is advantageous for the comprehensive trapping of small molecular substances from fluids under turbulent flow conditions, was employed to transfer analytes from the PWWE module to LC-MS/MS. Two electronic valves alternated each vessel between extraction and elution phases. As a proof-of-concept, a famous herbal medicine for the treatment of neurodegenerative disorders, namely Polygalae Radix, was selected for the qualitative and quantitative analyses. The results suggest that the hybrid platform is advantageous in terms of decreasing time, material, and solvent consumption and in its automation, versatility, and environmental friendliness.

  8. Inference for High-dimensional Differential Correlation Matrices.

    PubMed

    Cai, T Tony; Zhang, Anru

    2016-01-01

    Motivated by differential co-expression analysis in genomics, we consider in this paper estimation and testing of high-dimensional differential correlation matrices. An adaptive thresholding procedure is introduced and theoretical guarantees are given. Minimax rate of convergence is established and the proposed estimator is shown to be adaptively rate-optimal over collections of paired correlation matrices with approximately sparse differences. Simulation results show that the procedure significantly outperforms two other natural methods that are based on separate estimation of the individual correlation matrices. The procedure is also illustrated through an analysis of a breast cancer dataset, which provides evidence at the gene co-expression level that several genes, of which a subset has been previously verified, are associated with the breast cancer. Hypothesis testing on the differential correlation matrices is also considered. A test, which is particularly well suited for testing against sparse alternatives, is introduced. In addition, other related problems, including estimation of a single sparse correlation matrix, estimation of the differential covariance matrices, and estimation of the differential cross-correlation matrices, are also discussed.

  9. On Fluctuations of Eigenvalues of Random Band Matrices

    NASA Astrophysics Data System (ADS)

    Shcherbina, M.

    2015-10-01

    We consider the fluctuations of linear eigenvalue statistics of random band matrices whose entries have the form with i.i.d. possessing the th moment, where the function u has a finite support , so that M has only nonzero diagonals. The parameter b (called the bandwidth) is assumed to grow with n in a way such that . Without any additional assumptions on the growth of b we prove CLT for linear eigenvalue statistics for a rather wide class of test functions. Thus we improve and generalize the results of the previous papers (Jana et al., arXiv:1412.2445; Li et al. Random Matrices 2:04, 2013), where CLT was proven under the assumption . Moreover, we develop a method which allows to prove automatically the CLT for linear eigenvalue statistics of the smooth test functions for almost all classical models of random matrix theory: deformed Wigner and sample covariance matrices, sparse matrices, diluted random matrices, matrices with heavy tales etc.

  10. Simultaneous quantification of iodine and high valent metals via ICP-MS under acidic conditions in complex matrices.

    PubMed

    Brix, Kristina; Hein, Christina; Sander, Jonas Michael; Kautenburger, Ralf

    2017-05-15

    The determination of iodine as a main fission product (especially the isotopes I-129 and I-131) of stored HLW in a disposal beside its distribution as a natural ingredient of many different products like milk, food and seawater is a matter of particular interest. The simultaneous ICP-MS determination of iodine as iodide together with other elements (especially higher valent metal ions) relevant for HLW is analytically very problematic. A reliable ICP-MS quantification of iodide must be performed at neutral or alkaline conditions in contrast to the analysis of metal ions which are determined in acidic pH ranges. Herein, we present a method to solve this problem by changing the iodine speciation resulting in an ICP-MS determination of iodide as iodate. The oxidation from iodide to iodate with sodium hypochlorite at room temperature is a fast and convenient method with flexible reaction time, from one hour up to three days, thus eliminating the disadvantages of quantifying iodine species via ICP-MS. In the analysed concentration range of iodine (0.1-100µgL -1 ) we obtain likely quantitative recovery rates for iodine between 91% and 102% as well as relatively low RSD values (0.3-4.0%). As an additional result, it is possible to measure different other element species in parallel together with the generated iodate, even high valent metals (europium and uranium beside caesium) at recovery rates in the same order of magnitude (93-104%). In addition, the oxidation process operates above pH 7 thus offering a wide pH range for sample preparation. Even analytes in complex matrices, like 5M saline (NaCl) solution or artificial cement pore water (ACW) can be quantified with this robust sample preparation method. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Laser-induced growth of nanocrystals embedded in porous materials

    PubMed Central

    2013-01-01

    Space localization of the linear and nonlinear optical properties in a transparent medium at the submicron scale is still a challenge to yield the future generation of photonic devices. Laser irradiation techniques have always been thought to structure the matter at the nanometer scale, but combining them with doping methods made it possible to generate local growth of several types of nanocrystals in different kinds of silicate matrices. This paper summarizes the most recent works developed in our group, where the investigated nanoparticles are either made of metal (gold) or chalcogenide semiconductors (CdS, PbS), grown in precursor-impregnated porous xerogels under different laser irradiations. This review is associated to new results on silver nanocrystals in the same kind of matrices. It is shown that, depending on the employed laser, the particles can be formed near the sample surface or deep inside the silica matrix. Photothermal and/or photochemical mechanisms may be invoked to explain the nanoparticle growth, depending on the laser, precursor, and matrix. One striking result is that metal salt reduction, necessary to the production of the corresponding nanoparticles, can efficiently occur due to the thermal wrenching of electrons from the matrix itself or due to multiphoton absorption of the laser light by a reducer additive in femtosecond regime. Very localized semiconductor quantum dots could also be generated using ultrashort pulses, but while PbS nanoparticles grow faster than CdS particles due to one-photon absorption, this better efficiency is counterbalanced by a sensitivity to oxidation. In most cases where the reaction efficiency is high, particles larger than the pores have been obtained, showing that a fast diffusion of the species through the interconnected porosity can modify the matrix itself. Based on our experience in these techniques, we compare several examples of laser-induced nanocrystal growth in porous silica xerogels, which allows extracting the best experimental conditions to obtain an efficient particle production and to avoid stability or oxidation problems. PMID:23742134

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baraibar, Martin A.; Muhoberac, Barry B.; Garringer, Holly J.

    Mutations in the coding sequence of the ferritin light chain (FTL) gene cause a neurodegenerative disease known as neuroferritinopathy or hereditary ferritinopathy, which is characterized by the presence of intracellular inclusion bodies containing the mutant FTL polypeptide and by abnormal accumulation of iron in the brain. Here, we describe the x-ray crystallographic structure and report functional studies of ferritin homopolymers formed from the mutant FTL polypeptide p.Phe167SerfsX26, which has a C terminus that is altered in amino acid sequence and length. The structure was determined and refined to 2.85 {angstrom} resolution and was very similar to the wild type betweenmore » residues Ile-5 and Arg-154. However, instead of the E-helices normally present in wild type ferritin, the C-terminal sequences of all 24 mutant subunits showed substantial amounts of disorder, leading to multiple C-terminal polypeptide conformations and a large disruption of the normally tiny 4-fold axis pores. Functional studies underscored the importance of the mutant C-terminal sequence in iron-induced precipitation and revealed iron mishandling by soluble mutant FTL homopolymers in that only wild type incorporated iron when in direct competition in solution with mutant ferritin. Even without competition, the amount of iron incorporation over the first few minutes differed severalfold. Our data suggest that disruption at the 4-fold pores may lead to direct iron mishandling through attenuated iron incorporation by the soluble form of mutant ferritin and that the disordered C-terminal polypeptides may play a major role in iron-induced precipitation and formation of ferritin inclusion bodies in hereditary ferritinopathy.« less

  13. Biomechanics of the transport barrier in the nuclear pore complex.

    PubMed

    Stanley, George J; Fassati, Ariberto; Hoogenboom, Bart W

    2017-08-01

    The nuclear pore complex (NPC) is the selective gateway through which all molecules must pass when entering or exiting the nucleus. It is a cog in the gene expression pathway, an entrance to the nucleus exploited by viruses, and a highly-tuned nanoscale filter. The NPC is a large proteinaceous assembly with a central lumen occluded by natively disordered proteins, known as FG-nucleoporins (or FG-nups). These FG-nups, along with a family of soluble proteins known as nuclear transport receptors (NTRs), form the selective transport barrier. Although much is known about the transport cycle and the necessity of NTRs for chaperoning cargo molecules through the NPC, the mechanism by which NTRs and NTR•cargo complexes translocate the selective transport barrier is not well understood. How can disordered FG-nups and soluble NTRs form a transport barrier that is selective, ATP-free, and fast? In this work, we review various mechanical approaches - both experimental and theoretical/computational - employed to better understand the morphology of the FG-nups, and their role in nucleocytoplasmic transport. Recent experiments on FG-nups tethered to planar surfaces, coupled with quantitative modelling work suggests that FG-nup morphologies are the result of a finely balanced system with significant contributions from FG-nup cohesiveness and entropic repulsion, and from NTR•FG-nup binding avidity; whilst AFM experiments on intact NPCs suggest that the FG-nups are sufficiently cohesive to form condensates in the centre of the NPC lumen, which may transiently dissolve to facilitate the transport of larger cargoes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. An Approximate Approach to Automatic Kernel Selection.

    PubMed

    Ding, Lizhong; Liao, Shizhong

    2016-02-02

    Kernel selection is a fundamental problem of kernel-based learning algorithms. In this paper, we propose an approximate approach to automatic kernel selection for regression from the perspective of kernel matrix approximation. We first introduce multilevel circulant matrices into automatic kernel selection, and develop two approximate kernel selection algorithms by exploiting the computational virtues of multilevel circulant matrices. The complexity of the proposed algorithms is quasi-linear in the number of data points. Then, we prove an approximation error bound to measure the effect of the approximation in kernel matrices by multilevel circulant matrices on the hypothesis and further show that the approximate hypothesis produced with multilevel circulant matrices converges to the accurate hypothesis produced with kernel matrices. Experimental evaluations on benchmark datasets demonstrate the effectiveness of approximate kernel selection.

  15. Discovery of a new mitochondria permeability transition pore (mPTP) inhibitor based on gallic acid.

    PubMed

    Teixeira, José; Oliveira, Catarina; Cagide, Fernando; Amorim, Ricardo; Garrido, Jorge; Borges, Fernanda; Oliveira, Paulo J

    2018-12-01

    Pharmacological interventions targeting mitochondria present several barriers for a complete efficacy. Therefore, a new mitochondriotropic antioxidant (AntiOxBEN 3 ) based on the dietary antioxidant gallic acid was developed. AntiOxBEN 3 accumulated several thousand-fold inside isolated rat liver mitochondria, without causing disruption of the oxidative phosphorylation apparatus, as seen by the unchanged respiratory control ratio, phosphorylation efficiency, and transmembrane electric potential. AntiOxBEN 3 showed also limited toxicity on human hepatocarcinoma cells. Moreover, AntiOxBEN 3 presented robust iron-chelation and antioxidant properties in both isolated liver mitochondria and cultured rat and human cell lines. Along with its low toxicity profile and high antioxidant activity, AntiOxBEN 3 strongly inhibited the calcium-dependent mitochondrial permeability transition pore (mPTP) opening. From our data, AntiOxBEN 3 can be considered as a lead compound for the development of a new class of mPTP inhibitors and be used as mPTP de-sensitiser for basic research or clinical applications or emerge as a therapeutic application in mitochondria dysfunction-related disorders.

  16. Homology search with binary and trinary scoring matrices.

    PubMed

    Smith, Scott F

    2006-01-01

    Protein homology search can be accelerated with the use of bit-parallel algorithms in conjunction with constraints on the values contained in the scoring matrices. Trinary scoring matrices (containing only the values -1, 0, and 1) allow for significant acceleration without significant reduction in the receiver operating characteristic (ROC) score of a Smith-Waterman search. Binary scoring matrices (containing the values 0 and 1) result in some reduction in ROC score, but result in even more acceleration. Binary scoring matrices and five-bit saturating scores can be used for fast prefilters to the Smith-Waterman algorithm.

  17. Methods for Quantum Circuit Design and Simulation

    DTIC Science & Technology

    2010-03-01

    cannot be deter- mined given the one output. Reversible gates, expressed mathematically, are unitary matrices. 16 3.3.1 PAULI Gates/Matrices Three...common single-qubit gates are expressed mathematically as Pauli matrices, which are 2x2 matrices. A 2x2 quantum gate can be applied to a single quantum...bit (a 2x1 column vector). The Pauli matrices are expressed as follows: X =   0 1 1 0   Y =   0 −i i 0   Z =   1 0 0 −1   (3.10) where i

  18. An automated procedure for calculating system matrices from perturbation data generated by an EAI Pacer and 100 hybrid computer system

    NASA Technical Reports Server (NTRS)

    Milner, E. J.; Krosel, S. M.

    1977-01-01

    Techniques are presented for determining the elements of the A, B, C, and D state variable matrices for systems simulated on an EAI Pacer 100 hybrid computer. An automated procedure systematically generates disturbance data necessary to linearize the simulation model and stores these data on a floppy disk. A separate digital program verifies this data, calculates the elements of the system matrices, and prints these matrices appropriately labeled. The partial derivatives forming the elements of the state variable matrices are approximated by finite difference calculations.

  19. The exocytotic fusion pore modeled as a lipidic pore.

    PubMed Central

    Nanavati, C; Markin, V S; Oberhauser, A F; Fernandez, J M

    1992-01-01

    Freeze-fracture electron micrographs from degranulating cells show that the lumen of the secretory granule is connected to the extracellular compartment via large (20 to 150 nm diameter) aqueous pores. These exocytotic fusion pores appear to be made up of a highly curved bilayer that spans the plasma and granule membranes. Conductance measurements, using the patch-clamp technique, have been used to study the fusion pore from the instant it conducts ions. These measurements reveal the presence of early fusion pores that are much smaller than those observed in electron micrographs. Early fusion pores open abruptly, fluctuate, and then either expand irreversibly or close. The molecular structure of these early fusion pores is unknown. In the simplest extremes, these early fusion pores could be either ion channel like protein pores or lipidic pores. Here, we explored the latter possibility, namely that of the early exocytotic fusion pore modeled as a lipid-lined pore whose free energy was composed of curvature elastic energy and work done by tension. Like early exocytotic fusion pores, we found that these lipidic pores could open abruptly, fluctuate, and expand irreversibly. Closure of these lipidic pores could be caused by slight changes in lipid composition. Conductance distributions for stable lipidic pores matched those of exocytotic fusion pores. These findings demonstrate that lipidic pores can exhibit the properties of exocytotic fusion pores, thus providing an alternate framework with which to understand and interpret exocytotic fusion pore data. PMID:1420930

  20. Spin-one bilinear-biquadratic model on a star lattice

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Yong; Kawashima, Naoki

    2018-05-01

    We study the ground-state phase diagram of the S =1 bilinear-biquadratic model (BLBQ) on the star lattice with the state-of-art tensor network algorithms. The system has four phases: the ferromagnetic, antiferromagnetic, ferroquadrupolar, and spin-liquid phases. The phases and their phase boundaries are determined by examining various local observables, correlation functions, and transfer matrices exhaustively. The spin-liquid phase, which is the first quantum disordered phase found in the two-dimensional BLBQ model, is gapped and devoid of any conventional long-range order. It is also characterized by fixed-parity virtual bonds in the tensor network formalism, analogous to the Haldane phase, while the parity varies depending on the location of the bond.

  1. Spectral properties of nanocomposites based on fluorine-containing polymer and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Barmina, E. V.; Mel’nik, N. N.; Rakov, I. I.; Ivanov, V. E.; Simakin, A. V.; Gudkov, S. V.; Shafeev, G. A.

    2018-04-01

    The optical properties of nanocomposites of gold nanoparticles and fluorine-containing polymer have been studied. Gold nanoparticles were obtained by laser ablation of gold or terbium targets in organic solvents. The thus formed colloidal solutions were used to prepare nanocomposites of gold nanoparticles in polymer matrices of transparent and colorless fluorine-containing polymer. The polymer matrix is found to promote aggregation of nanoparticles of metal under study into elongated chains. In turn, metal nanoparticles influence on the polymer matrix. Gold nanoparticles amplify the Raman signal of the polymer matrix. In addition, the Raman spectra of nanocomposites indicate aggregation of disordered carbon around the nanoparticles obtained by laser ablation in organic solvents.

  2. Pi-Pi contacts are an overlooked protein feature relevant to phase separation.

    PubMed

    Vernon, Robert McCoy; Chong, Paul Andrew; Tsang, Brian; Kim, Tae Hun; Bah, Alaji; Farber, Patrick; Lin, Hong; Forman-Kay, Julie Deborah

    2018-02-09

    Protein phase separation is implicated in formation of membraneless organelles, signaling puncta and the nuclear pore. Multivalent interactions of modular binding domains and their target motifs can drive phase separation. However, forces promoting the more common phase separation of intrinsically disordered regions are less understood, with suggested roles for multivalent cation-pi, pi-pi, and charge interactions and the hydrophobic effect. Known phase-separating proteins are enriched in pi-orbital containing residues and thus we analyzed pi-interactions in folded proteins. We found that pi-pi interactions involving non-aromatic groups are widespread, underestimated by force-fields used in structure calculations and correlated with solvation and lack of regular secondary structure, properties associated with disordered regions. We present a phase separation predictive algorithm based on pi interaction frequency, highlighting proteins involved in biomaterials and RNA processing. © 2018, Vernon et al.

  3. Infrared spectroscopic study of SO₄²⁻ ions included in M'₂M''(SeO₄)₂⋅6H₂O (Me'=K, NH₄⁺; M''=Mg, Co, Ni, Cu, Zn) and NH₄⁺ ions included in K₂M(XO₄)₂⋅6H₂O (X=S, Se; M''=Mg, Co, Ni, Cu, Zn).

