Science.gov

Sample records for dispersed fluorescence techniques

  1. Analysis of tincal ore waste by energy dispersive X-ray fluorescence (EDXRF) Technique

    NASA Astrophysics Data System (ADS)

    Kalfa, Orhan Murat; Üstündağ, Zafer; Özkırım, Ilknur; Kagan Kadıoğlu, Yusuf

    2007-01-01

    Etibank Borax Plant is located in Kırka-Eskişehir, Turkey. The borax waste from this plant was analyzed by means of energy dispersive X-ray fluorescence (EDXRF). The standard addition method was used for the determination of the concentration of Al, Fe, Zn, Sn, and Ba. The results are presented and discussed in this paper.

  2. Investigating the Correlation between Miscibility and Physical Stability of Amorphous Solid Dispersions Using Fluorescence-Based Techniques.

    PubMed

    Tian, Bin; Tang, Xing; Taylor, Lynne S

    2016-11-07

    The purpose of this study was to investigate the feasibility of using a fluorescence-based technique to evaluate drug-polymer miscibility and to probe the correlation between miscibility and physical stability of amorphous solid dispersions (ASDs). Indomethacin-hydroxypropyl methylcellulose (IDM-HPMC), indomethacin-hydroxypropyl methylcellulose acetate succinate, and indomethacin-polyvinylpyrrolidone (IDM-PVP) were used as model systems. The miscibility of the IDM-polymer systems was evaluated by fluorescence spectroscopy, fluorescence imaging, differential scanning calorimetry (DSC), and infrared (IR) spectroscopy. The physical stability of IDM-polymer ASDs stored at 40 °C was evaluated using fluorescence imaging and X-ray diffraction (XRD). The experimentally determined miscibility limit of IDM with the polymers was 50-60%, 20-30%, and 70-80% drug loading for HPMC, HPMCAS, and PVP, respectively. The X-ray results showed that for IDM-HPMC ASDs, samples with a drug loading of less than 50% were maintained in amorphous form during the study period, while samples with drug loadings higher than 50% crystallized within 15 days. For IDM-HPMCAS ASDs, samples with drug loading less than 30% remained amorphous, while samples with drug loadings higher than 30% crystallized within 10 days. IDM-PVP ASDs were found to be resistant to crystallization for all compositions. Thus, a good correlation was observed between phase separation and reduced physical stability, suggesting that miscibility is indeed an important ASDs characteristic. In addition, fluorescence-based techniques show promise in the evaluation of drug-polymer miscibility.

  3. Non-destructive analysis of didymium and praseodymium molybdate crystals using energy dispersive X-ray fluorescence technique

    NASA Astrophysics Data System (ADS)

    Bhat, C. K.; Joseph, Daisy; Pandita, Sanjay; Kotru, P. N.

    2016-08-01

    Analysis of didymium (Di) and praseodymium molybdate crystals were carried out using energy dispersive X-ray fluorescence (EDXRF). The assigned empirical chemical formulae of the composites were tested and verified by the EDXRF technique by estimating experimental major elemental concentration ratios. On the Basis of these ratios, the established formulae for some of the composite materials have been verified and suggestions made for their refinement. Non-destructive technique used in this analysis enables to retain the original crystal samples and makes rapid simultaneous scan of major elements such as La, Pr, Ned and Mo as well as impurities such as Ce. Absence of samarium(Sm) in the spectrum during analysis of didymium molybdate crystals indicated an incomplete growth of mixed rare earth single crystal. These crystals (e.g.,Di) are shown to be of modified stoichiometry with Ce as trace impurity.

  4. Data on Heavy metal in coastal sediments from South East Coast of Tamilnadu, India using Energy Dispersive X-ray Fluorescence (EDXRF) Technique.

    PubMed

    Chandramohan, J; Senthilkumar, G; Gandhi, M Suresh; Ravisankar, R

    2016-12-01

    This article contains the chemical and geographical data and figures for the chemical data in sediments of East Coast (Pattipulam to Dhevanampattinam) of Tamilnadu. The obtained data are related to the research article "Heavy Metal Assessment in Sediment Samples Collected From Pattipulam to Dhevanampattinam along the East Coast of Tamil Nadu Using EDXRF Technique" (Chandramohan et al., 2016) [1]. Chemical data are collected from Energy dispersive X-ray fluorescence spectrometer (EDXRF). Furthermore, the obtained chemical data describes it in more detail in the figures.

  5. Dispersive liquid-liquid microextraction using diethyldithiocarbamate as a chelating agent and the dried-spot technique for the determination of Fe, Co, Ni, Cu, Zn, Se and Pb by energy-dispersive X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Kocot, Karina; Zawisza, Beata; Sitko, Rafal

    2012-07-01

    Dispersive liquid-liquid microextraction (DLLME) using sodium diethyldithiocarbamate (DDTC) as a chelating agent was investigated for the simultaneous determination of iron, cobalt, nickel, copper, zinc, selenium and lead ions in water samples. The procedure was performed using 5 mL of the sample, 100 μL of a 0.5% solution of DDTC, 30 μL of carbon tetrachloride (extraction phase) and 500 μL of methanol (disperser solvent). The experiments showed that Fe, Co, Ni, Cu, Zn and Pb can be simultaneously extracted at a pH of 5 and that Se can be extracted at a pH of 2-3. The results were compared with those obtained using ammonium pyrrolidine dithiocarbamate as a chelating agent. For all analytes, a linear range was observed up to 0.4 μg mL- 1. If Fe and Zn are present in concentrations 10 times higher than those of the other analytes, then the linearity is observed up to 0.2 μg mL- 1. In the present study, the organic phase that contained preconcentrated elements was deposited onto a Millipore filter and measured using energy-dispersive X-ray fluorescence spectrometry. The obtained detection limits were 2.9, 1.5, 2.0, 2.3, 2.5, 2.0 and 3.9 ng mL- 1 for Fe, Co, Ni, Cu, Zn, Se and Pb, respectively. This combination of DLLME and the dried-spot technique is promising for multielement analyses using other spectroscopy techniques, such as laser ablation-inductively coupled plasma-mass spectrometry, laser-induced breakdown spectroscopy or total-reflection X-ray fluorescence spectrometry.

  6. Fog dispersion. [charged particle technique

    NASA Technical Reports Server (NTRS)

    Christensen, L. S.; Frost, W.

    1980-01-01

    The concept of using the charged particle technique to disperse warm fog at airports is investigated and compared with other techniques. The charged particle technique shows potential for warm fog dispersal, but experimental verification of several significant parameters, such as particle mobility and charge density, is needed. Seeding and helicopter downwash techniques are also effective for warm fog disperals, but presently are not believed to be viable techniques for routine airport operations. Thermal systems are currently used at a few overseas airports; however, they are expensive and pose potential environmental problems.

  7. Interference techniques in fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Dogan, Mehmet

    We developed a set of interference-based optical microscopy techniques to study biological structures through nanometer-scale axial localization of fluorescent biomarkers. Spectral self-interference fluorescence microscopy (SSFM) utilizes interference of direct and reflected waves emitted from fluorescent molecules in the vicinity of planar reflectors to reveal the axial position of the molecules. A comprehensive calculation algorithm based on Green's function formalism is presented to verify the validity of approximations used in a far-field approach that describes the emission of fluorescent markers near interfaces. Using the validated model, theoretical limits of axial localization were determined with emphasis given to numerical aperture (NA) dependence of localization uncertainty. SSFM was experimentally demonstrated in conformational analysis of nucleoproteins. In particular, interaction between surface-tethered 75-mer double strand DNA and integration host factor (IHF) protein was probed on Si-SiO2 substrates by determining the axial position of fluorescent labels attached to the free ends of DNA molecules. Despite its sub-nanometer precision axial localization capability, SSFM lacks high lateral resolution due to the low-NA requirement for planar reflectors. We developed a second technique, 4Pi-SSFM, which improves the lateral resolution of a conventional SSFM system by an order of magnitude while achieving nanometer-scale axial localization precision. Using two opposing high-NA objectives, fluorescence signal is interferometrically collected and spectral interference pattern is recorded. Axial position of emitters is found from analysis of the spectra. The 4Pi-SSFM technique was experimentally demonstrated by determining the surface profiles of fabricated glass surfaces and outer membranes of Shigella, a type of Gram-negative bacteria. A further discussion is presented to localize surface O antigen, which is an important oligosaccharide structure in the

  8. Remote detection of atmospherically dispersed vegetative cells using fluorescence LIDAR

    SciTech Connect

    Tiee, J.J.; Eichinger, W.E.; Hof, D.E.; Holtkamp, D.B.; Karl, R.R. Jr.; Martinez, R.J.; Moore, D.S.; Quick, C.R.; Joseph, R.J.

    1991-01-01

    A uv fluorescence LIDAR system is employed for the long range detectio of atmospherically dispersed biological particles (e.g. Bacillus thuringiensis) released from an aerosol generator. 1 ref., 2 figs.

  9. Étude comparative des techniques d'analyse par fluorescence X à dispersion d'énergie (ED-XRF) et à dispersion de longueur d'onde (WD-XRF), et par spectrométrie d'émission atomique à source plasma couplée par induction (ICP-AES)

    NASA Astrophysics Data System (ADS)

    Rahmani, A.; Benyaïch, F.; Bounakhla, M.; Bilal, E.; Moutte, J.; Gruffat, J. J.; Zahry, F.

    2004-11-01

    Dans ce travail, nous présentons une étude comparative des techniques d'analyse par fluorescence X à dispersion d'énergie (ED-XRF) et à dispersion de longueur d'onde (WD-XRF), et par spectrométrie d'émission atomique à source plasma couplée par induction (ICP-AES). Les résultats de la calibration des spectromètres à dispersion d'énergie, à excitation par sources radioactives (55Fe, 109Cd et 241Am) et à excitation secondaire (cible secondaire Mo et Cu) du Centre National pour l'Energie, les Sciences et les Techniques Nucléaires (CNESTEN, Rabat, Maroc) sur des échantillons étalons de références de l'Agence International de l'Energie Atomique (AIEA) et du Community Bureau of Référence (BCR) ont été comparés aux résultats d'analyse des mêmes échantillons étalons par la spectrométrie X à dispersion de longueur d'onde (WD-XRF) et par spectrométrie d'émission atomique à source plasma couplé par induction (ICP-AES) au département GENERIC du centre SPIN à l'Ecole des Mines de Saint-Etienne (France). Les trois techniques d'analyse utilisées donnent des résultats comparables pour le dosage des éléments majeurs, alors que pour les traces on note des déviations importantes à cause des effets de matrice qui sont difficiles à corriger dans le cas de la fluorescence X.

  10. Fluorescence Lifetime Techniques in Medical Applications

    PubMed Central

    Marcu, Laura

    2012-01-01

    This article presents an overview of time-resolved (lifetime) fluorescence techniques used in biomedical diagnostics. In particular, we review the development of time-resolved fluorescence spectroscopy (TRFS) and fluorescence lifetime imaging (FLIM) instrumentation and associated methodologies which allows for in vivo characterization and diagnosis of biological tissues. Emphasis is placed on the translational research potential of these techniques and on evaluating whether intrinsic fluorescence signals provide useful contrast for the diagnosis of human diseases including cancer (gastrointestinal tract, lung, head and neck, and brain), skin and eye diseases, and atherosclerotic cardiovascular disease. PMID:22273730

  11. Dispersion-reduction technique using subcarrier multiplexing

    SciTech Connect

    Sargis, P.D.; Haigh, R.E.; McCammon, K.G.

    1995-10-18

    We have developed a novel dispersion-reduction technique using subcarrier multiplexing (SCM) which permits the transmission of multiple 2.5 Gbit/s data channels over hundreds of kilometers of conventional fiber-optic cable with negligible dispersion. Using a lithium niobate external modulator having a modulation bandwidth of 20 GHz, we are able to multiplex several high-speed data channels at a single wavelength. At the receiving end, we demultiplex the data and detect each channel using a 2-GHz bandwidth optical detector. All of the hardware in our system consists of off-the-shelf components and can be integrated to reduce the overall cost. We demonstrated our dispersion-reduction technique in a recent field trial by transmitting two 2.5 Gbit/s data channels over 90 km of commercially-installed single-mode fiber, followed by 210 km of spooled fiber. For comparison, we substituted the 300 km of fiber with equivalent optical attenuation. We also ran computer simulations to evaluate link behavior. Technical details and field trial results will be presented.

  12. Analysis of some Nigerian solid mineral ores by energy-dispersive X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Obiajunwa, E. I.

    2001-11-01

    Determination of major, minor and trace elements in some Nigerian solid mineral ores by energy-dispersive X-ray fluorescence (EDXRF) spectroscopy is described. Concentration values of major, minor and trace elements for Z>18 are reported. The mineral ores studied include (i) tantalite-coloumbite minerals, (ii) bismuth minerals and (iii) lead minerals. The accuracy and precision of the technique for chemical analysis was assured by analysing the geological standards mica-Fe (biotite) and NBS 278 (obsidian).

  13. Use of MCNP code in energy dispersive X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Trojek, T.; Čechák, T.

    2007-10-01

    Monte Carlo simulations enable us to improve the applicability of analytical techniques based on emission of characteristic radiation. In particular, the MCNP4C2 code was tested for interpretation of measured data obtained with the use of energy dispersive X-ray fluorescence analysis. This paper describes MCNP outputs and compares them with the results of analytical calculations or experiments. Then the application of Monte Carlo simulations to the prediction of measurement results is shown, and the MCNP results are verified.

  14. Swept frequency technique for dispersion measurement of microstrip lines

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.

    1987-01-01

    Microstrip lines used in microwave integrated circuits are dispersive. Because a microstrip line is an open structure, the dispersion can not be derived with pure TEM, TE, or TM mode analysis. Dispersion analysis has commonly been done using a spectral domain approach, and dispersion measurement has been made with high Q microstrip ring resonators. Since the dispersion of a microstrip line is fully characterized by the frequency dependent phase velocity of the line, dispersion measurement of microstrip lines requires the measurement of the line wavelength as a function of frequency. In this paper, a swept frequency technique for dispersion measurement is described.

  15. A Review of Energy Dispersive X-Ray Fluorescence (EDXRF) as an Analytical Tool in Numismatic Studies.

    PubMed

    Navas, María José; Asuero, Agustín García; Jiménez, Ana María

    2016-01-01

    Energy dispersive X-ray fluorescence spectrometry (EDXRF) as an analytical technique in studies of ancient coins is summarized and reviewed. Specific EDXRF applications in historical studies, in studies of the corrosion of coins, and in studies of the optimal working conditions of some laser-based treatment for the cleaning of coins are described.

  16. New Information Dispersal Techniques for Trustworthy Computing

    ERIC Educational Resources Information Center

    Parakh, Abhishek

    2011-01-01

    Information dispersal algorithms (IDA) are used for distributed data storage because they simultaneously provide security, reliability and space efficiency, constituting a trustworthy computing framework for many critical applications, such as cloud computing, in the information society. In the most general sense, this is achieved by dividing data…

  17. Laser-induced fluorescence and dispersed fluorescence spectroscopy of jet-cooled 1-phenylpropargyl radical

    NASA Astrophysics Data System (ADS)

    Reilly, Neil J.; Nakajima, Masakazu; Gibson, Bligh A.; Schmidt, Timothy W.; Kable, Scott H.

    2009-04-01

    The D1(A2″)-D0(A2″) electronic transition of the resonance-stabilized 1-phenylpropargyl radicalooled discharge of 3-phenyl-1-propyne, has been investigated in detail by laser-induced fluorescence excitation and dispersed single vibronic level fluorescence (SVLF) spectroscopy. The transition is dominated by the origin band at 21 007 cm-1, with weaker Franck-Condon activity observed in a' fundamentals and even overtones and combinations of a″ symmetry. Ab initio and density functional theory calculations of the D0 and D1 geometries and frequencies were performed to support and guide the experimental assignments throughout. Analysis of SVLF spectra from 16 D1 vibronic levels has led to the assignment of 15 fundamental frequencies in the excited state and 19 fundamental frequencies in the ground state; assignments for many more normal modes not probed directly by fluorescence spectroscopy are also suggested. Duschinsky mixing, in which the excited state normal modes are rotated with respect to the ground state modes, is prevalent throughout, in vibrations of both a' and a″ symmetry.

  18. Fluorescence Techniques Using Dehydroergosterol to Study Cholesterol Trafficking

    PubMed Central

    McIntosh, Avery L.; Atshaves, Barbara P.; Huang, Huan; Gallegos, Adalberto M.; Kier, Ann B.; Schroeder, Friedhelm

    2008-01-01

    Cholesterol itself has very few structural/chemical features suitable for real-time imaging in living cells. Thus, the advent of dehydroergosterol [ergosta-5,7,9(11),22-tetraen-3β-ol, DHE] the fluorescent sterol most structurally and functionally similar to cholesterol to date, has proven to be a major asset for real-time probing/elucidating the sterol environment and intracellular sterol trafficking in living organisms. DHE is a naturally-occurring, fluorescent sterol analog that faithfully mimics many of the properties of cholesterol. Because these properties are very sensitive to sterol structure and degradation, such studies require the use of extremely pure (>98%) quantities of fluorescent sterol. DHE is readily bound by cholesterol-binding proteins, is incorporated into lipoproteins (from the diet of animals or by exchange in vitro), and for real-time imaging studies is easily incorporated into cultured cells where it co-distributes with endogenous sterol. Incorporation from an ethanolic stock solution to cell culture media is effective, but this process forms an aqueous dispersion of dehydroergosterol crystals which can result in endocytic cellular uptake and distribution into lysosomes which is problematic in imaging DHE at the plasma membrane of living cells. In contrast, monomeric DHE can be incorporated from unilamellar vesicles by exchange/fusion with the plasma membrane or from DHE-methyl-β-cyclodextrin (DHE-MβCD) complexes by exchange with the plasma membrane. Both of the latter techniques can deliver large quantities of monomeric dehydroergosterol with significant distribution into the plasma membrane. The properties and behavior of DHE in protein-binding, lipoproteins, model membranes, biological membranes, lipid rafts/caveolae, and real-time imaging in living cells indicate that this naturally-occurring fluorescent sterol is a useful mimic for probing the properties of cholesterol in these systems. PMID:18536950

  19. Elemental analysis of white electrical tapes by wavelength dispersive X-ray fluorescence spectrometry.

    PubMed

    Sun, Zhenwen; Quan, Yangke; Sun, Yuyou

    2013-10-10

    The aim of this study was to analyze and discriminate electrical tapes using the wavelength dispersive X-ray fluorescence (XRF) spectrometry and statistical techniques. The backings of 46 white electrical tapes were analyzed. A discrimination of 90.4% was performed only by quantitative analysis of major elements (relative ratio of Cl to Ca). Ten distinct groups with a discrimination of 78.9% were yielded only by qualitative analysis of trace elements. Ninety-nine electrical tape pairs which could not be discriminated by major elements were further compared with the characteristics of trace elements. The overall discriminating power of 96.1% was obtained by the combination of quantitative and qualitative analysis. The ability of XRF technique to discriminate different electrical tapes was similar to several well-known methods combined.

  20. [Fluorescence characterization of dissolved organic matter in the East China Sea after diatom red tide dispersion].

    PubMed

    Zhuo, Peng-ji; Zhao, Wei-hong

    2009-05-01

    Fluorescence excitation-emission spectroscopy (EEMS) was employed to analyze the 3-dimensional fluorescence of dissolved organic matter in the East China Sea after diatom red tide dispersion. The relationships between fluorescence peak intensity, and salinity and chlorophyll-a were discussed. The centers of protein-like fluorescence peaks dispersed at Exmax/Exmax = 270-280/290-315 nm (Peak B), 220-230/290-305 nm (Peak D), 230-240/335-350 nm (Peak S) and 280/320 nm (Peak T). Two humic-like peaks appeared at 255-270/435-480 nm (Peak A)and 330-350/420-480 nm (Peak C). High tyrosine-like intensity was observed in diatom red tide dispersion area, and tryptophan-like fluorescence was also found which was lower. High FIB/FIS showed that diatom red tide produced much tyrosine-like matter during dispersion. Peaks S, A and C had positive correlation with one another, and their distributions were similar, which decreased with distance increasing away from the shore. Good negative correlations between peaks S, A and C and salinity suggested that Jiangsu-Zhejiang coastal water was the same source of them. Correlations between fluorescence peak intensity and chlorophyll-a were not remarkable enough to clear the relationship between fluorescence and living algal matter. It was supposed that the living algal matter contributed little to the fluorescence intensity of algal dispersion seawater.

  1. Numerical Modeling of Fluorescence Emission Energy Dispersion in Luminescent Solar Concentrator

    NASA Astrophysics Data System (ADS)

    Li, Lanfang; Sheng, Xing; Rogers, John; Nuzzo, Ralph

    2013-03-01

    We present a numerical modeling method and the corresponding experimental results, to address fluorescence emission dispersion for applications such as luminescent solar concentrator and light emitting diode color correction. Previously established modeling methods utilized a statistic-thermodynamic theory (Kenard-Stepnov etc.) that required a thorough understanding of the free energy landscape of the fluorophores. Some more recent work used an empirical approximation of the measured emission energy dispersion profile without considering anti-Stokes shifting during absorption and emission. In this work we present a technique for modeling fluorescence absorption and emission that utilizes the experimentally measured spectrum and approximates the observable Frank-Condon vibronic states as a continuum and takes into account thermodynamic energy relaxation by allowing thermal fluctuations. This new approximation method relaxes the requirement for knowledge of the fluorophore system and reduces demand on computing resources while still capturing the essence of physical process. We present simulation results of the energy distribution of emitted photons and compare them with experimental results with good agreement in terms of peak red-shift and intensity attenuation in a luminescent solar concentrator. This work is supported by the DOE `Light-Material Interactions in Energy Conversion' Energy Frontier Research Center under grant DE-SC0001293.

  2. Energy dispersive X-Ray fluorescence determination of thorium in phosphoric acid solutions

    NASA Astrophysics Data System (ADS)

    Mirashi, N. N.; Dhara, Sangita; Kumar, S. Sanjay; Chaudhury, Satyajeet; Misra, N. L.; Aggarwal, S. K.

    2010-07-01

    Energy dispersive X-ray fluorescence studies on determination of thorium (in the range of 7 to 137 mg/mL) in phosphoric acid solutions obtained by dissolution of thoria in autoclave were made. Fixed amounts of Y internal standard solutions, after dilution with equal amount of phosphoric acid, were added to the calibration as well as sample solutions. Solution aliquots of approximately 2-5 µL were deposited on thick absorbent sheets to absorb the solutions and the sheets were presented for energy dispersive X-ray fluorescence measurements. A calibration plot was made between intensity ratios (Th Lα/Y Kα) against respective amounts of thorium in the calibration solutions. Thorium amounts in phosphoric acid samples were determined using their energy dispersive X-ray fluorescence spectra and the above calibration plot. The energy dispersive X-ray fluorescence results, thus obtained, were compared with the corresponding gamma ray spectrometry results and were found to be within average deviation of 2.6% from the respective gamma ray spectrometry values. The average precision obtained in energy dispersive X-ray fluorescence determinations was found to be 4% (1 σ). The energy dispersive X-ray fluorescence method has an advantage over gamma ray spectrometry for thorium determination as the amount of sample required and measurement time is far less compared to that required in gamma ray spectrometry.

  3. Determination of calcium and iodine in gall bladder stone using energy dispersive X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Ekinci, Neslihan; Şahin, Yusuf

    2002-01-01

    Energy dispersive X-ray fluorescence techniques were used to analyze gall bladder stones. Enrichment of Ca and I was observed in the gall bladder stone taken from a patient. The concentration of Ca has been determined with an annular 55Fe radioactive source and the concentration of I with an annular 241Am radioactive source using the standard addition method in 2π geometry. A Si(Li)-detector was used to measure Ca and I concentrations in the gall bladder stones.

  4. Fluorescent probes and fluorescence (microscopy) techniques--illuminating biological and biomedical research.

    PubMed

    Drummen, Gregor P C

    2012-11-28

    Fluorescence, the absorption and re-emission of photons with longer wavelengths, is one of those amazing phenomena of Nature. Its discovery and utilization had, and still has, a major impact on biological and biomedical research, since it enables researchers not just to visualize normal physiological processes with high temporal and spatial resolution, to detect multiple signals concomitantly, to track single molecules in vivo, to replace radioactive assays when possible, but also to shed light on many pathobiological processes underpinning disease states, which would otherwise not be possible. Compounds that exhibit fluorescence are commonly called fluorochromes or fluorophores and one of these fluorescent molecules in particular has significantly enabled life science research to gain new insights in virtually all its sub-disciplines: Green Fluorescent Protein. Because fluorescent proteins are synthesized in vivo, integration of fluorescent detection methods into the biological system via genetic techniques now became feasible. Currently fluorescent proteins are available that virtually span the whole electromagnetic spectrum. Concomitantly, fluorescence imaging techniques were developed, and often progress in one field fueled innovation in the other. Impressively, the properties of fluorescence were utilized to develop new assays and imaging modalities, ranging from energy transfer to image molecular interactions to imaging beyond the diffraction limit with super-resolution microscopy. Here, an overview is provided of recent developments in both fluorescence imaging and fluorochrome engineering, which together constitute the “fluorescence toolbox” in life science research.

  5. Biologic fluorescence decay characteristics: determination by Laguerre expansion technique

    NASA Astrophysics Data System (ADS)

    Snyder, Wendy J.; Maarek, Jean-Michel I.; Papaioannou, Thanassis; Marmarelis, Vasilis Z.; Grundfest, Warren S.

    1996-04-01

    Fluorescence decay characteristics are used to identify biologic fluorophores and to characterize interactions with the fluorophore environment. In many studies, fluorescence lifetimes are assessed by iterative reconvolution techniques. We investigated the use of a new approach: the Laguerre expansion of kernels technique (Marmarelis, V.Z., Ann. Biomed., Eng. 1993; 21, 573-589) which yields the fluorescence impulse response function by least- squares fitting of a discrete-time Laguerre functions expansion. Nitrogen (4 ns FWHM) and excimer (120 ns FWHM) laser pulses were used to excite the fluorescence of an anthracene and of type II collagen powder. After filtering (monochromator) and detection (MCP-PMT), the fluorescence response was digitized (digital storage oscilloscope) and transferred to a personal computer. Input and output data were deconvolved by the Laguerre expansion technique to compute the impulse response function which was then fitted to a multiexponential function for determination of the decay constants. A single exponential (time constant: 4.24 ns) best approximated the fluorescence decay of anthracene, whereas the Type II collagen response was best approximated by a double exponential (time constants: 2.24 and 9.92 ns) in agreement with previously reported data. The results of the Laguerre expansion technique were compared to the least-squares iterative reconvolution technique. The Laguerre expansion technique appeared computationally efficient and robust to experimental noise in the data. Furthermore, the proposed method does not impose a set multiexponential form to the decay.

  6. Swept frequency technique for dispersion measurement of microstrip lines

    NASA Technical Reports Server (NTRS)

    Lee, R. Q.

    1986-01-01

    Microstrip lines used in microwave integrated circuits are dispersive. Because a microstrip line is an open structure, the dispersion can not be derived with pure TEM, TE, or TM mode analysis. Dispersion analysis has commonly been done using a spectral domain approach, and dispersion measurement has been made with high Q microstrip ring resonators. Since the dispersion of a microstrip line is fully characterized by the frequency dependent phase velocity of the line, dispersion measurement of microstrip lines requires the measurement of the line wavelength as a function of frequency. In this paper, a swept frequency technique for dispersion measurement is described. The measurement was made using an automatic network analyzer with the microstrip line terminated in a short circuit. Experimental data for two microstrip lines on 10 and 30 mil Cuflon substrates were recorded over a frequency range of 2 to 20 GHz. Agreement with theoretical results computed by the spectral domain approach is good. Possible sources of error for the discrepancy are discussed.

  7. Laser induced fluorescence technique for environmental applications

    NASA Astrophysics Data System (ADS)

    Utkin, Andrei B.; Felizardo, Rui; Gameiro, Carla; Matos, Ana R.; Cartaxana, Paulo

    2014-08-01

    We discuss the development of laser induced fluorescence sensors and their application in the evaluation of water pollution and physiological status of higher plants and algae. The sensors were built on the basis of reliable and robust solid-state Nd:YAG lasers. They demonstrated good efficiency in: i) detecting and characterizing oil spills and dissolved organic matter; ii) evaluating the impact of stress on higher plants (cork oak, maritime pine, and genetically modified Arabidopsis); iii) tracking biomass changes in intertidal microphytobenthos; and iv) mapping macroalgal communities in the Tagus Estuary.

  8. Characterization of the chemical composition of polyisobutylene-based oil-soluble dispersants by fluorescence.

    PubMed

    Pirouz, Solmaz; Wang, Yulin; Chong, J Michael; Duhamel, Jean

    2014-04-10

    A novel methodology based on fluorescence quenching measurements is introduced to determine quantitatively the amine content of polyisobutylene succinimide (PIBSI) dispersants used as engine oil-additives. To this end, a series of five PIBSI dispersants were prepared by reacting 2 mol equiv of polyisobutylene succinic anhydride (PIBSA) with 1 mol equiv of hexamethylenediamine (HMDA), diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and pentaethylenehexamine to yield the corresponding b-PIBSI dispersants. After having demonstrated that the presence of hydrogen bonds between the polyamine linker and the succinimide carbonyls of the dispersants prevents the quantitative analysis of the (1)H NMR and FTIR spectra of the dispersants to determine their chemical composition, alternative procedures based on gel permeation chromatography (GPC) and fluorescence quenching were implemented to estimate the amine content of the b-PIBSI dispersants. Taking advantage of the doubling in size that occurs when 2 mol of PIBSA are reacted with 1 mol of HMDA, a combination of GPC and FTIR was employed to follow how the chemical composition and molecular weight distribution of the polymers produced evolved with the reaction of PIBSA and HMDA mixed at different molar ratios. These experiments provided the PIBSA-to-HMDA molar ratio yielding the largest b-PIBSI dispersants and this molar ratio was then selected to prepare the four other dispersants. Having prepared five b-PIBSI dispersants with well-defined secondary amine content, the fluorescence of the succinimide groups was found to decrease with increasing number of secondary amines present in the polyamine linker. This result suggests that fluorescence quenching provides a valid method to determine the chemical composition of b-PIBSI dispersants which is otherwise difficult to characterize by standard (1)H NMR and FTIR spectroscopies.

  9. Dispersive kinetic of fluorescence decay of alloxazines adsorbed into cellulose

    NASA Astrophysics Data System (ADS)

    Krawczyk, Alina; Sikorska, Ewa; Khmelinskii, Igor V.; Sikorski, Marek

    2005-09-01

    The fluorescence decay of alloxazines adsorbed into microcrystalline cellulose shows a complex kinetics suggesting at least three emitting species. The exponential series method and the Albery model were used to calculate the underlying distributions, providing results about the decay rate constants or lifetime distributions.

  10. A novel portable energy dispersive X-ray fluorescence spectrometer with triaxial geometry

    NASA Astrophysics Data System (ADS)

    Pessanha, S.; Alves, M.; Sampaio, J. M.; Santos, J. P.; Carvalho, M. L.; Guerra, M.

    2017-01-01

    The X-ray fluorescence technique is a powerful analytical tool with a broad range of applications such as quality control, environmental contamination by heavy metals, cultural heritage, among others. For the first time, a portable energy dispersive X-ray fluorescence spectrometer was assembled, with orthogonal triaxial geometry between the X-ray tube, the secondary target, the sample and the detector. This geometry reduces the background of the measured spectra by reducing significantly the Bremsstrahlung produced in the tube through polarization in the secondary target and in the sample. Consequently, a practically monochromatic excitation energy is obtained. In this way, a better peak-background ratio is obtained compared to similar devices, improving the detection limits and leading to superior sensitivity. The performance of this setup is compared with the one of a benchtop setup with triaxial geometry and a portable setup with planar geometry. Two case studies are presented concerning the analysis of a 18th century paper document, and the bone remains of an individual buried in the early 19th century.

  11. Transport and dispersion of fluorescent tracer particles for the dune-bed condition, Atrisco Feeder Canal near Bernalillo, New Mexico

    USGS Publications Warehouse

    Rathbun, R.E.; Kennedy, Vance C.

    1978-01-01

    A fluorescent tracer technique was used to study the rates of transport and dispersion of sediment particles of various diameters and specific gravities for a dune-bed condition in an alluvial channel, Atrisco Feeder Canal near Bernalillo, N. Mex. The total transport rates of bed material measured by the steady-dilution and spatial-integration procedures were within the range of transport rates computed by the modified Einstein procedure. Lateral dispersion of the tracer particles increased with increase in the size of the tracer particles, whereas longitudinal dispersion decreased. The velocities of the tracer particles decreased with increase in the size of the tracer particles; dependence on particle diameter was large for the small particles, small for the large particles. Tracers were found at larger depths in the bed than would be expected on the basis of the sizes of the dunes in the channel. (Woodard-USGS)

  12. Fluorescence sensing techniques for vegetation assessment.

    PubMed

    Corp, Lawrence A; Middleton, Elizabeth M; McMurtrey, James E; Campbell, Petya K Entcheva; Butcher, L Maryn

    2006-02-10

    Active fluorescence (F) sensing systems have long been suggested as a means to identify species composition and determine physiological status of plants. Passive F systems for large-scale remote assessment of vegetation will undoubtedly rely on solar-induced F (SIF), and this information could potentially be obtained from the Fraunhofer line depth (FLD) principle. However, understanding the relationships between the information and knowledge gained from active and passive systems remains to be addressed. Here we present an approach in which actively induced F spectral data are used to simulate and project the magnitude of SIF that can be expected from near-ground observations within selected solar Fraunhofer line regions. Comparisons among vegetative species and nitrogen (N) supply treatments were made with three F approaches: the passive FLD principle applied to telluric oxygen (O2) bands from field-acquired canopy reflectance spectra, simulated SIF from actively induced laboratory emission spectra of leaves at a series of solar Fraunhofer lines ranging from 422 to 758 nm, and examination of two dual-F excitation algorithms developed from laboratory data. From these analyses we infer that SIF from whole-plant canopies can be simulated by use of laboratory data from active systems on individual leaves and that SIF has application for the large-scale assessment of vegetation.

  13. Laser-induced fluorescence, dispersed fluorescence and lifetime measurements of jet-cooled chloro-substituted benzyl radicals

    NASA Astrophysics Data System (ADS)

    Hamatani, Satoshi; Tsuji, Kazuhide; Kawai, Akio; Shibuya, Kazuhiko

    2002-07-01

    We measured the laser-induced fluorescence (LIF) and dispersed fluorescence (DF) spectra of jet-cooled α-, o- and m-chlorobenzyl radicals after they were generated by the 193 nm photolysis of the corresponding parent molecules. The vibronically resolved spectra were obtained to analyze their D1-D0 transitions. The fluorescence lifetimes of α-, o-, m- and p-chlorobenzyls in the zeroth vibrational levels of the D1 states were measured to estimate the oscillator strengths of a series of benzyl derivatives. It was found that the α-substitution is inefficient to break the `accidental forbiddenness' of the D1-D0 transition of benzyl, while the ring-substitution enhances the oscillator strength by 50%.

  14. Refinement of Techniques Metallographic Analysis of Highly Dispersed Structures

    NASA Astrophysics Data System (ADS)

    Khammatov, A.; Belkin, D.; Barbina, N.

    2016-01-01

    Flaws are regularly made while developing standards and technical specifications. They can come out as minor misprints, as an insufficient description of a technique. In spite the fact that the flaws are well known, it does not come to the stage of introducing changes to standards. In this paper shows that in the normative documents is necessary to clarify the requirements for metallurgical microscopes, which are used for analysis of finely-dispersed.

  15. Pulse train fluorescence technique for measuring triplet state dynamics.

    PubMed

    De Boni, Leonardo; Franzen, Paulo L; Gonçalves, Pablo J; Borissevitch, Iouri E; Misoguti, Lino; Mendonça, Cleber R; Zilio, Sergio C

    2011-05-23

    We report on a method to study the dynamics of triplet formation based on the fluorescence signal produced by a pulse train. Basically, the pulse train acts as sequential pump-probe pulses that precisely map the excited-state dynamics in the long time scale. This allows characterizing those processes that affect the population evolution of the first excited singlet state, whose decay gives rise to the fluorescence. The technique was proven to be valuable to measure parameters of triplet formation in organic molecules. Additionally, this single beam technique has the advantages of simplicity, low noise and background-free signal detection.

  16. Evaluation of amorphous solid dispersion properties using thermal analysis techniques.

    PubMed

    Baird, Jared A; Taylor, Lynne S

    2012-04-01

    Amorphous solid dispersions are an increasingly important formulation approach to improve the dissolution rate and apparent solubility of poorly water soluble compounds. Due to their complex physicochemical properties, there is a need for multi-faceted analytical methods to enable comprehensive characterization, and thermal techniques are widely employed for this purpose. Key parameters of interest that can influence product performance include the glass transition temperature (T(g)), molecular mobility of the drug, miscibility between the drug and excipients, and the rate and extent of drug crystallization. It is important to evaluate the type of information pertaining to the aforementioned properties that can be extracted from thermal analytical measurements, in addition to considering any inherent assumptions or limitations of the various analytical approaches. Although differential scanning calorimetry (DSC) is the most widely used thermal analytical technique applied to the characterization of amorphous solid dispersions, there are many established and emerging techniques which have been shown to provide useful information. Comprehensive characterization of fundamental material descriptors will ultimately lead to the formulation of more robust solid dispersion products.

  17. Energy-Dispersive X-Ray Fluorescence Spectrometry: A Long Overdue Addition to the Chemistry Curriculum

    ERIC Educational Resources Information Center

    Palmer, Peter T.

    2011-01-01

    Portable Energy-Dispersive X-Ray Fluorescence (XRF) analyzers have undergone significant improvements over the past decade. Salient advantages of XRF for elemental analysis include minimal sample preparation, multielement analysis capabilities, detection limits in the low parts per million (ppm) range, and analysis times on the order of 1 min.…

  18. Determination of metal components in marine sediments using energy-dispersive X-ray fluorescence (ED-XRF) spectrometry.

    PubMed

    Tung, Joanne Wai Ting

    2004-11-01

    A rapid energy-dispersive X-ray fluorescence (ED-XRF) spectrometric method for the analysis of metal components of marine sediments has been presented. Calibrations were made using synthetic matrix. The agreement of the results for sediment standard reference materials with reference values is satisfactory. Major advantages of the non-destructive ED-XRF technique over conventional chemical digestion methods include the applicability to analyzing the major oxide components, as well as to trace metals, and the avoidance of hazardous chemicals. The method has been applied to the routine analysis of Hong Kong marine sediment.

  19. Dispersal

    USGS Publications Warehouse

    Clobert, J.; Danchin, E.; Dhondt, A.A.; Nichols, J.D.

    2001-01-01

    The ability of species to migrate and disperse is a trait that has interested ecologists for many years. Now that so many species and ecosystems face major environmental threats from habitat fragmentation and global climate change, the ability of species to adapt to these changes by dispersing, migrating, or moving between patches of habitat can be crucial to ensuring their survival. This book provides a timely and wide-ranging overview of the study of dispersal and incorporates much of the latest research. The causes, mechanisms, and consequences of dispersal at the individual, population, species and community levels are considered. The potential of new techniques and models for studying dispersal, drawn from molecular biology and demography, is also explored. Perspectives and insights are offered from the fields of evolution, conservation biology and genetics. Throughout the book, theoretical approaches are combined with empirical data, and care has been taken to include examples from as wide a range of species as possible.

  20. Study of heavy metals and other elements in macrophyte algae using energy-dispersive X-ray fluorescence

    SciTech Connect

    Carvalho, M.L.; Amorim, P.; Marques, M.I.M.; Ramos, M.T.; Ferreira, J.G.

    1997-04-01

    Fucus vesiculosus L. seaweeds from three estuarine stations were analyzed by X-ray fluorescence, providing results for the concentration of total K, Ca, Ti, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Sr, and Pb. Four different structures of the algae (base, stipe, reproductive organs, and growing tips) were analyzed to study the differential accumulation of heavy metals by different parts of Fucus. Some elements (e.g., Cu and Fe) are preferentially accumulated in the base of the algae, whereas others (e.g., As) exhibit higher concentrations in the reproductive organs and growing tips. The pattern of accumulation in different structures is similar for Cu, Zn, and Pb, but for other metals there is considerable variability in accumulation between parts of the plant. This is important in determining which structures of the plant should be used for biomonitoring. For samples collected at stations subject to differing metal loads, the relative elemental composition is approximately constant, notwithstanding significant variation in absolute values. The proportion of metals in Fucus is similar to that found in other estuaries, where metal concentrations are significantly lower. Energy-dispersive X-ray fluorescence has been shown to be a suitable technique for multielement analysis in this type of sample. No chemical pretreatment is required, minimizing sample contamination. The small amount of sample required, and the wide range of elements that can be detected simultaneously make energy-dispersive X-ray fluorescence a valuable tool for pollution studies.

  1. Assembling techniques for micellar dispersed carbon single-walled nanotubes

    NASA Astrophysics Data System (ADS)

    Burghard, M.; Muster, J.; Duesberg, G.; Philipp, G.; Krstic, V.; Roth, S.

    1998-08-01

    Surfactant-stabilised aqueous dispersions of carbon single-walled nanotubes (SWNTs) provide attractive possibilities for different types of assembling processes. The adsorption behaviour of chromatographically purified, micellar suspended SWNTs on silica substrates and metal electrodes is presented. Chemical modifications of the substrate surface allow to control the adsorption kinetics and the fraction between adsorbed individual SWNTs and bundles of SWNTs. Tube alignment occurs presumably due to flow effects upon removal of the surfactant. As a second assembling technique, we describe the preparation of Langmuir-Blodgett films consisting of SWNTs embedded in a surfactant matrix.

  2. Processive cytoskeletal motors studied with single-molecule fluorescence techniques.

    PubMed

    Belyy, Vladislav; Yildiz, Ahmet

    2014-10-01

    Processive cytoskeletal motors from the myosin, kinesin, and dynein families walk on actin filaments and microtubules to drive cellular transport and organization in eukaryotic cells. These remarkable molecular machines are able to take hundreds of successive steps at speeds of up to several microns per second, allowing them to effectively move vesicles and organelles throughout the cytoplasm. Here, we focus on single-molecule fluorescence techniques and discuss their wide-ranging applications to the field of cytoskeletal motor research. We cover both traditional fluorescence and sub-diffraction imaging of motors, providing examples of how fluorescence data can be used to measure biophysical parameters of motors such as coordination, stepping mechanism, gating, and processivity. We also outline some remaining challenges in the field and suggest future directions.

  3. Fluorescent dye particles as pollen analogues for measuring pollen dispersal in an insect-pollinated forest herb.

    PubMed

    Van Rossum, Fabienne; Stiers, Iris; Van Geert, Anja; Triest, Ludwig; Hardy, Olivier J

    2011-03-01

    In flowering plants, pollen dispersal is often the major contributing component to gene flow, hence a key parameter in conservation genetics and population biology. A cost-effective method to assess pollen dispersal consists of monitoring the dispersal of fluorescent dyes used as pollen analogues. However, few comparisons between dye dispersal and realized pollen dispersal have been performed to validate the method. We investigated pollen dispersal in two small populations of the insect-pollinated herb Primula elatior from urban forest fragments using direct (paternity analyses based on microsatellite DNA markers) and indirect (fluorescent dyes) methods. We compared these methods using two approaches, testing for the difference between the distance distributions of observed dispersal events and estimating parameters of a dispersal model, and related these results to dye dispersal patterns in three large populations. Dye and realized (based on paternity inference) pollen dispersal showed exponential decay distributions, with 74.2-94.8% of the depositions occurring at <50 m and a few longer distance dispersal events (up to 151 m). No significant difference in curve shape was found between dye and realized pollen dispersal distributions. The best-fitting parameters characterizing the dye dispersal model were consistent with those obtained for realized pollen dispersal. Hence, the fluorescent dye method may be considered as reliable to infer realized pollen dispersal for forest herbs such as P. elatior. However, our simulations reveal that large sample sizes are needed to detect moderate differences between dye and realized pollen dispersal patterns because the estimation of dispersal parameters suffers low precision.

  4. DAPI staining and fluorescence microscopy techniques for phytoplasmas.

    PubMed

    Andrade, Nancy M; Arismendi, Nolberto L

    2013-01-01

    The 4',6-diamidino-2-phenylindole (DAPI) stain technique is a simple method that was developed for confirming the presence of phytoplasmas in hand-cut or freezing microtome sections of infected tissues. DAPI binds AT-rich DNA preferentially, so that phytoplasmas, localized among phloem cells, can be visualized in a fluorescence microscope. The procedure is quick, easy to use, inexpensive, and can be used as a preliminary or quantitative method to detect or quantify phytoplasma-like bodies in infected plants.

  5. A robust X-ray fluorescence technique for multielemental analysis of solid samples.

    PubMed

    Kallithrakas-Kontos, Nikolaos; Foteinis, Spyros; Paigniotaki, Katherine; Papadogiannakis, Minos

    2016-02-01

    X-ray fluorescence (XRF) quantitation software programs are widely used for analyzing environmental samples due to their versatility but at the expense of accuracy. In this work, we propose an accurate, robust, and versatile technique for multielemental X-ray fluorescence analytical applications, by spiking solid matrices with standard solutions. National Institute of Standards and Technology (NIST)-certified soil standards were spiked with standard solutions, mixed well, desiccated, and analyzed by an energy dispersive XRF. Homogenous targets were produced and low error calibration curves, for the added and not added, neighboring, elements, were obtained. With the addition of few elements, the technique provides reliable multielemental analysis, even for concentrations of the order of milligram per kilogram (ppm). When results were compared to the ones obtained from XRF commercial quantitation software programs, which are widely used in environmental monitoring and assessment applications, they were found to fit certified values better. Moreover, in all examined cases, results were reliable. Hence, this technique can also be used to overcome difficulties associated with interlaboratory consistency and for cross-validating results. The technique was applied to samples with an environmental interest, collected from a ship/boat repainting area. Increased copper, zinc, and lead loads were observed (284, 270, and 688 mg/kg maximum concentrations in soil, respectively), due to vessels being paint stripped and repainted.

  6. Application of energy dispersive X-ray fluorescence spectrometry (EDX) in a case of methomyl ingestion.

    PubMed

    Kinoshita, Hiroshi; Tanaka, Naoko; Jamal, Mostofa; Kumihashi, Mitsuru; Okuzono, Ryota; Tsutsui, Kunihiko; Ameno, Kiyoshi

    2013-04-10

    We applied energy dispersive X-ray fluorescence spectrometry (EDX) in a case of poisoning by methomyl, a carbamate pesticide. Quantitative GC/MS analysis showed that the concentration of methomyl-oxime in the femoral blood was 4.0 μg/ml. The elemental analysis by EDX identified the high peak of silicon and sulfur in the stomach contents. We concluded that the cause of his death was methomyl poisoning. This indicates that screening of stomach contents by EDX provides useful information for the forensic diagnosis.

  7. Total reflection X-ray fluorescence and energy-dispersive X-ray fluorescence analysis of runoff water and vegetation from abandoned mining of Pb Zn ores

    NASA Astrophysics Data System (ADS)

    Marques, A. F.; Queralt, I.; Carvalho, M. L.; Bordalo, M.

    2003-12-01

    The present work reports on the heavy metal content: Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd and Pb in running waters and vegetation around abandoned mining areas. Two species of mosses ( Dicranum sp. and Pleurocarpus sp.) and three different species of wild grass ( Bromus sp., Rumex sp. and Pseudoavena sp.) growing on the surrounding areas of old lead-zinc mines (Aran Valley, Pyrenees, NE Spain) have been analyzed. Both water and vegetation were collected in two different sampling places: (a) near the mine gallery water outlets and (b) on the landfill close to the abandoned mineral concentration factories. For the heavy metal content determination, two different techniques were used: total reflection X-ray fluorescence for water analysis and energy-dispersive X-ray fluorescence for vegetation study. Surface waters around mine outlets exhibit anomalous content of Co, Ni, Zn, Cd. Stream waters running on mining landfills exhibit higher Cu, Zn, Cd and Pb than those of the waters at the mine gallery outlets. The results allow us to assess the extent of the environmental impact of the mining activities on the water quality. The intake of these elements by vegetation was related with the sampling place, reflecting the metal water content and the substrate chemistry. Accumulation of metals in mosses is higher than those exhibited in wild grasses. Furthermore, different levels of accumulation were found in different wild grass. Rumex sp. presented the lowest metal concentrations, while Pseudoavena sp. reported the highest metal content.

  8. Enumeration of semen leucocytes by fluorescence in situ hybridisation technique

    PubMed Central

    Conte, R A; Luke, S; Verma, R S

    1995-01-01

    Aim—To determine whether the fluorescent in situ hybridisation technique (FISH) using a total human DNA genomic probe can be used to enumerate semen leucocytes. Methods—Semen samples from five donors were subjected to a mild KC1 solution. These samples were then biotin labelled under FISH conditions using a total human DNA genomic probe and the leucocyte counts were determined. To check the accuracy of the technique a monoclonal antibody against the common leucocyte antigen CD45 [KC56(T-200)] served as a control. An isotypic control for [KC56(T-200)], the immunoglobulin [MsIgG1], served as a secondary control. Results—Semen leucocytes stained by the FISH technique were easily detected because of their distinct bright yellow colour, while the sperm cells were red. The leucocyte count ranged from 0·5 to 4·9 × 106 per ml of semen. KC56(T-200) and its isotypic control MsIgG1, which served as control for the FISH technique, accurately identified 94% and 97% of the semen leucocytes of a control donor, respectively. Conclusions—The FISH technique using a total human DNA probe can accurately and effectively enumerate the overall leucocyte population in semen. Images PMID:16696031

  9. Evaluation of the reasons why freshly appearing citrus peel fluorescence during automatic inspection by fluorescent imaging technique

    NASA Astrophysics Data System (ADS)

    Momin, Md. Abdul; Kondo, Naoshi; Kuramoto, Makoto; Ogawa, Yuichi; Yamamoto, Kazuya; Shiigi, Tomoo; Ninomiya, Kazunori

    2011-07-01

    Defective unshu oranges (Citrus reticulate Blanco var. unshu) were sorted based on fluorescent imaging technique in a commercial packinghouse but fresh appearing unshu were rejected due to fluorescence appearing on their peel. We studied the various visible patterns based on colour, fluorescence and microscopic images, where even areas of the peel that are not obviously damaged can have fluorescence, to provide a categorization of fluorescence reasons. The categorization corresponded to: 1) hole and flow; 2) influenced by damaged or rotten fruits that have released peel oil onto it; 3) immature or poor peel quality; 4) whitish fluorescence due to agro-chemicals and 5) variation of the growing season. The identification of such patterns of fluorescence might be useful for citrus grading industry to take some initiatives to make the entire automated system more efficient.

  10. [Application of the racial algorithm in energy dispersive X-ray fluorescence overlapped spectrum analysis].

    PubMed

    Zeng, Guo-Qiang; Luo, Yao-Yao; Ge, Liang-Quan; Zhang, Qing-Xian; Gu, Yi; Cheng, Feng

    2014-02-01

    In the energy dispersive X-ray fluorescence spectrum analysis, scintillation detector such as NaI (Tl) detector usually has a low energy resolution at around 8%. The low energy resolution causes problems in spectral data analysis especially in the high background and low counts condition, it is very limited to strip the overlapped spectrum, and the more overlapping the peaks are, the more difficult to peel the peaks, and the qualitative and quantitative analysis can't be carried out because we can't recognize the peak address and peak area. Based on genetic algorithm and immune algorithm, we build a new racial algorithm which uses the Euclidean distance as the judgment of evolution, the maximum relative error as the iterative criterion to be put into overlapped spectrum analysis, then we use the Gaussian function to simulate different overlapping degrees of the spectrum, and the racial algorithm is used in overlapped peak separation and full spectrum simulation, the peak address deviation is in +/- 3 channels, the peak area deviation is no more than 5%, and it is proven that this method has a good effect in energy dispersive X-ray fluorescence overlapped spectrum analysis.

  11. Determination of selenium in biological samples with an energy-dispersive X-ray fluorescence spectrometer.

    PubMed

    Li, Xiaoli; Yu, Zhaoshui

    2016-05-01

    Selenium is both a nutrient and a toxin. Selenium-especially organic selenium-is a core component of human nutrition. Thus, it is very important to measure selenium in biological samples. The limited sensitivity of conventional XRF hampers its widespread use in biological samples. Here, we describe the use of high-energy (100kV, 600W) linearly polarized beam energy-dispersive X-Ray fluorescence spectroscopy (EDXRF) in tandem with a three-dimensional optics design to determine 0.1-5.1μgg(-1) levels of selenium in biological samples. The effects of various experimental parameters such as applied voltage, acquisition time, secondary target and various filters were thoroughly investigated. The detection limit of selenium in biological samples via high-energy (100kV, 600W) linearly polarized beam energy-dispersive X-ray fluorescence spectroscopy was decreased by one order of magnitude versus conventional XRF (Paltridge et al., 2012) and found to be 0.1μg/g. To the best of our knowledge, this is the first report to describe EDXRF measurements of Se in biological samples with important implications for the nutrition and analytical chemistry communities.

  12. Detection limits for actinides in a monochromatic, wavelength-dispersive x-ray fluorescence instrument

    SciTech Connect

    Collins, Michael L; Havrilla, George J

    2009-01-01

    Recent developments in x-ray optics have made it possible to examine the L x-rays of actinides using doubly-curved crystals in a bench-top device. A doubly-curved crystal (DCC) acts as a focusing monochromatic filter for polychromatic x-rays. A Monochromatic, Wavelength-Dispersive X-Ray Fluorescence (MWDXRF) instrument that uses DCCs to measure Cm and Pu in reprocessing plant liquors was proposed in 2007 by the authors at Los Alamos National Laboratory. A prototype design of this MWDXRF instrument was developed in collaboration with X-ray Optical Systems Inc. (XOS), of East Greenbush, New York. In the MWDXRF instrument, x-rays from a Rhodium-anode x-ray tube are passed through a primary DCC to produce a monochromatic beam of 20.2-keV photons. This beam is focused on a specimen that may contain actinides. The 20.2-keV interrogating beam is just above the L3 edge of Californium; each actinide (with Z = 90 to 98) present in the specimen emits characteristic L x-rays as the result of L3-shell vacancies. In the LANL-XOS prototype MWDXRf, these x-rays enter a secondary DCC optic that preferentially passes 14.961-keV photons, corresponding to the L-alpha-1 x-ray peak of Curium. In the present stage of experimentation, Curium-bearing specimens have not been analyzed with the prototype MWDXRF instrument. Surrogate materials for Curium include Rubidium, which has a K-beta-l x-ray at 14.961 keV, and Yttrium, which has a K-alpha-1 x-ray at 14.958 keV. In this paper, the lower limit of detection for Curium in the LANL-XOS prototype MWDXRF instrument is estimated. The basis for this estimate is described, including a description of computational models and benchmarking techniques used. Detection limits for other actinides are considered, as well as future safeguards applications for MWDXRF instrumentation.

  13. Online analysis of sulfur in diesel line by a monochromatic wavelength dispersive x-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Pérez-Careta, Eduardo; López-Ramírez, Juan Antonio; Reynoso-Whitaker, Gilberto; Sánchez-Mondragon, Javier; Torres-Cisneros, Miguel

    2009-09-01

    This paper proposes the application of a monochromatic wavelength dispersive X-ray fluorescence (MWDXRF) technique developed in the X-ray Optical Systems laboratory Inc. The technique measures low-level sulfur (uls) in fuel. Data for ultra low sulfur in diesel were collected and analyzed using the combination of the mentioned technique and the usage of engineering tools as a fastloop array and a measurement technique. This provides a qualitative method for Diesel sulfur analysis of the Refinery Ing. Antonio M Amor (RIAMA) in Salamanca, Guanajuato. The pooled limit of quantification (PLOQ) for ultra-low-sulfur diesel was found to be less than 1.5 ppm in this study. The reproducibility of 15-ppm sulfur diesel fuel was determined to be better than 3 ppm (95 % confident level). This work shows the performance of the production of Diesel with less than 15-ppm in sulfur lines in the Hydrodesulfurizer Unit of Diesel (HDD) of the refinery. Results and conclusions discusses the better and cheaper method for the production of ultra low sulfur Diesel in the refinery.

  14. Determining ammonia emissions from a cattle feedlot with an inverse dispersion technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An inverse-dispersion technique is used to calculate ammonia (NH3) gas emissions from a cattle feedlot. The technique relies on a simple backward Lagrangian stochastic (bLS) dispersion model to relate atmospheric NH3 concentration to the emission rate Qbls. Because the wind and the source configurat...

  15. Analysis of nuclear materials by energy dispersive x-ray fluorescence and spectral effects of alpha decay

    SciTech Connect

    Worley, Christopher G

    2009-01-01

    Energy dispersive X-ray fluorescence (EDXRF) spectra collected from alpha emitters are complicated by artifacts inherent to the alpha decay process, particularly when using portable instruments. For example, {sup 239}Pu EDXRF spectra exhibit a prominent uranium L X-ray emission peak series due to sample alpha decay rather than source-induced X-ray fluorescence. A portable EDXRF instrument was used to collect spectra from plutonium, americium, and a Pu-contaminated steel sample. The plutonium sample was also analyzed by wavelength dispersive XRF to demonstrate spectral differences observed when using these very different instruments.

  16. Evaluation on determination of iodine in coal by energy dispersive X-ray fluorescence

    USGS Publications Warehouse

    Wang, B.; Jackson, J.C.; Palmer, C.; Zheng, B.; Finkelman, R.B.

    2005-01-01

    A quick and inexpensive method of relative high iodine determination from coal samples was evaluated. Energy dispersive X-ray fluorescence (EDXRF) provided a detection limit of about 14 ppm (3 times of standard deviations of the blank sample), without any complex sample preparation. An analytical relative standard deviation of 16% was readily attainable for coal samples. Under optimum conditions, coal samples with iodine concentrations higher than 5 ppm can be determined using this EDXRF method. For the time being, due to the general iodine concentrations of coal samples lower than 5 ppm, except for some high iodine content coal, this method can not effectively been used for iodine determination. More work needed to meet the requirement of determination of iodine from coal samples for this method. Copyright ?? 2005 by The Geochemical Society of Japan.

  17. Dispersed Fluorescence Spectroscopy of Jet-Cooled Isobutoxy and 2-Methyl-1-butoxy Radicals.

    PubMed

    Reza, Md Asmaul; Paul, Anam C; Reilly, Neil J; Alam, Jahangir; Liu, Jinjun

    2016-09-01

    We report dispersed fluorescence (DF) spectra of the isobutoxy and 2-methyl-1-butoxy radicals produced by photolysis of corresponding nitrites in supersonic jet expansion. Different vibrational structures have been observed in the DF spectra when different vibronic bands in the laser-induced fluorescence (LIF) spectra of each radical were pumped, which suggests that those vibronic bands be assigned to different conformers. Spectra simulated using calculated vibrational frequencies and Franck-Condon factors well reproduce the experimentally observed ones and support the assignment of the vibronic bands in the LIF spectra to the two lowest-energy conformers of each radical. DF spectra obtained by pumping the B̃ ← X̃ origin bands of the LIF spectra are dominated by CO stretch progressions because of the large difference in CO bond length between the ground (X̃) and the second excited (B̃) electronic states. Furthermore, with non-CO stretch bands pumped, the DF spectra are dominated by progressions of combination bands of the CO stretch and the pumped modes as a result of Duschinsky mixing. Ã-X̃ separation of both conformers of the isobutoxy radical has also been determined in the experiment.

  18. Dispersed Fluorescence Spectroscopy of Jet-Cooled Isobutoxy, 2-METHYL-1-BUTOXY, and Isopentoxy Radicals

    NASA Astrophysics Data System (ADS)

    Reza, Md Asmaul; Reilly, Neil J.; Alam, Jahangir; Mason, Amy; Liu, Jinjun

    2015-06-01

    It is well known that rate constants of certain reactions of alkoxy radicals, e.g., unimolecular dissociation (decomposition by C-C bond fission) and isomerization via 1,5 H-shift, are highly sensitive to the molecular structure. In the present and the next talks, we report dispersed fluorescence (DF) spectra of various alkoxy radicals obtained under supersonic jet-cooled conditions by pumping different vibronic bands of their tilde B ← tilde X laser induced fluorescence (LIF) excitation spectra. This talk focuses on the DF spectra of 2-methyl-1-propoxy (isobutoxy), 2-methyl-1-butoxy, and 3-methyl-1-butoxy (isopentoxy). In all cases, strong CO-stretch progressions were observed, as well as transitions to other vibrational levels, including low-frequency ones. Quantum chemical calculations were carried out to aid the assignment of the DF spectra. Franck-Condon factors were calculated using the ezSpectrum program. Wu, Q.; Liang, G.; Zu, L.; Fang, W. J. Phys. Chem A 2012, 116, 3156-3162. Lin, J.; Wu, Q.; Liang, G.; Zu, L.; Fang, W. RSC Adv. 2012, 2, 583-589. Liang, G.; Liu , C.; Hao, H.; Zu, L.; Fang, W. J. Phys. Chem. A 2013, 117, 13229- 13235. V. Mozhayskiy and A. I. Krylov, http://iopenshell.usc.edu/

  19. Re-Analysis of the Dispersed Fluorescence Spectra of the C_3-RARE Gas Atom Complexes

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Jen; Merer, Anthony; Hsu, Yen-Chu

    2015-06-01

    The dispersed fluorescence (DF) spectra of the C_3Ne, C_3Ar, C_3Kr, and C_3Xe complexes near the 0 2^- 0- 000, 0 4^- 0- 000, 0 2^+ 0- 000 and 100-000 bands of the {A}- {X} system of C_3 have been revisited. Some of the DF spectra of the Ne and Ar complexes have been recently obtained with a slightly improved resolution of 6-10 wn. All the DF spectra have been reassigned as emission from van der Waals (vdW) complexes and C_3 fragments. The optically excited C_3-Rg (Rg = rare-gas atom) complexes fluorescence and/or decay down to slightly lower (about 2-30 wn) vibrational levels without changing the internal energy of C_3 and then predissociate via the continua of the nearby vibronic states of C_3. The available dissociation channels depend on the binding energy of the ground electronic state complex. Exceptions have been found at the vdW bands near the 0 4^- 0- 000 band of C_3. The binding energies of the ground electronic states of these four complexes will be discussed. G. Zhang, B.-G. Lin, S.-M. Wen, and Y.-C. Hsu, J. Chem. Phys. 20, 3189(2004) J.-M. Chao, K. S. Tham, G. Zhang, A. J. Merer, Y.-C. Hsu, and W.-P. Hu, J. Chem. Phys. 34, 074313(2011)

  20. Determination of fluorine concentrations using wavelength dispersive X-ray fluorescence (WDXRF) spectrometry to analyze fluoride precipitates.

    NASA Astrophysics Data System (ADS)

    Lee, H. A.; Lee, J.; Kwon, E.; Kim, D.; Yoon, H. O.

    2015-12-01

    In recent times, fluorine has been receiving increasing attention due to the possibility for chemical (HF) leakage accidents and its high toxicity to human and environment. In this respect, a novel approach for the determination of fluorine concentrations in water samples using wavelength dispersive X-ray fluorescence (WDXRF) spectrometry was investigated in this study. The main disadvantage of WDXRF technique for fluorine analysis is low analytical sensitivity for light elements with atomic number (Z) less than 15. To overcome this problem, we employed the precipitation reaction which fluoride is reacted with cation such as Al3+ and/or Ca2+ prior to WDXRF analysis because of their high analytical sensitivity. The cation was added in fluoride solutions to form precipitate (AlF3 and/or CaF2) and then the solution was filtered through Whatman filter. After drying at 60 °C for 5 min, the filter was coated with X-ray film and directly analyzed using WDXRF spectrometry. Consequently, we analyzed the cation on filter and subsequently fluorine concentration was calculated inversely based on chemical form of precipitate. This method can improve the analytical sensitivity of WDXRF technique for fluorine analysis and be applicable to various elements that can make precipitate.

  1. Fluorescence microscopy as an alternative to electron microscopy for microscale dispersion evaluation of organic-inorganic composites.

    PubMed

    Guan, Weijiang; Wang, Si; Lu, Chao; Tang, Ben Zhong

    2016-06-02

    Inorganic dispersion is of great importance for actual implementation of advanced properties of organic-inorganic composites. Currently, electron microscopy is the most conventional approach for observing dispersion of inorganic fillers from ultrathin sections of organic-inorganic composites at the nanoscale by professional technicians. However, direct visualization of macrodispersion of inorganic fillers in organic-inorganic composites using high-contrast fluorescent imaging method is hampered. Here we design and synthesize a unique fluorescent surfactant, which combines the properties of the aggregation-induced emission (AIE) and amphiphilicity, to image macrodispersion of montmorillonite and layered double hydroxide fillers in polymer matrix. The proposed fluorescence imaging provides a number of important advantages over electron microscope imaging, and opens a new avenue in the development of direct three-dimensional observation of inorganic filler macrodispersion in organic-inorganic composites.

  2. Fluorescence microscopy as an alternative to electron microscopy for microscale dispersion evaluation of organic-inorganic composites

    NASA Astrophysics Data System (ADS)

    Guan, Weijiang; Wang, Si; Lu, Chao; Tang, Ben Zhong

    2016-06-01

    Inorganic dispersion is of great importance for actual implementation of advanced properties of organic-inorganic composites. Currently, electron microscopy is the most conventional approach for observing dispersion of inorganic fillers from ultrathin sections of organic-inorganic composites at the nanoscale by professional technicians. However, direct visualization of macrodispersion of inorganic fillers in organic-inorganic composites using high-contrast fluorescent imaging method is hampered. Here we design and synthesize a unique fluorescent surfactant, which combines the properties of the aggregation-induced emission (AIE) and amphiphilicity, to image macrodispersion of montmorillonite and layered double hydroxide fillers in polymer matrix. The proposed fluorescence imaging provides a number of important advantages over electron microscope imaging, and opens a new avenue in the development of direct three-dimensional observation of inorganic filler macrodispersion in organic-inorganic composites.

  3. Fluorescence microscopy as an alternative to electron microscopy for microscale dispersion evaluation of organic–inorganic composites

    PubMed Central

    Guan, Weijiang; Wang, Si; Lu, Chao; Tang, Ben Zhong

    2016-01-01

    Inorganic dispersion is of great importance for actual implementation of advanced properties of organic–inorganic composites. Currently, electron microscopy is the most conventional approach for observing dispersion of inorganic fillers from ultrathin sections of organic–inorganic composites at the nanoscale by professional technicians. However, direct visualization of macrodispersion of inorganic fillers in organic–inorganic composites using high-contrast fluorescent imaging method is hampered. Here we design and synthesize a unique fluorescent surfactant, which combines the properties of the aggregation-induced emission (AIE) and amphiphilicity, to image macrodispersion of montmorillonite and layered double hydroxide fillers in polymer matrix. The proposed fluorescence imaging provides a number of important advantages over electron microscope imaging, and opens a new avenue in the development of direct three-dimensional observation of inorganic filler macrodispersion in organic–inorganic composites. PMID:27251015

  4. Insect monitoring with fluorescence lidar techniques: field experiments.

    PubMed

    Guan, Zuguang; Brydegaard, Mikkel; Lundin, Patrik; Wellenreuther, Maren; Runemark, Anna; Svensson, Erik I; Svanberg, Sune

    2010-09-20

    Results from field experiments using a fluorescence lidar system to monitor movements of insects are reported. Measurements over a river surface were made at distances between 100 and 300 m, detecting, in particular, damselflies entering the 355 nm pulsed laser beam. The lidar system recorded the depolarized elastic backscattering and two broad bands of laser-induced fluorescence, with the separation wavelength at 500 nm. Captured species, dusted with characteristic fluorescent dye powders, could be followed spatially and temporally after release. Implications for ecological research are discussed.

  5. Feasibility for direct rapid energy dispersive X-ray fluorescence (EDXRF) and scattering analysis of complex matrix liquids by partial least squares.

    PubMed

    Angeyo, K H; Gari, S; Mustapha, A O; Mangala, J M

    2012-11-01

    The greatest challenge to material characterization by XRF technique is encountered in direct trace analysis of complex matrices. We exploited partial least squares (PLS) in conjunction with energy dispersive X-ray fluorescence and scattering (EDXRFS) spectrometry to rapidly (200 s) analyze lubricating oils. The PLS-EDXRFS method affords non-invasive quality assurance (QA) analysis of complex matrix liquids as it gave optimistic results for both heavy- and low-Z metal additives. Scatter peaks may further be used for QA characterization via the light elements.

  6. A wavelength dispersive detector for synchrotron x-ray fluorescence microprobe analysis (abstract)

    NASA Astrophysics Data System (ADS)

    Rivers, Mark L.; Sutton, Stephen R.

    1995-02-01

    The synchrotron x-ray fluorescence (SXRF) microprobe has proven to be a valuable tool for trace element research. It permits analysis down to a few parts per million of many elements in a spot size of less than 10 μm. Existing SXRF microprobes are using energy dispersive detectors (EDS), either Si(Li) or intrinsic Ge diodes. Such detectors have the advantage of collecting the entire fluorescence spectrum at once. They can also be positioned to collect a relatively large solid angle. However, EDS detectors suffer from several significant problems: resolution at Fe Kα is about 150 eV, which is roughly 60 times the natural linewidth; the maximum count rate is less than 20 000 counts/s in the entire spectrum; there is significant low-energy background due to scattering and incomplete charge collection in the device. For geochemical analyses these limitations preclude trace element analyses in the presence of a large amount of a high atomic number element: for example, trace element studies of galena (PbS) and zircon (ZrSiO4), or measurements of Cr or Ti in minerals with more than a few percent Fe or Mn. The poor energy resolution prevents the measurement of small amounts of rare-earth elements in samples with significant concentrations of first-row transition elements. Wavelength dispersive spectrometers, based upon Bragg diffraction from a bent crystal, have several distinct advantages over EDS detectors. The resolution at Fe Kα is about 10 eV, or only 4 times the natural linewidth. This permits the analysis of rare-earth elements and also lowers the background which improves detection limits to the 0.1 ppm range. The WDS spectrometer only detects a single energy at once, so it is possible to measure trace elements in the presence of intense fluorescence of a major element. We have installed a commercial wavelength dispersive spectrometer (model WDX-3PC from Microspec Corp., Fremont, CA) on the X-26A microprobe beamline at the NSLS. The spectrometer can scan the

  7. Enhancement of dissolution of Telmisartan through use of solid dispersion technique - surface solid dispersion

    PubMed Central

    Patel, Bhumika; Parikh, R. H.; Swarnkar, Deepali

    2012-01-01

    The present study was aimed to increase the solubility of the poorly water soluble drug Telmisartan by using Surface solid dispersion (SSD) made of polymers like Poloxamer 407, PEG 6000 by Solvent evaporation method. The drug was solubilized by surfactants and/or polymers then adsorbed onto the surface of extremely fine carriers to increase its surface area and to form the SSD which give the more Surface area for absorption of the drug. A 22 full factorial design was used to investigate for each carrier the joint influence of formulation variables: Amount of carrier and adsorbent. Saturation solubility studies shows the improvement in solubility of drug batch SSD 8 give more solubility improvement than the other batch, in-vitro dissolution of pure drug, physical mixtures and SSDs were carried out in that SSDs were found to be effective in increasing the dissolution rate of Telmisartan in form of SSD when compared to pure drug. Also FT-IR spectroscopy, differential scanning calorimetry and X-ray diffractometry studies were carried out in order to characterize the drug and Surface solid dispersion. Furthermore, both DSC and X-ray diffraction showed a decrease in the melting enthalpy and reduced drug crystallinity consequently in SSDs. However, infrared spectroscopy revealed no drug interactions with the carriers. PMID:23066211

  8. Energy dispersive X-ray fluorescence analysis of mine waters from the Migori Gold Mining Belt in Southern Nyanza, Kenya.

    PubMed

    Odumo, O B; Mustapha, A O; Patel, J P; Angeyo, H K

    2011-09-01

    Analyses of water samples from Mikei, Osiri, Masara and Macalder (Makalda) gold mines of the Migori gold mining belt of Southwestern Kenya were done to determine the level of heavy metals using the Energy Dispersive X-ray Fluorescence technique. The concentrations of the heavy metals were; copper (29.34 ± 5.01-14,975.59 ± 616.14 μg/L); zinc (33.69 ± 4.29-683.15 ± 32.93 μg/L); arsenic (958.16 ± 60.14-18,047.52 ± 175.00 μg/L) and lead (19.51 ± 5.5-214.53 ± 6.29 μg/L). High levels of arsenic and lead were noted. These heavy metals are not only dangerous to the lives of miners and the local inhabitants; they are also a threat to aquatic life since these waters finally find their way into Lake Victoria.

  9. Determination of Nickel and Manganese Contaminants in Pharmaceutical Iron Supplements Using Energy Dispersive X-ray Fluorescence.

    PubMed

    Cardoso, Pedro; Amaro, Pedro; Santos, José Paulo; de Assis, Joaquim T; Carvalho, Maria Luisa

    2017-03-01

    In this study, we investigate the capability of energy dispersive X-ray fluorescence (EDXF) spectrometry in a triaxial geometry apparatus as a fast and nondestructive determination method of both dominant and contaminant elements in pharmaceutical iron supplements. The following iron supplements brands with their respective active ingredients were analyzed: Neutrofer fólico (iron gylcinate), Anemifer (iron(II) sulfate monohydrate), Noripurum (iron(III)-hydroxide polymaltose complex), Sulferbel (iron(II) sulfate monohydrate), and Combiron Fólico (carbonyl iron). Although we observe a good agreement between the iron content obtained by the present method and that indicated in the supplement's prescribed dose, we observe contamination by manganese and nickel of up to 180 μg and 36 μg, respectively. These contents correspond to 7.2% and 14.4% of the permitted daily exposure of manganese and nickel, respectively, for an average adult individual as determined by the European Medicine Agency (EMEA). The method was successfully validated against the concentrations of several certified reference materials of biological light matrices with similar concentrations of contaminants. Moreover, we also validated our method by comparing the concentrations with those obtained with the inductively coupled plasma-atomic emission technique.

  10. Determination of Zn in Dry Feeds for Cats and Dogs by Energy-Dispersive X-Ray Fluorescence Spectrometry.

    PubMed

    Ávila, Dayara Virgnía L; Souza, Sidnei O; Costa, Silvânio Silvério L; Araujo, Rennan Geovanny O; Garcia, Carlos Alexandre B; Alves, José do Patrocínio H; Passos, Elisangela A

    2016-11-01

    This work describes an analytical method for Zn determination in dry feeds for cats and dogs by energy-dispersive X-ray fluorescence (EDXRF). Samples of dry feed were powdered and prepared in the form of pellets for direct analysis by EDXRF. The LOQ (10σ) was 0.4 mg/kg. The samples were also analyzed by inductively coupled plasma-optical emission spectrometry (ICP-OES) as an independent comparative method. Application of a paired t-test showed no significant differences between Zn concentrations obtained by EDXRF and ICP-OES (at a 95% confidence level). Analysis of variance was also applied to the results and revealed no significant differences between the two techniques (at a 95% confidence level). The precision, expressed as the RSD (n = 3), was RSD < 4.55%. This analytical method provides a simple, rapid, accurate, and precise determination of Zn in dry feeds for cats and dogs by EDXRF as direct, solid-sample analysis.

  11. [Application of in situ micro energy dispersive X-ray fluorescence analysis in mineralogy].

    PubMed

    Yang, Hai; Ge, Liang-Quan; Gu, Yi; Zhang, Qing-Xian; Xiong, Sheng-Qing

    2013-11-01

    Thirteen rock samples were collected for studying the variation of element content in the mineral during the alteration process from Xinjiang, China. The IED-6000 in situ micro energy dispersive X-ray fluorescence developed by CDUT was applied to get chemical and physical data from minerals. The non-destructive spectrometer is based on a low-power Mo-anode X-ray tube and a Si-PIN peltier cooled X-ray detector. The unique design of the tube's probe allows very close coupling of polycapillary and makes the use of micro-area measurement feasible and efficient. The spectrometer can be integrated into any microscope for analysis. The long axis diameter of beam spot is about 110 microm. According to micro-EDXRF measurement, the tetrahedrite was corrected to pyrite, improving the efficiency and accuracy of the mineral identification. The feldspar of mineralized rock sample is rich in Cu and Zn which can be used as prospecting indicator elements. Element content of Cr, Mn and Co shows negative correlation with the degree of mineralization.

  12. Elemental analysis of mining wastes by energy dispersive X-ray fluorescence (EDXRF)

    NASA Astrophysics Data System (ADS)

    Gonzalez-Fernandez, O.; Queralt, I.; Carvalho, M. L.; Garcia, G.

    2007-08-01

    An energy dispersive X-ray fluorescence (EDXRF) tri-axial geometry experimental spectrometer has been employed to determine the concentrations of 13 different elements (K, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr and Pb) in mine wastes from different depths of two mine tailings from the Cartagena-La Union (Spain) mining district. The elements were determined and quantified using the fundamental parameters method. The concentrations of Cr, Ni, Cu, Zn and Pb were compared to the values from the European and Spanish legislation to evaluate the environmental risk and to classify the wastes as inert wastes or as wastes that have to be control land-filled. The results obtained demonstrate that these wastes can be considered as inert for the considered elements, apart from the concentration levels of Zn and Pb. Whilst Zn slightly overpasses the regulatory levels, Pb mean value exceeds three to six times the value to be considered as Class I potential land-filling material.

  13. Micro energy-dispersive x-ray fluorescence spectrometry study of dentin coating with nanobiomaterials

    NASA Astrophysics Data System (ADS)

    Soares, Luís. Eduardo Silva; Nahorny, Sídnei; Marciano, Fernanda Roberta; Zanin, Hudson; Lobo, Anderson de Oliveira

    2015-06-01

    New biomaterials such as multi-walled carbon nanotubes oxide/graphene oxide (MWCNTO/GO), nanohydroxyapatite (nHAp) and combination of them together or not to acidulated phosphate fluoride gel (F) have been tested as protective coating before root dentin erosion. Fourteen bovine teeth were cleaned, polished, divided into two parts (n=28) and assigned to seven groups: (Control) - without previous surface treatment; F treatment; nHAp; MWCNTO/GO; F+nHAp; F+MWCNTO/GO and F+MWCNTO/GO/nHAp composites. Each sample had two sites of pre-treatments: acid etched area and an area without treatment. After the biomaterials application, the samples were submitted to six cycles (demineralization: orange juice, 10 min; remineralization: artificial saliva, 1 h). Micro energy-dispersive X-ray fluorescence spectrometry (μ-EDXRF) mapping area analyses were performed after erosive cycling on both sites (n=84). μ-EDXRF mappings showed that artificial saliva and MWCNTO/GO/nHAp/F composite treatments produced lower dentin demineralization than in the other groups. Exposed dentin tubules allowed better interaction of nanobiomaterials than in smear layer covered dentin. Association of fluoride with other biomaterials had a positive influence on acid etched dentin. MWCNTO/GO/nHAp/F composite treatment resulted in levels of demineralization similar to the control group.

  14. Inverse-dispersion technique for assessing lagoon gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measuring gas emissions from treatment lagoons and storage ponds poses challenging conditions for existing micrometeorological techniques because of non-ideal wind conditions, such as those induced by trees and crops surrounding the lagoons, and lagoons with dimensions too small to establish equilib...

  15. Agricultural pest monitoring using fluorescence lidar techniques. Feasibility study

    NASA Astrophysics Data System (ADS)

    Mei, L.; Guan, Z. G.; Zhou, H. J.; Lv, J.; Zhu, Z. R.; Cheng, J. A.; Chen, F. J.; Löfstedt, C.; Svanberg, S.; Somesfalean, G.

    2012-03-01

    The fluorescence of different types of planthopper ( Hemiptera) and moth ( Lepidoptera), which constitute important Chinese agricultural pests, was investigated both in situ in a laboratory setting and remotely using a fluorescence light detection and ranging (lidar) system operating at a range of about 50 m. The natural autofluorescence of different species, as well as the fluorescence from insects that had been dusted with fluorescent dye powder for identification were studied. Autofluorescence spectra of both moths and planthoppers show a maximum intensity peak around 450 nm. Bleaching upon long-time laser illumination was modest and did not affect the shape of the spectrum. A single dyed rice planthopper, a few mm in size, could be detected at 50 m distance by using the fluorescence lidar system. By employing various marking dyes, different types of agricultural pest could be determined. We suggest that lidar may be used in studies of migration and movement of pest insects, including studies of their behavior in the vicinity of pheromone traps and in pheromone-treated fields.

  16. Advanced liquefaction using coal swelling and catalyst dispersion techniques

    SciTech Connect

    Curtis, C.W. ); Gutterman, C. ); Chander, S. )

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  17. Fluorescent porous film modified polymer optical fiber via "click" chemistry: stable dye dispersion and trace explosive detection.

    PubMed

    Ma, Jiajun; Lv, Ling; Zou, Gang; Zhang, Qijin

    2015-01-14

    In this paper, we report a facile strategy to fabricate fluorescent porous thin film on the surface of U-bent poly(methyl methacrylate) optical fiber (U-bent POF) in situ via "click" polymerization for vapor phase sensing of explosives. Upon irradiation of evanescent UV light transmitting within the fiber under ambient condition, a porous film (POSS-thiol cross-linking film, PTCF) is synthesized on the side surface of the fiber by a thiol-ene "click" reaction of vinyl-functionalized polyhedral oligomeric silsesquioxanes (POSS-V8) and alkane dithiols. When vinyl-functionalized porphyrin, containing four allyl substituents at the periphery, is added into precursors for the polymerization, fluorescence porphyrin can be covalently bonded into the cross-linked network of PTCF. This "fastened" way reduces the aggregation-induced fluorescence self-quenching of porphyrin and enhances the physicochemical stability of the porous film on the surface of U-bent POF. Fluorescent signals of the PTCF/U-bent POF probe made by this method exhibit high fluorescence quenching toward trace TNT and DNT vapor and the highest fluorescence quenching efficiency is observed for 1, 6-hexanedimercaptan-based film. In addition, because of the presence of POSS-V8 with multi cross-linkable groups, PTCF exhibits well-organized pore network and stable dye dispersion, which not only causes fast and sensitive fluorescence quenching against vapors of nitroaromatic compounds, but also provides a repeatability of the probing performance.

  18. Note: Flow mediated skin fluorescence--A novel technique for evaluation of cutaneous microcirculation.

    PubMed

    Piotrowski, L; Urbaniak, M; Jedrzejczak, B; Marcinek, A; Gebicki, J

    2016-03-01

    This note describes a newly developed technique for evaluation of cutaneous microcirculation. The technique called Flow Mediated Skin Fluorescence (FMSF) is based on monitoring of NADH fluorescence intensity emitted from the skin tissue cells of a forearm. The changes in fluorescence intensity as a function of time in response to blocking and releasing of blood flow in a forearm are used as a measure of oxygen transport with blood to the tissue, which directly correlates with the skin microcirculation status. Preliminary results collected for healthy volunteers and patients experiencing serious cardiovascular problems indicated a usefulness of FMSF technique for evaluation of health related perturbations in cutaneous microcirculation.

  19. Dynamic measurement of the height and volume of migrating cells by a novel fluorescence microscopy technique.

    PubMed

    Bottier, Céline; Gabella, Chiara; Vianay, Benoît; Buscemi, Lara; Sbalzarini, Ivo F; Meister, Jean-Jacques; Verkhovsky, Alexander B

    2011-11-21

    We propose a new technique to measure the volume of adherent migrating cells. The method is based on a negative staining where a fluorescent, non-cell-permeant dye is added to the extracellular medium. The specimen is observed with a conventional fluorescence microscope in a chamber of uniform height. Given that the fluorescence signal depends on the thickness of the emitting layer, the objects excluding the fluorescent dye (i.e., cells) appear dark, and the decrease of the fluorescent signal with respect to the background is expected to give information about the height and the volume of the object. Using a glass microfabricated pattern with steps of defined heights, we show that the drop in fluorescence intensity is indeed proportional to the height of the step and obtain calibration curves relating fluorescence intensity to height. The technique, termed the fluorescence displacement method, is further validated by comparing our measurements with the ones obtained by atomic force microscopy (AFM). We apply our method to measure the real-time volume dynamics of migrating fish epidermal keratocytes subjected to osmotic stress. The fluorescence displacement technique allows fast and precise monitoring of cell height and volume, thus providing a valuable tool for characterizing the three-dimensional behaviour of migrating cells.

  20. Multielemental analysis of dried residue from metal-bearing waters by wavelength dispersive X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Gonzalez-Fernandez, Oscar; Margui, Eva; Queralt, Ignacio

    2009-02-01

    The purpose of this work was evaluation of instrumental sensitivity and detection limits for determination of elemental composition (20 different elements ranging from Na to Pb) of liquid mining samples by using conventional Wavelength Dispersive X-Ray Fluorescence (WDXRF) instrumentation. Preconcentration of elements from liquid samples was performed by means of a simple dried residue process, and spectral evaluation was carried out by integration of the peak area (using WinQXAS/AXIL package software, International Atomic Energy Agency (IAEA)) instead of the common net peak line intensity traditionally used in conventional WDXRF systems. With the proposed methodology, the calculated detection limits were in the µg L - 1 range (from 0.005 to 0.1 mg L - 1 level depending on the element) in all cases, which is suitable for element determination in most liquid samples involved in environmental studies such as metal mining liquid effluents. The detection limits are also below the established limits of the TCLP 1311 (United States Environmental Protection Agency (US-EPA)) and DIN 38414-S4 (German Standard legislation) procedures, which are commonly used to evaluate the leaching of metals from landfill disposal. Accuracy of the procedure was confirmed by analysis, based on the German Standard Method DIN 3814-S4, of water lixiviates from three overbank sediment samples collected in two abandoned mining areas. The attained results were compared with those obtained by inductively coupled plasma (ICP) techniques, and acceptable agreement for elements with Z > 20 was found. This study highlights the possibility of using a simple methodology for analysis of liquid mining samples using the WDXRF technique, commonly employed for geochemical exploration of solid samples in environmental studies.

  1. Preparation and application of new fluorescein-labeled fumonisins B1 in fluorescence polarization analysis technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To prepare a new fluorescent tracer against common mycotoxins such as fumonisin B1 in order to replace 6-(4,6-Dichlorotriazinyl) aminofluorescein (6-DTAF), an expensive marker, and to develop a technique for quick detection of fumonisin B1 based on the principle of fluorescence polarizati...

  2. Detection of fecal residue on poultry carcasses by laser induced fluorescence imaging techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential use of laser-induced fluorescence imaging techniques was investigated for the detection of diluted fecal matters from various parts of the digestive tract, including colon, ceca, small intestine, and duodenum, on poultry carcasses. One of the challenges for using fluorescence imaging f...

  3. Amorphous solid dispersion technique for improved drug delivery: basics to clinical applications.

    PubMed

    Mishra, Dinesh Kumar; Dhote, Vinod; Bhargava, Arpit; Jain, Dinesh Kumar; Mishra, Pradyumna Kumar

    2015-12-01

    Solid dispersion has emerged as a method of choice and has been extensively investigated to ascertain the in vivo improved performance of many drug formulations. It generally involves dispersion of drug in amorphous particles (clusters) or in crystalline particles. Comparatively, in the last decade, amorphous drug-polymer solid dispersion has evolved into a platform technology for delivering poorly water-soluble small molecules. However, the success of this technique in the pharmaceutical industry mainly relies on different drug-polymer attributes like physico-chemical stability, bioavailability and manufacturability. The present review showcases the efficacy of amorphous solid dispersion technique in the research and evolution of different drug formulations particularly for those with poor water soluble properties. Apart from the numerous mechanisms of action involved, a comprehensive summary of different key parameters required for the solubility enhancement and their translational efficacy to clinics is also emphasized.

  4. THE SAP3 COMPUTER PROGRAM FOR QUANTITATIVE MULTIELEMENT ANALYSIS BY ENERGY DISPERSIVE X-RAY FLUORESCENCE

    SciTech Connect

    Nielson, K. K.; Sanders, R. W.

    1982-04-01

    SAP3 is a dual-function FORTRAN computer program which performs peak analysis of energy-dispersive x-ray fluorescence spectra and then quantitatively interprets the results of the multielement analysis. It was written for mono- or bi-chromatic excitation as from an isotopic or secondary excitation source, and uses the separate incoherent and coherent backscatter intensities to define the bulk sample matrix composition. This composition is used in performing fundamental-parameter matrix corrections for self-absorption, enhancement, and particle-size effects, obviating the need for specific calibrations for a given sample matrix. The generalized calibration is based on a set of thin-film sensitivities, which are stored in a library disk file and used for all sample matrices and thicknesses. Peak overlap factors are also determined from the thin-film standards, and are stored in the library for calculating peak overlap corrections. A detailed description is given of the algorithms and program logic, and the program listing and flow charts are also provided. An auxiliary program, SPCAL, is also given for use in calibrating the backscatter intensities. SAP3 provides numerous analysis options via seventeen control switches which give flexibility in performing the calculations best suited to the sample and the user needs. User input may be limited to the name of the library, the analysis livetime, and the spectrum filename and location. Output includes all peak analysis information, matrix correction factors, and element concentrations, uncertainties and detection limits. Twenty-four elements are typically determined from a 1024-channel spectrum in one-to-two minutes using a PDP-11/34 computer operating under RSX-11M.

  5. Risk and benefit of diffraction in Energy Dispersive X-ray fluorescence mapping

    NASA Astrophysics Data System (ADS)

    Nikonow, Wilhelm; Rammlmair, Dieter

    2016-11-01

    Energy dispersive X-ray fluorescence mapping (μ-EDXRF) is a fast and non-destructive method for chemical quantification and therefore used in many scientific fields. The combination of spatial and chemical information is highly valuable for understanding geological processes. Problems occur with crystalline samples due to diffraction, which appears according to Bragg's law, depending on the energy of the X-ray beam, the incident angle and the crystal parameters. In the spectra these peaks can overlap with element peaks suggesting higher element concentrations. The aim of this study is to investigate the effect of diffraction, the possibility of diffraction removal and potential geoscientific applications for X-ray mapping. In this work the μ-EDXRF M4 Tornado from Bruker was operated with a Rh-tube and polychromatic beam with two SDD detectors mounted each at ± 90° to the tube. Due to the polychromatic beam the Bragg condition fits for several mineral lattice planes. Since diffraction depends on the angle, it is shown that a novel correction approach can be applied by measuring from two different angles and calculating the minimum spectrum of both detectors gaining a better limit of quantification for this method. Furthermore, it is possible to use the diffraction information for separation of differently oriented crystallites within a monomineralic aggregate and obtain parameters like particle size distribution for the sample, as it is done by thin section image analysis in cross-polarized light. Only with μ-EDXRF this can be made on larger samples without preparation of thin sections.

  6. The effect of dispersion technique of montmorillonite on polyisocyanurate nanocomposites

    NASA Astrophysics Data System (ADS)

    Cabulis, U.; Fridrihsone, A.; Andersons, J.; Vlcek, T.

    2014-05-01

    The biomass represents an abundant, renewable, competitive and low cost resource that can play an alternative role to petrochemical resources. The central topic of the research activity reported is the use of rape seed oil (RO) as a raw material for the production of rigid polyisocyanurate foams (PIR). The content of the renewable resource-derived polymers achieved in ready foams is up to 20%. By using biopolymers as a matrix, a prospective way is to reinforce them with nanoparticles, organically modified clays, for improvement of mechanical properties while, at the same time, replacing petrochemical raw materials. Organoclay Cloisite® 15A was tested as a filler of PIR foams. Three different techniques - ultrasonification, mixing by three-roll mills, and high-pressure homogenization were used for dispergation of nanoclays in polyols. Composite polyisocyanurate foams and solid polymer samples were produced and tested for stiffness and strength. This paper discusses the studies into the use of RO as a renewable source in rigid PIR foams filled with organomodified montmorillonite clay with loadings from 1 to 5% by weight.

  7. New developments of X-ray fluorescence imaging techniques in laboratory

    NASA Astrophysics Data System (ADS)

    Tsuji, Kouichi; Matsuno, Tsuyoshi; Takimoto, Yuki; Yamanashi, Masaki; Kometani, Noritsugu; Sasaki, Yuji C.; Hasegawa, Takeshi; Kato, Shuichi; Yamada, Takashi; Shoji, Takashi; Kawahara, Naoki

    2015-11-01

    X-ray fluorescence (XRF) analysis is a well-established analytical technique with a long research history. Many applications have been reported in various fields, such as in the environmental, archeological, biological, and forensic sciences as well as in industry. This is because XRF has a unique advantage of being a nondestructive analytical tool with good precision for quantitative analysis. Recent advances in XRF analysis have been realized by the development of new x-ray optics and x-ray detectors. Advanced x-ray focusing optics enables the making of a micro x-ray beam, leading to micro-XRF analysis and XRF imaging. A confocal micro-XRF technique has been applied for the visualization of elemental distributions inside the samples. This technique was applied for liquid samples and for monitoring chemical reactions such as the metal corrosion of steel samples in the NaCl solutions. In addition, a principal component analysis was applied for reducing the background intensity in XRF spectra obtained during XRF mapping, leading to improved spatial resolution of confocal micro-XRF images. In parallel, the authors have proposed a wavelength dispersive XRF (WD-XRF) imaging spectrometer for a fast elemental imaging. A new two dimensional x-ray detector, the Pilatus detector was applied for WD-XRF imaging. Fast XRF imaging in 1 s or even less was demonstrated for Euro coins and industrial samples. In this review paper, these recent advances in laboratory-based XRF imaging, especially in a laboratory setting, will be introduced.

  8. Optical sensing of peroxide using ceria nanoparticles via fluorescence quenching technique

    NASA Astrophysics Data System (ADS)

    Shehata, Nader; Samir, Effat; Gaballah, Soha; Salah, Mohammed

    2016-07-01

    This study introduces the application of ceria nanoparticles (NPs) as an optical sensor for peroxide using fluorescence quenching technique. Our synthesized ceria NPs have the ability to adsorb peroxides via its oxygen vacancies. Ceria NPs solution with added variable concentrations of hydrogen peroxides is exposed through near-UV excitation and the detected visible fluorescent emission is found to be at ˜520 nm. The fluorescent intensity peak is found to be reduced with increasing the peroxide concentrations due to static fluorescence quenching technique. The relative intensity change of the visible fluorescent emission has been reduced to more than 50% at added peroxide concentrations up to 10 wt. %. In order to increase ceria peroxides sensing sensitivity, lanthanide elements such as samarium (Sm) are used as ceria NPs dopant. This research work could be applied further in optical sensors of radicals in biomedical engineering and environmental monitoring.

  9. Determination of heavy metals in suspended waste water collected from Oued El Harrach Algiers River by Energy Dispersive X-Ray Fluorescence

    NASA Astrophysics Data System (ADS)

    Ouziane, S.; Amokrane, A.; Toumert, I.

    2013-12-01

    A preliminary study of the atmospheric pollution in the centre of Algiers is one of the important fields of applications in the environmental science. Nowadays, we need to evaluate the level of the contamination which has an unfavourable effect on physicochemical properties of soils and plants and namely also on human health. In the present work, water samples collected from Oued El-Harrach Algiers River, have been filtered in 0.45 μm Millipore filters to be analysed by Energy Dispersive X-Ray Fluorescence technique using 109Cd radioisotope source. Concentrations of the toxic elements like heavy metals are determined and compared with the published ones values by Yoshida [1] and those obtained using PIXE and NAA techniques [6].

  10. Review of fluorescence guided surgery visualization and overlay techniques

    PubMed Central

    Elliott, Jonathan T.; Dsouza, Alisha V.; Davis, Scott C.; Olson, Jonathan D.; Paulsen, Keith D.; Roberts, David W.; Pogue, Brian W.

    2015-01-01

    In fluorescence guided surgery, data visualization represents a critical step between signal capture and display needed for clinical decisions informed by that signal. The diversity of methods for displaying surgical images are reviewed, and a particular focus is placed on electronically detected and visualized signals, as required for near-infrared or low concentration tracers. Factors driving the choices such as human perception, the need for rapid decision making in a surgical environment, and biases induced by display choices are outlined. Five practical suggestions are outlined for optimal display orientation, color map, transparency/alpha function, dynamic range compression, and color perception check. PMID:26504628

  11. Tools and techniques to measure mitophagy using fluorescence microscopy.

    PubMed

    Dolman, Nick J; Chambers, Kevin M; Mandavilli, Bhaskar; Batchelor, Robert H; Janes, Michael S

    2013-11-01

    Mitophagy is a specialized form of autophagy that removes damaged mitochondria, thereby maintaining efficient cellular metabolism and reducing cellular stress caused by aberrant oxidative bursts. Deficits in mitophagy underlie several diseases, and a substantial body of research has elucidated key steps in the pathways that lead to and execute autophagic clearance of mitochondria. Many of these studies employ fluorescence microscopy to visualize mitochondrial morphology, mass, and functional state. Studies in this area also examine colocalization/recruitment of accessory factors, components of the autophagic machinery and signaling molecules to mitochondria. In this review, we provide a brief summary of the current understanding about the processes involved in mitophagy followed by a discussion of probes commonly employed and important considerations of the methodologies to study and analyze mitophagy using fluorescence microscopy. Representative data, where appropriate, are provided to highlight the use of key probes to monitor mitophagy. The review will conclude with a consideration of new possibilities for mitophagy research and a discussion of recently developed technologies for this emerging area of cell biology.

  12. X-ray fluorescence and energy dispersive x-ray diffraction for the quantification of elemental concentrations in breast tissue.

    PubMed

    Geraki, K; Farquharson, M J; Bradley, D A

    2004-01-07

    This paper presents improvements on a previously reported method for the measurement of elements in breast tissue specimens (Geraki et al 2002 Phys. Med. Biol. 47 2327-39). A synchrotron-based system was used for the detection of the x-ray fluorescence (XRF) emitted from iron, copper, zinc and potassium in breast tissue specimens, healthy and cancerous. Calibration models resulting from the irradiation of standard aqueous solutions were used for the quantification of the elements. The present developments concentrate on increasing the convergence between the tissue samples and the calibration models, therefore improving accuracy. For this purpose the composition of the samples in terms of adipose and fibrous tissue was evaluated, using an energy dispersive x-ray diffraction (EDXRD) system. The relationships between the attenuation and scatter properties of the two tissue components and water were determined through Monte Carlo simulations. The results from the simulations and the EDXRD measurements allowed the XRF data from each specimen to be corrected according to its composition. The statistical analysis of the elemental concentrations of the different groups of specimens reveals that all four elements are found in elevated levels in the tumour specimens. The increase is less pronounced for iron and copper and most for potassium and zinc. Other observed features include the substantial degree of inhomogeneity of elemental distributions within the volume of the specimens, varying between 4% and 36% of the mean, depending on the element and the type of the sample. The accuracy of the technique, based on the measurement of a standard reference material, proved to be between 3% and 22% depending on the element, which presents only a marginal improvement (1%-3%) compared to the accuracy of the previously reported results. The measurement precision was between 1% and 9% while the calculated uncertainties on the final elemental concentrations ranged between 10% and 16%.

  13. [Energy dispersive x-ray fluorescence spectrometry--a forensic chemistry method for detection of bullet metal residue in gunshot wounds].

    PubMed

    Havel, J; Zelenka, K

    2003-04-01

    The article describes using of energo-dispersive X-ray fluorescence spectrometry (EDXRF) as the forensic method as the tool for detection of metals (gunshot residues--GSR) in connection with gunshot-wounds of persons.

  14. Fast elemental screening of soil and sediment profiles using small-spot energy-dispersive X-ray fluorescence: application to mining sediments geochemistry.

    PubMed

    Gonzalez-Fernandez, Oscar; Queralt, Ignacio

    2010-09-01

    Elemental analysis of different sediment cores originating from the Cartagena-La Union mining district in Spain was carried out by means of a programmable small-spot energy-dispersive X-ray fluorescence (EDXRF) spectrometer to study the distribution of heavy metals along soil profiles. Cores were obtained from upstream sediments of a mining creek, from the lowland sedimentation plain, and from a mining landfill dump (tailings pile). A programmable two-dimensional (2D) stage and a focal spot resolution of 600 μm allow us to obtain complete core mapping. Geochemical results were verified using a more powerful wavelength-dispersion X-ray fluorescence (WDXRF) technique. The data obtained was processed in order to study the statistical correlations within the elemental compositions. The results obtained allow us to observe the differential in-depth distribution of heavy metals among the sampled zones. Dump site cores exhibit a homogeneous distribution of heavy metals, whereas the alluvial plain core shows accumulation of heavy metals in the upper part. This approach can be useful for the fast screening of heavy metals in depositional environments around mining sites.

  15. Development of raloxifene-solid dispersion with improved oral bioavailability via spray-drying technique.

    PubMed

    Tran, Tuan Hiep; Poudel, Bijay Kumar; Marasini, Nirmal; Woo, Jong Soo; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2013-01-01

    The purpose of this study was to develop a raloxifene-loaded solid dispersion with enhanced dissolution rate and bioavailability via spray-drying technique. Solid dispersions of raloxifene (RXF) were prepared with PVP K30 at weight ratios of 1:4, 1:6 and 1:8 using a spray-drying method, and characterized by differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy, and solubility and dissolution tests. The bioavailability of the solid dispersion in rats was also evaluated compared to those of RXF powder and commercial product. Results showed that the RXF-loaded solid dispersion was in amorphous form with increased solubility and dissolution rate. The absorption of RXF from solid dispersion resulted in approximately 2.6-fold enhanced bioavailability compared to pure drug. Moreover, RXF-loaded solid dispersion gave similar AUC, C(max) and T(max) values to the commercial product, suggesting that it was bioequivalent to the commercial product in rats. These findings suggest that an amorphous solid dispersion of RXF could be a viable option for enhancing the oral bioavailability of RXF.

  16. Perturbation Facilitated Dispersed Fluorescence and Stimulated Emission Pumping Spectroscopies of HCP

    NASA Astrophysics Data System (ADS)

    Ishikawa, Haruki; Muramoto, Yasuhiko; Namai, Masahito; Mikami, Naohiko

    2011-06-01

    Perturbations among molecular rovibronic levels provide us with mainly two benefits. Perturbations themselves are characteristic features of structure and dynamics of molecules. We have been investigating dynamics of highly excited vibrational levels of HCP in the tilde{X} ^1Σ^+ state by dispersed fluorescence (DF) and stimulated emission pumping (SEP) spectroscopies of the tilde{C} ^1A^' - tilde{X} ^1Σ^+ transition. In the case of tilde{X} ^1Σ^+ HCP, its vibrational dynamics is well described by the Fermi resonance between the bend and the CP stretch modes. Based on the analysis of the Fermi resonance, we have succeeded in revealing the change in character of the bending motion in highly excited vibrational levels. In addition, perturbations enable us to explore rovibrational levels into much wider region that cannot be accessed under limits of selection rules. Jacobson and Child showed that the Coriolis interaction becomes very strong in the highly excited levels near and the above the CPH barrier. For the experimental confirmation of their prediction, the observation of the VCH≠0 and the ℓ'' ≠ 0 levels are necessary. However, due to the selection rules and the Franck-Condon selectivity, only the VCH=0 and the ℓ''=0 levels had been observed. In the course of our study, we have found a perturbed level in the tilde{C} state. In general, a very clear even-v_2 progression appears in the DF spectra of HCP. However, in the DF spectra measured by using the perturbed level as the intermediate both the odd- and even-v_2 levels are observed. Moreover, several VCH=1 levels are observed in the spectra. The perturbation-facilitated DF and SEP spectroscopies are very powerful tools to exploring the highly excited vibrational levels of HCP. Details of the perturbation-facilitated DF and SEP spectroscopies are presented in the paper. H. Ishikawa, et al. J. Chem. Phys. 109, 492 (1998); H. Ishikawa, et al. Annu. Rev. Phys. Chem. 50, 443 (1999). M. P. Jacobson and M. S

  17. Impulse radar imaging for dispersive concrete using inverse adaptive filtering techniques

    SciTech Connect

    Arellano, J.; Hernandez, J.M.; Brase, J.

    1993-05-01

    This publication addresses applications of a delayed inverse model adaptive filter for modeled data obtained from short-pulse radar reflectometry. To determine the integrity of concrete, a digital adaptive filter was used, which allows compensation of dispersion and clutter generated by the concrete. A standard set of weights produced by an adaptive filter are used on modeled data to obtain the inverse-impulse response of the concrete. The data for this report include: Multiple target, nondispersive data; single-target, variable-size dispersive data; single-target, variable-depth dispersive data; and single-target, variable transmitted-pulse-width dispersive data. Results of this simulation indicate that data generated by the weights of the adaptive filter, coupled with a two-dimensional, synthetic-aperture focusing technique, successfully generate two-dimensional images of targets within the concrete from modeled data.

  18. Measuring Agarwood Formation Ratio Quantitatively by Fluorescence Spectral Imaging Technique.

    PubMed

    Huang, Botao; Nguyen, Duykien; Liu, Tianyi; Jiang, Kaibin; Tan, Jinfen; Liu, Chunxin; Zhao, Jing; Huang, Shaowei

    2015-01-01

    Agarwood is a kind of important and precious traditional Chinese medicine. With the decreasing of natural agarwood, artificial cultivation has become more and more important in recent years. Quantifying the formation of agarwood is an essential work which could provide information for guiding cultivation and controlling quality. But people only can judge the amount of agarwood qualitatively by experience before. Fluorescence multispectral imaging method is presented to measure the agarwood quantitatively in this paper. A spectral cube from 450 nm to 800 nm was captured under the 365 nm excitation sources. The nonagarwood, agarwood, and rotten wood in the same sample were distinguished based on analyzing the spectral cube. Then the area ratio of agarwood to the whole sample was worked out, which is the quantitative information of agarwood area percentage. To our knowledge, this is the first time that the formation of agarwood was quantified accurately and nondestructively.

  19. Measuring Agarwood Formation Ratio Quantitatively by Fluorescence Spectral Imaging Technique

    PubMed Central

    Huang, Botao; Nguyen, Duykien; Jiang, Kaibin; Tan, Jinfen; Liu, Chunxin; Zhao, Jing; Huang, Shaowei

    2015-01-01

    Agarwood is a kind of important and precious traditional Chinese medicine. With the decreasing of natural agarwood, artificial cultivation has become more and more important in recent years. Quantifying the formation of agarwood is an essential work which could provide information for guiding cultivation and controlling quality. But people only can judge the amount of agarwood qualitatively by experience before. Fluorescence multispectral imaging method is presented to measure the agarwood quantitatively in this paper. A spectral cube from 450 nm to 800 nm was captured under the 365 nm excitation sources. The nonagarwood, agarwood, and rotten wood in the same sample were distinguished based on analyzing the spectral cube. Then the area ratio of agarwood to the whole sample was worked out, which is the quantitative information of agarwood area percentage. To our knowledge, this is the first time that the formation of agarwood was quantified accurately and nondestructively. PMID:26089935

  20. Layer-by-layer films and colloidal dispersions of graphene oxide nanosheets for efficient control of the fluorescence and aggregation properties of the cationic dye acridine orange.

    PubMed

    Hansda, Chaitali; Chakraborty, Utsav; Hussain, Syed Arshad; Bhattacharjee, Debajyoti; Paul, Pabitra Kumar

    2016-03-15

    Chemically derived graphene oxide (GO) nanosheets have received great deal of interest for technological application such as optoelectronic and biosensors. Aqueous dispersions of GO become an efficient template to induce the association of cationic dye namely Acridine Orange (AO). Interactions of AO with colloidal GO was governed by both electrostatic and π-π stacking cooperative interactions. The type of dye aggregations was found to depend on the concentration of GO in the mixed ensemble. Spectroscopic calculations revealed the formation of both H and J-type dimers, but H-type aggregations were predominant. Preparation of layer-by-layer (LbL) electrostatic self-assembled films of AO and GO onto poly (allylamine hydrochloride) (PAH) coated quartz substrate is also reported in this article. UV-Vis absorption, steady state and time resolve fluorescence and Raman spectroscopic techniques have been employed to explore the detail photophysical properties of pure AO, AO/GO mixed solution and AO/GO LbL films. Scanning electron microscopy was also used for visual evidence of the synthesized nanodimensional GO sheets. The fluorescence quenching of AO in the presence of GO in aqueous solution was due to the interfacial photoinduced electron transfer (PET) from photoexcited AO to GO i.e. GO acts as an efficient quenching agent for the fluorescence emission of AO. The quenching is found to be static in nature. Raman spectroscopic results also confirmed the interaction of AO with GO and the electron transfer. The formation of AO/GO complex via very fast excited state electron transfer mechanism may be proposed as to prepare GO-based fluorescence sensor for biomolecular detection without direct labeling the biomolecules by fluorescent probe.

  1. Layer-by-layer films and colloidal dispersions of graphene oxide nanosheets for efficient control of the fluorescence and aggregation properties of the cationic dye acridine orange

    NASA Astrophysics Data System (ADS)

    Hansda, Chaitali; Chakraborty, Utsav; Hussain, Syed Arshad; Bhattacharjee, Debajyoti; Paul, Pabitra Kumar

    2016-03-01

    Chemically derived graphene oxide (GO) nanosheets have received great deal of interest for technological application such as optoelectronic and biosensors. Aqueous dispersions of GO become an efficient template to induce the association of cationic dye namely Acridine Orange (AO). Interactions of AO with colloidal GO was governed by both electrostatic and π-π stacking cooperative interactions. The type of dye aggregations was found to depend on the concentration of GO in the mixed ensemble. Spectroscopic calculations revealed the formation of both H and J-type dimers, but H-type aggregations were predominant. Preparation of layer-by-layer (LbL) electrostatic self-assembled films of AO and GO onto poly (allylamine hydrochloride) (PAH) coated quartz substrate is also reported in this article. UV-Vis absorption, steady state and time resolve fluorescence and Raman spectroscopic techniques have been employed to explore the detail photophysical properties of pure AO, AO/GO mixed solution and AO/GO LbL films. Scanning electron microscopy was also used for visual evidence of the synthesized nanodimensional GO sheets. The fluorescence quenching of AO in the presence of GO in aqueous solution was due to the interfacial photoinduced electron transfer (PET) from photoexcited AO to GO i.e. GO acts as an efficient quenching agent for the fluorescence emission of AO. The quenching is found to be static in nature. Raman spectroscopic results also confirmed the interaction of AO with GO and the electron transfer. The formation of AO/GO complex via very fast excited state electron transfer mechanism may be proposed as to prepare GO-based fluorescence sensor for biomolecular detection without direct labeling the biomolecules by fluorescent probe.

  2. Benchtop Antigen Detection Technique using Nanofiltration and Fluorescent Dyes

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Varaljay, Vanessa

    2009-01-01

    The designed benchtop technique is primed to detect bacteria and viruses from antigenic surface marker proteins in solutions, initially water. This inclusive bio-immunoassay uniquely combines nanofiltration and near infrared (NIR) dyes conjugated to antibodies to isolate and distinguish microbial antigens, using laser excitation and spectrometric analysis. The project goals include detecting microorganisms aboard the International Space Station, space shuttle, Crew Exploration Vehicle (CEV), and human habitats on future Moon and Mars missions, ensuring astronaut safety. The technique is intended to improve and advance water contamination testing both commercially and environmentally as well. Lastly, this streamlined technique poses to greatly simplify and expedite testing of pathogens in complex matrices, such as blood, in hospital and laboratory clinics.

  3. Simultaneous monitoring of first-order polarization mode dispersion and chromatic dispersion based on RF power detection technique

    NASA Astrophysics Data System (ADS)

    Li, Lanlan; Xu, Huizhen; Wu, Jian

    2014-04-01

    We propose a novel technique for independent and simultaneous monitoring of first-order polarization mode dispersion (PMD) and chromatic dispersion (CD). For PMD monitoring, radio frequency (RF) power is detected after asymmetric filtering by a band-stop filter (BSF). The RF tone power ratio (PR) of the double sideband (DSB) to the single sideband (SSB) signal components is utilized for CD monitoring. We discuss the performance for 80 Gb/s NRZ-DQPSK signal by simulation. Simultaneous monitoring of 246.7 ps/nm CD with a 22.3 dB dynamic range (DR) and 50 ps differential group delay (DGD) with a 42.7 dB DR can be realized at 10 GHz detection band. When only CD is monitored, the detection frequency can be further decreased to 5 GHz, where the monitoring range (MR) is 356 ps/nm and DR is 30.5 dB. The influences of other parameters, such as the BSF offset, the bandwidths of BSF and electrical-band-pass-filter (EBPF), the filter shape, and the modulation rate and format, are investigated in the paper.

  4. A unified planar measurement technique for compressible flows using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1992-01-01

    A unified laser-induced fluorescence technique for conducting planar measurements of temperature, pressure and velocity in nonreacting, highly compressible flows has been developed, validated and demonstrated. Planar fluorescence from iodine, seeded into air, was induced by an argon-ion laser and collected using a liquid-nitrogen cooled CCD camera. In the measurement technique, temperature is determined from the fluorescence induced with the laser operated broad band. Pressure and velocity are determined from the shape and position of the fluorescence excitation spectrum which is measured with the laser operated narrow band. The measurement approach described herein provides a means of obtaining accurate, spatially-complete maps of the primary flow field parameters in a wide variety of cold supersonic and transonic flows.

  5. Improvement of dynamic range of filter-less fluorescence sensor with body-biasing technique

    NASA Astrophysics Data System (ADS)

    Moriwaki, Yu; Takahashi, Kazuhiro; Akita, Ippei; Ishida, Makoto; Sawada, Kazuaki

    2015-04-01

    Although fluorescence microscopy is an important technique in biomedical fields, the bulky equipment is disadvantageous in some situations. We have previously proposed a filter-less fluorescence sensor whose operation is based on the light absorption coefficient, which depends on the wavelength in a silicon substrate. In this sensor, the ratio of the excitation light intensity to the fluorescence intensity is as high as 400:1 upon optimizing the impurity concentration and the depth of the p-well region. To improve the dynamic range, herein we use a body-biasing technique to optimize the potential distribution of the sensing area to acquire sufficient photocurrent. Consequently, the dynamic range of the filter-less fluorescence sensor is improved to 800:1 with an 8 V substrate voltage.

  6. Optical sensing of peroxide using ceria nanoparticles via fluorescence quenching technique

    NASA Astrophysics Data System (ADS)

    Shehata, N.; Samir, E.; Gaballah, S.

    2016-04-01

    This study introduces the application of small ceria nanoparticles (NPs) as optical sensor for peroxide using fluorescence quenching technique. Our synthesized ceria nanoparticles have the ability to adsorb peroxides via its oxygen vacancies. Ceria nanoparticles (NPs) solution with added variable concentrations of hydrogen peroxides is exposed through near UV excitation and the detected visible fluorescent emission is found to be at 520nm, with reduced peak intensity peaks with increasing the peroxide concentrations due to static fluorescence quenching technique. The relative intensity change of the visible fluorescent emission has been reduced to more than 50% at added peroxide concentrations up to 10 wt.%. This research work could be applied further in optical sensors of radicals in biomedical engineering and environmental monitoring.

  7. Deep-Blue Fluorescent Particles via Microwave Heating of Polyacrylonitrile Dispersions.

    PubMed

    Go, Dennis; Jurásková, Alena; Hoffmann, Andreas; Kapiti, Gent; Kuehne, Alexander J C

    2017-03-01

    This study presents a new method to produce fluorescent particles. Established methods are based on the incorporation of conjugated dye molecules into dielectric polymer matrices or preparation of colloids, which are composed of fluorescent conjugated polymer. By contrast, this study presents a method where dielectric polyacrylonitrile is exposed to microwave radiation leading to an intramolecular cyclization reaction producing π-conjugated segments, which fluoresce blue. During this conversion, the particles shrink in diameter but as an ensemble they retain their monodispersity. This work investigates the optimal reaction conditions and characterizes the optical properties.

  8. Fluorescence techniques used to measure interactions between hydroxyapatite nanoparticles and epidermal growth factor receptors.

    PubMed

    Kathawala, Mustafa H; Khoo, Stella P K; Sudhaharan, Thankiah; Zhao, Xinxin; Say Chye Loo, Joachim; Ahmed, Sohail; Woei Ng, Kee

    2015-01-01

    The potential applications of nanomaterials in therapeutics are immense and to fully explore this potential, it is important to understand the interaction of nanoparticles with cellular components. To examine the interaction between nanoparticles and cell membrane receptors, this report describes the use of advanced fluorescence techniques to measure interactions between hydroxyapatite (HA) nanoparticles and epidermal growth factor receptors (EGFRs), as a model system. FITC-labelled HA nanoparticles and monomeric red fluorescent protein (mRFP)-conjugated EGFRs expressed in Chinese hamster ovary cells (CHO-K1) were generated and their interaction measured using acceptor photobleaching-fluorescence resonance energy transfer (AP-FRET) and fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer (FLIM-FRET). Results confirmed that hydroxyapatite nanoparticles not only interacted with EGFR but also attenuated downstream EGFR signalling, possibly by hindering normal dimerization of EGFR. Furthermore, the extent of signal attenuation suggested correlation with specific surface area of the nanoparticles, whereby greater specific surface area resulted in greater downstream signal attenuation. This novel demonstration establishes fluorescence techniques as a viable method to study nanoparticle interactions with proteins such as cell surface receptors. The approach described herein can be extended to study interactions between any fluorescently labelled nanoparticle-biomolecule pair.

  9. Determination of trace elements in Syrian medicinal plants and their infusions by energy dispersive X-ray fluorescence and total reflection X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Khuder, A.; Sawan, M. Kh.; Karjou, J.; Razouk, A. K.

    2009-07-01

    X-ray fluorescence (XRF) and total-reflection X-ray fluorescence (TXRF) techniques suited well for a multi-element determination of K, Ca, Mn, Fe, Cu, Zn, Rb, and Sr in some Syrian medicinal plant species. The accuracy and the precision of both techniques were verified by analyzing the Standard Reference Materials (SRM) peach-1547 and apple leaves-1515. A good agreement between the measured concentrations of the previously mentioned elements and the certified values were obtained with errors less than 10.7% for TXRF and 15.8% for XRF. The determination of Br was acceptable only by XRF with an error less than 24%. Furthermore, the XRF method showed a very good applicability for the determination of K, Ca, Mn, Fe, Cu, Zn, Rb, Sr, and Br in infusions of different Syrian medicinal plant species, namely anise ( Anisum vulgare), licorice root ( Glycyrrhiza glabra), and white wormwood ( Artemisia herba-alba).

  10. Dispersed-fluorescence spectroscopy of jet-cooled calcium ethoxide radical (CaOC2H5)

    NASA Astrophysics Data System (ADS)

    Paul, Anam C.; Reza, Md. Asmaul; Liu, Jinjun

    2016-12-01

    Dispersed fluorescence (DF) spectra of the calcium ethoxide radical (CaOC2H5) have been obtained by pumping the A˜12 A‧ ←X˜2A‧ and the A˜22 A‧‧ ←X˜2A‧ origin bands in its laser-induced fluorescence spectrum. Dominant transitions in the vibrationally resolved DF spectra are well reproduced using Franck-Condon factors predicted by complete active space self-consistent field (CASSCF) calculations. Collision-induced population transfer between the A˜12 A‧ and the A22 A‧‧ states results in additional peaks in the experimental DF spectra. Differences between the intensities of vibronic bands in the A˜12 A‧ →X˜2A‧ and the A˜22 A‧‧ →X˜2A‧ DF spectra are attributed to different symmetries of the two excited electronic states.

  11. A wavelength-dispersive instrument for characterizing fluorescence and scattering spectra of individual aerosol particles on a substrate

    NASA Astrophysics Data System (ADS)

    Huffman, Donald R.; Swanson, Benjamin E.; Huffman, J. Alex

    2016-08-01

    We describe a novel, low-cost instrument to acquire both elastic and inelastic (fluorescent) scattering spectra from individual supermicron-size particles in a multi-particle collection on a microscope slide. The principle of the device is based on a slitless spectroscope that is often employed in astronomy to determine the spectra of individual stars in a star cluster but had not been applied to atmospheric particles. Under excitation, most commonly by either a 405 nm diode laser or a UV light-emitting diode (LED), fluorescence emission spectra of many individual particles can be determined simultaneously. The instrument can also acquire elastic scattering spectra from particles illuminated by a white-light source. The technique also provides the ability to detect and rapidly estimate the number fraction of fluorescent particles that could contaminate a collection of non-fluorescent material, even without analyzing full spectra. Advantages and disadvantages of using black-and-white cameras compared to color cameras are given. The primary motivation for this work has been to develop an inexpensive technique to characterize fluorescent biological aerosol particles, especially particles such as pollen and mold spores that can cause allergies. An example of an iPhone-enabled device is also shown as a means for collecting data on biological aerosols at lower cost or by utilizing citizen scientists for expanded data collection.

  12. The infrared-ultraviolet dispersed fluorescence spectrum of acetylene: New classes of bright states

    NASA Astrophysics Data System (ADS)

    Hoshina, Kennosuke; Iwasaki, Atsushi; Yamanouchi, Kaoru; Jacobson, Matthew P.; Field, Robert W.

    2001-05-01

    Single rotational levels of ungerade vibrational levels, 2ν3'+ν6' and 3ν3'+ν6' (both with bu symmetry), in the à 1Au electronically excited state of acetylene were excited by an IR-UV double resonance scheme via the ν3″ fundamental level in the X˜ 1Σg+ state, and the rotationally resolved dispersed fluorescence (DF) spectra were recorded at 3.2-4.5 cm-1 resolution. The term values of the new ungerade levels were determined within an accuracy of 0.56 cm-1(1σ) through careful calibration achieved by frequency standard atomic Fe and Hg lines. A total of 111 new ungerade vibrational levels with Σu+, Σu-, and Δu symmetry below 10 000 cm-1 was identified in the high-resolution IR-UV-DF spectra, which provide access to new classes of X˜ 1Σg+ bright states: (i) (0,v2″,0,v4″1,1-1)Σu+, (0,v2″,0,v4″1,11)Δu, and (0,v2″,0,v4″3,1-1)Δu, which are the Franck-Condon (FC) bright levels from the nν3'+ν6' (n=2,3) levels in the à 1Au state; (ii) (0,v2″,0,v4″-1,11)Σu- levels which appear through the a-axis Corioris interaction between nν3'+ν6' and nν3'+ν4' (n=2,3) in the à 1Au state; and (iii) (0,v2″,1,v4″0,0)Σu+ and (0,v2″,1,v4″2,0)Δu levels which gain transition intensity from the Duschinsky effect associated with the bent-linear ÖX˜ transition. All observed ungerade term values and previously determined gerade and ungerade term values below 10 000 cm-1 were fitted by two effective model Hamiltonians, i.e., a pure-bend effective Hamiltonian and a stretch-bend effective Hamiltonian. The stretch-bend effective Hamiltonian is expressed in terms of 31 Dunham expansion parameters and 11 anharmonic resonance parameters associated with (i) five stretch-bend anharmonic resonances; (ii) one stretch-stretch and two bend-bend Darling-Dennison resonances; and (iii) one vibrational l resonance. The parameters in this Hamiltonian were determined from a least-squares fit of 287 vibrational term values (111 new ungerade levels, 128 levels from

  13. Particle size analysis of dispersed oil and oil-mineral aggregates with an automated ultraviolet epi-fluorescence microscopy system.

    PubMed

    Ma, X; Cogswell, A; Li, Z; Lee, K

    2008-07-01

    This paper describes recent advances in microscopic analysis for quantitative measurement of oil droplets. Integration of a microscope with bright-field and ultraviolet epi-fluorescence illumination (excitation wavelengths 340-380 nm; emission wavelengths 400-430 nm) fitted with a computer-controlled motorized stage, a high resolution digital camera, and new image-analysis software, enables automatic acquisition of multiple images and facilitates efficient counting and sizing of oil droplets. Laboratory experiments were conducted with this system to investigate the size distribution of chemically dispersed oil droplets and oil-mineral aggregates in baffled flasks that have been developed for testing chemical dispersant effectiveness. Image acquisition and data processing methods were developed to illustrate the size distribution of chemically dispersed oil droplets, as a function of energy dissipation rate in the baffled flasks, and the time-dependent change of the morphology and size distribution of oil-mineral aggregates. As a quantitative analytical tool, epifluorescence microscopy shows promise for application in research on oil spill response technologies, such as evaluating the effectiveness of chemical dispersant and characterizing the natural interaction between oil and mineral fines and other suspended particulate matters.

  14. Pigment dispersion syndrome associated with intraocular lens implantation: a new surgical technique

    PubMed Central

    Jordana, M Isabel Canut; Formigó, Daniel Pérez; González, Rodrigo Abreu; Reus, Jeroni Nadal

    2010-01-01

    Aims We report the case of a myopic patient who, after intraocular lens transplant in the posterior chamber, suffered elevated intraocular pressure due to pigment dispersion, with recurrent episodes of blurred vision. The patient was treated with a new surgical technique that can avoid potential iridolenticular contact. Methods Complete ophthalmologic examination and optical coherence tomography (OCT) of the anterior segment were performed. Results Contact between the pigmentary epithelium and the iris with an intraocular lens was revealed by utrasound biomicroscopy and OCT. In this case, Nd:YAG laser iridotomy and laser iridoplasty were not effective for iridolenticular separation and control of the pigment dispersion. We propose a new technique: stitches on the surface of the iris to obtain good iridolenticular separation and good intraocular pressure control. Conclusion Stitches on the iris surface should be considered as optional therapy in pigmentary glaucoma secondary to intraocular lens implantation. This surgical technique can avoid potential iridolenticular contacts more definitively. PMID:21151331

  15. Neutron, fluorescence, and optical imaging: An in situ combination of complementary techniques

    SciTech Connect

    Wagner, D.; Egelhaaf, S. U.; Hermes, H. E.; Börgardts, M.; Müller, T. J. J.; Grünzweig, C.; Lehmann, E.

    2015-09-15

    An apparatus which enables the simultaneous combination of three complementary imaging techniques, optical imaging, fluorescence imaging, and neutron radiography, is presented. While each individual technique can provide information on certain aspects of the sample and their time evolution, a combination of the three techniques in one setup provides a more complete and consistent data set. The setup can be used in transmission and reflection modes and thus with optically transparent as well as opaque samples. Its capabilities are illustrated with two examples. A polymer hydrogel represents a transparent sample and the diffusion of fluorescent particles into and through this polymer matrix is followed. In reflection mode, the absorption of solvent by a nile red-functionalized mesoporous silica powder and the corresponding change in fluorescent signal are studied.

  16. LIFES: Laser Induced Fluorescence and Environmental Sensing. [remote sensing technique for marine environment

    NASA Technical Reports Server (NTRS)

    Houston, W. R.; Stephenson, D. G.; Measures, R. M.

    1975-01-01

    A laboratory investigation has been conducted to evaluate the detection and identification capabilities of laser induced fluorescence as a remote sensing technique for the marine environment. The relative merits of fluorescence parameters including emission and excitation profiles, intensity and lifetime measurements are discussed in relation to the identification of specific targets of the marine environment including crude oils, refined petroleum products, fish oils and algae. Temporal profiles displaying the variation of lifetime with emission wavelength have proven to add a new dimension of specificity and simplicity to the technique.

  17. Development and evaluation of glyburide fast dissolving tablets using solid dispersion technique.

    PubMed

    Valleri, M; Mura, P; Maestrelli, F; Cirri, M; Ballerini, R

    2004-05-01

    Glyburide is a poorly water-soluble oral hypoglycemic agent, with problems of variable bioavailability and bio-inequivalence related to its poor water-solubility. This work investigated the possibility of developing glyburide tablets, allowing fast, reproducible, and complete drug dissolution, by using drug solid dispersion in polyethylene glycol. Phase-solubility studies were performed to investigate the drug-carrier interactions in solution, whereas differential scanning calorimetry, X-ray powder diffraction, and infrared spectroscopy were used to characterize the solid state of solid dispersions. The effects of several variables related to both solid dispersion preparation (cofusion or coevaporation technique, drug-to-carrier ratio, polyethylene glycol molecular weight) and tablet production (direct compression or previous wet-granulation, tablet hardness, drug, and solid dispersion particle size) on drug dissolution behavior were investigated. Tablets obtained by direct compression, with a hardness of 7-9 Kp, and containing larger sized solid dispersions (20-35 mesh, i.e., 850-500 microm) of micronized glyburide in polyethylene glycol 6000 prepared by the cofusion method gave the best results, with a 135% increase in drug dissolution efficiency at 60 min in comparison with a reference tablet formulation containing the pure micronized drug. Moreover, the glyburide dissolution profile from the newly developed tablets was clearly better than those from various commercial tablets at the same drug dosage.

  18. Time-autocorrelated two-photon counting technique for time-resolved fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Borst, Walter L.; Liu, Lin-I.

    1999-01-01

    We describe a new instrumental technique for the excitation, acquisition, and analysis of fluorescence decays from a variety of substances, in the present case plastic scintillators. The fluorescence is excited by β particles from a radioactive source (100 μCi Sr-90). A random photon from the resulting fluorescence decay provides a trigger pulse to start a time-to-amplitude converter (TAC), while another random photon from the same β-excitation event provides the stop pulse. The optical components and geometry for detecting these two photons, i.e., the two photomultipliers (PMT), the filters, and the pulse counting system, are identical. As a consequence, the measured fluorescence signal is the autocorrelation function of the fluorescence decay from the sample. A delay line of 50 ns is inserted between the "stop" signal PMT and the TAC so that those "stop" pulses which arrive before "start pulses" also are recorded. Thus the acquired fluorescence signal versus time is symmetric about the delay time and contains twice as many counts as without delay. We call the new technique the "time-autocorrelated two-photon counting technique" (TATPC) in distinction to the conventional "time-correlated single-photon counting technique" (TCSPC). We compared both techniques with the same equipment and scintillators, where in the TCSPC case, a β particle is used for the start of the TAC instead of a random photon in the TATPC technique. We find that under similar experimental circumstances, the signal count rate with TATPC is about 50 times larger than with TCSPC. The new method is well suited for obtaining fluorescence decay times from plastic scintillators, which we use in this article to exemplify the technique. More generally, β-particle excitation in combination with TATPC should prove useful for materials with high energy levels or band gaps, which cannot be excited with pulsed lasers in the visible region. The length of our excitation pulse is less than 20 ps and is

  19. Demonstration of a stabilized alumina/ethanol colloidal dispersion technique for seeding high temperature air flows

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Skoch, Gary J.; Wernet, Judith H.

    1995-01-01

    Laser anemometry enables the measurement of complex flow fields via the light scattered from small particles entrained in the flow. In the study of turbomachinery, refractory seed materials are required for seeding the flow due to the high temperatures encountered. In this work we present a pH stabilization technique commonly employed in ceramic processing to obtain stable dispersions for generating aerosols of refractory seed material. By adding submicron alumina particles to a preadjusted pH solution of ethanol, a stable dispersion is obtained which when atomized, produces a high quality aerosol. Commercial grade alumina powder is used with a moderate size distribution. Other metal oxide powders in various polar solvents could also be used once the point of zero charge (pH(pzc)) of the powder in the solvent has been determined. Laser anemometry measurements obtained using the new seeding technique are compared to measurements obtained using Polystyrene Latex (PSL) spheres as the seed material.

  20. Determination of multiple phytohormones in fruits by high-performance liquid chromatography with fluorescence detection using dispersive liquid-liquid microextraction followed by precolumn fluorescent labeling.

    PubMed

    Li, Guoliang; Lu, Shuaimin; Wu, Hongliang; Chen, Guang; Liu, Shucheng; Kong, Xiaojian; Kong, Weiheng; You, Jinmao

    2015-01-01

    Plant hormone determination in food matrices has attracted more and more attention because of their potential risks to human health. However, analytical methods for the analysis of multiple plant hormones remain poorly investigated. In the present study, a convenient, selective, and ultrasensitive high-performance liquid chromatography method for the simultaneous determination of multiple classes of plant hormones has been developed successfully using dispersive liquid-liquid microextraction followed by precolumn fluorescent labeling. Eight plant hormones in fruits including jasmonic acid, 12-oxo-phytodienoic acid, indole-3-acetic acid, 3-indolybutyric acid, 3-indolepropionic acid, gibberellin A3 , 1-naphthylacetic acid, and 2-naphthaleneacetic acid were analyzed by this method. The conditions employed for dispersive liquid-liquid microextraction were optimized systematically. The linearity for all plant hormones was found to be >0.9993 (R(2) values). This method offered low detection limits of 0.19-0.44 ng/mL (at a signal-to-noise ratio of 3), and method accuracies were in the range of 92.32-103.10%. The proposed method was applied to determine plant hormones in five kinds of food samples, and this method can achieve a short analysis time, low threshold levels of detection, and a high specificity for the analysis of targeted plant hormones present at trace level concentrations in complex matrices.

  1. Translational diffusion of probe molecules under high pressure: A study by fluorescence recovery after photobleaching technique

    NASA Astrophysics Data System (ADS)

    Bonetti, Marco; Roger, Michel

    2013-02-01

    We present fluorescence recovery measurements after photobleaching performed under high pressure in liquids that fill square-section fused silica micro-capillaries. These micro-capillaries withstand pressure up to 2500 bar for a wall thickness of about 140 μm and fit easily on the microscope stage. This technique allows the translational diffusion coefficient of fluorescent molecules in liquids to be measured as a function of pressure. When the liquid sample is far from its glass transition the translational diffusive coefficient is in agreement with the Stokes-Einstein equation. As the glass transition is approached by further increasing the pressure, decoupling of the measured diffusion coefficient from the Stokes-Einstein relation is observed. These are the first measurements that combine the fluorescence recovery technique and high hydrostatic pressures. This experimental setup can also be used either with diamond or sapphire anvil cells in order to span a larger pressure range.

  2. Synthesis of bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles

    PubMed Central

    Li, Xue-Mei; Liu, Hong-Ling; Liu, Xiao; Fang, Ning; Wang, Xian-Hong; Wu, Jun-Hua

    2015-01-01

    Bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles were synthesized by a modified nanoemulsion process using poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO) as the surfactant. The morphology and crystal structure of the nanoparticles were studied by TEM/HRTEM and XRD. The nanoparticles manifest soft ferromagnetic and/or near superparamagnetic behavior with a small coercivity of ~19 Oe at room temperature. The corresponding magnetic hysteresis curves were elucidated by the modified Langevin equation. The FTIR study confirms the PEO-PPO-PEO molecules on the surface of the nanoparticles. The UV-vis and PL results reveal the well-behaved absorption bands including surface plasmon resonance and multiple visible fingerprint photoluminescent emissions of the nanoparticles dispersed in both hydrophilic and hydrophobic solvents. Moreover, the processes of solvent dispersion-collection of the nanoparticles were demonstrated for application readiness of such core-shell nanostructures. PMID:26548369

  3. Synthesis of bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Xue-Mei; Liu, Hong-Ling; Liu, Xiao; Fang, Ning; Wang, Xian-Hong; Wu, Jun-Hua

    2015-11-01

    Bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles were synthesized by a modified nanoemulsion process using poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO) as the surfactant. The morphology and crystal structure of the nanoparticles were studied by TEM/HRTEM and XRD. The nanoparticles manifest soft ferromagnetic and/or near superparamagnetic behavior with a small coercivity of ~19 Oe at room temperature. The corresponding magnetic hysteresis curves were elucidated by the modified Langevin equation. The FTIR study confirms the PEO-PPO-PEO molecules on the surface of the nanoparticles. The UV-vis and PL results reveal the well-behaved absorption bands including surface plasmon resonance and multiple visible fingerprint photoluminescent emissions of the nanoparticles dispersed in both hydrophilic and hydrophobic solvents. Moreover, the processes of solvent dispersion-collection of the nanoparticles were demonstrated for application readiness of such core-shell nanostructures.

  4. Direct fluorescent antibody technique for the detection of bacterial kidney disease in paraffin-embedded tissues

    USGS Publications Warehouse

    Ochiai, T.; Yasutake, W.T.; Gould, R.W.

    1985-01-01

    The direct fluorescent antibody technique (FAT) was successfully used to detect the causative agent of bacterial kidney disease (BKD), Renibacterium salmoninarum, in Bouin's solution flexed and paraffinembedded egg and tissue sections. This method is superior to gram stain and may be particularly useful in detecting the BKD organism in fish with low-grade infection.

  5. 9 CFR 113.47 - Detection of extraneous viruses by the fluorescent antibody technique.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... fluorescent antibody technique. 113.47 Section 113.47 Animals and Animal Products ANIMAL AND PLANT HEALTH... or in a filed Outline of Production for a product. (a) Monolayer cultures of cells (monolayers), at... shall be the “material under test.” (iii) One group of monolayers, that are of the same type of cells...

  6. 9 CFR 113.47 - Detection of extraneous viruses by the fluorescent antibody technique.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... fluorescent antibody technique. 113.47 Section 113.47 Animals and Animal Products ANIMAL AND PLANT HEALTH... or in a filed Outline of Production for a product. (a) Monolayer cultures of cells (monolayers), at... shall be the “material under test.” (iii) One group of monolayers, that are of the same type of cells...

  7. 9 CFR 113.47 - Detection of extraneous viruses by the fluorescent antibody technique.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... fluorescent antibody technique. 113.47 Section 113.47 Animals and Animal Products ANIMAL AND PLANT HEALTH... or in a filed Outline of Production for a product. (a) Monolayer cultures of cells (monolayers), at... shall be the “material under test.” (iii) One group of monolayers, that are of the same type of cells...

  8. 9 CFR 113.47 - Detection of extraneous viruses by the fluorescent antibody technique.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Detection of extraneous viruses by the fluorescent antibody technique. 113.47 Section 113.47 Animals and Animal Products ANIMAL AND PLANT HEALTH... or in a filed Outline of Production for a product. (a) Monolayer cultures of cells (monolayers),...

  9. The application of a microstrip gas counter to energy-dispersive x-ray fluorescence analysis

    SciTech Connect

    Veloso, J.F.C.A.; Santos, J.M.F. dos; Conde, C.A.N.; Morgado, R.E.

    1996-07-01

    Performance characteristics of a microstrip gas counter operated as a x-ray fluorescence spectrometer are reported. Gas amplification as a function of microstrip anode-cathode voltage was measured, and the breakdown threshold voltage was determined in pure xenon. The detector temporal stability and the effect of gas purity were assessed. Energy resolution and linearity, detection efficiency, and uniformity of spatial response in the 2- to 60-keV x-ray energy range were determined from the pulse-height distributions of the fluorescence x-ray spectra induced in a variety of single- and multi-element sample materials. Energy resolution similar to conventional proportional counters was achieved at 6 keV.