    PubMed

    Marinova, D; Karadjova, V; Stoilova, D

    2015-01-05

    Infrared spectra of Tutton compounds, M'₂M''(SeO₄)₂⋅6H₂O (M'=K, NH₄⁺; M''=Mg, Co, Ni, Cu, Zn; X=S, Se), as well as those of SO₄²⁻ guest ions included in selenate host lattices and of NH4(+) guest ions included in potassium host lattices are presented and discussed in the regions of ν₃ and ν₁ of SO₄²⁻ guest ions, ν₄ of NH₄⁺ guest ions and water librations. The SO₄²⁻ guest ions matrix-isolated in selenate matrices (approximately 2 mol%) exhibit three bands corresponding to ν₃ and one band corresponding to ν₁ in good agreement with the low site symmetry C₁ of the host selenate ions. When the larger SO₄²⁻ ions are replaced by the smaller SO₄²⁻ ions the mean values of the asymmetric stretching modes ν₃ of the included SO₄²⁻ ions are slightly shifted to lower frequencies as compared to those of the same ions in the neat sulfate compounds due to the smaller repulsion potential of the selenate matrices (larger unit-cell volumes of the selenates). It has been established that the extent of energetic distortion of the sulfate ions matrix-isolated in the ammonium selenates as deduced from the values of Δν₃ and Δν₃/νc is stronger than that of the same ions matrix-isolated in the potassium selenates due to the formation of hydrogen bonds between the SO₄²⁻ guest ions with both the water molecules in the host compounds and the NH₄⁺ host ions (for example, Δν₃ of the sulfate guest ions have values of 30 and 51 cm(-1) in the nickel potassium and ammonium compounds, and 33 and 49 cm(-1) in the zinc potassium and ammonium compounds, respectively). The infrared spectra of ammonium doped potassium sulfate matrices show three bands corresponding to Δν₄ of the included ammonium ions in agreement with the low site symmetry C₁ of the host potassium ions. However, the inclusion of ammonium ions in selenate matrices (with exception of the magnesium compound) leads to the appearance of four bands in the region of ν₄. At that stage of our knowledge we assume that some kind of disorder of the ammonium ions included in selenate lattices occurs due to the different proton acceptor capability of the SO₄²⁻ and SO₄²⁻ ions. The latter ions are known to exhibit stronger proton acceptor abilities. This fact will facilitate the formation of polyfurcate hydrogen bonds of the ammonium ions in the selenate matrices, thus leading to increasing in the coordination number of these ions, i.e. to a disorder of the ammonium guest ions. The strength of the hydrogen bonds formed in the title Tutton compounds as well as that of the hydrogen bonds in potassium compounds containing isomorphously included ammonium ions as deduced from the wavenumbers of the water librations are also discussed. The bands corresponding to water librations in the spectra of the mixed crystals K₁.₈(NH₄)₀.₂M(XO₄)₂⋅6H₂O (M=Mg, Co, Ni, Cu, Zn; X=S, Se) broaden and shift to lower frequencies as compared to those of the potassium host compounds, thus indicating that weaker hydrogen bonds are formed in the mixed crystals. These spectroscopic findings are owing to the decrease in the proton acceptor capacity of the SO₄²⁻ and SO₄²⁻ ions due to the formation of hydrogen bonds between the host anions and the guest ammonium cations additionally to water molecules (anti-cooperative or proton acceptor competitive effect). Furthermore, the band shifts in the spectra of the selenate matrices are generally larger than those observed in the spectra of the respective sulfates due to the stronger proton acceptor ability of the selenate ions. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Infrared spectroscopic study of SO42- ions included in M‧2M‧‧(SeO4)2ṡ6H2O (Me‧ = K, NH4+; M‧‧ = Mg, Co, Ni, Cu, Zn) and NH4+ ions included in K2M(XO4)2ṡ6H2O (X = S, Se; M‧‧ = Mg, Co, Ni, Cu, Zn)

    NASA Astrophysics Data System (ADS)

    Marinova, D.; Karadjova, V.; Stoilova, D.

    2015-01-01

    Infrared spectra of Tutton compounds, M‧2M‧‧(XO4)2ṡ6H2O (M‧ = K, NH4+; M‧‧ = Mg, Co, Ni, Cu, Zn; X = S, Se), as well as those of SO42- guest ions included in selenate host lattices and of NH4+ guest ions included in potassium host lattices are presented and discussed in the regions of ν3 and ν1 of SO42- guest ions, ν4 of NH4+ guest ions and water librations. The SO42- guest ions matrix-isolated in selenate matrices (approximately 2 mol%) exhibit three bands corresponding to ν3 and one band corresponding to ν1 in good agreement with the low site symmetry C1 of the host selenate ions. When the larger SeO42- ions are replaced by the smaller SO42- ions the mean values of the asymmetric stretching modes νbar3 of the included SO42- ions are slightly shifted to lower frequencies as compared to those of the same ions in the neat sulfate compounds due to the smaller repulsion potential of the selenate matrices (larger unit-cell volumes of the selenates). It has been established that the extent of energetic distortion of the sulfate ions matrix-isolated in the ammonium selenates as deduced from the values of Δν3 and Δν3/νc is stronger than that of the same ions matrix-isolated in the potassium selenates due to the formation of hydrogen bonds between the SO42- guest ions with both the water molecules in the host compounds and the NH4+ host ions (for example, Δν3 of the sulfate guest ions have values of 30 and 51 cm-1 in the nickel potassium and ammonium compounds, and 33 and 49 cm-1 in the zinc potassium and ammonium compounds, respectively). The infrared spectra of ammonium doped potassium sulfate matrices show three bands corresponding to Δν4 of the included ammonium ions in agreement with the low site symmetry C1 of the host potassium ions. However, the inclusion of ammonium ions in selenate matrices (with exception of the magnesium compound) leads to the appearance of four bands in the region of ν4. At that stage of our knowledge we assume that some kind of disorder of the ammonium ions included in selenate lattices occurs due to the different proton acceptor capability of the SO42- and SeO42- ions. The latter ions are known to exhibit stronger proton acceptor abilities. This fact will facilitate the formation of polyfurcate hydrogen bonds of the ammonium ions in the selenate matrices, thus leading to increasing in the coordination number of these ions, i.e. to a disorder of the ammonium guest ions. The strength of the hydrogen bonds formed in the title Tutton compounds as well as that of the hydrogen bonds in potassium compounds containing isomorphously included ammonium ions as deduced from the wavenumbers of the water librations are also discussed. The bands corresponding to water librations in the spectra of the mixed crystals K1.8(NH4)0.2M(XO4)2ṡ6H2O (M = Mg, Co, Ni, Cu, Zn; X = S, Se) broaden and shift to lower frequencies as compared to those of the potassium host compounds, thus indicating that weaker hydrogen bonds are formed in the mixed crystals. These spectroscopic findings are owing to the decrease in the proton acceptor capacity of the SO42- and SeO42- ions due to the formation of hydrogen bonds between the host anions and the guest ammonium cations additionally to water molecules (anti-cooperative or proton acceptor competitive effect). Furthermore, the band shifts in the spectra of the selenate matrices are generally larger than those observed in the spectra of the respective sulfates due to the stronger proton acceptor ability of the selenate ions.

  5. Intelligence and Disability Pension in Swedish Men and Women Followed from Childhood to Late Middle Age

    PubMed Central

    Lundin, Andreas; Sörberg Wallin, Alma; Falkstedt, Daniel; Allebeck, Peter; Hemmingsson, Tomas

    2015-01-01

    Objective To investigate the association between intelligence and disability pension due to mental, musculoskeletal, cardiovascular, and substance-use disorders among men and women, and to assess the role of childhood social factors and adulthood work characteristics. Methods Two random samples of men and women born 1948 and 1953 (n = 10 563 and 9 434), and tested for general intelligence at age 13, were followed in registers for disability pension until 2009. Physical and psychological strains in adulthood were assessed using job exposure matrices. Associations were examined using Cox proportional hazard regression models, with increases in rates reported as hazard ratios (HRs) with 95% confidence intervals (95%CI) per decrease in stanine intelligence. Results In both men and women increased risks were found for disability pension due to all causes, musculoskeletal disorder, mental disorder other than substance use, and cardiovascular disease as intelligence decreased. Increased risk was also found for substance use disorder in men. In multivariate models, HRs were attenuated after controlling for pre-school plans in adolescence, and low job control and high physical strain in adulthood. In the fully adjusted model, increased HRs remained for all causes (male HR 1.11, 95%CI 1.07–1.15, female HR 1.06, 95%CI 1.02–1.09) and musculoskeletal disorder (male HR 1.16, 95%CI 1.09–1.24, female HR 1.08, 95%CI 1.03–1.14) during 1986 to 2009. Conclusion Relatively low childhood intelligence is associated with increased risk of disability pension due to musculoskeletal disorder in both men and women, even after adjustment for risk factors for disability pension measured over the life course. PMID:26062026

  6. Intelligence and Disability Pension in Swedish Men and Women Followed from Childhood to Late Middle Age.

    PubMed

    Lundin, Andreas; Sörberg Wallin, Alma; Falkstedt, Daniel; Allebeck, Peter; Hemmingsson, Tomas

    2015-01-01

    To investigate the association between intelligence and disability pension due to mental, musculoskeletal, cardiovascular, and substance-use disorders among men and women, and to assess the role of childhood social factors and adulthood work characteristics. Two random samples of men and women born 1948 and 1953 (n = 10 563 and 9 434), and tested for general intelligence at age 13, were followed in registers for disability pension until 2009. Physical and psychological strains in adulthood were assessed using job exposure matrices. Associations were examined using Cox proportional hazard regression models, with increases in rates reported as hazard ratios (HRs) with 95% confidence intervals (95%CI) per decrease in stanine intelligence. In both men and women increased risks were found for disability pension due to all causes, musculoskeletal disorder, mental disorder other than substance use, and cardiovascular disease as intelligence decreased. Increased risk was also found for substance use disorder in men. In multivariate models, HRs were attenuated after controlling for pre-school plans in adolescence, and low job control and high physical strain in adulthood. In the fully adjusted model, increased HRs remained for all causes (male HR 1.11, 95%CI 1.07-1.15, female HR 1.06, 95%CI 1.02-1.09) and musculoskeletal disorder (male HR 1.16, 95%CI 1.09-1.24, female HR 1.08, 95%CI 1.03-1.14) during 1986 to 2009. Relatively low childhood intelligence is associated with increased risk of disability pension due to musculoskeletal disorder in both men and women, even after adjustment for risk factors for disability pension measured over the life course.

  7. The effect of fluids on the frictional behavior of calcite gouge

    NASA Astrophysics Data System (ADS)

    Rempe, M.; Di Toro, G.; Mitchell, T. M.; Hirose, T.; Smith, S. A. F.; Renner, J.

    2016-12-01

    The presence of fluids in fault zones affects the faults' strength and the nucleation and propagation of earthquakes due to mechanical or physico-chemical weakening effects. To better understand the effect of pore fluids on the frictional behavior of gouge-bearing faults, a series of intermediate- to high-velocity experiments was conducted using the Phv rotary-shear apparatus (Kochi Core Center, Japan) equipped with a servo-controlled pore-fluid pressure system. Calcite gouge was sheared up to several meters displacement at room-humidity (dry) and water-saturated conditions. The pore-fluid factor, λ=pf/σn, ranged from 0.15 to 0.7 and the effective normal stress, σn,eff=σn-pf, from 1 to 12 MPa. Sheared samples were analyzed using scanning electron microscopy and Raman spectroscopy. The steady-state shear stress is lower for saturated than for dry gouges sliding at V=1 mm/s, possibly due to higher intergranular lubrication and/or accelerated subcritical crack growth, as evidenced also by the observed higher degree of compaction. At V=1 m/s, dry gouges show a pronounced strengthening phase preceding the onset of dynamic weakening; saturated gouges weaken abruptly. The higher λ, the lower the peak and steady-state shear stress, but -counterintuitively- the less localized deformation. Degree of weakening and localization might be influenced by insufficient drainage at high λ. In undrained experiments, the shear stress is slightly decreased likely due to thermal pressurization of the pore fluid, but the onset of dynamic weakening is not accelerated, indicating that dynamic weakening is due to more efficient mechanisms. For example, amorphous carbon may lubricate the slip surfaces of dry and saturated calcite gouges and cause dynamic weakening, yet Raman spectra only show the presence of disordered carbon on the principal slip surface. Furthermore, the presence of small recrystallized grains suggests that strain accommodation during steady-state slip might occur by non-frictional processes, such as grain-boundary sliding aided by diffusion creep.

  8. Invertible flexible matrices

    NASA Astrophysics Data System (ADS)

    Justino, Júlia

    2017-06-01

    Matrices with coefficients having uncertainties of type o (.) or O (.), called flexible matrices, are studied from the point of view of nonstandard analysis. The uncertainties of the afore-mentioned kind will be given in the form of the so-called neutrices, for instance the set of all infinitesimals. Since flexible matrices have uncertainties in their coefficients, it is not possible to define the identity matrix in an unique way and so the notion of spectral identity matrix arises. Not all nonsingular flexible matrices can be turned into a spectral identity matrix using Gauss-Jordan elimination method, implying that that not all nonsingular flexible matrices have the inverse matrix. Under certain conditions upon the size of the uncertainties appearing in a nonsingular flexible matrix, a general theorem concerning the boundaries of its minors is presented which guarantees the existence of the inverse matrix of a nonsingular flexible matrix.

  9. Statistical potential-based amino acid similarity matrices for aligning distantly related protein sequences.

    PubMed

    Tan, Yen Hock; Huang, He; Kihara, Daisuke

    2006-08-15

    Aligning distantly related protein sequences is a long-standing problem in bioinformatics, and a key for successful protein structure prediction. Its importance is increasing recently in the context of structural genomics projects because more and more experimentally solved structures are available as templates for protein structure modeling. Toward this end, recent structure prediction methods employ profile-profile alignments, and various ways of aligning two profiles have been developed. More fundamentally, a better amino acid similarity matrix can improve a profile itself; thereby resulting in more accurate profile-profile alignments. Here we have developed novel amino acid similarity matrices from knowledge-based amino acid contact potentials. Contact potentials are used because the contact propensity to the other amino acids would be one of the most conserved features of each position of a protein structure. The derived amino acid similarity matrices are tested on benchmark alignments at three different levels, namely, the family, the superfamily, and the fold level. Compared to BLOSUM45 and the other existing matrices, the contact potential-based matrices perform comparably in the family level alignments, but clearly outperform in the fold level alignments. The contact potential-based matrices perform even better when suboptimal alignments are considered. Comparing the matrices themselves with each other revealed that the contact potential-based matrices are very different from BLOSUM45 and the other matrices, indicating that they are located in a different basin in the amino acid similarity matrix space.

  10. The Development of Novel Nanodiamond Based MALDI Matrices for the Analysis of Small Organic Pharmaceuticals

    NASA Astrophysics Data System (ADS)

    Chitanda, Jackson M.; Zhang, Haixia; Pahl, Erica; Purves, Randy W.; El-Aneed, Anas

    2016-10-01

    The utility of novel functionalized nanodiamonds (NDs) as matrices for matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) is described herein. MALDI-MS analysis of small organic compounds (<1000 Da) is typically complex because of interferences from numerous cluster ions formed when using conventional matrices. To expand the use of MALDI for the analysis of small molecules, novel matrices were designed by covalently linking conventional matrices (or a lysine moiety) to detonated NDs. Four new functionalized NDs were evaluated for their ionization capabilities using five pharmaceuticals with varying molecular structures. Two ND matrices were able to ionize all tested pharmaceuticals in the negative ion mode, producing the deprotonated ions [M - H]-. Ion intensity for target analytes was generally strong with enhanced signal-to-noise ratios compared with conventional matrices. The negative ion mode is of great importance for biological samples as interference from endogenous compounds is inherently minimized in the negative ion mode. Since the molecular structures of the tested pharmaceuticals did not suggest that negative ion mode would be preferable, this result magnifies the importance of these findings. On the other hand, conventional matrices primarily facilitated the ionization as expected in the positive ion mode, producing either the protonated molecules [M + H]+ or cationic adducts (typically producing complex spectra with numerous adduct peaks). The data presented in this study suggests that these matrices may offer advantages for the analysis of low molecular weight pharmaceuticals/metabolites.

  11. The Development of Novel Nanodiamond Based MALDI Matrices for the Analysis of Small Organic Pharmaceuticals.

    PubMed

    Chitanda, Jackson M; Zhang, Haixia; Pahl, Erica; Purves, Randy W; El-Aneed, Anas

    2016-10-01

    The utility of novel functionalized nanodiamonds (NDs) as matrices for matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) is described herein. MALDI-MS analysis of small organic compounds (<1000 Da) is typically complex because of interferences from numerous cluster ions formed when using conventional matrices. To expand the use of MALDI for the analysis of small molecules, novel matrices were designed by covalently linking conventional matrices (or a lysine moiety) to detonated NDs. Four new functionalized NDs were evaluated for their ionization capabilities using five pharmaceuticals with varying molecular structures. Two ND matrices were able to ionize all tested pharmaceuticals in the negative ion mode, producing the deprotonated ions [M - H](-). Ion intensity for target analytes was generally strong with enhanced signal-to-noise ratios compared with conventional matrices. The negative ion mode is of great importance for biological samples as interference from endogenous compounds is inherently minimized in the negative ion mode. Since the molecular structures of the tested pharmaceuticals did not suggest that negative ion mode would be preferable, this result magnifies the importance of these findings. On the other hand, conventional matrices primarily facilitated the ionization as expected in the positive ion mode, producing either the protonated molecules [M + H](+) or cationic adducts (typically producing complex spectra with numerous adduct peaks). The data presented in this study suggests that these matrices may offer advantages for the analysis of low molecular weight pharmaceuticals/metabolites. Graphical Abstract ᅟ.

  12. Photochemistry of nanoporous carbons: Perspectives in energy conversion and environmental remediation.

    PubMed

    Gomis-Berenguer, Alicia; Velasco, Leticia F; Velo-Gala, Inmaculada; Ania, Conchi O

    2017-03-15

    The interest in the use of nanoporous carbon materials in applications related to energy conversion and storage, either as catalysts or additives, has grown over recent decades in various disciplines. Since the early studies reporting the benefits of the use of nanoporous carbons as inert supports of semiconductors and as electron acceptors that enhance the splitting of the photogenerated excitons, many researchers have investigated the key role of carbon matrices coupled to all types of photoactive materials. More recently, our group has demonstrated the ability of semiconductor-free nanoporous carbons to convert the absorbed photons into chemical reactions (i.e. oxidation of pollutants, water splitting, reduction of surface groups) opening new opportunities beyond conventional applications in light energy conversion. The aim of this paper is to review the recent progress on the application of nanoporous carbons in photochemistry using varied illumination conditions (UV, simulated solar light) and covering their role as additives to semiconductors as well as their use as photocatalysts in various fields, describing the photochemical quantum yield of nanoporous carbons for different reactions, and discussing the mechanisms postulated for the carbon/light interactions in confined pore spaces. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Revealing the potential of squid chitosan-based structures for biomedical applications.

    PubMed

    Reys, L L; Silva, S S; Oliveira, J M; Caridade, S G; Mano, J F; Silva, T H; Reis, R L

    2013-08-01

    In recent years, much attention has been given to different marine organisms, namely as potential sources of valuable materials with a vast range of properties and characteristics. In this work, β-chitin was isolated from the endoskeleton of the giant squid Dosidicus gigas and further deacetylated to produce chitosan. Then, the squid chitosan was processed into membranes and scaffolds using solvent casting and freeze-drying, respectively, to assess their potential biomedical application. The developed membranes have shown to be stiffer and less hydrophobic than those obtained with commercial chitosan. On the other hand, the morphological characterization of the developed scaffolds, by SEM and micro-computed tomography, revealed that the matrices were formed with a lamellar structure. The findings also indicated that the treatment with ethanol prior to neutralization with sodium hydroxide caused the formation of larger pores and loss of some lamellar features. The in vitro cell culture study has shown that all chitosan scaffolds exhibited a non-cytotoxic effect over the mouse fibroblast-like cell line, L929 cells. Thus, chitosan produced from the endoskeletons of the giant squid Dosidicus gigas has proven to be a valuable alternative to existing commercial materials when considering its use as biomaterial.

  14. Dispersion Process and Effect of Oleic Acid on Properties of Cellulose Sulfate- Oleic Acid Composite Film

    PubMed Central

    Chen, Guo; Zhang, Bin; Zhao, Jun

    2015-01-01

    The cellulose sulfate (CS) is a newly developed cellulose derivative. The work aimed to investigate the effect of oleic acid (OA) content on properties of CS-OA film. The process of oleic acid dispersion into film was described to evaluate its effect on the properties of the film. Among the formulations evaluated, the OA addition decreased the solubility and water vapor permeability of the CS-OA film. The surface contact angle changed from 64.2° to 94.0° by increasing CS/OA ratio from 1:0 to 1:0.25 (w/w). The TS increased with OA content below 15% and decreased with OA over 15%, but the ε decreased with higher OA content. The micro-cracking matrices and micro pores in the film indicated the condense structure of the film destroyed by the incorporation of oleic acid. No chemical interaction between the OA and CS was observed in the XRD and FTIR spectrum. Film formulation containing 2% (w/w) CS, 0.3% (w/w) glycerol and 0.3% (w/w) OA, showed good properties of mechanic, barrier to moisture and homogeneity.