  10. Fluorescence polarization of tetracycline derivatives as a technique for mapping nonmelanoma skin cancers.

    PubMed

    Yaroslavsky, Anna N; Salomatina, Elena V; Neel, Victor; Anderson, Rox; Flotte, Thomas

    2007-01-01

    Nonmelanoma skin cancer is the most common form of human cancer, often resulting in high morbidity. Low visual contrast of these tumors makes their delineation a challenging problem. Employing a linearly polarized monochromatic light source and a wide-field CCD camera, we have developed a technique for fluorescence polarization imaging of the nonmelanoma cancers stained using antibiotics from the tetracycline family. To determine the feasibility of the method, fluorescence polarization images of 86 thick, fresh cancer excisions were studied. We found that the level of endogenous fluorescence polarization was much lower than that of exogenous, and that the average values of fluorescence polarization of tetracycline derivatives were significantly higher in cancerous as compared to normal tissue. Out of 86 tumors [54 stained in demeclocycline (DMN) and 32 in tetracycline (TCN)], in 79 cases (51-DMN, 28-TCN) the location, size, and shape of the lesions were identified accurately. The results of this trial indicate that nonmelanoma skin tumors can be distinguished from healthy tissue based on the differences in exogenous fluorescence polarization of TCN and/or DMN. Therefore, the developed technique can provide an important new tool for image-guided cancer surgery.

  11. Enhancement of carvedilol solubility by solid dispersion technique using cyclodextrins, water soluble polymers and hydroxyl acid.

    PubMed

    Yuvaraja, K; Khanam, Jasmina

    2014-08-05

    Aim of the present work is to enhance aqueous solubility of carvedilol (CV) by solid dispersion technique using wide variety of carriers such as: β-cyclodextrin (βCD), hydroxypropyl-β-cyclodextrin (HPβCD), tartaric acid (TA), polyvinyl pyrrolidone K-30 (PVP K-30) and poloxamer-407 (PLX-407). Various products of 'CV-solid dispersion' had been studied extensively in various pH conditions to check enhancement of solubility and dissolution characteristics of carvedilol. Any physical change upon interaction between CV and carriers was confirmed by instrumental analysis: XRD, DSC, FTIR and SEM. Negative change of Gibb's free energy and complexation constants (Kc, 75-240M(-1), for cyclodextrins and 1111-20,365M(-1), for PVP K-30 and PLX-407) were the evidence of stable nature of the binding between CV and carriers. 'Solubility enhancement factor' of ionized-CV was found high enough (340 times) with HPβCD in presence of TA. TA increases the binding efficiency of cyclodextrin and changing the pH of microenvironment in dissolution medium. In addition, ionization process was used to increase the apparent intrinsic solubility of drug. In vitro, dissolution time of CV was remarkably reduced in the solid dispersion system compared to that of pure drug. This may be attributed to increased wettability, dispersing ability and transformation of crystalline state of drug to amorphous one.

  12. Dissolution Improvement of Atorvastatin Calcium using Modified Locust Bean Gum by the Solid Dispersion Technique.

    PubMed

    Panghal, Dharmila; Nagpal, Manju; Thakur, Gurjeet Singh; Arora, Sandeep

    2014-01-01

    The present research was aimed at the enhancement of the dissolution rate of atorvastatin calcium by the solid dispersion technique using modified locust bean gum. Solid dispersions (SD) using modified locust bean gum were prepared by the modified solvent evaporation method. Other mixtures were also prepared by physical mixing, co-grinding, and the kneading method. The locust bean gum was subjected to heat for modification. The prepared solid dispersions and other mixtures were evaluated for equilibrium solubility studies, content uniformity, FTIR, DSC, XRD, in vitro drug release, and in vivo pharmacodynamic studies. The equilibrium solubility was enhanced in the solid dispersions (in a drug:polymer ratio of 1:6) and other mixtures such as the co-grinding mixture (CGM) and kneading mixture (KM). Maximum dissolution rate was observed in the solid dispersion batch SD3 (i.e. 50% within 15 min) with maximum drug release after 2 h (80%) out of all solid dispersions. The co-grinding mixture also exhibited a significant enhancement in the dissolution rate among the other mixtures. FTIR studies revealed the absence of drug-polymer interaction in the solid dispersions. Minor shifts in the endothermic peaks of the DSC thermograms of SD3 and CGM indicated slight changes in drug crystallinity. XRD studies further confirmed the results of DSC and FTIR. Topological changes were observed in SEM images of SD3 and CGM. In vivo pharmacodynamic studies indicated an improved efficacy of the optimized batch SD3 as compared to the pure drug at a dose of 3 mg/kg/day. Modified locust bean gum can be a promising carrier for solubility enhancement of poorly water-soluble drugs. The lower viscosity and wetting ability of MLBG, reduction in particle size, and decreased crystallinity of the drug are responsible for the dissolution enhancement of atorvastatin. The co-grinding mixture can be a good alternative to solid dispersions prepared by modified solvent evaporation due to its ease of

  13. Analysis of trace elements during different developmental stages of somatic embryogenesis in Plantago ovata Forssk using energy dispersive X-ray fluorescence.

    PubMed

    Saha, Priyanka; Raychaudhuri, Sarmistha Sen; Sudarshan, Mathummal; Chakraborty, Anindita

    2010-06-01

    Energy dispersive X-ray fluorescence (ED-XRF) technique has been used for the determination of trace element profile during different developmental stages of somatic embryogenic callus of an economically important medicinal plant, Plantago ovata Forssk. Somatic embryogenesis is a plant tissue culture-based technique, which is used for plant regeneration and crop improvement. In the present investigation, elemental content was analysed using ED-XRF technique during different developmental stages and also determine the effect of additives--casein hydrolysate and coconut water on the trace elemental profile of embryogenic callus tissue of P. ovata. Subsequent experiments showed significant alteration in the concentration of K, Ca, Mn, Fe, Zn, Cu, Br, and Sr in both the embryogenic and non-embryogenic callus. Higher K, Ca, Fe, Cu, and Zn accumulation was in embryogenic tissue stage compared to other stages, suggesting these elements are crucial for successful embryogenesis. The results suggest that this information could be useful for formulating a media for in vitro embryo induction of P. ovata.

  14. Analysis of heterogeneous gallstones using laser-induced breakdown spectroscopy (LIBS) and wavelength dispersive X-ray fluorescence (WD-XRF).

    PubMed

    Jaswal, Brij Bir S; Kumar, Vinay; Sharma, Jitendra; Rai, Pradeep K; Gondal, Mohammed A; Gondal, Bilal; Singh, Vivek K

    2016-04-01

    Laser-induced breakdown spectroscopy (LIBS) is an emerging analytical technique with numerous advantages such as rapidity, multi-elemental analysis, no specific sample preparation requirements, non-destructiveness, and versatility. It has been proven to be a robust elemental analysis tool attracting interest because of being applied to a wide range of materials including biomaterials. In this paper, we have performed spectroscopic studies on gallstones which are heterogeneous in nature using LIBS and wavelength dispersive X-ray fluorescence (WD-XRF) techniques. It has been observed that the presence and relative concentrations of trace elements in different kind of gallstones (cholesterol and pigment gallstones) can easily be determined using LIBS technique. From the experiments carried out on gallstones for trace elemental mapping and detection, it was found that LIBS is a robust tool for such biomedical applications. The stone samples studied in the present paper were classified using the Fourier transform infrared (FTIR) spectroscopy. WD-XRF spectroscopy has been applied for the qualitative and quantitative analysis of major and trace elements present in the gallstone which was compared with the LIBS data. The results obtained in the present paper show interesting prospects for LIBS and WD-XRF to study cholelithiasis better.

  15. Molecular imaging with optics: primer and case for near-infrared fluorescence techniques in personalized medicine.

    PubMed

    Sevick-Muraca, Eva M; Rasmussen, John C

    2008-01-01

    We compare and contrast the development of optical molecular imaging techniques with nuclear medicine with a didactic emphasis for initiating readers into the field of molecular imaging. The nuclear imaging techniques of gamma scintigraphy, single-photon emission computed tomography, and positron emission tomography are first briefly reviewed. The molecular optical imaging techniques of bioluminescence and fluorescence using gene reporter/probes and gene reporters are described prior to introducing the governing factors of autofluorescence and excitation light leakage. The use of dual-labeled, near-infrared excitable and radio-labeled agents are described with comparative measurements between planar fluorescence and nuclear molecular imaging. The concept of time-independent and -dependent measurements is described with emphasis on integrating time-dependent measurements made in the frequency domain for 3-D tomography. Finally, we comment on the challenges and progress for translating near-infrared (NIR) molecular imaging agents for personalized medicine.

  16. Dendrochemical patterns of calcium, zinc, and potassium related to internal factors detected by energy dispersive X-ray fluorescence (EDXRF)

    USGS Publications Warehouse

    Smith, Kevin T.; Balouet, Jean Christophe; Shortle, Walter C.; Chalot, Michel; Beaujard, François; Grudd, Håkan; Vroblesky, Don A.; Burkem, Joel G.

    2014-01-01

    Energy dispersive X-ray fluorescence (EDXRF) provides highly sensitive and precise spatial resolution of cation content in individual annual growth rings in trees. The sensitivity and precision have prompted successful applications to forensic dendrochemistry and the timing of environmental releases of contaminants. These applications have highlighted the need to distinguish dendrochemical effects of internal processes from environmental contamination. Calcium, potassium, and zinc are three marker cations that illustrate the influence of these processes. We found changes in cation chemistry in tree rings potentially due to biomineralization, development of cracks or checks, heartwood/sapwood differentiation, intra-annual processes, and compartmentalization of infection. Distinguishing internal from external processes that affect dendrochemistry will enhance the value of EDXRF for both physiological and forensic investigations.

  17. [Line scanning analysis of white porcelain from Gong Kiln in early Tang dynasty by energy disperse X-ray fluorescence].

    PubMed

    Ling, Xue; Mao, Zhen-wei; Feng, Min; Hu, Yao-wu; Wang, Chang-sui; Liu, Hong-miao

    2005-07-01

    Gong kiln, for its long porcelain-firing history, was one of three representative white porcelain kilns in northern China. In order to improve the quality and whiteness of white porcelain, a decorating layer or cosmetic earth was laid on the body surface in Gong kiln during early Tang dynasty, which was able to blot out rough surface and weaken the influence of fuscous body upon surface color. In this paper the main chemical composition of the white porcelain's profile was analyzed by using energy disperse X-Ray fluorescence. The result showed that different materials were used as cosmetic earth during early Tang dynasty, in accordance with the phenomenon under optical microscope. In addition, the glaze belongs to calcium glaze in which plant ash was added.

  18. Energy-dispersive X-ray fluorescence analysis of moss and soil from abandoned mining of Pb-Zn ores.

    PubMed

    Koz, B

    2014-09-01

    This research investigates heavy metal pollution around one of the most important mining areas in Turkey, the Sebinkarahisar (Giresun) lead-zinc mining, by means of analyzing moss and soil samples collected in the neighborhood of the copper mining at different distances. Energy dispersive X-ray fluorescence spectrometry (Epsilon 5, PANalytical, Almelo, The Netherlands) is utilized in the experiments. The results have indicated that the both moss and soil samples contain aluminum, vanadium, chromium, manganese, iron, nickel, copper, zinc, arsenic, barium, cerium, tungsten, and lead. The comparison of the heavy metal concentrations with the typical measurements in the world and with the limit values for the human health has revealed the critical heavy metal pollution levels in the region. The possible consequences of these results are briefly discussed from the point of potential hazards to ecology and human health.

  19. Remote sensing of OH in the atmosphere using the technique of laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Wang, C. C.

    1983-01-01

    The use of a laser-induced fluorescence technique for the sensitive measurement of the atmospheric hydroxyl radical is discussed. Results of laboratory studies of the fluorescence and other spectroscopic properties of OH which allow the calculation of OH concentrations from the returned signals for various altitudes, water vapor contents and temperatures are presented. The experimental setup used for airborne OH measurements is then described, with particular attention given to the use of a telescope for excitation and light collection in a coaxial configuration and the periodic tuning of the exciting radiation necessary to obtain an OH signal in the presence of strong solar and nonresonant fluorescence backgrounds. The best detection limit obtained to date with the system is noted to be about 700,000 OH/cu cm, and it is expected that, with planned improvements in detection and tuning schemes, limits in the neighborhood of 1,000,000 OH/cu cm will be achieved routinely.

  20. Fluorescence measurements for evaluating the application of multivariate analysis techniques to optically thick environments.

    SciTech Connect

    Reichardt, Thomas A.; Timlin, Jerilyn Ann; Jones, Howland D. T.; Sickafoose, Shane M.; Schmitt, Randal L.

    2010-09-01

    Laser-induced fluorescence measurements of cuvette-contained laser dye mixtures are made for evaluation of multivariate analysis techniques to optically thick environments. Nine mixtures of Coumarin 500 and Rhodamine 610 are analyzed, as well as the pure dyes. For each sample, the cuvette is positioned on a two-axis translation stage to allow the interrogation at different spatial locations, allowing the examination of both primary (absorption of the laser light) and secondary (absorption of the fluorescence) inner filter effects. In addition to these expected inner filter effects, we find evidence that a portion of the absorbed fluorescence is re-emitted. A total of 688 spectra are acquired for the evaluation of multivariate analysis approaches to account for nonlinear effects.

  1. Novel, in-situ Raman and fluorescence measurement techniques: Imaging using optical waveguides

    NASA Astrophysics Data System (ADS)

    Carter, Jerry Chance

    The following dissertation describes the development of methods for performing standoff and in- situ Raman and fluorescence spectroscopy for chemical imaging and non-imaging analytical applications. The use of Raman spectroscopy for the in- situ identification of crack cocaine and cocaine.HCl using a fiberoptic Raman probe and a portable Raman spectrograph has been demonstrated. We show that the Raman spectra of both forms of cocaine are easily distinguishable from common cutting agents and impurities such as benzocaine and lidocaine. We have also demonstrated the use of Raman spectroscopy for in-situ identification of drugs separated by thin layer chromatography. We have investigated the use of small, transportable, Raman systems for standoff Raman spectroscopy (e.g. <20 m). For this work, acousto-optical (AOTF) and liquid crystal tunable filters (LCTF) are being used both with, and in place of dispersive spectrographs and fixed filtering devices. In addition, we improved the flexibility of the system by the use of a modified holographic fiber-optic probe for light and image collection. A comparison of tunable filter technologies for standoff Raman imaging is discussed along with the merits of image transfer devices using small diameter image guides. A standoff Raman imaging system has been developed that utilizes a unique polymer collection mirror. The techniques used to produce these mirrors make it easy to design low f/# polymer mirrors. The performance of a low f/# polymer mirror system for standoff Raman chemical imaging has been demonstrated and evaluated. We have also demonstrated remote Raman hyperspectral imaging using a dimension-reduction, 2-dimensional (2-D) to 1-dimensional (1-D), fiber optic array. In these studies, a modified holographic fiber-optic probe was combined with the dimension-reduction fiber array for remote Raman imaging. The utility of this setup for standoff Raman imaging is demonstrated by monitoring the polymerization of

  2. Dispersed-Fluorescence Spectroscopy of Jet-Cooled Calcium Ethoxide Radical (CaOC_2H_5)

    NASA Astrophysics Data System (ADS)

    Paul, Anam C.; Reza, Md Asmaul; Liu, Jinjun

    2016-06-01

    Metal-containing free radicals are important intermediates in metal-surface reactions and in the interaction between metals and organic molecules. In the present work, dispersed fluorescence (DF) spectra of the calcium ethoxide radical (CaOC_2H_5) have been obtained by pumping the {tilde A^2}{A}' ← {tilde X^2}{A}' and the {tilde B^2}{A}'' ← {tilde X^2}{A}' origin bands in its laser-induced fluorescence (LIF) spectrum. CaOC_2H_5 radicals were produced by 1064 nm laser ablation of calcium grains in the presence of ethanol under jet-cooled conditions. Dominant transitions in the vibrationally resolved DF spectra are well reproduced using Franck-Condon factors predicted by complete active space self-consistent (CASSCF) calculations. Differences in transition intensities between the {tilde A^2}{A}' → {tilde X^2}{A}' and the {tilde B^2}{A}'' → {tilde X^2}{A}' DF spectra are attributed to the pseudo-Jahn-Teller interaction between the tilde A ^2 A' and the tilde B ^2 A'' states. Collision-induced population transfer between these two excited electronic states results in additional peaks in the DF spectra.

  3. A new chromosome fluorescence banding technique combining DAPI staining with image analysis in plants.

    PubMed

    Liu, Jing Yu; She, Chao Wen; Hu, Zhong Li; Xiong, Zhi Yong; Liu, Li Hua; Song, Yun Chun

    2004-08-01

    In this study, a new chromosome fluorescence banding technique was developed in plants. The technique combined 4',6-diamidino-2-phenylindole (DAPI) staining with software analysis including three-dimensional imaging after deconvolution. Clear multiple and adjacent DAPI bands like G-bands were obtained by this technique in the tested species including Hordeum vulgare L., Oryza officinalis, Wall & Watt, Triticum aestivum L., Lilium brownii, Brown, and Vicia faba L. During mitotic metaphase, the numbers of bands for the haploid genomes of these species were about 185, 141, 309, 456 and 194, respectively. Reproducibility analysis demonstrated that banding patterns within a species were stable at the same mitotic stage and they could be used for identifying specific chromosomes and chromosome regions. The band number fluctuated: the earlier the mitotic stage, the greater the number of bands. The technique enables genes to be mapped onto specific band regions of the chromosomes by only one fluorescence in situ hybridisation (FISH) step with no chemical banding treatments. In this study, the 45S and 5S rDNAs of some tested species were located on specific band regions of specific chromosomes and they were all positioned at the interbands with the new technique. Because no chemical banding treatment was used, the banding patterns displayed by the technique should reflect the natural conformational features of chromatin. Thus it could be expected that this technique should be suitable for all eukaryotes and would have widespread utility in chromosomal structure analysis and physical mapping of genes.

  4. A laser induced fluorescence technique for quantifying transient liquid fuel films utilising total internal reflection

    NASA Astrophysics Data System (ADS)

    Alonso, Mario; Kay, Peter J.; Bowen, Phil J.; Gilchrist, Robert; Sapsford, Steve

    2010-01-01

    This paper describes the development of a laser induced fluorescence (LIF) technique to quantify the thickness and spatial distribution of transient liquid fuel films formed as a result of spray-wall interaction. The LIF technique relies on the principle that upon excitation by laser radiation the intensity of the fluorescent signal from a tracer like 3-pentanone is proportional to the film thickness. A binary solution of 10% (v/v) of 3-pentanone in iso-octane is used as a test fuel with a Nd:YAG laser as the excitation light source (utilising the fourth harmonic at wavelength 266 nm) and an intensified CCD camera is used to record the results as fluorescent images. The propagation of the excitation laser beam through the optical piston is carefully controlled by total internal reflection so that only the fuel film is excited and not the airborne droplets above the film, which had been previously shown to induce significant error. Other known sources of error are also carefully minimised. Calibrated temporally resolved benchmark results of a transient spray from a gasoline direct injector impinging on a flat quartz crown under atmospheric conditions are presented, with observations and discussion of the transient development of the fuel film. The calibrated measurements are consistent with previous studies of this event and demonstrate the applicability of the technique particularly for appraisal of CFD predictions. The potential utilisation of the technique under typical elevated ambient conditions is commented upon.

  5. Human platelet antigen genotyping using a fluorescent SSCP technique with an automatic sequencer.

    PubMed

    Quintanar, A; Jallu, V; Legros, Y; Kaplan, C

    1998-11-01

    The typing of human platelet antigens (HPA) can be useful in many clinical situations such as neonatal alloimmune thrombocytopenia, post-transfusion purpura, and platelet transfusion refractoriness. The fluorescent-based single-strand conformation polymorphism (F-SSCP) technique is a fast and convenient way to perform HPA genotyping. Universal sequences from phage M13 were introduced at both ends of specific PCR-products by using 5'-tailed primers. A short second round of PCR with universal primers coupled to Cy-5 enabled the PCR-products to be fluorescently labelled. F-SSCP was performed by gel electrophoresis on an automated fluorescent DNA analyser. Genotyping of the three major HPA systems carried by the GP IIb-IIIa complex showed the F-SSCP technique to be accurate and reliable. A single gel procedure has been sufficient to detect HPA genetic polymorphisms tested to date. Neither restriction enzyme, radioactive material, nor any other hazardous chemicals such as ethidium bromide were required. This technique enabled us to genotype HPA-1, -3 and -4 alleles easily and to diagnose materno-fetal incompatibility in a rare alloantigenic system. F-SSCP is a promising technique for the detection of new mutations and/or DNA polymorphisms on a large scale.

  6. Techniques for fluorescence detection of protoporphyrin IX in skin cancers associated with photodynamic therapy

    PubMed Central

    Rollakanti, Kishore R.; Kanick, Stephen C.; Davis, Scott C.; Pogue, Brian W.

    2014-01-01

    Photodynamic therapy (PDT) is a treatment modality that uses a specific photosensitizing agent, molecular oxygen, and light of a particular wavelength to kill cells targeted by the therapy. Topically administered aminolevulinic acid (ALA) is widely used to effectively treat cancerous and precancerous skin lesions, resulting in targeted tissue damage and little to no scarring. The targeting aspect of the treatment arises from the fact that ALA is preferentially converted into protoporphyrin IX (PpIX) in neoplastic cells. To monitor the amount of PpIX in tissues, techniques have been developed to measure PpIX-specific fluorescence, which provides information useful for monitoring the abundance and location of the photosensitizer before and during the illumination phase of PDT. This review summarizes the current state of these fluorescence detection techniques. Non-invasive devices are available for point measurements, or for wide-field optical imaging, to enable monitoring of PpIX in superficial tissues. To gain access to information at greater tissue depths, multi-modal techniques are being developed which combine fluorescent measurements with ultrasound or optical coherence tomography, or with microscopic techniques such as confocal or multiphoton approaches. The tools available at present, and newer devices under development, offer the promise of better enabling clinicians to inform and guide PDT treatment planning, thereby optimizing therapeutic outcomes for patients. PMID:25599015

  7. Evaluation on the stability of Hg in ABS disk CRM during measurements by wavelength dispersive X-ray fluorescence spectrometry.

    PubMed

    Ohata, Masaki; Kidokoro, Toshihiro; Hioki, Akiharu

    2012-01-01

    The stability of Hg in an acrylonitrile-butadiene-styrene disk certified reference material (ABS disk CRM, NMIJ CRM 8116-a) during measurements by wavelength dispersion X-ray fluorescence (WD-XRF) analysis was evaluated in this study. The XRF intensities of Hg (L(α)) and Pb (L(α)) as well as the XRF intensity ratios of Hg (L(α))/Pb (L(α)) observed under different X-ray tube current conditions as well as their irradiation time were examined to evaluate the stability of Hg in the ABS disk CRM. The observed XRF intensities and the XRF intensity ratios for up to 32 h of measurements under 80 mA of X-ray tube current condition were constant, even though the surface of the ABS disk CRM was charred by the X-ray irradiation with high current for a long time. Moreover, the measurements on Hg and Pb in the charred disks by an energy dispersive XRF (ED-XRF) spectrometer showed constant XRF intensity ratios of Hg (L(α))/Pb (L(α)). From these results, Hg in the ABS disk CRM was evaluated to be sufficiently stable for XRF analysis.

  8. Luminescence techniques and characterization of the morphology of polymer latices. 3. An investigation of the microenvironments within stabilized aqueous latex dispersions of poly(n-butyl methacrylate) and polyurethane.

    PubMed

    Soutar, I; Swanson, L; Annable, T; Padget, J C; Satgurunathan, R

    2006-06-20

    Fluorescence techniques (including time-resolved anisotropy measurements, TRAMS) have been used to probe differences in morphology between two stabilized aqueous latex dispersions (poly(n-butyl methacrylate), PBMA, and polyurethane, PU). Use of the emission characteristics of probes such as pyrene and phenanthrene dispersed within particles reveals that the PU latices are more heterogeneous in nature: evidence exists, particularly from quenching measurements and TRAMS, that voids and channels of water permeate the PU structure, resulting in a relatively soft, open particle, swollen by ingress of the bulk aqueous phase. Fluorescence measurements indicate that PBMA colloids, however, are composed of relatively hard, hydrophobic particles. In addition, TRAMS are considered to be a valuable tool both for probing the morphological characteristics of such dispersions and in estimating the average particle size.

  9. TWO EFFICIENT, NEW TECHNIQUES FOR DETECTING DISPERSED RADIO PULSES WITH INTERFEROMETERS: THE CHIRPOLATOR AND THE CHIMAGEATOR

    SciTech Connect

    Bannister, K. W.; Cornwell, T. J.

    2011-10-01

    Searching for dispersed radio pulses in interferometric data is of great scientific interest, but poses a formidable computational burden. Here, we present two efficient, new antenna-coherent solutions: The Chirpolator and The Chimageator. We describe the equations governing both techniques and propose a number of novel optimizations. We compare the implementation costs of our techniques with classical methods using three criteria: the operation rates (1) before and (2) after the integrate-and-dump stage, and (3) the data rate directly after the integrate-and-dump stage. When compared with classical methods, our techniques excel in the regime of sparse arrays, where they both require substantially lower data rates, and The Chirpolator requires a much lower post-integrator operation rate. In general, our techniques require more pre-integrator operations than the classical ones. We argue that the data and operation rates required by our techniques are better matched to future supercomputer architectures, where the arithmetic capability is outstripping the bandwidth capability. Our techniques are, therefore, viable candidates for deploying on future interferometers such as the Square Kilometer Array.

  10. Effect of substrates on naproxen-polyvinylpyrrolidone solid dispersions formed via the drop printing technique.

    PubMed

    Hsu, Hsin-Yun; Toth, Scott J; Simpson, Garth J; Taylor, Lynne S; Harris, Michael T

    2013-02-01

    Solid dispersions have been used to improve the bioavailability of poorly water-soluble drugs. However, drug solid-state phase, compositional uniformity, and scale-up problems are issues that need to be addressed. To allow for highly controllable products, the drop printing (DP) technique can provide precise dosages and predictable compositional uniformity of active pharmaceutical ingredients in two-/three-dimensional structures when integrated with edible substrates. With different preparation conditions, DP was conducted to fabricate naproxen (NAP)-polyvinylpyrrolidone solid dispersions with chitosan and hydroxypropyl methylcellulose films as the substrate. Scanning electron microscopy, X-ray diffraction, second harmonic generation microscopy, and atomic force microscopy analyses were performed to characterize the microstructure and spatial distribution of NAP in the solid dispersions. The results identified that composition, temperature, and substrate type all had an impact on morphology and crystallization of samples. The surface energy approach was combined with classical nucleation theory to evaluate the affinity between the nucleus of NAP and substrates. Finally, the collective results of the drug were correlated to the release profile of NAP within each sample.

  11. Gradient measurement technique to identify phase transitions in nano-dispersed liquid crystalline compounds

    NASA Astrophysics Data System (ADS)

    Pardhasaradhi, P.; Madhav, B. T. P.; Venugopala Rao, M.; Manepalli, R. K. N. R.; Pisipati, V. G. K. M.

    2016-09-01

    Characterization and phase transitions in pure and 0.5% BaTiO3 nano-dispersed liquid crystalline (LC) N-(p-n-heptyloxybenzylidene)-p-n-nonyloxy aniline, 7O.O9, com-pounds are carried out using a polarizing microscope attached with hot stage and camera. We observed that when any of these images are distorted, different local structures suffer from various degradations in a gradient magnitude. So, we examined the pixel-wise gradient magnitude similarity between the reference and distorted images combined with a novel pooling strategy - the standard deviation of the GMS map - to determine the overall phase transition variations. In this regard, MATLAB software is used for gradient measurement technique to identify the phase transitions and transition temperature of the pure and nano-dispersed LC compounds. The image analysis of this method proposed is in good agreement with the standard methods like polarizing microscope (POM) and differential scanning calorimeter (DSC). 0.5% BaTiO3 nano-dispersed 7O.O9 compound induces cholesteric phase quenching the nematic phase, which the pure compound exhibits.

  12. A Study of the Effect of Surfactants on the Aggregation Behavior of Crude Oil Aqueous Dispersions through Steady-State Fluorescence Spectrometry.

    PubMed

    Vallejo-Cardona, Alba A; Cerón-Camacho, Ricardo; Karamath, James R; Martínez-Palou, Rafael; Aburto, Jorge

    2017-01-01

    Unconventional crude oil as heavy, extra heavy, bitumen, tight, and shale oils will meet 10% of worldwide needs for 2035, perhaps earlier. Petroleum companies will face problems concerning crude oil extraction, production, transport, and refining, and some of these are addressed by the use of surfactants and other chemicals. For example, water-in-crude oil emulsions are frequently found during the production of mature wells where enhanced recovery techniques have been deployed. Nevertheless, the selection of adequate surfactant, dosage, type of water (sea, tap or oilfield), kind of crude oil (light, heavy, extra heavy, tight, shale, bitumen) affect the effectivity of treatment and usual bottle tests give limited information. We developed a fluorescence technique to study the effect of surfactants on medium, heavy, and extra heavy crude oil employing the natural fluorophore molecules from petroleum. We first carried out the characterization of commercial and synthetic surfactants, then dispersions of petroleum in water were studied by steady-state fluorometry and the size of petroleum aggregates were measured. The aggregation of petroleum incremented from medium to extra heavy crude oil and we discussed the effect of different surfactants on such aggregation.

  13. Coal liquefaction process streams characterization and evaluation. Novel analytical techniques for coal liquefaction: Fluorescence microscopy

    SciTech Connect

    Rathbone, R.F.; Hower, J.C.; Derbyshire, F.J.

    1991-10-01

    This study demonstrated the feasibility of using fluorescence and reflectance microscopy techniques for the examination of distillation resid materials derived from direct coal liquefaction. Resid, as defined here, is the 850{degrees}F{sup +} portion of the process stream, and includes soluble organics, insoluble organics and ash. The technique can be used to determine the degree of hydrogenation and the presence of multiple phases occurring within a resid sample. It can also be used to infer resid reactivity. The technique is rapid, requiring less than one hour for sample preparation and examination, and thus has apparent usefulness for process monitoring. Additionally, the technique can distinguish differences in samples produced under various process conditions. It can, therefore, be considered a potentially useful technique for the process developer. Further development and application of this analytical method as a process development tool is justified based on these results.

  14. Evaluation of a fluorescent lectin-based staining technique for some acidophilic mining bacteria

    SciTech Connect

    Fife, D.J.; Bruhn, D.F.; Miller, K.S.; Stoner, D.L.

    2000-05-01

    A fluorescence-labeled wheat germ agglutinin staining technique was modified and found to be effective for staining gram-positive, acidophilic mining bacteria. Bacteria identified by others as being gram positive through 16S rRNA sequence analyses, yet clustering near the divergence of that group, stained weakly. Gram-negative bacteria did not stain. Background staining of environmental samples was negligible, and pyrite and soil particles in the samples did not interfere with the staining procedure.

  15. The Fluorescent-Oil Film Method and Other Techniques for Boundary-Layer Flow Visualization

    NASA Technical Reports Server (NTRS)

    Loving, Donald L.; Katzoff, S.

    1959-01-01

    A flow-visualization technique, known as the fluorescent-oil film method, has been developed which appears to be generally simpler and to require less experience and development of technique than previously published methods. The method is especially adapted to use in the large high-powered wind tunnels which require considerable time to reach the desired test conditions. The method consists of smearing a film of fluorescent oil over a surface and observing where the thickness is affected by the shearing action of the boundary layer. These films are detected and identified, and their relative thicknesses are determined by use of ultraviolet light. Examples are given of the use of this technique. Other methods that show promise in the study of boundary-layer conditions are described. These methods include the use of a temperature-sensitive fluorescent paint and the use of a radiometer that is sensitive to the heat radiation from a surface. Some attention is also given to methods that can be used with a spray apparatus in front of the test model.

  16. Uncovering Single-Molecule Photophysical Heterogeneity of Bright, Thermally Activated Delayed Fluorescence Emitters Dispersed in Glassy Hosts.

    PubMed

    Noriega, Rodrigo; Barnard, Edward S; Ursprung, Benedikt; Cotts, Benjamin L; Penwell, Samuel B; Schuck, P James; Ginsberg, Naomi S

    2016-10-04

    Recently developed all-organic emitters used in display applications achieve high brightness by harvesting triplet populations via thermally activated delayed fluorescence. The photophysical properties of these emitters therefore involve new inherent complexities and are strongly affected by interactions with their host material in the solid state. Ensemble measurements occlude the molecular details of how host-guest interactions determine fundamental properties such as the essential balance of singlet oscillator strength and triplet harvesting. Therefore, using time-resolved fluorescence spectroscopy, we interrogate these emitters at the single-molecule level and compare their properties in two distinct glassy polymer hosts. We find that nonbonding interactions with aromatic moieties in the host appear to mediate the molecular configurations of the emitters, but also promote nonradiative quenching pathways. We also find substantial heterogeneity in the time-resolved photoluminescence of these emitters, which is dominated by static disorder in the polymer. Finally, since singlet-triplet cycling underpins the mechanism for increased brightness, we present the first room-temperature measurement of singlet-triplet equilibration dynamics in this family of emitters. Our observations present a molecular-scale interrogation of host-guest interactions in a disordered film, with implications for highly efficient organic light-emitting devices. Combining a single-molecule experimental technique with an emitter that is sensitive to triplet dynamics, yet read out via fluorescence, should also provide a complementary approach to performing fundamental studies of glassy materials over a large dynamic range of time scales.

  17. Nuclear forensics techniques for attributing material used in a radiological dispersal device event

    SciTech Connect

    Knepper, P. L.; Eberhardt, Ariane Sibylle,; Leibrecht, E. A.; Ross, J. L.; Scott, M. R.; Epresi, K.; Giannangeli, D.; Charlton, W. S.

    2004-01-01

    If a radiological dispersal device (RDD) is detonated in the U.S. or near U.S. interests overseas, it will be crucial that the actors involved in the event can be identified quickly. Law enforcement officials will need information concerning the material used in the device, specifically what type of material it was and from where it originated. This information will then be used to help identify the specific individuals who manufactured the device and perpetrated the event. Texas A&M University and Los Alamos National Laboratory are collaborating on the development of a technique for identifying the material used in a radiological dispersal device. This methodology is currently focused on radiological dispersal devices that make use of spent nuclear fuel as the source material. The methodology developed makes use of both a forward model and an inverse model to identify specific spent fuel characteristics using isotopic composition of RDD debris. The forward model is based on sophisticated reactor physics calculations for the prediction of spent fuel isotopic compositions as a function of fuel type (e.g., PWR, BWR, CANDU, RBMK, etc.), fuel burnup (in MWd/MTHM), fuel age (in years since permanent discharge from the reactor), and operating characteristics (e.g., operating power level, time at power, etc.). These reactor physics calculations are benchmarked to measured data to establish their accuracy in predicting isotopic compositions. The inverse model makes use of a Bayesian inverse method to identify the specific spent fuel assembly (or assemblies) used based on measurements of actinide and fission product isotopic ratios in the RDD debris. A description of both the forward and inverse models, accuracies of the technique, and the results to date are given.

  18. Process analytical techniques for hot-melt extrusion and their application to amorphous solid dispersions.

    PubMed

    Hitzer, Patrick; Bäuerle, Tim; Drieschner, Tobias; Ostertag, Edwin; Paulsen, Katharina; van Lishaut, Holger; Lorenz, Günter; Rebner, Karsten

    2017-03-25

    Newly developed active pharmaceutical ingredients (APIs) are often poorly soluble in water. As a result the bioavailability of the API in the human body is reduced. One approach to overcome this restriction is the formulation of amorphous solid dispersions (ASDs), e.g., by hot-melt extrusion (HME). Thus, the poorly soluble crystalline form of the API is transferred into a more soluble amorphous form. To reach this aim in HME, the APIs are embedded in a polymer matrix. The resulting amorphous solid dispersions may contain small amounts of residual crystallinity and have the tendency to recrystallize. For the controlled release of the API in the final drug product the amount of crystallinity has to be known. This review assesses the available analytical methods that have been recently used for the characterization of ASDs and the quantification of crystalline API content. Well-established techniques like near- and mid-infrared spectroscopy (NIR and MIR, respectively), Raman spectroscopy, and emerging ones like UV/VIS, terahertz, and ultrasonic spectroscopy are considered in detail. Furthermore, their advantages and limitations are discussed with regard to general practical applicability as process analytical technology (PAT) tools in industrial manufacturing. The review focuses on spectroscopic methods which have been proven as most suitable for in-line and on-line process analytics. Further aspects are spectroscopic techniques that have been or could be integrated into an extruder.

  19. Application of the Fluorescent-Antibody Technique for the Detection of Sphaerotilus natans in Activated Sludge

    PubMed Central

    Howgrave-Graham, Alan R.; Steyn, Pieter L.

    1988-01-01

    Sphaerotilus natans, one of the most widely reported causes of bulking in activated sludge, can exist both within and outside of a sheath. It can easily be confused with similar activated sludge bacteria and thus can be overlooked when present in low numbers. Fluorescent antiserum was successfully prepared against the nonfilamentous form and was shown to be highly specific, showing no reaction with either pure cultures of similar filamentous bacteria or entirely unrelated organisms. It did, however, show a lack of strain specificity since it reacted with S. natans isolates from the Federal Republic of Germany and the United States and with filamentous bacteria in South African activated sludges. Fluorescent antibody is capable of penetrating the filaments of S. natans to stain the cells individually. The use of fluorescent antiserum in the identification of S. natans filaments obscured by activated sludge flocs and other suspended matter was simple since the cells stained brightly and could be observed through the less dense matter, while the use of other microscope techniques would be hampered by these obstructions. The use of fluorescent antibody will facilitate ecological studies of S. natans in activated sludge and other aqueous environments. Images PMID:16347588

  20. Technique for real-time tissue characterization based on scanning multispectral fluorescence lifetime spectroscopy (ms-TRFS)

    PubMed Central

    Ma, Dinglong; Bec, Julien; Gorpas, Dimitris; Yankelevich, Diego; Marcu, Laura

    2015-01-01

    We report a novel technique for continuous acquisition, processing and display of fluorescence lifetimes enabling real-time tissue diagnosis through a single hand held or biopsy fiber-optic probe. A scanning multispectral time-resolved fluorescence spectroscopy (ms-TRFS) with self-adjustable photon detection range was developed to account for the dynamic changes of fluorescence intensity typically encountered in clinical application. A fast algorithm was implemented in the ms-TRFS software platform, providing up to 15 Hz continuous display of fluorescence lifetime values. Potential applications of this technique, including biopsy guidance, and surgical margins delineation were demonstrated in proof-of-concept experiments. Current results showed accurate display of fluorescence lifetimes values and discrimination of distinct fluorescence markers and tissue types in real-time (< 100 ms per data point). PMID:25798320

  1. Review of Fluorescence-Based Velocimetry Techniques to Study High-Speed Compressible Flows

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Johansen, Criag; Inman, Jennifer A.; Jones, Stephen B.; Danehy, Paul M.

    2013-01-01

    This paper reviews five laser-induced fluorescence-based velocimetry techniques that have been used to study high-speed compressible flows at NASA Langley Research Center. The techniques discussed in this paper include nitric oxide (NO) molecular tagging velocimetry (MTV), nitrogen dioxide photodissociation (NO2-to-NO) MTV, and NO and atomic oxygen (O-atom) Doppler-shift-based velocimetry. Measurements of both single-component and two-component velocity have been performed using these techniques. This paper details the specific application and experiment for which each technique has been used, the facility in which the experiment was performed, the experimental setup, sample results, and a discussion of the lessons learned from each experiment.

  2. Advanced Time-Resolved Fluorescence Microscopy Techniques for the Investigation of Peptide Self-Assembly

    NASA Astrophysics Data System (ADS)

    Anthony, Neil R.

    The ubiquitous cross beta sheet peptide motif is implicated in numerous neurodegenerative diseases while at the same time offers remarkable potential for constructing isomorphic high-performance bionanomaterials. Despite an emerging understanding of the complex folding landscape of cross beta structures in determining disease etiology and final structure, we lack knowledge of the critical initial stages of nucleation and growth. In this dissertation, I advance our understanding of these key stages in the cross-beta nucleation and growth pathways using cutting-edge microscopy techniques. In addition, I present a new combined time-resolved fluorescence analysis technique with the potential to advance our current understanding of subtle molecular level interactions that play a pivotal role in peptide self-assembly. Using the central nucleating core of Alzheimer's Amyloid-beta protein, Abeta(16 22), as a model system, utilizing electron, time-resolved, and non-linear microscopy, I capture the initial and transient nucleation stages of peptide assembly into the cross beta motif. In addition, I have characterized the nucleation pathway, from monomer to paracrystalline nanotubes in terms of morphology and fluorescence lifetime, corroborating the predicted desolvation process that occurs prior to cross-beta nucleation. Concurrently, I have identified unique heterogeneous cross beta domains contained within individual nanotube structures, which have potential bionanomaterials applications. Finally, I describe a combined fluorescence theory and analysis technique that dramatically increases the sensitivity of current time-resolved techniques. Together these studies demonstrate the potential for advanced microscopy techniques in the identification and characterization of the cross-beta folding pathway, which will further our understanding of both amyloidogenesis and bionanomaterials.

  3. Quantitative comparison of multiframe data association techniques for particle tracking in time-lapse fluorescence microscopy.

    PubMed

    Smal, Ihor; Meijering, Erik

    2015-08-01

    Biological studies of intracellular dynamic processes commonly require motion analysis of large numbers of particles in live-cell time-lapse fluorescence microscopy imaging data. Many particle tracking methods have been developed in the past years as a first step toward fully automating this task and enabling high-throughput data processing. Two crucial aspects of any particle tracking method are the detection of relevant particles in the image frames and their linking or association from frame to frame to reconstruct the trajectories. The performance of detection techniques as well as specific combinations of detection and linking techniques for particle tracking have been extensively evaluated in recent studies. Comprehensive evaluations of linking techniques per se, on the other hand, are lacking in the literature. Here we present the results of a quantitative comparison of data association techniques for solving the linking problem in biological particle tracking applications. Nine multiframe and two more traditional two-frame techniques are evaluated as a function of the level of missing and spurious detections in various scenarios. The results indicate that linking techniques are generally more negatively affected by missing detections than by spurious detections. If misdetections can be avoided, there appears to be no need to use sophisticated multiframe linking techniques. However, in the practically likely case of imperfect detections, the latter are a safer choice. Our study provides users and developers with novel information to select the right linking technique for their applications, given a detection technique of known quality.

  4. Wavelength Dispersive X-ray Fluorescence Analysis of Actinides in Dissolved Nuclear Fuels

    SciTech Connect

    O'Hara, David

    2015-10-15

    There is an urgent need for an instrument that can quickly measure the concentration of Plutonium and other Actinides mixed with Uranium in liquids containing dissolved spent fuel rods. Parallax Research, Inc. proposes to develop an x-ray spectrometer capable of measuring U, Np and Pu in dissolved nuclear fuel rod material to less than 10 ppm levels to aid in material process control for these nuclear materials. Due to system noise produced by high radioactivity, previous x-ray spectrometers were not capable of low level measurements but the system Parallax proposed has no direct path for undesired radiation to get to the detector and the detector in the proposed device is well shielded from scatter and has very low dark current. In addition, the proposed spectrometer could measure these three elements simultaneously, also measuring background positions with an energy resolution of roughly 100 eV making it possible to see a small amount of Pu that would be hidden under the tail of the U peak in energy dispersive spectrometers. Another nearly identical spectrometer could be used to target Am and Cm if necessary. The proposed spectrometer needs only a tiny sample of roughly 1 micro-liter (1 mm3) and the measurement can be done with the liquid flowing in a radiation and chemical immune quartz capillary protected by a stainless steel rod making it possible to continuously monitor the liquid or to use a capillary manifold to measure other liquid streams. Unlike other methods such as mass spectroscopy where the sample must be taken to a remote facility and might take days for turn-around, the proposed measurement should take less than an hour. This spectrometer could enable near real-time measurement of U, Pu and Np in dilute dissolved spent nuclear fuel rod streams.

  5. A rapid feedback characterization technique for polymeric hollow fiber membranes using disperse dyes

    SciTech Connect

    Clausi, D.T.; Koros, W.J.

    1996-12-31

    The morphologies of advanced asymmetric gas separation membranes can be described in terms of porosity, pore size distribution, and pore connectivity. These complex morphologies are generated via a rapid non-solvent induced phase separation process to yield hollow fiber membranes. Manipulation and control of these microscopic features are accomplished through adjustment of an array of spinning process parameters. A serious limitation to research in hollow fiber membrane formation is the lengthy time lag between fiber spinning and the collection of characteristic data for process optimization. This lag time is due to the intensive downstream processing required before gas based permeation measurements can be conducted. A rapid feedback characterization technique will be discussed for use in polymeric hollow fiber membrane spinning applications utilizing commercially available disperse dyes. This technique involves dyeing wet hollow fibers immediately after spinning in an aqueous dye bath. In the present work, polysulfone fibers have been characterized using this method before lengthy downstream processing (i.e. solvent exchange, drying, and post-treatment). Dye uptake in the hollow fibers appears to be a function of skin porosity, thereby allowing quick evaluation of permeation characteristics. Dye uptake was measured both visually and using UV-visible spectrophotometry. Examples of fibers characterized using this technique and relationships between dye uptake and post-treated selectivity are shown and discussed. This technique allows characterization during the fiber spinning process, making on-line optimization of spinning parameters possible.

  6. Shot noise limited detection of OH using the technique of laser induced fluorescence

    NASA Technical Reports Server (NTRS)

    Bakalyar, D. M.; Davis, L. I., Jr.; Guo, C.; James, J. V.; Kakos, S.; Morris, P. T.; Wang, C. C.

    1984-01-01

    Nearly shot-noise limited detection of OH using the technique of laser-induced fluorescence is reported. A LIDAR configuration is used to excite fluorescence in a large volume and a narrow-bandwidth interference filter provides spectral discrimination. This arrangement alleviates the effect of ozone interference and facilitates image processing at relatively close distances. The detection limit is determined mainly by the shot-noise of the solar background. Ground-based measurements in Dearborn indicate a detection limit of better than 1 x 10 to the 6th power OH/cubic cm over a forty-minute acquisition period. Under favorable conditions, a comparable detection limit was also observed for airborne measurements.

  7. Two dimensional laser induced fluorescence spectroscopy: A powerful technique for elucidating rovibronic structure in electronic transitions of polyatomic molecules

    NASA Astrophysics Data System (ADS)

    Gascooke, Jason R.; Alexander, Ula N.; Lawrance, Warren D.

    2011-05-01

    We demonstrate the power of high resolution, two dimensional laser induced fluorescence (2D-LIF) spectroscopy for observing rovibronic transitions of polyatomic molecules. The technique involves scanning a tunable laser over absorption features in the electronic spectrum while monitoring a segment, in our case 100 cm-1 wide, of the dispersed fluorescence spectrum. 2D-LIF images separate features that overlap in the usual laser induced fluorescence spectrum. The technique is illustrated by application to the S1-S0 transition in fluorobenzene. Images of room temperature samples show that overlap of rotational contours by sequence band structure is minimized with 2D-LIF allowing a much larger range of rotational transitions to be observed and high precision rotational constants to be extracted. A significant advantage of 2D-LIF imaging is that the rotational contours separate into their constituent branches and these can be targeted to determine the three rotational constants individually. The rotational constants determined are an order of magnitude more precise than those extracted from the analysis of the rotational contour and we find the previously determined values to be in error by as much as 5% [G. H. Kirby, Mol. Phys. 19, 289 (1970), 10.1080/00268977000101291]. Comparison with earlier ab initio calculations of the S0 and S1 geometries [I. Pugliesi, N. M. Tonge, and M. C. R. Cockett, J. Chem. Phys. 129, 104303 (2008), 10.1063/1.2970092] reveals that the CCSD/6-311G** and RI-CC2/def2-TZVPP levels of theory predict the rotational constants, and hence geometries, with comparable accuracy. Two ground state Fermi resonances were identified by the distinctive patterns that such resonances produce in the images. 2D-LIF imaging is demonstrated to be a sensitive method capable of detecting weak spectral features, particularly those that are otherwise hidden beneath stronger bands. The sensitivity is demonstrated by observation of the three isotopomers of fluorobenzene

  8. Two dimensional laser induced fluorescence spectroscopy: a powerful technique for elucidating rovibronic structure in electronic transitions of polyatomic molecules.

    PubMed

    Gascooke, Jason R; Alexander, Ula N; Lawrance, Warren D

    2011-05-14

    We demonstrate the power of high resolution, two dimensional laser induced fluorescence (2D-LIF) spectroscopy for observing rovibronic transitions of polyatomic molecules. The technique involves scanning a tunable laser over absorption features in the electronic spectrum while monitoring a segment, in our case 100 cm(-1) wide, of the dispersed fluorescence spectrum. 2D-LIF images separate features that overlap in the usual laser induced fluorescence spectrum. The technique is illustrated by application to the S(1)-S(0) transition in fluorobenzene. Images of room temperature samples show that overlap of rotational contours by sequence band structure is minimized with 2D-LIF allowing a much larger range of rotational transitions to be observed and high precision rotational constants to be extracted. A significant advantage of 2D-LIF imaging is that the rotational contours separate into their constituent branches and these can be targeted to determine the three rotational constants individually. The rotational constants determined are an order of magnitude more precise than those extracted from the analysis of the rotational contour and we find the previously determined values to be in error by as much as 5% [G. H. Kirby, Mol. Phys. 19, 289 (1970)]. Comparison with earlier ab initio calculations of the S(0) and S(1) geometries [I. Pugliesi, N. M. Tonge, and M. C. R. Cockett, J. Chem. Phys. 129, 104303 (2008)] reveals that the CCSD∕6-311G∗∗ and RI-CC2∕def2-TZVPP levels of theory predict the rotational constants, and hence geometries, with comparable accuracy. Two ground state Fermi resonances were identified by the distinctive patterns that such resonances produce in the images. 2D-LIF imaging is demonstrated to be a sensitive method capable of detecting weak spectral features, particularly those that are otherwise hidden beneath stronger bands. The sensitivity is demonstrated by observation of the three isotopomers of fluorobenzene-d(1) in natural abundance in

  9. Application of the Fluorescent-Antibody Technique to an Ecological Study of Bacteria in Soil

    PubMed Central

    Hill, I. R.; Gray, T. R. G.

    1967-01-01

    The fluorescent-antibody technique was used to identify cells and spores of Bacillus subtilis and cells of B. circulans from soil. From cells grown in three broth media of different nutrient status, i.e., a cold extracted soil medium (CSE), an unamended autoclaved soil extract (HSE), and nutrient broth (NB), antisera were produced with both quantitative and qualitative differences in antibody content. The specificities of antisera to two strains of each of the Bacillus species were determined. Antisera for B. subtilis O antigens were species-specific and showed no cross-reactions, whereas those for the B. circulans O antigens were strain-specific and in some cases showed cross-reactions with B. alvei. This cross-reaction was removed by absorption of the antiserum with B. alvei O antigen. Fluorescein isothiocyanate γ-globulin conjugates prepared from these antisera showed the same specificity reactions. A method for staining bacteria on soil particles was developed, by use of small staining troughs. By mounting stained soil particles on slides and irradiating them with transmitted and incident ultraviolet blue light, bacteria on both mineral and organic particles, taken directly from soil, could be observed. Fluorescent antibodies against cells grown in CSE gave brighter fluorescence of stained bacteria on soil particles than did fluorescent antibodies against cells grown in either HSE or NB. Colonies of both Bacillus species were generally small and localized. Spore antisera, though not rigorously tested for specificity, were used to identify spores of B. subtilis on soil particles. The uses and implications of the technique in soil bacteriology are discussed. Images PMID:4960897

  10. Fluorescence dilution technique for measurement of albumin reflection coefficient in isolated glomeruli

    PubMed Central

    Fan, Fan; Chen, Chun Cheng Andy; Zhang, Jin; Schreck, Carlos M. N.; Williams, Jan M.; Hirata, Takashi; Sharma, Mukut; Beard, Daniel A.; Savin, Virginia J.; Roman, Richard J.

    2015-01-01

    This study describes a high-throughput fluorescence dilution technique to measure the albumin reflection coefficient (σAlb) of isolated glomeruli. Rats were injected with FITC-dextran 250 (75 mg/kg), and the glomeruli were isolated in a 6% BSA solution. Changes in the fluorescence of the glomerulus due to water influx in response to an imposed oncotic gradient was used to determine σAlb. Adjustment of the albumin concentration of the bath from 6 to 5, 4, 3, and 2% produced a 10, 25, 35, and 50% decrease in the fluorescence of the glomeruli. Pretreatment of glomeruli with protamine sulfate (2 mg/ml) or TGF-β1 (10 ng/ml) decreased σAlb from 1 to 0.54 and 0.48, respectively. Water and solute movement were modeled using Kedem-Katchalsky equations, and the measured responses closely fit the predicted behavior, indicating that loss of albumin by solvent drag or diffusion is negligible compared with the movement of water. We also found that σAlb was reduced by 17% in fawn hooded hypertensive rats, 33% in hypertensive Dahl salt-sensitive (SS) rats, 26% in streptozotocin-treated diabetic Dahl SS rats, and 21% in 6-mo old type II diabetic nephropathy rats relative to control Sprague-Dawley rats. The changes in glomerular permeability to albumin were correlated with the degree of proteinuria in these strains. These findings indicate that the fluorescence dilution technique can be used to measure σAlb in populations of isolated glomeruli and provides a means to assess the development of glomerular injury in hypertensive and diabetic models. PMID:26447220

  11. Spray coating as a powerful technique in preparation of solid dispersions with enhanced desloratadine dissolution rate.

    PubMed

    Kolašinac, Nemanja; Kachrimanis, Kyriakos; Djuriš, Jelena; Homšek, Irena; Grujić, Branka; Ibrić, Svetlana

    2013-07-01

    Solid dispersion systems have been widely used to enhance dissolution rate and oral bioavailability of poorly water-soluble drugs. However, the formulation process development and scale-up present a number of difficulties which has greatly limited their commercial applications. In this study, solid dispersions (SDs) of desloratadine (DSL) with povidone (PVP) and crospovidone (cPVP) were prepared by spray coating technique. The process involved the spray application of 96% ethanol solution of DSL and PVP/cPVP, and subsequent deposition of the coprecipitates onto microcrystalline cellulose pellets during drying by air flow in a mini spray coater. The results from the present study demonstrated that the spray coating process is efficient in preparing SDs with enhanced drug dissolution rate and it is highly efficient in organic solvent removal. Both PVP and cPVP greatly improved drug dissolution rate by SDs, with PVP showing better solubilization capability. Very fast drug dissolution rate is achieved from SDs containing PVP regardless of differences in K grade. SD with smaller particles of cPVP have higher drug dissolution rate in comparison to the cPVP with larger particles. Results from physical state characterization indicate that DSL in SDs exist in the amorphous (high free-energy) state which is probably stabilized by PVP/cPVP. After 6-month accelerated stability study, DSL remains amorphous, while PVP and cPVP act as anti-plasticizing agents, offering efficient steric hindrance for nucleation and crystal growth.

  12. Identification Of Natural Dyes On Archaeological Textile Objects Using Laser Induced Fluorescent Technique

    NASA Astrophysics Data System (ADS)

    Abdel-Kareem, O.; Eltokhy, A.; Harith, M. A.

    2011-09-01

    This study aims to evaluate the use of Laser Fluorescent as a non-destructive technique for identification of natural dyes on archaeological textile objects. In this study wool textile samples were dyed with 10 natural dyes such as cochineal, cutch, henna, indigo, Lac, madder, safflower, saffron, sumac and turmeric. These dyes common present on archaeological textile objects to be used as standard dyed textile samples. These selected natural dyes will be used as known references that can be used a guide to identify unknown archaeological dyes. The dyed textile samples were investigated with laser radiation in different wavelengths to detect the best wavelengths for identification each dye. This study confirms that Laser Florescent is very useful and a rapid technique can be used as a non-destructive technique for identification of natural dyes on archaeological textile objects. The results obtained with this study can be a guide for all conservators in identification of natural organic dyes on archaeological textile objects.

  13. Identification Of Natural Dyes On Archaeological Textile Objects Using Laser Induced Fluorescent Technique

    SciTech Connect

    Abdel-Kareem, O.; Eltokhy, A.; Harith, M. A.

    2011-09-22

    This study aims to evaluate the use of Laser Fluorescent as a non-destructive technique for identification of natural dyes on archaeological textile objects. In this study wool textile samples were dyed with 10 natural dyes such as cochineal, cutch, henna, indigo, Lac, madder, safflower, saffron, sumac and turmeric. These dyes common present on archaeological textile objects to be used as standard dyed textile samples. These selected natural dyes will be used as known references that can be used a guide to identify unknown archaeological dyes. The dyed textile samples were investigated with laser radiation in different wavelengths to detect the best wavelengths for identification each dye. This study confirms that Laser Florescent is very useful and a rapid technique can be used as a non-destructive technique for identification of natural dyes on archaeological textile objects. The results obtained with this study can be a guide for all conservators in identification of natural organic dyes on archaeological textile objects.

  14. Experimental Verification of Dispersed Fringe Sensing as a Segment Phasing Technique using the Keck Telescope

    NASA Technical Reports Server (NTRS)

    Shi, Fang; Ohara, Catherine M.; Chanan, Gary; Troy, Mitch; Redding, Dave C.

    2004-01-01

    Dispersed Fringe Sensing (DFS) is an efficient and robust method for coarse phasing of segmented primary mirrors (from a quarter of a wavelength up to the depth of focus of a single segment, typically several tens of microns). Unlike phasing techniques currently used for ground-based segmented telescopes; this makes it particularly well-suited to the phasing of space-borne segmented telescopes, such as the James Webb Space Telescopes (JWST). In this work we validate DFS by using it to measure the pistons of the segments of one of the Keck telescopes; the results agree with those of the Shack-Hartmann based phasing scheme currently in use at Keck to within 2% over a range of initial piston errors of +/-16 microns.

  15. Experimental Verification of Dispersed Fringe Sensing as a Segment Phasing Technique using the Keck Telescope

    NASA Technical Reports Server (NTRS)

    Shi, Fang; Chanan, Gary; Ohara, Catherine; Troy, Mitchell; Redding, David C.

    2004-01-01

    Dispersed fringe sensing (DFS) is an efficient and robust method for coarse phasing of segmented primary mirrors (from one quarter of a wavelength to as much as the depth of focus of a single segment, typically several tens of microns). Unlike phasing techniques currently used for ground-based segmented telescopes, DFS does not require the use of edge sensors in order to sense changes in the relative heights of adjacent segments; this makes it particularly well suited for phasing of space-borne segmented telescopes, such as the James Webb Space Telescope. We validate DFS by using it to measure the piston errors of the segments of one of the Keck telescopes. The results agree with those of the Shack-Hartmann-based phasing scheme currently in use at Keck to within 2% over a range of initial piston errors of +/-16 (mu)m.

  16. Distribution of toxic elements in teeth treated with amalgam using μ-energy dispersive X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Guerra, M.; Ferreira, C.; Carvalho, M. L.; Santos, J. P.; Pessanha, S.

    2016-08-01

    Over the years, the presence of mercury in amalgam fillings has raised some safety concerns. Amalgam is one of the most commonly used tooth fillings and contains approximately 50% of elemental mercury and 50% of other metals, mostly silver, tin and copper. Amalgam can release small amounts of mercury vapor over time, and patients can absorb these vapors by inhaling or ingesting them. In this study, 10 human teeth treated with dental amalgam were analyzed using energy dispersive X-ray fluorescence (EDXRF) to study the diffusion of its constituents, Ag, Cu, Sn and Hg. The used EDXRF setup, makes use of a polycapillary lens to focus radiation up to 25 μm allowing the mapping of the elemental distribution in the samples. Quantification was performed using the inbuilt software based on the Fundamental Parameters method for bulk samples, considering a hydroxyapatite matrix. The teeth were longitudinally cut and each slice was scanned from the surface enamel to the inner region (dentin and pulp cavity). Mercury concentration profiles show strong levels of this element close to the amalgam region, decreasing significantly in the dentin, and increasing again up to 40,000 μg·g- 1 in the cavity were the pulp used to exist when the tooth was vital.

  17. Wavelength dispersive X-ray fluorescence analysis using fundamental parameter approach of Catha edulis and other related plant samples

    NASA Astrophysics Data System (ADS)

    Shaltout, Abdallah A.; Moharram, Mohammed A.; Mostafa, Nasser Y.

    2012-01-01

    This work is the first attempt to quantify trace elements in the Catha edulis plant (Khat) with a fundamental parameter approach. C. edulis is a famous drug plant in east Africa and Arabian Peninsula. We have previously confirmed that hydroxyapatite represents one of the main inorganic compounds in the leaves and stalks of C. edulis. Comparable plant leaves from basil, mint and green tea were included in the present investigation as well as trifolium leaves were included as a non-related plant. The elemental analyses of the plants were done by Wavelength Dispersive X-Ray Fluorescence (WDXRF) spectroscopy. Standard-less quantitative WDXRF analysis was carried out based on the fundamental parameter approaches. According to the standard-less analysis algorithms, there is an essential need for an accurate determination of the amount of organic material in the sample. A new approach, based on the differential thermal analysis, was successfully used for the organic material determination. The obtained results based on this approach were in a good agreement with the commonly used methods. Depending on the developed method, quantitative analysis results of eighteen elements including; Al, Br, Ca, Cl, Cu, Fe, K, Na, Ni, Mg, Mn, P, Rb, S, Si, Sr, Ti and Zn were obtained for each plant. The results of the certified reference materials of green tea (NCSZC73014, China National Analysis Center for Iron and Steel, Beijing, China) confirmed the validity of the proposed method.

  18. Determination of selenium at trace levels in geologic materials by energy-dispersive X-ray fluorescence spectrometry

    USGS Publications Warehouse

    Wahlberg, J.S.

    1981-01-01

    Low levels of selenium (0.1-500 ppm) in both organic and inorganic geologic materials can be semiquantitatively measured by isolating Se as a thin film for presentation to an energy-dispersive X-ray fluorescence spectrometer. Suitably pulverized samples are first digested by fusing with a mixture of Na2CO3 and Na2O2. The fusion cake is dissolved in distilled water, buffered with NH4Cl, and filtered to remove Si and the R2O3 group. A carrier solution of Na2TeO4, plus solid KI, hydrazine sulfate and Na2SO3, is added to the filtrate. The solution is then vacuum-filtered through a 0.45-??m pore-size filter disc. The filter, with the thin film of precipitate, is supported between two sheets of Mylar?? film for analysis. Good agreement is shown between data reported in this study and literature values reported by epithermal neutron-activation analysis and spectrofluorimetry. The method can be made quantitative by utilizing a secondary precipitation to assure complete recovery of the Se. The X-ray method offers fast turn-around time and a reasonably high production rate. ?? 1981.

  19. Rapid determination of trace thiabendazole in apple juice utilizing dispersive liquid-liquid microextraction combined with fluorescence spectrophotometry.

    PubMed

    Li, Wei; Wang, Yuning; Huang, Limin; Wu, Ting; Hu, Huilian; Du, Yiping

    2015-09-01

    Food safety has become a large concern and prompts an urgent need for the development of rapid, simple and sensitive analytical methods that can monitor pesticide residues in foods. This study aimed to provide a method for quantitative determination of trace thiabendazole in apple juice. Due to its high sensitivity and selectivity, fluorescence spectrophotometry was utilized as a front end to dispersive liquid-liquid microextraction (DLLME). The experimental parameters that influenced the extraction were systematically investigated. Under optimum conditions, the whole procedure, including DLLME and analysis of one sample, was carried out within 5 min, and linearity was found in the 5-50 µg/L range with a correlation coefficient (r) of 0.9987. The limit of detection value was 2.2 µg/L. Good reproducibility was achieved based with a less than 4.5% relative standard deviation (RSD) for five replicates at different sample concentrations. This method was shown to be suitable for rapid and sensitive quantification of thiabendazole in apple juice.

  20. Monte Carlo uncertainty analyses of a bLS inverse-dispersion technique for measuring gas emissions from livestock operations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The backward Lagrangian stochastic (bLS) inverse-dispersion technique has been used to measure fugitive gas emissions from livestock operations. The accuracy of the bLS technique, as indicated by the percentages of gas recovery in various tracer-release experiments, has generally been within ± 10% o...

  1. Degree of dispersion monitoring by ultrasonic transmission technique and excitation of the transducer's harmonics

    NASA Astrophysics Data System (ADS)

    Schober, G.; Heidemeyer, P.; Kretschmer, K.; Bastian, M.; Hochrein, T.

    2014-05-01

    The degree of dispersion of filled polymer compounds is an important quality parameter for various applications. For instance, there is an influence on the chroma in pigment colored plastics or on the mechanical properties of filled or reinforced compounds. Most of the commonly used offline methods are work-intensive and time-consuming. Moreover, they do not allow an all-over process monitoring. In contrast, the ultrasonic technique represents a suitable robust and process-capable inline method. Here, we present inline ultrasonic measurements on polymer melts with a fundamental frequency of 1 MHz during compounding. In order to extend the frequency range we additionally excite the fundamental and the odd harmonics vibrations at 3 and 5 MHz. The measurements were carried out on a compound consisting of polypropylene and calcium carbonate. For the simulation of agglomerates calcium carbonate with a larger particle size was added with various rates. The total filler content was kept constant. The frequency selective analysis shows a linear correlation between the normalized extinction and the rate of agglomerates simulated by the coarser filler. Further experiments with different types of glass beads with a well-defined particle size verify these results. A clear correlation between the normalized extinction and the glass bead size as well as a higher damping with increasing frequency corresponds to the theoretical assumption. In summary the dispersion quality can be monitored inline by the ultrasonic technique. The excitation of the ultrasonic transducer's harmonics generates more information about the material as the usage of the pure harmonic vibration.

  2. Monte Carlo simulation of energy-dispersive x-ray fluorescence and applications

    NASA Astrophysics Data System (ADS)

    Li, Fusheng

    Four key components with regards to Monte Carlo Library Least Squares (MCLLS) have been developed by the author. These include: a comprehensive and accurate Monte Carlo simulation code - CEARXRF5 with Differential Operators (DO) and coincidence sampling, Detector Response Function (DRF), an integrated Monte Carlo - Library Least-Squares (MCLLS) Graphical User Interface (GUI) visualization System (MCLLSPro) and a new reproducible and flexible benchmark experiment setup. All these developments or upgrades enable the MCLLS approach to be a useful and powerful tool for a tremendous variety of elemental analysis applications. CEARXRF, a comprehensive and accurate Monte Carlo code for simulating the total and individual library spectral responses of all elements, has been recently upgraded to version 5 by the author. The new version has several key improvements: input file format fully compatible with MCNP5, a new efficient general geometry tracking code, versatile source definitions, various variance reduction techniques (e.g. weight window mesh and splitting, stratifying sampling, etc.), a new cross section data storage and accessing method which improves the simulation speed by a factor of four and new cross section data, upgraded differential operators (DO) calculation capability, and also an updated coincidence sampling scheme which including K-L and L-L coincidence X-Rays, while keeping all the capabilities of the previous version. The new Differential Operators method is powerful for measurement sensitivity study and system optimization. For our Monte Carlo EDXRF elemental analysis system, it becomes an important technique for quantifying the matrix effect in near real time when combined with the MCLLS approach. An integrated visualization GUI system has been developed by the author to perform elemental analysis using iterated Library Least-Squares method for various samples when an initial guess is provided. This software was built on the Borland C++ Builder

  3. Logistics of oil spill dispersant application. Volume II. Application techniques, stockpiling, dispersant selection, strategies. Final report, October 1979-September 1980

    SciTech Connect

    Bellantoni, J.

    1982-11-01

    The use of chemicals for oil spill dispersal, while not presently widespread in the U.S., would have implications for the U.S. Coast Guard's Marine Environmental Protection program. This report explores the logistics of oil disperant application by the U.S. Coast Guard. Data were reviewed for the 13 disperants for which data had been submitted to the EPA as of October 1979. Manufacturer's data and published test results were also examined and information summarized with regard to classification, handling and storage application, availability and cost.

  4. Temperature and density measurement by electron beam fluorescence technique in rocket experiment

    NASA Astrophysics Data System (ADS)

    Kurihara, J.; Oyama, K.-I.

    The Electron Beam Fluorescence (EBF) technique has been widely used in the field of rarefied gas dynamics for over 40 years and applied to measurements for a variety of gases and flow conditions in the laboratory experiment. The EBF technique uses a high-energy electron beam to excite a gas molecule by an inelastic collision with an electron. Spectrum of subsequent fluorescence by the excited molecule consists of many vibrational bands, and each band has a fine rotational structure. If the excitation-emission process is known precisely, the analysis of the vibrational-rotational band provides properties of the initial state of molecules. We applied the EBF technique to an in-situ measurement in the lower thermosphere and the vibrational temperature, the rotational temperature, and the number density of atmospheric molecular nitrogen between 100 - 150 km altitudes were observed by the sounding rocket experiment. Aerodynamic effects on the measurement caused by the rocket flight are corrected quantitatively using Direct Simulation Monte Carlo (DSMC) method. The great advantage of this type of instrument is that temperature and density are observed simultaneously and the consistency between the two measurements can be checked assuming hydrostatic equilibrium.

  5. Planetary Surface Analysis Using Fast Laser Spectroscopic Techniques: Combined Microscopic Raman, LIBS, and Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Blacksberg, J.; Rossman, G. R.; Maruyama, Y.; Charbon, E.

    2011-12-01

    In situ exploration of planetary surfaces has to date required multiple techniques that, when used together, yield important information about their formation histories and evolution. We present a time-resolved laser spectroscopic technique that could potentially collect complementary sets of data providing information on mineral structure, composition, and hydration state. Using a picosecond-scale pulsed laser and a fast time-resolved detector we can simultaneously collect spectra from Raman, Laser Induced Breakdown Spectroscopy (LIBS), and fluorescence emissions that are separated in time due to the unique decay times of each process. The use of a laser with high rep rate (40 KHz) and low pulse energy (1 μJ/pulse) allows us to rapidly collect high signal to noise Raman spectra while minimizing sample damage. Increasing the pulse energy by about an order of magnitude creates a microscopic plasma near the surface and enables the collection of LIBS spectra at an unusually high rep rate and low pulse energy. Simultaneously, broader fluorescence peaks can be detected with lifetimes varying from nanosecond to microsecond. We will present Raman, LIBS, and fluorescence spectra obtained on natural mineral samples such as sulfates, clays, pyroxenes and carbonates that are of interest for Mars mineralogy. We demonstrate this technique using a photocathode-based streak camera detector as well as a newly-developed solid state Single Photon Avalanche Diode (SPAD) sensor array based on Complementary Metal-Oxide Semiconductor (CMOS) technology. We will discuss the impact of system design and detector choice on science return of a potential planetary surface mission, with a specific focus on size, weight, power, and complexity. The research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA).

  6. Comparison of different fluorescence spectrum analysis techniques to characterize humification levels of waste-derived dissolved organic matter.

    PubMed

    Shao, L M; Zhang, C Y; He, P J; Lü, F

    2012-12-01

    In the present work, the humification level of waste-derived dissolved organic matter (DOM) at different waste biostability was investigated, by using fluorescent excitation-emission matrix (EEM) scanning. Different fluorescence spectrum analysis techniques were applied and compared. Experimental results demonstrate that parallel factor (PARAFAC) analysis was sensitive to reflect DOM humification, and the most reasonable to deconstruct DOM compositions, when compared with other spectrum analysis techniques. It suggests applying the DOM-EEM-PARAFAC pipeline for rapid estimation of waste biostability.

  7. Detection of citrus canker and Huanglongbing using fluorescence imaging spectroscopy and support vector machine technique.

    PubMed

    Wetterich, Caio Bruno; Felipe de Oliveira Neves, Ruan; Belasque, José; Marcassa, Luis Gustavo

    2016-01-10

    Citrus canker and Huanglongbing (HLB) are citrus diseases that represent a serious threat to the citrus production worldwide and may cause large economic losses. In this work, we combined fluorescence imaging spectroscopy (FIS) and a machine learning technique to discriminate between these diseases and other ordinary citrus conditions that may be present at citrus orchards, such as citrus scab and zinc deficiency. Our classification results are highly accurate when discriminating citrus canker from citrus scab (97.8%), and HLB from zinc deficiency (95%). These results show that it is possible to accurately identify citrus diseases that present similar symptoms.

  8. Synthesis of Water Dispersible Fluorescent Carbon Nanocrystals from Syzygium cumini Fruits for the Detection of Fe(3+) Ion in Water and Biological Samples and Imaging of Fusarium avenaceum Cells.

    PubMed

    Bhamore, Jigna R; Jha, Sanjay; Singhal, Rakesh Kumar; Kailasa, Suresh Kumar

    2017-01-01

    In this work, water dispersible fluorescent carbon nanocrystals (NCs) were synthesized by a simple, green and low cost hydrothermal method using Syzygium cumini (jamun) as a carbon source at 180 °C for 6 h. The average size of carbon NCs was found to be 2.1 ± 0.5 nm and shown bright blue fluorescence when excited at 365 nm under UV lamp. The carbon NCs were characterized by spectroscopic (UV-visible and fluorescence, Fourier transform infrared and dynamic light scattering) and high resolution transmission electron microscopic techniques. The quantum yield of carbon NCs was found to be ~5.9 % at 438 nm emission wavelength when excited at 360 nm. It was noticed that none of the metal ions quenched the fluorescence intensity of carbon NCs at 438 nm except for Fe(3+), indicating the formation of Fe(3+) ion-carbon NCs complexes. The linear range was observed in the concentration range of 0.01-100 μM with the corresponding detection limits of 0.001 μM, respectively. Furthermore, the carbon NCs were used as probes for imaging of fungal (Fusarium avenaceum) cells.

  9. Spectral fluorescence signature techniques and absorption measurements for continuous monitoring of biofuel-producing microalgae cultures

    NASA Astrophysics Data System (ADS)

    Martín de la Cruz, M. C.; Gonzalez Vilas, L.; Yarovenko, N.; Spyrakos, E.; Torres Palenzuela, J. M.

    2013-08-01

    Biofuel production from microalgae can be both sustainable and economically viable. Particularly in the case of algal growth in wastewater an extra benefit is the removal or biotransformation of pollutants from these types of waters. A continuous monitoring system of the microalgae status and the concentration of different wastewater contaminants could be of great help in the biomass production and the water characterisation. In this study we present a system where spectral fluorescence signature (SFS) techniques are used along with absorption measurements to monitor microalgae cultures in wastewater and other mediums. This system aims to optimise the microalgae production for biofuel applications or other uses and was developed and tested in prototype indoor photo-bioreactors at the University of Vigo. SFS techniques were applied using the fluorescence analyser INSTAND-SCREENER developed by Laser Diagnostic Instruments AS. INSTAND-SCREENER permits wavelength scanning in two modes, one in UV and another in VIS. In parallel, it permits the on-line monitoring and rapid analysis of both water quality and phytoplankton status without prior treatment of the sample. Considering that different contaminants and microalgae features (density, status etc.) have different spectral signatures of fluorescence and absorption properties, it is possible to characterise them developing classification libraries. Several algorithms were used for the classification. The implementation of this system in an outdoor raceway reactor in a Spanish wastewater treatment plant is also discussed. This study was part of the Project EnerBioAlgae (http://www.enerbioalgae.com/), which was funded by the Interreg SUDOE and led by the University of Vigo.

  10. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    SciTech Connect

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.

  11. Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy

    PubMed Central

    Carriles, Ramón; Schafer, Dawn N.; Sheetz, Kraig E.; Field, Jeffrey J.; Cisek, Richard; Barzda, Virginijus; Sylvester, Anne W.; Squier, Jeffrey A.

    2009-01-01

    We review the current state of multiphoton microscopy. In particular, the requirements and limitations associated with high-speed multiphoton imaging are considered. A description of the different scanning technologies such as line scan, multifoci approaches, multidepth microscopy, and novel detection techniques is given. The main nonlinear optical contrast mechanisms employed in microscopy are reviewed, namely, multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation. Techniques for optimizing these nonlinear mechanisms through a careful measurement of the spatial and temporal characteristics of the focal volume are discussed, and a brief summary of photobleaching effects is provided. Finally, we consider three new applications of multiphoton microscopy: nonlinear imaging in microfluidics as applied to chemical analysis and the use of two-photon absorption and self-phase modulation as contrast mechanisms applied to imaging problems in the medical sciences. PMID:19725639

  12. Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy.

    PubMed

    Carriles, Ramón; Schafer, Dawn N; Sheetz, Kraig E; Field, Jeffrey J; Cisek, Richard; Barzda, Virginijus; Sylvester, Anne W; Squier, Jeffrey A

    2009-08-01

    We review the current state of multiphoton microscopy. In particular, the requirements and limitations associated with high-speed multiphoton imaging are considered. A description of the different scanning technologies such as line scan, multifoci approaches, multidepth microscopy, and novel detection techniques is given. The main nonlinear optical contrast mechanisms employed in microscopy are reviewed, namely, multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation. Techniques for optimizing these nonlinear mechanisms through a careful measurement of the spatial and temporal characteristics of the focal volume are discussed, and a brief summary of photobleaching effects is provided. Finally, we consider three new applications of multiphoton microscopy: nonlinear imaging in microfluidics as applied to chemical analysis and the use of two-photon absorption and self-phase modulation as contrast mechanisms applied to imaging problems in the medical sciences.

  13. Numerical modelling of vehicular pollution dispersion: The application of computational fluid dynamics techniques, a case study

    SciTech Connect

    Vanderheyden, M.D.; Dajka, S.C.; Sinclair, R.; Yeung, D.

    1997-12-31

    Numerical modelling of vehicular emissions using the United States Environmental Protection Agency`s CALINE4 and CAL3QHC dispersion models to predict air quality impacts in the vicinity of roadways is a widely accepted means of evaluating vehicular emissions impacts. The numerical models account for atmospheric dispersion in both open or suburban terrains. When assessing roadways in urban areas with numerous large buildings, however, the models are unable to account for the complex airflows and therefore do not provide satisfactory estimates of pollutant concentrations. Either Wind Tunnel Modelling or Computational Fluid Dynamics (CFD) techniques can be used to assess the impact of vehicle emissions in an urban core. This paper presents a case study where CFD is used to predict worst-case air quality impacts for two development configurations: an existing roadway configuration and a proposed configuration with an elevated pedestrian walkway. In assessing these configurations, worst-case meteorology and traffic conditions are modeled to allow for the prediction of pollutant concentrations due to vehicular emissions on two major streets in Hong Kong. The CFD modelling domain is divided up into thousands of control volumes. Each of these control volumes has a central point called a node where velocities, pollutant concentration and other auxiliary variables are calculated. The region of interest, the pedestrian link and its immediate surroundings, has a denser distribution of nodes in order to give a better resolution of local flow details. Separate CFD modelling runs were undertaken for each development configuration for wind direction increments of 15 degrees. For comparison of the development scenarios, pollutant concentrations (carbon monoxide, nitrogen dioxide and particulate matter) are predicted at up to 99 receptor nodes representing sensitive locations.

  14. Characterization of Roman glass tesserae from the Coriglia excavation site (Italy) via energy-dispersive X-ray fluorescence spectrometry and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Donais, Mary Kate; Van Pevenage, Jolien; Sparks, Andrew; Redente, Monica; George, David B.; Moens, Luc; Vincze, Laszlo; Vandenabeele, Peter

    2016-12-01

    The combined use of handheld energy-dispersive X-ray fluorescence spectrometry, Raman spectroscopy, and micro-energy-dispersive X-ray fluorescence spectrometry permitted the characterization of Roman glass tesserae excavation from the Coriglia (Italy) archeological site. Analyses of ten different glass colors were conducted as spot analyses on intact samples and as both spot analyses and line scans on select cross-sectioned samples. The elemental and molecular information gained from these spectral measurements allowed for the qualitative chemical characterization of the bulk glass, decolorants, opacifiers, and coloring agents. The use of an antimony opacifier in many of the samples supports the late Imperial phasing as determined through numismatic, fresco, ceramics, and architectural evidence. And dealinization of the exterior glass layers caused by the burial environment was confirmed.

  15. Quantitative techniques for assessing and controlling the dispersion and biological effects of multiwalled carbon nanotubes in mammalian tissue culture cells.

    PubMed

    Wang, Xiang; Xia, Tian; Ntim, Susana Addo; Ji, Zhaoxia; George, Saji; Meng, Huan; Zhang, Haiyuan; Castranova, Vincent; Mitra, Somenath; Nel, André E

    2010-12-28

    In vivo studies have demonstrated that the state of dispersion of carbon nanotubes (CNTs) plays an important role in generating adverse pulmonary effects. However, little has been done to develop reproducible and quantifiable dispersion techniques to conduct mechanistic studies in vitro. This study was to evaluate the dispersion of multiwalled carbon nanotubes (MWCNTs) in tissue culture media, with particular emphasis on understanding the forces that govern agglomeration and how to modify these forces. Quantitative techniques such as hydrophobicity index, suspension stability index, attachment efficiency, and dynamic light scattering were used to assess the effects of agglomeration and dispersion of as-prepared (AP), purified (PD), or carboxylated (COOH) MWCNTs on bronchial epithelial and fibroblast cell lines. We found that hydrophobicity is the major factor determining AP- and PD-MWCNT agglomeration in tissue culture media but that the ionic strength is the main factor determining COOH-MWCNT suspendability. Bovine serum albumin (BSA) was an effective dispersant for MWCNTs, providing steric and electrosteric hindrances that are capable of overcoming hydrophobic attachment and the electrostatic screening of double layer formation in ionic media. Thus, BSA was capable of stabilizing all tube versions. Dipalmitoylphosphatidylcholine (DPPC) provided additional stability for AP-MWCNTs in epithelial growth medium (BEGM). While the dispersion state did not affect cytotoxicity, improved dispersion of AP- and PD-MWCNTs increased TGF-β1 production in epithelial cells and fibroblast proliferation. In summary, we demonstrate how quantitative techniques can be used to assess the agglomeration state of MWCNTs when conducting mechanistic studies on the effects of dispersion on tissue culture cells.

  16. Cell-death assessment by fluorescent and nonfluorescent cytosolic and nuclear staining techniques.

    PubMed

    Atale, N; Gupta, S; Yadav, U C S; Rani, V

    2014-07-01

    Apoptosis, a genetically programmed cellular event leads to biochemical and morphological changes in cells. Alterations in DNA caused by several factors affect nucleus and ultimately the entire cell leading to compromised function of the organ and organism. DNA, a master regulator of the cellular events, is an important biomolecule with regards to cell growth, cell death, cell migration and cell differentiation. It is therefore imperative to develop the staining techniques that may lead to visualize the changes in nucleus where DNA is housed, to comprehend the cellular pathophysiology. Over the years a number of nuclear staining techniques such as propidium iodide, Hoechst-33342, 4', 6-diamidino-2-phenylindole (DAPI), Acridine orange-Ethidium bromide staining, among others have been developed to assess the changes in DNA. Some nonnuclear staining techniques such as Annexin-V staining, which although does not stain DNA, but helps to identify the events that result from DNA alteration and leads to initiation of apoptotic cell death. In this review, we have briefly discussed some of the most commonly used fluorescent and nonfluorescent staining techniques that identify apoptotic changes in cell, DNA and the nucleus. These techniques help in differentiating several cellular and nuclear phenotypes that result from DNA damage and have been identified as specific to necrosis or early and late apoptosis as well as scores of other nuclear deformities occurring inside the cells.

  17. Image thresholding techniques for localization of sub-resolution fluorescent biomarkers.

    PubMed

    Ghaye, Julien; Kamat, Madhura Avinash; Corbino-Giunta, Linda; Silacci, Paolo; Vergères, Guy; De Micheli, Giovanni; Carrara, Sandro

    2013-11-01

    In this article, we explore adaptive global and local segmentation techniques for a lab-on-chip nutrition monitoring system (NutriChip). The experimental setup consists of Caco-2 intestinal cells that can be artificially stimulated to trigger an immune response. The eventual response is optically monitored using immunofluoresence techniques targeting toll-like receptor 2 (TLR2). Two problems of interest need to be addressed by means of image processing. First, a new cell sample must be properly classified as stimulated or not. Second, the location of the stained TLR2 must be recovered in case the sample has been stimulated. The algorithmic approach to solving these problems is based on the ability of a segmentation technique to properly segment fluorescent spots. The sample classification is based on the amount and intensity of the segmented pixels, while the various segmenting blobs provide an approximate localization of TLR2. A novel local thresholding algorithm and three well-known spot segmentation techniques are compared in this study. Quantitative assessment of these techniques based on real and synthesized data demonstrates the improved segmentation capabilities of the proposed algorithm.

  18. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique.

    PubMed

    Murdock, Richard C; Braydich-Stolle, Laura; Schrand, Amanda M; Schlager, John J; Hussain, Saber M

    2008-02-01

    The need to characterize nanoparticles in solution before assessing the in vitro toxicity is a high priority. Particle size, size distribution, particle morphology, particle composition, surface area, surface chemistry, and particle reactivity in solution are important factors which need to be defined to accurately assess nanoparticle toxicity. Currently, there are no well-defined techniques for characterization of wet nanomaterials in aqueous or biological solutions. Previously reported nanoparticle characterization techniques in aqueous or biological solutions have consisted of the use of ultra-high illumination light microscopy and disc centrifuge sedimentation; however, these techniques are limited by the measurement size range. The current study focuses on characterizing a wide range of nanomaterials using dynamic light scattering (DLS) and transmission electron microscopy, including metals, metal oxides, and carbon-based materials, in water and cell culture media, with and without serum. Cell viability and cell morphology studies were conducted in conjunction with DLS experiments to evaluate toxicological effects from observed agglomeration changes in the presence or absence of serum in cell culture media. Observations of material-specific surface properties were also recorded. It was also necessary to characterize the impact of sonication, which is implemented to aid in particle dispersion and solution mixture. Additionally, a stock solution of nanomaterials used for toxicology studies was analyzed for changes in agglomeration and zeta potential of the material over time. In summary, our results demonstrate that many metal and metal oxide nanomaterials agglomerate in solution and that depending upon the solution particle agglomeration is either agitated or mitigated. Corresponding toxicity data revealed that the addition of serum to cell culture media can, in some cases, have a significant effect on particle toxicity possibly due to changes in agglomeration

  19. Ultrasound-assisted dispersive liquid-liquid microextraction combined with high-performance liquid chromatography-fluorescence detection for sensitive determination of biogenic amines in rice wine samples.

    PubMed

    Huang, Ke-Jing; Wei, Cai-Yun; Liu, Wei-Li; Xie, Wan-Zhen; Zhang, Jun-Feng; Wang, Wei

    2009-09-18

    Ultrasound-assisted dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography-fluorescence detection was used for the extraction and determination of three biogenic amines including octopamine, tyramine and phenethylamine in rice wine samples. Fluorescence probe 2,6-dimethyl-4-quinolinecarboxylic acid N-hydroxysuccinimide ester was applied for derivatization of biogenic amines. Acetonitrile and 1-octanol were used as disperser solvent and extraction solvent, respectively. Extraction conditions including the type of extraction solvent, the volume of extraction solvent, ultrasonication time and centrifuging time were optimized. After extraction and centrifuging, analyte was injected rapidly into high-performance liquid chromatography and then detected with fluorescence. The calibration graph of the proposed method was linear in the range of 5-500 microg mL(-1) (octopamine and tyramine) and 0.025-2.5 microg mL(-1) (phenethylamine). The relative standard deviations were 2.4-3.2% (n=6) and the limits of detection were in the range of 0.02-5 ng mL(-1). The method was applied to analyze the rice wine samples and spiked recoveries in the range of 95.42-104.56% were obtained. The results showed that ultrasound-assisted dispersive liquid-liquid microextraction was a very simple, rapid, sensitive and efficient analytical method for the determination of trace amount of biogenic amines.

  20. New measurement technique for dispersion characterizing optical fibers using low-coherence spectral interferometry with a Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Hlubina, Petr

    1999-08-01

    Low-coherence spectral interferometry with channelled spectrum detection, extensively used for dispersion characterizing optical fibers, utilizes the fact that the spectral interference between two modes of an optical fiber shows up at its output as a periodic modulation of the source spectrum with the period dependent on the group optical path difference (OPD) between modes. However, this measurement technique cannot be used to measure intermodal dispersion in the optical fiber for which the period of modulation is too small to be resolved by a spectrometer. We proposed and realized a new measurement technique utilizing a tandem configuration of a dispersive Michelson interferometer and the two-mode optical fiber in which the intermodal spectral interference can be resolved even if a low-resolution spectrometer is used. In the tandem configuration of the dispersive Michelson interferometer and the two-mode optical fiber, the OPD in the Michelson interferometer is adjusted close to the group OPD between modes of the optical fiber so that the low-frequency spectral modulation that can be processed is produced. Using the Fourier transform method in processing the measured spectral modulations and subtracting the effect of the dispersive Michelson interferometer, the intermodal dispersion of the two-mode optical fiber over a limited spectral region has been obtained.

  1. Finite-difference time-domain-based optical microscopy simulation of dispersive media facilitates the development of optical imaging techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Di; Capoglu, Ilker; Li, Yue; Cherkezyan, Lusik; Chandler, John; Spicer, Graham; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim

    2016-06-01

    Combining finite-difference time-domain (FDTD) methods and modeling of optical microscopy modalities, we previously developed an open-source software package called Angora, which is essentially a "microscope in a computer." However, the samples being simulated were limited to nondispersive media. Since media dispersions are common in biological samples (such as cells with staining and metallic biomarkers), we have further developed a module in Angora to simulate samples having complicated dispersion properties, thereby allowing the synthesis of microscope images of most biological samples. We first describe a method to integrate media dispersion into FDTD, and we validate the corresponding Angora dispersion module by applying Mie theory, as well as by experimentally imaging gold microspheres. Then, we demonstrate how Angora can facilitate the development of optical imaging techniques with a case study.

  2. Standoff detection: classification of biological aerosols using laser induced fluorescence (LIF) technique

    NASA Astrophysics Data System (ADS)

    Hausmann, Anita; Duschek, Frank; Fischbach, Thomas; Pargmann, Carsten; Aleksejev, Valeri; Poryvkina, Larisa; Sobolev, Innokenti; Babichenko, Sergey; Handke, Jürgen

    2014-05-01

    The challenges of detecting hazardous biological materials are manifold: Such material has to be discriminated from other substances in various natural surroundings. The detection sensitivity should be extremely high. As living material may reproduce itself, already one single bacterium may represent a high risk. Of course, identification should be quite fast with a low false alarm rate. Up to now, there is no single technique to solve this problem. Point sensors may collect material and identify it, but the problems of fast identification and especially of appropriate positioning of local collectors are sophisticated. On the other hand, laser based standoff detection may instantaneously provide the information of some accidental spillage of material by detecting the generated thin cloud. LIF technique may classify but hardly identify the substance. A solution can be the use of LIF technique in a first step to collect primary data and - if necessary- followed by utilizing these data for an optimized positioning of point sensors. We perform studies on an open air laser test range at distances between 20 and 135 m applying LIF technique to detect and classify aerosols. In order to employ LIF capability, we use a laser source emitting two wavelengths alternatively, 280 and 355 nm, respectively. Moreover, the time dependence of fluorescence spectra is recorded by a gated intensified CCD camera. Signal processing is performed by dedicated software for spectral pattern recognition. The direct comparison of all results leads to a basic classification of the various compounds.

  3. A Lanczos model-order reduction technique to efficiently simulate electromagnetic wave propagation in dispersive media

    NASA Astrophysics Data System (ADS)

    Zimmerling, Jörn; Wei, Lei; Urbach, Paul; Remis, Rob

    2016-06-01

    In this paper we present a Krylov subspace model-order reduction technique for time- and frequency-domain electromagnetic wave fields in linear dispersive media. Starting point is a self-consistent first-order form of Maxwell's equations and the constitutive relation. This form is discretized on a standard staggered Yee grid, while the extension to infinity is modeled via a recently developed global complex scaling method. By applying this scaling method, the time- or frequency-domain electromagnetic wave field can be computed via a so-called stability-corrected wave function. Since this function cannot be computed directly due to the large order of the discretized Maxwell system matrix, Krylov subspace reduced-order models are constructed that approximate this wave function. We show that the system matrix exhibits a particular physics-based symmetry relation that allows us to efficiently construct the time- and frequency-domain reduced-order models via a Lanczos-type reduction algorithm. The frequency-domain models allow for frequency sweeps meaning that a single model provides field approximations for all frequencies of interest and dominant field modes can easily be determined as well. Numerical experiments for two- and three-dimensional configurations illustrate the performance of the proposed reduction method.

  4. Identification of Scleractinian Coral Recruits Using Fluorescent Censusing and DNA Barcoding Techniques

    PubMed Central

    Hsu, Chia-Min; de Palmas, Stéphane; Kuo, Chao-Yang; Denis, Vianney; Chen, Chaolun Allen

    2014-01-01

    The identification of coral recruits has been problematic due to a lack of definitive morphological characters being available for higher taxonomic resolution. In this study, we tested whether fluorescent detection of coral recruits used in combinations of different DNA-barcoding markers (cytochrome oxidase I gene [COI], open reading frame [ORF], and nuclear Pax-C intron [PaxC]) could be useful for increasing the resolution of coral spat identification in ecological studies. One hundred and fifty settlement plates were emplaced at nine sites on the fringing reefs of Kenting National Park in southern Taiwan between April 2011 and September 2012. A total of 248 living coral spats and juveniles (with basal areas ranging from 0.21 to 134.57 mm2) were detected on the plates with the aid of fluorescent light and collected for molecular analyses. Using the COI DNA barcoding technique, 90.3% (224/248) of coral spats were successfully identified into six genera, including Acropora, Isopora, Montipora, Pocillopora, Porites, and Pavona. PaxC further separated I. cuneata and I. palifera of Isopora from Acropora, and ORF successfully identified the species of Pocillopora (except P. meandrina and P. eydouxi). Moreover, other cnidarian species such as actinarians, zoanthids, and Millepora species were visually found using fluorescence and identified by COI DNA barcoding. This combination of existing approaches greatly improved the taxonomic resolution of early coral life stages, which to date has been mainly limited to the family level based on skeletal identification. Overall, this study suggests important improvements for the identification of coral recruits in ecological studies. PMID:25211345

  5. Advantages of admittance spectroscopy over time-of-flight technique for studying dispersive charge transport in an organic semiconductor

    NASA Astrophysics Data System (ADS)

    Tsung, K. K.; So, S. K.

    2009-10-01

    We show that admittance spectroscopy (AS) is a better technique than time of flight (TOF) to study the charge transport properties in dispersive materials. The hole transport properties of N ,N'-diphenyl-N ,N'-bis(1-naphthyl)(1,1'-biphenyl)-4,4'-diamine (NPB) doped with different traps were evaluated by AS and TOF techniques. It was found that both techniques can show clear signals for measuring the mobility of NPB doped with shallow traps. When NPB was doped with deep traps, the AS signals were still clear for mobility extraction. In sharp contrast, the TOF transients become featureless and the carrier transit time cannot be determined. The validity of AS in mobility determination was demonstrated by comparing the extracted AS to TOF mobilities. Generally, the hole mobilities extracted by these two techniques were in excellent agreement. In addition, we will demonstrate that AS can be employed to measure carrier dispersion.

  6. Single molecule fluorescence imaging as a technique for barium tagging in neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Jones, B. J. P.; McDonald, A. D.; Nygren, D. R.

    2016-12-01

    Background rejection is key to success for future neutrinoless double beta decay experiments. To achieve sensitivity to effective Majorana lifetimes of ~ 1028 years, backgrounds must be controlled to better than 0.1 count per ton per year, beyond the reach of any present technology. In this paper we propose a new method to identify the birth of the barium daughter ion in the neutrinoless double beta decay of 136Xe. The method adapts Single Molecule Fluorescent Imaging, a technique from biochemistry research with demonstrated single ion sensitivity. We explore possible SMFI dyes suitable for the problem of barium ion detection in high pressure xenon gas, and develop a fiber-coupled sensing system with which we can detect the presence of bulk Ba++ ions remotely. We show that our sensor produces signal-to-background ratios as high as 85 in response to Ba++ ions when operated in aqueous solution. We then describe the next stage of this R&D program, which will be to demonstrate chelation and fluorescence in xenon gas. If a successful barium ion tag can be developed using SMFI adapted for high pressure xenon gas detectors, the first essentially zero background, ton-scale neutrinoless double beta decay technology could be realized.

  7. Energy dispersive X-ray fluorescence and scattering assessment of soil quality via partial least squares and artificial neural networks analytical modeling approaches.

    PubMed

    Kaniu, M I; Angeyo, K H; Mwala, A K; Mwangi, F K

    2012-08-30

    Soil quality assessment (SQA) calls for rapid, simple and affordable but accurate analysis of soil quality indicators (SQIs). Routine methods of soil analysis are tedious and expensive. Energy dispersive X-ray fluorescence and scattering (EDXRFS) spectrometry in conjunction with chemometrics is a potentially powerful method for rapid SQA. In this study, a 25 m Ci (109)Cd isotope source XRF spectrometer was used to realize EDXRFS spectrometry of soils. Glycerol (a simulate of "organic" soil solution) and kaolin (a model clay soil) doped with soil micro (Fe, Cu, Zn) and macro (NO(3)(-), SO(4)(2-), H(2)PO(4)(-)) nutrients were used to train multivariate chemometric calibration models for direct (non-invasive) analysis of SQIs based on partial least squares (PLS) and artificial neural networks (ANN). The techniques were compared for each SQI with respect to speed, robustness, correction ability for matrix effects, and resolution of spectral overlap. The method was then applied to perform direct rapid analysis of SQIs in field soils. A one-way ANOVA test showed no statistical difference at 95% confidence interval between PLS and ANN results compared to reference soil nutrients. PLS was more accurate analyzing C, N, Na, P and Zn (R(2)>0.9) and low SEP of (0.05%, 0.01%, 0.01%, and 1.98 μg g(-1)respectively), while ANN was better suited for analysis of Mg, Cu and Fe (R(2)>0.9 and SEP of 0.08%, 4.02 μg g(-1), and 0.88 μg g(-1) respectively).

  8. Portable X-ray fluorescence spectroscopy as a rapid screening technique for analysis of TiO2 and ZnO in sunscreens

    NASA Astrophysics Data System (ADS)

    Bairi, Venu Gopal; Lim, Jin-Hee; Quevedo, Ivan R.; Mudalige, Thilak K.; Linder, Sean W.

    2016-02-01

    This investigation reports a rapid and simple screening technique for the quantification of titanium and zinc in commercial sunscreens using portable X-ray fluorescence spectroscopy (pXRF). A highly evolved technique, inductively coupled plasma-mass spectroscopy (ICP-MS) was chosen as a comparative technique to pXRF, and a good correlation (r2 > 0.995) with acceptable variations (≤ 25%) in results between both techniques was observed. Analytical figures of merit such as detection limit, quantitation limit, and linear range of the method are reported for the pXRF technique. This method has a good linearity (r2 > 0.995) for the analysis of titanium (Ti) in the range of 0.4-14.23 wt%, and zinc (Zn) in the range of 1.0-23.90 wt%. However, most commercial sunscreens contain organic ingredients, and these ingredients are known to cause matrix effects. The development of appropriate matrix matched working standards to obtain the calibration curve was found to be a major challenge for the pXRF measurements. In this study, we have overcome the matrix effect by using metal-free commercial sunscreens as a dispersing media for the preparation of working standards. An easy extension of this unique methodology for preparing working standards in different matrices was also reported. This method is simple, rapid, and cost-effective and, in comparison to conventional techniques (e.g., ICP-MS), did not generate toxic wastes during sample analysis.

  9. Development of a fluorescent in situ hybridization (FISH) technique for visualizing CGMMV in plant tissues.

    PubMed

    Shargil, D; Zemach, H; Belausov, E; Lachman, O; Kamenetsky, R; Dombrovsky, A

    2015-10-01

    Cucumber green mottle mosaic virus (CGMMV), which belongs to the genus Tobamovirus, is a major pathogen of cucurbit crops grown indoors and in open fields. Currently, immunology (e.g., ELISA) and molecular amplification techniques (e.g., RT-PCR) are employed extensively for virus detection in plant tissues and commercial seed lots diagnostics. In this study, a fluorescent in situ hybridization (FISH) technique, using oligonucleotides whose 5'-terminals were labeled with red cyanine 3 (Cy3) or green fluorescein isothiocyanate (FITC), was developed for the visualization of the pathogen in situ. This simple and reliable method allows detection and localization of CGMMV in the vegetative and reproductive tissues of cucumber and melon. When this technique was applied in male flowers, anther tissues were found to be infected; whereas the pollen grains were found to be virus-free. These results have meaningful epidemiological implications for the management of CGMMV, particularly with regard to virus transfer via seed and the role of insects as CGMMV vectors.

  10. Detection of Biomass in New York City Aerosols: Light Scattering and Optical Fluorescence Techniques

    NASA Astrophysics Data System (ADS)

    Niebauer, M.; Alimova, A.; Katz, A.; Xu, M.; Rudolph, E.; Steiner, J.; Alfano, R. R.

    2005-12-01

    Optical spectroscopy is an ideal method for detecting bacteria and spores in real time. Optical fluorescence spectroscopy examination of New York City aerosols is used to quantify the mass of bacteria spores present in air masses collected at 14 liters/minute onto silica fiber filters, and on silica fiber ribbons using an Environmental Beta Attenuation Monitor manufactured by MetOne Instruments configured for the PM2.5 fraction. Dipicolinic acid (DPA), a molecule found primarily in bacterial spores, is the most characteristic component of spores in trial experiments on over 200 collected aerosol samples. DPA is extracted from the spores using a heat bath and chelated with Terbium. The DPA:Tb is detected by measuring its characteristic fluorescence with emission bands at 490, 545 and 585 nm for 270 nm excitation. Light scattering also measures the size distribution for a number of a variety of bacteria - Bacillus subtilis (rod shaped), Staphylococcus aureus (spherical) and Pseudomonas aeruginosa (short rods) establishing that optical techniques satisfactorily distinguish populations based on their variable morphology. Size and morphology are obtained by applying a variation of the Gaussian Ray Approximation theory of anomalous diffraction theory to an analysis of the transmission spectra in the range of 0.4 to 1.0 microns. In test experiments, the refractive index of the inner spore core of Bacillus subtilis decreases from 1.51 to 1.39 while the spore radius enlarges from 0.38 to 0.6 micrometers. Optical determinations are verified by oil-immersion techniques and by scanning electron microscope measurements. Characterization of spores, germinating spore materials, and bacteria is considered vital to tracing bacteria in the environment, for the development of life-detection systems for planetary exploration, monitoring pathogens in environmental systems, and for the preparation of anti-terrorism strategies.

  11. Novel time-of-flight fiber dispersion measurement technique using supercontinuum light sources and acousto-optical tunable filters.

    PubMed

    Blume, Niels Göran; Wagner, Steven

    2015-07-20

    Long-distance fiber links require precise knowledge of fiber dispersion characteristics. Similar dispersion characteristics are necessary for supercontinuum broadband laser absorption spectroscopy (SCLAS) to allow proper data evaluation and species concentration determination, as well as numerous other applications. In this work, a time-of-flight approach to measuring the dispersion characteristic of fibers with supercontinuum laser light sources (SCLs) and acousto-optical tunable filters (AOTFs) is presented. Broadband emission of the SCL is filtered with a narrowband AOTF and dispersed in time by the fiber under test. By using the wavelength-specific delay, the dispersion characteristic can be calculated. The technique is especially suited for longer fibers and was verified against a state-of-the-art phase-shift-based dispersion measurement system. Advantages of the new approach include solely utilizing SCLAS system components, as well as a high level of automation and wide spectral coverage, ranging from 1100 to 1700 nm in a single measurement setup.

  12. Time-correlated Raman and fluorescence spectroscopy based on a silicon photomultiplier and time-correlated single photon counting technique.

    PubMed

    Zhang, Chunling; Zhang, Liying; Yang, Ru; Liang, Kun; Han, Dejun

    2013-02-01

    We report a time-correlated Raman spectroscopy technique based on a silicon photomultiplier (SiPM) and a time-correlated single photon counting (TCSPC) technique to exploit the natural temporal separation between Raman and fluorescence phenomena to alleviate the high fluorescence background with conventional Raman detection. The TCSPC technique employed can greatly reduce the effect of high dark count rate (DCR) and crosstalk of SiPM that seriously hinder its application in low light level detection. The operating principle and performance of the 400 ps time resolution system are discussed along with the improvement of the peak-to-background ratio (PBR) for bulk trinitrotoluene (TNT) Raman spectrum relative to a commercial Raman spectrometer with charge coupled device (CCD). The fluorescence lifetime for solid TNT and Surface Enhanced Raman Scattering (SERS) spectrum for 10(-6) mol/L trace TNT have also been obtained by this system, showing excellent versatility and convenience in spectroscopy measurement.

  13. Preparation and characterization of fast dissolving flurbiprofen and esomeprazole solid dispersion using spray drying technique.

    PubMed

    Pradhan, Roshan; Tran, Tuan Hiep; Kim, Sung Yub; Woo, Kyu Bong; Choi, Yong Joo; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2016-04-11

    We aimed to develop an immediate-release flurbiprofen (FLU) and esomeprazole (ESO) combination formulation with enhanced gastric aqueous solubility and dissolution rate. Aqueous solubility can be enhanced by formulating solid dispersions (SDs) with a polyvinylpyrrolidone (PVP)-K30 hydrophilic carrier, using spray-drying technique. Aqueous and gastric pH dissolution can be achieved by macro-environmental pH modulation using sodium bicarbonate (NaHCO3) and magnesium hydroxide (Mg(OH)2) as the alkaline buffer. FLU/ESO-loaded SDs (FLU/ESO-SDs) significantly improved aqueous solubility of both drugs, compared to each drug powder. Dissolution studies in gastric pH and water were compared with the microenvironmental pH modulated formulations. The optimized FLU/ESO-SD powder formulation consisted of FLU/ESO/PVP-K30/sodium carbonate (Na2CO3) in a weight ratio 1:0.22:1.5:0.3, filled in the inner capsule. The outer capsule consisted of NaHCO3 and Mg(OH)2, which created the macro-environmental pH modulation. Increased aqueous and gastric pH dissolution of FLU and ESO from the SD was attributed to the alkaline buffer effects and most importantly, to drug transformation from crystalline to amorphous SD powder, clearly revealed by scanning electron microscopy, differential scanning calorimetry, and powder X-ray diffraction studies. Thus, the combined FLU and ESO SD powder can be effectively delivered as an immediate-release formulation using the macro-environmental pH modulation concept.

  14. Comparison of In Situ Polymerization and Solution-Dispersion Techniques in the Preparation of Polyimide/Montmorillonite (MMT) Nanocomposites

    PubMed Central

    Ahmad, Mansor Bin; Gharayebi, Yadollah; Salit, Mohd. Sapuan; Hussein, Mohd. Zobir; Shameli, Kamyar

    2011-01-01

    In this paper, Polyimide/Montmorillonite Nanocomposites (PI/MMT NCs), based on aromatic diamine (4-Aminophenyl sulfone) (APS) and aromatic dianhydride (3,3′,4,4′-benzophenonetetracarboxylic dianhydride) (BTDA) were prepared using in situ polymerization and solution-dispersion techniques. The prepared PI/MMT NCs films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The XRD results showed that at the content of 1.0 wt % Organo Montmorillonite (OMMT) for two techniques and 3.0 wt % OMMT for the in situ polymerization technique, the OMMT was well-intercalated, exfoliated and dispersed into polyimide matrix. The OMMT agglomerated when its amount exceeded 10 wt % and 3.0 wt % for solution-dispersion and in situ polymerization techniques respectively. These results were confirmed by the TEM images of the prepared PI/MMT NCs. The TGA thermograms indicated that thermal stability of prepared PI/MMT NCs were increased with the increase of loading that, the effect is higher for the samples prepared by in situ polymerization technique. PMID:22016643

  15. Multispectral fluorescence imaging technique for discrimination of cucumber (Cucumis Sativus) seed viability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we developed a nondestructive method for discriminating viable cucumber (Cucumis sativus) seeds based on hyperspectral fluorescence imaging. The fluorescence spectra of cucumber seeds in the 420–700 nm range were extracted from hyperspectral fluorescence images obtained using 365 nm u...

  16. Intrinsic Tryptophan Fluorescence in the Detection and Analysis of Proteins: A Focus on Förster Resonance Energy Transfer Techniques

    PubMed Central

    Ghisaidoobe, Amar B. T.; Chung, Sang J.

    2014-01-01

    Förster resonance energy transfer (FRET) occurs when the distance between a donor fluorophore and an acceptor is within 10 nm, and its application often necessitates fluorescent labeling of biological targets. However, covalent modification of biomolecules can inadvertently give rise to conformational and/or functional changes. This review describes the application of intrinsic protein fluorescence, predominantly derived from tryptophan (λEX ∼ 280 nm, λEM ∼ 350 nm), in protein-related research and mainly focuses on label-free FRET techniques. In terms of wavelength and intensity, tryptophan fluorescence is strongly influenced by its (or the protein’s) local environment, which, in addition to fluorescence quenching, has been applied to study protein conformational changes. Intrinsic Förster resonance energy transfer (iFRET), a recently developed technique, utilizes the intrinsic fluorescence of tryptophan in conjunction with target-specific fluorescent probes as FRET donors and acceptors, respectively, for real time detection of native proteins. PMID:25490136

  17. Ionic liquids for simultaneous preconcentration of some lanthanoids using dispersive liquid-liquid microextraction technique in uranium dioxide powder.

    PubMed

    Mallah, Mohammad H; Shemirani, Farzaneh; Maragheh, Mohammad G

    2009-03-15

    Ionic liquids in a dispersive liquid-liquid microextraction technique were used for determination of lanthanoids such as samarium, europium, gadolinium, and dysprosium in uranium dioxide powder. In this process, an appropriate mixture of extraction solvent and disperser is rapidly injected into an aqueous sample containing samarium, europium, gadolinium, and dysprosium ions complexes with 1-hydroxy-2, 5-pyrrolidinedione, and consequently a cloudy solution is formed. It consists of fine droplets of extraction solventwhich are dispersed entirely into the aqueous phase. After centrifugation of this solution, the whole enriched phase was determined by inductively coupled plasma optical emission spectrometry. In the present work, the preconcentration factor, limit of detection, and relative standard deviation were investigated for samarium, europium, gadolinium, and dysprosium in uranium dioxide powder.

  18. Patterning titania with the conventional and modified micromolding in capillaries technique from sol–gel and dispersion solutions

    PubMed Central

    Khan, Sajid Ullah; Elshof, Johan E ten

    2012-01-01

    We report TiO2 patterns obtained by a soft-lithographic technique called ‘micromolding in capillaries’ using sol–gel and dispersion solutions. A comparison between patterning with a sol–gel and dispersion solutions has been performed. The patterns obtained from sol–gel solutions showed good adhesion to the substrate and uniform shapes, but large shrinkage, whereas those obtained from dispersion solution had high solid content, but exhibited poor adhesion and non-uniform shapes. A fabrication method of a layer-by-layer structured pattern is also demonstrated. This type of pattern may find application in sensors, waveguides and other photonics elements. The occurrence of an undesirable residue layer, which hinders the fabrication of isolated patterns, is highlighted and a method of prevention is suggested. PMID:27877480

  19. Light stress effect and by nitrogen deficiency in plants of Petiveria alliacea measured with two-chlorophyll-fluorescence technique

    NASA Astrophysics Data System (ADS)

    Zuluaga, H.; Oviedo, A.; Solarte, Efrain; Pena, E. J.

    2004-10-01

    The chlorophyll fluorescence was studied in Petiveria alliacea plants exposed to different nitrogen concentrations and light radiation, the response was measured by two different forms; (1) measuring the photosynthetic efficiency with a pulse amplitude modulated fluorometro (PAM) emitted by a 650 nm diode and (2) measuring the fluorescence spectra caused by high power 452 nm diode with a SD2000 spectrometer. It was found out that the photosynthetic efficiency decreased in the plants exposed to high radiance and low nitrogen. Two chlorophyll fluorescence peaks were observed on 684 nm and 739 nm, the intensities in this wavelengths are inversely related with the light radiance. The correlation between the FIR and photosynthetic efficiency was very strong (r2 = -0.809, p <<0.01) this let us conclude that the fluorescence spectral analysis induced by the diode (excitation at 452 nm) is an efficient technique to detect stress by high light intensity and nitrogen in P. Alliacea plants.

  20. Relative ability of laser fluorescence techniques to quantitate early mineral loss in vitro.

    PubMed

    Ando, M; Hall, A F; Eckert, G J; Schemehorn, B R; Analoui, M; Stookey, G K

    1997-01-01

    This in vitro investigation was undertaken to explore two different nondestructive methods to detect very early demineralization. These methods were based on the premise that the clinical detection of caries at a very early stage of formation might permit more efficient reversal of the caries process than may occur when lesions are detected at a more advanced stage, such as a so-called 'white spot'. The methods evaluated in this study were quantitative laser fluorescence (QLF) and an experimental dye-enhanced laser fluorescence (DELF) technique. Prepared and polished bovine enamel specimens were demineralized in a conventional lactic acid-Carbopol solution for varying periods of time between 0 and 24 h with an area of sound enamel retained on each specimen. The coded and randomized specimens were then analyzed for the presence and severity of enamel demineralization using QLF after which they were exposed to a selected dye (Pyrromethene 556) and similarly examined using DELF. The specimens were then sectioned and examined by conventional transverse microradiography and by confocal laser-scanning microscopy. Results were analyzed statistically with sensitivity and specificity determined using sound enamel as the reference. The results indicated that QLF could detect demineralization which occurred as a result of 8 h exposure to the decalcification solution and was able to quantify changes in lesion severity associated with longer demineralization. While DELF was capable of detecting enamel demineralization after only 2 h exposure to the decalcification solution, it was unable to quantify increasing amounts of demineralization associated with longer periods of exposure to the decalcification solution. In summary, while DELF was able to detect very early demineralization, only QLF was capable of detecting and quantifying changes in the extent of the decalcification occurring with demineralization periods up to 24 h.

  1. Enhanced fluorescence and aggregation of rhodamine molecules dispersed in a thin polymer film in the presence of plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Kamalieva, Aisylu N.; Toropov, Nikita A.; Vartanyan, Tigran A.

    2016-04-01

    Optical properties of composite structures comprised of the island films of silver nanoparticles with a thin molecular layer of a dye rhodamine 6G were obtained and studied in this paper. In the near field of plasmonic nanoparticles enhancement and shifting of the maximums of the absorption and fluorescence spectra were observed. In the absorption and fluorescence spectra of thin molecular films with nanoparticles the new red-shifted band in comparison with spectra of thin films without nanoparticles was found. This band was associated with the formation of aggregates. Thus, the silver nanoparticles can contribute to fluorescence enhancement and formation of the aggregates in the rhodamine thin films.

  2. Seed dispersal into wetlands: Techniques and results for a restored tidal freshwater marsh

    USGS Publications Warehouse

    Neff, K.P.; Baldwin, A.H.

    2005-01-01

    Although seed dispersal is assumed to be a major factor determining plant community development in restored wetlands, little research exists on density and species richness of seed available through dispersal in these systems. We measured composition and seed dispersal rates at a restored tidal freshwater marsh in Washington, DC, USA by collecting seed dispersing through water and wind. Seed dispersal by water was measured using two methods of seed collection: (1) stationary traps composed of coconut fiber mat along an elevation gradient bracketing the tidal range and (2) a floating surface trawl net attached to a boat. To estimate wind dispersal rates, we collected seed from stationary traps composed of coconut fiber mat positioned above marsh vegetation. We also collected a small number of samples of debris deposited along high tide lines (drift lines) and feces of Canada Goose to explore their seed content. We used the seedling emergence method to determine seed density in all samples, which involved placing the fiber mats or sample material on top of potting soil in a greenhouse misting room and enumerating emerging seedlings. Seedlings from a total of 125 plant species emerged during this study (including 82 in river trawls, 89 in stationary water traps, 21 in drift lines, 39 in wind traps, and 10 in goose feces). The most abundant taxa included Bidens frondosa, Boehmeria cylindrica, Cyperus spp., Eclipta prostrata, and Ludwigia palustris. Total seedling density was significantly greater for the stationary water traps (212 + 30.6 seeds/m2/month) than the equal-sized stationary wind traps (18 + 6.0 seeds/m(2)/month). Lower-bound estimates of total species richness based on the non-parametric Chao 2 asymptotic estimators were greater for seeds in water (106 + 1.4 for stationary water traps and 104 + 5.5 for trawl samples) than for wind (54 + 6.4). Our results indicate that water is the primary source of seeds dispersing to the site and that a species-rich pool

  3. Fluorescence intensity, lifetime, and anisotropy screening of living cells based on total internal reflection techniques

    NASA Astrophysics Data System (ADS)

    Bruns, Thomas; Angres, Brigitte; Steuer, Heiko; Strauss, Wolfgang S. L.; Schneckenburger, Herbert

    2009-02-01

    A setup for fluorescence measurements of surfaces of biological samples, in particular the plasma membrane of living cells, is described. The method is based on splitting of a laser beam and multiple total internal reflections (TIR) within the bottom of a microtiter plate, such that up to 96 individual samples are illuminated simultaneously by an evanescent electromagnetic field. Two different screening procedures for the detection of fluorescence arising from the plasma membrane of living cells by High Throughput Screening (HTS) and High Content Screening (HCS), are distinguished. In the first case a rapid measurement of large sample numbers based on fluorescence intensity, and in the second case a high content of information from a single sample based on the parameters fluorescence lifetime (Fluorescence Lifetime Screening, FLiS) and fluorescence anisotropy (Fluorescence Lifetime Polarization Screening, FLiPS) is achieved. Both screening systems were validated using cultivated cells incubated with different fluorescent markers (e. g. NBD-cholesterol) as well as stably transfected cells expressing a fluorescent membrane-associating protein. In addition, particularly with regard of potential pharmaceutical applications, the kinetics of the intracellular translocation of a fluorescent protein kinase c fusion protein upon stimulation of the cells was determined. Further, a caspase sensor based on Förster Resonance Energy Transfer (FRET) between fluorescent proteins was tested. Enhanced cyan fluorescent protein (ECFP) anchored to the inner leaflet of the plasma membrane of living cells transfers its excitation energy via a spacer (DEVD) to an enhanced yellow fluorescent protein (EYFP). Upon apoptosis DEVD is cleaved, and energy transfer is disrupted, as proven by changes in fluorescence intensity and decay times.

  4. Itraconazole solid dispersion prepared by a supercritical fluid technique: preparation, in vitro characterization, and bioavailability in beagle dogs

    PubMed Central

    Yin, Xuezhi; Daintree, Linda Sharon; Ding, Sheng; Ledger, Daniel Mark; Wang, Bing; Zhao, Wenwen; Qi, Jianping; Wu, Wei

    2015-01-01

    This research aimed to develop a supercritical fluid (SCF) technique for preparing a particulate form of itraconazole (ITZ) with good dissolution and bioavailability characteristics. The ITZ particulate solid dispersion was formulated with hydroxypropyl methylcellulose, Pluronic F-127, and L-ascorbic acid. Aggregated particles showed porous structure when examined by scanning electron microscopy. Powder X-ray diffraction and Fourier transform infrared spectra indicated an interaction between ITZ and excipients and showed that ITZ existed in an amorphous state in the composite solid dispersion particles. The solid dispersion obtained by the SCF process improved the dissolution of ITZ in media of pH 1.0, pH 4.5, and pH 6.8, compared with a commercial product (Sporanox®), which could be ascribed to the porous aggregated particle shape and amorphous solid state of ITZ. While the solid dispersion did not show a statistical improvement (P=0.50) in terms of oral bioavailability of ITZ compared with Sporanox®, the Cmax (the maximum plasma concentration of ITZ in a pharmacokinetic curve) of ITZ was raised significantly (P=0.03) after oral administration. Thus, the SCF process has been shown to be an efficient, single step process to form ITZ-containing solid dispersion particles with good dissolution and oral bioavailability characteristics. PMID:26060397

  5. Novel technique for measuring intermodal dispersion in optical fibers using the spectral interference in the Michelson interferometer configuration

    NASA Astrophysics Data System (ADS)

    Hlubina, Petr

    1999-07-01

    The spectral interference between two modes of an optical fiber, which shows up as a periodic modulation of the source spectrum at its output, cannot be used to measure intermodal dispersion in the optical fiber when the period of modulation is too small to be resolved by a spectrometer. We proposed a novel measuring technique utilizing a tandem configuration of a dispersive Michelson interferometer and a two-mode optical fiber in which the intermodal interference can be restored, and consequently spectral interference fringes can be resolved, even if a low-resolution spectrometer is used. In the tandem configuration of the Michelson interferometer and the two-mode optical fiber, the optical path difference (OPD) in the Michelson interferometer is adjusted close to the group OPD between modes of the optical fiber so that the low-frequency spectral modulation that can be processed is produced. The feasibility of this technique has successfully been demonstrated in obtaining the wavelength dependence of the group OPD between two modes of the optical fiber. Using the Fourier transform method in processing the measured spectral modulations and subtracting the effect of the dispersive Michelson interferometer, the intermodal dispersion of the two-mode optical fiber has been obtained.

  6. Determination of the major constituents in fruit of Arctium lappa L. by matrix solid-phase dispersion extraction coupled with HPLC separation and fluorescence detection.

    PubMed

    Liu, He; Zhang, Yupu; Sun, Yantao; Wang, Xue; Zhai, Yujuan; Sun, Ye; Sun, Shuo; Yu, Aimin; Zhang, Hanqi; Wang, Yinghua

    2010-10-15

    The arctiin and arctigenin in the fruit of Arctium lappa L. were extracted by matrix solid-phase dispersion (MSPD) and determined by high-performance liquid chromatography (HPLC) with fluorescence detection. The experimental conditions for the MSPD were optimized. Silica gel was selected as dispersion adsorbent and methanol as elution solvent. The calibration curve showed good relationship (r>0.9998) in the concentration range of 0.010-5.0μgmL(-1) for arctiin and 0.025-7.5μgmL(-1) for arctigenin. The recoveries were between 74.4% and 100%. The proposed method consumed less sample, time and solvent compared with conventional methods, including ultrasonic and Soxhlet extraction.

  7. Jet-cooled laser-induced dispersed fluorescence spectroscopy of NiC: Observation of low-lying Ω = 0+ state

    NASA Astrophysics Data System (ADS)

    Mukund, Sheo; Yarlagadda, Suresh; Bhattacharyya, Soumen; Nakhate, S. G.

    2014-01-01

    Laser-induced dispersed fluorescence spectra of 58Ni12C molecules, produced in a free-jet apparatus, have been studied. A new low-lying Ω = 0+ state has been observed at Te = 5178 (6) cm-1. Based on previous ab initio calculations this state is plausibly assigned as 0+ spin-orbit component of the first excited 3 Π state. The term energies of vibrational levels up to v = 10 for X1Σ+ ground and v = 3 for Ω = 0+ states have been determined. The harmonic and anharmonic wavenumbers respectively equal to 833 (4) and 6.7 (13) cm-1 for Ω = 0+ state have been measured.

  8. Jet-cooled laser-induced dispersed fluorescence spectroscopy of TaN: Observation of a3Δ and A1Δ states

    NASA Astrophysics Data System (ADS)

    Mukund, Sheo; Bhattacharyya, Soumen; Nakhate, S. G.

    2016-07-01

    Laser-induced dispersed fluorescence spectra of TaN molecules, produced in a free-jet apparatus, have been studied. Two spin components of the lowest-lying a3Δ state along with their vibrational structure have been observed. The A1Δ state, which was predicted earlier by ab initio calculation has also been observed. The X1Σ+ ground state vibrational progression up to v = 9 has been recorded. The experimentally determined term energies and vibrational constants at equilibrium for the ground and a3Δ states are in fairly good agreement with the ab initio values reported earlier.

  9. Contouring Of Tooth Imprints By Means Of A Fluorescence Technique Adapted To A Spatially Filtered Moire Illumination

    NASA Astrophysics Data System (ADS)

    Jongsma, Frans H. M.; Lambrechts, Paul; Vanherle, Guido

    1983-07-01

    A technique has been developed to produce plane equidistant contouring surfaces on tooth-imprints. This technique consists of spatially filtering a negative obtained by photographing the imprint under a Moire illumination. Unfortunately this technique turned out to be very sensitive for a non-uniform surface reflectivity. To obtain an object-brightness depending only upon the contouring mechanism, the imprint has been coated with a fluorescent dye. A HeCd-laser (λ=422 nm) served as a lightsource for the projection of the Moire-interference pattern on the imprint. The radiation of the fluorescent coating (λ=530 nm) is used to form an image on the negative. In this way the surface with specular reflection properties is transformed into a Labertian surface. The spatial filtering technique allows multiple exposures of the final negative enabling an increased depth of field. Contour mappings with a resolution in depth of less than 10 μm have been obtained.

  10. Measurement of resistance to solute transport across surfactant-laden interfaces using a Fluorescence Recovery After Photobleaching (FRAP) technique

    NASA Technical Reports Server (NTRS)

    Browne, Edward P.; Nivaggioli, Thierry; Hatton, T. Alan

    1994-01-01

    A noninvasive fluorescence recovery after photobleaching (FRAP) technique is under development to measure interfacial transport in two phase systems without disturbing the interface. The concentration profiles of a probe solute are measured in both sides of the interface by argon-ion laser, and the system relaxation is then monitored by a microscope-mounted CCD camera.

  11. Fluorescence properties of dyes adsorbed to silver islands, investigated by picosecond techniques

    NASA Astrophysics Data System (ADS)

    Leitner, A.; Lippitsch, M. E.; Draxler, S.; Riegler, M.; Aussenegg, F. R.

    1985-02-01

    The fluorescence properties of dye molecules (rhodamine 6G and erythrosin) adsorbed on pure glass surfaces and on silver islands films are investigated by cw and picosecond time-resolved methods. On pure glass surfaces we observe concentration quenching below a critical intermolecular distance (reduction of the fluorescence power per molecule as well as shortened and non-exponential fluorescence decay). On silver islands films the shortening in fluorescence lifetime is more drastic and is nearly independent of the intermolecular distance. This behavior suggests an electrodynamic interaction between dye monomers and plasmons in the metal particles, modified by a damping influence of dye dimers.

  12. Disentangling who is who during rhizosphere acidification in root interactions: combining fluorescence with optode techniques

    PubMed Central

    Faget, Marc; Blossfeld, Stephan; von Gillhaussen, Philipp; Schurr, Ulrich; Temperton, Vicky M.

    2013-01-01

    Plant–soil interactions can strongly influence root growth in plants. There is now increasing evidence that root–root interactions can also influence root growth, affecting architecture and root traits such as lateral root formation. Both when species grow alone or in interaction with others, root systems are in turn affected by as well as affect rhizosphere pH. Changes in soil pH have knock-on effects on nutrient availability. A limitation until recently has been the inability to assign species identity to different roots in soil. Combining the planar optode technique with fluorescent plants enables us to distinguish between plant species grown in natural soil and in parallel study pH dynamics in a non-invasive way at the same region of interest (ROI). We measured pH in the rhizosphere of maize and bean in rhizotrons in a climate chamber, with ROIs on roots in proximity to the roots of the other species as well as not-close to the other species. We found clear dynamic changes of pH over time and differences between the two species in rhizosphere acidification. Interestingly, when roots of the two species were interacting, the degree of acidification or alkalization compared to bulk soil was less strong then when roots were not growing in the vicinity of the other species. This cutting-edge approach can help provide a better understanding of plant–plant and plant–soil interactions. PMID:24137168

  13. Disentangling who is who during rhizosphere acidification in root interactions: combining fluorescence with optode techniques.

    PubMed

    Faget, Marc; Blossfeld, Stephan; von Gillhaussen, Philipp; Schurr, Ulrich; Temperton, Vicky M

    2013-01-01

    Plant-soil interactions can strongly influence root growth in plants. There is now increasing evidence that root-root interactions can also influence root growth, affecting architecture and root traits such as lateral root formation. Both when species grow alone or in interaction with others, root systems are in turn affected by as well as affect rhizosphere pH. Changes in soil pH have knock-on effects on nutrient availability. A limitation until recently has been the inability to assign species identity to different roots in soil. Combining the planar optode technique with fluorescent plants enables us to distinguish between plant species grown in natural soil and in parallel study pH dynamics in a non-invasive way at the same region of interest (ROI). We measured pH in the rhizosphere of maize and bean in rhizotrons in a climate chamber, with ROIs on roots in proximity to the roots of the other species as well as not-close to the other species. We found clear dynamic changes of pH over time and differences between the two species in rhizosphere acidification. Interestingly, when roots of the two species were interacting, the degree of acidification or alkalization compared to bulk soil was less strong then when roots were not growing in the vicinity of the other species. This cutting-edge approach can help provide a better understanding of plant-plant and plant-soil interactions.

  14. Total reflection X-ray fluorescence as a fast multielemental technique for human placenta sample analysis

    NASA Astrophysics Data System (ADS)

    Marguí, E.; Ricketts, P.; Fletcher, H.; Karydas, A. G.; Migliori, A.; Leani, J. J.; Hidalgo, M.; Queralt, I.; Voutchkov, M.

    2017-04-01

    In the present contribution, benchtop total reflection X-ray fluorescence spectrometry (TXRF) has been evaluated as a cost-effective multielemental analytical technique for human placenta analysis. An easy and rapid sample preparation consisting of suspending 50 mg of sample in 1 mL of a Triton 1% solution in deionized water showed to be the most suitable for this kind of samples. However, for comparison purposes, an acidic microwave acidic digestion procedure was also applied. For both sample treatment methodologies, limits of detection for most elements were in the low mg/kg level. Accurate and precise results were obtained using internal standardization as quantification approach and applying a correction factor to compensate for absorption effects. The correction factor was based on the proportional ratio between the slurry preparation results and those obtained for the analysis of a set of human placenta samples analysed by microwave acidic digestion and ICP-AES analysis. As a study case, the developed TXRF methodology was applied for multielemental analysis (K, Ca, Fe, Cu, Zn, As, Se, Br, Rb and Sr) of several healthy women's placenta samples from two regions in Jamaica.

  15. Residual Stress Relaxation and Stiffness-Confinement Effects in Polymer Films: Characterization by Non-Contact Ellipsometry and Fluorescence Techniques

    NASA Astrophysics Data System (ADS)

    Askar, Shadid; Torkelson, John

    2015-03-01

    The relaxation of residual stresses in spin-coated polymer films is characterized using two optical techniques: ellipsometry and fluorescence. Both techniques show that residual stresses relax over hours at several tens of degrees above the film glass transition temperature (Tg). Ellipsometry shows that thickness can increase or decrease during residual stress relaxation depending on thermal history of the film. However, the presence or relaxation of stresses has no measurable effect on Tg as measured by ellipsometry. We have adapted the well-known sensitivity of the pyrene dye fluorescence spectral shape to local environment polarity in order to characterize stress relaxation and to monitor stiffness-confinement effects. The spectral shape of the pyrene fluorescence spectrum shows similar stress relaxation regardless of whether relaxation is accompanied by increases or decreases in film thickness. Fluorescence also indicates that single-layer polystyrene films supported on silica stiffen with decreasing nanoscale thickness. For the first time, stiffness gradients as a function of distance from interfaces are demonstrated using pyrene label fluorescence in conjunction with multilayer films.

  16. Ambient measurements of biological aerosol particles near Killarney, Ireland: a comparison between real-time fluorescence and microscopy techniques

    NASA Astrophysics Data System (ADS)

    Healy, D. A.; Huffman, J. A.; O'Connor, D. J.; Pöhlker, C.; Pöschl, U.; Sodeau, J. R.

    2014-08-01

    Primary biological aerosol particles (PBAPs) can contribute significantly to the coarse particle burden in many environments. PBAPs can thus influence climate and precipitation systems as cloud nuclei and can spread disease to humans, animals, and plants. Measurement data and techniques for PBAPs in natural environments at high time- and size resolution are, however, sparse, and so large uncertainties remain in the role that biological particles play in the Earth system. In this study two commercial real-time fluorescence particle sensors and a Sporewatch single-stage particle impactor were operated continuously from 2 August to 2 September 2010 at a rural sampling location in Killarney National Park in southwestern Ireland. A cascade impactor was operated periodically to collect size-resolved particles during exemplary periods. Here we report the first ambient comparison of a waveband integrated bioaerosol sensor (WIBS-4) with a ultraviolet aerodynamic particle sizer (UV-APS) and also compare these real-time fluorescence techniques with results of fluorescence and optical microscopy of impacted samples. Both real-time instruments showed qualitatively similar behavior, with increased fluorescent bioparticle concentrations at night, when relative humidity was highest and temperature was lowest. The fluorescent particle number from the FL3 channel of the WIBS-4 and from the UV-APS were strongly correlated and dominated by a 3 μm mode in the particle size distribution. The WIBS FL2 channel exhibited particle modes at approx. 1 and 3 μm, and each was correlated with the concentration of fungal spores commonly observed in air samples collected at the site (ascospores, basidiospores, Ganoderma spp.). The WIBS FL1 channel exhibited variable multimodal distributions turning into a broad featureless single mode after averaging, and exhibited poor correlation with fungal spore concentrations, which may be due to the detection of bacterial and non-biological fluorescent

  17. Proximal Sensing of Plant-Pathogen Interactions in Spring Barley with Three Fluorescence Techniques

    PubMed Central

    Leufen, Georg; Noga, Georg; Hunsche, Mauricio

    2014-01-01

    In the last years fluorescence spectroscopy has come to be viewed as an essential approach in key research fields of applied plant sciences. However, the quantity and particularly the quality of information produced by different equipment might vary considerably. In this study we investigate the potential of three optical devices for the proximal sensing of plant-pathogen interactions in four genotypes of spring barley. For this purpose, the fluorescence lifetime, the image-resolved multispectral fluorescence and selected indices of a portable multiparametric fluorescence device were recorded at 3, 6, and 9 days after inoculation (dai) from healthy leaves as well as from leaves inoculated with powdery mildew (Blumeria graminis) or leaf rust (Puccinia hordei). Genotype-specific responses to pathogen infections were revealed already at 3 dai by higher fluorescence mean lifetimes in the spectral range from 410 to 560 nm in the less susceptible varieties. Noticeable pathogen-induced modifications were also revealed by the ‘Blue-to-Far-Red Fluorescence Ratio’ and the ‘Simple Fluorescence Ratio’. Particularly in the susceptible varieties the differences became more evident in the time-course of the experiment i.e., following the pathogen development. The relevance of the blue and green fluorescence to exploit the plant-pathogen interaction was demonstrated by the multispectral fluorescence imaging system. As shown, mildewed leaves were characterized by exceptionally high blue fluorescence, contrasting the values observed in rust inoculated leaves. Further, we confirm that the intensity of green fluorescence depends on the pathogen infection and the stage of disease development; this information might allow a differentiation of both diseases. Moreover, our results demonstrate that the detection area might influence the quality of the information, although it had a minor impact only in the current study. Finally, we highlight the relevance of different excitation

  18. A dispersed fluorescence and ab initio investigation of the X~ 2B1 and A~ 2A1 electronic states of the PH2 molecule

    NASA Astrophysics Data System (ADS)

    Jakubek, Z. J.; Bunker, P. R.; Zachwieja, M.; Nakhate, S. G.; Simard, B.; Yurchenko, S. N.; Thiel, W.; Jensen, Per

    2006-03-01

    In this work, the X˜B12 and ÃA12 electronic states of the phosphino (PH2) free radical have been studied by dispersed fluorescence and ab initio methods. PH2 molecules were produced in a molecular free-jet apparatus by laser vaporizing a silicon rod in the presence of phosphine (PH3) gas diluted in helium. The laser-induced fluorescence, from the excited ÃA12 electronic state down to the ground electronic state, was dispersed and analyzed. Ten (υ1υ2υ3) vibrationally excited levels of the ground electronic state, with υ1⩽2, υ2⩽6, and υ3=0, have been observed. Ab initio potential-energy surfaces for the X˜B12 and ÃA12 electronic states have been calculated at 210 points. These two states correlate with a Πu2 state at linearity and they interact by the Renner-Teller coupling and spin-orbit coupling. Using the ab initio potential-energy surfaces with our RENNER computer program system, the vibronic structure and relative intensities of the ÃA12→X˜B12 emission band system have been calculated in order to corroborate the experimental assignments.

  19. DNA integrity of canine spermatozoa during chill storage assessed by the sperm chromatin dispersion test using bright-field or fluorescence microscopy.

    PubMed

    Hidalgo, M; Urbano, M; Ortiz, I; Demyda-Peyras, S; Murabito, M R; Gálvez, M J; Dorado, J

    2015-08-01

    The objective of this study was to evaluate the effect of chill storage on canine sperm DNA fragmentation assessed by the sperm chromatin dispersion test using bright-field microscopy with Wright solution (sDF-B) or fluorescence microscopy with propidium iodide (sDF-F). The relationship and agreement between the results obtained with both staining methods were analyzed. The values of DNA fragmentation indexes (sDF-F and sDF-B) were compared at each time of chill storage (0, 24, 48, 72, and 96 hours). Additionally, the sperm DNA fragmentation rate (slope) was compared between the methods during chill storage. Good agreement and no significant differences between values obtained with both staining procedures were observed. Finally, the effect of chill storage for up to 96 hours was assessed on sperm motility parameters and DNA fragmentation indexes. Significant differences were found after 48 hours of chill storage, obtaining greater values of fragmented DNA. Progressive sperm motility was lower just after 96 hours of chill storage, and no effect was found in total sperm motility. In conclusion, the Sperm-Halomax kit, developed for canine semen and based on the sperm chromatin dispersion test, can be used accurately under bright-field or fluorescence microscopy to assess the sperm DNA integrity of canine semen during chill storage. The sperm DNA fragmentation index increased after 48 hours of chill storage, thereby detecting sperm damage earlier than other routine sperm parameters, such as sperm motility.

  20. Thermal characterization of ZnO-DMSO (dimethyl sulfoxide) colloidal dispersions using the inverse photopyroelectric technique.

    PubMed

    Marín, E; Calderón, A; Díaz, D

    2009-05-01

    Nanofluids, i.e., colloidal dispersions of nanoparticles in a base liquid (solvent), have received considerable attention in the last years due to their potential applications. One attractive feature of these systems is that their thermal conductivity can exceed the corresponding values of the base fluid and of the fluid with large particles of the same chemical composition. However, there is a lack of agreement between published results and the suggested mechanisms which explain the thermal conductivity enhancement. Here we show the possibilities of the inverse photopyroelectric method for the determination of the effective thermal effusivity of the system constituted by small ZnO nanoparticles dispersed in dimethyl sulfoxide, as a function of the nanoparticles volumetric fraction. Using a phenomenological model we estimated the thermal conductivity of these colloidal samples without observing any significant enhancement of this parameter above effective medium predictions.