  15. Driving Cell Seeding Using Vibration Induced Surface Waves

    NASA Astrophysics Data System (ADS)

    Li, Haiyan; Friend, James; Yeo, Leslie

    2007-11-01

    The ability to load cells into scaffold matrices is an important step in in-vitro cell culturing. Efficient and rapid cell seeding is however difficult and has traditionally been carried out using a static method by allowing gravity to drive the perfusion of the cell suspension into the porous scaffold. Nevertheless, due to the large capillary pressures associated with the small scaffold pore dimensions, the static cell seeding method is both slow and inefficient; the majority of cells are distributed close to the surface of the scaffold due to the inability of the fluid to penetrate deep into the scaffold. By driving the liquid into the scaffold using small amplitude surface vibrations on a piezoelectric substrate, we demonstrate that the cells can be infused much quicker (approximately 10 seconds) than if allowed to perfuse by gravity alone, which requires seeding times in excess of 30 minutes. Greater penetration of the fluid and hence the cells into the scaffold is also achieved with the vibration forcing, thus giving rise to a more uniform cell distribution within the scaffold. Moreover, we have verified that 80% of the yeast cells seeded by the surface waves remained viable.

  16. Solid-Phase Extraction of Sulfur Mustard Metabolites Using an Activated Carbon Fiber Sorbent.

    PubMed

    Lee, Jin Young; Lee, Yong Han

    2016-01-01

    A novel solid-phase extraction method using activated carbon fiber (ACF) was developed and validated. ACF has a vast network of pores of varying sizes and microporous structures that result in rapid adsorption and selective extraction of sulfur mustard metabolites according to the pH of eluting solvents. ACF could not only selectively extract thiodiglycol and 1-methylsulfinyl-2-[2-(methylthio)-ethylsulfonyl]ethane eluting a 9:1 ratio of dichloromethane to acetone, and 1,1'-sulfonylbis[2-(methylsulfinyl)ethane] and 1,1'-sulfonylbis- [2-S-(N-acetylcysteinyl)ethane] eluting 3% hydrogen chloride in methanol, but could also eliminate most interference without loss of analytes during the loading and washing steps. A sample preparation method has been optimized for the extraction of sulfur mustard metabolites from human urine using an ACF sorbent. The newly developed extraction method was applied to the trace analysis of metabolites of sulfur mustard in human urine matrices in a confidence-building exercise for the analysis of biomedical samples provided by the Organisation for the Prohibition of Chemical Weapons. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Research highlights: increasing paper possibilities.

    PubMed

    Wu, Chueh-Yu; Adeyiga, Oladunni; Lin, Jonathan; Di Carlo, Dino

    2014-09-07

    In this issue we highlight three recent papers that demonstrate new strategies to extend the capabilities of paper microfluidics. Paper (a mesh of porous fibers) has a long history as a substrate to perform biomolecular assays. Traditional lateral flow immunoassays (LFAs) are widely used for rapid diagnostic tests, and perform well when a yes or no answer is required and the analyte of interest is at relatively high concentrations. High concentrations are required because usually only a small volume of analyte-containing fluid flows past the detection region, leading to a limited signal. Further, the small pores within paper matrices prevent the use of paper to control the flow of larger particles and cells, limiting the use of paper microfluidics for cell-based diagnostics. The work we highlight addresses these important unmet challenges in paper microfluidics: enriching low concentration analytes to a higher concentration in a smaller volume that can be processed effectively, and using paper to pump flows in larger channels amenable to cells. Applying these new approaches may allow diagnosis of disease states currently technically unachievable using current LFA systems, while maintaining many of the "un-instrumented" advantages of an assay on self-wicking paper.

  18. Extraction and Analysis of Sulfur Mustard (HD) from Various Food Matrices by Gas ChromatographyMass Spectrometry

    DTIC Science & Technology

    2016-01-01

    EXTRACTION AND ANALYSIS OF SULFUR MUSTARD (HD) FROM VARIOUS FOOD MATRICES BY GAS CHROMATOGRAPHY–MASS...Sulfur Mustard (HD) from Various Food Matrices by Gas Chromatography–Mass Spectrometry 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...spectrometry was used to analyze sulfur mustard (HD) in various food matrices. The development of a solid-phase extraction method using a normal

  19. Novel value-added uses for sweet potato juice and flour in polyphenol- and protein-enriched functional food ingredients

    PubMed Central

    Grace, Mary H; Truong, An N; Truong, Van-Den; Raskin, Ilya; Lila, Mary Ann

    2015-01-01

    Blackcurrant, blueberry, and muscadine grape juices were efficiently sorbed, concentrated, and stabilized into dry granular ingredient matrices which combined anti-inflammatory and antioxidant fruit polyphenols with sweet potato functional constituents (carotenoids, vitamins, polyphenols, fibers). Total phenolics were highest in blackcurrant-orange sweet potato ingredient matrices (34.03 mg/g), and lowest in muscadine grape-yellow sweet potato matrices (10.56 mg/g). Similarly, anthocyanins were most concentrated in blackcurrant-fortified orange and yellow sweet potato matrices (5.40 and 6.54 mg/g, respectively). Alternatively, other protein-rich edible matrices (defatted soy flour, light roasted peanut flour, and rice protein concentrate) efficiently captured polyphenols (6.09–9.46 mg/g) and anthocyanins (0.77–1.27 mg/g) from purple-fleshed sweet potato juice, with comparable efficiency. Antioxidant activity correlated well with total phenolic content. All formulated ingredient matrices stabilized and preserved polyphenols for up to 24 weeks, even when stored at 37°C. Complexation with juice-derived polyphenols did not significantly alter protein or carbohydrate profiles of the matrices. Sensory evaluation of the ingredient matrices suggested potential uses for a wide range of functional food products. PMID:26405527

  20. The performance of the Congruence Among Distance Matrices (CADM) test in phylogenetic analysis

    PubMed Central

    2011-01-01

    Background CADM is a statistical test used to estimate the level of Congruence Among Distance Matrices. It has been shown in previous studies to have a correct rate of type I error and good power when applied to dissimilarity matrices and to ultrametric distance matrices. Contrary to most other tests of incongruence used in phylogenetic analysis, the null hypothesis of the CADM test assumes complete incongruence of the phylogenetic trees instead of congruence. In this study, we performed computer simulations to assess the type I error rate and power of the test. It was applied to additive distance matrices representing phylogenies and to genetic distance matrices obtained from nucleotide sequences of different lengths that were simulated on randomly generated trees of varying sizes, and under different evolutionary conditions. Results Our results showed that the test has an accurate type I error rate and good power. As expected, power increased with the number of objects (i.e., taxa), the number of partially or completely congruent matrices and the level of congruence among distance matrices. Conclusions Based on our results, we suggest that CADM is an excellent candidate to test for congruence and, when present, to estimate its level in phylogenomic studies where numerous genes are analysed simultaneously. PMID:21388552

  1. Virial expansion for almost diagonal random matrices

    NASA Astrophysics Data System (ADS)

    Yevtushenko, Oleg; Kravtsov, Vladimir E.

    2003-08-01

    Energy level statistics of Hermitian random matrices hat H with Gaussian independent random entries Higeqj is studied for a generic ensemble of almost diagonal random matrices with langle|Hii|2rangle ~ 1 and langle|Hi\

  2. Antera 3D capabilities for pore measurements.

    PubMed

    Messaraa, C; Metois, A; Walsh, M; Flynn, J; Doyle, L; Robertson, N; Mansfield, A; O'Connor, C; Mavon, A

    2018-04-29

    The cause of enlarged pores remains obscure but still remains of concern for women. To complement subjective methods, bioengineered methods are needed for quantification of pores visibility following treatments. The study objective was to demonstrate the suitability of pore measurements from the Antera 3D. Pore measurements were collected on 22 female volunteers aged 18-65 years with the Antera 3D, the DermaTOP and image analysis on photographs. Additionally, 4 raters graded pore size on photographs on a scale 0-5. Repeatability of Antera 3D parameters was ascertained and the benefit of a pore minimizer product on the cheek was assessed on a sub panel of seven female volunteers. Pore parameters using the Antera were shown to depict pore severity similar to raters on photographs, except for Max Depth. Mean pore volume, mean pore area and count were moderately correlated with DermaTOP parameters (up to r = .50). No relationship was seen between the Antera 3D and pore visibility analysis on photographs. The most repeatable parameters were found to be mean pore volume, mean pore area and max depth, especially for the small and medium filters. The benefits of a pore minimizer product were the most striking for mean pore volume and mean pore area when using the small filter for analysis, rather than the medium/large ones. Pore measurements with the Antera 3D represent a reliable tool for efficacy and field studies, with an emphasis of the small filter for analysis for the mean pore volume/mean pore area parameters. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Pore-Scale Modeling of Pore Structure Effects on P-Wave Scattering Attenuation in Dry Rocks

    PubMed Central

    Li, Tianyang; Qiu, Hao; Wang, Feifei

    2015-01-01

    Underground rocks usually have complex pore system with a variety of pore types and a wide range of pore size. The effects of pore structure on elastic wave attenuation cannot be neglected. We investigated the pore structure effects on P-wave scattering attenuation in dry rocks by pore-scale modeling based on the wave theory and the similarity principle. Our modeling results indicate that pore size, pore shape (such as aspect ratio), and pore density are important factors influencing P-wave scattering attenuation in porous rocks, and can explain the variation of scattering attenuation at the same porosity. From the perspective of scattering attenuation, porous rocks can safely suit to the long wavelength assumption when the ratio of wavelength to pore size is larger than 15. Under the long wavelength condition, the scattering attenuation coefficient increases as a power function as the pore density increases, and it increases exponentially with the increase in aspect ratio. For a certain porosity, rocks with smaller aspect ratio and/or larger pore size have stronger scattering attenuation. When the pore aspect ratio is larger than 0.5, the variation of scattering attenuation at the same porosity is dominantly caused by pore size and almost independent of the pore aspect ratio. These results lay a foundation for pore structure inversion from elastic wave responses in porous rocks. PMID:25961729

  4. Inference for High-dimensional Differential Correlation Matrices *

    PubMed Central

    Cai, T. Tony; Zhang, Anru

    2015-01-01

    Motivated by differential co-expression analysis in genomics, we consider in this paper estimation and testing of high-dimensional differential correlation matrices. An adaptive thresholding procedure is introduced and theoretical guarantees are given. Minimax rate of convergence is established and the proposed estimator is shown to be adaptively rate-optimal over collections of paired correlation matrices with approximately sparse differences. Simulation results show that the procedure significantly outperforms two other natural methods that are based on separate estimation of the individual correlation matrices. The procedure is also illustrated through an analysis of a breast cancer dataset, which provides evidence at the gene co-expression level that several genes, of which a subset has been previously verified, are associated with the breast cancer. Hypothesis testing on the differential correlation matrices is also considered. A test, which is particularly well suited for testing against sparse alternatives, is introduced. In addition, other related problems, including estimation of a single sparse correlation matrix, estimation of the differential covariance matrices, and estimation of the differential cross-correlation matrices, are also discussed. PMID:26500380

  5. Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices

    PubMed Central

    Monajemi, Hatef; Jafarpour, Sina; Gavish, Matan; Donoho, David L.; Ambikasaran, Sivaram; Bacallado, Sergio; Bharadia, Dinesh; Chen, Yuxin; Choi, Young; Chowdhury, Mainak; Chowdhury, Soham; Damle, Anil; Fithian, Will; Goetz, Georges; Grosenick, Logan; Gross, Sam; Hills, Gage; Hornstein, Michael; Lakkam, Milinda; Lee, Jason; Li, Jian; Liu, Linxi; Sing-Long, Carlos; Marx, Mike; Mittal, Akshay; Monajemi, Hatef; No, Albert; Omrani, Reza; Pekelis, Leonid; Qin, Junjie; Raines, Kevin; Ryu, Ernest; Saxe, Andrew; Shi, Dai; Siilats, Keith; Strauss, David; Tang, Gary; Wang, Chaojun; Zhou, Zoey; Zhu, Zhen

    2013-01-01

    In compressed sensing, one takes samples of an N-dimensional vector using an matrix A, obtaining undersampled measurements . For random matrices with independent standard Gaussian entries, it is known that, when is k-sparse, there is a precisely determined phase transition: for a certain region in the (,)-phase diagram, convex optimization typically finds the sparsest solution, whereas outside that region, it typically fails. It has been shown empirically that the same property—with the same phase transition location—holds for a wide range of non-Gaussian random matrix ensembles. We report extensive experiments showing that the Gaussian phase transition also describes numerous deterministic matrices, including Spikes and Sines, Spikes and Noiselets, Paley Frames, Delsarte-Goethals Frames, Chirp Sensing Matrices, and Grassmannian Frames. Namely, for each of these deterministic matrices in turn, for a typical k-sparse object, we observe that convex optimization is successful over a region of the phase diagram that coincides with the region known for Gaussian random matrices. Our experiments considered coefficients constrained to for four different sets , and the results establish our finding for each of the four associated phase transitions. PMID:23277588

  6. Amino acid "little Big Bang": representing amino acid substitution matrices as dot products of Euclidian vectors.

    PubMed

    Zimmermann, Karel; Gibrat, Jean-François

    2010-01-04

    Sequence comparisons make use of a one-letter representation for amino acids, the necessary quantitative information being supplied by the substitution matrices. This paper deals with the problem of finding a representation that provides a comprehensive description of amino acid intrinsic properties consistent with the substitution matrices. We present a Euclidian vector representation of the amino acids, obtained by the singular value decomposition of the substitution matrices. The substitution matrix entries correspond to the dot product of amino acid vectors. We apply this vector encoding to the study of the relative importance of various amino acid physicochemical properties upon the substitution matrices. We also characterize and compare the PAM and BLOSUM series substitution matrices. This vector encoding introduces a Euclidian metric in the amino acid space, consistent with substitution matrices. Such a numerical description of the amino acid is useful when intrinsic properties of amino acids are necessary, for instance, building sequence profiles or finding consensus sequences, using machine learning algorithms such as Support Vector Machine and Neural Networks algorithms.

  7. Lattice density functional theory investigation of pore shape effects. I. Adsorption in single nonperiodic pores.

    PubMed

    Malanoski, A P; van Swol, Frank

    2002-10-01

    A fully explicit in three dimensions lattice density functional theory is used to investigate adsorption in single nonperiodic pores. The effect of varying pore shape from the slits and cylinders that are normally simulated was our primary interest. A secondary concern was the results for pores with very large diameters. The shapes investigated were square pores with or without surface roughness, cylinders, right triangle pores, and trapezoidal pores. It was found that pores with very similar shape factors gave similar results but that the introduction of acute angled corners or very large side ratio lengths in rectangular pores gave results that were significantly different. Further, a rectangular pore going towards the limit of infinite side ratio does not approach the results of a slit pore. In all of these cases, the importance of features that are present for only a small portion of the pore is demonstrated.

  8. Quantification of VX Nerve Agent in Various Food Matrices by Solid-Phase Extraction Ultra-Performance Liquid ChromatographyTime-of-Flight Mass Spectrometry

    DTIC Science & Technology

    2016-04-01

    QUANTIFICATION OF VX NERVE AGENT IN VARIOUS FOOD MATRICES BY SOLID-PHASE EXTRACTION ULTRA-PERFORMANCE...TITLE AND SUBTITLE Quantification of VX Nerve Agent in Various Food Matrices by Solid-Phase Extraction Ultra-Performance Liquid Chromatography... food matrices. The mixed-mode cation exchange (MCX) sorbent and Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) methods were used for

  9. Novel image compression-encryption hybrid algorithm based on key-controlled measurement matrix in compressive sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Nanrun; Zhang, Aidi; Zheng, Fen; Gong, Lihua

    2014-10-01

    The existing ways to encrypt images based on compressive sensing usually treat the whole measurement matrix as the key, which renders the key too large to distribute and memorize or store. To solve this problem, a new image compression-encryption hybrid algorithm is proposed to realize compression and encryption simultaneously, where the key is easily distributed, stored or memorized. The input image is divided into 4 blocks to compress and encrypt, then the pixels of the two adjacent blocks are exchanged randomly by random matrices. The measurement matrices in compressive sensing are constructed by utilizing the circulant matrices and controlling the original row vectors of the circulant matrices with logistic map. And the random matrices used in random pixel exchanging are bound with the measurement matrices. Simulation results verify the effectiveness, security of the proposed algorithm and the acceptable compression performance.

  10. Intrinsic character of Stokes matrices

    NASA Astrophysics Data System (ADS)

    Gagnon, Jean-François; Rousseau, Christiane

    2017-02-01

    Two germs of linear analytic differential systems x k + 1Y‧ = A (x) Y with a non-resonant irregular singularity are analytically equivalent if and only if they have the same eigenvalues and equivalent collections of Stokes matrices. The Stokes matrices are the transition matrices between sectors on which the system is analytically equivalent to its formal normal form. Each sector contains exactly one separating ray for each pair of eigenvalues. A rotation in S allows supposing that R+ lies in the intersection of two sectors. Reordering of the coordinates of Y allows ordering the real parts of the eigenvalues, thus yielding triangular Stokes matrices. However, the choice of the rotation in x is not canonical. In this paper we establish how the collection of Stokes matrices depends on this rotation, and hence on a chosen order of the projection of the eigenvalues on a line through the origin.

  11. Surveying the quantum group symmetries of integrable open spin chains

    NASA Astrophysics Data System (ADS)

    Nepomechie, Rafael I.; Retore, Ana L.

    2018-05-01

    Using anisotropic R-matrices associated with affine Lie algebras g ˆ (specifically, A2n(2), A2n-1 (2) , Bn(1), Cn(1), Dn(1)) and suitable corresponding K-matrices, we construct families of integrable open quantum spin chains of finite length, whose transfer matrices are invariant under the quantum group corresponding to removing one node from the Dynkin diagram of g ˆ . We show that these transfer matrices also have a duality symmetry (for the cases Cn(1) and Dn(1)) and additional Z2 symmetries that map complex representations to their conjugates (for the cases A2n-1 (2) , Bn(1) and Dn(1)). A key simplification is achieved by working in a certain "unitary" gauge, in which only the unbroken symmetry generators appear. The proofs of these symmetries rely on some new properties of the R-matrices. We use these symmetries to explain the degeneracies of the transfer matrices.

  12. Prevalence and clinical characteristics of attention deficit hyperactivity disorder among primary school students in Bangkok.

    PubMed

    Benjasuwantep, Banchaun; Ruangdaraganon, Nichara; Visudhiphan, Pongsakdi

    2002-11-01

    Attention deficit hyperactivity disorder (ADHD) is an important disorder because it is the most prevalent chronic health condition affecting school aged children. Children with ADHD are at risk for academic and behavior problems. There are several studies in many countries worldwide. In Thailand, there have been a few published papers about ADHD. Most of them were studies in a clinically referred population. Four hundred and thirty-three first to sixth grade students from Wat Samiennaree School were included in this study. All children were administered Raven's progressive matrices test for estimation of intellectual functioning and were observed for their behavior in the classrooms by one researcher. Their demographic data was collected by questionnaires. The revised Conners rating scales were scored for each student. Students whose parents did not score the Conners parent rating scale were excluded. The parents of students, whose scores were positive for ADHD, were interviewed according to DSM IV criteria. 353 (81.5%) students from 433 were enrolled in this study. 23 students were diagnosed with ADHD making a prevalence of 6.5 per cent. There were 11 boys and 12 girls. The ratio of male to female was 1:1.09. The ADHD students had lower scores in mathematics than the group without this diagnosis with statistical significance (p = 0.006).