  1. Long chain ionic liquid based mixed hemimicelles and magnetic dispersed solid-phase extraction for the extraction of fluorescent whitening agents in paper materials.

    PubMed

    Wang, Qing; Qiu, Bin; Chen, Xianbo; Wang, Bin; Zhang, Hui; Zhang, Xiaoyuan

    2017-04-12

    A novel mixed hemimicelles and magnetic dispersive solid-phase extraction method based on long-chain ionic liquids for the extraction of five fluorescent whitening agents was established. The factors influenced on extraction efficiency were investigated. Under the optimal conditions, namely, the pH of sample solution at 8.0, the concentration of long chain ionic liquid at 0.5 mmol/L, the amount of Fe3 O4 nanoparticle at 12 mg, extraction time at 10 min, pH 6.0 of methanol as eluent and the desorption time at 1 min, satisfactory results were obtained. Wide linear ranges (0.02-10 ng/mL) and good linearity were attained (0.9997-0.9999). The intra-day and inter-day RSDs were 2.1-8.3%. Limits of detection were 0.004-0.01 ng/mL, which was decreased by almost an order of magnitude compared to direct detection without extraction. The present method was applied to extract the fluorescent whitening agents in two kinds of paper samples, obtaining satisfactory results. All showed results illustrated that the detection sensitivity was improved and the proposed method was a good choice for the enriching and monitoring of trace fluorescent whitening agents. This article is protected by copyright. All rights reserved.

  2. Parameter Estimation Techniques for Transport Equations with Application to Population Dispersal and Tissue Bulk Flow Models.

    DTIC Science & Technology

    1982-07-01

    MODELSLDS#-1 7. AUTHOR(*)11.CNRCOGRNNUB(* H.T. Banks and P. Kareiva AFOSR-81-0198 93 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT...parameters that predicted several consecutive recapture distributions. Because insects are ectotherms and are very sensitive to weather, their moveet...regression equations describing the density distribution of dispersing organisms , Nature, vol. 286, 53-55, 1980. tb 4J / • t

  3. Application of the radioisotope excited X-ray fluorescence technique in charge optimization during thermite smelting of Fe-Ni, Fe-cr, and Fe-Ti alloys

    SciTech Connect

    Sharma, I.G.; Joseph, D.; Lal, M.; Bose, D.K.

    1995-10-01

    A wide range of ferroalloys are used to facilitate the addition of different alloying elements to molten steel. High-carbon ferroalloys are produced on a tonnage basis by carbothermic smelting in an electric furnace, and an aluminothermic route is generally adopted for small scale production of low-carbon varieties. The physicochemical principles of carbothermy and aluminothermy have been well documented in the literature. However, limited technical data are reported on the production of individual ferroalloys of low-carbon varieties from their selected resources. The authors demonstrate her the application of an energy dispersive X-ray fluorescence (EDXRF) technique in meeting the analytical requirements of a thermite smelting campaign, carried out with the aim of preparing low-carbon-low-nitrogen Fe-Ni, Fe-Cr, and Fe-Ti alloys from indigenously available nickel bearing spent catalyst, mineral chromite, and ilmenite/rutile, respectively. They have chosen the EDXRF technique to meet the analytical requirements because of its capability to analyze samples of ore, minerals, a metal, and alloys in different forms, such as powder, sponge, as-smelted, or as-cast, to obtain rapid multielement analyses with ease. Rapid analyses of thermite feed and product by this technique have aided in the appropriate alterations of the charge constitutents to obtain optimum charge consumption.

  4. Detection of illicit drugs with the technique of spectral fluorescence signatures (SFS)

    NASA Astrophysics Data System (ADS)

    Poryvkina, Larisa; Babichenko, Sergey

    2010-10-01

    The SFS technology has already proved its analytical capabilities in a variety of industrial and environmental tasks. Recently it has been introduced for forensic applications. The key features of the SFS method - measuring a 3-dimensional spectrum of fluorescence of the sample (intensity versus excitation and emission wavelengths) with following recognition of specific spectral patterns of SFS responsible for individual drugs - provide an effective tool for the analysis of untreated seized samples, without any separation of the substance of interest from its mixture with accompanying cutting agents and diluents as a preparatory step. In such approach the chemical analysis of the sample is substituted by the analysis of SFS matrix visualized as an optical image. The SFS technology of drug detection is realized by NarTest® NTX2000 analyzer, compact device intended to measure suspicious samples in liquid, solid and powder forms. It simplifies the detection process due to fully automated procedures of SFS measuring and integrated expert system for recognition of spectral patterns. Presently the expert system of NTX2000 is able to detect marijuana, cocaine, heroin, MDMA, amphetamine and methamphetamine with the detection limit down to 5% of the drug concentration in various mixtures. The numerous tests with street samples confirmed that the use of SFS method provides reliable results with high sensitivity and selectivity for identification of drugs of abuse. More than 3000 street samples of the aforesaid drugs were analyzed with NTX2000 during validation process, and the correspondence of SFS results and conclusions of standard forensic analyses with GC/MS techniques was in 99.4% cases.

  5. Ambient measurements of biological aerosol particles near Killarney, Ireland: a comparison between real-time fluorescence and microscopy techniques

    NASA Astrophysics Data System (ADS)

    Healy, D. A.; Huffman, J. A.; O'Connor, D. J.; Pöhlker, C.; Pöschl, U.; Sodeau, J. R.

    2014-02-01

    Primary biological aerosol particles (PBAP) can contribute significantly to the coarse particle burden in many environments, may thus influence climate and precipitation systems as cloud nuclei, and can spread disease to humans, animals, and plants. Measurements of PBAP in natural environments taken at high time- and size- resolution are, however, sparse and so large uncertainties remain in the role that biological particles play in the Earth system. In this study two commercial real-time fluorescence particle sensors and a Sporewatch single-stage particle impactor were operated continuously from 2 August to 2 September 2010 at a rural sampling location in Killarney National Park in south western Ireland. A cascade impactor was operated periodically to collect size-resolved particles during exemplary periods. Here we report the first ambient comparison of the waveband integrated bioaerosol sensor (WIBS-4) with the ultraviolet aerodynamic particle sizer (UV-APS) and also compare these real-time fluorescence techniques with results of fluorescence and optical microscopy of impacted samples. Both real-time instruments showed qualitatively similar behaviour, with increased fluorescent bioparticle concentrations at night when relative humidity was highest and temperature was lowest. The fluorescent particle number from the FL3 channel of the WIBS-4 and from the UV-APS were strongly correlated and dominated by a 3 μm mode in the particle size distribution. The WIBS FL2 channel exhibited particle modes at approx. 1 and 3 μm, and each were correlated with the concentration of fungal spores commonly observed in air samples collected at the site (ascospores, basidiospores, Ganoderma spp.). The WIBS FL1 channel exhibited variable multi-modal distributions turning into a broad featureless single mode after averaging and exhibited poor correlation with fungal spore concentrations, which may be due to the detection of bacterial and non-biological fluorescent particles

  6. Properties of DNA-polyintercalating drugs studied by fluorescence lifetime techniques

    NASA Astrophysics Data System (ADS)

    Winter, Stefan; Popa, Liviu M.

    1995-01-01

    Dimers of the fluorescent dye Oxazole Yellow (YOYO and POPO) are used for high sensitive DNA detection in gel electrophoresis. Upon binding to DNA they show a 3000 to 5000 fold enhancement of fluorescence. The binding constant of those dimers to dsDNA is between 108 M-1 and 109 M-1. This is due to the dye's ability to bisintercalate between adjacent DNA basepairs. We investigated the occurring forms of intercalation of YOYO to dsDNA in solutions of different ionic strength by fluorescence lifetime methods.

  7. Binding of caffeine with caffeic acid and chlorogenic acid using fluorescence quenching, UV/vis and FTIR spectroscopic techniques.

    PubMed

    Belay, Abebe; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2016-03-01

    The interactions of caffeine (CF) with chlorogenic acid (CGA) and caffeic acid (CFA) were investigated by fluorescence quenching, UV/vis and Fourier transform infrared (FTIR) spectroscopic techniques. The results of the study indicated that the fluorescence quenching between caffeine and hydroxycinnamic acids could be rationalized in terms of static quenching or the formation of non-fluorescent CF-CFA and CF-CGA complexes. From fluorescence quenching spectral analysis, the quenching constant (KSV), quenching rate constant (kq), number of binding sites (n), thermodynamic properties and conformational changes of the interaction were determined. The quenching constants (KSV) between CF and CGA, CFA are 1.84 × 10(4) and 1.04 × 10(4) L/mol at 298 K and their binding site n is ~ 1. Thermodynamic parameters determined using the Van't Hoff equation indicated that hydrogen bonds and van der Waal's forces have a major role in the reaction of caffeine with caffeic acid and chlorogenic acid. The 3D fluorescence, UV/vis and FTIR spectra also showed that the binding of CF with CFA and CGA induces conformational changes in CFA and CGA.

  8. Imaging of chlorophyll a fluorescence: theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance.

    PubMed

    Oxborough, Kevin

    2004-05-01

    The development of chlorophyll (Chl) a fluorescence imaging systems has greatly increased the versatility of Chl a fluorometry as a non-invasive technique for the investigation of photosynthesis in plants and algae. For example, systems that image at the microscopic level have made it possible to measure PSII photochemical efficiencies from chloroplasts within intact leaves and from individual algal cells within mixed populations, while systems that image over much larger areas have been used to investigate heterogeneous patterns of photosynthetic performance across leaves and in screening programmes that image tens or even hundreds of plants simultaneously. In addition, it is now practical to use fluorescence imaging systems as real-time, multi-channel fluorometers, which can be used to record continuous fluorescence traces from multiple leaves, plants, or algal cells. This paper discusses some of the theoretical and practical issues associated with the imaging of Chl a fluorescence and with Chl a fluorometry in general. This discussion includes a review of the most commonly used Chl a fluorescence parameters.

  9. Periodic Evolution of a Xe I Population in an Oscillatory Discharge Captured Through Time-Synchronized Laser Induced Fluorescence Techniques

    NASA Astrophysics Data System (ADS)

    Lucca Fabris, Andrea; Young, Christopher; Cappelli, Mark

    2014-10-01

    We track the evolution of the Xe I 6 s '[ 1 / 2 ] 1 - 6 p '[ 3 / 2 ] 2 (834.68 nm air) transition lineshape in a plasma discharge oscillating at 60 Hz. Two time-synchronized laser induced fluorescence techniques based on phase sensitive detection of the fluorescence signal are demonstrated, yielding consistent results. One approach used previously involves a sample-and-hold procedure that collects fluorescence signal at a particular phase in the oscillation period and holds the average value until the following sample. The second method is based on fast switching of the fluorescence signal; only the signal collected inside the acquisition gate is sent to a lock-in amplifier for processing. Both methods rely on modulating the exciting laser beam and the latter permits operation at a much higher frequency range with reduced spectral noise density. The maximum observed peak fluorescence intensity occurs at low discharge currents, although the peak intensity drops to zero at zero discharge current. The peak intensity also decreases at the discharge current maximum. Time-varying properties of the xenon neutrals are extracted from a lineshape analysis. This work is sponsored by the U.S. Air Force Office of Scientific Research with Dr. Mitat Birkan as program manager. CVY acknowledges support from the DOE NNSA Stewardship Science Graduate Fellowship under Contract DE-FC52-08NA28752.

  10. Portable X-ray fluorescence spectroscopy as a rapid screening technique for analysis of TiO2 and ZnO in sunscreens

    PubMed Central

    Bairi, Venu Gopal; Lim, Jin-Hee; Quevedo, Ivan R.; Mudalige, Thilak K.; Linder, Sean W.

    2016-01-01

    This investigation reports a rapid and simple screening technique for the quantification of titanium and zinc in commercial sunscreens using portable X-ray fluorescence spectroscopy (pXRF). A highly evolved technique, inductively coupled plasma-mass spectroscopy (ICP-MS) was chosen as a comparative technique to pXRF, and a good correlation (r2 > 0.995) with acceptable variations (≤25%) in results between both techniques was observed. Analytical figures of merit such as detection limit, quantitation limit, and linear range of the method are reported for the pXRF technique. This method has a good linearity (r2 > 0.995) for the analysis of titanium (Ti) in the range of 0.4–14.23 wt%, and zinc (Zn) in the range of 1.0–23.90 wt%. However, most commercial sunscreens contain organic ingredients, and these ingredients are known to cause matrix effects. The development of appropriate matrix matched working standards to obtain the calibration curve was found to be a major challenge for the pXRF measurements. In this study, we have overcome the matrix effect by using metal-free commercial sunscreens as a dispersing media for the preparation of working standards. An easy extension of this unique methodology for preparing working standards in different matrices was also reported. This method is simple, rapid, and cost-effective and, in comparison to conventional techniques (e.g., ICP-MS), did not generate toxic wastes during sample analysis. PMID:27076699

  11. A novel chromatic dispersion monitoring technique for 16/64-QAM system based on asynchronous amplitude histogram

    NASA Astrophysics Data System (ADS)

    Yan, Li-juan; Zhu, Bo; Liu, Guo-qing; Hu, Fang-ren

    2013-05-01

    A novel chromatic dispersion (CD) monitoring technique based on asynchronous amplitude histogram (AAH) for higher order modulation formats is proposed in this paper. Without demodulating the signal, in the monitoring scheme, the received signal is sampled asynchronously, and thus clock information and high-speed sampling units are unnecessary, resulting in low cost and high reliability. Simulations of CD monitoring technique for non-return-to-zero/return-to-zero (NRZ/RZ) 16- and 64-quadrature amplitude modulation (QAM) systems with different optical signal-to-noise ratios (OSNRs) and duty cycles are investigated, and the tolerance of the scheme is also discussed. Simulation results show that the presented CD monitoring technique with high sensitivity can be applied to monitor the residual CD of a transmission link in the next-generation optical networks.

  12. Development of a skin phantom of the epidermis and evaluation by using fluorescence techniques

    NASA Astrophysics Data System (ADS)

    Bergmann, Thorsten; Beer, Sebastian; Maeder, Ulf; Burg, Jan M.; Schlupp, Peggy; Schmidts, Thomas; Runkel, Frank; Fiebich, Martin

    2011-03-01

    The aim of this project was to develop a skin phantom that resembles the epidermis including the lipid matrix of the stratum corneum and the dermis. The main intent was to achieve optical properties similar to skin tissue. Therefore, two compartments of the skin, dermis and epidermis, were examined regarding their optical properties. Based on these results, the skin phantom was designed using relevant skin components. The scattering coefficient was measured by using Reflectance-based Confocal Microscopy (RCM) and the fluorescence spectrum was detected via confocal laser-scanning microscopy (CLSM). Prospective, the skin phantom can be used to incorporate various fluorescing chemicals, such as fluorescent dyes and fluorescent-labeled drugs to perform calibration measurements in wide-field and laser-scanning microscopes to provide a basis for the quantification of skin penetration studies.

  13. Degree of dissociation of apohemoglobin studied by nano-second fluorescence-polarization technique.

    PubMed

    Kinosita, K; Mitaku, S; Ikegami, A

    1975-05-30

    A fluorescent dye 1-anilino-8-naphthalene sulfonate was complexed with human apohemoglobin and sperm whale apomyoglobin. Nanosecond fluorescence-polarization kinetics were measured for each of these complexes in KC1 solutions to obtain their fluorescence lifetimes and rotational correlation times. The rotational correlation time of apohemoglobin-dye complex was found to be 21 ns, which was about twice that of apomyoglobin-dye complex, 11 ns. These values were constant over an ionic strength range from 0 to 1.7. Circular dichroism spectra (215-300 nm) and fluorescence lifetimes of the complexes were also found to be independent of the ionic strength, indicating that no gross conformational change occurs with the change in the salt concentration, These results suggest that apohemoglobin remains dimeric over the ionic-strength range examined.

  14. Enhancement of dissolution rate of class II drugs (Hydrochlorothiazide); a comparative study of the two novel approaches; solid dispersion and liqui-solid techniques.

    PubMed

    Khan, Amjad; Iqbal, Zafar; Shah, Yasar; Ahmad, Lateef; Ismail; Ullah, Zia; Ullah, Aman

    2015-11-01

    Liqui-solid technique and solid dispersion formation are two novel approaches for enhancement of dissolution rate of BCS class II drugs. Liqui-solid compact converts a liquid drug or drug solution into a free flowing powder with enhanced dissolution rate. In case of solid dispersion drug is molecularly dispersed in a hydrophilic polymer in solid state. In the present study, Liqui-solid and solid dispersion techniques were applied to enhance the dissolution of the Hydrochlorothiazide. Three formulations of Hydrochlorothiazide were prepared by liqui-solid technique using micro crystalline cellulose as carrier material and colloidal silicon dioxide as coating material. Water, poly ethylene glycol-400 and Tween-60 were used as solvent system. Solid dispersions of Hydrochlorothiazide were prepared by solvent fusion method using PEG-4000 as carrier polymer. Tablets were subjected to evaluation of various physical and chemical characteristics. Dissolution profiles of tablets prepared by the novel techniques were compared with marketed conventional tablets. Model independent techniques including similarity factor, dissimilarity factor and dissolution efficiency were applied for comparison of dissolution profiles. The results obtained indicated that liqui-solid compact formulations were more effective in enhancing the dissolution rate compared with solid dispersion technique. The liqui-solid compacts improved the dissolution rate up to 95% while the solid dispersion increased it to 88%.

  15. Field Observations of Bioaerosols: What We've Learned from Fluorescence, Genetic, and Microscopic Techniques (Invited)

    NASA Astrophysics Data System (ADS)

    Huffman, J. A.; Fröhlich-Nowoisky, J.; Després, V. R.; Elbert, W.; Sinha, B.; Andreae, M. O.; Pöschl, U.

    2009-12-01

    Biogenic aerosols are ubiquitous in the Earth’s atmosphere, influencing atmospheric chemistry and physics, the biosphere, climate, and public health. They play an important role in the spread of biological organisms, and they can cause or enhance human, animal, and plant diseases. Moreover, they can initiate the formation of clouds and precipitation as cloud condensation and ice nuclei (CCN, IN). Primary biogenic aerosol particles (PBAP) such as pollen, fungal spores, and bacteria are emitted directly from the biosphere to the atmosphere. Microscopic investigations have shown that PBAP account for up to ~30% of fine and up to ~70% of coarse particulate matter in rural and rain forest air, and the estimates of PBA emissions range from ~60 Tg a-1 of fine particles up to ~1000 Tg a-1 of total particulate matter. Fungal spores account for a large proportion of PBA with typical number and mass concentrations of ~104 m-3 and ~1 μg m-3 in continental boundary layer air and estimated global emissions of the order of ~50 Tg a-1 and 200 m-2 s-1, respectively [1]. The actual abundance, variability and diversity of PBAP are still poorly understood and quantified, however. By measuring fluorescence at excitation and emission wavelengths specific to viable cells, online techniques with time resolution of minutes are able to detect fluorescent biological aerosol particles (FBAP), which represent a lower limit for the actual abundance of coarse (> 1 μm) PBAP [2]. Continuous sampling (1 - 4 months) was performed at various locations including pristine rain forest, rural and polluted urban sites. Each study exhibited a similar average particle number distribution dominated by a peak at ~3 μm, with coarse FBAP concentrations of the order of ~5x104 m-3 and ~1 μg m-3. Recent advances in the DNA analysis and molecular genetic characterization of aerosol filter samples yield new information about the sources and composition of PBA and provide new insight into regional and global

  16. A study of preparation techniques and properties of bulk nanocomposites based on aqueous albumin dispersion

    NASA Astrophysics Data System (ADS)

    Gerasimenko, A. Yu.; Dedkova, A. A.; Ichkitidze, L. P.; Podgaetskii, V. M.; Selishchev, S. V.

    2013-08-01

    Bulk nanocomposites prepared from an aqueous albumin dispersion with carbon nanotubes by removing the liquid component from the dispersion have been investigated. The composites were obtained by thermostating and exposure to LED and IR diode laser radiation. The nanocomposites obtained under laser irradiation retain their shape and properties for several years, in contrast to the composites fabricated in different ways (which decompose into small fragments immediately after preparation). The low density of the composites under study (˜1200 kg/m3), which is close to the density of water, is due to their high porosity. The hardness of stable nanocomposites (˜300 MPa) was found to be at the same level as the hardness of polymethylmethacrylate, aluminum, and iron and close to the hardness of human bone tissue. The cluster quasiordering of the inner structure of nanocomposites revealed by atomic force microscopy indicates the possibility of forming a bulk nanotube framework in them, which can be caused by the effect of the electric field of laser radiation and ensure their stability and hardness. The presence of a framework in nanocomposites provides conditions for self-assembly of biological tissues and makes it possible to apply laser-prepared nanocomposites as a component of surgical implants.

  17. Improved Thermal Conductivity in Carbon Nanotubes-Reinforced Syntactic Foam Achieved by a New Dispersing Technique

    NASA Astrophysics Data System (ADS)

    Bhat, P.; Zegeye, E.; Ghamsari, A. K.; Woldesenbet, E.

    2015-12-01

    Syntactic foams are composite materials in which the matrix phase is reinforced with hollow micro-particles. Traditionally, syntactic foams are used for many high strength applications and as insulating materials. However, for applications demanding better heat dissipation, such as thermal management of electronic packaging, conductive fillers need to be added to syntactic foam. Carbon nanotubes (CNTs), although extremely conductive, have issues of agglomeration in the matrix. In this research, CNT-reinforced syntactic foam was developed based on our approach through which CNTs were dispersed throughout the matrix by growing them on the surface of glass microballoons. The thermal conductivity of nanotube-grown syntactic foam was tested with a Flashline® thermal analyzer. For comparison purposes, plain and nanotube-mixed syntactic foams were also fabricated and tested. Nanotube-grown microballoons improved the thermal conductivity of syntactic foam by 86% and 92% (at 50°C) compared to plain and nanotube-mixed syntactic foams, respectively. The improved thermal conductivity as well as the microstructural analysis proved the effectiveness of this approach for dispersing the carbon nanotubes in syntactic foams.

  18. Recent improvements in optimizing use of dispersants as a cost-effective oil spill countermeasure technique

    SciTech Connect

    Daling, P.S.; Indrebo, G.

    1996-12-31

    Several oil spill incidents during recent years have demonstrated that the physico-chemical properties of spilled oil and the effectiveness of available combat methods are, in addition to the prevailing environmental and weather conditions, key factors that determine the consequences of an oil spill. Pre-spill analyses of the feasibility and effectiveness of different response strategies, such as mechanical recovery and dispersants, for actual oils under various environmental conditions should therefore be an essential part of any oil spill contingency planning to optimize the overall {open_quotes}Net Environmental Benefit{close_quotes} of a combat operation. During the four-year research program ESCOST ({open_quotes}ESSO-SINTEF Coastal Oil Spill Treatment Program{close_quotes}), significant improvements have been made in oil spill combat methods and in tools for use in contingency planning and decision-making during oil spill operations. This paper will present an overview of the main findings obtained with respect to oil weathering and oil spill dispersant treatment.

  19. Depolarization technique for wavelength conversion using four-wave mixing in a dispersion-flattened photonic crystal fiber.

    PubMed

    Yang, Taotao; Shu, Chester; Lin, Chinlon

    2005-07-11

    We have developed a depolarization technique to achieve polarization-insensitive wavelength conversion using four-wave mixing in an optical fiber. A maximum conversion efficiency of -11.79 dB was achieved over a 3 dB bandwidth of 26 nm in a 100-m-long dispersion-flattened photonic crystal fiber. The polarization-dependent conversion efficiency was less than 0.38 dB and the measured power penalty for a 10 Gbit/s NRZ signal was 1.9 dB. The relation between the conversion efficiency and the degree of polarization of the pump was also formulated.

  20. Application of a fluorescence intensity ratio technique for the intrinsic determination of pH using an optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Thotath, Bhadra; Nguyen, T. Hien; Zhang, Weiwei; Wren, Stephen P.; Baxter, Gregory W.; Sun, Tong; Collins, Stephen F.; Grattan, Kenneth T. V.

    2015-09-01

    An intensity ratio technique has been used for characterizing fluorescence spectra from novel coumarin dyes for pH sensing, in the range of 0.5 - 6, providing results that are independent of possible fluctuations in the intensity of the excitation source, deterioration of the indicator and changes in optical coupling. The arrangement was determined to have a sensitivity of 25% per unit pH change (at a pH of 4).

  1. Ecophysiological Analysis of Microorganisms in Complex Microbial Systems by Combination of Fluorescence In Situ Hybridization with Extracellular Staining Techniques

    NASA Astrophysics Data System (ADS)

    Nielsen, Jeppe Lund; Kragelund, Caroline; Nielsen, Per Halkjær

    Ecophysiological analysis and functions of single cells in complex microbial systems can be examined by simple combinations of Fluorescence in situ hybridization (FISH) for identification with various staining techniques targeting functional phenotypes. In this chapter, we describe methods and protocols optimized for the study of extracellular enzymes, surface hydrophobicity and specific surface structures. Although primarily applied to the study of microbes in wastewater treatment (activated sludge and biofilms), the methods may also be used with minor modifications in several other ecosystems.

  2. Investigation of holdup and axial dispersion of liquid phase in a catalytic exchange column using radiotracer technique.

    PubMed

    Kumar, Rajesh; Pant, H J; Goswami, Sunil; Sharma, V K; Dash, A; Mishra, S; Bhanja, K; Mohan, Sadhana; Mahajani, S M

    2017-03-01

    Holdup and axial dispersion of liquid phase in a catalytic exchange column were investigated by measuring residence time distributions (RTD) using a radiotracer technique. RTD experiments were independently carried out with two different types of packings i.e. hydrophobic water-repellent supported platinum catalyst and a mixture (50% (v/v)) of hydrophobic catalyst and a hydrophillic wettable packing were used in the column. Mean residence times and hold-ups of the liquid phase were estimated at different operating conditions. Axial dispersion model (ADM) and axial dispersion with exchange model (ADEM) were used to simulate the measured RTD data. Both the models were found equally suitable to describe the measured data. The degree of axial mixing was estimated in terms of Peclet number (Pe) and Bodenstein number (Bo). Based on the obtained parameters of the ADM, correlations for total liquid hold-up (HT) and axial mixing in terms of Bo were proposed for design and scale up of the full-scale catalytic exchange column.

  3. Quasi-continuous combined scattered light and fluorescence measurements: a novel measurement technique for shaken microtiter plates.

    PubMed

    Samorski, M; Müller-Newen, G; Büchs, J

    2005-10-05

    A novel quasi-continuous on-line measuring technique for shaken microtiter plates is presented. Light scattering as well as intracellular and/or protein fluorescence (e.g. NADH, YFP) is measured during the shaking procedure, thus allowing a process monitoring of 96 different simultaneous cultures in a microtiter plate. In contrast to existing measurement techniques, the shaking process does not have to be stopped to take the measurements, thus avoiding the corresponding interruption of the cultures' oxygen supply and any unpredictable effects on the cultures. Experiments were conducted with E. coli in LB, TB, and MOPS minimal medium and V. natriegens in modified LB and TB media. Intensity curves of scattered light and NADH fluorescence were used to distinguish different lag phases, growth velocities, or inoculation densities. Data from this new method corresponded well to the off-line measured optical densities and to the oxygen transfer rates of cultures run in simultaneously conducted shake flask experiments at equivalent oxygen transfer capacities. With the aid of yellow fluorescence protein fused to interleukin-6 the optimal induction time of an expressing E. coli strain could be determined by on-line monitoring of product formation. Thus, this measuring technique enables the researcher to evaluate and to discriminate different cultures on a screening level and to improve screening conditions, process development and scale-up.

  4. Determination of major elements by wavelength-dispersive X-ray fluorescence spectrometry and trace elements by inductively coupled plasma mass spectrometry in igneous rocks from the same fused sample (110 mg)

    NASA Astrophysics Data System (ADS)

    Amosova, Alena A.; Panteeva, Svetlana V.; Chubarov, Victor M.; Finkelshtein, Alexandr L.

    2016-08-01

    The fusion technique is proposed for simultaneous determination of 35 elements from the same sample. Only 110 mg of rock sample was used to obtain fused glasses for quantitative determination of 10 major elements by wavelength dispersive X-ray fluorescence analysis, 16 rare earth elements and some other trace elements by inductively coupled plasma mass spectrometry analysis. Fusion was performed with 1.1 g of lithium metaborate and LiBr solution as the releasing agent in platinum crucible in electric furnace at 1100 °C. The certified reference materials of ultramafic, mafic, intermediate and felsic igneous rocks have been applied to obtain the calibration curves for rock-forming oxides (Na2O, MgO, Al2O3, SiO2, P2O5, K2O, CaO, TiO2, MnO, Fe2O3) and some trace elements (Ba, Sr, Zr) determination by X-ray fluorescence analysis. The repeatability does not exceed the allowable standard deviation for a wide range of concentrations. In the most cases the relative standard deviation was less than 5%. Obtained glasses were utilized for the further determination of rare earth (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and some other (Ba, Sr, Zr, Rb, Cs, Y, Nb, Hf, Ta, Th and U) trace elements by inductively coupled plasma mass spectrometry analysis with the same certified reference materials employed. The results could mostly be accepted as satisfactory. The proposed procedure essentially reduces the expenses in comparison with separate sample preparation for inductively coupled plasma mass spectrometry and X-ray fluorescence analysis.

  5. Prediction of Petermann I and II Spot Sizes for Single-mode Dispersion-shifted and Dispersion-flattened Fibers by a Simple Technique

    NASA Astrophysics Data System (ADS)

    Kamila, Kiranmay; Panda, Anup Kumar; Gangopadhyay, Sankar

    2013-09-01

    Employing the series expression for the fundamental modal field of dispersion-shifted trapezoidal and dispersion-flattened graded and step W fibers, we present simple but accurate analytical expressions for Petermann I and II spot sizes of such kind of fibers. Choosing some typical dispersion-shifted trapezoidal and dispersion-flattened graded and step W fibers as examples, we show that our estimations match excellently with the exact numerical results. The evaluation of the concerned propagation parameters by our formalism needs very little computations. This accurate but simple formalism will benefit the system engineers working in the field of all optical technology.

  6. Determination and speciation of trace and ultratrace selenium ions by energy-dispersive X-ray fluorescence spectrometry using graphene as solid adsorbent in dispersive micro-solid phase extraction.

    PubMed

    Kocot, Karina; Leardi, Riccardo; Walczak, Beata; Sitko, Rafal

    2015-03-01

    A dispersive micro-solid phase extraction (DMSPE) with graphene as a solid adsorbent and ammonium pyrrolidinedithiocarbamate (APDC) as a chelating agent was proposed for speciation and detemination of inorganic selenium by the energy-dispersive X-ray fluorescence spectrometry (EDXRF). In developed DMSPE, graphene particles are dispersed throughout the analyzed solution, therefore reaction between Se(IV)-APDC complexes and graphene nanoparticles occurs immediately. The concentration of Se(VI) is calculated as the difference between the concentration of selenite after and before prereduction of selenate. A central composite face-centered design with 3 center points was performed in order to optimize conditions and to study the effect of four variables (pH of the sample, concentration of APDC, concentration of Triton-X-100, and sample volume). The best results were obtained when suspension consisting of 200 µg of graphene nanosheets, 1.2 mg of APDC and 0.06 mg of Triton-X-100 was rapidly injected to the 50 mL of the analyzed solution. Under optimized conditions Se ions can be determined with a very good recovery (97.7±5.0% and 99.2±6.6% for Se(IV) and Se(VI), respectively) and precision (RSD=5.1-6.6%). Proposed DMSPE/EDXRF procedure allowed to obtain low detection limits (0.032 ng mL(-1)) and high enrichment factor (1013±15). The proposed methodology was successfully applied for the determination of Se in mineral, tap, lake and sea water samples as well as in biological materials (Lobster Hepatopancreas and Pig Kidney).

  7. Thickness measurement of semiconductor thin films by energy dispersive X-ray fluorescence benchtop instrumentation: Application to GaN epilayers grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Queralt, I.; Ibañez, J.; Marguí, E.; Pujol, J.

    2010-07-01

    The importance of thin films in modern high technology products, such as semiconductors, requires fast and non-destructive analysis. A methodology to determine the thickness of single layers with benchtop energy dispersive X-ray fluorescence (EDXRF) instrumentation is described and tested following analytical validation criteria. The experimental work was carried out on gallium nitride thin films epitaxially grown on sapphire substrate. The results of samples with layers in the range from 400 to 1000 nm exhibit a good correlation with the layer thickness determined by optical reflectance. Spectral data obtained using thin layered samples indicate the possibility to precisely evaluate layer thickness from 5 nm, with a low relative standard deviation (RSD < 2%) of the results. In view of the limits of optical reflectance for very thin layer determination, EDXRF analysis offers the potential for the thickness determination of such kind of samples.

  8. Dopant activation mechanism of Bi wire-δ-doping into Si crystal, investigated with wavelength dispersive fluorescence x-ray absorption fine structure and density functional theory.

    PubMed

    Murata, Koichi; Kirkham, Christopher; Shimomura, Masaru; Nitta, Kiyofumi; Uruga, Tomoya; Terada, Yasuko; Nittoh, Koh-Ichi; Bowler, David R; Miki, Kazushi

    2017-04-20

    We successfully characterized the local structures of Bi atoms in a wire-δ-doped layer (1/8 ML) in a Si crystal, using wavelength dispersive fluorescence x-ray absorption fine structure at the beamline BL37XU, in SPring-8, with the help of density functional theory calculations. It was found that the burial of Bi nanolines on the Si(0 0 1) surface, via growth of Si capping layer at 400 °C by molecular beam epitaxy, reduced the Bi-Si bond length from [Formula: see text] to [Formula: see text] Å. We infer that following epitaxial growth the Bi-Bi dimers of the nanoline are broken, and the Bi atoms are located at substitutional sites within the Si crystal, leading to the shorter Bi-Si bond lengths.

  9. Dopant activation mechanism of Bi wire-δ-doping into Si crystal, investigated with wavelength dispersive fluorescence x-ray absorption fine structure and density functional theory

    NASA Astrophysics Data System (ADS)

    Murata, Koichi; Kirkham, Christopher; Shimomura, Masaru; Nitta, Kiyofumi; Uruga, Tomoya; Terada, Yasuko; Nittoh, Koh-ichi; Bowler, David R.; Miki, Kazushi

    2017-04-01

    We successfully characterized the local structures of Bi atoms in a wire-δ-doped layer (1/8 ML) in a Si crystal, using wavelength dispersive fluorescence x-ray absorption fine structure at the beamline BL37XU, in SPring-8, with the help of density functional theory calculations. It was found that the burial of Bi nanolines on the Si(0 0 1) surface, via growth of Si capping layer at 400 °C by molecular beam epitaxy, reduced the Bi–Si bond length from 2.79+/- 0.01~{\\mathring{\\text{A}}} to 2.63+/- 0.02 Å. We infer that following epitaxial growth the Bi–Bi dimers of the nanoline are broken, and the Bi atoms are located at substitutional sites within the Si crystal, leading to the shorter Bi–Si bond lengths.

  10. Analysis of Catalonian silver coins from the Spanish War of Independence period (1808-1814) by Energy Dispersive X-ray Fluorescence

    NASA Astrophysics Data System (ADS)

    Pitarch, A.; Queralt, I.; Alvarez-Perez, A.

    2011-02-01

    Between the years 1808 and 1814, the Spanish War of Independence took place. This period, locally known as "Guerra del Francès", generated the need for money and consequently five mints were opened around the Catalan territory. To mark the 200th anniversary of the beginning of the war, an extensive campaign of Energy Dispersive X-ray Fluorescence measurements of some of these "emergency coins" was carried out. Apart from the silver (major constituent of all the studied coins) it has been possible to recognize copper as main metal alloying element. Likewise, the presence of zinc, tin, lead, gold, platinum, antimony, nickel and iron has been also identified. The obtained results have been useful not only for the characterization of the alloys, but also to determine the differences and analogies between the emissions and for historical explanations.

  11. Interfacial rheology: an overview of measuring techniques and its role in dispersions and electrospinning.

    PubMed

    Pelipenko, Jan; Kristl, Julijana; Rošic, Romana; Baumgartner, Saša; Kocbek, Petra

    2012-06-01

    Interfacial rheological properties have yet to be thoroughly explored. Only recently, methods have been introduced that provide sufficient sensitivity to reliably determine viscoelastic interfacial properties. In general, interfacial rheology describes the relationship between the deformation of an interface and the stresses exerted on it. Due to the variety in deformations of the interfacial layer (shear and expansions or compressions), the field of interfacial rheology is divided into the subcategories of shear and dilatational rheology. While shear rheology is primarily linked to the long-term stability of dispersions, dilatational rheology provides information regarding short-term stability. Interfacial rheological characteristics become relevant in systems with large interfacial areas, such as emulsions and foams, and in processes that lead to a large increase in the interfacial area, such as electrospinning of nanofibers.

  12. Laser induced fluorescence in algae: A new technique for remote detection

    NASA Technical Reports Server (NTRS)

    Friedman, E. J.; Hickman, G. D.

    1972-01-01

    Measurements of the absorption and fluorescence spectra were obtained for four various types of marine and fresh water algae using a pulsed N2/Ne dye laser as the source of excitation. The absorption maxima for the algae ranged from 420 to 675 nm, while their fluorescent spectra ranged from 580 to 685 nm. It appears feasible that various algal species can be identified by detection of their fluorescent signatures using a tunable laser as the excitation source. However, if one is concerned only with detection of chlorophyll a, the optimum excitation is approximately 600 + 50 nm while detection is at 685 nm. An analysis of both calculations and laboratory results indicates that it should be feasible to measure chlorophyll a in concentrations as low as 1.0 mg/m3 using a 100 kW peak pulsed laser from an altitude of 500 meters.

  13. Modelling of Swelling by the Fluorescence Technique in Kappa Carrageenan Gels

    NASA Astrophysics Data System (ADS)

    Tari, Ozlem; Pekcan, Onder

    2011-12-01

    Kappa (-κ) carrageenan gels prepared with various carrageenan concentrations in pure water were completely dried and then swelled in water vapor. Steady state fluorescence measurements were performed using a spectrometer equipped with temperature controller. Pyranine was embedded in κ-carrageenan gels as a fluorescence probe during gel preparation. The fluorescence intensity, I, increased exponentially as swelling time is increased for all gel samples. The increase in I was modelled using Li-Tanaka equation from which swelling time constants, τc and cooperative diffusion coefficients, Dc were determined. It was observed that Dc increased as the swelling temperature was increased. On the other hand at each temperature, it was seen that Dc decreased as kappa carrageenan concentration was increased. Activation energies for swelling were obtained and found to be 57.4, 58.3 and 62.73 kJ mol-1 for the gels with increasing amount of κ-carrageenan content.

  14. [Determination of four phenolic endocrine disruptors in environmental water samples by high performance liquid chromatography-fluorescence detection using dispersive liquid-liquid microextraction coupled with derivatization].

    PubMed

    Wang, Xiaoyan; Qi, Weimei; Zhao, Xian'en; Lü, Tao; Wang, Xiya; Zheng, Longfang; Yan, Yehao; You, Jinmao

    2014-06-01

    To achieve accurate, fast and sensitive detection of phenolic endocrine disruptors in small volume of environmental water samples, a method of dispersive liquid-liquid microextraction (DLLME) coupled with fluorescent derivatization was developed for the determination of bisphenol A, nonylphenol, octylphenol and 4-tert-octylphenol in environmental water samples by high performance liquid chromatography-fluorescence detection (HPLC-FLD). The DLLME and derivatization conditions were investigated, and the optimized DLLME conditions for small volume of environmental water samples (pH 4.0) at room temperature were as follows: 70 microL chloroform as extraction solvent, 400 microL acetonitrile as dispersing solvent, vortex mixing for 3 min, and then high-speed centrifugation for 2 min. Using 2-[2-(7H-dibenzo [a, g] carbazol-7-yl)-ethoxy] ethyl chloroformate (DBCEC-Cl) as precolumn derivatization reagent, the stable derivatives of the four phenolic endocrine disruptors were obtained in pH 10.5 Na2CO3-NaHCO3 buffer/acetonitrile at 50 degrees C for 3 min, and then separated within 10 min by HPLC-FLD. The limits of detection (LODs) were in the range of 0.9-1.6 ng/L, and the limits of quantification (LOQs) were in the range of 3.8-7.1 ng/L. This method had perfect linearity, precision and recovery results, and showed obvious advantages and practicality comparing to the previously reported methods. It is a convenient and validated method for the routine analysis of phenolic endocrine disruptors in waste water of paper mill, lake water, domestic wastewater, tap water, etc.

  15. Characterizing Subcore Heterogeneity: A New Analytical Model and Technique to Observe the Spatial Variation of Transverse Dispersion

    NASA Astrophysics Data System (ADS)

    Boon, Maartje; Niu, Ben; Krevor, Sam

    2015-04-01

    of the NaI aqueous solution at steady state for the different Peclet numbers. The average transverse dispersion coefficient (Dt) was calculated from the change in variance of the transverse distance travelled by the NaI solution along the core. A Dt of 2.396e-04 cm2/min was obtained for Peclet nr 0.5 and a Dt of 4.771e-04 cm2/min for Peclet nr 2. These values coincide precisely with the Dt calculated from the pore scale modelling on Berea sandstone of Bijeljic and Blunt, 2007, and serves as a benchmark demonstrating the utility and repeatability of the technique. This new technique shows promise for use in characterising average transport characteristics and analysing the impacts of natural rock heterogeneity. Acknowledgement: This work was carried out as part of the Qatar Carbonates and Carbon Storage Research Centre (QCCSRC). The authors gratefully acknowledge the funding of QCCSRC provided jointly by Qatar Petroleum, Shell, and the Qatar Science & Technology Park and for supporting the present project and the permission to present this research. References: 1. Blackwell, 1962 - Laboratory studies of microscopic dispersion phenomena. Society of Petroleum Engineers Journal 2, no.1:1-8 2. Bijeljic, B., and M. J. Blunt (2007), Pore-scale modeling of transverse dispersion in porous media, Water Resour. Res., 43, W12S11, doi:10.1029/2006WR005700. 3. Han, N.W., Bhakta, J and Carbonell, R.G., 1985 - Longitudinal and lateral dispersion in packed beds: Effect of column length and particle size distribution. AIChE Journal31, no.2:277-288. 4. Harleman, D.R., and R.R. Rumer. 1963. Longitudinal and lateral dispersion in an isotropic porous medium. Journal of Fluid Mechanics16, no. 2:385-394. 5. Hassinger, R.C. and Von Rosenberg, D.U., 1968 - A mathematical and experimental examination of transverse dispersion coefficients. Society of Petroleum Engineers Journal 8, no.1:195-204.

  16. Synchrotron Radiation and Energy Dispersive X-Ray Fluorescence Applications on Elemental Distribution in Human Hair and Bones

    SciTech Connect

    Carvalho, M.L.; Marques, A.F.; Brito, J.

    2003-01-24

    This work is an application of synchrotron microprobe X- Ray fluorescence in order to study elemental distribution along human hair samples of contemporary citizens. Furthermore, X-Ray fluorescence spectrometry is also used to analyse human bones of different historical periods: Neolithic and contemporary subjects. The elemental content in the bones allowed us to conclude about environmental contamination, dietary habits and health status influence in the corresponding citizens. All samples were collected post-mortem. Quantitative analysis was performed for Mn, Fe, Co, Ni, Cu, Zn, Br, Rb, Sr and Pb. Mn and Fe concentration were much higher in bones from pre-historic periods. On the contrary, Pb bone concentrations of contemporary subjects are much higher than in pre-historical ones, reaching 100 {mu}g g-1, in some cases. Very low concentrations for Co, Ni, Br and Rb were found in all the analysed samples. Cu concentrations, allows to distinguish Chalcolithic bones from the Neolithic ones. The distribution of trace elements along human hair was studied for Pb and the obtained pattern was consistent with the theoretical model, based on the diffusion of this element from the root and along the hair. Therefore, the higher concentrations in hair for Pb of contemporary individuals were also observed in the bones of citizens of the same sampling sites. All samples were analysed directly without any chemical treatment.

  17. Synchrotron Radiation and Energy Dispersive X-Ray Fluorescence Applications on Elemental Distribution in Human Hair and Bones

    NASA Astrophysics Data System (ADS)

    Carvalho, M. L.; Marques, A. F.; Brito, J.

    2003-01-01

    This work is an application of synchrotron microprobe X- Ray fluorescence in order to study elemental distribution along human hair samples of contemporary citizens. Furthermore, X-Ray fluorescence spectrometry is also used to analyse human bones of different historical periods: Neolithic and contemporary subjects. The elemental content in the bones allowed us to conclude about environmental contamination, dietary habits and health status influence in the corresponding citizens. All samples were collected post-mortem. Quantitative analysis was performed for Mn, Fe, Co, Ni, Cu, Zn, Br, Rb, Sr and Pb. Mn and Fe concentration were much higher in bones from pre-historic periods. On the contrary, Pb bone concentrations of contemporary subjects are much higher than in pre-historical ones, reaching 100 μg g-1, in some cases. Very low concentrations for Co, Ni, Br and Rb were found in all the analysed samples. Cu concentrations, allows to distinguish Chalcolithic bones from the Neolithic ones. The distribution of trace elements along human hair was studied for Pb and the obtained pattern was consistent with the theoretical model, based on the diffusion of this element from the root and along the hair. Therefore, the higher concentrations in hair for Pb of contemporary individuals were also observed in the bones of citizens of the same sampling sites. All samples were analysed directly without any chemical treatment.

  18. Detecting the barium daughter in 136Xe 0-νββ decay using single-molecule fluorescence imaging techniques

    NASA Astrophysics Data System (ADS)

    Nygren, David R.

    2015-11-01

    Single-molecule fluorescent imaging may provide an avenue to efficiently detect the Ba++ daughter atom in the decay 136Xe → Ba + 2e-, and, unambiguously associate the birth point in space within the electron trajectories of the decay event. Chelation of doubly-charged alkaline earth elements such as calcium and barium by certain precursor molecules converts the resulting complex from a non-fluorescent to a fluorescent state. Repeated photo-excitation of a single fluorescent complex reveals both presence and location with high precision. This technique, widespread now in biochemistry, biophysics and biology, may permit a similar discriminating response in a large high-pressure xenon gas TPC for the Ba++ ion from xenon double-beta decay. The TPC measures the event time and energy of the two nascent electrons, as well as topology and position in 3-D from their trajectories in the gas. Measurement of the 2-D location of the molecular ion after arrival at the cathode plane permits an association of ion with the event. Demonstration of an efficient, highly specific detection of the barium daughter would provide a long-sought pathway to a background-free result in the search for this decay mode, of central importance for determining the nature of the neutrino.

  19. Noncontact, nondestructive elasticity evaluation of sound and demineralized human dental enamel using a laser ultrasonic surface wave dispersion technique

    NASA Astrophysics Data System (ADS)

    Wang, Hsiao-Chuan; Fleming, Simon; Lee, Yung-Chun; Law, Susan; Swain, Michael; Xue, Jing

    2009-09-01

    Laser ultrasonic nondestructive evaluation (NDE) methods have been proposed to replace conventional in vivo dental clinical diagnosis tools that are either destructive or incapable of quantifying the elasticity of human dental enamel. In this work, a laser NDE system that can perform remote measurements on samples of small dimensions is presented. A focused laser line source is used to generate broadband surface acoustic wave impulses that are detected with a simplified optical fiber interferometer. The measured surface wave velocity dispersion spectrum is in turn used to characterize the elasticity of the specimen. The NDE system and the analysis technique are validated with measurements of different metal structures and then applied to evaluate human dental enamel. Artificial lesions are prepared on the samples to simulate different states of enamel elasticity. Measurement results for both sound and lesioned regions, as well as lesions of different severity, are clearly distinguishable from each other and fit well with physical expectations and theoretical value. This is the first time, to the best of our knowledge, that a laser-based surface wave velocity dispersion technique is successfully applied on human dental enamel, demonstrating the potential for noncontact, nondestructive in vivo detection of the development of carious lesions.

  20. Non-dispersive atomic-fluorescence spectrometry of trace amounts of bismuth by introduction of its gaseous hydride into a premixed argon (entrained air)-hydrogen flame.

    PubMed

    Kobayashi, S; Nakahara, T; Musha, S

    1979-10-01

    A method has been developed for the determination of bismuth by generation of its gaseous hydride and introduction of the hydride into a premixed argon (entrained air)-hydrogen flame, the atomic-fluorescence lines from which are all detected by use of a non-dispersive system. The detection limit is 5 pg/ml, or 0.1 ng of bismuth, but the reagent blank found in a 20-ml sample volume was approximately 2 ng of bismuth. Analytical working curves obtained by measuring peak-heights and integrated peak-areas of the signals are linear over a range of about four orders of magnitude from the detection limit. Perchloric, phosphoric and sulphuric acids up to 2.0M concentration give no interference, but nitric acid gives slight depression of the signal. The presence of silver, gold, nickel, palladium, platinum, selenium and tellurium in 1000-fold ratio to bismuth causes pronounced depression of the signal, whereas mercury and tin slightly enhance the atomic-fluorescence signal. The method has been applied to the determination of bismuth in aluminium-base alloys and sulphide ores with use of the standard additions method. The results are in good agreement with those obtained by flame atomic-absorption spectrometry and optical emission spectrometry with an inductively coupled plasma.

  1. Quantitative determination on heavy metals in different stages of wine production by Total Reflection X-ray Fluorescence and Energy Dispersive X-ray Fluorescence: Comparison on two vineyards

    NASA Astrophysics Data System (ADS)

    Pessanha, Sofia; Carvalho, Maria Luisa; Becker, Maria; von Bohlen, Alex

    2010-06-01

    The purpose of this study is to determine the elemental content, namely heavy metals, of samples of vine-leaves, grapes must and wine. In order to assess the influence of the vineyard age on the elemental content throughout the several stages of wine production, elemental determinations of trace elements were made on products obtained from two vineyards aged 6 and 14 years from Douro region. The elemental content of vine-leaves and grapes was determined by Energy Dispersive X-Ray Fluorescence (EDXRF), while analysis of the must and wine was performed by Total Reflection X-ray Fluorescence (TXRF). Almost all elements present in wine and must samples did not exceed the recommended values found in literature for wine. Bromine was present in the 6 years old wine in a concentration 1 order of magnitude greater than what is usually detected. The Cu content in vine-leaves from the older vineyard was found to be extremely high probably due to excessive use of Cu-based fungicides to control vine downy mildew. Higher Cu content was also detected in grapes although not so pronounced. Concerning the wine a slightly higher level was detected on the older vineyard, even so not exceeding the recommended value.

  2. Spread from the Sink to the Patient: in situ Study Using Green Fluorescent Protein (GFP) Expressing- Escherichia coli to Model Bacterial Dispersion from Hand Washing Sink Trap Reservoirs.

    PubMed

    Kotay, Shireen; Chai, Weidong; Guilford, William; Barry, Katie; Mathers, Amy J

    2017-02-24

    There have been an increasing number of reports implicating Gammaproteobacteria often carrying genes of drug resistance from colonized sink traps to vulnerable hospitalized patients. However, the mechanism of transmission from the wastewater of the sink P-trap to patients remains poorly understood. Herein we report the use of a designated hand washing sink lab gallery to model dispersion of green fluorescent protein (GFP)- expressing Escherichia coli from sink wastewater to the surrounding environment. We found no dispersion of GFP-E.coli directly from the P-trap to the sink basin or surrounding countertop with coincident water flow from a faucet. However, when the GFP-E.coli were allowed to mature in the P-trap under conditions similar to a hospital environment a GFP-E.coli containing putative biofilm extended upward over seven days to reach the strainer. This subsequently resulted in droplet dispersion to the surrounding areas (<30 inches) during faucet operation. We also demonstrated that P-trap colonization could occur by retrograde transmission along a common pipe. We postulate that the organisms mobilize up to the strainer from the P-trap resulting in droplet dispersion rather than directly from the P-trap. This work helps to further define the mode of transmission of bacteria from a P-trap reservoir to a vulnerable hospitalized patient.Importance Many recent reports demonstrate that sink drain pipes become colonized with highly consequential multidrug resistant bacteria, which then result in hospital acquired infections. However, the mechanism of dispersal of bacteria from the sink to patients has not been fully elucidated. Through establishment of a unique sink gallery this work found that a staged mode of transmission involving biofilm growth from the lower pipe to the sink strainer and subsequent splatter to the bowl and surrounding area occurs rather than splatter directly from the water in the lower pipe. We have also demonstrated that bacterial

  3. Automated dispersive liquid-liquid microextraction coupled to high performance liquid chromatography - cold vapour atomic fluorescence spectroscopy for the determination of mercury species in natural water samples.

    PubMed

    Liu, Yao-Min; Zhang, Feng-Ping; Jiao, Bao-Yu; Rao, Jin-Yu; Leng, Geng

    2017-04-14

    An automated, home-constructed, and low cost dispersive liquid-liquid microextraction (DLLME) device that directly coupled to a high performance liquid chromatography (HPLC) - cold vapour atomic fluorescence spectroscopy (CVAFS) system was designed and developed for the determination of trace concentrations of methylmercury (MeHg(+)), ethylmercury (EtHg(+)) and inorganic mercury (Hg(2+)) in natural waters. With a simple, miniaturized and efficient automated DLLME system, nanogram amounts of these mercury species were extracted from natural water samples and injected into a hyphenated HPLC-CVAFS for quantification. The complete analytical procedure, including chelation, extraction, phase separation, collection and injection of the extracts, as well as HPLC-CVAFS quantification, was automated. Key parameters, such as the type and volume of the chelation, extraction and dispersive solvent, aspiration speed, sample pH, salt effect and matrix effect, were thoroughly investigated. Under the optimum conditions, linear range was 10-1200ngL(-1) for EtHg(+) and 5-450ngL(-1) for MeHg(+) and Hg(2+). Limits of detection were 3.0ngL(-1) for EtHg(+) and 1.5ngL(-1) for MeHg(+) and Hg(2+). Reproducibility and recoveries were assessed by spiking three natural water samples with different Hg concentrations, giving recoveries from 88.4-96.1%, and relative standard deviations <5.1%.

  4. Potential of Fluorescence Imaging Techniques To Monitor Mutagenic PAH Uptake by Microalga

    PubMed Central

    2015-01-01

    Benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH), is one of the major environmental pollutants that causes mutagenesis and cancer. BaP has been shown to accumulate in phytoplankton and zooplankton. We have studied the localization and aggregation of BaP in Chlorella sp., a microalga that is one of the primary producers in the food chain, using fluorescence confocal microscopy and fluorescence lifetime imaging microscopy with the phasor approach to characterize the location and the aggregation of BaP in the cell. Our results show that BaP accumulates in the lipid bodies of Chlorella sp. and that there is Förster resonance energy transfer between BaP and photosystems of Chlorella sp., indicating the close proximity of the two molecular systems. The lifetime of BaP fluorescence was measured to be 14 ns in N,N-dimethylformamide, an average of 7 ns in Bold’s basal medium, and 8 ns in Chlorella cells. Number and brightness analysis suggests that BaP does not aggregate inside Chlorella sp. (average brightness = 5.330), while it aggregates in the supernatant. In Chlorella grown in sediments spiked with BaP, in 12 h the BaP uptake could be visualized using fluorescence microscopy. PMID:25020149

  5. Blind Source Separation Techniques for the Decomposition of Multiply Labeled Fluorescence Images

    PubMed Central

    Neher, Richard A.; Mitkovski, Mišo; Kirchhoff, Frank; Neher, Erwin; Theis, Fabian J.; Zeug, André

    2009-01-01

    Methods of blind source separation are used in many contexts to separate composite data sets according to their sources. Multiply labeled fluorescence microscopy images represent such sets, in which the sources are the individual labels. Their distributions are the quantities of interest and have to be extracted from the images. This is often challenging, since the recorded emission spectra of fluorescent dyes are environment- and instrument-specific. We have developed a nonnegative matrix factorization (NMF) algorithm to detect and separate spectrally distinct components of multiply labeled fluorescence images. It operates on spectrally resolved images and delivers both the emission spectra of the identified components and images of their abundance. We tested the proposed method using biological samples labeled with up to four spectrally overlapping fluorescent labels. In most cases, NMF accurately decomposed the images into contributions of individual dyes. However, the solutions are not unique when spectra overlap strongly or when images are diffuse in their structure. To arrive at satisfactory results in such cases, we extended NMF to incorporate preexisting qualitative knowledge about spectra and label distributions. We show how data acquired through excitations at two or three different wavelengths can be integrated and that multiple excitations greatly facilitate the decomposition. By allowing reliable decomposition in cases where the spectra of the individual labels are not known or are known only inaccurately, the proposed algorithms greatly extend the range of questions that can be addressed with quantitative microscopy. PMID:19413985

  6. Determination of rhenium in molybdenite by X-ray fluorescence. A combined chemical-spectrometric technique

    USGS Publications Warehouse

    Solt, M.W.; Wahlberg, J.S.; Myers, A.T.

    1969-01-01

    Rhenium in molybdenite is separated from molybdenum by distillation of rhenium heptoxide from a perchloric-sulphuric acid mixture. It is concentrated by precipitation of the sulphide and then determined by X-ray fluorescence. From 3 to 1000 ??g of rhenium can be measured with a precision generally within 2%. The procedure tolerates larger amounts of molybdenum than the usual colorimetric methods. ?? 1969.

  7. Fluorescence technique for on-line monitoring of state of hydrogen-producing microorganisms

    DOEpatents

    Seibert, Michael; Makarova, Valeriya; Tsygankov, Anatoly A.; Rubin, Andrew B.

    2007-06-12

    In situ fluorescence method to monitor state of sulfur-deprived algal culture's ability to produce H.sub.2 under sulfur depletion, comprising: a) providing sulfur-deprived algal culture; b) illuminating culture; c) measuring onset of H.sub.2 percentage in produced gas phase at multiple times to ascertain point immediately after anerobiosis to obtain H.sub.2 data as function of time; and d) determining any abrupt change in three in situ fluorescence parameters; i) increase in F.sub.t (steady-state level of chlorophyll fluorescence in light adapted cells); ii) decrease in F.sub.m', (maximal saturating light induced fluorescence level in light adapted cells); and iii) decrease in .DELTA.F/F.sub.m'=(F.sub.m'-F.sub.t)/F.sub.m' (calculated photochemical activity of photosystem II (PSII) signaling full reduction of plastoquinone pool between PSII and PSI, which indicates start of anaerobic conditions that induces synthesis of hydrogenase enzyme for subsequent H.sub.2 production that signal oxidation of plastoquinone pool asmain factor to regulate H.sub.2 under sulfur depletion.

  8. Measuring gas emissions from animal waste lagoons with an inverse-dispersion technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measuring gas emissions from treatment lagoons and storage ponds poses challenging conditions for existing micrometeorological techniques due to non-ideal conditions such as trees and crops surrounding the lagoons, and short fetch to establish equilibrated microclimate conditions within the water bo...

  9. Development of a temporal filtering technique for suppression of interferences in applied laser-induced fluorescence diagnostics.

    PubMed

    Ehn, Andreas; Kaldvee, Billy; Bood, Joakim; Aldén, Marcus

    2009-04-20

    A temporal filtering technique, complementary to spectral filtering, has been developed for laser-induced fluorescence measurements. The filter is applicable in cases where the laser-induced interfering signals and the signal of interest have different temporal characteristics. For the interfering-signal discrimination a picosecond laser system along with a fast time-gated intensified CCD camera were used. In order to demonstrate and evaluate the temporal filtering concept two measurement situations were investigated; one where toluene fluorescence was discriminated from interfering luminescence of an aluminum surface, and in the other one Mie scattering signals from a water aerosol were filtered out from acetone fluorescence images. A mathematical model was developed to simulate and evaluate the temporal filter for a general measurement situation based on pulsed-laser excitation together with time-gated detection. Using system parameters measured with a streak camera, the model was validated for LIF imaging of acetone vapor inside a water aerosol. The results show that the temporal filter is capable of efficient suppression of interfering signal contributions. The photophysical properties of several species commonly studied by LIF in combustion research have been listed and discussed to provide guidelines for optimum use of the technique.

  10. Far-ultraviolet fluorescence of carbon monoxide in the red giant Arcturus. II - Analysis of high-dispersion IUE spectra

    NASA Technical Reports Server (NTRS)

    Ayres, T. R.

    1986-01-01

    Faint, diffuse emissions near 1380 A in deeply exposed IUE spectrograms of the red giant Arcturus very likely are associated with bands of the A-X fourth-positive system of carbon monoxide, fluoresced by multiplet UV2 of neutral oxygen near 1305 A. Numerical simulations indicate that the strength of the CO bands is exceedingly sensitive, in the best available one-dimensional model of the chromosphere of Arcturus, to a delicate balance between the rapid inward attenuation of the oxygen radiation field and the rapid outward decline of the molecular absorptivity. The fortuitous character of the overlap region in the single-component model argues that one should also consider the possibility that the pumping occurs in a highly inhomogeneous chromosphere, of the type proposed in previous studies of Arcturus based on observations of the infrared absorption bands of CO.

  11. Techniques of Fluorescence Cholangiography During Laparoscopic Cholecystectomy for Better Delineation of the Bile Duct Anatomy

    PubMed Central

    Kono, Yoshiharu; Ishizawa, Takeaki; Tani, Keigo; Harada, Nobuhiro; Kaneko, Junichi; Saiura, Akio; Bandai, Yasutsugu; Kokudo, Norihiro

    2015-01-01

    Abstract To evaluate the clinical and technical factors affecting the ability of fluorescence cholangiography (FC) using indocyanine green (ICG) to delineate the bile duct anatomy during laparoscopic cholecystectomy (LC). Application of FC during LC began after laparoscopic fluorescence imaging systems became commercially available. In 108 patients undergoing LC, FC was performed by preoperative intravenous injection of ICG (2.5 mg) during dissection of Calot's triangle, and clinical factors affecting the ability of FC to delineate the extrahepatic bile ducts were evaluated. Equipment-related factors associated with bile duct detectability were also assessed among 5 laparoscopic systems and 1 open fluorescence imaging system in ex vivo studies. FC delineated the confluence between the cystic duct and common hepatic duct (CyD–CHD) before and after dissection of Calot's triangle in 80 patients (74%) and 99 patients (92%), respectively. The interval between ICG injection and FC before dissection of Calot's triangle was significantly longer in the 80 patients in whom the CyD–CHD confluence was detected by fluorescence imaging before dissection (median, 90 min; range, 15–165 min) than in the remaining 28 patients in whom the confluence was undetectable (median, 47 min; range, 21–205 min; P < 0.01). The signal contrast on the fluorescence images of the bile duct samples was significantly different among the laparoscopic imaging systems and tended to decrease more steeply than those of the open imaging system as the target-laparoscope distance increased and porcine tissues covering the samples became thicker. FC is a simple navigation tool for obtaining a biliary roadmap to reach the “critical view of safety” during LC. Key factors for better bile duct identification by FC are administration of ICG as far in advance as possible before surgery, sufficient extension of connective tissues around the bile ducts, and placement of the tip of

  12. Ocular dispersion

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Noojin, Gary D.; Thomas, Robert J.; Stolarski, David J.; Rockwell, Benjamin A.; Welch, Ashley J.

    1999-06-01

    Spectrally resolved white-light interferometry (SRWLI) was used to measure the wavelength dependence of refractive index (i.e., dispersion) for various ocular components. The accuracy of the technique was assessed by measurement of fused silica and water, the refractive indices of which have been measured at several different wavelengths. The dispersion of bovine and rabbit aqueous and vitreous humor was measured from 400 to 1100 nm. Also, the dispersion was measured from 400 to 700 nm for aqueous and vitreous humor extracted from goat and rhesus monkey eyes. For the humors, the dispersion did not deviate significantly from water. In an additional experiment, the dispersion of aqueous and vitreous humor that had aged up to a month was compared to freshly harvested material. No difference was found between the fresh and aged media. An unsuccessful attempt was also made to use the technique for dispersion measurement of bovine cornea and lens. Future refinement may allow measurement of the dispersion of cornea and lens across the entire visible and near-infrared wavelength band. The principles of white- light interferometry including image analysis, measurement accuracy, and limitations of the technique, are discussed. In addition, alternate techniques and previous measurements of ocular dispersion are reviewed.

  13. Improved technique for evaluating oral free flaps by pinprick testing assisted by indocyanine green near-infrared fluorescence angiography.

    PubMed

    Nagata, Tetsuji; Masumoto, Kazuma; Uchiyama, Yoshiyuki; Watanabe, Yoshiko; Azuma, Ryuichi; Morimoto, Yuji; Katou, Fuminori

    2014-10-01

    In head and neck surgery, free-flap reconstruction using a microvascular anastomosis is an indispensable option after tumor ablation. Because the success of free-flap reconstruction is enhanced by rapid identification and salvage of failing flaps, postoperative monitoring of free flaps is essential. We describe a new technique using indocyanine green (ICG) near-infrared angiography and pinprick testing to monitor intraoral free flaps. A solution of ICG (Diagnogreen, 5 ml) was intravenously injected, and scanning was performed with a near-infrared video camera system. Thirty seconds after ICG injection, a pinprick test was performed by placing a 24-gage needle through the dermis to the subcutaneous fat of the flap. Pinprick testing during ICG fluorescence imaging was performed in 30 patients. Flap perfusion was confirmed in all patients, and all flaps survived postoperatively. ICG fluorescence imaging demonstrated that flap perfusion was maintained.

  14. Fluorescence enhancement from nano-gap embedded plasmonic gratings by a novel fabrication technique with HD-DVD

    NASA Astrophysics Data System (ADS)

    Bhatnagar, K.; Pathak, A.; Menke, D.; Cornish, P. V.; Gangopadhyay, K.; Korampally, V.; Gangopadhyay, S.

    2012-12-01

    We demonstrate strong electromagnetic field enhancement from nano-gaps embedded in silver gratings for visible wavelengths. These structures fabricated using a store-bought HD-DVD worth 10 and conventional micro-contact printing techniques have shown maximum fluorescence enhancement factors of up to 118 times when compared to a glass substrate under epi-fluorescent conditions. The novel fabrication procedure provides for the development of a cost-effective and facile plasmonic substrate for low-level chemical and biological detection. Electromagnetic field simulations were also performed that reveal the strong field confinement in the nano-gap region embedded in the silver grating, which is attributed to the combined effect of localized as well as propagating surface plasmons.

  15. Fluorescence enhancement from nano-gap embedded plasmonic gratings by a novel fabrication technique with HD-DVD.

    PubMed

    Bhatnagar, K; Pathak, A; Menke, D; Cornish, P V; Gangopadhyay, K; Korampally, V; Gangopadhyay, S

    2012-12-14

    We demonstrate strong electromagnetic field enhancement from nano-gaps embedded in silver gratings for visible wavelengths. These structures fabricated using a store-bought HD-DVD worth $10 and conventional micro-contact printing techniques have shown maximum fluorescence enhancement factors of up to 118 times when compared to a glass substrate under epi-fluorescent conditions. The novel fabrication procedure provides for the development of a cost-effective and facile plasmonic substrate for low-level chemical and biological detection. Electromagnetic field simulations were also performed that reveal the strong field confinement in the nano-gap region embedded in the silver grating, which is attributed to the combined effect of localized as well as propagating surface plasmons.

  16. Study of nonlinear effects in coumarin-30 using two-photon fluorescence and the Z-scan technique

    NASA Astrophysics Data System (ADS)

    Poudel, Milan; Chen, Jinhai; Kolomenski, Alexandre; Schuessler, Hans

    2008-10-01

    The nonlinear propagation dynamics of 45 fs laser pulses in methanol solution has been studied with the two-photon fluorescence and the Z-scan technique. The competing nonlinear processes include self-focusing, self-phase modulation, filamention, intensity clamping and the two- photon absorption [1]. A systematic study has been performed of these nonlinear effects at different the laser powers. The simultaneous measurements of two-photon fluorescence and the transmission, displaying also continuum generation, were performed, to better understand the interplay between these effects [2]. In addition, the influence of a linear chirp of the laser pulse on the nonlinear propagation dynamics was investigated. [0pt] [1] H. Schroeder, S. L. Chin, Opt. Communications, 11, 1695-1703 (2002) [0pt] [2] M. C. Fischer, H. C. Liu, I. R. Piletic, and W. S. Warren, Opt. Express, 16, 4192-4205 (2008)

  17. Experimental comparison of measurement techniques for drop size distributions in liquid/liquid dispersions

    NASA Astrophysics Data System (ADS)

    Maaß, S.; Wollny, S.; Voigt, A.; Kraume, M.

    2011-02-01

    An online measurement technique for drop size distribution in stirred tank reactors is needed but has not yet been developed. Different approaches and different techniques have been published as the new standard during the last decade. Three of them (focus beam reflectance measurement, two-dimensional optical reflectance measurement techniques and a fiber optical FBR sensor) are tested, and their results are compared with trustful image analysis results from an in situ microscope. The measurement of drop sizes in liquid/liquid distribution is a major challenge for all tested measurement probes, and none provides exact results for the tested system of pure toluene/water compared to an endoscope. Not only the size analysis but also the change of the size over time gives unreasonable results. The influence of the power input on the drop size distribution was the only reasonable observation in this study. The FBR sensor was not applicable at all to the used system. While all three probes are based on laser back scattering, the general question of the usability of this principle for measuring evolving drop size distributions in liquid/liquid system is asked. The exterior smooth surface of droplets in such systems is leading to strong errors in the measurement of the size of the drops. That leads to widely divergent results. A different measurement principle should be used for online measurements of drop size distributions than laser back scattering.

  18. Application of the Total Reflection X-ray Fluorescence technique to trace elements determination in tobacco

    NASA Astrophysics Data System (ADS)

    Martinez, T.; Lartigue, J.; Zarazua, G.; Avila-Perez, P.; Navarrete, M.; Tejeda, S.

    2008-12-01

    Many studies have identified an important number of toxic elements along with organic carcinogen molecules and radioactive isotopes in tobacco. In this work we have analyzed by Total Reflection X-Ray Fluorescence 9 brands of cigarettes being manufactured and distributed in the Mexican market. Two National Institute of Standards and Technology standards and a blank were equally treated at the same time. Results show the presence of some toxic elements such as Pb and Ni. These results are compared with available data for some foreign brands, while their implications for health are discussed. It can be confirmed that the Total Reflection X-Ray Fluorescence method provides precise (reproducible) and accuracy (trueness) data for 15 elements concentration in tobacco samples.

  19. Hyperspectral fluorescence imaging coupled with multivariate image analysis techniques for contaminant screening of leafy greens

    NASA Astrophysics Data System (ADS)

    Everard, Colm D.; Kim, Moon S.; Lee, Hoyoung

    2014-05-01

    The production of contaminant free fresh fruit and vegetables is needed to reduce foodborne illnesses and related costs. Leafy greens grown in the field can be susceptible to fecal matter contamination from uncontrolled livestock and wild animals entering the field. Pathogenic bacteria can be transferred via fecal matter and several outbreaks of E.coli O157:H7 have been associated with the consumption of leafy greens. This study examines the use of hyperspectral fluorescence imaging coupled with multivariate image analysis to detect fecal contamination on Spinach leaves (Spinacia oleracea). Hyperspectral fluorescence images from 464 to 800 nm were captured; ultraviolet excitation was supplied by two LED-based line light sources at 370 nm. Key wavelengths and algorithms useful for a contaminant screening optical imaging device were identified and developed, respectively. A non-invasive screening device has the potential to reduce the harmful consequences of foodborne illnesses.

  20. Structural investigation of nuclear RNP particles containing pre-mRNA by different fluorescence techniques.

    PubMed Central

    Borissova, O F; Krichevskaya, A A; Samarina, O P

    1981-01-01

    Ethidium bromide (EB) adsorption isotherms on 30S nuclear RNP particles isolated from liver nuclei has revealed 6% of double-stranded regions in pre-mRNA (dsRNA). It has been established by measurements of the EB fluorescence polarization that the bulk of dsRNA regions in RNP is rigidly attached to RNP. They are longer than 45 degree A. The increase of NaCl concentration from 0.1 up to 0.4 M causes a significant loosening of dsRNA-protein bonds. As a result the dsRNA segments become more flexible. Measurements of energy transfer from fluorescamine (covalently bound to the protein) to EB (adsorbed on dsRNA) have yielded information about dsRNA location. The fact that absorbtion of exciting light by fluorescamine causes pronounced increase of EB fluorescence is consistent with the idea that helical regions of RNA are located outside the RNP particles. PMID:7220348

  1. Direct Observation of Oil Consumption Mechanisms in a Production Spark Ignition Engine Using Fluorescence Techniques

    DTIC Science & Technology

    1994-05-01

    investigated for different piston ring end-gap configurations. A radiotracer was used to perform direct measurement of the oil consumption while Laser- induced ...and Instrumentation . . . . 43 3.1 General .......... ................... .. 43 3.2 Engine Description ....... ............. .. 43 3.3 Laser Induced ...Duty Diesels h" Non-dimensionalized Ah. k Proportionality constant for surface tension 11 (NI [mK]). Kpa kilo-Pascal LIF Laser Induced Fluorescence

  2. Investigation on the interactions of clenbuterol to bovine serum albumin and lysozyme by molecular fluorescence technique.

    PubMed

    Bi, Shuyun; Pang, Bo; Wang, Tianjiao; Zhao, Tingting; Yu, Wang

    2014-01-01

    Clenbuterol interacting with bovine serum albumin (BSA) or lysozyme (LYS) in physiological buffer (pH 7.4) was investigated by the fluorescence spectroscopy and UV-vis absorption spectroscopy. The results indicated that clenbuterol quenched the intrinsic fluorescence of BSA and LYS via a static quenching procedure. The binding constants of clenbuterol with BSA and LYS were 1.16×10(3) and 1.49×10(3) L mol(-1) at 291 K. The values of ΔH and ΔS implied that hydrophobic and electrostatic interaction played a major role in stabilizing the complex (clenbuterol-BSA or clenbuterol-LYS). In the presence of Fe2+, Fe3+, Cu2+, Mg2+, Ca2+, or Zn2+, the binding constants of clenbuterol to BSA or LYS had no significant differences. The distances between the donor (BSA or LYS) and acceptor (clenbuterol) were 2.61 and 2.19 nm for clenbuterol-BSA and clenbuterol-LYS respectively. Furthermore, synchronous fluorescence spectrometry was used to analyze the conformational changes of BSA and LYS.

  3. The modified fluorescence based vesicle fluctuation spectroscopy technique for determination of lipid bilayer bending properties.

    PubMed

    Drabik, Dominik; Przybyło, Magda; Chodaczek, Grzegorz; Iglič, Aleš; Langner, Marek

    2016-02-01

    Lipid bilayer is the main constitutive element of biological membrane, which confines intracellular space. The mechanical properties of biological membranes may be characterized by various parameters including membrane stiffness or membrane bending rigidity, which can be measured using flicker noise spectroscopy. The flicker noise spectroscopy exploits the spontaneous thermal undulations of the membrane. The method is based on the quantitative analysis of a series of microscopic images captured during thermal membrane fluctuations. Thus, measured bending rigidity coefficient depends on the image quality as well as the selection of computational tools for image processing and mathematical model used. In this work scanning and spinning disc confocal microscopies were used to visualize fluctuating membranes of giant unilamellar vesicles. The bending rigidity coefficient was calculated for different acquisition modes, using different fluorescent probes and different image processing methods. It was shown that both imaging approaches gave similar bending coefficient values regardless of acquisition time. Using the developed methodology the effect of fluorescent probe type and aqueous phase composition on the value of the membrane bending rigidity coefficient was measured. Specifically it was found that the bending rigidity coefficient of DOPC bilayer in water is smaller than that determined for POPC membrane. It has been found that the POPC and DOPC bending rigidities coefficient in sucrose solution was lower than that in water. Fluorescence imaging makes possible the quantitative analysis of membrane mechanical properties of inhomogeneous membrane.

  4. Analyses of Clay Mineralogy of some Southeastern Nigeria Soils using X-Ray Diffraction and Fluorescence Techniques

    NASA Astrophysics Data System (ADS)

    Igwe, C.; Stahr, K.

    2009-04-01

    Detailed knowledge of soil mineralogy helps in understanding the soil forming processes, the chemical constituent and the general characteristics of the soil. We used x-ray diffraction (XRD) and fluorescence techniques (XRF) to analyse the clay mineralogy and soil chemical properties of varieties of soils within south-eastern Nigeria. The XRD involved both powder and oriented clay analyses. The aim was to determine the clay minerals in both whole sample (fine-earth fraction) and the oriented clays. Soils analysed were from floodplain of alluvial deposits to upland soils derived from shale and sandstone geological formation. The XRD patterns of the clay fraction from selected soils indicate that they are well-defined diffractions at 0.72 nm indicating kaolinite as the dominant clay mineral. Kaolinites are mainly the alumina-silicate clays with 1:1 octahedral and tetrahedral relationship. The 2:1 clay minerals present were illite at 1.0 nm for soils formed on the shale formations, interlayer vermiculite (IV) occurred at 1.4 nm again for soils on shales while smectite was observed especially in floodplain soils at 1.8 nm in those soils. The presence of smectite where it occurred, showed that diffraction peaks found between 1.0 and 1.4 nm in Mg-saturated samples shifted to 1.8 nm after the samples were solvated with glycerol, indicating the presence of smectite in various quantities in the soils. The presence of the 1:1 and 2:1 minerals can be used as a basis for grouping of the soils into expanding and non expanding soils. This grouping is very significant in all activities aimed at managing the soils for sustainable productivity. The energy-dispersive x-ray (EDX) analyses of the clays confirm the dominance of Si and Al in the soils. In some of the soils EDX showed the presence of K and Fe as being one of the prominent elemental components of the clay minerals. The geochemical properties of the soils as shown by XRF were dominated by the SiO2, Al2O3 and the Fe2O3

  5. Assessment of marine and urban-industrial environments influence on built heritage sandstone using X-ray fluorescence spectroscopy and complementary techniques

    NASA Astrophysics Data System (ADS)

    Morillas, Héctor; García-Galan, Javier; Maguregui, Maite; Marcaida, Iker; García-Florentino, Cristina; Carrero, Jose Antonio; Madariaga, Juan Manuel

    2016-09-01

    The sandstone used in the construction of the tower of La Galea Fortress (Getxo, north of Spain) shows a very bad conservation state and a high percentage of sandstone has been lost. The fortress is located just on a cliff and close to the sea, and it experiments the direct influence of marine aerosol and also the impact of acid gases (SOx and NOx) coming from the surrounding industry and maritime traffic. This environment seems to be very harmful for the preservation of the sandstone used in it, promoting different pathologies (disintegration, alveolization, cracking or erosion blistering, salts crystallization on the pores, efflorescences etc.). In this work, a multianalytical methodology based on a preliminary in-situ screening of the affected sandstone using a handheld energy dispersive X-ray fluorescence spectrometer (HH-ED-XRF) and a subsequent characterization of extracted sample in the laboratory using elemental (μ-ED-XRF, Scanning Electron Microscope coupled to an X-Max Energy-Dispersive (SEM-EDS) and Inductively coupled plasma mass spectrometry (ICP-MS)) and molecular techniques (micro-Raman spectroscopy (μ-RS) and X-ray Diffraction (XRD)) was applied in order to characterize the original composition of this kind of stone and related deterioration products. With the whole methodology, it was possible to assess that the sandstone contain a notable percentage of calcite. The sulfation and nitration of this carbonate detected in the stone led to the dissolution process of the sandstone, promoting the observed material loss. Additionally, the presence of salts related with the influence of marine aerosol confirms that this kind of environment have influence on the conservation state of the sandstone building.

  6. A Fluorescence Recovery After Photobleaching (FRAP) Technique for the Measurement of Solute Transport Across Surfactant-Laden Interfaces

    NASA Technical Reports Server (NTRS)

    Browne, Edward P.; Hatton, T. Alan

    1996-01-01

    The technique of Fluorescence Recovery After Photobleaching (FRAP) has been applied to the measurement of interfacial transport in two-phase systems. FRAP exploits the loss of fluorescence exhibited by certain fluorophores when over-stimulated (photobleached), so that a two-phase system, originally at equilibrium, can be perturbed without disturbing the interface by strong light from an argon-ion laser and its recovery monitored by a microscope-mounted CCD camera as it relaxes to a new equilibrium. During this relaxation, the concentration profiles of the probe solute are measured on both sides of the interface as a function of time, yielding information about the transport characteristics of the system. To minimize the size of the meniscus between the two phases, a photolithography technique is used to selectively treat the glass walls of the cell in which the phases are contained. This allows concentration measurements to be made very close to the interface and increases the sensitivity of the FRAP technique.

  7. Quantitative evaluation of material composition of composites using x-ray energy-dispersive NDE technique

    SciTech Connect

    Ting, J.

    1993-09-01

    This technique worked well for determining the thickness and densities for composite components having the higher linear attenuation coefficient; it accurately determined thickness of epoxy-resin and Al metal, and the denisty of bone, to {le} 4% in the graphite-epoxy, bone-plexiglas, and Al-Al corrosion composites. Accuracy is dictated by the magnitude and uncertainty of the linear attenuation coefficient. Use of Ge detector and multichannel analyzer are limited by inspection time (1 day for point measurement) and access limitation. Immediate development of a rapid in-service inspection tool is limited by the amplifier and MCA systems. The MCA should be replaced with a single-channel analyzer, and an electronic device should be built for monitoring the incoming signal for Pile-Up-Rejection.

  8. On the distribution of uranium in hair: Non-destructive analysis using synchrotron radiation induced X-ray fluorescence microprobe techniques

    NASA Astrophysics Data System (ADS)

    Israelsson, A.; Eriksson, M.; Pettersson, H. B. L.

    2015-06-01

    In the present study the distribution of uranium in single human hair shafts has been evaluated using two synchrotron radiation (SR) based micro X-ray fluorescence techniques; SR μ-XRF and confocal SR μ-XRF. The hair shafts originated from persons that have been exposed to elevated uranium concentrations. Two different groups have been studied, i) workers at a nuclear fuel fabrication factory, exposed mainly by inhalation and ii) owners of drilled bedrock wells exposed by ingestion of water. The measurements were carried out on the FLUO beamline at the synchrotron radiation facility ANKA, Karlsruhe. The experiment was optimized to detect U with a beam size of 6.8 μm × 3 μm beam focus allowing detection down to ppb levels of U in 10 s (SR μ-XRF setup) and 70 s (SR confocal μ-XRF setup) measurements. It was found that the uranium was present in a 10-15 μm peripheral layer of the hair shafts for both groups studied. Furthermore, potential external hair contamination was studied by scanning of unwashed hair shafts from the workers. Sites of very high uranium signal were identified as particles containing uranium. Such particles, were also seen in complementary analyses using variable pressure electron microscope coupled with energy dispersive X-ray analyzer (ESEM-EDX). However, the particles were not visible in washed hair shafts. These findings can further increase the understanding of uranium excretion in hair and its potential use as a biomonitor.

  9. Quantification of methane emissions from full-scale open windrow composting of biowaste using an inverse dispersion technique.

    PubMed

    Hrad, Marlies; Binner, Erwin; Piringer, Martin; Huber-Humer, Marion

    2014-12-01

    An inverse dispersion technique in conjunction with Open-Path Tunable-Diode-Laser-Spectroscopy (OP-TDLS) and meteorological measurements was applied to characterise methane (CH4) emissions from an Austrian open-windrow composting plant treating source-separated biowaste. Within the measurement campaigns from July to September 2012 different operating conditions (e.g. before, during and after turning and/or sieving events) were considered to reflect the plant-specific process efficiency. In addition, the tracer technique using acetylene (C2H2) was applied during the measurement campaigns as a comparison to the dispersion model. Plant-specific methane emissions varied between 1.7 and 14.3 gCH4/m(3)d (1.3-10.7 kg CH4/h) under real-life management assuming a rotting volume of 18,000 m(3). In addition, emission measurements indicated that the turning frequency of the open windrows appears to be a crucial factor controlling CH4 emissions when composting biowaste. The lowest CH4 emission was measured at a passive state of the windrows without any turning event ("standstill" and "sieving of matured compost"). Not surprisingly, higher CH4 emissions occurred during turning events, which can be mainly attributed to the instant release of trapped CH4. Besides the operation mode, the meteorological conditions (e.g. wind speed, atmospheric stability) may be further factors that likely affect the release of CH4 emissions at an open windrow system. However, the maximum daily CH4 emissions of 1m(3) rotting material of the composting plant are only 0.7-6.5% of the potential daily methane emissions released from 1m(3) of mechanically-biologically treated (MBT) waste being landfilled according to the required limit values given in the Austrian landfill ordinance.

  10. Improving the analytical performance of hydride generation non-dispersive atomic fluorescence spectrometry. Combined effect of additives and optical filters

    NASA Astrophysics Data System (ADS)

    D'Ulivo, Alessandro; Bramanti, Emilia; Lampugnani, Leonardo; Zamboni, Roberto

    2001-10-01

    The effects of tetrahydroborate and acid concentration and the presence of L-cysteine and thiourea were investigated in the determination of As, Bi and Sn using continuous flow hydride generation atomic fluorescence spectrometry (HG AFS). The aim was to find conditions allowing the control of those effects exerting negative influence on the analytical performance of the HG AFS apparatus. The effects taken into account were: (i) the radiation scattering generated by carryover of solution from the gas-liquid separator to the atomizer; (ii) the introduction of molecular species generated by tetrahydroborate decomposition into the atomizer; and (iii) interference effects arising from other elements in the sample matrix and from different acids. The effects (i) and (ii) could be controlled using mild reaction conditions in the HG stage. The effect of HG conditions on carryover was studied by radiation scattering experiments without hydride atomization. Compromised HG conditions were found by studying the effects of tetrahydroborate (0.1-20 g l -1) and acid (0.01-7 mol l -1) concentration, and the addition of L-cysteine (10 g l -1) and thiourea (0.1 mol l -1) on the HG AFS signals. The effect of optical filters was investigated with the aim of improving the signal-to-noise ratio. Optical filters with peak wavelengths of 190 and 220 nm provided an improvement of detection limits by factors of approximately 4 and 2 for As and Te, respectively. Under optimized conditions the detection limits were 6, 5, 3, 2, 2 and 9 ng l -1 for As, Sb, Bi, Sn, Se and Te, respectively. Good tolerance to various acid compositions and sample matrices was obtained by using L-cysteine or thiourea as masking agents. Determination of arsenic in sediment and copper certified reference materials, and of bismuth in steel, sediment, soil and ore certified reference material is reported.

  11. Application of image restoration and three-dimensional visualization techniques to frog microvessels in-situ loaded with fluorescent indicators

    NASA Astrophysics Data System (ADS)

    Pagakis, Stamatis N.; Curry, Fitz-Roy E.; Lenz, Joyce F.

    1993-07-01

    In situ experiments on microvessels require image sensors of wide dynamic range due to large variations of the intensity in the scene, and 3D visualization due to the thickness of the preparation. The images require restoration because of the inherent tissue movement, out-of- focus-light contamination, and blur. To resolve the above problems, we developed an imaging system for quantitative imaging based on a 12 bits/pixel cooled CCD camera and a PC based digital imaging system. We applied the optical sectioning technique with image restoration using a modified nearest neighbor algorithm and iterative constrained deconvolution on each of the 2D optical sections. For the 3D visualization of the data, a volume rendering software was used. The data provided 3D images of the distribution of fluorescent indicators in intact microvessels. Optical cross sections were also compared with cross sections of the same microvessels examined in the electron microscope after their luminal surfaces were labeled with a tracer which was both electron dense and fluorescent. This procedure enabled precise identification of the endothelial cells in the microvessel wall as the principal site of accumulation of the fluorescent calcium indicator, fura-2, during microperfusion experiments.

  12. Demonstration of lipofuscin and Nissl bodies in crystal violet stained sections using a fluorescence technique or pyronin Y stain.

    PubMed

    Terr, L I

    1986-09-01

    This paper presents two simple, reliable methods for identification of lipofuscin and Nissl bodies in the same section. One method shows that lipofuscin stained with crystal violet retains its ability to fluoresce and can be observed under the fluorescence microscope after the stain has faded. Fading is accompanied by a gradual increase in the intensity of the fluorescence and is complete in about 5 min. Exciting illumination from this part of the spectrum also substantially fades staining of other autofluorescing tissue elements, such as lipids. Nonfluorescing structures, such as Nissl bodies, remain stained. By changing from transillumination with tungsten light to epifluorescent illumination and vice versa, both types of structures--Nissl bodies and lipofuscin--can be identified in the same section. The second technique uses pyronin Y for staining Nissl bodies in preparations previously stained with crystal violet. Nissl bodies are stained pink but lipofuscin remains violet. Lipofuscin in these sections also remains autofluorescent after the crystal violet stain has faded under violet or near-UV light.

  13. Multimodal in vivo imaging of oral cancer using fluorescence lifetime, photoacoustic and ultrasound techniques

    PubMed Central

    Fatakdawala, Hussain; Poti, Shannon; Zhou, Feifei; Sun, Yang; Bec, Julien; Liu, Jing; Yankelevich, Diego R.; Tinling, Steven P.; Gandour-Edwards, Regina F.; Farwell, D. Gregory; Marcu, Laura

    2013-01-01

    This work reports a multimodal system for label-free tissue diagnosis combining fluorescence lifetime imaging (FLIm), ultrasound backscatter microscopy (UBM), and photoacoustic imaging (PAI). This system provides complementary biochemical, structural and functional features allowing for enhanced in vivo detection of oral carcinoma. Results from a hamster oral carcinoma model (normal, precancer and carcinoma) are presented demonstrating the ability of FLIm to delineate biochemical composition at the tissue surface, UBM and related radiofrequency parameters to identify disruptions in the tissue microarchitecture and PAI to map optical absorption associated with specific tissue morphology and physiology. PMID:24049693

  14. Fluorescent derivatization combined with aqueous solvent-based dispersive liquid-liquid microextraction for determination of butyrobetaine, l-carnitine and acetyl-l-carnitine in human plasma.

    PubMed

    Chen, Yi-Ching; Tsai, Chia-Ju; Feng, Chia-Hsien

    2016-09-16

    A novel aqueous solvent-based dispersive liquid-liquid microextraction (AS-DLLME) method was combined with narrow-bore liquid chromatography and fluorescence detection for the determination of hydrophilic compounds. A remover (non-polar solvent) and extractant (aqueous solution) were introduced into the derivatization system (acetonitrile) to obtain a water-in-oil emulsion state that increased the mass transfer of analytes. As a proof of concept, three quaternary ammonium substances, including butyrobetaine, l-carnitine and acetyl-l-carnitine, were also used as analytes and determined in pharmaceuticals, personal care products, food and human plasma. The analytes were derivatized with 4-bromomethylbiphenyl for fluorescence detection and improved retention in the column. The linear response was 10-2000nM for l-carnitine and acetyl-l-carnitine with a good determination coefficient (r(2)>0.998) in the standard solution. The detection limit for l-carnitine and acetyl-l-carnitine was 4.5 fmol. The method was also successfully applied to a 1μL sample of human plasma. In the linearity calculations for determining butyrobetaine, l-carnitine and acetyl-l-carnitine in human plasma, the determination coefficients ranged from 0.996 to 0.999. Linear regression exhibited good reproducibility and a relative standard deviation better than 7.50% for the slope and 9.06% for the intercept. To characterize highly hydrophilic compounds in various samples, the proposed method provides good sensitivity for a small sample volume with a low consumption of toxic solvents.

  15. Determination of equilibrium and rate constants for complex formation by fluorescence correlation spectroscopy supplemented by dynamic light scattering and Taylor dispersion analysis.

    PubMed

    Zhang, Xuzhu; Poniewierski, Andrzej; Jelińska, Aldona; Zagożdżon, Anna; Wisniewska, Agnieszka; Hou, Sen; Hołyst, Robert

    2016-10-04

    The equilibrium and rate constants of molecular complex formation are of great interest both in the field of chemistry and biology. Here, we use fluorescence correlation spectroscopy (FCS), supplemented by dynamic light scattering (DLS) and Taylor dispersion analysis (TDA), to study the complex formation in model systems of dye-micelle interactions. In our case, dyes rhodamine 110 and ATTO-488 interact with three differently charged surfactant micelles: octaethylene glycol monododecyl ether C12E8 (neutral), cetyltrimethylammonium chloride CTAC (positive) and sodium dodecyl sulfate SDS (negative). To determine the rate constants for the dye-micelle complex formation we fit the experimental data obtained by FCS with a new form of the autocorrelation function, derived in the accompanying paper. Our results show that the association rate constants for the model systems are roughly two orders of magnitude smaller than those in the case of the diffusion-controlled limit. Because the complex stability is determined by the dissociation rate constant, a two-step reaction mechanism, including the diffusion-controlled and reaction-controlled rates, is used to explain the dye-micelle interaction. In the limit of fast reaction, we apply FCS to determine the equilibrium constant from the effective diffusion coefficient of the fluorescent components. Depending on the value of the equilibrium constant, we distinguish three types of interaction in the studied systems: weak, intermediate and strong. The values of the equilibrium constant obtained from the FCS and TDA experiments are very close to each other, which supports the theoretical model used to interpret the FCS data.

  16. Fog dispersion

    NASA Technical Reports Server (NTRS)

    Frost, W.; Christensen, L. S.; Collins, F. G.; Camp, D. W.

    1980-01-01

    A study of economically viable techniques for dispersing warm fog at commercial airports is presented. Five fog dispersion techniques are examined: evaporation suppression, downwash, mixing, seeding with hygroscopic material, thermal techniques, and charged particle techniques. Thermal techniques, although effective, were found to be too expensive for routine airport operations, and detrimental to the environment. Seeding or helicopter downwash are practical for small-scale or temporary fog clearing, but are probably not useful for airport operations on a routine basis. Considerable disagreement exists on the capability of charged particle techniques, which stems from the fact that different assumptions and parameter values are used in the analytical models. Recommendations resulting from the review of this technique are listed, and include: experimental measurements of the parameters in question; a study to ascertain possible safety hazards, such as increased electrical activity or fuel ignition during refueling operations which could render charged particle techniques impractical; and a study of a single charged particle generator.

  17. Laser Induced Dual Fluorescence Ratiometric Technique for Mixing Characterization in Microfluidic Systems

    NASA Astrophysics Data System (ADS)

    Bedding, David; Hidrovo, Carlso

    2016-11-01

    Increasing the rate of mixing within microfluidic systems is vitally important in understanding biological and chemical reaction kinetics and mechanisms. The small length scales characteristic of these systems which translate into highly viscous, Stokes flows result in mixing that is primarily dominated by diffusion. In order to counteract this, an approach that utilizes inertial droplet collisions to promote chaotic advection between two mixing species has been developed. A Laser-Induced Dual Fluorescence (LIDF) system in conjunction with a high-speed camera and appropriate optics are used to capture two intensity fields providing information about the mixing process as well as the excitation intensity field over the volume of interest. The rate of mixing for the coalescing droplets was quantified by taking the standard deviation of the first intensity field over time, while the second intensity field provides information about the intensity field. A ratiometric imaging approach allows removal of mixing fluorescence signal noise in the form of variation in excitation intensity, primarily from the lasing patterns and lensing effects within the interrogation volume. NSF CAREER Award Grant CBET - 1151091.

  18. Use of Modern Chemical Protein Synthesis and Advanced Fluorescent Assay Techniques to Experimentally Validate the Functional Annotation of Microbial Genomes

    SciTech Connect

    Kent, Stephen

    2012-07-20

    The objective of this research program was to prototype methods for the chemical synthesis of predicted protein molecules in annotated microbial genomes. High throughput chemical methods were to be used to make large numbers of predicted proteins and protein domains, based on microbial genome sequences. Microscale chemical synthesis methods for the parallel preparation of peptide-thioester building blocks were developed; these peptide segments are used for the parallel chemical synthesis of proteins and protein domains. Ultimately, it is envisaged that these synthetic molecules would be ‘printed’ in spatially addressable arrays. The unique ability of total synthesis to precision label protein molecules with dyes and with chemical or biochemical ‘tags’ can be used to facilitate novel assay technologies adapted from state-of-the art single molecule fluorescence detection techniques. In the future, in conjunction with modern laboratory automation this integrated set of techniques will enable high throughput experimental validation of the functional annotation of microbial genomes.

  19. The phenomenon of fluorescence in immunosensors.

    PubMed

    Kłos-Witkowska, Aleksandra

    2016-01-01

    The phenomenon of fluorescence in immunosensors is described in this paper. Both structure and characteristics of biosensors and immunosensors are presented. Types of immunosensors and the response of bioreceptor layers to the reaction with analytes as well as measurements of electrochemical, piezoelectric and optical parameters in immunosensors are also presented. In addition, detection techniques used in studies of optical immunosensors based on light-matter interactions (absorbance, reflectance, dispersion, emission) such as: UV/VIS spectroscopy, reflectometric interference spectroscopy (RIfs), surface plasmon resonance (SPR), optical waveguide light-mode spectroscopy (OWLS), fluorescence spectroscopy. The phenomenon of fluorescence in immunosensors and standard configurations of immunoreactions between an antigen and an antibody (direct, competitive, sandwich, displacement) is described. Fluorescence parameters taken into account in analyses and fluorescence detection techniques used in research of immunosensors are presented. Examples of immunosensor applications are given.

  20. Preparation and evaluation of glibenclamide-polyglycolized glycerides solid dispersions with silicon dioxide by spray drying technique.

    PubMed

    Chauhan, Bhaskar; Shimpi, Shyam; Paradkar, Anant

    2005-10-01

    Solid dispersions (SDs) of glibenclamide (GBM); a poorly water-soluble drug and polyglycolized glycerides (Gelucire with the aid of silicon dioxide (Aerosil 200); as an adsorbent, were prepared by spray drying technique. SDs and spray dried GBM in comparison with pure GBM and corresponding physical mixtures (PMs) were initially characterized and then subjected to ageing study up to 3 months. Initial characterization of SDs and spray dried GBM by DSC and XRPD showed that GBM was present in its amorphous form (AGBM). Improvement in the solubility and dissolution rate was observed for all samples. DRIFT spectroscopy revealed presence of hydrogen bonding in SDs. During ageing study, almost no decrease of in vitro drug dissolution was observed, over the period of 3 months as compare with freshly prepared SDs. Slight crystallinity in SDs was observed in the DSC and XRPD studies during ageing. Moreover in vivo study in Swiss Albino mice also justified the improvement in the therapeutic efficacy of amorphous GBM in SDs over pure GBM. Thus, present study demonstrated the high potential of spray drying technique for obtaining stable free flowing SDs of poorly water-soluble drugs using polyglycolized glycerides carriers with the aid of silicon dioxide as an adsorbent.

  1. Preparation and evaluation of raloxifene-loaded solid dispersion nanoparticle by spray-drying technique without an organic solvent.

    PubMed

    Tran, Tuan Hiep; Poudel, Bijay K; Marasini, Nirmal; Chi, Sang-Cheol; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2013-02-25

    The aim of this study was to improve the physicochemical properties and bioavailability of a poorly water-soluble drug, raloxifene by solid dispersion (SD) nanoparticles using the spray-drying technique. These spray-dried SD nanoparticles were prepared with raloxifene (RXF), polyvinylpyrrolidone (PVP) and Tween 20 in water. Reconstitution of optimized RXF-loaded SD nanoparticles in pH 1.2 medium showed a mean particle size of approximately 180 nm. X-ray diffraction and differential scanning calorimetry indicated that RXF existed in an amorphous form within spray-dried nanoparticles. The optimized formulation showed an enhanced dissolution rate of RXF at pH 1.2, 4.0, 6.8 and distilled water as compared to pure RXF powder. The improved dissolution of raloxifene from spray-dried SD nanoparticles appeared to be well correlated with enhanced oral bioavailability of raloxifene in rats. Furthermore, the pharmacokinetic parameters of the spray-dried SD nanoparticles showed increased AUC(0-∞) and C(max) of RXF by approximately 3.3-fold and 2.3-fold, respectively. These results suggest that the preparation of RXF-SD nanoparticles using the spray drying technique without organic solvents might be a promising approach for improving the oral bioavailability of RXF.

  2. X-ray Fluorescence Spectroscopy: the Potential of Astrophysics-developed Techniques

    NASA Astrophysics Data System (ADS)

    Elvis, M.; Allen, B.; Hong, J.; Grindlay, J.; Kraft, R.; Binzel, R. P.; Masterton, R.

    2012-12-01

    X-ray fluorescence from the surface of airless bodies has been studied since the Apollo X-ray fluorescence experiment mapped parts of the lunar surface in 1971-1972. That experiment used a collimated proportional counter with a resolving power of ~1 and a beam size of ~1degree. Filters separated only Mg, Al and SI lines. We review progress in X-ray detectors and imaging for astrophysics and show how these advances enable much more powerful use of X-ray fluorescence for the study of airless bodies. Astrophysics X-ray instrumentation has developed enormously since 1972. Low noise, high quantum efficiency, X-ray CCDs have flown on ASCA, XMM-Newton, the Chandra X-ray Observatory, Swift and Suzaku, and are the workhorses of X-ray astronomy. They normally span 0.5 to ~8 keV with an energy resolution of ~100 eV. New developments in silicon based detectors, especially individual pixel addressable devices, such as CMOS detectors, can withstand many orders of magnitude more radiation than conventional CCDs before degradation. The capability of high read rates provides dynamic range and temporal resolution. Additionally, the rapid read rates minimize shot noise from thermal dark current and optical light. CMOS detectors can therefore run at warmer temperatures and with ultra-thin optical blocking filters. Thin OBFs mean near unity quantum efficiency below 1 keV, thus maximizing response at the C and O lines.such as CMOS detectors, promise advances. X-ray imaging has advanced similarly far. Two types of imager are now available: specular reflection and coded apertures. X-ray mirrors have been flown on the Einstein Observatory, XMM-Newton, Chandra and others. However, as X-ray reflection only occurs at small (~1degree) incidence angles, which then requires long focal lengths (meters), mirrors are not usually practical for planetary missions. Moreover the field of view of X-ray mirrors is comparable to the incident angle, so can only image relatively small regions. More useful

  3. A study of density measurements in hypersonic helium tunnels using an electron beam fluorescence technique

    NASA Technical Reports Server (NTRS)

    Honaker, W. C.; Hunter, W. W., Jr.; Woods, W. C.

    1979-01-01

    A series of experiments have been conducted at Langley Research Center to determine the feasibility of using electron-beam fluorescence to measure the free-stream static density of gaseous helium flow over a wide range of conditions. These experiments were conducted in the Langley hypersonic helium tunnel facility and its 3-inch prototype. Measurements were made for a range of stagnation pressures and temperatures and produced free-stream number densities of 1.53 x 10 to the 23rd to 1.25 x 10 to the 24th molecules/cu m and static temperatures from 2 K to 80 K. The results showed the collision quenching cross section to be 4.4 x 10 to the -15th sq cm at 1 K and to have a weak temperature dependence of T to the 1/6. With knowledge of these two values, the free-stream number density can be measured quite accurately.

  4. Use of x-ray fluorescence and diffraction techniques in studying ancient ceramics of Sri Lanka

    NASA Astrophysics Data System (ADS)

    Karunaratne, B. S. B.

    2012-07-01

    Ceramics were produced for centuries in Sri Lanka for various purposes. Ancient ceramic articles such as pottery, bricks, tiles, sewer pipes, etc, were made from naturally occurring raw materials. Use of X-ray fluorescence (XRF), X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) in characterizing of two ancient ceramic samples from two different archaeological sites in Sri Lanka is presented. The information obtained in this manner is used to figure out the ancient ceramic technology, particularly to learn about the raw materials used, the source of raw materials, processing parameters such as firing temperature or binders used in ceramic production. This information then can be used to explore the archaeometric background such as the nature and extent of cultural and technological interaction between different periods of history in Sri Lanka.

  5. Studies of cytochrome c-551 unfolding using fluorescence correlation spectroscopy and other biophysical techniques.

    PubMed

    Sil, Pallabi; Paul, Simanta Sarani; Silvio, Eva Di; Travaglini-Allocatelli, Carlo; Chattopadhyay, Krishnananda

    2016-09-21

    In this paper, we have studied the equilibrium unfolding transitions of cytochrome c from Pseudomonas aeruginosa (cytc551), a small bacterial protein. Similar to eukaryotic cytochrome c, cytc551 folds sequentially, although significant differences exist in the order of folding units (foldons). There are two regions of cytc551 (N-terminal helix with residue number 3 to 10 and the loop 2 region containing residues 34 to 45), in which no foldon unit could be assigned. In addition, the helix containing the Cys-X-X-Cys-His motif, adjacent to the N-terminal helix (residue number 3 to 10), shows unexplained ultra-fast collapse. To obtain further insights, we have studied cytc551 site-directed mutants using fluorescence correlation spectroscopy (FCS) and molecular dynamics simulation. We have found out that cytc551 unfolds through the formation of a fluorescently dark intermediate state and the amplitude of the dark component depends on the position of labeling. We have utilized this position dependence to propose a shape change model during the unfolding of cytc551. The present results show that the N-terminal helix remains in a collapsed position even in the completely unfolded state and this helix may act as a rigid support to guide the folding of its adjacent helix. This rigid support may be responsible for the ultra-fast collapse of the adjacent helix region, which occurs during the initial events of folding. The present results also show that the C-terminal end of loop 2 traverses a large distance during unfolding compared to the N-terminal end, which justifies the observed flexibility of the loop 2 region.

  6. Performance of a gaseous detector based energy dispersive X-ray fluorescence imaging system: Analysis of human teeth treated with dental amalgam

    NASA Astrophysics Data System (ADS)

    Silva, A. L. M.; Figueroa, R.; Jaramillo, A.; Carvalho, M. L.; Veloso, J. F. C. A.

    2013-08-01

    Energy dispersive X-ray fluorescence (EDXRF) imaging systems are of great interest in many applications of different areas, once they allow us to get images of the spatial elemental distribution in the samples. The detector system used in this study is based on a micro patterned gas detector, named Micro-Hole and Strip Plate. The full field of view system, with an active area of 28 × 28 mm2 presents some important features for EDXRF imaging applications, such as a position resolution below 125 μm, an intrinsic energy resolution of about 14% full width at half maximum for 5.9 keV X-rays, and a counting rate capability of 0.5 MHz. In this work, analysis of human teeth treated by dental amalgam was performed by using the EDXRF imaging system mentioned above. The goal of the analysis is to evaluate the system capabilities in the biomedical field by measuring the drift of the major constituents of a dental amalgam, Zn and Hg, throughout the tooth structures. The elemental distribution pattern of these elements obtained during the analysis suggests diffusion of these elements from the amalgam to teeth tissues.

  7. Pre-Columbian alloys from the royal tombs of Sipán; energy dispersive X-ray fluorescence analysis with a portable equipment.

    PubMed

    Cesareo, R; Calza, C; Dos Anjos, M; Lopes, R T; Bustamante, A; Fabian S, J; Alva, W; Chero Z, L

    2010-01-01

    On the north coast of present-day Peru flourished approximately between 50 and 700 AD, the Moche civilization. It was an advanced culture and the Moche were sophisticated metalsmiths, so that they are considered as the finest producers of jewels and artefacts of the region. The Moche metalworking ability was impressively demonstrated by the objects discovered by Walter Alva and coworkers in 1987, in the excavations of the "Tumbas Reales de Sipán". About 50 metal objects from these excavations, now at the namesake Museum, in Lambayeque, north of Peru, were analyzed with a portable equipment using energy-dispersive X-ray fluorescence. This portable equipment is mainly composed of a small size X-ray tube and a thermoelectrically cooled X-ray detector. Standard samples of gold and silver alloys were employed for quantitative analysis. It was determined that the analyzed artefacts from the "Tumbas Reales de Sipán" are mainly composed of gold, silver and copper alloys, of gilded copper and of tumbaga, the last being a poor gold alloy enriched at the surface by depletion gilding, i.e. removing copper from the surface.

  8. Ionic liquids for improving the extraction of NSAIDs in water samples using dispersive liquid-liquid microextraction by high performance liquid chromatography-diode array-fluorescence detection.

    PubMed

    Toledo-Neira, Carla; Álvarez-Lueje, Alejandro

    2015-03-01

    A rapid, sensitive and efficient analytical method based on the use of ionic liquids for determination of non-steroidal anti-inflammatory drugs (NSAIDs) in water samples was developed. High-performance liquid chromatography equipped with a diode array and fluorescence detector was used for quantification of ketoprofen, ibuprofen and diclofenac in tap and river water samples. This new method relies on the use of two ionic liquids with multiple functionalities: one functions as an extraction solvent (1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), and the other changes the polarity in the aqueous medium (1-butyl-3-methylimidazolium tetrafluoroborate, ([BMIM][BF4]). Factors such as the type and volume of the ILs and dispersive solvent, sample volume, and centrifugation time were investigated and optimized. The optimized method exhibited good precision, with relative standard deviation values between 2% and 3%, for the three NSAIDs. Limits of detection achieved for all of the analytes were between 17 and 95 ng mL(-1), and the recoveries ranged from 89% to 103%. Furthermore, the enrichment factors ranged from 49 to 57. The proposed method was successfully applied to the analysis of NSAIDs in tap and river water samples.

  9. Test method for the presence or absence of Pb in electrical components using energy-dispersive micro X-ray fluorescence.

    PubMed

    Araki, Wakako; Mizoroki, Kaoru; Oki, Mitsuhiro; Takenaka, Miyuki

    2005-07-01

    The micro-EDXRF (energy dispersive X-ray fluorescence) method was applied to the screening of Pb in micrometer-area samples, such as a Cu contact in electrical components that had been coated by Pb-free Sn-Ag-Cu solder. The reliability of the screening method was evaluated by a comparison with a scanning electron microscope (SEM) observation and a precious chemical analysis method of inductively coupled plasma mass spectrometry (ICP-MS). Some factors that affect the testing reliability, such as the thickness of the solder, the segregation of Pb and Ag, etc. were found by SEM observations. By adjusting some calculation parameters, screening of the micrometer area (0.1 mm) was performed using the fundamental parameter (FP) method for a thin film in conjunction with micro-EDXRF. The measurement error ranged by 25% for the thin film-FP method. The resulted detection limit was 0.04 wt% for Pb, depending on the solder thickness. This method can be successively applied for quality control to check the purity of a Pb-free Sn-Ag-Cu solder coating in electrical components.

  10. [Chemical composition analysis of bluish-white porcelain unearthed from Fanchang kiln, Anhui province by wave disperse X-ray fluorescence].

    PubMed

    Yang, Yu-zhang; Zhang, Ju-zhong; Zan, Yi

    2010-08-01

    Fanchang kiln was the earliest Chinese bluish-white porcelain kiln which first fired this special porcelain class as early as in Five Dynasties (AD 907-960). However, this important kiln declined rapidly in the middle North Song dynasty (AD 1023-1085). As to the decline reason, it is still not clearly identified till now. In order to find the truth, wavelength-dispersive X-ray fluorescence (WDXRF) was used to determine the elemental abundance patterns of its porcelain bodies in Five Dynasties, the early North Song dynasty and the middle North Song dynasty. The analytical results indicate that the chemical compositions of major, minor and trace elements in porcelain bodies changed greatly in the middle North Song dynasty. Combined with the results of INAA and glaze study, this change in elemental composition should be caused by the change in porcelain raw materials or body-making crafts. Meanwhile, it was just this change that led to the quality decline of raw material and rapid collapse of Fan-chang kiln in the middle North Song dynasty shortly after its establishment.

  11. Speciation of inorganic arsenic in drinking water by wavelength-dispersive X-ray fluorescence spectrometry after in situ preconcentration with miniature solid-phase extraction disks.

    PubMed

    Hagiwara, Kenta; Inui, Tetsuo; Koike, Yuya; Aizawa, Mamoru; Nakamura, Toshihiro

    2015-03-01

    A rapid and simple method using wavelength-dispersive X-ray fluorescence (WDXRF) spectrometry after in situ solid-phase extraction (SPE) was developed for the speciation and evaluation of the concentration of inorganic arsenic (As) in drinking water. The method involves the simultaneous collection of As(III) and As(V) using 13 mm ϕ SPE miniature disks. The removal of Pb(2+) from the sample water was first conducted to avoid the overlapping PbLα and AsKα spectra on the XRF spectrum. To this end, a 50 mL aqueous sample (pH 5-9) was passed through an iminodiacetate chelating disk. The filtrate was adjusted to pH 2-3 with HCl, and then ammonium pyrrolidine dithiocarbamate solution was added. The solution was passed through a hydrophilic polytetrafluoroethylene filter placed on a Zr and Ca loaded cation-exchange disk at a flow rate of 12.5 mL min(-1) to separate As(III)-pyrrolidine dithiocarbamate complex and As(V). Each SPE disk was affixed to an acrylic plate using adhesive cellophane tape, and then examined by WDXRF spectrometry. The detection limits of As(III) and As(V) were 0.8 and 0.6 μg L(-1), respectively. The proposed method was successfully applied to screening for As speciation and concentration evaluation in spring water and well water.

  12. Role of trace elements (Zn, Sr, Fe) in bone development: energy dispersive X-ray fluorescence study of rat bone and tooth tissue.

    PubMed

    Maciejewska, Karina; Drzazga, Zofia; Kaszuba, Michał

    2014-01-01

    Osteoporosis is one of the most common debilitating disease around the world and it is more and more established among young people. There are well known recommendations for nutrition of newborns and children concerning adequate calcium and vitamin D intake in order to maintain proper bone density. Nevertheless, important role in structure and function of a healthy bone tissue is played by an integration between all constituents including elements other than Ca, like trace elements, which control vital processes in bone tissue. It is important from scientific point of view as well as prevention of bone diseases, to monitor the mineralization process considering changes of the concentration of minerals during first stage of bone formation. This work presents studies of trace element (zinc, strontium, and iron) concentration in bones and teeth of Wistar rats at the age of 7, 14, and 28 days. Energy dispersive X-ray fluorescence (EDXRF) was used to examine mandibles, skulls, femurs, tibiae, and incisors. The quantitative analysis was performed using fundamental parameters method (FP). Zn and Sr concentrations were highest for the youngest individuals and decreased with age of rats, while Fe content was stable in bone matrix for most studied bones. Our results reveal the necessity of monitoring concentration of not only major, but also minor elements, because the trace elements play special role in the first period of bone development.

  13. Determination of water-soluble hexavalent chromium in clinker samples by wavelength-dispersive X-ray fluorescence spectrometry after concentration in activated layers.

    PubMed

    Marguí, Eva; Fontàs, Claudia; Toribio, Marta; Guillem, Manel; Hidalgo, Manuela; Queralt, Ignacio

    2010-05-01

    The determination of hexavalent chromium (Cr(VI)) in cement-related material extracts is frequently monitored in cement industries to comply with the European Directive (2003/53/EC) that limits the use of cements containing more than 2 mg kg(-1) of water-soluble Cr(VI). In the present work, a rapid and simple method for the determination of water-soluble Cr(VI) in clinker samples has been developed. The analytical methodology is based on the combined use of a low cost Cr(VI) isolation procedure using activated layers followed by their analysis using wavelength-dispersive X-ray fluorescence (WDXRF) spectrometry. WDXRF instrumentation is a common tool used for determining the chemical composition of all materials involved in cement production and also for the quality control of the products produced in cement and concrete factories. Therefore, the presented methodology does not imply the use of additional instrumentation in cement-industries laboratories and can be used as a comparative method to the spectrophotometric reference (EN 196-10:2006). The analytical parameters evaluated (selectivity, limit of detection, linearity, and precision) prove to be suitable for the intended purpose, and the methodology has successfully been applied to determine water-soluble Cr(VI) in several clinker samples.

  14. An Energy-Dispersive X-Ray Fluorescence Spectrometry and Monte Carlo simulation study of Iron-Age Nuragic small bronzes ("Navicelle") from Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    Schiavon, Nick; de Palmas, Anna; Bulla, Claudio; Piga, Giampaolo; Brunetti, Antonio

    2016-09-01

    A spectrometric protocol combining Energy Dispersive X-Ray Fluorescence Spectrometry with Monte Carlo simulations of experimental spectra using the XRMC code package has been applied for the first time to characterize the elemental composition of a series of famous Iron Age small scale archaeological bronze replicas of ships (known as the ;Navicelle;) from the Nuragic civilization in Sardinia, Italy. The proposed protocol is a useful, nondestructive and fast analytical tool for Cultural Heritage sample. In Monte Carlo simulations, each sample was modeled as a multilayered object composed by two or three layers depending on the sample: when all present, the three layers are the original bronze substrate, the surface corrosion patina and an outermost protective layer (Paraloid) applied during past restorations. Monte Carlo simulations were able to account for the presence of the patina/corrosion layer as well as the presence of the Paraloid protective layer. It also accounted for the roughness effect commonly found at the surface of corroded metal archaeological artifacts. In this respect, the Monte Carlo simulation approach adopted here was, to the best of our knowledge, unique and enabled to determine the bronze alloy composition together with the thickness of the surface layers without the need for previously removing the surface patinas, a process potentially threatening preservation of precious archaeological/artistic artifacts for future generations.

  15. Rapid quantitative determination of major and trace elements in silicate rocks and soils employing fused glass discs using wavelength dispersive X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Krishna, A. Keshav; Khanna, Tarun C.; Mohan, K. Rama

    2016-08-01

    This paper introduces a calibration procedure and provides the data achieved for accuracy, precision, reproducibility and the detection limits for major (Si, Al, Fe, Mn, Mg, Ca, Na, K, Ti, P) and trace (Ba, Cr, Cu, Hf, La, Nb, Ni, Pb, Rb, Sr, Ta, Th, U, Y, Zn, Zr) elements in the routine analysis of geological and environmental samples. Forty-two rock and soil reference materials were used to calibrate and evaluate the analytical method using a sequential wavelength dispersive X-ray fluorescence spectrometer. Samples were prepared as fused glass discs and analysis performed with a total measuring time of thirty-one minutes. Another set of twelve independent reference materials were analyzed for the evaluation of accuracy. The detection limits and accuracy obtained for the trace elements (1-2 mg/kg) are adequate both for geochemical exploration and environmental studies. The fitness for purpose of the results was also evaluated by the quality criteria test proposed by the International Global Geochemical Mapping Program (IGCP) from which it can be deduced that the method is adequate considering geochemical mapping application and accuracy obtained is within the expected interval of certified values in most cases.

  16. Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/x-ray computed tomography imaging of a mouse model of early stage lung cancer

    NASA Astrophysics Data System (ADS)

    Ale, Angelique; Ermolayev, Vladimir; Deliolanis, Nikolaos C.; Ntziachristos, Vasilis

    2013-05-01

    The ability to visualize early stage lung cancer is important in the study of biomarkers and targeting agents that could lead to earlier diagnosis. The recent development of hybrid free-space 360-deg fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) imaging yields a superior optical imaging modality for three-dimensional small animal fluorescence imaging over stand-alone optical systems. Imaging accuracy was improved by using XCT information in the fluorescence reconstruction method. Despite this progress, the detection sensitivity of targeted fluorescence agents remains limited by nonspecific background accumulation of the fluorochrome employed, which complicates early detection of murine cancers. Therefore we examine whether x-ray CT information and bulk fluorescence detection can be combined to increase detection sensitivity. Correspondingly, we research the performance of a data-driven fluorescence background estimator employed for subtraction of background fluorescence from acquisition data. Using mice containing known fluorochromes ex vivo, we demonstrate the reduction of background signals from reconstructed images and sensitivity improvements. Finally, by applying the method to in vivo data from K-ras transgenic mice developing lung cancer, we find small tumors at an early stage compared with reconstructions performed using raw data. We conclude with the benefits of employing fluorescence subtraction in hybrid FMT-XCT for early detection studies.

  17. Measurement of the internal pH of mast cell granules using microvolumetric fluorescence and isotopic techniques

    SciTech Connect

    De Young, M.B.; Nemeth, E.F.; Scarpa, A.

    1987-04-01

    The intragranular pH of isolated mast cell granules was measured. Because of the minute amounts of isolated granules available, two techniques were developed by modifying aminoacridine fluorescence and (/sup 14/C)methylamine accumulation techniques to permit measurements with microliter sample volumes. Granule purity was demonstrated by electron microscopy, ruthenium red exclusion, and biochemical (histamine, mast cell granule protease) analysis. The internal pH was determined to be 5.55 +/- 0.06, indicating that the pH environment within mast cell granules is not significantly different from that of previously studied granule types (i.e., chromaffin, platelet, pancreatic islet, and pituitary granules). Collapse of the pH gradient by NH+4 was demonstrated with both techniques. No evidence of Cl-/OH- or specific cation/H+ transport was found, and major chloride permeability could not be unequivocably demonstrated. Ca/sup 2 +/ and Cl- at concentrations normally present extracellularly destabilized granules in the presence of NH+4, but this phenomenon does not necessarily indicate a role for these ions in the exocytotic release of granule contents from intact cells. The pH measurement techniques developed for investigating the properties of granules in mast cells may be useful for studying other granules that can be obtained only in limited quantities.

  18. [Parallel factor analysis as an analysis technique for the ratio of three-dimensional fluorescence peak in Taihu Lake].

    PubMed

    Zhu, Peng; Liao, Hai-qing; Hua, Zu-lin; Xie, Fa-zhi; Tang, Zhi; Zhang, Liang

    2012-01-01

    The present paper proposes a new method to find the ratio of three-dimensional fluorescence peak. At first, the excitation-emission fluorescence matrix of water samples was treated with parallel factor analysis (PARAFAC) and then fluorescence peaks intensity and ratio of fluorescence peak were obtained from the parallel factor analysis model. From the parallel factor analysis model, the same fluorescence peaks of different water samples lie at the same excitation-emission wavelength and the overlap of different fluorescence peaks of the same water sample is reduced. Analysing regional characteristic in Taihu Lake, the ratio of factor score and the ratio of fluorescence peak showed strong correlation.

  19. Structuration in the Interface of Direct and Reversed Micelles of Sucrose Esters, Studied by Fluorescent Techniques

    PubMed Central

    Sandoval, Catalina; Ortega, Anakenna; Sanchez, Susana A.; Morales, Javier; Gunther, German

    2015-01-01

    Background Reactors found in nature can be described as micro-heterogeneous systems, where media involved in each micro-environment can behave in a markedly different way compared with the properties of the bulk solution. The presence of water molecules in micro-organized assemblies is of paramount importance for many chemical processes, ranging from biology to environmental science. Self-organized molecular assembled systems are frequently used to study dynamics of water molecules because are the simplest models mimicking biological membranes. The hydrogen bonds between sucrose and water molecules are described to be stronger (or more extensive) than the ones between water molecules themselves. In this work, we studied the capability of sucrose moiety, attached to alkyl chains of different length, as a surface blocking agent at the water-interface and we compared its properties with those of polyethylenglycol, a well-known agent used for this purposes. Published studies in this topic mainly refer to the micellization process and the stability of mixed surfactant systems using glycosides. We are interested in the effect induced by the presence of sucrose monoesters at the interface (direct and reverse micelles) and at the palisade (mixtures with Triton X-100). We believe that the different functional group (ester), the position of alkyl chain (6-O) and the huge capability of sucrose to interact with water will dramatically change the water structuration at the interface and at the palisade, generating new possibilities for technological applications of these systems. Results Our time resolved and steady state fluorescence experiments in pure SEs micelles show that sucrose moieties are able to interact with a high number of water molecules promoting water structuration and increased viscosity. These results also indicate that the barrier formed by sucrose moieties on the surface of pure micelles is more effective than the polyoxyethylene palisade of Triton X-100

  20. A borax fusion technique for quantitative X-ray fluorescence analysis.

    PubMed

    Van Willigen, J H; Kruidhof, H; Dahmen, E A

    1971-04-01

    A borax fusion technique to cast glass discs for quantitative X-ray analysis is described in detail. The method is based on the "nonwetting" properties of a Pt/Au alloy towards molten borax, on the favourable composition of the flux and finally on the favourable form of the casting mould. The critical points of the technique are stressed, resulting in a method which could be carried out successfully by inexperienced workers. In general the method compares favourably in speed and accuracy with wet-chemical methods.

  1. Passively Q-switched mode-locking Erbium-doped fiber laser with net-normal dispersion using nonlinear polarization rotation technique

    NASA Astrophysics Data System (ADS)

    Wang, L. Y.; Xu, W. C.; Luo, Z. C.; Cao, W. J.; Luo, A. P.; Dong, J. L.; Wang, H. Y.

    2011-10-01

    We experimentally demonstrate a passively Q-switched mode-locking (QML) operation in an Erbium-doped fiber ring laser with net normal dispersion by using nonlinear polarization rotation technique. A 2 m long section of dispersion compensating fiber (DCF) with extra large positive dispersion was inserted into the cavity to ensure the fiber laser working in the region of net positive dispersion. By carefully adjusting the polarization controller, both uniform dissipative mode-locking pulses with fundamental repetition rate and QML pulse trains with tunable repetition rate from 71.58 to 98.83 kHz are achieved. It is found that the QML operation is caused by the interaction between the polarization state of the pulse and the intracavity polarizer.

  2. In vivo monitoring of toxic metals: assessment of neutron activation and x-ray fluorescence techniques

    SciTech Connect

    Ellis, K.J.

    1986-01-01

    To date, cadmium, lead, aluminum, and mercury have been measured in vivo in humans. The possibilities of monitoring other toxic metals have also been demonstrated, but no human studies have been performed. Neutron activation analysis appears to be most suitable for Cd and Al measurements, while x-ray fluorescence is ideally suited for measurement of lead in superficial bone. Filtered neutron beams and polarized x-ray sources are being developed which will improve in vivo detection limits. Even so, several of the current facilities are already suitable for use in epidemiological studies of selected populations with suspected long-term low-level ''environmental'' exposures. Evaluation and diagnosis of patients presenting with general clinical symptoms attributable to possible toxic metal exposure may be assisted by in vivo examination. Continued in vivo monitoring of industrial workers, especially follow-up measurements, will provide the first direct assessment of changes in body burden and a direct measure of the biological life-times of these metals in humans. 50 refs., 4 figs., 2 tabs.

  3. Process and formulation variables in the preparation of wax microparticles by a melt dispersion technique. I. Oil-in-water technique for water-insoluble drugs.

    PubMed

    Bodmeier, R; Wang, J; Bhagwatwar, H

    1992-01-01

    Ibuprofen-wax (carnauba, paraffin, beeswax, and the semisynthetic glyceryl esters--Gelucire 64/02 and Precirol ATO5) microparticles were prepared without organic solvents as an alternative to polymeric microparticles. In the melt dispersion technique, the drug-wax melt was emulsified into a heated aqueous phase followed by cooling to form the microparticles. The microparticles were characterized with respect to their drug loading, and morphological and release properties. They were spherical and non-agglomerated and drug loading close to 60 per cent were achieved. The more hydrophilic waxes (Gelucire 64/02 or Precirol ATO5) could be prepared without the use of surfactants. With the other waxes, increasing amounts of sodium lauryl sulphate in the external aqueous phase decreased the drug loading because of drug solubilization when compared to the polymeric stabilizer, poly(vinyl alcohol). The type of wax, the rate of cooling, and the temperature of the aqueous phase had no significant effect on the drug loading because of the low solubility of the drug in the external aqueous phase. The drug release was controlled by the hydrophobicity of the wax. Besides ibuprofen, other water-soluble drugs (ketoprofen, indomethacin, hydrocortisone) were also encapsulated by this method. The wax microparticles could be formulated into an aqueous sustained-release oral suspension dosage form.

  4. A comparison of hyperspectral reflectance and fluorescence imaging techniques for detection of contaminants on leafy greens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ensuring the supply of safe, contaminant free fresh fruit and vegetables is of importance to consumers, suppliers and governments worldwide. In this study, three hyperspectral imaging (HSI) configurations coupled with two multivariate image analysis techniques are compared for detection of fecal con...

  5. Analysis of caspase3 activation in ChanSu-induced apoptosis of ASTC-a-1 cells by fluorescence techniques

    NASA Astrophysics Data System (ADS)

    Sun, Lei; Chen, Tongsheng; Wang, Longxiang; Wang, Huiying

    2008-02-01

    ChanSu(CS), a traditional Chinese medicine, is composed of many chemical compoments. It is isolated from the dried white secretion of the auricular and skin glands of toads, and it has been widely used for treating the heart diseases and other systemic illnesses. However, it is difficult to judge antitumor effect of agents derived from ChanSu and the underlying mechanism of ChanSu inducing cell apoptosis is still unclear. This report was performed to explore the inhibitory effect and mechanism of ChanSu on human lung adenocarcinoma cells (ASTC-a-1). Fluorescence emission spectra and fluorescence resonance energy transfer (FRET) were used to study the caspase-3 activation during the ChanSu-induced human lung adenocarcinoma (ASTC-a-1) cell apoptosis. CCK-8 was used to assay the inhibition of ChanSu on the cell viability. The cells expressing stably with SCAT3 was used to examine if caspase-3 was activated by ChanSu using acceptor photobleaching technique. Our data showed that treatment of ASTC-a-1 cell with ChanSu resulted in the inhibition of viability and induction of apoptosis in a dose-dependent manner and the SCAT3 was almost cleaved 24 h after ChanSu treatment, implying that ChanSu induced cell apoptosis via a caspase-3-dependent death pathway. Our findings extend the knowledge about the cellular signaling mechanisms mediating ChanSu-induced apoptosis.

  6. All optical up-converted signal generation with high dispersion tolerance using frequency quadrupling technique for radio over fiber system

    NASA Astrophysics Data System (ADS)

    Gu, Yiying; Zhao, Jiayi; Hu, Jingjing; Kang, Zijian; Zhu, Wenwu; Fan, Feng; Han, Xiuyou; Zhao, Mingshan

    2016-05-01

    A novel all optical up-converted signal generation scheme with optical single-sideband (OSSB) technique for radio over fiber (RoF) application is presented and experimentally demonstrated using low-bandwidth devices. The OSSB signal is generated by one low-bandwidth intensity LiNbO3 Mach-Zehnder modulator (LN-MZM) under frequency quadrupling modulation scheme and one low-bandwidth LN-MZM under double sideband carrier suppressed modulation (DSB-CS) scheme. The proposed all OSSB generation scheme is capable of high tolerance of fiber chromatic dispersion induced power fading (DIPF) effect. Benefiting from this novel OSSB generation scheme, a 26 GHz radio frequency (RF) signal up-conversion is realized successfully when one sideband of the optical LO signal is reused as the optical carrier for intermediate frequency (IF) signal modulation. The received vector signal transmission over long distance single-mode fiber (SMF) shows negligible DIPF effect with the error vector magnitude (EVM) of 15.7% rms. In addition, a spurious free dynamic range (SFDR) of the OSSB up-converting system is measured up to 81 dB Hz2/3. The experiment results indicate that the proposed system may find potential applications in future wireless communication networks, especially in microcellular personal communication system (MPCS).

  7. Preparation of lovastatin matrix sustained-release pellets by extrusion-spheronization combined with microcrystal dispersion technique.

    PubMed

    He, Haibing; Shi, Bo; Cai, Cuifang; Tang, Xing

    2011-11-01

    The poorly water-soluble drug lovastatin (LVA) is an inhibitor of 3-hydroxy-3-methylglutarylcoenzyme A reductase and has a slow dissolution rate. In this study, a microcrystal dispersion (MCD) technique was used in the preparation of LVA to increase its dissolution rate and then combining with an extrusion-spheronization method, microcrystalline cellulose (MCC) matrix sustained-release pellets containing LVA-MCD were developed and characterized in vitro. Photomicrographs indicated that LVA-MCD existed as fine crystals, of which the mean particle size was reduced from 65.75 μm to 3.97 μm and the dried LVA-MCD powders released completely within 2 hours. SEM results during the release process showed that pellets possessed a matrix structure and after the dissolution test, this matrix structure became loose and porous. The release of LVA was fast and complete, and accumulated release by the optimal formulation was: 0.5 h (20.23 ± 3.40%), 2 h (56.87 ± 2.85%), 4 h (78.71 ± 3.42%), and 8 h (96.81 ± 3.30%). The 3 months accelerating test at 40°C and 75% RH demonstrated that drug release of pellets was not changed and drug degradation was less than 1%. Thus, a novel MCD process with MCC matrix was feasible and effective to get complete release without a lag time for the poorly water soluble drug, LVA, with high stability.

  8. Formulation and pharmacokinetic evaluation of once-daily sustained-released system of nifedipine with solid dispersion and coating techniques.

    PubMed

    Wei, Yu-Meng; Xue, Zheng-Kai; Wang, Peng; Zhao, Ling

    2013-07-01

    A novel sustained-release system was developed for poorly water-soluble drugs by applying solid dispersion (SD) technique to improve the solubility. The SD systems composed of polyvinyl pyrrolidone and stearic acid could not control the release of nifedipine. When the above SD granules were coated with ethylcellolulose (EC10, 45 and 100cp), the dissolution rate extended from 16 to 20 h. When the concentration of EC100cp was increased to 4-6 %, the sustained-release formulation F7 and F8 prepared with 4 % EC100cp and 6 % EC100cp, respectively, could control the drug release in a better manner, namely, they could control drug release in the initial hours with a high cumulative amount of drug at 24 h. The mechanism of drug release from F7 and F8 was diffusion coupled with erosion. When immediate-release capsules was orally administered to rabbits, its absorption was very rapid with a short elimination half-life, while a prolonged maintenance of the plasma drug level up to 24 h was obtained for F7 and F8. Furthermore, the oral bioavailability of F7 and F8 was significantly improved. The results suggested that this novel sustained-release system would be a promising system to improve the solubility and sustain the absorption of poorly water-soluble drugs.

  9. Wear Characterizations of Polyoxymethylene (POM) Reinforced with Carbon Nanotubes (POM/CNTs) Using the Paraffin Oil Dispersion Technique

    NASA Astrophysics Data System (ADS)

    Yousef, Samy; Visco, A. M.; Galtieri, G.; Njuguna, James

    2016-01-01

    The wear of polyoxymethylene (POM) is considered a key design parameter of polymer gears and some mechanical applications, and it determines the service time span. This work investigates the influence of carbon nanotubes (CNTs) on the specific wear rate of POM/CNT nanocomposites by using a pin-on-disk test rig (sliding only). The CNTs were synthesized with a fully automatic machine via the arc-discharge multi-electrode technique and subsequently dispersed in a POM matrix to manufacture test specimens. The CNT weight percentages were varied within the range 0-0.03 wt.% in three different operating media (air, distilled water, and mineral oil). The wear mechanism was examined by microscopy. The mechanical and thermal properties of POM/CNT were studied by using calorimetric analysis and by mechanical tensile testing. In addition, the thermal and mechanical properties were improved to an optimum CNT ratio of 0.02 wt.% due to the improvement in crystallinity of POM and a decrease in the fusion defects. The crystallinity degree increased by 7%, and the melting temperature also increased. The results further indicate that the specific wear rate (Ws) for POM/CNT containing 0.03 wt.% CNT in air and water media was improved by 73% and 66%, respectively, compared with virgin POM. In addition, the tensile strength of the mechanical properties and Young's modulus increased by 31% and 29%, respectively.

  10. Cutaneous tumors in vivo investigations using fluorescence and diffuse reflectance techniques

    NASA Astrophysics Data System (ADS)

    Borisova, E.; Troyanova, P.; Nikolova, E.; Avramov, L.

    2008-06-01

    In the recent years, there has been growing interest in the common use of laser-induced autofluorescence (LIAF) and reflectance spectroscopy (RS) to differentiate disease from normal surrounding tissue - so called optical biopsy method. Painless, instant diagnoses from optical biopsies will soon be a reality. These forms of optical diagnoses are preferable to the removal of several square millimeters of tissue surface - common in traditional biopsies - followed by delays while samples are sent for clinical analysis. The goal of this work was investigation of cutaneous benign and malignant lesions by the methods of LIAFS and RS. A nitrogen laser at 337 nm was applied for the needs of autofluorescence excitation. Broad-spectrum halogen lamp (from 400 to 900 nm) was applied for diffuse reflectance measurements. An associated microspectrometer detected in vivo the fluorescence and reflectance signals from human skin. The main spectral features of benign lesions - compound nevus, dysplastic nevi, heamangioma and basal cell papilloma and malignant lesions - pigmented, amelanotic and secondary malignant melanoma, as well as basal cell carcinoma are discussed and their possible origins are indicated. Spectra from healthy skin areas near to the lesion were detected to be used posteriori to reveal changes between healthy and lesion skin spectra. Influence of the main skin pigments on the spectra detected is discussed and evaluation of possibilities for differentiation between malignant and benign lesions is made based on their spectral properties. This research shows that non-invasive and high-sensitive in vivo detection by means of appropriate light sources and detectors should be possible, related to real-time determination of existing pathological conditions.

  11. Elemental analysis of human amniotic fluid and placenta by total-reflection X-ray fluorescence and energy-dispersive X-ray fluorescence: child weight and maternal age dependence

    NASA Astrophysics Data System (ADS)

    Carvalho, M. L.; Custódio, P. J.; Reus, U.; Prange, A.

    2001-11-01

    This work is an attempt to evaluate the possible influence of the mother's age in trace element concentrations in human amniotic fluid and placenta and whether these concentrations are correlated to the weight of the newborn infants. Total-reflection X-ray fluorescence (TXRF) was used to analyze 16 amniotic fluid samples, and the placenta samples were analyzed by energy dispersive X-ray fluorescence (EDXRF). The whole samples were collected during delivery from healthy mothers and healthy infants and full-term pregnancies. According to the age of the mother, three different groups were considered: 20-25, 25-30 and 30-40 years old. Only two mothers were aged more than 35 years. The weight of the infants ranged from 2.56 to 4.05 kg and three groups were also considered: 2.5-3, 3-3.5 and 3.5-4 kg. The organic matrix of the amniotic fluid samples was removed by treatment with HNO 3 followed by oxygen plasma ashing. Yttrium was used as the internal standard for TXRF analysis. Placenta samples were lyophilized and analyzed by EDXRF without any chemical treatment. Very low levels of Ni and Sr were found in the amniotic fluid samples, and were independent of the age of the mother and weight of the child. Cr, Mn, Se and Pb were at the level of the detection limit. Zn, considered one of the key elements in neonatal health, was not significantly different in the samples analyzed; however, it was weakly related to birth weigh. The concentrations obtained ranged from 0.11 to 0.92 mg/l and 30 to 65 μg/g in amniotic fluid and placenta, respectively. The only two elements which seemed to be significantly correlated with mother's age and newborn weight were Ca and Fe for both types of sample: Ca levels were increased in heavier children and older mothers; however, Fe increased with increasing maternal age, but decreased for heavier babies. The same conclusions were obtained for placenta and amniotic fluid samples. Cu is closely associated with Fe in its function in the organism

  12. Early diagnosis of tongue malignancy using laser induced fluorescence spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Patil, Ajeetkumar; Unnikrishnan V., K.; Ongole, Ravikiran; Pai, Keerthilatha M.; Kartha, V. B.; Chidangil, Santhosh

    2015-07-01

    Oral cancer together with pharyngeal cancer is the sixth most common malignancy reported worldwide and one with high mortality ratio among all malignancies [1]. Worldwide 450,000 new cases are estimated in 2014[2]. About 90% are a type of cancer called squamous cell carcinoma (SCC). SCC of the tongue is the most common oral malignancy accounting for approximately 40% of all oral carcinomas. One of the important factors for successful therapy of any malignancy is early diagnosis. Although considerable progress has been made in understanding the cellular and molecular mechanisms of tumorigenesis, lack of reliable diagnostic methods for early detection leading to delay in therapy is an important factor responsible for the increase in the mortality rate in various types of cancers. Spectroscopy techniques are extremely sensitive for the analysis of biochemical changes in cellular systems. These techniques can provide a valuable information on alterations that occur during the development of cancer. This is especially important in oral cancer, where "tumor detection is complicated by a tendency towards field cancerization, leading to multi-centric lesions" and "current techniques detect malignant change too late" [3], and "biopsies are not representative of the whole premalignant lesion". [4

  13. Relationship between stallion sperm motility and viability as detected by two fluorescence staining techniques using flow cytometry.