  13. Altered brain functional networks in people with Internet gaming disorder: Evidence from resting-state fMRI.

    PubMed

    Wang, Lingxiao; Wu, Lingdan; Lin, Xiao; Zhang, Yifen; Zhou, Hongli; Du, Xiaoxia; Dong, Guangheng

    2016-08-30

    Although numerous neuroimaging studies have detected structural and functional abnormality in specific brain regions and connections in subjects with Internet gaming disorder (IGD), the topological organization of the whole-brain network in IGD remain unclear. In this study, we applied graph theoretical analysis to explore the intrinsic topological properties of brain networks in Internet gaming disorder (IGD). 37 IGD subjects and 35 matched healthy control (HC) subjects underwent a resting-state functional magnetic resonance imaging scan. The functional networks were constructed by thresholding partial correlation matrices of 90 brain regions. Then we applied graph-based approaches to analysis their topological attributes, including small-worldness, nodal metrics, and efficiency. Both IGD and HC subjects show efficient and economic brain network, and small-world topology. Although there was no significant group difference in global topology metrics, the IGD subjects showed reduced regional centralities in the prefrontal cortex, left posterior cingulate cortex, right amygdala, and bilateral lingual gyrus, and increased functional connectivity in sensory-motor-related brain networks compared to the HC subjects. These results imply that people with IGD may be associated with functional network dysfunction, including impaired executive control and emotional management, but enhanced coordination among visual, sensorimotor, auditory and visuospatial systems. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. In-Silico Screening of Ligand Based Pharmacophore, Database Mining and Molecular Docking on 2, 5-Diaminopyrimidines Azapurines as Potential Inhibitors of Glycogen Synthase Kinase-3β.

    PubMed

    Mishra, Pooja; Kesar, Seema; Paliwal, Sarvesh K; Chauhan, Monika; Madan, Kirtika

    2018-05-29

    Glycogen synthase kinase-3β plays a significant role in the regulation of various pathological pathways relating to central nervous system (CNS). Dysregulation of Glycogen synthase kinase 3 (GSK-3) activity gives a rise to numerous neuroinflammation and neurodegenerative related disorders that affect the whole central nervous system. By the sequential application of in-silico tools, efforts have been attempted to design the novel GSK-3β inhibitors. Owing to the potential role of GSK-3β in nervous disorders, we have attempted to develop the quantitative four featured pharmacophore model comprising two hydrogen bond acceptors (HBA), one ring aromatic (RA), and one hydrophobe (HY), which were further affirmed by cost-function analysis, rm2 matrices, internal and external test set validation and Güner-Henry (GH) scoring analysis. Validated pharmacophoric model was used for virtual screening and out of 345 compounds, two potential virtual hits were finalized that were on the basis of fit value, estimated activity and Lipinski's violation. The chosen compounds were subjected to dock within the active site of GSK-3β Result: Four essential features, i.e., two hydrogen bond acceptors(HBA), one ring aromatic(RA), and one hydrophobe(HY), were subjected to build the pharmacophoric model and showed good correlation coefficient, RMSD and cost difference values of 0.91, 0.94 and 42.9 respectively and further model was validated employing cost-function analysis, rm2-matrices, internal and external test set prediction with r2 value of 0.77 and 0.84. Docked conformations showed potential interactions in between the features of the identified hits (NCI 4296, NCI 3034) and the amino acids present in the active site. In line with the overhead discussion, and through our stepwise computational approaches, we have identified novel, structurally diverse glycogen synthase kinase inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Integrating SANS and fluid-invasion methods to characterize pore structure of typical American shale oil reservoirs.

    PubMed

    Zhao, Jianhua; Jin, Zhijun; Hu, Qinhong; Jin, Zhenkui; Barber, Troy J; Zhang, Yuxiang; Bleuel, Markus

    2017-11-13

    An integration of small-angle neutron scattering (SANS), low-pressure N 2 physisorption (LPNP), and mercury injection capillary pressure (MICP) methods was employed to study the pore structure of four oil shale samples from leading Niobrara, Wolfcamp, Bakken, and Utica Formations in USA. Porosity values obtained from SANS are higher than those from two fluid-invasion methods, due to the ability of neutrons to probe pore spaces inaccessible to N 2 and mercury. However, SANS and LPNP methods exhibit a similar pore-size distribution, and both methods (in measuring total pore volume) show different results of porosity and pore-size distribution obtained from the MICP method (quantifying pore throats). Multi-scale (five pore-diameter intervals) inaccessible porosity to N 2 was determined using SANS and LPNP data. Overall, a large value of inaccessible porosity occurs at pore diameters <10 nm, which we attribute to low connectivity of organic matter-hosted and clay-associated pores in these shales. While each method probes a unique aspect of complex pore structure of shale, the discrepancy between pore structure results from different methods is explained with respect to their difference in measurable ranges of pore diameter, pore space, pore type, sample size and associated pore connectivity, as well as theoretical base and interpretation.

  16. Efficient linear algebra routines for symmetric matrices stored in packed form.

    PubMed

    Ahlrichs, Reinhart; Tsereteli, Kakha

    2002-01-30

    Quantum chemistry methods require various linear algebra routines for symmetric matrices, for example, diagonalization or Cholesky decomposition for positive matrices. We present a small set of these basic routines that are efficient and minimize memory requirements.

  17. ESTIMATION OF FUNCTIONALS OF SPARSE COVARIANCE MATRICES.

    PubMed

    Fan, Jianqing; Rigollet, Philippe; Wang, Weichen

    High-dimensional statistical tests often ignore correlations to gain simplicity and stability leading to null distributions that depend on functionals of correlation matrices such as their Frobenius norm and other ℓ r norms. Motivated by the computation of critical values of such tests, we investigate the difficulty of estimation the functionals of sparse correlation matrices. Specifically, we show that simple plug-in procedures based on thresholded estimators of correlation matrices are sparsity-adaptive and minimax optimal over a large class of correlation matrices. Akin to previous results on functional estimation, the minimax rates exhibit an elbow phenomenon. Our results are further illustrated in simulated data as well as an empirical study of data arising in financial econometrics.

  18. ESTIMATION OF FUNCTIONALS OF SPARSE COVARIANCE MATRICES

    PubMed Central

    Fan, Jianqing; Rigollet, Philippe; Wang, Weichen

    2016-01-01

    High-dimensional statistical tests often ignore correlations to gain simplicity and stability leading to null distributions that depend on functionals of correlation matrices such as their Frobenius norm and other ℓr norms. Motivated by the computation of critical values of such tests, we investigate the difficulty of estimation the functionals of sparse correlation matrices. Specifically, we show that simple plug-in procedures based on thresholded estimators of correlation matrices are sparsity-adaptive and minimax optimal over a large class of correlation matrices. Akin to previous results on functional estimation, the minimax rates exhibit an elbow phenomenon. Our results are further illustrated in simulated data as well as an empirical study of data arising in financial econometrics. PMID:26806986

  19. Soil strength and macropore volume limit root elongation rates in many UK agricultural soils.

    PubMed

    Valentine, Tracy A; Hallett, Paul D; Binnie, Kirsty; Young, Mark W; Squire, Geoffrey R; Hawes, Cathy; Bengough, A Glyn

    2012-07-01

    Simple indicators of crop and cultivar performance across a range of soil types and management are needed for designing and testing sustainable cropping practices. This paper determined the extent to which soil chemical and physical properties, particularly soil strength and pore-size distribution influences root elongation in a wide range of agricultural top soils, using a seedling-based indicator. Intact soil cores were sampled from the topsoil of 59 agricultural fields in Scotland, representing a wide geographic spread, range of textures and management practices. Water release characteristics, dry bulk density and needle penetrometer resistance were measured on three cores from each field. Soil samples from the same locations were sieved, analysed for chemical characteristics, and packed to dry bulk density of 1.0 g cm(-3) to minimize physical constraints. Root elongation rates were determined for barley seedlings planted in both intact field and packed soil cores at a water content close to field capacity (-20 kPa matric potential). Root elongation in field soil was typically less than half of that in packed soils. Penetrometer resistance was typically between 1 and 3 MPa for field soils, indicating the soils were relatively hard, despite their moderately wet condition (compared with <0.2 MPa for packed soil). Root elongation was strongly linked to differences in physical rather than chemical properties. In field soil root elongation was related most closely to the volume of soil pores between 60 µm and 300 µm equivalent diameter, as estimated from water-release characteristics, accounting for 65.7 % of the variation in the elongation rates. Root elongation rate in the majority of field soils was slower than half of the unimpeded (packed) rate. Such major reductions in root elongation rates will decrease rooting volumes and limit crop growth in soils where nutrients and water are scarce.

  20. Porosity and water activity effects on stability of crystalline β-carotene in freeze-dried solids.

    PubMed

    Harnkarnsujarit, Nathdanai; Charoenrein, Sanguansri; Roos, Yrjö H

    2012-11-01

    Stability of entrapped crystalline β-carotene as affected by water activity, solids microstructure, and composition of freeze-dried systems was investigated. Aliquots (1000 mm(3) , 20% w/w solids) of solutions of maltodextrins of various dextrose equivalents (M040:DE6, M100:DE11, and M250:DE25.5), M100-sugars (1:1 glucose, fructose and sucrose), and agar for gelation with dispersed β-carotene were frozen at -20, -40, or -80 °C and freeze-dried. Glass transition and α-relaxation temperatures were determined with differential scanning calorimetry and dynamic mechanical analysis, respectively. β-Carotene contents were monitored spectrophotometrically. In the glassy solids, pore microstructure had a major effect on β-carotene stability. Small pores with thin walls and large surface area allowed β-carotene exposure to oxygen which led to a higher loss, whereas structural collapse enhanced stability of β-carotene by decreasing exposure to oxygen. As water plasticized matrices, an increase in molecular mobility in the matrix enhanced β-carotene degradation. Stability of dispersed β-carotene was highest at around 0.2 a(w) , but decreasing structural relaxation times above the glass transition correlated well with the rate of β-carotene degradation at higher a(w) . Microstructure, a(w) , and component mobility are important factors in the control of stability of β-carotene in freeze-dried solids. β-Carotene expresses various nutritional benefits; however, it is sensitive to oxygen and the degradation contributes to loss of nutritional values as well as product color. To increase stability of β-carotene in freeze-dried foods, the amount of oxygen penetration need to be limited. The modification of freeze-dried food structures, for example, porosity and structural collapse, components, and humidity effectively enhance the stability of dispersed β-carotene in freeze-dried solids. © 2012 Institute of Food Technologists®

  1. Formation of zeolites in metakaolin-based geopolymers and their potential application for Cs immobilization

    NASA Astrophysics Data System (ADS)

    Arbel Haddad, M.; Ofer-Rozovsky, E.; Bar-Nes, G.; Borojovich, E. J. C.; Nikolski, A.; Mogiliansky, D.; Katz, A.

    2017-09-01

    Alkali-activated aluminisilicate materials, also known as geopolymers, have been considered as attractive candidates for nuclear waste immobilization, due to their ability to incorporate cations, combined with high chemical resistance and suitable mechanical and thermal properties. The goal of the present research was to study the incorporation and immobilization of Cs in low-Si geopolymers (SiO2:Al2O3 molar ratio ≤ 2) which are known to have a relatively high crystalline phase content. A series of low-Si geopolymers was prepared from metakaolin using activating solutions containing CsOH and NaOH at different proportions. The structural evolution of the resulting products was followed using X-ray diffraction, the incorporation of Cs in the geopolymer was followed by pore water analysis, and its immobilization efficiency was determined from leaching tests following the ANSI/ANS-16.1 standard procedure. Like low-Si NaOH-based geopolymers, the mixed CsOH-NaOH geopolymers contain a significant amount of crystalline material which is imbedded within an amorphous matrix. Formulations with 1%Cs yielded the crystalline phases zeolite A and zeolite X. At 50%Cs the Cs-bearing zeolite F was formed. All three phases were observed at an intermediate Cs content (7%Cs). Pore water analysis indicated a preference for Cs uptake from the activating solution, while leaching experiments indicated selectivity for Cs immobilization in the mixed CsOH-NaOH geopolymers. Correlation of the apparent diffusion constants for both Na and Cs, as obtained from the leaching experiments, with the structural data lead to the conclusion that Cs is more efficiently bound by zeolite F, whereas Na binding is preferred by zeolites A and X. Nevertheless, the leachability indices for both Cs and Na were well above 6, indicating that such matrices may be considered as waste forms for 137Cs.

  2. A Study on the Application of the Extended Matrices Based on TRIZ in Constructing a Collaborative Model of Enterprise Network

    NASA Astrophysics Data System (ADS)

    Yang, Yan; Shao, Yunfei; Tang, Xiaowo

    Based on mass related literature on enterprise network, the key influence factors are reduced to Trust, Control, Relationship and Interaction. Meanwhile, the specific contradiction matrices, judgment matrices and strategy collections based on TRIZ are constructed which make the connotation of contradiction matrices in TRIZ extended. Finally they are applied to the construction of the collaborative model on enterprise network based on Multi Agent System (MAS).

  3. Stimulating effect of graphene oxide on myogenesis of C2C12 myoblasts on RGD peptide-decorated PLGA nanofiber matrices.

    PubMed

    Shin, Yong Cheol; Lee, Jong Ho; Kim, Min Jeong; Hong, Suck Won; Kim, Bongju; Hyun, Jung Keun; Choi, Yu Suk; Park, Jong-Chul; Han, Dong-Wook

    2015-01-01

    In the field of biomedical engineering, many studies have focused on the possible applications of graphene and related nanomaterials due to their potential for use as scaffolds, coating materials and delivery carriers. On the other hand, electrospun nanofiber matrices composed of diverse biocompatible polymers have attracted tremendous attention for tissue engineering and regenerative medicine. However, their combination is intriguing and still challenging. In the present study, we fabricated nanofiber matrices composed of M13 bacteriophage with RGD peptide displayed on its surface (RGD-M13 phage) and poly(lactic-co-glycolic acid, PLGA) and characterized their physicochemical properties. In addition, the effect of graphene oxide (GO) on the cellular behaviors of C2C12 myoblasts, which were cultured on PLGA decorated with RGD-M13 phage (RGD/PLGA) nanofiber matrices, was investigated. Our results revealed that the RGD/PLGA nanofiber matrices have suitable physicochemical properties as a tissue engineering scaffold and the growth of C2C12 myoblasts were significantly enhanced on the matrices. Moreover, the myogenic differentiation of C2C12 myoblasts was substantially stimulated when they were cultured on the RGD/PLGA matrices in the presence of GO. In conclusion, these findings propose that the combination of RGD/PLGA nanofiber matrices and GO can be used as a promising strategy for skeletal tissue engineering and regeneration.

  4. Redistribution of Sr and rare earth elements in the matrices of CV3 carbonaceous chondrites during aqueous alteration in their parent body

    NASA Astrophysics Data System (ADS)

    Jogo, Kaori; Ito, Motoo; Nakamura, Tomoki; Kobayashi, Sachio; Lee, Jong Ik

    2018-03-01

    We measured the abundances of Sr and rare earth elements (REEs) in the matrices of five CV3 carbonaceous chondrites: Meteorite Hills (MET) 00430, MET 01070, La Paz ice field (LAP) 02206, Asuka (A) 881317 and Roberts Massif (RBT) 04143. In the MET 00430 and MET 01074 matrices, the Sr/CI and light REE (LREE, La-Nd)/CI ratios positively correlate with the amounts of Ca-rich secondary minerals, which formed during aqueous alteration in the CV3 chondrite parent body. In contrast, in the LAP 02206 and RBT 04143 matrices, although the Sr/CI ratios correlate with the amounts of Ca-rich secondary minerals, the LREE/CI ratios vary independently from the amounts of any secondary minerals. This suggests that the LREE/CI ratios in these matrices were produced prior to the parent body alteration, probably in the solar nebula. The LREE/CI ratios of the LAP 02206 and RBT 04143 matrices reveal the mixing process of matrix minerals prior to the accretion of the CV3 chondrite parent body. The mixing degrees of matrix minerals might be different between these two matrices. Because solid materials would be mixed over time according to the radial diffusion model of a turbulent disk, the matrix minerals consisting of LAP 02206 and RBT 04143 matrices might be incorporated into their parent body with different timing.

  5. Effect of unstable layer depth on the pore pressure distribution, case study of the Slano Blato landslide (Slovenia)

    NASA Astrophysics Data System (ADS)

    Askarinejad, Amin; Secchi, Bandar; Macek, Matej; Petkovsek, Ana; Springman, Sarah

    2013-04-01

    The Slano Blato landslide is one of the largest landslides in Slovenia with a volume of more than 1 mio m3 of moving debris. The landslide is located at the border of Triassic limestone and Eocene flysch formations. Flysch is composed of layers of marls and sandstones. The sliding mass consists mainly of clay and clayey gravel of highly weathered and deteriorated flysch, while a minor part represents grains and blocks of limestones. (Petkovšek et al., 2009). The first documentation of an instability event dates back to 1789 and the landslide was reactivated during a heavy rain period in November 2000. Since then, the ground surface level above the unstable material on the upper zones of the landslide is significantly decreasing so that the current slope surface is now more than 10 m below the terrain surveyed in 1998. The new landslide topography results in different pore pressure distributions in the slope, which were anticipated to have a detrimental effect on the stability and movement regime of the slope. The main goal of this work is to investigate the effect of the overlying debris depth on the pore water pressure distribution during a predefined precipitation scenario. The behaviour of the unsaturated soil and the effects of fissures in the bedrock are also considered in the analysis. Hydro-mechanical simulations were performed using 2D finite element software (PLAXIS) and numerical results are compared with results from analytical models, which use a 1D steady state formulation for the hydraulic part and a 2D limit equilibrium approach to calculate the safety factors. The numerical studies show significant change in the pore water pressure distribution in the landslide body with variation of the debris depth. An increase in the debris depth leads to higher suction due to the deeper location of the water table. Higher suction increases landslide stability due to: i) increase of the effective stress and hence the shear strength of the material and ii) decrease of the unsaturated hydraulic conductivity. Accordingly, a longer rainfall event with a similar intensity is required to destabilize the slope. The calculated suction profile for the current slope surface was compared to the in situ measurements, and the results show partial agreement. The slight discrepancy might be attributed to several factors such as: i) possible difference in the height of the water table in the model and reality, ii) differences in location between observation points in numerical model and in-situ observations, as there are no tensiometers in the upper part of the slope, iii) modelling the underlying flysch layer as a homogenous and isotropic material in PLAXIS, which is not the case in reality. Reference: Petkovsek, A., Macek, M., Kocevar, M., Benko, I., Majes, B., 2009. Soil matric suction as an indicator of the mud flow occurrence. 17th International Conference of Soil Mechanics and Geotechnical Engineering, Alexandria, Egypt, 1855 - 1860.

  6. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China

    PubMed Central

    Wang, Min; Yang, Jinxiu; Wang, Zhiwei; Lu, Shuangfang

    2015-01-01

    In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions) play a major role in the shale oil occurrence (free or absorbed state), amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope) observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1) Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2) There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3) Pores in lacustrine shale are well developed when the organic matter maturity (Ro) is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon) content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable. PMID:26285123

  7. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China.

    PubMed

    Wang, Min; Yang, Jinxiu; Wang, Zhiwei; Lu, Shuangfang

    2015-01-01

    In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions) play a major role in the shale oil occurrence (free or absorbed state), amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope) observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1) Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2) There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3) Pores in lacustrine shale are well developed when the organic matter maturity (Ro) is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon) content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable.

  8. Fractal Characteristics of the Pore Network in Diatomites Using Mercury Porosimetry and Image Analysis

    NASA Astrophysics Data System (ADS)

    Stańczak, Grażyna; Rembiś, Marek; Figarska-Warchoł, Beata; Toboła, Tomasz

    The complex pore space considerably affects the unique properties of diatomite and its significant potential for many industrial applications. The pore network in the diatomite from the Lower Miocene strata of the Skole nappe (the Jawornik deposit, SE Poland) has been investigated using a fractal approach. The fractal dimension of the pore-space volume was calculated using the Menger sponge as a model of a porous body and the mercury porosimetry data in a pore-throat diameter range between 10,000 and 10 nm. Based on the digital analyses of the two-dimensional images from thin sections taken under a scanning electron microscope at the backscattered electron mode at different magnifications, the authors tried to quantify the pore spaces of the diatomites using the box counting method. The results derived from the analyses of the pore-throat diameter distribution using mercury porosimetry have revealed that the pore space of the diatomite has the bifractal structure in two separated ranges of the pore-throat diameters considerably smaller than the pore-throat sizes corresponding to threshold pressures. Assuming that the fractal dimensions identified for the ranges of the smaller pore-throat diameters characterize the overall pore-throat network in the Jawornik diatomite, we can set apart the distribution of the pore-throat volume (necks) and the pore volume from the distribution of the pore-space volume (pores and necks together).

  9. Drug release through liposome pores.

    PubMed

    Dan, Nily

    2015-02-01

    Electrical, ultrasound and other types of external fields are known to induce the formation of pores in cellular and model membranes. This paper examines drug release through field induced liposome pores using Monte Carlo simulations. We find that drug release rates vary as a function of pore size and spacing, as well as the overall fraction of surface area covered by pores: The rate of release from liposomes is found to increase rapidly with pore surface coverage, approaching that of the fully ruptured liposome at fractional pore areas. For a given pore surface coverage, the pore size affects the release rate in the limit of low coverage, but not when the pores cover a relatively high fraction of the liposome surface area. On the other hand, for a given pore size and surface coverage, the distribution of pores significantly affects the release in the limit of high surface coverage: The rate of release from a liposome covered with a regularly spaced array of pores is, in this limit, higher than the release rate from (most) systems where the pores are distributed randomly on the liposome surface. In contrast, there is little effect of the pore distribution on release when the pore surface coverage is low. The simulation results are in good agreement with the predictions of detailed diffusion models. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Analysing generator matrices G of similar state but varying minimum determinants

    NASA Astrophysics Data System (ADS)

    Harun, H.; Razali, M. F.; Rahman, N. A. Abdul

    2016-10-01

    Since Tarokh discovered Space-Time Trellis Code (STTC) in 1998, a considerable effort has been done to improve the performance of the original STTC. One way of achieving enhancement is by focusing on the generator matrix G, which represents the encoder structure for STTC. Until now, researchers have only concentrated on STTCs of different states in analyzing the performance of generator matrix G. No effort has been made on different generator matrices G of similar state. The reason being, it is difficult to produce a wide variety of generator matrices G with diverse minimum determinants. In this paper a number of generator matrices G with minimum determinant of four (4), eight (8) and sixteen (16) of the same state (i.e., 4-PSK) have been successfully produced. The performance of different generator matrices G in term of their bit error rate and signal-to-noise ratio for a Rayleigh fading environment are compared and evaluated. It is found from the MATLAB simulation that at low SNR (<8), the BER of generator matrices G with smaller minimum determinant is comparatively lower than those of higher minimum determinant. However, at high SNR (>14) there is no significant difference between the BER of these generator matrices G.

  11. Arrowheaded enhanced multivariance products representation for matrices (AEMPRM): Specifically focusing on infinite matrices and converting arrowheadedness to tridiagonality

    NASA Astrophysics Data System (ADS)

    Özdemir, Gizem; Demiralp, Metin

    2015-12-01

    In this work, Enhanced Multivariance Products Representation (EMPR) approach which is a Demiralp-and-his- group extension to the Sobol's High Dimensional Model Representation (HDMR) has been used as the basic tool. Their discrete form have also been developed and used in practice by Demiralp and his group in addition to some other authors for the decomposition of the arrays like vectors, matrices, or multiway arrays. This work specifically focuses on the decomposition of infinite matrices involving denumerable infinitely many rows and columns. To this end the target matrix is first decomposed to the sum of certain outer products and then each outer product is treated by Tridiagonal Matrix Enhanced Multivariance Products Representation (TMEMPR) which has been developed by Demiralp and his group. The result is a three-matrix- factor-product whose kernel (the middle factor) is an arrowheaded matrix while the pre and post factors are invertable matrices decomposed of the support vectors of TMEMPR. This new method is called as Arrowheaded Enhanced Multivariance Products Representation for Matrices. The general purpose is approximation of denumerably infinite matrices with the new method.

  12. Epsilon toxin from Clostridium perfringens acts on oligodendrocytes without forming pores, and causes demyelination.

    PubMed

    Wioland, Laetitia; Dupont, Jean-Luc; Doussau, Frédéric; Gaillard, Stéphane; Heid, Flavia; Isope, Philippe; Pauillac, Serge; Popoff, Michel R; Bossu, Jean-Louis; Poulain, Bernard

    2015-03-01

    Epsilon toxin (ET) is produced by Clostridium perfringens types B and D and causes severe neurological disorders in animals. ET has been observed binding to white matter, suggesting that it may target oligodendrocytes. In primary cultures containing oligodendrocytes and astrocytes, we found that ET (10(-9) M and 10(-7) M) binds to oligodendrocytes, but not to astrocytes. ET induces an increase in extracellular glutamate, and produces oscillations of intracellular Ca(2+) concentration in oligodendrocytes. These effects occurred without any change in the transmembrane resistance of oligodendrocytes, underlining that ET acts through a pore-independent mechanism. Pharmacological investigations revealed that the Ca(2+) oscillations are caused by the ET-induced rise in extracellular glutamate concentration. Indeed, the blockade of metabotropic glutamate receptors type 1 (mGluR1) prevented ET-induced Ca(2+) signals. Activation of the N-methyl-D-aspartate receptor (NMDA-R) is also involved, but to a lesser extent. Oligodendrocytes are responsible for myelinating neuronal axons. Using organotypic cultures of cerebellar slices, we found that ET induced the demyelination of Purkinje cell axons within 24 h. As this effect was suppressed by antagonizing mGluR1 and NMDA-R, demyelination is therefore caused by the initial ET-induced rise in extracellular glutamate concentration. This study reveals the novel possibility that ET can act on oligodendrocytes, thereby causing demyelination. Moreover, it suggests that for certain cell types such as oligodendrocytes, ET can act without forming pores, namely through the activation of an undefined receptor-mediated pathway. © 2014 The Authors. Cellular Microbiology published by John Wiley & Sons Ltd.

  13. Temperature and Pressure from Collapsing Pores in HMX

    NASA Astrophysics Data System (ADS)

    Hardin, D. Barrett

    2017-06-01

    The thermal and mechanical response of collapsing voids in HMX is analyzed. In this work, the focus is simulating the temperature and pressure fields arising from isolated, idealized pores as they collapse in the presence of a shock. HMX slabs are numerically generated which contain a single pore, isolated from the boundaries to remove all wave reflections. In order to understand the primary pore characteristics leading to temperature rise, a series of 2D, plane strain simulations are conducted on HMX slabs containing both cylindrical and elliptical pores of constant size equal to the area of a circular pore with a 1 micron diameter. Each of these pore types is then subjected to shock pressures ranging from a weak shock that is unable to fully collapse the pore to a strong shock which overwhelms the tendency for localization. Results indicate that as shock strength increases, pore collapse phenomenology for a cylindrical pore transitions from a mode dominated by localized melt cracking to an idealized hydrodynamic pore collapse. For the case of elliptical pores, the orientation causing maximum temperature and pressure rise is found. The relative heating in elliptical pores is then quantified as a function of pore orientation and aspect ratio for a pore of a given area. Distribution A: Distribution unlimited. (96TW 2017-0036).

  14. The method of similar operators in the study of the spectra of the adjacency matrices of graphs

    NASA Astrophysics Data System (ADS)

    Kozlukov, Serge

    2018-03-01

    The method of similar operators [1, 2, 3] is used to investigate spectral properties of a certain class of matrices in the context of graphs [4, 5]. Specifically, we consider the adjacency matrix of an “almost-complete graph”. Then we generalize the result to allow the matrices obtained as combinations of the Kronecker products [6, 7] and the small-norm perturbations. We derive the estimates of the spectra and the eigenvectors of such matrices.

  15. Extraction Methodological Contributions Toward Ultra-Performance Liquid ChromatographyTime-of-Flight Mass Spectrometry: Quantification of Free GB from Various Food Matrices

    DTIC Science & Technology

    2016-02-01

    SPECTROMETRY: QUANTIFICATION OF FREE GB FROM VARIOUS FOOD MATRICES ECBC-TR-1351 Sue Y. Bae Mark D. Winemiller RESEARCH AND TECHNOLOGY DIRECTORATE...Flight Mass Spectrometry: Quantification of Free GB from Various Food Matrices 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...methylphosphonofluoridate (sarin, GB) in various food matrices. The development of a solid-phase extraction method using a normal-phase silica gel column for

  16. Bunch-Kaufman factorization for real symmetric indefinite banded matrices

    NASA Technical Reports Server (NTRS)

    Jones, Mark T.; Patrick, Merrell L.

    1989-01-01

    The Bunch-Kaufman algorithm for factoring symmetric indefinite matrices was rejected for banded matrices because it destroys the banded structure of the matrix. Herein, it is shown that for a subclass of real symmetric matrices which arise in solving the generalized eigenvalue problem using Lanczos's method, the Bunch-Kaufman algorithm does not result in major destruction of the bandwidth. Space time complexities of the algorithm are given and used to show that the Bunch-Kaufman algorithm is a significant improvement over LU factorization.

  17. Enhancement of plasma generation in catalyst pores with different shapes

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Ru; Neyts, Erik C.; Bogaerts, Annemie

    2018-05-01

    Plasma generation inside catalyst pores is of utmost importance for plasma catalysis, as the existence of plasma species inside the pores affects the active surface area of the catalyst available to the plasma species for catalytic reactions. In this paper, the electric field enhancement, and thus the plasma production inside catalyst pores with different pore shapes is studied with a two-dimensional fluid model. The results indicate that the electric field will be significantly enhanced near tip-like structures. In a conical pore with small opening, the strongest electric field appears at the opening and bottom corners of the pore, giving rise to a prominent ionization rate throughout the pore. For a cylindrical pore, the electric field is only enhanced at the bottom corners of the pore, with lower absolute value, and thus the ionization rate inside the pore is only slightly enhanced. Finally, in a conical pore with large opening, the electric field is characterized by a maximum at the bottom of the pore, yielding a similar behavior for the ionization rate. These results demonstrate that the shape of the pore has a significantly influence on the electric field enhancement, and thus modifies the plasma properties.

  18. The Effect of the Pore Entrance on Particle Motion in Slit Pores: Implications for Ultrathin Membranes

    PubMed Central

    Delavari, Armin; Baltus, Ruth

    2017-01-01

    Membrane rejection models generally neglect the effect of the pore entrance on intrapore particle transport. However, entrance effects are expected to be particularly important with ultrathin membranes, where membrane thickness is typically comparable to pore size. In this work, a 2D model was developed to simulate particle motion for spherical particles moving at small Re and infinite Pe from the reservoir outside the pore into a slit pore. Using a finite element method, particles were tracked as they accelerated across the pore entrance until they reached a steady velocity in the pore. The axial position in the pore where particle motion becomes steady is defined as the particle entrance length (PEL). PELs were found to be comparable to the fluid entrance length, larger than the pore size and larger than the thickness typical of many ultrathin membranes. Results also show that, in the absence of particle diffusion, hydrodynamic particle–membrane interactions at the pore mouth result in particle “funneling” in the pore, yielding cross-pore particle concentration profiles focused at the pore centerline. The implications of these phenomena on rejection from ultrathin membranes are examined. PMID:28796197

  19. EMQIT: a machine learning approach for energy based PWM matrix quality improvement.

    PubMed

    Smolinska, Karolina; Pacholczyk, Marcin

    2017-08-01

    Transcription factor binding affinities to DNA play a key role for the gene regulation. Learning the specificity of the mechanisms of binding TFs to DNA is important both to experimentalists and theoreticians. With the development of high-throughput methods such as, e.g., ChiP-seq the need to provide unbiased models of binding events has been made apparent. We present EMQIT a modification to the approach introduced by Alamanova et al. and later implemented as 3DTF server. We observed that tuning of Boltzmann factor weights, used for conversion of calculated energies to nucleotide probabilities, has a significant impact on the quality of the associated PWM matrix. Consequently, we proposed to use receiver operator characteristics curves and the 10-fold cross-validation to learn best weights using experimentally verified data from TRANSFAC database. We applied our method to data available for various TFs. We verified the efficiency of detecting TF binding sites by the 3DTF matrices improved with our technique using experimental data from the TRANSFAC database. The comparison showed a significant similarity and comparable performance between the improved and the experimental matrices (TRANSFAC). Improved 3DTF matrices achieved significantly higher AUC values than the original 3DTF matrices (at least by 0.1) and, at the same time, detected notably more experimentally verified TFBSs. The resulting new improved PWM matrices for analyzed factors show similarity to TRANSFAC matrices. Matrices had comparable predictive capabilities. Moreover, improved PWMs achieve better results than matrices downloaded from 3DTF server. Presented approach is general and applicable to any energy-based matrices. EMQIT is available online at http://biosolvers.polsl.pl:3838/emqit . This article was reviewed by Oliviero Carugo, Marek Kimmel and István Simon.

  20. Biodegradable organic acid-crosslinked alkali-treated gelatins with anti-thrombogenic and endothelialization properties

    PubMed Central

    Inoue, Motoki; Sasaki, Makoto; Taguchi, Tetsushi

    2012-01-01

    Gelatins were crosslinked with organic acids and treated with alkali to impart to them endothelialization and anti-thrombogenic properties. These matrices were characterized by biochemical and physicochemical techniques. The amounts of residual amino groups in the matrices decreased with increasing crosslinker concentration. The matrices with the highest crosslinking densities showed excellent endothelial cell adhesion and proliferation. In addition, the adhesion of platelets and formation of fibrin networks on the matrices were suppressed with increasing crosslinker concentration. The matrices also exhibited excellent biodegradability, and the degradation rate decreased with increasing crosslinking density. All the organic acid-crosslinked alkali-treated gelatins showed excellent anti-thrombogenic and endothelialization properties, superior to those of glutaraldehyde-crosslinked alkali-treated gelatins. PMID:27877542

  1. The two-pore domain K+ channel TASK-1 is closely associated with brain barriers and meninges.

    PubMed

    Kanjhan, Refik; Pow, David V; Noakes, Peter G; Bellingham, Mark C

    2010-12-01

    Impairment of the blood-brain barrier (BBB), the blood-cerebrospinal fluid (CSF) barrier and brain-CSF barrier has been implicated in neuropathology of several brain disorders, such as amyotrophic lateral sclerosis, cerebral edema, multiple sclerosis, neural inflammation, ischemia and stroke. Two-pore domain weakly inward rectifying K+ channel (TWIK)-related acid-sensitive potassium (TASK)-1 channels (K2p3.1; KCNK3) are among the targets that contribute to the development of these pathologies. For example TASK-1 activity is inhibited by acidification, ischemia, hypoxia and several signaling molecules released under pathologic conditions. We have used immuno-histochemistry to examine the distribution of the TASK-1 protein in structures associated with the BBB, blood-CSF barrier, brain-CSF barrier, and in the meninges of adult rat. Dense TASK-1 immuno-reactivity (TASK-1-IR) was observed in ependymal cells lining the fourth ventricle at the brain-CSF interface, in glial cells that ensheath the walls of blood vessels at the glio-vascular interface, and in the meninges. In these structures, TASK-1-IR often co-localized with glial fibrillary associated protein (GFAP) or vimentin. This study provides anatomical evidence for localization of TASK-1 K+ channels in cells that segregate distinct fluid compartments within and surrounding the brain. We suggest that TASK-1 channels, in coordination with other ion channels (e.g., aquaporins and chloride channels) and transporters (e.g., Na+-K+-ATPase and Na+-K+-2Cl⁻ and by virtue of its heterogeneous distribution, may differentially contribute to the varying levels of K+ vital for cellular function in these compartments. Our findings are likely to be relevant to recently reported roles of TASK-1 in cerebral ischemia, stroke and inflammatory brain disorders.

  2. The food matrix affects the anthocyanin profile of fortified egg and dairy matrices during processing and in vitro digestion.

    PubMed

    Pineda-Vadillo, Carlos; Nau, Françoise; Guerin-Dubiard, Catherin; Jardin, Julien; Lechevalier, Valérie; Sanz-Buenhombre, Marisa; Guadarrama, Alberto; Tóth, Tamás; Csavajda, Éva; Hingyi, Hajnalka; Karakaya, Sibel; Sibakov, Juhani; Capozzi, Francesco; Bordoni, Alessandra; Dupont, Didier

    2017-01-01

    The aim of the present study was to understand to what extent the inclusion of anthocyanins into dairy and egg matrices could affect their stability after processing and their release and solubility during digestion. For this purpose, individual and total anthocyanin content of four different enriched matrices, namely custard dessert, milkshake, pancake and omelettete, was determined after their manufacturing and during in vitro digestion. Results showed that anthocyanin recovery after processing largely varied among matrices, mainly due to the treatments applied and the interactions developed with other food components. In terms of digestion, the present study showed that the inclusion of anthocyanins into food matrices could be an effective way to protect them against intestinal degradation, and also the incorporation of anthocyanins into matrices with different compositions and structures could represent an interesting and effective method to control the delivery of anthocyanins within the different compartments of the digestive tract. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Time series, correlation matrices and random matrix models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinayak; Seligman, Thomas H.

    2014-01-08

    In this set of five lectures the authors have presented techniques to analyze open classical and quantum systems using correlation matrices. For diverse reasons we shall see that random matrices play an important role to describe a null hypothesis or a minimum information hypothesis for the description of a quantum system or subsystem. In the former case various forms of correlation matrices of time series associated with the classical observables of some system. The fact that such series are necessarily finite, inevitably introduces noise and this finite time influence lead to a random or stochastic component in these time series.more » By consequence random correlation matrices have a random component, and corresponding ensembles are used. In the latter we use random matrices to describe high temperature environment or uncontrolled perturbations, ensembles of differing chaotic systems etc. The common theme of the lectures is thus the importance of random matrix theory in a wide range of fields in and around physics.« less

  4. RGD peptide-displaying M13 bacteriophage/PLGA nanofibers as cell-adhesive matrices for smooth muscle cells

    NASA Astrophysics Data System (ADS)

    Shin, Yong Cheol; Lee, Jong Ho; Jin, Oh Seong; Lee, Eun Ji; Jin, Lin Hua; Kim, Chang-Seok; Hong, Suck Won; Han, Dong-Wook; Kim, Chuntae; Oh, Jin-Woo

    2015-01-01

    Extracellular matrices (ECMs) are network structures that play an essential role in regulating cellular growth and differentiation. In this study, novel nanofibrous matrices were fabricated by electrospinning M13 bacteriophage and poly(lactic- co-glycolic acid) (PLGA) and were shown to be structurally and functionally similar to natural ECMs. A genetically-engineered M13 bacteriophage was constructed to display Arg-Gly-Asp (RGD) peptides on its surface. The physicochemical properties of RGD peptide-displaying M13 bacteriophage (RGD-M13 phage)/PLGA nanofibers were characterized by using scanning electron microscopy and Fourier-transform infrared spectroscopy. We used immunofluorescence staining to confirm that M13 bacteriophages were homogenously distributed in RGD-M13 phage/PLGA matrices. Furthermore, RGD-M13 phage/PLGA nanofibrous matrices, having excellent biocompatibility, can enhance the behaviors of vascular smooth muscle cells. This result suggests that RGD-M13 phage/PLGA nanofibrous matrices have potentials to serve as tissue engineering scaffolds.