    PubMed

    Love, C C; Thompson, J A; Brinsko, S P; Rigby, S L; Blanchard, T L; Lowry, V K; Varner, D D

    2003-10-01

    Relationships between sperm motility parameters and viability were evaluated using two fluorescent staining techniques in fresh extended semen (fresh and after 24 h storage at 5 degrees C) that had various concentrations of dead sperm added to simulate different levels of viable and nonviable sperm. Both protocols incorporated SYBR-14 and propidium iodide (PI) while the second protocol added the mitochondrial probe JC-1. The relationship between total sperm motility and percent viable sperm was high between staining protocols (r = 0.98). Time (0 h versus 24 h, P<0.0001) and treatment (0, 10, 25, 50, and 75% nonviable sperm, P<0.0001) affected percent total sperm motility and percent viable sperm for both staining protocols. Actual percent viable sperm for each time and treatment did not differ from expected values.

  14. Resonance fluorescence of a site-controlled quantum dot realized by the buried-stressor growth technique

    NASA Astrophysics Data System (ADS)

    Strauß, Max; Kaganskiy, Arsenty; Voigt, Robert; Schnauber, Peter; Schulze, Jan-Hindrik; Rodt, Sven; Strittmatter, André; Reitzenstein, Stephan

    2017-03-01

    Site-controlled growth of semiconductor quantum dots (QDs) represents a major advancement to achieve scalable quantum technology platforms. One immediate benefit is the deterministic integration of quantum emitters into optical microcavities. However, site-controlled growth of QDs is usually achieved at the cost of reduced optical quality. Here, we show that the buried-stressor growth technique enables the realization of high-quality site-controlled QDs with attractive optical and quantum optical properties. This is evidenced by performing excitation power dependent resonance fluorescence experiments at cryogenic temperatures showing QD emission linewidths down to 10 μeV. Resonant excitation leads to the observation of the Mollow triplet under CW excitation and enables coherent state preparation under pulsed excitation. Under resonant π-pulse excitation we observe clean single-photon emission associated with g(2)(0) = 0.12 limited by non-ideal laser suppression.

  15. Monitoring of bystander effect of herpes simplex virus thymidine kinase/acyclovir system using fluorescence resonance energy transfer technique.

    PubMed

    Xiong, Tao; Li, Yongjun; Ni, Fenge; Zhang, Feng

    2012-02-01

    Cytotoxic gene therapy mediated by gene transfer of the herpes simplex virus thymidine kinase (HSV-tk) gene followed by acyclovir (ACV) treatment has been reported to inhibit malignant tumor growth in a variety of studies. The magnitude of "bystander effect" is an essential factor for this anti-tumor approach in vivo. However, the mechanism by which HSV-tk/ACV brings "bystander effect" is poorly understood. In this report, the plasmid CD3 (ECFP-CRS-DsRed) and TK-GFP were transferred to the human adenoid cystic carcinoma line ACC-M cell line. The CD3-expressing cells apoptosis was monitored using fluorescence resonance energy transfer (FRET) technique. First, CD3 and TK-GFP co-expressing ACC-M cells apoptosis was monitored using FRET technique. The apoptosis was induced by ACV and initiated by caspase3. The FRET efficient was remarkably decreased and then disappeared during cellular apoptosis, which indicated that the TK-GFP expressing ACC-M cells apoptosis, induced by ACV, was via a caspase3-dependent pathway. Secondly, CD3 and TK-GFP mixed expressing ACC-M cells apoptosis, induced by ACV, were monitored using FRET technique. The apoptotic phenomena appeared in the CD3-expressing ACC-M cells. The results show that HSV-tk/ACV system killed ACC-M cells using its bystander effect. These results confirm that HSV-tk/ACV system is potential for cancer gene therapy.

  16. Thermoanalytical and Fourier transform infrared spectral curve-fitting techniques used to investigate the amorphous indomethacin formation and its physical stability in Indomethacin-Soluplus® solid dispersions.

    PubMed

    Lin, Shan-Yang; Lin, Hong-Liang; Chi, Ying-Ting; Huang, Yu-Ting; Kao, Chi-Yu; Hsieh, Wei-Hsien

    2015-12-30

    The amorphous form of a drug has higher water solubility and faster dissolution rate than its crystalline form. However, the amorphous form is less thermodynamically stable and may recrystallize during manufacturing and storage. Maintaining the amorphous state of drug in a solid dosage form is extremely important to ensure product quality. The purpose of this study was to quantitatively determine the amount of amorphous indomethacin (INDO) formed in the Soluplus® solid dispersions using thermoanalytical and Fourier transform infrared (FTIR) spectral curve-fitting techniques. The INDO/Soluplus® solid dispersions with various weight ratios of both components were prepared by air-drying and heat-drying processes. A predominate IR peak at 1683cm(-1) for amorphous INDO was selected as a marker for monitoring the solid state of INDO in the INDO/Soluplus® solid dispersions. The physical stability of amorphous INDO in the INDO/Soluplus® solid dispersions prepared by both drying processes was also studied under accelerated conditions. A typical endothermic peak at 161°C for γ-form of INDO (γ-INDO) disappeared from all the differential scanning calorimetry (DSC) curves of INDO/Soluplus® solid dispersions, suggesting the amorphization of INDO caused by Soluplus® after drying. In addition, two unique IR peaks at 1682 (1681) and 1593 (1591)cm(-1) corresponded to the amorphous form of INDO were observed in the FTIR spectra of all the INDO/Soluplus® solid dispersions. The quantitative amounts of amorphous INDO formed in all the INDO/Soluplus® solid dispersions were increased with the increase of γ-INDO loaded into the INDO/Soluplus® solid dispersions by applying curve-fitting technique. However, the intermolecular hydrogen bonding interaction between Soluplus® and INDO were only observed in the samples prepared by heat-drying process, due to a marked spectral shift from 1636 to 1628cm(-1) in the INDO/Soluplus® solid dispersions. The INDO/Soluplus® solid

  17. Determination of inorganic nutrients in wheat flour by laser-induced breakdown spectroscopy and energy dispersive X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Peruchi, Lidiane Cristina; Nunes, Lidiane Cristina; de Carvalho, Gabriel Gustinelli Arantes; Guerra, Marcelo Braga Bueno; de Almeida, Eduardo; Rufini, Iolanda Aparecida; Santos, Dário; Krug, Francisco José

    2014-10-01

    Laser-induced breakdown spectroscopy (LIBS) and energy dispersive X-ray fluorescence spectrometry (EDXRF) were evaluated for the determination of P, K, Ca, Mg, S, Fe, Cu, Mn and Zn in pressed pellets of wheat flours. EDXRF and LIBS calibration models were built with analytes mass fractions determined by inductively coupled plasma optical emission spectrometry after microwave-assisted acid digestion in a set of 25 wheat flour laboratory samples. Test samples consisted of pressed pellets prepared from wheat flour mixed with 30% mm- 1 cellulose binder. Experiments were carried out with a LIBS setup consisted of a Q-switched Nd:YAG laser and a spectrometer with Echelle optics and ICCD, and a benchtop EDXRF system fitted with a Rh target X-ray tube and a Si(Li) semiconductor detector. The correlation coefficients from the linear calibration models of P, K, Ca, Mg, S, Fe, Mn and Zn determined by LIBS and/or EDXRF varied from 0.9705 for Zn to 0.9990 for Mg by LIBS, and from 0.9306 for S to 0.9974 for K by EDXRF. The coefficients of variation of measurements varied from 1.2 to 20% for LIBS, and from 0.3 to 24% for EDXRF. The predictive capabilities based on RMSEP (root mean square error of prediction) values were appropriate for the determination of P, Ca, Mg, Fe, Mn and Zn by LIBS, and for P, K, S, Ca, Fe, and Zn by EDXRF. In general, results from the analysis of NIST SRM 1567a Wheat flour by LIBS and EDXRF were in agreement with their certified mass fractions.

  18. Determination of rare earth elements in combustion ashes from selected Polish coal mines by wavelength dispersive X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Smoliński, Adam; Stempin, Marek; Howaniec, Natalia

    2016-02-01

    The aim of the experimental works presented in this paper was to develop a method using wavelength dispersive X-ray fluorescence spectrometry (WDXRF) in order to determine the content of 16 rare earth elements (REEs) and the concentration of the said elements in 169 samples of combustion ash of coals coming from ten Polish coal mines, as well as to validate the method. It was found out that there is a clear diversity in the levels and ranges of the variability of REEs occurrence in coal ashes. The average content of cerium, lanthanum, and scandium amounts to 198.8 μg • g- 1, 76.5 μg • g- 1, and 52.4 μg • g- 1 respectively, whereas for such metals as europium, holmium, lutetium, terbium, and thulium, the average content does not exceed the level of 5 μg • g- 1 (the average content for these metals amounts to 1.2 μg • g- 1, 1.4 μg • g- 1, 0.3 μg • g- 1, 1.3 μg • g- 1, and 0.6 μg • g- 1, respectively). In addition, this paper presents an analysis of data obtained by means of hierarchical clustering analysis. Simultaneous interpretation of the dendrogram of objects (coal ash samples) and the color map of the experimental data allowed a more in-depth analysis of the relationships between the clustered coal ash samples from different coal mines and the content of the rare earth elements.

  19. Determination of heavy metals concentrations in airborne particulates matter (APM) from Manjung district, Perak using energy dispersive X-ray fluorescence (EDXRF) spectrometer

    NASA Astrophysics Data System (ADS)

    Arshad, Nursyairah; Hamzah, Zaini; Wood, Ab. Khalik; Saat, Ahmad; Alias, Masitah

    2015-04-01

    Airborne particulates trace metals are considered as public health concern as it can enter human lungs through respiratory system. Generally, any substance that has been introduced to the atmosphere that can cause severe effects to living things and the environment is considered air pollution. Manjung, Perak is one of the development districts that is active with industrial activities. There are many industrial activities surrounding Manjung District area such as coal fired power plant, quarries and iron smelting which may contribute to the air pollution into the environment. This study was done to measure the concentrations of Hg, U, Th, K, Cu, Fe, Cr, Zn, As, Se, Pb and Cd in the Airborne Particulate Matter (APM) collected at nine locations in Manjung District area within 15 km radius towards three directions (North, North-East and South-East) in 5 km intervals. The samples were collected using mini volume air sampler with cellulose filter through total suspended particulate (TSP). The sampler was set up for eight hours with the flow rate of 5 L/min. The filter was weighed before and after sample collection using microbalance, to get the amount of APM and kept in desiccator before analyzing. The measurement was done using calibrated Energy Dispersive X-Ray Fluorescence (EDXRF) Spectrometer. The air particulate concentrations were found below the Malaysia Air Quality Guidelines for TSP (260 µg/m3). All of the metals concentrations were also lower than the guidelines set by World Health Organization (WHO), Ontario Ministry of the Environment and Argonne National Laboratory, USA NCRP (1975). From the concentrations, the enrichment factor were calculated.

  20. Feasibility of wavelength dispersive X-ray fluorescence spectrometry for the determination of metal impurities in pharmaceutical products and dietary supplements in view of regulatory guidelines.

    PubMed

    Figueiredo, Alexandra; Fernandes, Tânia; Costa, Isabel Margarida; Gonçalves, Luísa; Brito, José

    2016-04-15

    The aim of this study was to investigate the feasibility of Wavelength Dispersive X-ray Fluorescence (WDXRF) spectrometry for the measurement of As, Cd, Cr, Cu, Hg, Ir, Mn, Mo, Ni, Os, Pb, Pd, Pt, Rh, Ru and V impurities in pharmaceuticals and dietary supplements, in view of the requirements by EMA and USP for the measurement of elemental impurities in drug products and according to the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH guidelines). For that purpose, a 4 kW WDXRF spectrometer (S4 Pioneer, Bruker AXS) was used after system calibration. The linearity of the method was demonstrated by correlation coefficients in excess of 0.9 and by appropriate test of lack of fit, except for Cd, Hg, Pd, V and As, which were excluded from analysis. The calculated limits of detection and quantification were in the ranges 0.6-5.4 μg/g and 1.7-16.4 μg/g meeting defined acceptance criteria, except for Pb. The accuracy of the method, determined by the percent recovery (R) of known amounts of each element added to a selected drug, at 3 different concentration levels, was in the acceptance range 70-150% except for Os and Pt, in which case R was marginally outside that range. The repeatability of the method, assessed as the % residual standard deviation (%RSD) of 3 replicate measurements at 3 concentration levels, produced %RSD values lower than 20%, as required. These results show that the WDXRF method complies with the validation requirements defined by the European Pharmacopeia for Cu, Cr, Ir, Mn, Mo, Ni, Os, and Pt, and by the United States Pharmacopeia for Ir, Ni, Os and Pt. Therefore, it may be an alternative to the compendial analytical procedures recommended for such elements. The novelty of the present work is the application of WDXRF to final medicines and not only to active pharmaceutical ingredients and/or excipients.

  1. Quantitative determinations and imaging in different structures of buried human bones from the XVIII-XIXth centuries by energy dispersive X-ray fluorescence - Postmortem evaluation.

    PubMed

    Guimarães, D; Dias, A A; Carvalho, M; Carvalho, M L; Santos, J P; Henriques, F R; Curate, F; Pessanha, S

    2016-08-01

    In this work, a non-commercial triaxial geometry energy dispersive X-ray Fluorescence (EDXRF) setup and a benchtop µ-XRF system were used to identify postmortem contamination in buried bones. For two of the individuals, unusually high concentrations of Cu and Pb, but also Zn (in one individual) were observed. The pigments of the burial shroud coverings have been identified as the source of contamination. Accurate and precise quantitative results were obtained by nondestructive process using fundamental parameters method taking into account the matrix absorption effects. A total of 30 bones from 13 individuals, buried between the mid-XVIIIth to early XIXth centuries, were analyzed to study the elemental composition and elemental distribution. The bones were collected from a church in Almada (Portugal), called Ermida do Espírito Santo, located near the Tagus River and at the sea neighbourhood. The triaxial geometry setup was used to quantify Ca, Fe, Cu, Zn, Br, Sr and Pb of powder pressed bone pellets (n=9 for each bone). Cluster analysis was performed considering the elemental concentrations for the different bones. There was a clear association between some bones regarding Fe, Cu, Zn, Br and Pb content but not a categorization between cortical and trabecular bones. The elemental distribution of Cu, Zn and Pb were assessed by the benchtop μ-analysis, the M4 Tornado, based on a polycapillary system which provides multi-elemental 2D maps. The results showed that contamination was mostly on the surface of the bone confirming that it was related to the burial shroud covering the individuals.

  2. Techniques and Protocols for Dispersing Nanoparticle Powders in Aqueous Media-Is there a Rationale for Harmonization?

    PubMed

    Hartmann, Nanna B; Jensen, Keld Alstrup; Baun, Anders; Rasmussen, Kirsten; Rauscher, Hubert; Tantra, Ratna; Cupi, Denisa; Gilliland, Douglas; Pianella, Francesca; Riego Sintes, Juan M

    2015-01-01

    Selecting appropriate ways of bringing engineered nanoparticles (ENP) into aqueous dispersion is a main obstacle for testing, and thus for understanding and evaluating, their potential adverse effects to the environment and human health. Using different methods to prepare (stock) dispersions of the same ENP may be a source of variation in the toxicity measured. Harmonization and standardization of dispersion methods applied in mammalian and ecotoxicity testing are needed to ensure a comparable data quality and to minimize test artifacts produced by modifications of ENP during the dispersion preparation process. Such harmonization and standardization will also enhance comparability among tests, labs, and studies on different types of ENP. The scope of this review was to critically discuss the essential parameters in dispersion protocols for ENP. The parameters are identified from individual scientific studies and from consensus reached in larger scale research projects and international organizations. A step-wise approach is proposed to develop tailored dispersion protocols for ecotoxicological and mammalian toxicological testing of ENP. The recommendations of this analysis may serve as a guide to researchers, companies, and regulators when selecting, developing, and evaluating the appropriateness of dispersion methods applied in mammalian and ecotoxicity testing. However, additional experimentation is needed to further document the protocol parameters and investigate to what extent different stock dispersion methods affect ecotoxicological and mammalian toxicological responses of ENP.

  3. Preparation and evaluation of solid dispersion of atorvastatin calcium with Soluplus® by spray drying technique.

    PubMed

    Ha, Eun-Sol; Baek, In-hwan; Cho, Wonkyung; Hwang, Sung-Joo; Kim, Min-Soo

    2014-01-01

    The aim of the present study was to investigate the effect of Soluplus® on the solubility of atorvastatin calcium and to develop a solid dispersion formulation that can improve the oral bioavailability of atorvastatin calcium. We demonstrated that Soluplus® increases the aqueous solubility of atorvastatin calcium. Several solid dispersion formulations of atorvastatin calcium with Soluplus® were prepared at various drug : carrier ratios by spray drying. Physicochemical analysis demonstrated that atorvastatin calcium is amorphous in each solid dispersion, and the 2 : 8 drug : carrier ratio provided the highest degree of sustained atorvastatin supersaturation. Pharmacokinetic analysis in rats revealed that the 2 : 8 dispersion significantly improved the oral bioavailability of atorvastatin. This study demonstrates that spray-dried Soluplus® solid dispersions can be an effective method for achieving higher atorvastatin plasma levels.

  4. Quantifying Dispersal of European Culicoides (Diptera: Ceratopogonidae) Vectors between Farms Using a Novel Mark-Release-Recapture Technique

    PubMed Central

    Kirkeby, Carsten; Bødker, René; Stockmarr, Anders; Lind, Peter; Heegaard, Peter M. H.

    2013-01-01

    Studying the dispersal of small flying insects such as Culicoides constitutes a great challenge due to huge population sizes and lack of a method to efficiently mark and objectively detect many specimens at a time. We here describe a novel mark-release-recapture method for Culicoides in the field using fluorescein isothiocyanate (FITC) as marking agent without anaesthesia. Using a plate scanner, this detection technique can be used to analyse thousands of individual Culicoides specimens per day at a reasonable cost. We marked and released an estimated 853 specimens of the Pulicaris group and 607 specimens of the Obsoletus group on a cattle farm in Denmark. An estimated 9,090 (8,918–9,260) Obsoletus group specimens and 14,272 (14,194–14,448) Pulicaris group specimens were captured in the surroundings and subsequently analysed. Two (0.3%) Obsoletus group specimens and 28 (4.6%) Pulicaris group specimens were recaptured. The two recaptured Obsoletus group specimens were caught at the release point on the night following release. Eight (29%) of the recaptured Pulicaris group specimens were caught at a pig farm 1,750 m upwind from the release point. Five of these were recaptured on the night following release and the three other were recaptured on the second night after release. This is the first time that movement of Culicoides vectors between farms in Europe has been directly quantified. The findings suggest an extensive and rapid exchange of disease vectors between farms. Rapid movement of vectors between neighboring farms may explain the the high rate of spatial spread of Schmallenberg and bluetongue virus (BTV) in northern Europe. PMID:23630582

  5. Europium Uptake and Partitioning in Oat (Avena sativa) Roots as studied By Laser-Induced Fluorescence Spectroscopy and Confocal Microscopy Profiling Technique

    SciTech Connect

    Fellows, Robert J.; Wang, Zheming; Ainsworth, Calvin C.

    2003-11-15

    The uptake of Eu3+ by elongating oat plant roots was studied by fluorescence spectroscopy, fluorescence lifetime measurement, as well as laser excitation time-resolved confocal fluorescence profiling technique. The results of this work indicated that the initial uptake of Eu(III) by oat root was most evident within the apical meristem of the root just proximal to the root cap. Distribution of assimilated Eu(III) within the roots differentiation and elongation zone was non-uniform. Higher concentrations were observed within the vascular cylinder, specifically in the phloem and developing xylem parenchyma. Elevated levels of the metal were also observed in the root hairs of the mature root. The concentration of assimilated Eu3+ dropped sharply from the apical meristem to the differentiation and elongation zone and then gradually decreased as the distance from the root cap increased. Fluorescence spectroscopic characteristics of the assimilated Eu3+ suggested that the Eu3+ exists a s inner-sphere mononuclear complexes inside the root. This work has also demonstrated the effectiveness of a time-resolved Eu3+ fluorescence spectroscopy and confocal fluorescence profiling techniques for the in vivo, real-time study of metal[Eu3+] accumulation by a functioning intact plant root. This approach can prove valuable for basic and applied studies in plant nutrition and environmental uptake of actinide radionuclides.

  6. Development of a measurement technique for ion distribution in an extended nanochannel by super-resolution-laser-induced fluorescence.

    PubMed

    Kazoe, Yutaka; Mawatari, Kazuma; Sugii, Yasuhiko; Kitamori, Takehiko

    2011-11-01

    Ion behavior confined in extended nanospace (10(1)-10(3) nm) is important for nanofluidics and nanochemistry with dominant surface effects. In this paper, we developed a new measurement technique of ion distribution in the nanochannel by super-resolution-laser-induced fluorescence. Stimulated emission depletion microscopy was used to achieve a spatial resolution of 87 nm higher than the diffraction limit. Fluorescein was used for ratiometric measurement of pH with two excitation wavelengths. The pH profile in a 2D nanochannel of 410 nm width and 405 nm depth was successfully measured at an uncertainty of 0.05. The excess protons, showing lower pH than the bulk, nonuniformly distributed in the nanochannel to cancel the negative charge of glass wall, especially when the electric double layer is thick compared to the channel size. The present study first revealed the ion distribution near the surface or in the nanochannel, which is directly related to the electric double layer. In addition, the obtained proton distribution is important to understand the nanoscale water structure between single molecules and continuum phase. This technique will greatly contribute to understanding the basic science in nanoscale and interfacial dynamics, which are strongly required to develop novel miniaturized systems for biochemical analysis and further applications.

  7. Characterization of uranium bearing material using x-ray fluorescence and direct gamma-rays measurement techniques

    SciTech Connect

    Mujaini, M. Chankow, N.; Yusoff, M. Z.; Hamid, N. A.

    2016-01-22

    Uranium ore can be easily detected due to various gamma-ray energies emitted from uranium daughters particularly from {sup 238}U daughters such as {sup 214}Bi, {sup 214}Pb and {sup 226}Ra. After uranium is extracted from uranium ore, only low energy gamma-rays emitted from {sup 235}U may be detected if the detector is placed in close contact to the specimen. In this research, identification and characterization of uranium bearing materials is experimentally investigated using direct measurement of gamma-rays from {sup 235}U in combination with the x-ray fluorescence (XRF) technique. Measurement of gamma-rays can be conducted by using high purity germanium (HPGe) detector or cadmium telluride (CdTe) detector while a {sup 57}Coradioisotope-excited XRF spectrometer using CdTe detector is used for elemental analysis. The proposed technique was tested with various uranium bearing specimens containing natural, depleted and enriched uranium in both metallic and powder forms.

  8. Spatial and temporal single-cell volume estimation by a fluorescence imaging technique with application to astrocytes in primary culture

    NASA Astrophysics Data System (ADS)

    Khatibi, Siamak; Allansson, Louise; Gustavsson, Tomas; Blomstrand, Fredrik; Hansson, Elisabeth; Olsson, Torsten

    1999-05-01

    Cell volume changes are often associated with important physiological and pathological processes in the cell. These changes may be the means by which the cell interacts with its surrounding. Astroglial cells change their volume and shape under several circumstances that affect the central nervous system. Following an incidence of brain damage, such as a stroke or a traumatic brain injury, one of the first events seen is swelling of the astroglial cells. In order to study this and other similar phenomena, it is desirable to develop technical instrumentation and analysis methods capable of detecting and characterizing dynamic cell shape changes in a quantitative and robust way. We have developed a technique to monitor and to quantify the spatial and temporal volume changes in a single cell in primary culture. The technique is based on two- and three-dimensional fluorescence imaging. The temporal information is obtained from a sequence of microscope images, which are analyzed in real time. The spatial data is collected in a sequence of images from the microscope, which is automatically focused up and down through the specimen. The analysis of spatial data is performed off-line and consists of photobleaching compensation, focus restoration, filtering, segmentation and spatial volume estimation.

  9. Determination of sulfadiazine based on its derivatization with fluorescamine by self-ordered ring fluorescence microscopic imaging technique.

    PubMed

    Yang, Le; Liu, Ying

    2012-09-01

    A self-ordered ring (SOR) fluorescence microscopic imaging technique has been developed for the determination of trace amounts of sulfadiazine based on its derivatization with fluorescamine. In the presence of HAc-NaAc buffer solution (pH 3.12) and polyvinyl alcohol-124 (PVA-124), the droplet containing fluorescamine derivatized sulfadiazine can form a SOR on the solid support after solvent evaporation with the diameter of 1.86 mm and its ring belt width of 54.9 microm. The quantitative analysis of sulfadiazine is achieved with the linear range of 7.8 x 10(-14)-1.8 x 10(-12) mol x ring(-1) (3.9 x 10(-7)-9.0 x 10(-6) mol x L(-1) and detection limit of 7.8 x 10(-5) mol x ring(-1) (3.9 x 10(-8) mol x L(-1)) when 0.2 microL droplet was spotted. The technique has been satisfactorily applied to the determination of sulfadiazine in the tablet, synthetic sample and residues in six different milk samples with the recoveries of 91.0%-105.8%, respectively, and RSDs less than 4.4%.

  10. Using chemical, microbial and fluorescence techniques to understand contaminant sources and pathways to wetlands in a conservation site.

    PubMed

    Rhymes, J; Jones, L; Lapworth, D J; White, D; Fenner, N; McDonald, J E; Perkins, T L

    2015-04-01

    Nutrients and faecal contaminants can enter wetland systems in a number of ways, with both biological and potentially human-health implications. In this study we used a combination of inorganic chemistry, dissolved organic matter (DOM) fluorescence and Escherichia coli and total coliform (TC) count techniques to study the sources and multiple pathways of contamination affecting a designated sand dune site of international conservation importance, surrounded by agricultural land. Analysis of stream samples, groundwater and dune slack wetlands revealed multiple input pathways. These included riverbank seepage, runoff events and percolation of nutrients from adjacent pasture into the groundwater, as well as some on-site sources. The combined techniques showed that off-site nutrient inputs into the sand dune system were primarily from fertilisers, revealed by high nitrate concentrations, and relatively low tryptophan-like fulvic-like ratios<0.4Ramanunits (R.U.). The E. coli and TC counts recorded across the site confirm a relatively minor source of bacterial and nutrient inputs from on-site grazers. Attenuation of the nutrient concentrations in streams, in groundwater and in run-off inputs occurs within the site, restoring healthier groundwater nutrient concentrations showing that contaminant filtration by the sand dunes provides a valuable ecosystem service. However, previous studies show that this input of nutrients has a clear adverse ecological impact.

  11. In vivo effects of focused shock waves on tumor tissue visualized by fluorescence staining techniques.

    PubMed

    Lukes, Petr; Zeman, Jan; Horak, Vratislav; Hoffer, Petr; Pouckova, Pavla; Holubova, Monika; Hosseini, S Hamid R; Akiyama, Hidenori; Sunka, Pavel; Benes, Jiri

    2015-06-01

    Shock waves can cause significant cytotoxic effects in tumor cells and tissues both in vitro and in vivo. However, understanding the mechanisms of shock wave interaction with tissues is limited. We have studied in vivo effects of focused shock waves induced in the syngeneic sarcoma tumor model using the TUNEL assay, immunohistochemical detection of caspase-3 and hematoxylin-eosin staining. Shock waves were produced by a multichannel pulsed-electrohydraulic discharge generator with a cylindrical ceramic-coated electrode. In tumors treated with shock waves, a large area of damaged tissue was detected which was clearly differentiated from intact tissue. Localization and a cone-shaped region of tissue damage visualized by TUNEL reaction apparently correlated with the conical shape and direction of shock wave propagation determined by high-speed shadowgraphy. A strong TUNEL reaction of nuclei and nucleus fragments in tissue exposed to shock waves suggested apoptosis in this destroyed tumor area. However, specificity of the TUNEL technique to apoptotic cells is ambiguous and other apoptotic markers (caspase-3) that we used in our study did not confirmed this observation. Thus, the generated fragments of nuclei gave rise to a false TUNEL reaction not associated with apoptosis. Mechanical stress from high overpressure shock wave was likely the dominant pathway of tumor damage.

  12. Phase separation kinetics in amorphous solid dispersions upon exposure to water.

    PubMed

    Purohit, Hitesh S; Taylor, Lynne S

    2015-05-04

    The purpose of this study was to develop a novel fluorescence technique employing environment-sensitive fluorescent probes to study phase separation kinetics in hydrated matrices of amorphous solid dispersions (ASDs) following storage at high humidity and during dissolution. The initial miscibility of the ASDs was confirmed using infrared (IR) spectroscopy and differential scanning calorimetry (DSC). Fluorescence spectroscopy, as an independent primary technique, was used together with conventional confirmatory techniques including DSC, X-ray diffraction (XRD), fluorescence microscopy, and IR spectroscopy to study phase separation phenomena. By monitoring the emission characteristics of the environment-sensitive fluorescent probes, it was possible to successfully monitor amorphous-amorphous phase separation (AAPS) as a function of time in probucol-poly(vinylpyrrolidone) (PVP) and ritonavir-PVP ASDs after exposure to water. In contrast, a ritonavir-hydroxypropylmethylcellulose acetate succinate (HPMCAS) ASD, did not show AAPS and was used as a control to demonstrate the capability of the newly developed fluorescence method to differentiate systems that showed no phase separation following exposure to water versus those that did. The results from the fluorescence studies were in good agreement with results obtained using various other complementary techniques. Thus, fluorescence spectroscopy can be utilized as a fast and efficient tool to detect and monitor the kinetics of phase transformations in amorphous solid dispersions during hydration and will help provide mechanistic insight into the stability and dissolution behavior of amorphous solid dispersions.

  13. Adjustable dispersion reduction in low-coherent techniques by a system of tilted metallic mirrors with dielectric coating

    NASA Astrophysics Data System (ADS)

    Tomczewski, S.; Salbut, L.

    2015-05-01

    In this paper a new method for adjustable reduction of a dispersive drop in axial resolution during low-coherent measurements is presented. This method is based on multiple reflections of a light beam from dielectric coated metallic mirrors and is intended for reducing dispersion in full-field systems. The tilted metallic mirror with a dielectric coating works like an adjustable Gires-Tournois interferometer. The concept of adjustability is based on a polarization dependent phase shift upon reflection from metallic surfaces at incidence angles different from θi = 0 °. The dispersion compensation was simulated numerically with the use of Fresnel equations for a silver mirror based compensator. The possibility of dispersion reduction was then verified experimentally in a Twyman-Green interferometer showing over 40% improvement in the axial resolution.

  14. Dispersion Modeling.

    ERIC Educational Resources Information Center

    Budiansky, Stephen

    1980-01-01

    This article discusses the need for more accurate and complete input data and field verification of the various models of air pollutant dispension. Consideration should be given to changing the form of air quality standards based on enhanced dispersion modeling techniques. (Author/RE)

  15. Dispersed fluorescence spectroscopy of the SiCN A ˜ 2 Δ - X ˜ 2 Π system: Observation of some vibrational levels with chaotic characteristics

    NASA Astrophysics Data System (ADS)

    Fukushima, Masaru; Ishiwata, Takashi

    2016-12-01

    The laser induced fluorescence (LIF) spectrum of the A ˜ 2Δ - X ˜ 2Π transition was obtained for SiCN generated by laser ablation under supersonic free jet expansion. The vibrational structures of the dispersed fluorescence (DF) spectra from single vibronic levels (SVL's) were analyzed with consideration of the Renner-Teller (R-T) interaction. Analysis of the pure bending (ν2) structure by a perturbation approach including R-T, anharmonicity, spin-orbit (SO), and Herzberg-Teller (H-T) interactions indicated considerably different spin splitting for the μ and κ levels of the X ˜ 2Π state of SiCN, in contrast to identical spin splitting for general species derived from the perturbation approach, where μ and κ specify the lower and upper levels, respectively, separated by R-T. Further analysis of the vibrational structure including R-T, anharmonicity, SO, H-T, Fermi, and Sears interactions was carried out via a direct diagonalization procedure, where Sears resonance is a second-order interaction combined from SO and H-T interactions with Δ K = ± 1, ΔΣ = ∓1, and Δ P = 0, and where P is a quantum number, P = K + Σ. The later numerical analysis reproduced the observed structure, not only the pure ν2 structure but also the combination structure of the ν2 and the Si-CN stretching (ν3) modes. As an example, the analysis demonstrates Sears resonance between vibronic levels, (0110) κ Σ(+) and ( 0 2 0 0 ) μ Π /1 2 , with Δ K = ± 1 and Δ P = 0. On the basis of coefficients of their eigen vectors derived from the numerical analysis, it is interpreted as an almost one-to-one mixing between the two levels. The mixing coefficients of the two vibronic levels agree with those obtained from computational studies. The numerical analysis also indicates that some of the vibronic levels show chaotic characteristics in view of the two-dimensional harmonic oscillator (2D-HO) basis which is used as the basis function in the present numerical analysis; i.e., the

  16. Assessment of the effects of laser photobiomodulation on peri-implant bone repair through energy dispersive x-ray fluorescence: A study of dogs

    NASA Astrophysics Data System (ADS)

    Menezes, R. F.; Araújo, N. C.; Carneiro, V. S. M.; Moreno, L. M.; Guerra, L. A. P.; Santos Neto, A. P.; Gerbi, M. E. M.

    2016-03-01

    Bone neoformation is essential in the osteointegration of implants and has been correlated with the repair capacity of tissues, the blood supply and the function of the cells involved. Laser therapy accelerates the mechanical imbrication of peri-implant tissue by increasing osteoblastic activity and inducing ATP, osteopontin and the expression of sialoproteins. Objective: The aim of the present study was to assess peri-implant bone repair using the tibia of dogs that received dental implants and laser irradiation (AsGaAl 830nm - 40mW, CW, f~0.3mm) through Energy Dispersive X-ray Fluorescence (EDXRF). Methodology: Two groups were established: G1 (Control, n=20; two dental implants were made in the tibia of each animal; 10 animals); G2 (Experimental, n=20, two dental implants were made in the tibia each animal + Laser therapy; 10 animals). G2 was irradiated every 48 hours for two weeks, with a total of seven sessions. The first irradiation was conducted during the surgery, at which time a point in the surgical alveolus was irradiated prior to the placement of the implant and four new spatial positions were created to the North, South, East and West (NSEW) of the implant. The subsequent sessions involved irradiation at these four points and at one infra-implant point (in the direction of the implant apex). Each point received 4J/cm2 and a total dose of 20J/cm2 per session (treatment dose=140J/cm2). The specimens were removed 15 and 30 days after the operation for the EDXRF test. The Mann- Whitney statistical test was used to assess the results. Results: The increase in the calcium concentration in the periimplant region of the irradiated specimens (G2) was statistically significant (p < 0.05), when compared with the control group (G1). Conclusion: The results of the present study show that irradiation with the AsGaAl laser promoted an acceleration in bone repair in the peri-implant region.

  17. Mercury in Environmental and Biological Samples Using Online Combustion with Sequential Atomic Absorption and Fluorescence Measurements: A Direct Comparison of Two Fundamental Techniques in Spectrometry

    ERIC Educational Resources Information Center

    Cizdziel, James V.

    2011-01-01

    In this laboratory experiment, students quantitatively determine the concentration of an element (mercury) in an environmental or biological sample while comparing and contrasting the fundamental techniques of atomic absorption spectrometry (AAS) and atomic fluorescence spectrometry (AFS). A mercury analyzer based on sample combustion,…

  18. High-contrast fluorescence microscopy for a biomolecular analysis based on polarization techniques using an optical interference mirror slide.

    PubMed

    Yasuda, Mitsuru; Akimoto, Takuo

    2014-12-01

    Fluorescence microscopy with an improved contrast for fluorescence images is developed using an optical interference mirror (OIM) slide, which can enhance the fluorescence from a fluorophore as a result of the double interference of the excitation light and emission light. To improve the contrast of a fluorescence image using an OIM slide, a linearly-polarized excitation light was employed, and the fluorescence emission polarized perpendicular to the polarization of the excitation light was detected. The image contrast with this optical system was improved 110-fold for rhodamine B spotted on the OIM, in comparison with a glass slide using a general fluorescence microscopy optical system. Moreover, a 24-fold improvement of the image contrast was achieved for the detection of Cy3-labeled streptavidin bound to immobilize biotin.

  19. Tracer-based laser-induced fluorescence measurement technique for quantitative fuel/air-ratio measurements in a hydrogen internal combustion engine.

    PubMed

    Blotevogel, Thomas; Hartmann, Matthias; Rottengruber, Hermann; Leipertz, Alfred

    2008-12-10

    A measurement technique for the quantitative investigation of mixture formation processes in hydrogen internal combustion engines (ICEs) has been developed using tracer-based laser-induced fluorescence (TLIF). This technique can be employed to fired and motored engine operation. The quantitative TLIF fuel/air-ratio results have been verified by means of linear Raman scattering measurements. Exemplary results of the simultaneous investigation of mixture formation and combustion obtained at an optical accessible hydrogen ICE are shown.

  20. Development of an x-ray fluorescence microprobe at the National Synchrotron Light Source, Brookhaven National Laboratory: Early results: Comparison with data from other techniques

    SciTech Connect

    Smith, J.V.; Rivers, M.L.; Sutton, S.R.; Jones, K.W.; Hanson, A.L.; Gordon, B.M.

    1986-01-01

    Theoretical predictions for the detection levels in x-ray fluorescence analysis with a synchrotron storage ring are being achieved experimentally at several laboratories. This paper is deliberately restricted to the state of development of the Brookhaven National Laboratory/University of Chicago instruments. Analyses at the parts per million (ppM) level are being made using white light apertured to 20 ..mu..m and an energy dispersive system. This system is particularly useful for elements with Z > 20 in materials dominated by elements with Z < 20. Diffraction causes an interference for crystalline materials. Development of a focusing microprobe for tunable monochromatic x-rays and a wavelength dispersive spectrometer (WDS) is delayed by problems in shaping an 8:1 focusing mirror to the required accuracy. Reconnaissance analyses with a wiggler source on the CHESS synchrotron have been made in the K spectrum up to Z = 80.

  1. Designing optical metamaterial with hyperbolic dispersion based on an Al:ZnO/ZnO nano-layered structure using the atomic layer deposition technique.

    PubMed

    Kelly, Priscilla; Liu, Mingzhao; Kuznetsova, Lyuba

    2016-04-10

    Nano-layered Al:ZnO/ZnO hyperbolic dispersion metamaterial with a large number of layers was fabricated using the atomic layer deposition (ALD) technique. Experimental dielectric functions for Al:ZnO/ZnO structures are obtained by an ellipsometry technique in the visible and near-infrared spectral ranges. The theoretical modeling of the Al:ZnO/ZnO dielectric permittivity is done using effective medium approximation. A method for analysis of spectroscopic ellipsometry data is demonstrated to extract the optical permittivity for this highly anisotropic nano-layered metamaterial. The results of the ellipsometry analysis show that Al:ZnO/ZnO structures with a 1:9 ALD cycle ratio exhibit hyperbolic dispersion transition change near 1.8 μm wavelength.

  2. Designing optical metamaterial with hyperbolic dispersion based on Al:ZnO/ZnO nano-layered structure using Atomic Layer Deposition technique

    DOE PAGES

    Kelly, Priscilla; Liu, Mingzhao; Kuznetsova, Lyuba

    2016-04-07

    In this study, nano-layered Al:ZnO/ZnO hyperbolic dispersion metamaterial with a large number of layers was fabricated using the atomic layer deposition (ALD) technique. Experimental dielectric functions for Al:ZnO/ZnO structures are obtained by an ellipsometry technique in the visible and near-infrared spectral ranges. The theoretical modeling of the Al:ZnO/ZnO dielectric permittivity is done using effective medium approximation. A method for analysis of spectroscopic ellipsometry data is demonstrated to extract the optical permittivity for this highly anisotropic nano-layered metamaterial. The results of the ellipsometry analysis show that Al:ZnO/ZnO structures with a 1:9 ALD cycle ratio exhibit hyperbolic dispersion transition change near 1.8more » μm wavelength.« less

  3. Designing optical metamaterial with hyperbolic dispersion based on Al:ZnO/ZnO nano-layered structure using Atomic Layer Deposition technique

    SciTech Connect

    Kelly, Priscilla; Liu, Mingzhao; Kuznetsova, Lyuba

    2016-04-07

    In this study, nano-layered Al:ZnO/ZnO hyperbolic dispersion metamaterial with a large number of layers was fabricated using the atomic layer deposition (ALD) technique. Experimental dielectric functions for Al:ZnO/ZnO structures are obtained by an ellipsometry technique in the visible and near-infrared spectral ranges. The theoretical modeling of the Al:ZnO/ZnO dielectric permittivity is done using effective medium approximation. A method for analysis of spectroscopic ellipsometry data is demonstrated to extract the optical permittivity for this highly anisotropic nano-layered metamaterial. The results of the ellipsometry analysis show that Al:ZnO/ZnO structures with a 1:9 ALD cycle ratio exhibit hyperbolic dispersion transition change near 1.8 μm wavelength.

  4. A blue fluorescent labeling technique utilizing micro- and nanoparticles for tracking in LIVE/DEAD® stained pathogenic biofilms of Staphylococcus aureus and Burkholderia cepacia.

    PubMed

    Klinger-Strobel, Mareike; Ernst, Julia; Lautenschläger, Christian; Pletz, Mathias W; Fischer, Dagmar; Makarewicz, Oliwia

    2016-01-01

    Strategies that target and treat biofilms are widely applied to bacterial cultures using popular live/dead staining techniques with mostly red or green fluorescent markers (eg, with SYTO(®) 9, propidium iodide, fluorescein). Therefore, visualizing drugs or micro- and nanoparticulate delivery systems to analyze their distribution and effects in biofilms requires a third fluorescent dye that does not interfere with the properties of the live/dead markers. The present study establishes and evaluates a model for tracking polymeric particles in fluorescently stained biological material. To this end, poly(D,L-lactide-co-glycolide) (PLGA)-based micro- and nanoparticles were used as well-established model systems, which, because of their favorable safety profiles, are expected to play important future roles with regard to drug delivery via inhalation. PLGA was covalently and stably labeled with 7-amino-4-methyl-3-coumarinylacetic acid (AMCA), after which blue fluorescent poly(ethylene glycol)-block-PLGA (PEG-PLGA) particles were prepared using a mixture of fluorescent AMCA-PLGA and PEG-PLGA. Because chitosan is known to reduce negative surface charge, blue fluorescent PEG-PLGA-particles with chitosan were also prepared. These micro- and nanoparticles were physicochemically characterized and could be clearly distinguished from live/dead stained bacteria in biofilms using confocal laser scanning microscopy.

  5. A blue fluorescent labeling technique utilizing micro- and nanoparticles for tracking in LIVE/DEAD® stained pathogenic biofilms of Staphylococcus aureus and Burkholderia cepacia

    PubMed Central

    Klinger-Strobel, Mareike; Ernst, Julia; Lautenschläger, Christian; Pletz, Mathias W; Fischer, Dagmar; Makarewicz, Oliwia

    2016-01-01

    Strategies that target and treat biofilms are widely applied to bacterial cultures using popular live/dead staining techniques with mostly red or green fluorescent markers (eg, with SYTO® 9, propidium iodide, fluorescein). Therefore, visualizing drugs or micro- and nanoparticulate delivery systems to analyze their distribution and effects in biofilms requires a third fluorescent dye that does not interfere with the properties of the live/dead markers. The present study establishes and evaluates a model for tracking polymeric particles in fluorescently stained biological material. To this end, poly(d,l-lactide-co-glycolide) (PLGA)-based micro- and nanoparticles were used as well-established model systems, which, because of their favorable safety profiles, are expected to play important future roles with regard to drug delivery via inhalation. PLGA was covalently and stably labeled with 7-amino-4-methyl-3-coumarinylacetic acid (AMCA), after which blue fluorescent poly(ethylene glycol)-block-PLGA (PEG-PLGA) particles were prepared using a mixture of fluorescent AMCA-PLGA and PEG-PLGA. Because chitosan is known to reduce negative surface charge, blue fluorescent PEG-PLGA-particles with chitosan were also prepared. These micro- and nanoparticles were physicochemically characterized and could be clearly distinguished from live/dead stained bacteria in biofilms using confocal laser scanning microscopy. PMID:26917959

  6. Monitoring changes in whiting (Merlangius merlangus) fillets stored under modified atmosphere packaging by front face fluorescence spectroscopy and instrumental techniques.

    PubMed

    Hassoun, Abdo; Karoui, Romdhane

    2016-06-01

    Quality assessment of whiting (Merlangius merlangus) fillets stored in normal air (control group) and modified atmosphere packaging (MAP1: 50% N2/50% CO2 and MAP2: 80% N2/20% CO2) for up to 15 days at 4 °C was performed. The physico-chemical [pH, drip loss, moisture content, total volatile basic nitrogen (TVB-N), thiobarbituric acid reactive substances (TBARS) and peroxide value (PV)], textural (i.e., hardness, fragility, gumminess, chewiness, springiness, cohesiveness), and color (i.e., L(∗), a(∗), b(∗)) parameters were determined. Front face fluorescence spectroscopy (FFFS) emission spectra were also scanned on the same samples with excitation set at 290 and 360 nm. The results indicated that MAP treatment, particularly MAP1 had an obvious preservative effect on fish quality by reducing pH value, TBARS and TVB-N contents, and retarding the softening of fish texture compared to control samples. Principal component analysis (PCA) applied to physico-chemical and instrumental data sets showed a clear discrimination of fish samples according to both their storage time and condition. A complete (100%) of correct classification was obtained by the concatenation of spectral, physico-chemical, and instrumental data sets. The results demonstrated that storage under MAP can be recommended to improve quality of whiting fillets, which in turn, can be evaluated by FFFS as a rapid and non-destructive technique.

  7. A novel method for rapid and non-invasive detection of plants senescence using delayed fluorescence technique

    NASA Astrophysics Data System (ADS)

    Zhang, Lingrui; Xing, Da; Wang, Junsheng; Zeng, Lizhang; Li, Qiang

    2007-05-01

    Plants senescence is a phase of plants ontogeny marked by declining photosynthetic activity that is paralleled by a decline in chloroplast function. The photosystem II ( PSII ) in a plant is considered the primary site where light-induced delayed fluorescence (DF) is produced. With the leaves of Catharanthus roseus (Catharanthus roseus (L.) G.Don) as testing models, we have studied the effects of plants senescence induced by dark and/or exogenous hormones treatments on characteristics of DF by using a home-made portable DF detection system, which can enable various DF parameters, such as DF decay kinetic curve and DF intensity, to be rapidly produced for the plants in a short time. The results show that the changes in DF intensity of green plants can truly reflect the changes in photosynthetic capacity and chlorophyll content. Therefore, DF may be used an important means of evaluating in vivo plants senescence physiology. The changes in DF intensity may provide a new approach for the rapid and early detection of plants senescence caused by age or other senescence-related factors. DF technique could be potential useful for high throughput screening and less time-consuming and automated identifying the interesting mutants with genetic modifications that change plants senescence progress.

  8. Measurement of time of travel and dispersion in streams by dye tracing

    USGS Publications Warehouse

    Hubbard, E.F.; Kilpatrick, F.A.; Martens, L.A.; Wilson, J.F.

    1982-01-01

    The use of fluorescent dyes and tracing techniques provides a means for measuring the time-of-travel and dispersion characteristics of steady and gradually varied flow in streams. Measurements of the dispersion and concentration of dyes give insight into the behavior of soluble contaminants that may be introduced into a stream. This manual describes methods of measuring time of travel of water and waterborne solutes by dye tracing. The fluorescent dyes, measuring equipment used, and the field and laboratory procedures are also described. Methods of analysis and presentation to illustrate time-oftravel and dispersion characteristics of streams are provided.

  9. Polyester Fabric's Fluorescent Dyeing in Supercritical Carbon Dioxide and its Fluorescence Imaging.

    PubMed

    Xiong, Xiaoqing; Xu, Yanyan; Zheng, Laijiu; Yan, Jun; Zhao, Hongjuan; Zhang, Juan; Sun, Yanfeng

    2017-03-01

    As one of the most important coumarin-like dyes, disperse fluorescent Yellow 82 exhibits exceptionally large two-photon effects. Here, it was firstly introduced into the supercritical CO2 dyeing polyester fabrics in this work. Results of the present work showed that the dyeing parameters such as the dyeing time, pressure and temperature had remarkable influences on the color strength of fabrics. The optimized dyeing condition in supercritical CO2 dyeing has been proposed that the dyeing time was 60 min; the pressure was 25 MPa and the temperature was 120 °C. As a result, acceptable products were obtained with the wash and rub fastness rating at 5 or 4-5. The polyester fabrics dyed with fluorescent dyes can be satisfied for the requirement of manufacturing warning clothing. Importantly, the confocal microscopy imaging technology was successfully introduced into textile fields to observe the distribution and fluorescence intensity of disperse fluorescent Yellow 82 on polyester fabrics. As far as we know, this is the first report about supercritical CO2 dyeing polyester fabrics based on disperse fluorescent dyes. It will be very helpful for the further design of new fluorescent functional dyes suitable for supercritical CO2 dyeing technique.

  10. Laser-induced fluorescence of green plants. I - A technique for the remote detection of plant stress and species differentiation

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Wood, F. M., Jr.; Mcmurtrey, J. E., III; Newcomb, W. W.

    1984-01-01

    The laser-induced fluorescence (LIF) of green plants was evaluated as a means of remotely detecting plant stress and determining plant type. Corn and soybeans were used as representatives of monocots and dicots, respectively, in these studies. The fluorescence spectra of several plant pigments was excited with a nitrogen laser emitting at 337 nm. Intact leaves from corn and soybeans also fluoresced using the nitrogen laser. The two plant species exhibited fluorescence spectra which had three maxima in common at 440, 690, and 740 nm. However, the relative intensities of these maxima were distinctly different for the two species. Soybeans had an additional slight maxima at 525 nm. Potassium deficiency in corn caused an increase in fluorescence at 690 and 740 nm. Simulated water stress in soybeans resulted in increased fluorescence at 440, 525, 690, and 740 nm. The inhibition of photosynthesis in soybeans by 3-(3-4-dichlorophenyl)-1-1-dimethyl urea (DCMU) gave incresed fluorescence primarily at 690 and 740 nm. Chlorosis as occurring in senescent soybean leaves caused a decrease in fluorescence at 690 and 740 nm. These studies indicate that LIF measurements of plants offer the potential for remotely detecting certain types of stress condition and also for differentiating plant species.

  11. Imaging time-resolved fluorescence characteristics of organelle specific fluorophores and photosensitizers using ps pulsed diode lasers and TCSPC techniques

    NASA Astrophysics Data System (ADS)

    Scalfi-Happ, Claudia; Dolp, Frank; Forster, Florian; Rueck, Angelika

    2004-09-01

    A time-correlated single photon counting (TCSPC) module (SPC-730, Becker & Hickl, Germany) was connected to a laser scanning microscope (Zeiss, Germany) equipped with an ultrafast photomultiplier. Short pulse excitation was achieved with two laser diodes emitting at 398nm and 434nm with a pulse duration of 70ps and 60 ps (PicoQuant, Germany) to allow intracellular fluorescence lifetime imaging (FLIM). With this setup, fluorescence lifetime of the mitochondrial marker Rhodamine 123 could be studied in solution under the same instrumental conditions as used for fluorescence lifetime imaging of cell monolayers. With the same set of parameters, fluorescence lifetime of Rhodamine 123 was calculated with good reproducibility in mitochondria of living cells. We present here a comparison of different fitting routines, including a multiexponential fitting based on the method of Laplace transformation. Fluorescence lifetimes calculated with the multiexponential fitting routine proved to be particularly useful to study the distribution of 5-ALA metabolites in cell monolayers.

  12. An automatic, vigorous-injection assisted dispersive liquid-liquid microextraction technique for stopped-flow spectrophotometric detection of boron.

    PubMed

    Alexovič, Michal; Wieczorek, Marcin; Kozak, Joanna; Kościelniak, Paweł; Balogh, Ioseph S; Andruch, Vasil

    2015-02-01

    A novel automatic vigorous-injection assisted dispersive liquid-liquid microextraction procedure based on the use of a modified single-valve sequential injection manifold (SV-SIA) was developed and applied for determination of boron in water samples. The major novelties in the procedure are the achieving of efficient dispersive liquid-liquid microextraction by means of single vigorous-injection (250 µL, 900 µL s(-1)) of the extraction solvent (n-amylacetate) into aqueous phase resulting in the effective dispersive mixing without using dispersive solvent and after self-separation of the phases, as well as forwarding of the extraction phase directly to a Z-flow cell (10 mm) without the use of a holding coil for stopped-flow spectrophotometric detection. The calibration working range was linear up to 2.43 mg L(-1) of boron at 426nm wavelength. The limit of detection, calculated as 3s of a blank test (n=10), was found to be 0.003 mg L(-1), and the relative standard deviation, measured as ten replicable concentrations at 0.41 mg L(-1) of boron was determined to be 5.6%. The validation of the method was tested using certified reference material.

  13. Application of cell-surface engineering for visualization of yeast in bread dough: development of a fluorescent bio-imaging technique in the mixing process of dough.

    PubMed

    Maeda, Tatsuro; Shiraga, Seizaburo; Araki, Tetsuya; Ueda, Mitsuyoshi; Yamada, Masaharu; Takeya, Koji; Sagara, Yasuyuki

    2009-07-01

    Cell-surface engineering (Ueda et al., 2000) has been applied to develop a novel technique to visualize yeast in bread dough. Enhanced green fluorescent protein (EGFP) was bonded to the surface of yeast cells, and 0.5% EGFP yeasts were mixed into the dough samples at four different mixing stages. The samples were placed on a cryostat at -30 degrees C and sliced at 10 microm. The sliced samples were observed at an excitation wavelength of 480 nm and a fluorescent wavelength of 520 nm. The results indicated that the combination of the EGFP-displayed yeasts, rapid freezing, and cryo-sectioning made it possible to visualize 2-D distribution of yeast in bread dough to the extent that the EGFP yeasts could be clearly distinguished from the auto-fluorescent background of bread dough.

  14. Thermoelectrically cooled semiconductor detectors for non-destructive analysis of works of art by means of energy dispersive X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Cesareo, Roberto; Ettore Gigante, Giovanni; Castellano, Alfredo

    1999-06-01

    Thermoelectrically cooled semiconductor detectors, such as Si-PIN, Si-drift, Cd1-xZnxTe and HgI 2, coupled to miniaturized low-power X-ray tubes, are well suited in portable systems for energy-dispersive X-ray fluorescence (EDXRF), analysis of archaeological samples. The Si-PIN detector is characterized by a thickness of about 300 μm, an area of about 2×3 mm 2, an energy resolution of about 200-250 eV at 5.9 keV and an entrance window of 25-75 μm. The Si-drift detector has approximately the same area and thickness, but an energy resolution of 155 eV at 5.9 keV. The efficiency of these detectors is around 100% from 4 to 10 keV, and then decreases versus energy, reaching ˜9% at 30 keV. Coupled to a miniaturized 10 kV, 0.1 mA, Ca-anode or to a miniaturized 30 kV, 0.1 mA, W-anode X-ray tubes, portable systems can be constructed, which are able to analyse K-lines of elements up to about silver, and L-lines of heavy elements. The Cd 1- xZn xTe detector has an area of 4 mm 2 and a thickness of 3 mm. It has an energy resolution of about 300 eV at 5.9 keV, and an efficiency of 100% over the whole range of X-rays. Finally the HgI 2 detector has an efficiency of about 100% in the whole range of X-rays, and an energy resolution of about 200 eV at 5.9 keV. Coupled to a small 50-60 kV, 1 mA, W-anode X-ray tube, portable systems can be constructed, for the analysis of practically all elements. These systems were applied to analysis in the field of archaeometry and in all applications for which portable systems are needed or at least useful (for example X-ray transmission measurements, X-ray microtomography and so on). Results of in-field use of these detectors and a comparison among these room temperature detectors in relation to concrete applications are presented. More specifically, concerning EDXRF analysis, ancient gold samples were analysed in Rome, in Mexico City and in Milan, ancient bronzes in Sassari, in Bologna, in Chieti and in Naples, and sulfur (due to pollution

  15. Investigation of Essential Element Distribution in the Equine Metacarpophalangeal Joint using a Synchrotron Radiation Micro X-Ray Fluorescence Technique

    SciTech Connect

    Kaabar, Wejdan; Gundogdu, O.; Attenburrow, D.; Bradley, D. A.; Tzaphlidou, M.; Janousch, M.

    2008-05-20

    In articular cartilage, Ca, P, K and S are among some of the well known co-factors of the metalloproteinases enzymatic family, the latter playing a pivotal role in the growth and degeneration of the collagenous bone-cartilage interface of articulating joints. Current study forms part of a larger investigation concerning the distribution of these and other key elements in such media. For the purpose of evaluating these low atomic number elements (Z{<=}20), use was made of the capabilities of the LUCIA Station, located at the synchrotron facility of the Paul Scherrer Institute (PSI). Using an incident radiation energy of 4.06 keV, a synchrotron radiation micro x-ray fluorescence (SR-{mu}XRF) technique was applied in examining the distribution of the essential elements Ca, P, K and S in the bone-cartilage interface of both healthy and diseased (osteoarthritic) areas of an equine metacarpophalangeal joint. The SR-{mu}XRF mappings and line profile patterns have revealed remarkable changes in both the pattern and absolute distributions of these elements, agreeing with the findings of others. The elemental presence shown in the individual area scans encompassing the lesion each reflect the visibly abraded outer surface of the cartilage and change in shape of the bone surface. One of the area scans for the bone-cartilage interface shows a marked change in both the pattern and absolute elemental presence for all three elements compared to that observed at two other scan sites. The observation of change in bone cartilage composition around the surface of the articulating joint is thought to be novel, the variation being almost certainly due to the differing weight-bearing role of the subchondral bone at each locati0008.

  16. Investigation of Essential Element Distribution in the Equine Metacarpophalangeal Joint using a Synchrotron Radiation Micro X-Ray Fluorescence Technique

    NASA Astrophysics Data System (ADS)

    Kaabar, Wejdan; Gundogdu, O.; Tzaphlidou, M.; Janousch, M.; Attenburrow, D.; Bradley, D. A.

    2008-05-01

    In articular cartilage, Ca, P, K and S are among some of the well known co-factors of the metalloproteinases enzymatic family, the latter playing a pivotal role in the growth and degeneration of the collagenous bone-cartilage interface of articulating joints. Current study forms part of a larger investigation concerning the distribution of these and other key elements in such media. For the purpose of evaluating these low atomic number elements (Z⩽20), use was made of the capabilities of the LUCIA Station, located at the synchrotron facility of the Paul Scherrer Institute (PSI). Using an incident radiation energy of 4.06 keV, a synchrotron radiation micro x-ray fluorescence (SR-μXRF) technique was applied in examining the distribution of the essential elements Ca, P, K and S in the bone-cartilage interface of both healthy and diseased (osteoarthritic) areas of an equine metacarpophalangeal joint. The SR-μXRF mappings and line profile patterns have revealed remarkable changes in both the pattern and absolute distributions of these elements, agreeing with the findings of others. The elemental presence shown in the individual area scans encompassing the lesion each reflect the visibly abraded outer surface of the cartilage and change in shape of the bone surface. One of the area scans for the bone-cartilage interface shows a marked change in both the pattern and absolute elemental presence for all three elements compared to that observed at two other scan sites. The observation of change in bone cartilage composition around the surface of the articulating joint is thought to be novel, the variation being almost certainly due to the differing weight-bearing role of the subchondral bone at each location.

  17. Comparison of two novel in-syringe dispersive liquid-liquid microextraction techniques for the determination of iodide in water samples using spectrophotometry.

    PubMed

    Kaykhaii, Massoud; Sargazi, Mona

    2014-01-01

    Two new, rapid methodologies have been developed and applied successfully for the determination of trace levels of iodide in real water samples. Both techniques are based on a combination of in-syringe dispersive liquid-liquid microextraction (IS-DLLME) and micro-volume UV-Vis spectrophotometry. In the first technique, iodide is oxidized with nitrous acid to the colorless anion of ICl2(-) at high concentration of hydrochloric acid. Rhodamine B is added and by means of one step IS-DLLME, the ion-pair formed was extracted into toluene and measured spectrophotometrically. Acetone is used as dispersive solvent. The second method is based on the IS-DLLME microextraction of iodide as iodide/1, 10-phenanthroline-iron((II)) chelate cation ion-pair (colored) into nitrobenzene. Methanol was selected as dispersive solvent. Optimal conditions for iodide extraction were determined for both approaches. Methods are compared in terms of analytical parameters such as precision, accuracy, speed and limit of detection. Both methods were successfully applied to determining iodide in tap and river water samples.

  18. Comparison of two novel in-syringe dispersive liquid-liquid microextraction techniques for the determination of iodide in water samples using spectrophotometry

    NASA Astrophysics Data System (ADS)

    Kaykhaii, Massoud; Sargazi, Mona

    2014-03-01

    Two new, rapid methodologies have been developed and applied successfully for the determination of trace levels of iodide in real water samples. Both techniques are based on a combination of in-syringe dispersive liquid-liquid microextraction (IS-DLLME) and micro-volume UV-Vis spectrophotometry. In the first technique, iodide is oxidized with nitrous acid to the colorless anion of ICl2- at high concentration of hydrochloric acid. Rhodamine B is added and by means of one step IS-DLLME, the ion-pair formed was extracted into toluene and measured spectrophotometrically. Acetone is used as dispersive solvent. The second method is based on the IS-DLLME microextraction of iodide as iodide/1, 10-phenanthroline-iron(II) chelate cation ion-pair (colored) into nitrobenzene. Methanol was selected as dispersive solvent. Optimal conditions for iodide extraction were determined for both approaches. Methods are compared in terms of analytical parameters such as precision, accuracy, speed and limit of detection. Both methods were successfully applied to determining iodide in tap and river water samples.

  19. Binding of fluorescent acridine dyes acridine orange and 9-aminoacridine to hemoglobin: Elucidation of their molecular recognition by spectroscopy, calorimetry and molecular modeling techniques.

    PubMed

    Chatterjee, Sabyasachi; Kumar, Gopinatha Suresh

    2016-06-01

    The molecular interaction between hemoglobin (HHb), the major human heme protein, and the acridine dyes acridine orange (AO) and 9-aminoacridine (9AA) was studied by various spectroscopic, calorimetric and molecular modeling techniques. The dyes formed stable ground state complex with HHb as revealed from spectroscopic data. Temperature dependent fluorescence data showed the strength of the dye-protein complexation to be inversely proportional to temperature and the fluorescence quenching was static in nature. The binding-induced conformational change in the protein was investigated using circular dichroism, synchronous fluorescence, 3D fluorescence and FTIR spectroscopy results. Circular dichroism data also quantified the α-helicity change in hemoglobin due to the binding of acridine dyes. Calorimetric studies revealed the binding to be endothermic in nature for both AO and 9AA, though the latter had higher affinity, and this was also observed from spectroscopic data. The binding of both dyes was entropy driven. pH dependent fluorescence studies revealed the existence of electrostatic interaction between the protein and dye molecules. Molecular modeling studies specified the binding site and the non-covalent interactions involved in the association. Overall, the results revealed that a small change in the acridine chromophore leads to remarkable alteration in the structural and thermodynamic aspects of binding to HHb.

  20. A new technique for improving the dispersion of a set of samples. Application in multi-query motion planning

    NASA Astrophysics Data System (ADS)

    Khaksar, Weria; Hong, Tang Sai; Sahari, Khairul Salleh Bin Mohamed; Khaksar, Mansoor

    2015-05-01

    In this paper, we proposed a new learning strategy for probabilistic roadmap (PRM) algorithm. The proposed strategy is based on reducing the dispersion of the generated set of samples. We defined a forbidden range around each selected sample and ignore this region in further sampling. The resulted planner called LD-PRM is an effective multi-query sampling-based planner which is able to solve motion planning queries with smaller graphs. Simulation results indicated that the proposed planner improve the runtime of the PRM algorithm. Furthermore, the proposed planner is able to solve difficult motion planning cases including narrow passages and bug traps, which is a difficult task for classic sampling-based algorithms. For measuring the uniformity of the generated samples, a new algorithm was created to measure the dispersion of a set of samples based on any desired resolution. Also, comparison studies are provided to support the superiority claim of the proposed algorithm.

  1. A High-precision Technique to Correct for Residual Atmospheric Dispersion in High-contrast Imaging Systems

    NASA Astrophysics Data System (ADS)

    Pathak, P.; Guyon, O.; Jovanovic, N.; Lozi, J.; Martinache, F.; Minowa, Y.; Kudo, T.; Takami, H.; Hayano, Y.; Narita, N.

    2016-12-01

    Direct detection and spectroscopy of exoplanets requires high-contrast imaging. For habitable exoplanets in particular, located at a small angular separation from the host star, it is crucial to employ small inner working angle (IWA) coronagraphs that efficiently suppress starlight. These coronagraphs, in turn, require careful control of the wavefront that directly impacts their performance. For ground-based telescopes, atmospheric refraction is also an important factor, since it results in a smearing of the point-spread function (PSF), that can no longer be efficiently suppressed by the coronagraph. Traditionally, atmospheric refraction is compensated for by an atmospheric dispersion compensator (ADC). ADC control relies on an a priori model of the atmosphere whose parameters are solely based on the pointing of the telescope, which can result in imperfect compensation. For a high-contrast instrument like the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system, which employs very small IWA coronagraphs, refraction-induced smearing of the PSF has to be less than 1 mas in the science band for optimum performance. In this paper, we present the first on-sky measurement and correction of residual atmospheric dispersion. Atmospheric dispersion is measured from the science image directly, using an adaptive grid of artificially introduced speckles as a diagnostic to feedback to the telescope’s ADC. With our current setup, we were able to reduce the initial residual atmospheric dispersion from 18.8 mas to 4.2 in broadband light (y- to H-band) and to 1.4 mas in the H-band only. This work is particularly relevant to the upcoming extremely large telescopes (ELTs) that will require fine control of their ADC to reach their full high-contrast imaging potential.

  2. An extraction technique for analytical sample preparation in aqueous solution based on controlling dispersion of ionic surfactant assemblies in isotachophoretic migration.

    PubMed

    Wang, Tianlin; Qin, Yexin; He, Haibo; Lv, Jun; Fan, Yong

    2011-01-07

    An extraction technique for analytical sample preparation in aqueous solution has been developed based on controlling dispersion of ionic surfactant assemblies. An extraction technique was realized based on controlling dispersion of the ionic surfactant assemblies in their isotachophoretic migration during the extraction by arranging the solutions of leading electrolyte, ionic surfactant and terminating electrolyte in order and applying voltage. Potential of the technique for analytical sample preparation in aqueous solution has been demonstrated by extracting a model sample of four alkylphenones, which were analyzed by HPLC after the extraction. The extraction showed concentration effects on all the four alkylphenones of butyrophenone, valerophenone, hexanophenone and heptanophenone in the model sample. The enrichment factors were 5.29, 7.70, 7.25 and 7.49 for the four alkylphenones of butyrophenone, valerophenone, hexanophenone and heptanophenone, respectively. Linear relationship was obtained with all the four alkylphenones between their chromatographic peak areas before and after the extraction in the range of concentration from 0.05 ppm to 1.5 ppm. The RSD of the chromatographic peak areas in triplicate extractions was 7.97%, 3.75%, 2.91% and 4.45% for butyrophenone, valerophenone, hexanophenone and heptanophenone, respectively. Advantages of the extraction technique developed include ease of operation, low reagent cost, no consumption of organic solvents and no requirement for additional phase separation.

  3. Modeling techniques and fluorescence imaging investigation of the interactions of an anthraquinone derivative with HSA and ctDNA.

    PubMed

    Fu, Zheng; Cui, Yanrui; Cui, Fengling; Zhang, Guisheng

    2016-01-15

    A new anthraquinone derivative (AORha) was synthesized. Its interactions with human serum albumin (HSA) and calf thymus DNA (ctDNA) were investigated by fluorescence spectroscopy, UV-visible absorption spectroscopy and molecular modeling. Cell viability assay and cell imaging experiment were performed using cervical cancer cells (HepG2 cells). The fluorescence results revealed that the quenching mechanism was static quenching. At different temperatures (290, 300, 310 K), the binding constants (K) and the number of binding sites (n) were determined, respectively. The positive ΔH and ΔS values showed that the binding of AORha with HSA was hydrophobic force, which was identical with the molecular docking result. Studying the fluorescence spectra, UV spectra and molecular modeling also verified that the binding mode of AORha and ctDNA might be intercalative. When HepG2 cells were treated with AORha, the fluorescence became brighter and turned green, which could be used for bioimaging.