  5. Reductions in finite-dimensional integrable systems and special points of classical r-matrices

    NASA Astrophysics Data System (ADS)

    Skrypnyk, T.

    2016-12-01

    For a given 𝔤 ⊗ 𝔤-valued non-skew-symmetric non-dynamical classical r-matrices r(u, v) with spectral parameters, we construct the general form of 𝔤-valued Lax matrices of finite-dimensional integrable systems satisfying linear r-matrix algebra. We show that the reduction in the corresponding finite-dimensional integrable systems is connected with "the special points" of the classical r-matrices in which they become degenerated. We also propose a systematic way of the construction of additional integrals of the Lax-integrable systems associated with the symmetries of the corresponding r-matrices. We consider examples of the Lax matrices and integrable systems that are obtained in the framework of the general scheme. Among them there are such physically important systems as generalized Gaudin systems in an external magnetic field, ultimate integrable generalization of Toda-type chains (including "modified" or "deformed" Toda chains), generalized integrable Jaynes-Cummings-Dicke models, integrable boson models generalizing Bose-Hubbard dimer models, etc.

  6. Does WISC-IV Underestimate the Intelligence of Autistic Children?

    PubMed

    Nader, Anne-Marie; Courchesne, Valérie; Dawson, Michelle; Soulières, Isabelle

    2016-05-01

    Wechsler Intelligence Scale for Children (WISC) is widely used to estimate autistic intelligence (Joseph in The neuropsychology of autism. Oxford University Press, Oxford, 2011; Goldstein et al. in Assessment of autism spectrum disorders. Guilford Press, New York, 2008; Mottron in J Autism Dev Disord 34(1):19-27, 2004). However, previous studies suggest that while WISC-III and Raven's Progressive Matrices (RPM) provide similar estimates of non-autistic intelligence, autistic children perform significantly better on RPM (Dawson et al. in Psychol Sci 18(8):657-662, doi: 10.1111/j.1467-9280.2007.01954.x , 2007). The latest WISC version introduces substantial changes in subtests and index scores; thus, we asked whether WISC-IV still underestimates autistic intelligence. Twenty-five autistic and 22 typical children completed WISC-IV and RPM. Autistic children's RPM scores were significantly higher than their WISC-IV FSIQ, but there was no significant difference in typical children. Further, autistic children showed a distinctively uneven WISC-IV index profile, with a "peak" in the new Perceptual Reasoning Index. In spite of major changes, WISC-IV FSIQ continues to underestimate autistic intelligence.

  7. Nonlocal torque operators in ab initio theory of the Gilbert damping in random ferromagnetic alloys

    NASA Astrophysics Data System (ADS)

    Turek, I.; Kudrnovský, J.; Drchal, V.

    2015-12-01

    We present an ab initio theory of the Gilbert damping in substitutionally disordered ferromagnetic alloys. The theory rests on introduced nonlocal torques which replace traditional local torque operators in the well-known torque-correlation formula and which can be formulated within the atomic-sphere approximation. The formalism is sketched in a simple tight-binding model and worked out in detail in the relativistic tight-binding linear muffin-tin orbital method and the coherent potential approximation (CPA). The resulting nonlocal torques are represented by nonrandom, non-site-diagonal, and spin-independent matrices, which simplifies the configuration averaging. The CPA-vertex corrections play a crucial role for the internal consistency of the theory and for its exact equivalence to other first-principles approaches based on the random local torques. This equivalence is also illustrated by the calculated Gilbert damping parameters for binary NiFe and FeCo random alloys, for pure iron with a model atomic-level disorder, and for stoichiometric FePt alloys with a varying degree of L 10 atomic long-range order.

  8. Dependence of CO2 Reactivity of Carbon Anodes on Pore Structure

    NASA Astrophysics Data System (ADS)

    Chen, Tong; Xue, Jilai; Lang, Guanghui; Liu, Rui; Gao, Shoulei; Wang, Zengjie

    2017-09-01

    The correlation between the CO2 reactivity and pore structure of carbon anodes was experimentally investigated. The pore structures of the anodes before and after CO2 oxidation were characterized using image analysis. The porosity, mean pore diameter, and the number of micro-cracks decreased with increasing anode forming pressure, while they increased with over-compaction. With prolonged CO2 oxidation time, the porosity, pore density, mean pore diameter, pore aspect ratio, and the number of micro-cracks increased due to the merging of small pores, increased pore connectivity, and generation of new pores. The activation energy decreased with increasing porosity of the anodes' pitch phase due to easier CO2 penetration and reaction within the anodes. The results confirm that the fine pitch-coke phase of anodes is preferentially consumed, a cause of carbon dusting. Optimization of the pore structures to balance the pitch, coke, and butt phases may potentially further reduce carbon dusting.

  9. Dissolution at porous interfaces VI: Multiple pore systems.

    PubMed

    Grijseels, H; Crommelin, D J; De Blaey, C J

    1984-12-01

    With the aid of rapidly dissolving sodium chloride particles, cubic pores were made in the surface of a theophylline tablet. The influence of the pores on the dissolution rate of the surface was investigated in a rotating disk apparatus. Like the drilled pores used in earlier studies, downstream on the surface they caused a turbulent flow regimen with the development of a trough due to enhanced erosion. The phenomenon of a critical pore diameter, discovered with single, drilled pores, seems to be applicable to the cubic pores investigated in this study, although a higher degree of surface coverage with pores caused complications, probably due to particles bordering one another and forming larger pores. The behavior of the porous surfaces at different rotation speeds was studied. Due to the presence of pores the laminar character of the boundary layer flow changes to turbulent, which induces locally an increased dissolution flux in the wake of a pore.

  10. Protein osmotic pressure gradients and microvascular reflection coefficients.

    PubMed

    Drake, R E; Dhother, S; Teague, R A; Gabel, J C

    1997-08-01

    Microvascular membranes are heteroporous, so the mean osmotic reflection coefficient for a microvascular membrane (sigma d) is a function of the reflection coefficient for each pore. Investigators have derived equations for sigma d based on the assumption that the protein osmotic pressure gradient across the membrane (delta II) does not vary from pore to pore. However, for most microvascular membranes, delta II probably does vary from pore to pore. In this study, we derived a new equation for sigma d. According to our equation, pore-to-pore differences in delta II increase the effect of small pores and decrease the effect of large pores on the overall membrane osmotic reflection coefficient. Thus sigma d for a heteroporous membrane may be much higher than previously derived equations indicate. Furthermore, pore-to-pore delta II differences increase the effect of plasma protein osmotic pressure to oppose microvascular fluid filtration.

  11. Determination of endocrine-disrupting chemicals in human milk by dispersive liquid-liquid microextraction.

    PubMed

    Vela-Soria, Fernando; Jiménez-Díaz, Inmaculada; Díaz, Caridad; Pérez, José; Iribarne-Durán, Luz María; Serrano-López, Laura; Arrebola, Juan Pedro; Fernández, Mariana Fátima; Olea, Nicolás

    2016-09-01

    Human populations are widely exposed to numerous so-called endocrine-disrupting chemicals, exogenous compounds able to interfere with the endocrine system. This exposure has been associated with several health disorders. New analytical procedures are needed for biomonitoring these xenobiotics in human matrices. A quick and inexpensive methodological procedure, based on sample treatment by dispersive liquid-liquid microextraction, is proposed for the determination of bisphenols, parabens and benzophenones in samples. LOQs ranged from 0.4 to 0.7 ng ml(-1) and RSDs from 4.3 to 14.8%. This methodology was satisfactorily applied in the simultaneous determination of a wide range of endocrine-disrupting chemicals in human milk samples and is suitable for application in biomonitoring studies.

  12. Condition number estimation of preconditioned matrices.

    PubMed

    Kushida, Noriyuki

    2015-01-01

    The present paper introduces a condition number estimation method for preconditioned matrices. The newly developed method provides reasonable results, while the conventional method which is based on the Lanczos connection gives meaningless results. The Lanczos connection based method provides the condition numbers of coefficient matrices of systems of linear equations with information obtained through the preconditioned conjugate gradient method. Estimating the condition number of preconditioned matrices is sometimes important when describing the effectiveness of new preconditionerers or selecting adequate preconditioners. Operating a preconditioner on a coefficient matrix is the simplest method of estimation. However, this is not possible for large-scale computing, especially if computation is performed on distributed memory parallel computers. This is because, the preconditioned matrices become dense, even if the original matrices are sparse. Although the Lanczos connection method can be used to calculate the condition number of preconditioned matrices, it is not considered to be applicable to large-scale problems because of its weakness with respect to numerical errors. Therefore, we have developed a robust and parallelizable method based on Hager's method. The feasibility studies are curried out for the diagonal scaling preconditioner and the SSOR preconditioner with a diagonal matrix, a tri-daigonal matrix and Pei's matrix. As a result, the Lanczos connection method contains around 10% error in the results even with a simple problem. On the other hand, the new method contains negligible errors. In addition, the newly developed method returns reasonable solutions when the Lanczos connection method fails with Pei's matrix, and matrices generated with the finite element method.

  13. The asymptotic spectra of banded Toeplitz and quasi-Toeplitz matrices

    NASA Technical Reports Server (NTRS)

    Beam, Richard M.; Warming, Robert F.

    1991-01-01

    Toeplitz matrices occur in many mathematical, as well as, scientific and engineering investigations. This paper considers the spectra of banded Toeplitz and quasi-Toeplitz matrices with emphasis on non-normal matrices of arbitrarily large order and relatively small bandwidth. These are the type of matrices that appear in the investigation of stability and convergence of difference approximations to partial differential equations. Quasi-Toeplitz matrices are the result of non-Dirichlet boundary conditions for the difference approximations. The eigenvalue problem for a banded Toeplitz or quasi-Toeplitz matrix of large order is, in general, analytically intractable and (for non-normal matrices) numerically unreliable. An asymptotic (matrix order approaches infinity) approach partitions the eigenvalue analysis of a quasi-Toeplitz matrix into two parts, namely the analysis for the boundary condition independent spectrum and the analysis for the boundary condition dependent spectrum. The boundary condition independent spectrum is the same as the pure Toeplitz matrix spectrum. Algorithms for computing both parts of the spectrum are presented. Examples are used to demonstrate the utility of the algorithms, to present some interesting spectra, and to point out some of the numerical difficulties encountered when conventional matrix eigenvalue routines are employed for non-normal matrices of large order. The analysis for the Toeplitz spectrum also leads to a diagonal similarity transformation that improves conventional numerical eigenvalue computations. Finally, the algorithm for the asymptotic spectrum is extended to the Toeplitz generalized eigenvalue problem which occurs, for example, in the stability of Pade type difference approximations to differential equations.

  14. Fibronectin alters the rate of formation and structure of the fibrin matrix.

    PubMed

    Ramanathan, Anand; Karuri, Nancy

    2014-01-10

    Plasma fibronectin is a vital component of the fibrin clot; however its role on clot structure is not clearly understood. The goal of this study was to examine the influence of fibronectin on the kinetics of formation, structural characteristics and composition of reconstituted fibrin clots or fibrin matrices. Fibrin matrices were formed by adding thrombin to 1, 2 or 4 mg/ml fibrinogen supplemented with 0-0.4 mg/ml fibronectin. The rate of fibrin matrix formation was then monitored by measuring light absorbance properties at different time points. Confocal microscopy of fluorescein conjugated fibrinogen was used to visualize the structural characteristics of fibrin matrices. The amount of fibronectin in fibrin matrices was determined through electrophoresis and immunoblotting of solubilized matrices. Fibronectin concentration positively correlated with the initial rate of fibrin matrix formation and with steady state light absorbance values of fibrin matrices. An increase in fibronectin concentration resulted in thinner and denser fibers in the fibrin matrices. Electrophoresis and immunoblotting showed that fibronectin was covalently and non-covalently bound to fibrin matrices and in the form of high molecular weight multimers. The formation of fibronectin multimers was attributed to cross-linking of fibronectin by trace amounts Factor XIIIa. These findings are novel because they link results from light absorbance studies to microcopy analyses and demonstrate an influence of fibronectin on fibrin matrix structural characteristics. This data is important in developing therapies that destabilize fibrin clots. Copyright © 2014. Published by Elsevier Inc.

  15. The Modern Origin of Matrices and Their Applications

    ERIC Educational Resources Information Center

    Debnath, L.

    2014-01-01

    This paper deals with the modern development of matrices, linear transformations, quadratic forms and their applications to geometry and mechanics, eigenvalues, eigenvectors and characteristic equations with applications. Included are the representations of real and complex numbers, and quaternions by matrices, and isomorphism in order to show…

  16. Enhancing Understanding of Transformation Matrices

    ERIC Educational Resources Information Center

    Dick, Jonathan; Childrey, Maria

    2012-01-01

    With the Common Core State Standards' emphasis on transformations, teachers need a variety of approaches to increase student understanding. Teaching matrix transformations by focusing on row vectors gives students tools to create matrices to perform transformations. This empowerment opens many doors: Students are able to create the matrices for…

  17. A diagnosis model for early Tourette syndrome children based on brain structural network characteristics

    NASA Astrophysics Data System (ADS)

    Wen, Hongwei; Liu, Yue; Wang, Jieqiong; Zhang, Jishui; Peng, Yun; He, Huiguang

    2016-03-01

    Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder characterized by the presence of multiple motor and vocal tics. Tic generation has been linked to disturbed networks of brain areas involved in planning, controlling and execution of action. The aim of our work is to select topological characteristics of structural network which were most efficient for estimating the classification models to identify early TS children. Here we employed the diffusion tensor imaging (DTI) and deterministic tractography to construct the structural networks of 44 TS children and 48 age and gender matched healthy children. We calculated four different connection matrices (fiber number, mean FA, averaged fiber length weighted and binary matrices) and then applied graph theoretical methods to extract the regional nodal characteristics of structural network. For each weighted or binary network, nodal degree, nodal efficiency and nodal betweenness were selected as features. Support Vector Machine Recursive Feature Extraction (SVM-RFE) algorithm was used to estimate the best feature subset for classification. The accuracy of 88.26% evaluated by a nested cross validation was achieved on combing best feature subset of each network characteristic. The identified discriminative brain nodes mostly located in the basal ganglia and frontal cortico-cortical networks involved in TS children which was associated with tic severity. Our study holds promise for early identification and predicting prognosis of TS children.

  18. Pore-scale supercritical CO 2 dissolution and mass transfer under drainage conditions

    DOE PAGES

    Chang, Chun; Zhou, Quanlin; Oostrom, Mart; ...

    2016-12-05

    Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO 2 (scCO 2) and a prolonged depletion of residual scCO 2. In this paper, pore-scale scCO 2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO 2 into the sandstone-analogue pore network initially saturated by water without dissolved CO 2 (dsCO 2). During the experiments, time-lapse images of dye intensity, reflecting water pH,more » were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO 2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO 2 dissolution and phase equilibrium occurs when scCO 2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO 2 dissolution at phase interfaces and diffusion of dsCO 2 at the pore scale (10–100 µm) observed after scCO 2 bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO 2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase interfaces. Finally, this finding is applicable for the behavior of dissolution at pore, core, and field scales when water-filled pores and pore clusters of varying size are surrounded by scCO 2 at narrow pore throats.« less

  19. Pore-scale supercritical CO 2 dissolution and mass transfer under drainage conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chun; Zhou, Quanlin; Oostrom, Mart

    Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO 2 (scCO 2) and a prolonged depletion of residual scCO 2. In this paper, pore-scale scCO 2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO 2 into the sandstone-analogue pore network initially saturated by water without dissolved CO 2 (dsCO 2). During the experiments, time-lapse images of dye intensity, reflecting water pH,more » were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO 2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO 2 dissolution and phase equilibrium occurs when scCO 2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO 2 dissolution at phase interfaces and diffusion of dsCO 2 at the pore scale (10–100 µm) observed after scCO 2 bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO 2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase interfaces. Finally, this finding is applicable for the behavior of dissolution at pore, core, and field scales when water-filled pores and pore clusters of varying size are surrounded by scCO 2 at narrow pore throats.« less

  20. Pore-scale supercritical CO 2 dissolution and mass transfer under drainage conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chun; Zhou, Quanlin; Oostrom, Mart

    Abstract: Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO 2 (scCO 2) and a prolonged depletion of residual scCO 2. In this study, pore-scale scCO 2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO 2 into the sandstone-analogue pore network initially saturated by water without dissolved CO 2 (dsCO 2). During the experiments, time-lapse images of dye intensity, reflecting watermore » pH, were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO 2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO 2 dissolution and phase equilibrium occurs when scCO 2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO 2 dissolution at phase interfaces and diffusion of dsCO 2 at the pore scale (10-100 µm) observed after scCO 2 bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO 2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase interfaces. This finding is applicable for the behavior of dissolution at pore, core, and field scales when water-filled pores and pore clusters of varying size are surrounded by scCO 2 at narrow pore throats.« less

  1. Shape-memory polymer foam device for treating aneurysms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortega, Jason M.; Benett, William J.; Small, Ward

    A system for treating an aneurysm in a blood vessel or vein, wherein the aneurysm has a dome, an interior, and a neck. The system includes a shape memory polymer foam in the interior of the aneurysm between the dome and the neck. The shape memory polymer foam has pores that include a first multiplicity of pores having a first pore size and a second multiplicity of pores having a second pore size. The second pore size is larger than said first pore size. The first multiplicity of pores are located in the neck of the aneurysm. The second multiplicitymore » of pores are located in the dome of the aneurysm.« less

  2. The intermembrane space domain of Tim23 is intrinsically disordered with a distinct binding region for presequences

    PubMed Central

    de la Cruz, Laura; Bajaj, Rakhi; Becker, Stefan; Zweckstetter, Markus

    2010-01-01

    Proteins targeted to the mitochondrial matrix are translocated through the outer and the inner mitochondrial membranes by two protein complexes, the translocase of the outer membrane (TOM) and one of the translocases of the inner membrane (TIM23). The protein Tim23, the core component of TIM23, consists of an N-terminal, soluble domain in the intermembrane space (IMS) and a C-terminal domain that forms the import pore across the inner membrane. Before translocation proceeds, precursor proteins are recognized by the N-terminal domain of Tim23, Tim23N (residues 1–96). By using NMR spectroscopy, we show that Tim23N is a monomeric protein belonging to the family of intrinsically disordered proteins. Titrations of Tim23N with two presequences revealed a distinct binding region of Tim23N formed by residues 71–84. In a charge-hydropathy plot containing all soluble domains of TOM and TIM23, Tim23N was found to be the only domain with more than 40 residues in the IMS that is predicted to be intrinsically disordered, suggesting that Tim23N might function as hub in the mitochondrial import machinery protein network. PMID:20718036

  3. Theory of quark mixing matrix and invariant functions of mass matrices

    NASA Astrophysics Data System (ADS)

    Jarloskog, C.

    1987-10-01

    The origin of the quark mixing matrix; super elementary theory of flavor projection operators; equivalences and invariances; the commutator formalism and CP violation; CP conditions for any number of families; the angle between the quark mass matrices; and application to Fritzsch and Stech mass matrices are discussed.

  4. Analyzing Matrices of Meta-Analytic Correlations: Current Practices and Recommendations

    ERIC Educational Resources Information Center

    Sheng, Zitong; Kong, Wenmo; Cortina, Jose M.; Hou, Shuofei

    2016-01-01

    Researchers have become increasingly interested in conducting analyses on meta-analytic correlation matrices. Methodologists have provided guidance and recommended practices for the application of this technique. The purpose of this article is to review current practices regarding analyzing meta-analytic correlation matrices, to identify the gaps…

  5. Simplicity and Typical Rank Results for Three-Way Arrays

    ERIC Educational Resources Information Center

    ten Berge, Jos M. F.

    2011-01-01

    Matrices can be diagonalized by singular vectors or, when they are symmetric, by eigenvectors. Pairs of square matrices often admit simultaneous diagonalization, and always admit block wise simultaneous diagonalization. Generalizing these possibilities to more than two (non-square) matrices leads to methods of simplifying three-way arrays by…

  6. 76 FR 31356 - Notice of Proposed Information Collection for Public Comment; Technical Assistance Experience...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-31

    ... Matrices AGENCY: Office of the Community Planning and Development. ACTION: Notice of proposed information..., Expertise, and Awards Received Matrices. Description of the need for the information proposed: The Technical Assistance Experience, Expertise, and Awards Received Matrices will allow the Office of Special Needs...

  7. 76 FR 35231 - Notice of Proposed Information Collection for Public Comment; McKinney-Vento Technical Assistance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ... Information Collection for Public Comment; McKinney-Vento Technical Assistance Narrative, Matrices, and... Narrative, Matrices, and Reporting Requirements. Description of the need for the information proposed: McKinney- Vento Technical Assistance (MV-TA) Narrative, Matrices, and Reporting Requirements will allow the...

  8. Random matrices with external source and the asymptotic behaviour of multiple orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aptekarev, Alexander I; Lysov, Vladimir G; Tulyakov, Dmitrii N

    2011-02-28

    Ensembles of random Hermitian matrices with a distribution measure defined by an anharmonic potential perturbed by an external source are considered. The limiting characteristics of the eigenvalue distribution of the matrices in these ensembles are related to the asymptotic behaviour of a certain system of multiple orthogonal polynomials. Strong asymptotic formulae are derived for this system. As a consequence, for matrices in this ensemble the limit mean eigenvalue density is found, and a variational principle is proposed to characterize this density. Bibliography: 35 titles.

  9. Use of Mueller and non-Mueller matrices to describe polarization properties of telescope-based polarimeters

    NASA Astrophysics Data System (ADS)

    Seagraves, P. H.; Elmore, David F.

    1994-09-01

    Systems using optical elements such as linear polarizers, retarders, and mirrors can be represented by Mueller matrices. Some polarimeters include elements with time-varying polarization properties, multiple light beams, light detectors, and signal processing equipment. Standard Mueller matrix forms describing time-varying retarders, and beam splitters are presented, as well as non-Mueller matrices which describe detection and signal processing. These matrices provide a compact and intuitive mathematical description of polarimeter response which can aid in the refining of instrument designs.

  10. Estimation for the Linear Model With Uncertain Covariance Matrices

    NASA Astrophysics Data System (ADS)

    Zachariah, Dave; Shariati, Nafiseh; Bengtsson, Mats; Jansson, Magnus; Chatterjee, Saikat

    2014-03-01

    We derive a maximum a posteriori estimator for the linear observation model, where the signal and noise covariance matrices are both uncertain. The uncertainties are treated probabilistically by modeling the covariance matrices with prior inverse-Wishart distributions. The nonconvex problem of jointly estimating the signal of interest and the covariance matrices is tackled by a computationally efficient fixed-point iteration as well as an approximate variational Bayes solution. The statistical performance of estimators is compared numerically to state-of-the-art estimators from the literature and shown to perform favorably.

  11. Schur Complement Inequalities for Covariance Matrices and Monogamy of Quantum Correlations

    NASA Astrophysics Data System (ADS)

    Lami, Ludovico; Hirche, Christoph; Adesso, Gerardo; Winter, Andreas

    2016-11-01

    We derive fundamental constraints for the Schur complement of positive matrices, which provide an operator strengthening to recently established information inequalities for quantum covariance matrices, including strong subadditivity. This allows us to prove general results on the monogamy of entanglement and steering quantifiers in continuous variable systems with an arbitrary number of modes per party. A powerful hierarchical relation for correlation measures based on the log-determinant of covariance matrices is further established for all Gaussian states, which has no counterpart among quantities based on the conventional von Neumann entropy.

  12. Schur Complement Inequalities for Covariance Matrices and Monogamy of Quantum Correlations.

    PubMed

    Lami, Ludovico; Hirche, Christoph; Adesso, Gerardo; Winter, Andreas

    2016-11-25

    We derive fundamental constraints for the Schur complement of positive matrices, which provide an operator strengthening to recently established information inequalities for quantum covariance matrices, including strong subadditivity. This allows us to prove general results on the monogamy of entanglement and steering quantifiers in continuous variable systems with an arbitrary number of modes per party. A powerful hierarchical relation for correlation measures based on the log-determinant of covariance matrices is further established for all Gaussian states, which has no counterpart among quantities based on the conventional von Neumann entropy.

  13. Fidelity under isospectral perturbations: a random matrix study

    NASA Astrophysics Data System (ADS)

    Leyvraz, F.; García, A.; Kohler, H.; Seligman, T. H.

    2013-07-01

    The set of Hamiltonians generated by all unitary transformations from a single Hamiltonian is the largest set of isospectral Hamiltonians we can form. Taking advantage of the fact that the unitary group can be generated from Hermitian matrices we can take the ones generated by the Gaussian unitary ensemble with a small parameter as small perturbations. Similarly, the transformations generated by Hermitian antisymmetric matrices from orthogonal matrices form isospectral transformations among symmetric matrices. Based on this concept we can obtain the fidelity decay of a system that decays under a random isospectral perturbation with well-defined properties regarding time-reversal invariance. If we choose the Hamiltonian itself also from a classical random matrix ensemble, then we obtain solutions in terms of form factors in the limit of large matrices.

  14. Retrieval of the non-depolarizing components of depolarizing Mueller matrices by using symmetry conditions and least squares minimization

    NASA Astrophysics Data System (ADS)

    Kuntman, Ertan; Canillas, Adolf; Arteaga, Oriol

    2017-11-01

    Experimental Mueller matrices contain certain amount of uncertainty in their elements and these uncertainties can create difficulties for decomposition methods based on analytic solutions. In an earlier paper [1], we proposed a decomposition method for depolarizing Mueller matrices by using certain symmetry conditions. However, because of the experimental error, that method creates over-determined systems with non-unique solutions. Here we propose to use least squares minimization approach in order to improve the accuracy of our results. In this method, we are taking into account the number of independent parameters of the corresponding symmetry and the rank constraints on the component matrices to decide on our fitting model. This approach is illustrated with experimental Mueller matrices that include material media with different Mueller symmetries.

  15. Angiogenic response induced by acellular femoral matrix in vivo

    PubMed Central

    Conconi, Maria Teresa; Nico, Beatrice; Rebuffat, Piera; Crivellato, Enrico; Parnigotto, Pier Paolo; Nussdorfer, Gastone G; Ribatti, Domenico

    2005-01-01

    We investigated the angiogenic response induced by acellular femoral matrices implanted in vivo on to the chick embryo chorioallantoic membrane (CAM), a useful model for such investigation. The results showed that acellular matrices were able to induce a strong angiogenic response, comparable with that of fibroblast growth factor-2 (FGF-2), a well-known angiogenic cytokine. The angiogenic response was further increased when exogenous FGF-2 or transforming growth factor beta-1 (TGF-β1) was added to the matrices and inhibited by the addition of anti-FGF-2 or anti-TGF-β1 antibodies. The response may be considered to be dependent on a direct angiogenic effect exerted by the matrices, and also in part by the presence of FGF-2 and TGF-β1 in the acellular matrices. PMID:16011546

  16. Introduction of organic/hydro-organic matrices in inductively coupled plasma optical emission spectrometry and mass spectrometry: a tutorial review. Part I. Theoretical considerations.

    PubMed

    Leclercq, Amélie; Nonell, Anthony; Todolí Torró, José Luis; Bresson, Carole; Vio, Laurent; Vercouter, Thomas; Chartier, Frédéric

    2015-07-23

    Due to their outstanding analytical performances, inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are widely used for multi-elemental measurements and also for isotopic characterization in the case of ICP-MS. While most studies are carried out in aqueous matrices, applications involving organic/hydro-organic matrices become increasingly widespread. This kind of matrices is introduced in ICP based instruments when classical "matrix removal" approaches such as acid digestion or extraction procedures cannot be implemented. Due to the physico-chemical properties of organic/hydro-organic matrices and their associated effects on instrumentation and analytical performances, their introduction into ICP sources is particularly challenging and has become a full topic. In this framework, numerous theoretical and phenomenological studies of these effects have been performed in the past, mainly by ICP-OES, while recent literature is more focused on applications and associated instrumental developments. This tutorial review, divided in two parts, explores the rich literature related to the introduction of organic/hydro-organic matrices in ICP-OES and ICP-MS. The present Part I, provides theoretical considerations in connection with the physico-chemical properties of organic/hydro-organic matrices, in order to better understand the induced phenomena. This focal point is divided in four chapters highlighting: (i) the impact of organic/hydro-organic matrices from aerosol generation to atomization/excitation/ionization processes; (ii) the production of carbon molecular constituents and their spatial distribution in the plasma with respect to analytes repartition; (iii) the subsequent modifications of plasma fundamental properties; and (iv) the resulting spectroscopic and non spectroscopic interferences. This first part of this tutorial review is addressed either to beginners or to more experienced scientists who are interested in the analysis of organic/hydro-organic matrices by ICP sources and would like to consider the theoretical background of effects induced by such matrices. The second part of this tutorial review will be dedicated to more practical consideration on instrumentation, such as adapted introductions devices, as well as instrumental and operating parameters optimization. The analytical strategies for elemental quantification in such matrices will also be addressed. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Influence of acute promyelocytic leukemia therapeutic drugs on nuclear pore complex density and integrity.

    PubMed

    Lång, Anna; Øye, Alexander; Eriksson, Jens; Rowe, Alexander D; Lång, Emma; Bøe, Stig Ove

    2018-05-15

    During cell division, a large number of nuclear proteins are released into the cytoplasm due to nuclear envelope breakdown. Timely nuclear import of these proteins following exit from mitosis is critical for establishment of the G1 nuclear environment. Dysregulation of post-mitotic nuclear import may affect the fate of newly divided stem or progenitor cells and may lead to cancer. Acute promyelocytic leukemia (APL) is a malignant disorder that involves a defect in blood cell differentiation at the promyelocytic stage. Recent studies suggest that pharmacological concentrations of the APL therapeutic drugs, all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), affect post-mitotic nuclear import of the APL-associated oncoprotein PML/RARA. In the present study, we have investigated the possibility that ATRA and ATO affect post-mitotic nuclear import through interference with components of the nuclear import machinery. We observe reduced density and impaired integrity of nuclear pore complexes after ATRA and/or ATO exposure. Using a post-mitotic nuclear import assay, we demonstrate distinct import kinetics among different nuclear import pathways while nuclear import rates were similar in the presence or absence of APL therapeutic drugs. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Multi-scale characterization of pore evolution in a combustion metamorphic complex, Hatrurim basin, Israel: Combining (ultra) small-angle neutron scattering and image analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hsiu-Wen; Anovitz, Lawrence; Burg, Avihu

    Backscattered scanning electron micrograph and ultra small- and small-angle neutron scattering data have been combined to provide statistically meaningful data on the pore/grain structure and pore evolution of combustion metamorphic complexes from the Hatrurim basin, Israel. Three processes, anti-sintering roughening, alteration of protolith (dehydration, decarbonation, and oxidation) and crystallization of high-temperature minerals, occurred simultaneously, leading to significant changes in observed pore/grain structures. Pore structures in the protoliths, and in lowand high-grade metamorphic rocks show surface (Ds) and mass (Dm) pore fractal geometries with gradual increases in both Ds and Dm values as a function of metamorphic grade. This suggests thatmore » increases in pore volume and formation of less branching pore networks are accompanied by a roughening of pore/grain interfaces. Additionally, pore evolution during combustion metamorphism is also characterized by reduced contributions from small-scale pores to the cumulative porosity in the high-grade rocks. At high temperatures, small-scale pores may be preferentially closed by the formation of high-temperature minerals, producing a rougher morphology with increasing temperature. Alternatively, large-scale pores may develop at the expense of small-scale pores. These observations (pore fractal geometry and cumulative porosity) indicate that the evolution of pore/grain structures is correlated with the growth of high-temperature phases and is a consequence of the energy balance between pore/grain surface energy and energy arising from heterogeneous phase contacts. The apparent pore volume density further suggests that the localized time/temperature development of the high-grade Hatrurim rocks is not simply an extension of that of the low-grade rocks. The former likely represents the "hot spots (burning foci)" in the overall metamorphic terrain while the latter may represent contact aureoles.« less

  19. Freezing and melting of water in a single cylindrical pore: The pore-size dependence of freezing and melting behavior

    NASA Astrophysics Data System (ADS)

    Morishige, Kunimitsu; Kawano, Keiji

    1999-03-01

    In order to clarify the origin of the hysteresis between freezing and melting of pore water, we performed x-ray diffraction measurements of water confined inside the cylindrical pores of seven kinds of siliceous MCM-41 (a member of ordered mesoporous materials denoted by Mobil Oil researchers) with different pore radii (1.2-2.9 nm) and the interconnected pores of Vycor glass as a function of temperature. The hysteresis effect depends markedly on the size of the cylindrical pores: the hysteresis is negligibly small in smaller pores and becomes remarkable in larger pores. This strongly suggests that the hysteresis is arisen from size-dependent supercooling of water confined to the mesopores. For the water confined to the mesopores with pore radius of 1.2 nm, a continuous transition between a liquid and a solid precedes the first-order freezing transition of the pore water which would occur by the same mechanism as in bulk water.

  20. Decreasing transmembrane segment length greatly decreases perfringolysin O pore size

    DOE PAGES

    Lin, Qingqing; Li, Huilin; Wang, Tong; ...

    2015-04-08

    Perfringolysin O (PFO) is a transmembrane (TM) β-barrel protein that inserts into mammalian cell membranes. Once inserted into membranes, PFO assembles into pore-forming oligomers containing 30–50 PFO monomers. These form a pore of up to 300 Å, far exceeding the size of most other proteinaceous pores. In this study, we found that altering PFO TM segment length can alter the size of PFO pores. A PFO mutant with lengthened TM segments oligomerized to a similar extent as wild-type PFO, and exhibited pore-forming activity and a pore size very similar to wild-type PFO as measured by electron microscopy and a leakagemore » assay. In contrast, PFO with shortened TM segments exhibited a large reduction in pore-forming activity and pore size. This suggests that the interaction between TM segments can greatly affect the size of pores formed by TM β-barrel proteins. PFO may be a promising candidate for engineering pore size for various applications.« less

  1. Preventing Mesh Pore Collapse by Designing Mesh Pores With Auxetic Geometries: A Comprehensive Evaluation Via Computational Modeling.

    PubMed

    Knight, Katrina M; Moalli, Pamela A; Abramowitch, Steven D

    2018-05-01

    Pelvic organ prolapse (POP) meshes are exposed to predominately tensile loading conditions in vivo that can lead to pore collapse by 70-90%, decreasing overall porosity and providing a plausible mechanism for the contraction/shrinkage of mesh observed following implantation. To prevent pore collapse, we proposed to design synthetic meshes with a macrostructure that results in auxetic behavior, the pores expand laterally, instead of contracting when loaded. Such behavior can be achieved with a range of auxetic structures/geometries. This study utilized finite element analysis (FEA) to assess the behavior of mesh models with eight auxetic pore geometries subjected to uniaxial loading to evaluate their potential to allow for pore expansion while simultaneously providing resistance to tensile loading. Overall, substituting auxetic geometries for standard pore geometries yielded more pore expansion, but often at the expense of increased model elongation, with two of the eight auxetics not able to maintain pore expansion at higher levels of tension. Meshes with stable pore geometries that remain open with loading will afford the ingrowth of host tissue into the pores and improved integration of the mesh. Given the demonstrated ability of auxetic geometries to allow for pore size maintenance (and pore expansion), auxetically designed meshes have the potential to significantly impact surgical outcomes and decrease the likelihood of major mesh-related complications.

  2. Estimating soil matric potential in Owens Valley, California

    USGS Publications Warehouse

    Sorenson, Stephen K.; Miller, Reuben F.; Welch, Michael R.; Groeneveld, David P.; Branson, Farrel A.

    1989-01-01

    Much of the floor of Owens Valley, California, is covered with alkaline scrub and alkaline meadow plant communities, whose existence is dependent partly on precipitation and partly on water infiltrated into the rooting zone from the shallow water table. The extent to which these plant communities are capable of adapting to and surviving fluctuations in the water table depends on physiological adaptations of the plants and on the water content, matric potential characteristics of the soils. Two methods were used to estimate soil matric potential in test sites in Owens Valley. The first, the filter-paper method, uses water content of filter papers equilibrated to water content of soil samples taken with a hand auger. The previously published calibration relations used to estimate soil matric potential from the water content of the filter papers were modified on the basis of current laboratory data. The other method of estimating soil matric potential was a modeling approach based on data from this and previous investigations. These data indicate that the base-10 logarithm of soil matric potential is a linear function of gravimetric soil water content for a particular soil. The slope and intercepts of this function vary with the texture and saturation capacity of the soil. Estimates of soil water characteristic curves were made at two sites by averaging the gravimetric soil water content and soil matric potential values from multiple samples at 0.1-m depth intervals derived by using the hand auger and filter-paper method and entering these values in the soil water model. The characteristic curves then were used to estimate soil matric potential from estimates of volumetric soil water content derived from neutron-probe readings. Evaluation of the modeling technique at two study sites indicated that estimates of soil matric potential within 0.5 pF units of the soil matric potential value derived by using the filter-paper method could be obtained 90 to 95 percent of the time in soils where water content was less than field capacity. The greatest errors occurred at depths where there was a distinct transition between soils of different textures.

  3. Linking the Congenital Heart Surgery Databases of the Society of Thoracic Surgeons and the Congenital Heart Surgeons’ Society: Part 1—Rationale and Methodology

    PubMed Central

    Jacobs, Jeffrey P.; Pasquali, Sara K.; Austin, Erle; Gaynor, J. William; Backer, Carl; Hirsch-Romano, Jennifer C.; Williams, William G.; Caldarone, Christopher A.; McCrindle, Brian W.; Graham, Karen E.; Dokholyan, Rachel S.; Shook, Gregory J.; Poteat, Jennifer; Baxi, Maulik V.; Karamlou, Tara; Blackstone, Eugene H.; Mavroudis, Constantine; Mayer, John E.; Jonas, Richard A.; Jacobs, Marshall L.

    2014-01-01

    Purpose The Society of Thoracic Surgeons Congenital Heart Surgery Database (STS-CHSD) is the largest Registry in the world of patients who have undergone congenital and pediatric cardiac surgical operations. The Congenital Heart Surgeons’ Society Database (CHSS-D) is an Academic Database designed for specialized detailed analyses of specific congenital cardiac malformations and related treatment strategies. The goal of this project was to create a link between the STS-CHSD and the CHSS-D in order to facilitate studies not possible using either individual database alone and to help identify patients who are potentially eligible for enrollment in CHSS studies. Methods Centers were classified on the basis of participation in the STS-CHSD, the CHSS-D, or both. Five matrices, based on CHSS inclusionary criteria and STS-CHSD codes, were created to facilitate the automated identification of patients in the STS-CHSD who meet eligibility criteria for the five active CHSS studies. The matrices were evaluated with a manual adjudication process and were iteratively refined. The sensitivity and specificity of the original matrices and the refined matrices were assessed. Results In January 2012, a total of 100 centers participated in the STS-CHSD and 74 centers participated in the CHSS. A total of 70 centers participate in both and 40 of these 70 agreed to participate in this linkage project. The manual adjudication process and the refinement of the matrices resulted in an increase in the sensitivity of the matrices from 93% to 100% and an increase in the specificity of the matrices from 94% to 98%. Conclusion Matrices were created to facilitate the automated identification of patients potentially eligible for the five active CHSS studies using the STS-CHSD. These matrices have a sensitivity of 100% and a specificity of 98%. In addition to facilitating identification of patients potentially eligible for enrollment in CHSS studies, these matrices will allow (1) estimation of the denominator of patients potentially eligible for CHSS studies and (2) comparison of eligible and enrolled patients to potentially eligible and not enrolled patients to assess the generalizability of CHSS studies. PMID:24668974

  4. Colocalization of outflow segmentation and pores along the inner wall of Schlemm's canal.

    PubMed

    Braakman, Sietse T; Read, A Thomas; Chan, Darren W-H; Ethier, C Ross; Overby, Darryl R

    2015-01-01

    All aqueous humor draining through the conventional outflow pathway must cross the endothelium of Schlemm's canal (SC), likely by passing through micron-sized transendothelial pores. SC pores are non-uniformly distributed along the inner wall endothelium, but it is unclear how the distribution of pores relates to the non-uniform or segmental distribution of aqueous humor outflow through the trabecular meshwork. It is hypothesized that regions in the juxtacanalicular tissue (JCT) with higher local outflow should coincide with regions of greater inner wall pore density compared to JCT regions with lower outflow. Three pairs of non-glaucomatous human donor eyes were perfused at 8 mmHg with fluorescent tracer nanospheres to decorate local patterns of outflow segmentation through the JCT. The inner wall was stained for CD31 and/or vimentin and imaged en face using confocal and scanning electron microscopy (SEM). Confocal and SEM images were spatially registered to examine the spatial relationship between inner wall pore density and tracer intensity in the underlying JCT. For each eye, tracer intensity, pore density (n) and pore diameter (D) (for both transcellular "I" and paracellular "B" pores) were measured in 4-7 regions of interest (ROIs; 50 × 150 μm each). Analysis of covariance was used to examine the relationship between tracer intensity and pore density, as well as the relationship between tracer intensity and three pore metrics (nD, nD(2) and nD(3)) that represent the local hydraulic conductivity of the outflow pathway as predicted by various hydrodynamic models. Tracer intensity in the JCT correlated positively with local pore density when considering total pores (p = 0.044) and paracellular B pores on their own (p = 0.016), but not transcellular I-pores on their own (p = 0.54). Local hydraulic conductivity as predicted by the three hydrodynamic models all showed a significant positive correlation with tracer intensity when considering total pores and B-pores (p < 0.0015 and p < 10(-4)) but not I-pores (p > 0.38). These data suggest that aqueous humor passes through micron-sized pores in the inner wall endothelium of SC. Paracellular B-pores appear to have a dominant contribution towards transendothelial filtration across the inner wall relative to transcellular I-pores. Impaired pore formation, as previously described in glaucomatous SC cells, may thereby contribute to greater outflow heterogeneity, outflow obstruction, and IOP elevation in glaucoma. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Colocalization of Outflow Segmentation and Pores Along the Inner Wall of Schlemm’s Canal

    PubMed Central

    Braakman, Sietse T.; Read, A. Thomas; Chan, Darren W.-H.; Ethier, C. Ross; Overby, Darryl R.

    2014-01-01

    All aqueous humor draining through the conventional outflow pathway must cross the endothelium of Schlemm’s canal (SC), likely by passing through micron-sized transendothelial pores. SC pores are non-uniformly distributed along the inner wall endothelium, but it is unclear how the distribution of pores relates to the non-uniform or segmental distribution of aqueous humor outflow through the trabecular meshwork. It is hypothesized that regions in the juxtacanalicular tissue (JCT) with higher local outflow should coincide with regions of greater inner wall pore density compared to JCT regions with lower outflow. Three pairs of non-glaucomatous human donor eyes were perfused at 8 mmHg with fluorescent tracer nanospheres to decorate local patterns of outflow segmentation through the JCT. The inner wall was stained for CD31 and/or vimentin and imaged en face using confocal and scanning electron microscopy (SEM). Confocal and SEM images were spatially registered to examine the spatial relationship between inner wall pore density and tracer intensity in the underlying JCT. For each eye, tracer intensity, pore density (n) and pore diameter (D) (for both transcellular “I” and paracellular “B” pores) were measured in 4-7 regions of interest (ROIs; 50 × 150 μm each). Analysis of covariance was used to examine the relationship between tracer intensity and pore density, as well as the relationship between tracer intensity and three pore metrics (nD, nD2 and nD3) that represent the local hydraulic conductivity of the outflow pathway as predicted by various hydrodynamic models. Tracer intensity in the JCT correlated positively with local pore density when considering total pores (p = 0.044) and paracellular B pores on their own (p = 0.016), but not transcellular I-pores on their own (p = 0.54). Local hydraulic conductivity as predicted by the three hydrodynamic models all showed a significant positive correlation with tracer intensity when considering total pores and B-pores (p < 0.0015 and p < 10−4) but not I-pores (p > 0.38). These data suggest that aqueous humor passes through micron-sized pores in the inner wall endothelium of SC. Paracellular B-pores appear to have a dominant contribution towards transendothelial filtration across the inner wall relative to transcellular I-pores. Impaired pore formation, as previously described in glaucomatous SC cells, may thereby contribute to greater outflow heterogeneity, outflow obstruction, and IOP elevation in glaucoma. PMID:25450060

  6. Modeling postshock evolution of large electropores

    NASA Astrophysics Data System (ADS)

    Neu, John C.; Krassowska, Wanda

    2003-02-01

    The Smoluchowski equation (SE), which describes the evolution of pores created by electric shocks, cannot be applied to modeling large and long-lived pores for two reasons: (1) it does not predict pores of radius above 20 nm without also predicting membrane rupture; (2) it does not predict postshock growth of pores. This study proposes a model in which pores are coupled by membrane tension, resulting in a nonlinear generalization of SE. The predictions of the model are explored using examples of homogeneous (all pore radii r are equal) and heterogeneous (0⩽r⩽rmax) distributions of pores. Pores in a homogeneous population either shrink to zero or assume a stable radius corresponding to the minimum of the bilayer energy. For a heterogeneous population, such a stable radius does not exist. All pores, except rmax, shrink to zero and rmax grows to infinity. However, the unbounded growth of rmax is not physical because the number of pores per cell decreases in time and the continuum model loses validity. When the continuum formulation is replaced by the discrete one, the model predicts the coarsening process: all pores, except rmax, shrink to zero and rmax assumes a stable radius. Thus, the model with tension-coupled pores does not predict membrane rupture and the predicted postshock growth of pores is consistent with experimental evidence.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Qingqing; Li, Huilin; Wang, Tong

    Perfringolysin O (PFO) is a transmembrane (TM) β-barrel protein that inserts into mammalian cell membranes. Once inserted into membranes, PFO assembles into pore-forming oligomers containing 30–50 PFO monomers. These form a pore of up to 300 Å, far exceeding the size of most other proteinaceous pores. In this study, we found that altering PFO TM segment length can alter the size of PFO pores. A PFO mutant with lengthened TM segments oligomerized to a similar extent as wild-type PFO, and exhibited pore-forming activity and a pore size very similar to wild-type PFO as measured by electron microscopy and a leakagemore » assay. In contrast, PFO with shortened TM segments exhibited a large reduction in pore-forming activity and pore size. This suggests that the interaction between TM segments can greatly affect the size of pores formed by TM β-barrel proteins. PFO may be a promising candidate for engineering pore size for various applications.« less

  8. Molecular dynamics simulations of trihalomethanes removal from water using boron nitride nanosheets.

    PubMed

    Azamat, Jafar; Khataee, Alireza; Joo, Sang Woo

    2016-04-01

    Molecular dynamics simulations were performed to investigate the separation of trihalomethanes (THMs) from water using boron nitride nanosheets (BNNSs). The studied systems included THM molecules and a functionalized BNNS membrane immersed in an aqueous solution. An external pressure was applied to the z axis of the systems. Two functionalized BNNSs with large fluorinated-hydrogenated pore (F-H-pores) and small hydrogen-hydroxyl pore (H-OH-pores) were used. The pores of the BNNS membrane were obtained by passivating each nitrogen and boron atoms at the pore edges with fluorine and hydrogen atoms in the large pore or with hydroxyl and hydrogen atoms in the small pore. The results show that the BNNS with a small functionalized pore was impermeable to THM molecules, in contrast to the BNNS with a large functionalized pore. Using these membranes, water contaminants can be removed at lower cost.

  9. Condition Number Estimation of Preconditioned Matrices

    PubMed Central

    Kushida, Noriyuki

    2015-01-01

    The present paper introduces a condition number estimation method for preconditioned matrices. The newly developed method provides reasonable results, while the conventional method which is based on the Lanczos connection gives meaningless results. The Lanczos connection based method provides the condition numbers of coefficient matrices of systems of linear equations with information obtained through the preconditioned conjugate gradient method. Estimating the condition number of preconditioned matrices is sometimes important when describing the effectiveness of new preconditionerers or selecting adequate preconditioners. Operating a preconditioner on a coefficient matrix is the simplest method of estimation. However, this is not possible for large-scale computing, especially if computation is performed on distributed memory parallel computers. This is because, the preconditioned matrices become dense, even if the original matrices are sparse. Although the Lanczos connection method can be used to calculate the condition number of preconditioned matrices, it is not considered to be applicable to large-scale problems because of its weakness with respect to numerical errors. Therefore, we have developed a robust and parallelizable method based on Hager’s method. The feasibility studies are curried out for the diagonal scaling preconditioner and the SSOR preconditioner with a diagonal matrix, a tri-daigonal matrix and Pei’s matrix. As a result, the Lanczos connection method contains around 10% error in the results even with a simple problem. On the other hand, the new method contains negligible errors. In addition, the newly developed method returns reasonable solutions when the Lanczos connection method fails with Pei’s matrix, and matrices generated with the finite element method. PMID:25816331

  10. Graphene oxide-stimulated myogenic differentiation of C2C12 cells on PLGA/RGD peptide nanofiber matrices

    NASA Astrophysics Data System (ADS)

    Shin, Y. C.; Lee, J. H.; Kim, M. J.; Hong, S. W.; Oh, J.-W.; Kim, C.-S.; Kim, B.; Hyun, J. K.; Kim, Y.-J.; Han, D.-W.

    2015-07-01

    During the last decade, much attention has been paid to graphene-based nanomaterials because they are considered as potential candidates for biomedical applications such as scaffolds for tissue engineering and substrates for the differentiation of stem cells. Until now, electrospun matrices composed of various biodegradable copolymers have been extensively developed for tissue engineering and regeneration; however, their use in combination with graphene oxide (GO) is novel and challenging. In this study, nanofiber matrices composed of poly(lactic-co-glycolic acid, PLGA) and M13 phage with RGD peptide displayed on its surface (RGD peptide-M13 phage) were prepared as extracellular matrix (ECM)-mimicking substrates. RGD peptide is a tripeptide (Arg-Gly-Asp) found on ECM proteins that promotes various cellular behaviors. The physicochemical properties of PLGA and RGD peptide-M13 phage (PLGA/RGD peptide) nanofiber matrices were characterized by atomic force microscopy, Fourier-transform infrared spectroscopy and thermogravimetric analysis. In addition, the growth of C2C12 mouse myoblasts on the PLGA/RGD peptide matrices was examined by measuring the metabolic activity. Moreover, the differentiation of C2C12 mouse myoblasts on the matrices when treated with GO was evaluated. The cellular behaviors, including growth and differentiation of C2C12 mouse myoblasts, were substantially enhanced on the PLGA/RGD peptide nanofiber matrices when treated with GO. Overall, these findings suggest that the PLGA/RGD peptide nanofiber matrices can be used in combination with GO as a novel strategy for skeletal tissue regeneration.

  11. Connecting Ca2+ and lysosomes to Parkinson disease

    PubMed Central

    Kilpatrick, Bethan S.

    2017-01-01

    The neurodegenerative movement disorder Parkinson disease (PD) is prevalent in the aged population. However, the underlying mechanisms that trigger disease are unclear. Increasing work implicates both impaired Ca2+ signalling and lysosomal dysfunction in neuronal demise. Here I aim to connect these distinct processes by exploring the evidence that lysosomal Ca2+ signalling is disrupted in PD. In particular, I highlight defects in lysosomal Ca2+ content and signalling through NAADP-regulated two-pore channels in patient fibroblasts harbouring mutations in the PD-linked genes, GBA1 and LRRK2. As an emerging contributor to PD pathogenesis, the lysosomal Ca2+ signalling apparatus could represent a novel therapeutic target. PMID:28529829

  12. Structure of nanoporous carbon materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Volperts, A.; Mironova-Ulmane, N.; Sildos, I.; Vervikishko, D.; Shkolnikov, E.; Dobele, G.

    2012-08-01

    Activated carbons with highly developed porous structure and nanosized pores (8 - 11 Å) were prepared from alder wood using thermochemical activation method with sodium hydroxide. Properties of the obtained activated carbons were examined by benzene and nitrogen sorption, X-Ray diffraction and Raman spectroscopy. Tests of activated carbons as electrodes in supercapacitors were performed as well. It was found that specific surface area of above mentioned activated carbons was 1800 m2/g (Dubinin - Radushkevich). Raman spectroscopy demonstrated the presence of ordered and disordered structures of graphite origin. The performance of activated carbons as electrodes in supercapacitors have shown superior results in comparison with electrodes made with commercial carbon tissues.

  13. Dispersivity of Bidisperse Packings of Spheres and Evidence for Distinct Random Structures

    NASA Astrophysics Data System (ADS)

    Scheven, U. M.

    2018-05-01

    The intrinsic longitudinal and transverse dispersivity of bidisperse random packings of spheres with size ratio 5 ∶1 was determined by pulsed field gradient nuclear magnetic resonance, in the dilute regime where small spheres occupy between 0% and 5% of the packings' volume. Small spheres plugging pores systematically raise the mechanical transverse and longitudinal dispersivity above that of reference packings of monodisperse spheres. NMR-derived porosities, widths of velocity distributions, and dispersivities reveal distinct states of structural disorder above and below a relative sphere concentration n /N =1 , where n and N are the number densities of small and large spheres.

  14. Over 95% of large-scale length uniformity in template-assisted electrodeposited nanowires by subzero-temperature electrodeposition.

    PubMed

    Shin, Sangwoo; Kong, Bo Hyun; Kim, Beom Seok; Kim, Kyung Min; Cho, Hyung Koun; Cho, Hyung Hee

    2011-07-23

    In this work, we report highly uniform growth of template-assisted electrodeposited copper nanowires on a large area by lowering the deposition temperature down to subzero centigrade. Even with highly disordered commercial porous anodic aluminum oxide template and conventional potentiostatic electrodeposition, length uniformity over 95% can be achieved when the deposition temperature is lowered down to -2.4°C. Decreased diffusion coefficient and ion concentration gradient due to the lowered deposition temperature effectively reduces ion diffusion rate, thereby favors uniform nanowire growth. Moreover, by varying the deposition temperature, we show that also the pore nucleation and the crystallinity can be controlled.

  15. Evolution of Micro-Pores in a Single-Crystal Nickel-Based Superalloy During Solution Heat Treatment

    NASA Astrophysics Data System (ADS)

    Li, Xiangwei; Wang, Li; Dong, Jiasheng; Lou, Langhong; Zhang, Jian

    2017-06-01

    Evolution of micro-pores in a third-generation single-crystal nickel-based superalloy during solution heat treatment at 1603 K (1330 °C) was investigated by X-ray computed tomography. 3D information including morphology, size, number, and volume fraction of micro-pores formed during solidification (S-pores) and solution (H-pores) was analyzed. The growth behaviors of both S-pores and H-pores can be related to the vacancy formation and diffusion during heat treatment.

  16. Introduction to the QIAT Self-Evaluation Matrices

    ERIC Educational Resources Information Center

    Zabala, Joy Smiley; Carl, Diana F.

    2004-01-01

    The QIAT Self-Evaluation Matrices (QILT, 2001) were developed in response to formative evaluation data indicating a need for a model that could assist in the application of the Quality Indicators for Assistive Technology Services in Schools (Zabala, et al, 2000). The QIAT Matrices are based on the idea that change does not happen immediately, but…

  17. Evaluation of an Approximate Method for Synthesizing Covariance Matrices for Use in Meta-Analytic SEM

    ERIC Educational Resources Information Center

    Beretvas, S. Natasha; Furlow, Carolyn F.

    2006-01-01

    Meta-analytic structural equation modeling (MA-SEM) is increasingly being used to assess model-fit for variables' interrelations synthesized across studies. MA-SEM researchers have analyzed synthesized correlation matrices using structural equation modeling (SEM) estimation that is designed for covariance matrices. This can produce incorrect…

  18. An Alternative Method to Gauss-Jordan Elimination: Minimizing Fraction Arithmetic

    ERIC Educational Resources Information Center

    Smith, Luke; Powell, Joan

    2011-01-01

    When solving systems of equations by using matrices, many teachers present a Gauss-Jordan elimination approach to row reducing matrices that can involve painfully tedious operations with fractions (which I will call the traditional method). In this essay, I present an alternative method to row reduce matrices that does not introduce additional…

  19. The Approximation of Two-Mode Proximity Matrices by Sums of Order-Constrained Matrices.

    ERIC Educational Resources Information Center

    Hubert, Lawrence; Arabie, Phipps

    1995-01-01

    A least-squares strategy is proposed for representing a two-mode proximity matrix as an approximate sum of a small number of matrices that satisfy certain simple order constraints on their entries. The primary class of constraints considered defines Q-forms for particular conditions in a two-mode matrix. (SLD)

  20. Introduction to Matrix Algebra, Student's Text, Unit 23.

    ERIC Educational Resources Information Center

    Allen, Frank B.; And Others

    Unit 23 in the SMSG secondary school mathematics series is a student text covering the following topics in matrix algebra: matrix operations, the algebra of 2 X 2 matrices, matrices and linear systems, representation of column matrices as geometric vectors, and transformations of the plane. Listed in the appendix are four research exercises in…

Top