  4. Modeling techniques and fluorescence imaging investigation of the interactions of an anthraquinone derivative with HSA and ctDNA

    NASA Astrophysics Data System (ADS)

    Fu, Zheng; Cui, Yanrui; Cui, Fengling; Zhang, Guisheng

    2016-01-01

    A new anthraquinone derivative (AORha) was synthesized. Its interactions with human serum albumin (HSA) and calf thymus DNA (ctDNA) were investigated by fluorescence spectroscopy, UV-visible absorption spectroscopy and molecular modeling. Cell viability assay and cell imaging experiment were performed using cervical cancer cells (HepG2 cells). The fluorescence results revealed that the quenching mechanism was static quenching. At different temperatures (290, 300, 310 K), the binding constants (K) and the number of binding sites (n) were determined, respectively. The positive ΔH and ΔS values showed that the binding of AORha with HSA was hydrophobic force, which was identical with the molecular docking result. Studying the fluorescence spectra, UV spectra and molecular modeling also verified that the binding mode of AORha and ctDNA might be intercalative. When HepG2 cells were treated with AORha, the fluorescence became brighter and turned green, which could be used for bioimaging.

  5. Novel supercritical carbon dioxide impregnation technique for the production of amorphous solid drug dispersions: a comparison to hot melt extrusion.

    PubMed

    Potter, Catherine; Tian, Yiwei; Walker, Gavin; McCoy, Colin; Hornsby, Peter; Donnelly, Conor; Jones, David S; Andrews, Gavin P

    2015-05-04

    The formulation of BCS Class II drugs as amorphous solid dispersions has been shown to provide advantages with respect to improving the aqueous solubility of these compounds. While hot melt extrusion (HME) and spray drying (SD) are among the most common methods for the production of amorphous solid dispersions (ASDs), the high temperatures often required for HME can restrict the processing of thermally labile drugs, while the use of toxic organic solvents during SD can impact on end-product toxicity. In this study, we investigated the potential of supercritical fluid impregnation (SFI) using carbon dioxide as an alternative process for ASD production of a model poorly water-soluble drug, indomethacin (INM). In doing so, we produced ASDs without the use of organic solvents and at temperatures considerably lower than those required for HME. Previous studies have concentrated on the characterization of ASDs produced using HME or SFI but have not considered both processes together. Dispersions were manufactured using two different polymers, Soluplus and polyvinylpyrrolidone K15 using both SFI and HME and characterized for drug morphology, homogeneity, presence of drug-polymer interactions, glass transition temperature, amorphous stability of the drug within the formulation, and nonsink drug release to measure the ability of each formulation to create a supersaturated drug solution. Fully amorphous dispersions were successfully produced at 50% w/w drug loading using HME and 30% w/w drug loading using SFI. For both polymers, formulations containing 50% w/w INM, manufactured via SFI, contained the drug in the γ-crystalline form. Interestingly, there were lower levels of crystallinity in PVP dispersions relative to SOL. FTIR was used to probe for the presence of drug-polymer interactions within both polymer systems. For PVP systems, the nature of these interactions depended upon processing method; however, for Soluplus formulations this was not the case. The area under

  6. Tracking the dispersion of Scaphoideus titanus Ball (Hemiptera: Cicadellidae) from wild to cultivated grapevine: use of a novel mark-capture technique.

    PubMed

    Lessio, F; Tota, F; Alma, A

    2014-08-01

    The dispersion of Scaphoideus titanus Ball adults from wild to cultivated grapevines was studied using a novel mark-capture technique. The crowns of wild grapevines located at a distance from vineyards ranging from 5 to 330 m were sprayed with a water solution of either cow milk (marker: casein) or chicken egg whites (marker: albumin) and insects captured in yellow sticky traps placed on the canopy of grapes were analyzed via an indirect ELISA for markers' identification. Data were subject to exponential regression as a function of distance from wild grapevine, and to spatial interpolation (Inverse Distance Weighted and Kernel interpolation with barriers) using ArcGIS Desktop 10.1 software. The influence of rainfall and time elapsed after marking on markers' effectiveness, and the different dispersion of males and females were studied with regression analyses. Of a total of 5417 insects analyzed, 43% were positive to egg; whereas 18% of 536 tested resulted marked with milk. No influence of rainfall or time elapsed was observed for egg, whereas milk was affected by time. Males and females showed no difference in dispersal. Marked adults decreased exponentially along with distance from wild grapevine and up to 80% of them were captured within 30 m. However, there was evidence of long-range dispersal up to 330 m. The interpolation maps showed a clear clustering of marked S. titanus close to the treated wild grapevine, and the pathways to the vineyards did not always seem to go along straight lines but mainly along ecological corridors. S. titanus adults are therefore capable of dispersing from wild to cultivated grapevine, and this may affect pest management strategies.

  7. Nucleic acid distribution pattern in avian erythrocytes and mammalian lymphocytes: comparative studies by fluorescence microscopy and digital imaging analytical techniques.

    PubMed

    Isitor, G N; Asgarali, Z; Pouching, K

    2008-12-01

    Nucleated erythrocytes of healthy domestic chicken and ducks, and lymphocytes of healthy Sprague Dawley rats were evaluated for nucleic acid distribution pattern, employing light and fluorescence microscopy procedures, as well as digital imaging analytical methods. The results demonstrate a unique organization of nuclear DNA of mature chicken and duck erythrocytes, as well as immature duck erythrocytes, as delineated spherical nuclear bodies that mostly corresponded with euchromatin zones of the cells in routine Wright-stain blood smears. The nuclear DNA of the rat lymphocytes, on the other hand, was observed as a more diffuse green fluorescing nuclear areas, with punctate variably-sized diffuse areas of RNA red fluorescence. RNA red color fluorescence was also evident in the narrow cytoplasm of the lymphocytes, especially in large lymphocytes, in comparison with the cytoplasm of the mature avian erythrocytes that completely lacked any nucleic acid fluorescence. Nuclear RNA fluorescence was lacking in the mature chicken erythrocytes, compared with those of the mature and immature duck erythrocytes as well as lymphocytes of both avian and rats blood. The significance of these findings lies in the establishment of normal benchmarks for the nuclear and cytoplasmic nucleic acid pattern in eukaryotic cells. These normal benchmarks become valuable in rapid diagnostic situations associated with pathologies, such as the presence of viral nuclear and cytoplasmic inclusion bodies that can alter the nucleic acid pattern of the host cells, and in conditions of cellular abnormal protein aggregations. Variability of cellular nucleic acid pattern can also aid in prognostic assessments of neoplastic conditions.

  8. Ionic-liquid-based dispersive liquid-liquid microextraction combined with magnetic solid-phase extraction for the determination of aflatoxins B1 , B2 , G1 , and G2 in animal feeds by high-performance liquid chromatography with fluorescence detection.

    PubMed

    Zhao, Jiao; Zhu, Yan; Jiao, Yang; Ning, Jinyan; Yang, Yaling

    2016-10-01

    A novel two-step extraction technique combining ionic-liquid-based dispersive liquid-liquid microextraction with magnetic solid-phase extraction was developed for the preconcentration and separation of aflatoxins in animal feedstuffs before high-performance liquid chromatography coupled with fluorescence detection. In this work, ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate was used as the extractant in dispersive liquid-liquid microextraction, and hydrophobic pelargonic acid modified Fe3 O4 magnetic nanoparticles as an efficient adsorbent were applied to retrieve the aflatoxins-containing ionic liquid. Notably, the target of magnetic nanoparticles was the ionic liquid rather than the aflatoxins. Because of the rapid mass transfer associated with the dispersive liquid-liquid microextraction and magnetic solid phase steps, fast extraction could be achieved. The main parameters affecting the extraction recoveries of aflatoxins were investigated and optimized. Under the optimum conditions, vortexing at 2500 rpm for 1 min in the dispersive liquid-liquid microextraction and magnetic solid-phase extraction and then desorption by sonication for 2 min with acetonitrile as eluent. The recoveries were 90.3-103.7% with relative standard deviations of 3.2-6.4%. Good linearity was observed with correlation coefficients ranged from 0.9986 to 0.9995. The detection limits were 0.632, 0.087, 0.422 and 0.146 ng/mL for aflatoxins B1 , B2, G1, and G2, respectively. The results were also compared with the pretreatment method carried out by conventional immunoaffinity columns.

  9. A new approach to prepare well-dispersed CaF(2) nanoparticles by spray drying technique.

    PubMed

    Sun, Limin; Chow, Laurence C; Bonevich, John E; Wang, Tongxin; Mitchell, James W

    2011-08-01

    Previously, nano-sized calcium fluoride (CaF₂) particles were prepared using a spray drying method by simultaneously feeding Ca(OH)₂ and NH₄F solutions to a two-liquid nozzle. The aim of the present study was to prepare better-dispersed nano-CaF₂ particles by co-forming a soluble salt, sodium chloride (NaCl). NaCl of various concentrations were added to the NH(4) F solution, leading to formation of (CaF₂ +NaCl) composites with CaF₂ /NaCl molar ratios of 4/1, 4/4, and 4/16. Pure nano-CaF₂ was also prepared as the control. Powder X-ray diffraction analysis showed that the products contained crystalline CaF₂ and NaCl. Scanning electron microscopy examinations showed that both the CaF₂ /NaCl composite and pure CaF₂ particles were about (50-800) nm in size and consisted of primary CaF₂ particles of < 50 nm in size. BET surface area measurements showed similar primary particle sizes for all samples. Dynamic light scattering measurements showed that the washed (CaF₂+NaCl) particles were much smaller than the pure CaF₂ as the dissolution of NaCl "freed" most of the primary CaF₂ particles, leading to a greater degree of particle dispersion. The well-dispersed nano-CaF₂ may be expected to be a more effective anticaries agent than NaF by providing longer lasting elevations of fluoride concentrations in oral fluids.

  10. Nondestructive characterization of municipal-solid-waste-contaminated surface soil by energy-dispersive X-ray fluorescence and low-Z (atomic number) particle electron probe X-ray microanalysis.

    PubMed

    Gupta, Dhrubajyoti; Ghosh, Rita; Mitra, Ajoy K; Roy, Subinit; Sarkar, Manoranjan; Chowdhury, Subhajit; Bhowmik, Asit; Mukhopadhyay, Ujjal; Maskey, Shila; Ro, Chul-Un

    2011-11-01

    The long-term environmental impact of municipal solid waste (MSW) landfilling is still under investigation due to the lack of detailed characterization studies. A MSW landfill site, popularly known as Dhapa, in the eastern fringe of the metropolis of Kolkata, India, is the subject of present study. A vast area of Dhapa, adjoining the current core MSW dump site and evolving from the raw MSW dumping in the past, is presently used for the cultivation of vegetables. The inorganic chemical characteristics of the MSW-contaminated Dhapa surface soil (covering a 2-km stretch of the area) along with a natural composite (geogenic) soil sample (from a small countryside farm), for comparison, were investigated using two complementary nondestructive analytical techniques, energy-dispersive X-ray fluorescence (EDXRF) for bulk analysis and low-Z (atomic number) particle electron probe X-ray microanalysis (low-Z particle EPMA) for single-particle analysis. The bulk concentrations of K, Rb, and Zr remain almost unchanged in all the soil samples. The Dhapa soil is found to be polluted with heavy metals such as Cu, Zn, and Pb (highly elevated) and Ti, Cr, Mn, Fe, Ni, and Sr (moderately elevated), compared to the natural countryside soil. These high bulk concentration levels of heavy metals were compared with the Ecological Soil Screening Levels for these elements (U.S. Environment Protection Agency) to assess the potential risk on the immediate biotic environment. Low-Z particle EPMA results showed that the aluminosilicate-containing particles were the most abundant, followed by SiO2, CaCO3-containing, and carbonaceous particles in the Dhapa samples, whereas in the countryside sample only aluminosilicate-containing and SiO2 particles were observed. The mineral particles encountered in the countryside sample are solely of geogenic origin, whereas those from the Dhapa samples seem to have evolved from a mixture of raw dumped MSW, urban dust, and other contributing factors such as wind

  11. Development of a pronuclear DNA microinjection technique for production of green fluorescent protein-expressing bubaline (Bubalus bubalis) embryos.

    PubMed

    Verma, V; Gautam, S K; Palta, P; Manik, R S; Singla, S K; Chauhan, M S

    2008-04-01

    Oocytes from abattoir-derived bubaline (Bubalus bubalis) ovaries were subjected to IVM and IVF; the objective was to develop a pronuclear DNA microinjection technique to produce embryos expressing green fluorescent protein (GFP). The largest proportion (61.2%) of zygotes in which one (1 PN) or two pronuclei (2 PN) were visible was when centrifugation (14,000 x g for 15 min) was done 16 h after insemination. Centrifugation had no adverse effects on cleavage rate, development to morulae/blastocysts, and total cell number of embryos. Piercing the pronuclear but not the plasma membrane reduced (P<0.05) cleavage rate (44.0% vs. 51.0%), without affecting subsequent development. Following microinjection of a GFP-DNA construct, cleavage rate (55.9, 38.9, and 30.9%) and proportion of cleaved embryos that developed to morulae (39.9, 25.6, and 15.5%) and blastocyst stages (22.4, 13.4, and 2.8%) were higher (P<0.05) for non-injected controls than for those injected with buffer alone, which, in turn, were higher (P<0.05) than for those injected with buffer containing 5 microg/mL DNA. The cleavage rate (39.2% vs. 34.8%) and proportion of cleaved embryos that developed to morulae/blastocysts (37.5% vs. 10.9%) were higher (P<0.05) for microinjected zygotes with 2 PN than for those with 1 PN. The cleavage rate and the proportion of cleaved embryos that developed to morulae and blastocysts were higher (P<0.05) following culture of microinjected zygotes in mCR2aa medium (40.7, 32.7, and 9.1%, respectively) compared to those for mSOFaa (33.3, 26.0, and 6.5%, respectively) or after culture in TCM-199+co-culture with buffalo oviductal epithelial cells (31.2, 25.0, and 4.5%, respectively). The proportion of embryos expressing GFP was higher (P<0.01) for 2 PN than for 1 PN zygotes (15.9% vs. 13.7%). Thirty-five embryos expressed GFP; the proportion of mosaic embryos (62.8%) was higher (P<0.01) than of embryos in which all blastomeres expressed GFP (37.2%); eight and two of those embryos

  12. Evidence for the production of marine fluorescence dissolved organic matter in coastal environments and a possible mechanism for formation and dispersion

    EPA Science Inventory

    A positive linear relationship between salinity and fluorescent dissolved organic matter (FDOM) was observed on several occasions along the West Florida shelf at salinities greater than 36.5. This represents a departure from the typical inverse relationship between FDOM and salin...

  13. Fluorescent microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, A.

    1978-01-01

    Latex particles with attached antibodies have potential biochemical and environmental applications. Human red blood cells and lymphocytes have been labeled with fluorescent microspheres by either direct or indirect immunological technique. Immunolatex spheres can also be used for detecting and localizing specific cell surface receptors. Hormones and toxins may also be bondable.

  14. Enhancement of the dissolution profile of Tenoxicam by a solid dispersion technique and its analytical evaluation using HPLC.

    PubMed

    Darwish, M K; Foad, M M

    2009-02-01

    The aim of the present study was to improve the dissolution, and therefore the bioavailability, of poorly water-soluble tenoxicam. Solid dispersions consisting of tenoxicam with two different types of polymers were prepared. The first type were PVP(30) and β-cyclodextrin and the second type were two superdisintegrants, explotab and croscarmellose sodium. A solid dispersion with an explotab ratio of 1:1 (F(8)) had the best dissolution profile compared to all of the prepared solid dispersions as well as the pure drug, which was then formulated into tablets (T(2)F(8)). T(2)F(8) had far better dissolution than commercial tablets, releasing only 28.3% of the drug, while T(2)F(8) exhibited 96.5% drug release in 20 min. T(2)F(8) was subjected to analytical validation as well as stability studies. The formulation was found to be stable after storage at 40°C for one month, 40°C and 75% relative humidity (40°C/75% RH) for one month, and 60°C for 15 days; this was confirmed by the absence of degraded product prepared in the laboratory by refluxing the drug with 1 N NaOH for 15 min. Infrared (IR) spectroscopy and differential scanning calorimetry (DSC) were performed on T(2)F(8) to identify physicochemical interactions between the drug and carrier, hence its effect on dissolution. A simple and rapid HPLC method was also developed to determine tenoxicam in human plasma and was then used in a pharmacokinetic study. Plasma samples were analyzed on a C(18) column with a mobile phase of 0.02 M sodium acetate:acetonitrile: methanol (7:2.5:0.5, v/v/v) and UV detection at 375 nm. The linear range of the plasma concentration was 1-16 μg/mL with a detection limit of 158 ng/mL. Within-day and between-day precision expressed as the relative standard deviation was less than 2%. The proposed method was successfully used in a bioequivalence study in healthy volunteers and mean pharmacokinetic parameters were calculated.

  15. Ionic liquid foam floatation coupled with ionic liquid dispersive liquid-liquid microextraction for the separation and determination of estrogens in water samples by high-performance liquid chromatography with fluorescence detection.

    PubMed

    Zhang, Rui; Wang, Chuanliu; Yue, Qiaohong; Zhou, Tiecheng; Li, Na; Zhang, Hanqi; Hao, Xiaoke

    2014-11-01

    An ionic liquid foam floatation coupled with ionic liquid dispersive liquid-liquid microextraction method was proposed for the extraction and concentration of 17-α-estradiol, 17-β-estradiol-benzoate, and quinestrol in environmental water samples by high-performance liquid chromatography with fluorescence detection. 1-Hexyl-3-methylimidazolium tetrafluoroborate was applied as foaming agent in the foam flotation process and dispersive solvent in microextraction. The introduction of the ion-pairing and salting-out agent NH4 PF6 was beneficial to the improvement of recoveries for the hydrophobic ionic liquid phase and analytes. Parameters of the proposed method including concentration of 1-hexyl-3-methylimidazolium tetrafluoroborate, flow rate of carrier gas, floatation time, types and concentration of ionic liquids, salt concentration in samples, extraction time, and centrifugation time were evaluated. The recoveries were between 98 and 105% with relative standard deviations lower than 7% for lake water and well water samples. The isolation of the target compounds from the water was found to be efficient, and the enrichment factors ranged from 4445 to 4632. This developing method is free of volatile organic solvents compared with regular extraction. Based on the unique properties of ionic liquids, the application of foam floatation, and dispersive liquid-liquid microextraction was widened.

  16. Speciation of AsIII and AsV in fruit juices by dispersive liquid–liquid microextraction and hydride generation-atomic fluorescence spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new procedure was developed to speciate and quantify As(III) and As(V) in fruit juices. At pH 3.0, As(III) and ammonium pyrrolidine dithiocarbamate (APDC) formed a complex, which was extracted into carbon tetrachloride by dispersive liquid–liquid microextraction (DLLME) and subsequently quantified...

  17. Self-assembly and reactive molding techniques for controlling the interface and dispersion of the particulate phase in nanocomposites

    NASA Astrophysics Data System (ADS)

    Pranger, Lawrence A.

    This research explored the processing and properties of PNCs using a polyfurfural alcohol (PFA) matrix. The precursor for PFA, furfuryl alcohol (FA) is sourced from feedstocks rich in hemicellulose, such as corn cobs, oat hulls and wood. To exploit FA as a polymerizable solvent, cellulose whiskers (CW) and montmorillonite clay (MMT) were used as the nanoparticle phase. Results from PNC processing show that CW and MMT can be dispersed in the PFA matrix by means of insitu polymerization, without the use of surfactants or dilution in solvents. Both CW and MMT nanoparticles catalyze the polymerization of furfuryl alcohol (FA). Moreover, the insitu intercalative polymerization of FA in the interlayer galleries of MMT leads to the complete exfoliation of the MMT in the PFA matrix. CW and MMT both function as effective matrix modifiers, increasing the thermal stability of PFA nanocomposites compared to pure PFA polymer. The increased thermal stability is seen as significant increases in the onset of degradation and in residual weight at high temperature. This research also explored the surface functionalization of Cu, Ni and Pt substrates by self-assembly of a range of difunctional linker molecules. Characterization by XPS and PM-IRRAS indicate that diisocyanides and dicarboxylic acids both form chemically "sticky" surfaces after self-assembly on Cu and Ni. Sticky surfaces may provide a means of increasing nanoparticle dispersion in metal nanocluster filled PNCs, by increasing their interaction with the matrix polymer. Another potential application for sticky surfaces on Cu is in the ongoing miniaturization of circuit boards. The functionalization of Cu bond pad substrates with linker molecules may provide an alternate means of bonding components to their bond pads, with higher placement accuracy compared to solder bumps.

  18. Fluorescence Based Primer Extension Technique to Determine Transcriptional Starting Points and Cleavage Sites of RNases In Vivo

    PubMed Central

    Schuster, Christopher F.; Bertram, Ralph

    2014-01-01

    Fluorescence based primer extension (FPE) is a molecular method to determine transcriptional starting points or processing sites of RNA molecules. This is achieved by reverse transcription of the RNA of interest using specific fluorescently labeled primers and subsequent analysis of the resulting cDNA fragments by denaturing polyacrylamide gel electrophoresis. Simultaneously, a traditional Sanger sequencing reaction is run on the gel to map the ends of the cDNA fragments to their exact corresponding bases. In contrast to 5'-RACE (Rapid Amplification of cDNA Ends), where the product must be cloned and multiple candidates sequenced, the bulk of cDNA fragments generated by primer extension can be simultaneously detected in one gel run. In addition, the whole procedure (from reverse transcription to final analysis of the results) can be completed in one working day. By using fluorescently labeled primers, the use of hazardous radioactive isotope labeled reagents can be avoided and processing times are reduced as products can be detected during the electrophoresis procedure. In the following protocol, we describe an in vivo fluorescent primer extension method to reliably and rapidly detect the 5' ends of RNAs to deduce transcriptional starting points and RNA processing sites (e.g., by toxin-antitoxin system components) in S. aureus, E. coli and other bacteria. PMID:25406941

  19. Measurement of Bluetongue Virus Binding to a Mammalian Cell Surface Receptor by an In Situ Immune Fluorescent Staining Technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A quantifiable in situ immune fluorescent assay (IFA) was developed to measure bluetongue virus (BTV) binding to mammalian cells. The utility of the assay was demonstrated with both Chinese hamster ovary (CHO) and bovine pulmonary artery endothelial (CPAE) cells. Since heparin sulfate (HS) has been ...

  20. Microfluidic chip based micro RNA detection through the combination of fluorescence and surface enhanced Raman scattering techniques.

    PubMed

    Wang, Zhile; Zong, Shenfei; Wang, Zhuyuan; Wu, Lei; Chen, Peng; Yun, Binfeng; Cui, Yiping

    2017-03-10

    We present a novel microfluidic chip based method for the detection of micro RNA (miRNA) via the combination of fluorescence and surface enhanced Raman scattering (SERS) spectroscopies. First, silver nanoparticles (Ag NPs) are immobilized onto a glass slide, forming a SERS enhancing substrate. Then a specificially designed molecular beacon (MB) is attached to the SERS substrate. The 3' end of the MB is decorated with a thiol group to facilitate the attachment of the MB, while the 5' end of the MB is labeled with an organic dye 6-FAM, which is used both as the fluorophore and SERS reporter. In the absence of target miRNA, the MB will form a hairpin structure, making 6-FAM close to the Ag NPs. Hence, the fluorescence of 6-FAM will be quenched and the Raman signal of 6-FAM will be enhanced. On the contrary, with target miRNA present, hybridization between the miRNA and MB will unfold the MB and increase the distance between 6-FAM and the Ag NPs. Thus the fluorescence of 6-FAM will recover and the SERS signal of 6-FAM will decrease. So the target miRNA will simultaneously introduce opposite changing trends in the intensities of the fluorescence and SERS signals. By combining the opposite changes in the two optical spectra, an improved sensitivity and linearity toward the target miRNA is achieved as compared with using solely fluorescence or SERS. Moreover, introducing the microfluidic chip can reduce the reaction time, reagent dosage and complexity of detection. With the improved sensitivity and simplicity, we anticipate that the presented method can have great potential in the investigation of miRNA related diseases.

  1. Microfluidic chip based micro RNA detection through the combination of fluorescence and surface enhanced Raman scattering techniques

    NASA Astrophysics Data System (ADS)

    Wang, Zhile; Zong, Shenfei; Wang, Zhuyuan; Wu, Lei; Chen, Peng; Yun, Binfeng; Cui, Yiping

    2017-03-01

    We present a novel microfluidic chip based method for the detection of micro RNA (miRNA) via the combination of fluorescence and surface enhanced Raman scattering (SERS) spectroscopies. First, silver nanoparticles (Ag NPs) are immobilized onto a glass slide, forming a SERS enhancing substrate. Then a specificially designed molecular beacon (MB) is attached to the SERS substrate. The 3‧ end of the MB is decorated with a thiol group to facilitate the attachment of the MB, while the 5‧ end of the MB is labeled with an organic dye 6-FAM, which is used both as the fluorophore and SERS reporter. In the absence of target miRNA, the MB will form a hairpin structure, making 6-FAM close to the Ag NPs. Hence, the fluorescence of 6-FAM will be quenched and the Raman signal of 6-FAM will be enhanced. On the contrary, with target miRNA present, hybridization between the miRNA and MB will unfold the MB and increase the distance between 6-FAM and the Ag NPs. Thus the fluorescence of 6-FAM will recover and the SERS signal of 6-FAM will decrease. So the target miRNA will simultaneously introduce opposite changing trends in the intensities of the fluorescence and SERS signals. By combining the opposite changes in the two optical spectra, an improved sensitivity and linearity toward the target miRNA is achieved as compared with using solely fluorescence or SERS. Moreover, introducing the microfluidic chip can reduce the reaction time, reagent dosage and complexity of detection. With the improved sensitivity and simplicity, we anticipate that the presented method can have great potential in the investigation of miRNA related diseases.

  2. Dielectric controlled excited state relaxation pathways of a representative push-pull stilbene: A mechanistic study using femtosecond fluorescence up-conversion technique

    NASA Astrophysics Data System (ADS)

    Rafiq, Shahnawaz; Sen, Pratik

    2013-02-01

    Femtosecond fluorescence up-conversion technique was employed to reinvestigate the intriguing dependence of fluorescence quantum yield of trans-4-dimethylamino-4'-nitrostilbene (DNS) on dielectric properties of the media. In polar solvents, such as methanol and acetonitrile, the two time components of the fluorescence transients were assigned to intramolecular charge transfer (ICT) dynamics and to the depletion of the ICT state to the ground state via internal conversion along the torsional coordinate of nitro moiety. The viscosity independence of the first time component indicates the absence of any torsional coordinate in the charge transfer process. In slightly polar solvent (carbon tetrachloride) the fluorescence transients show a triple exponential behavior. The first time component was assigned to the formation of the ICT state on a 2 ps time scale. Second time component was assigned to the relaxation of the ICT state via two torsion controlled channels. First channel involves the torsional motion about the central double bond leading to the trans-cis isomerization via a conical intersection or avoided crossing. The other channel contributing to the depopulation of ICT state involves the torsional coordinates of dimethylanilino and/or nitrophenyl moieties and leads to the formation of a conformationally relaxed state, which subsequently relaxes back to the ground state radiatively, and is responsible for the high fluorescence quantum yield of DNS in slightly polar solvents such as carbon tetrachloride, toluene, etc. The excited singlet state which is having a dominant π-π* character may also decay via intersystem crossing to the n-π* triplet manifold and thus accounts for the observed triplet yield of the molecule in slightly polar solvents.

  3. A comparison of planar, laser-induced fluorescence, and high-sensitivity interferometry techniques for gas-puff nozzle density measurements

    SciTech Connect

    Jackson, S. L.; Weber, B. V.; Mosher, D.; Phipps, D. G.; Stephanakis, S. J.; Commisso, R. J.; Qi, N.; Failor, B. H.; Coleman, P. L.

    2008-10-15

    The distribution of argon gas injected by a 12-cm-diameter triple-shell nozzle was characterized using both planar, laser-induced fluorescence (PLIF) and high-sensitivity interferometry. PLIF is used to measure the density distribution at a given time by detecting fluorescence from an acetone tracer added to the gas. Interferometry involves making time-dependent, line-integrated gas density measurements at a series of chordal locations that are then Abel inverted to obtain the gas density distribution. Measurements were made on nominally identical nozzles later used for gas-puff Z-pinch experiments on the Saturn pulsed-power generator. Significant differences in the mass distributions obtained by the two techniques are presented and discussed, along with the strengths and weaknesses of each method.

  4. Oil species identification technique developed by Gabor wavelet analysis and support vector machine based on concentration-synchronous-matrix-fluorescence spectroscopy.

    PubMed

    Wang, Chunyan; Shi, Xiaofeng; Li, Wendong; Wang, Lin; Zhang, Jinliang; Yang, Chun; Wang, Zhendi

    2016-03-15

    Concentration-synchronous-matrix-fluorescence (CSMF) spectroscopy was applied to discriminate the oil species by characterizing the concentration dependent fluorescence properties of petroleum related samples. Seven days weathering experiment of 3 crude oil samples from the Bohai Sea platforms of China was carried out under controlled laboratory conditions and showed that weathering had no significant effect on the CSMF spectra. While different feature extraction methods, such as PCA, PLS and Gabor wavelet analysis, were applied to extract discriminative patterns from CSMF spectra, classifications were made via SVM to compare their respective performance of oil species recognition. Ideal correct rates of oil species recognition of 100% for the different types of oil spill samples and 92% for the closely-related source oil samples were achieved by combining Gabor wavelet with SVM, which indicated its advantages to be developed to a rapid, cost-effective, and accurate forensic oil spill identification technique.

  5. Development of steady-state electrical-heating fluorescence-sensing (SEF) technique for thermal characterization of one dimensional (1D) structures by employing graphene quantum dots (GQDs) as temperature sensors

    NASA Astrophysics Data System (ADS)

    Wan, Xiang; Li, Changzheng; Yue, Yanan; Xie, Danmei; Xue, Meixin; Hu, Niansu

    2016-11-01

    A fluorescence signal has been demonstrated as an effective implement for micro/nanoscale temperature measurement which can be realized by either direct fluorescence excitation from materials or by employing nanoparticles as sensors. In this work, a steady-state electrical-heating fluorescence-sensing (SEF) technique is developed for the thermal characterization of one-dimensional (1D) materials. In this method, the sample is suspended between two electrodes and applied with steady-state Joule heating. The temperature response of the sample is monitored by collecting a simultaneous fluorescence signal from the sample itself or nanoparticles uniformly attached on it. According to the 1D heat conduction model, a linear temperature dependence of heating powers is obtained, thus the thermal conductivity of the sample can be readily determined. In this work, a standard platinum wire is selected to measure its thermal conductivity to validate this technique. Graphene quantum dots (GQDs) are employed as the fluorescence agent for temperature sensing. Parallel measurement by using the transient electro-thermal (TET) technique demonstrates that a small dose of GQDs has negligible influence on the intrinsic thermal property of platinum wire. This SEF technique can be applied in two ways: for samples with a fluorescence excitation capability, this method can be implemented directly; for others with weak or no fluorescence excitation, a very small portion of nanoparticles with excellent fluorescence excitation can be used for temperature probing and thermophysical property measurement.

  6. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, July--September 1992

    SciTech Connect

    Curtis, C.W.; Gutterman, C.; Chander, S.

    1992-12-31

    The experimental study of coal swelling ratios have been determined with a wide variety of solvents. Only marginal levels of coal swelling were observed for the hydrocarbon solvents, but high levels were found with solvents having heteroatom functionality. Blends were superior to pure solvents. The activity of various catalyst precursors for pyrene hydrogenation and coal conversion was measured. Higher coal conversions were observed for the S0{sub 2}-treated coal than the raw coal, regardless of catalyst type. Coal conversions were highest for Molyvan-L, molybdenum naphthenate, and nickel octoate, respectively. Bottoms processing consists of a combination of the ASCOT process coupling solvent deasphalting with delayed coking. Initial results indicate that a blend of butane and pentane used near the critical temperature of butane is the best solvent blend for producing a yield/temperature relationship of proper sensitivity and yet retaining an asphalt phase of reasonable viscosity. The literature concerning coal swelling, both alone and in combination with coal liquefaction, and the use of dispersed or unsupported catalysts in coal liquefaction has been updated.

  7. Precise parallel optical spectrum analysis using the advanced two-phonon light scattering combined with the cross-disperser technique.

    PubMed

    Shcherbakov, A S; Arellanes, A O; Chavushyan, V

    2016-12-01

    We develop an advanced approach to the optical spectrometer with acousto-optical dynamic grating for the Guillermo Haro astrophysical observatory (Mexico). The progress consists of two principle novelties. First is the use of the acousto-optical nonlinearity of two-phonon light scattering in crystals with linear acoustic losses. This advanced regime of light scattering exhibits a recently revealed additional degree of freedom, which allows tuning of the frequency of elastic waves and admits the nonlinear apodization improving the dynamic range. The second novelty is the combination of the cross-disperser with acousto-optical processing. A similar pioneering step provides an opportunity to operate over all the visible range in a parallel regime with maximal achievable resolution. The observation window of the optical spectrometer in that observatory is ∼9  cm, so that the theoretical estimations of maximal performances for a low-loss LiNbO3 crystal for this optical aperture at λ=405  nm give spectral resolution of 0.0523 Å, resolving power of 77,400, and 57,500 spots. The illustrative proof-of-principle experiments with a 6 cm LiNbO3 crystal have been performed.

  8. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, April--June 1992

    SciTech Connect

    Curtis, C.W.; Gutterman, C.; Chander, S.

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  9. Development of a Dispersive Liquid-Liquid Microextraction Technique for the Extraction and Spectrofluorimetric Determination of Fluoxetine in Pharmaceutical Formulations and Human Urine

    PubMed Central

    Bavili Tabrizi, Ahad; Rezazadeh, Ahmad

    2012-01-01

    Purpose: Fluoxetine is the most prescribed antidepressant drug worldwide. In this work, a new dispersive liquid-liquid microextraction (DLLME) method combined with spectrofluorimetry has been developed for the extraction and determination of FLX in pharmaceutical formulations and human urine. Methods: For FLX determination, the pH of a 10 mL of sample solution containing FLX, was adjusted to 11.0. Then, 800 µL of ethanol containing 100 µL of chloroform was injected rapidly into the sample solution. A cloudy solution was formed and FLX extracted into the fine droplets of chloroform. After centrifugation, the extraction solvent was sedimented and supernatant aqueous phase was readily decanted. The remained organic phase was diluted with ethanol and its fluorescence was measured at 292±3 nm after excitation at 234±3 nm. Results: Some important parameters influencing microextraction efficiency were investigated. Under the optimum extraction conditions, a linear calibration curve in the range of 10 to 800 ng/mL with a correlation coefficient of r2 = 0.9993 was obtained. Limit of detection (LOD) and limit of quantification (LOQ) were found to be 2.78 and 9.28 ng/mL, respectively. The relative standard deviations (RSDs) were less than 4%. Average recoveries for spiked samples were 93–104%. Conclusion: The proposed method gives a very rapid, simple, sensitive, wide dynamic range and low–cost procedure for the determination of FLX. PMID:24312787

  10. Investigating the intersystem crossing rate and triplet quantum yield of Protoporphyrin IX by means of pulse train fluorescence technique

    NASA Astrophysics Data System (ADS)

    Gotardo, Fernando; Cocca, Leandro H. Z.; Acunha, Thiago V.; Longoni, Ana; Toldo, Josene; Gonçalves, Paulo F. B.; Iglesias, Bernardo A.; De Boni, Leonardo

    2017-04-01

    Photophysical investigations of PPIX were described in order to determine the triplet conversion efficiency. Time resolved fluorescence and pulse train fluorescence were employed to characterize the main mechanism responsible for deactivation of the first singlet excited state (excited singlet and triplet states). Single pulse and Z-Scan analysis were employed to measure the singlet excited state absorption cross-sections. Theoretical calculations were performed in order to get some properties of PPIX in ground state, first singlet and triplet excited state. A TD-DFT result shows a great possibility of ISC associated to out-of-plane distortions in porphyrinic ring. Furthermore, the B and Q bands in the calculated spectrum are assigned to the four frontier molecular orbitals as proposed by Gouterman for free-based porphyrins.

  11. Application of an acoustoelectronic technique to study ordered microstructured disperse systems with biological objects in a hydrogel

    NASA Astrophysics Data System (ADS)

    Anisimkin, V. I.; Pokusaev, B. G.; Skladnev, D. A.; Sorokin, V. V.; Tyupa, D. V.

    2016-11-01

    Using acoustoelectronic sensors not containing sensitive coatings, we studied a series of microbiological preparations: yeast cells and bacteria, as well as virus particles, immobilized in hydrogels of different concentration. The obtained measurement data on the acoustic characteristics make it possible to (1) reveal the presence of biological objects in both fluid media and agarose-based hydrogels of various concentration; (2) establish the physical mechanism that results in acoustoelectronic detection; (3) evaluate changes in the concentration of biological objects and their electric conductivity. The data confirm the possibility of applying the acoustoelectronic technique to detect microbiological objects and observe their growth in hydrogel media. We discus the limitations and drawbacks of the acoustoelectronic technique.

  12. A Feasibility Study of Response Techniques for Discharges of Hazardous Chemicals That Disperse through the Water Column

    DTIC Science & Technology

    1976-07-01

    specific chemical-agent viii interactions and the practical aspecs of equipment, depioyment techniques, modeling of spill amelioration and finally field...5 2.0 NEUTRALIZATION 2.1 PRINCIPLES OFNEUTRALIZATION Neutralization, for the purposes of this task, can be defined as the interaction of an acid with...when weak acids or weak bases are used as neutralizing agents and more complex equations may be necessary depending on the accuracy required. A more

  13. Monte Carlo Simulation of Characteristic Secondary Fluorescence in Electron Probe Microanalysis of Homogeneous Samples Using the Splitting Technique.

    PubMed

    Petaccia, Mauricio; Segui, Silvina; Castellano, Gustavo

    2015-06-01

    Electron probe microanalysis (EPMA) is based on the comparison of characteristic intensities induced by monoenergetic electrons. When the electron beam ionizes inner atomic shells and these ionizations cause the emission of characteristic X-rays, secondary fluorescence can occur, originating from ionizations induced by X-ray photons produced by the primary electron interactions. As detectors are unable to distinguish the origin of these characteristic X-rays, Monte Carlo simulation of radiation transport becomes a determinant tool in the study of this fluorescence enhancement. In this work, characteristic secondary fluorescence enhancement in EPMA has been studied by using the splitting routines offered by PENELOPE 2008 as a variance reduction alternative. This approach is controlled by a single parameter NSPLIT, which represents the desired number of X-ray photon replicas. The dependence of the uncertainties associated with secondary intensities on NSPLIT was studied as a function of the accelerating voltage and the sample composition in a simple binary alloy in which this effect becomes relevant. The achieved efficiencies for the simulated secondary intensities bear a remarkable improvement when increasing the NSPLIT parameter; although in most cases an NSPLIT value of 100 is sufficient, some less likely enhancements may require stronger splitting in order to increase the efficiency associated with the simulation of secondary intensities.

  14. Aquatic and terrestrial optical measurements - laser induced fluorescence technique (ATOM-LIFT): Summer 1997 field measurement campaign

    NASA Astrophysics Data System (ADS)

    McMurtrey, James E., III; Cecchi, Giovanna; Chappelle, Emmett W.; Kim, Moon S.; Bazzani, Marco; Corp, Lawrence A.

    1998-07-01

    A joint IROE-CNR, NASA/GSFC, and USDA/ARS measurement campaign was conducted in Italy for a three week period in July, 1997. The campaign was split into two parts: the first part for aquatic vegetation studies and the second part for terrestrial vegetation studies. The main objective of the campaign was to study optical properties of intact plant material as it relates to photosynthetic activity of living vegetation. The aquatic studies were carried out at an aquarium-laboratory in the seashore city of Livorno on the West coast of Italy. The investigations involved an important sea grass species that is native to the Mediterranean Sea. The terrestrial studies were carried out Northeast of the Town of St. Stefano di Cadore (Belluno), Italy. Measurements were taken in a wooded site at an Italian Department of Forestry Station on species of natural alpine vegetation. Instrumentation available for the studies were the Italian Fluorescence Light Detection And Ranging (FLIDAR) System, the NASA/USDA Fluorescence Imaging System (FIS), the Perkin Elmer Spectrofluorometer and LI-COR 6400 infrared gas exchange analyzer for photosynthesis measurements. Preliminary evaluations, analysis, and summaries were made by personnel from both Italian and United Sates groups on data collected during the measurement campaign. The joint Italian/American data collection effort with Aquatic and Terrestrial Optical Measurements produced a range of data for characterizing the relationships between fluorescence and the photosynthetic potentials of vegetative scenes.

  15. A turn-on fluorescence-sensing technique for glucose determination based on graphene oxide-DNA interaction.

    PubMed

    Zhang, Hao; Huang, Hui; Lin, Zihan; Su, Xingguang

    2014-11-01

    Graphene is a two-dimensional carbon nanomaterial one atom thick. Interactions between graphene oxide (GO) and ssDNA containing different numbers of bases have been proved to be remarkably different. In this paper we propose a novel approach for turn-on fluorescence sensing determination of glucose. Hydrogen peroxide (H2O2) is produced by glucose oxidase-catalysed oxidation of glucose. In the presence of ferrous iron (Fe(2+)) the hydroxyl radical (•OH) is generated from H2O2 by the Fenton reaction. This attacks FAM-labelled long ssDNA causing irreversible cleavage, as a result of the oxidative effect of •OH, producing an FAM-linked DNA fragment. Because of the weak interaction between GO and short FAM-linked DNA fragments, restoration of DNA fluorescence can be achieved by addition of glucose. Due to the excellent fluorescence quenching efficiency of GO and the specific catalysis of glucose oxidase, the sensitivity and selectivity of this method for GO-DNA sensing are extremely high. The linear range is from 0.5 to 10 μmol L(-1) and the detection limit for glucose is 0.1 μmol L(-1). The method has been successfully used for analysis of glucose in human serum.

  16. Determination of tungsten in tantalum-tungsten alloy by X-ray fluorescence spectrometry using fusion, thin layer, and pressed powder pellet techniques

    NASA Astrophysics Data System (ADS)

    Tian, Lunfu; Zou, Deshuang; Dai, Yichun; Tang, Guangping

    2015-08-01

    A method is described for the X-ray fluorescence (XRF) determination of tungsten in tantalum-tungsten alloy over the range of 10.5%-13.5%. The sample was prepared by three methods, namely, borate fusion, filter paper disk, and pressed powder pellet, respectively. We compared the feature of the three methods of specimen preparation and found that filter paper disk method was the most suitable technique for specimen preparation. Furthermore, the results were compared with those given by inductively coupled plasma optical emission spectrometry (ICP-OES), and the relative standard deviation was less than 2%, which could meet the requirement of this application.

  17. Analysis of titanium and zirconium in red mud with energy dispersive x-ray spectrometry

    SciTech Connect

    Kobya, M.; Ertugrul, M.; Dogan, O.; Simsek, O.

    1996-11-01

    An energy dispersive x-ray fluorescence technique was used for the determination of Titanium (Ti) and Zirconium (Zr) in red mud by using a standard addition method. An annular {sup 241}Am source is employed for excitation of K shells of elements. 13 refs., 2 figs., 1 tab.

  18. Magnetic nanoparticles based dispersive micro-solid-phase extraction as a novel technique for the determination of estrogens in pork samples.

    PubMed

    Wang, Juan; Chen, Zhiyan; Li, Zhiming; Yang, Yaling

    2016-08-01

    A simple and rapid magnetic nanoparticles (MNPs) based dispersive micro-solid-phase extraction (D-μ-SPE) method coupled with HPLC-DAD has been proposed for simultaneous determination of three estrogens (17β-estradiol (E2), estrone (E1) and diethylstilbestrol (DES)) in pork samples. In this paper, the synthesis of cetyltrimethyl ammonium bromide (CTAB)-coated Fe3O4@caprylic acid NPs as an efficient sorbent for its high surface area, excellent adsorption capacity, good dispersion ability and high super-paramagnetic property was successfully applied to adsorb estrogens. Vortex was used to enhance mass transfer rate as it provided mild and effective mixing of sample solution and increased the contact between analytes and MNPs. The parameters affecting the extraction efficiency were investigated in detail. The dosages of sorbent and eluate are 100μL and 500μL, respectively. The extraction equilibrium was achieved within 2min and the MNPs can be reused. The proposed technique provided high recoveries (93.3-106.7%), good linearity (0.9993-0.9999), low LODs (0.021-0.033ngmL(-1)) and repeatability (RSD%=1.87-2.92).

  19. In vivo validation of a bimodal technique combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy for diagnosis of oral carcinoma

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Xie, Hongtao; Liu, Jing; Lam, Matthew; Chaudhari, Abhijit J.; Zhou, Feifei; Bec, Julien; Yankelevich, Diego R.; Dobbie, Allison; Tinling, Steven L.; Gandour-Edwards, Regina F.; Monsky, Wayne L.; Gregory Farwell, D.; Marcu, Laura

    2012-11-01

    Tissue diagnostic features generated by a bimodal technique integrating scanning time-resolved fluorescence spectroscopy (TRFS) and ultrasonic backscatter microscopy (UBM) are investigated in an in vivo hamster oral carcinoma model. Tissue fluorescence is excited by a pulsed nitrogen laser and spectrally and temporally resolved using a set of filters/dichroic mirrors and a fast digitizer, respectively. A 41-MHz focused transducer (37-μm axial, 65-μm lateral resolution) is used for UBM scanning. Representative lesions of the different stages of carcinogenesis show that fluorescence characteristics complement ultrasonic features, and both correlate with histological findings. These results demonstrate that TRFS-UBM provide a wealth of co-registered, complementary data concerning tissue composition and structure as it relates to disease status. The direct co-registration of the TRFS data (sensitive to surface molecular changes) with the UBM data (sensitive to cross-sectional structural changes and depth of tumor invasion) is expected to play an important role in pre-operative diagnosis and intra-operative determination of tumor margins.

  20. The study of in vivo x-ray fluorescence (XRF) technique for gadolinium (Gd) measurements in human bone

    NASA Astrophysics Data System (ADS)

    Mostafaei, F.; Nie, L. H.

    2016-08-01

    An in vivo K x-ray fluorescence system, based on 109Cd source, for the detection of gadolinium has been investigated. Gd is of interest because of the extensive use of Gd-based contrast agents in MR imaging. A human simulating bone phantom set has been developed. The phantoms were doped with seven concentrations of Gd. Additional elements important for in vivo x-ray fluorescence, Na, Cl and Ca, were also included to create an overall elemental composition consistent with the Reference Man. A new 5 GBq 109Cd source was purchased to improve the source activity in comparison to the previous study (0.17 GBq). The previously published minimum detection limit (MDL) for Gd phantom measurements using KXRF system was 3.3 ppm. In this study the minimum detection limit for bare bone phantoms was found to reduce the MDL to 0.8, a factor of 4.1. The previous published data used only three layers of plastic as soft tissue equivalent materials and found the MDL of 4-4.8 ppm. In this study we have used the plastic with more realistic thicknesses to simulate a soft tissue at tibia. The detection limits for phantoms with Lucite as a tissue equivalent, using a new source, was determined to be 1.81 to 3.47 ppm (μg Gd per gram phantom). Our next study would be testing an in vivo K x-ray fluorescence system, based on 109Cd source on human volunteers who went through MR imaging and were injected by Gd.

  1. Simultaneous determination of six triterpenic acids in some Chinese medicinal herbs using ultrasound-assisted dispersive liquid-liquid microextraction and high-performance liquid chromatography with fluorescence detection.

    PubMed

    Wu, Hongliang; Li, Guoliang; Liu, Shucheng; Liu, Di; Chen, Guang; Hu, Na; Suo, Yourui; You, Jinmao

    2015-03-25

    A novel analytical method was developed for simultaneous determination of six triterpenic acids using ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) follow by high-performance liquid chromatography (HPLC) with fluorescence detection. Six triterpenic acids (ursolic acid, oleanolic acid, betulinic acid, maslinic acid, betulonic acid and corosolic acid) were extracted by UA-DLLME using chloroform and acetone as the extraction and disperser solvents, respectively. After the extraction and nitrogen flushing, the extracts were rapidly derivatized with 2-(12,13-dihydro-7H-dibenzo[a,g]carbazol-7-yl)ethyl4-methylbenzenesulfonate. The main experimental parameters affecting extraction efficiency and derivatization yield were investigated and optimized by response surface methodology (RSM) combined with Box-Behnken design (BBD). The limits of detection (LODs) and the limits of quantification (LOQs) were in the range of 0.95-1.36 ng mL(-1) and 3.17-4.55 ng mL(-1), respectively. Under the optimum conditions, the method has been successfully applied for the analysis of triterpenic acids in six different traditional Chinese medicinal herbs.

  2. A detection method of vegetable oils in edible blended oil based on three-dimensional fluorescence spectroscopy technique.

    PubMed

    Xu, Jing; Liu, Xiao-Fei; Wang, Yu-Tian

    2016-12-01

    Edible blended vegetable oils are made from two or more refined oils. Blended oils can provide a wider range of essential fatty acids than single vegetable oils, which helps support good nutrition. Nutritional components in blended oils are related to the type and content of vegetable oils used, and a new, more accurate, method is proposed to identify and quantify the vegetable oils present using cluster analysis and a Quasi-Monte Carlo integral. Three-dimensional fluorescence spectra were obtained at 250-400nm (excitation) and 260-750nm (emission). Mixtures of sunflower, soybean and peanut oils were used as typical examples to validate the effectiveness of the method.

  3. [Changes in the model membrane structure induced by ribonuclease and lysozyme studied by the fluorescent probe technique].

    PubMed

    Gorbenko, G P

    1999-01-01

    Using fluorescent probes DSM and DSP-12, the effect of ribonuclease and lysozyme on the structural state of liposomes composed of phosphatidylcholine and diphosphatidylglycerol was studied. A correlation between the changes in probe quantum yield and the amount of protein-bound lipids was established. It is assumed that the formation of protein-lipid complexes increases the packing density of lipids and restricts their mobility. As the content of diphosphatidylglycerol in the lipid bilayer increases, the condensing effect of proteins becomes more pronounced.

  4. Time-resolved study on dynamic chemical state conversion of SiO2-supported Co species by means of dispersive XAFS technique

    NASA Astrophysics Data System (ADS)

    Chotiwan, S.; Tomiga, H.; Yamashita, S.; Katayama, M.; Inada, Y.

    2016-05-01

    The chemical state conversion of the Co species supported on SiO2 was investigated using the in-situ and the time-resolved XAFS techniques. The supported Co3O4 species was finally reduced to metallic Co with the stable intermediate state of CoO for both the temperature-programmed and time-course processes. The oxidation of Co0 traced the reverse route to Co3O4, whereas the relative stability of the Co3O4 species to the CoO intermediate under the oxidative environment diminished the composition of CoO. The time-resolved measurement for the oxidation reaction showed an additional intermediate at the early stage of the CoO intermediate formation suggesting the Co0 particle dispersion.

  5. Use of open-path FTIR and inverse dispersion technique to quantify gaseous nitrogen loss from an intensive vegetable production site

    NASA Astrophysics Data System (ADS)

    Bai, Mei; Suter, Helen; Lam, Shu Kee; Sun, Jianlei; Chen, Deli

    2014-09-01

    An open-path Fourier transform infrared (OP-FTIR) spectroscopic technique in combination with a backward Lagrangian stochastic (bLS) dispersion model (WindTrax) can be used to simultaneously measure gaseous emissions of N2O, NH3, CH4 and CO2. We assessed the capability of this technique for measuring NH3 and N2O emissions following the application of calcium nitrate (Ca(NO3)2), Nitrophoska (NPK) and chicken manure on a celery farm at Boneo, Victoria, during April and May 2013. We found that the OP-FTIR/WindTrax method was able to measure the diurnal variation in NH3 flux from the field site following application of chicken manure with measured emissions ranging from approximately 0.1-9.8 kg NH3-N ha-1 day-1. The OP-FTIR/WindTrax method also detected a diurnal variation in N2O flux of 1.5-6.2 kg N2O-N ha-1 day-1 and N2O flux increased in response to application of the Ca(NO3)2. We concluded that the OP-FTIR/WindTrax technique can quantify gaseous N loss from vegetable production systems.

  6. Real-time dispersion analyzer of femtosecond laser pulses with use of a spectrally and temporally resolved upconversion technique

    NASA Astrophysics Data System (ADS)

    Rhee, June-Koo; Sosnowski, Thomas S.; Tien, An-Chun; Norris, Theodore B.

    1996-08-01

    We demonstrate a real-time femtosecond-laser-pulse analyzer by using a spectrally and temporally resolved upconversion technique (STRUT) for characterization of the phase and the intensity. The STRUT provides simple but reliable analysis of femtosecond pulses by employing a narrow-bandpass dielectric filter in one arm of a conventional single-shot upconversion autocorrelator and analyzing the spatiotemporal upconversion signal with a monochromator. The resulting spatiotemporal and spatiospectral image presents clear and complete information about femtosecond pulses produced by either oscillators or amplifiers. Characterization of 2-nJ, 60-fs Ti:sapphire oscillator pulses is achieved with 0.5 s data acquisition time and 0.2-s computational time.

  7. Application of cytoplasmic Ca2+ fluorescence imaging techniques to study the molecular mechanisms of exercise-induced fatigue eliminated by Chinese medicine ginseng extract

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Zhao, Yanping; Zhang, Heming; Liu, Songhao

    2009-11-01

    The exercise-induced fatigue eliminated by Chinese medicine offers advantages including good efficiency and smaller side-effects, however, the exact mechanisms have not been classified. A lot of literatures indicated the cytosolic free Ca2+ concentrations of skeletal muscle cells increased significantly during exercise-induced fatigue. This study is aimed to establish a rat skeletal muscle cell model of exercise-induced fatigue. We applied cytoplasmic Ca2+ fluorescence imaging techniques to study the molecular mechanisms of exercise-induced fatigue eliminated by Chinese medicine ginseng extract. In our research, the muscle tissues from the newborn 3 days rats were taken out and digested into cells. The cells were randomly divided into the ginseng extract group and the control group. The cells from the two groups were cultured in the medium respectively added 2mg/ml ginseng extract and 2mg/ml D-hanks solution. After differentiating into myotubes, the two groups of cells treated with a fluorescent probe Fluo-3 AM were put on the confocal microscope and the fluorescence intensity of cells pre- and post- stimulation with dexamethasone were detected. It was found that cytoplasmic Ca2+ concentrations of the two groups of cells both increased post-stimulation, however, the increasing amplitude of fluorescence intensity of the ginseng extract group was significantly lower than that of the control group. In conclusion, stimulating the cells with dexamethasone is a kind of workable cell models of exercise-induced fatigue, and the molecular mechanisms of exercise-induced fatigue eliminated by ginseng extract may be connected to regulatating cytosolic free Ca2+ concentrations.

  8. BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES

    SciTech Connect

    Farquar, G; Leif, R

    2009-07-15

    Biocompatible polymers with hydrolyzable chemical bonds have been used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres were produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

  9. Dispersion serial dilution methods using the gradient diluter device.

    PubMed

    Walling, Leslie; Schulz, Craig; Johnson, Michael

    2012-12-01

    A solute aspirated into a prefilled tube of diluent undergoes a dilution effect known as dispersion. Traditionally the effects of dispersion have been considered a negative consequence of using liquid-filled fixed-tip liquid handlers. We present a novel device and technique that utilizes the effects of dispersion to the benefit of making dilutions. The device known as the Gradient Diluter extends the dilution range of practical serial dilutions to six orders of magnitude in final volumes as low as 10 μL. Presented are the device, dispersion methods, and validation tests using fluorescence detection of sulforhodamine and the high-performance liquid chromatography/ultraviolet detection of furosemide. In addition, a T-cell inhibition assay of a relevant downstream protein is used to demonstrate IC(50) curves made with the Gradient Diluter compare favorably with those generated by hand.

  10. The Physicochemical Stability of Complex Intravenous Lipid Dispersions Supported by Light Obscuration and Dynamic Light Scattering Techniques.

    NASA Astrophysics Data System (ADS)

    Driscoll, David Francis

    1994-01-01

    Procedures. The physicochemical stability of 45 clinically relevant intravenous nutritional emulsions were assessed employing a balanced fractional factorial design. Six factors were identified as influencing stability and included final concentrations of (1) Amino acids (%); (2) Glucose (%); (3) Lipids (%); (4) Monovalent Cations (mEq/L); (5) Divalent Cations (mEq/L); (6) Trivalent Cations (mg/L) Stability assessments included particle size analysis, pH changes and the visual development of cream layers and phase separation of free oil. Particle size analyses were accomplished employing laser techniques for particle counting and distribution. Particle sizing and counting was achieved using light obscuration and particle distributions were constructed with the aid of dynamic light scatter techniques. Results. Multiple stepwise regression analyses revealed that trivalent cation concentrations (as iron dextran) was the only variable to have any significant effect on the emulsions accounting for almost 60% of the adverse changes in the emulsions (increasing lipid particle sizes) during the course of the investigation. In addition, when the percent fat (PFAT) from time 0 comprised > 0.4% in the size range of >5 μm in diameter, it was associated with, highly unstable and potentially dangerous infusions. Importantly, these unstable emulsions were visually detectable only about 65% of the time. Assessment of the potential danger of these formulations with respect to pulmonary embolism was performed by infusing the admixture with the worst emulsion profile, yet was visually acceptable, in two groups of guinea pigs. Group 1 received the admixture which contained iron dextran and Group 2 received the identical admixture without iron dextran. The admixtures were prepared 24 hours prior to infusion and given to the animals over the last six hours of its expiration date. Prior to infusion, particle size analysis revealed a 100-fold increase in PFAT >5 μm in the iron dextran

  11. Energy-dispersive x-ray fluorescence spectroscopy and inductively coupled plasma emission spectrometry evaluated for multielement analysis in complex biological matrices.

    PubMed

    Irons, R D; Schenk, E A; Giauque, R D

    1976-12-01

    Energy-dispersive x-ray spectroscopy and inductively coupled plasma emission spectrometry were evaluated as methods for routine multielement analysis of biological material. Standard samples included Standard Reference Materials (National Bureau of Standards), compounded mixtures, and supplements that provided a wide range of elemental concentrations for analysis. Elements included in this study were Zn, Pb, Ni, Mn, Fe, Mg, Cu, Ca, As, Se, Br, Rb, and Sr. Standards were analyzed as unknowns by participating laboratories. The two methods were evaluated for sensitivity, precision, and accuracy, and the results compared to those obtained for atomic absorption spectrometric analysis of identical standard unknowns. Both methods compared favorably and both were determined to be highly reliable for such an application. Advantages and disadvantages of each method are compared and discussed.

  12. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, October--December 1992

    SciTech Connect

    Curtis, C.W.; Gutterman, C.; Chander, S.

    1992-12-31

    The evaluation of various catalyst pre or pyrene coal conversion continued. Higher coal conversions were observed for the S0{sub 2}-treated coal than the raw coal, regardless of catalyst type. Coal conversions were highest for Molyvan-L, molybdenum naphthenate, and nickel octoate. A technique to measure the effect of coal swelling and catalyst impregnation upon coal liquefaction has been developed, and experimentation is under way. Reactivity tests have been performed using S0{sub 2}-treated and untreated swelled Black Thunder Coal. Thermal reactions with swelled coals yielded much less coal conversion and pyrene conversion than did the swelled coal reactions with Molyvan-L. The study of bottoms processing consists of coupling solvent deasphalting with delayed coking to maximize the production of coal-derived liquids while rejecting solids within the coke drum. The batch deasphalting screening tests have been completed. While n-butane/pentane solvent blends initially appeared best, pentane alone at 380{degree}F provided an oil yield (63.6 wt%) that was desired for subsequent tests. The production of asphalt for the transport tests is underway. The target deasphalted oil yields are 40, 50 and 60 wt% of feed. This would produce asphalt with ash levels ranging from 20 to 30 wt% with which to run the transport tests.

  13. Reference-independent wide field fluorescence lifetime measurements using Frequency-Domain (FD) technique based on phase and amplitude crossing point.

    PubMed

    Yahav, Gilad; Barnoy, Eran; Roth, Nir; Turgeman, Lior; Fixler, Dror

    2016-10-24

    Fluorescence lifetime imaging microscopy (FLIM) is an essential tool in many scientific fields such as biology and medicine thanks to the known advantages of the fluorescence lifetime (FLT) over the classical fluorescence intensity (FI). However, the frequency domain (FD) FLIM technique suffers from its strong dependence on the reference and its compliance to the sample. In this paper, we suggest a new way to calculate the FLT by using the crossing point (CRPO) between the modulation and phase FLTs measured over several light emitting diode (LED) DC currents values instead of either method alone. This new technique was validated by measuring homogeneous substances with known FLT, where the CRPO appears to be the optimal measuring point. Furthermore, the CRPO method was applied in heterogeneous samples. It was found that the CRPO in known mixed solutions is the weighted average of the used solutions. While measuring B16 and lymphocyte cells, the CRPO of the DAPI compound in single FLT regions was measured at 3.5 ± 0.06 ns and at 2.83 ± 0.07 ns, respectively, both of which match previous reports and multi-frequency analyses. This paper suggests the CRPO as a new method to extract the FLT in problematic cases such as high MCP gains and heterogeneous environments. In traditional FD FLIM measurements, the variation in phase angle and modulation are measured. By measuring over varying DC currents, another variation is detected in the FLT determined through the phase and modulation methods, with the CRPO indicating the true FLT.

  14. Determination of lysergic acid diethylamide (LSD) by application of online 77 K fluorescence spectroscopy and a sweeping technique in micellar electrokinetic chromatography.

    PubMed

    Fang, Ching; Liu, Ju-Tsung; Lin, Cheng-Huang

    2002-10-16

    The principal advantage of the use of Shopl'skii effect (low temperature spectrum) is that spectral sharpening occurs both in absorption and emission. However, thus far using the technique of capillary electrophoresis/low temperature fluorescence spectroscopy (CE/LTFS) either at 77 or 4.2 K remains difficult to obtain an on-line spectrum, if the analyte is present at low concentration. This paper examines the feasibility of combining the techniques of online concentration and CE/LTFS to identify LSD and related compounds in urine at 77 K. To improve sensitivity, sweeping-micellar electrokinetic chromatography (sweeping-MEKC) and cation-selective exhaustive injection-sweep-micellar electrokinetic chromatography (CSEI-sweep-MEKC) were used for on-line concentration which resulted in detection limits of approximately 20 approximately 60 ppt, respectively.

  15. Laser Scanning–Based Tissue Autofluorescence/Fluorescence Imaging (LS-TAFI), a New Technique for Analysis of Microanatomy in Whole-Mount Tissues

    PubMed Central

    Mori, Hidetoshi; Borowsky, Alexander D.; Bhat, Ramray; Ghajar, Cyrus M.; Seiki, Motoharu; Bissell, Mina J.

    2012-01-01

    Intact organ structure is essential in maintaining tissue specificity and cellular differentiation. Small physiological or genetic variations lead to changes in microanatomy that, if persistent, could have functional consequences and may easily be masked by the heterogeneity of tissue anatomy. Current imaging techniques rely on histological, two-dimensional sections requiring sample manipulation that are essentially two dimensional. We have developed a method for three-dimensional imaging of whole-mount, unsectioned mammalian tissues to elucidate subtle and detailed micro- and macroanatomies in adult organs and embryos. We analyzed intact or dissected organ whole mounts with laser scanning–based tissue autofluorescence/fluorescence imaging (LS-TAFI). We obtained clear visualization of microstructures within murine mammary glands and mammary tumors and other organs without the use of immunostaining and without probes or fluorescent reporter genes. Combining autofluorescence with reflected light signals from chromophore-stained tissues allowed identification of individual cells within three-dimensional structures of whole-mounted organs. This technique could be useful for rapid diagnosis of human clinical samples and possibly the effect of subtle variations such as low dose radiation. PMID:22542846

  16. The evaluation of the x-ray fluorescence (XRF) technique for process monitoring of vitreous slag from thermal waste treatment systems: A comparative study of the analysis of Plasma Hearth slag for Ce, Fe and Cr by XRF and inductively coupled plasma spectrometries

    SciTech Connect

    Sutton, M.A.H.; Crane, P.J.; Cummings, D.G.; Carney, K.P.

    1995-05-01

    Slag material produced by the Plasma Hearth Process (PHP) varies in chemical composition due to the heterogeneous nature of the input sample feed. X-ray fluorescence (XRF) is a spectroscopic technique which has been evaluated to perform elemental analyses on surrogate slag material for process control. Vitreous slag samples were ground to a fine powder in an impact ball mill and analyzed directly using laboratory prepared standards. The fluorescent intensities of Si, Al and Fe in the slag samples was utilized to determine the appropriate matrix standard set for the determination of Ce. The samples were analyzed for Cr, Ni, Fe and Ce using a wavelength dispersive XRF polychromator. Split samples were dissolved and analyzed by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). The precision of the XRF technique was better than 5% RSD. The limit of detection for Ce varied with sample matrix and was typically below 0.01% by weight. The linear dynamic range for the technique was evaluated over two orders of magnitude. Typical calibration standards ranged from 0.01% Ce to 1% Ce. The Ce determinations performed directly on ground slag material by the XRF techniques were similar to ICP-AES analyses. Various chemical dissolution and sample preparation techniques were evaluated for the analysis of Ce in slag samples. A fusion procedure utilizing LiBO{sub 2} was found to provide reliable analyses for the actinide surrogate in a variety of slag matrices. The use of the XRF technique reduced the time of analysis for Ce and Cr from three days to one day for five samples. No additional waste streams were created from the analyses by the XRF technique, while the ICP technique generated several liters of liquid waste.

  17. Fluorescence in situ hybridization techniques (FISH) to detect changes in CYP19a gene expression of Japanese medaka (Oryzias latipes)

    SciTech Connect

    Park, June-Woo; Tompsett, Amber; Zhang, Xiaowei; Newsted, John L.; Jones, Paul D.; Au, Doris; Kong, Richard; Wu, Rudolf S.S.; Giesy, John P. Hecker, Markus

    2008-10-15

    The aim of this study was to develop a sensitive in situ hybridization methodology using fluorescence-labeled riboprobes (FISH) that allows for the evaluation of gene expression profiles simultaneously in multiple target tissues of whole fish sections of Japanese medaka (Oryzias latipes). To date FISH methods have been limited in their application due to autofluorescence of tissues, fixatives or other components of the hybridization procedure. An optimized FISH method, based on confocal fluorescence microscopy was developed to reduce the autofluorescence signal. Because of its tissue- and gender-specific expression and relevance in studies of endocrine disruption, gonadal aromatase (CYP19a) was used as a model gene. The in situ hybridization (ISH) system was validated in a test exposure with the aromatase inhibitor fadrozole. The optimized FISH method revealed tissue-specific expression of the CYP19a gene. Furthermore, the assay could differentiate the abundance of CYP19a mRNA among cell types. Expression of CYP19a was primarily associated with early stage oocytes, and expression gradually decreased with increasing maturation. No expression of CYP19a mRNA was observed in other tissues such as brain, liver, or testes. Fadrozole (100 {mu}g/L) caused up-regulation of CYP19a expression, a trend that was confirmed by RT-PCR analysis on excised tissues. In a combination approach with gonad histology, it could be shown that the increase in CYP19a expression as measured by RT-PCR on a whole tissue basis was due to a combination of both increases in numbers of CYP19a-containing cells and an increase in the amount of CYP19a mRNA present in the cells.

  18. Using respirometric techniques and fluorescent in situ hybridization to evaluate the heterotrophic active biomass in activated sludge.

    PubMed

    Ismail, A; Wentzel, M C; Bux, F

    2007-10-15

    The separation and accurate quantification of active biomass components in activated sludge is of paramount importance in models, used for the management and design of waste water (WW) treatment plants. Accurate estimates of microbial population concentrations and the direct, in situ determination of kinetic parameters could improve the calibration and validation of existing models of biological nutrient removal activated sludge systems. The aim of this study was to obtain correlations between heterotrophic active biomass (Z(BH)) concentrations predicted by mathematical models and quantitative information obtained by Fluorescent in situ hybridizations (FISH). Respirometric batch test were applied to mixed liquors drawn from a well-defined parent anoxic/aerobic activated sludge system to quantify the Z(BH) concentrations. Similarly fluorescent labeled, 16S rRNA-targeted oligonucleotide probes specific for ammonia and nitrite oxidizers were used in combination with DAPI staining to validate the Z(BH) active biomass component in activate sludge respirometric batch tests. For the direct enumeration and simultaneous in situ analysis of the distribution of nitrifying bacteria, in situ hybridization with oligonucleotide probes were used. Probes (NSO 1225, NSR 1156, and NIT3) were used to target the nitrifiers and the universal probe (EUB MIX) was used to target all Eubacteria. Deducting the lithoautotrophic population from the total bacteria population revealed the Z(BH) population. A conversion factor of 8.49 x 10(-11) mg VSS/cell was applied to express the Z(BH) in terms of COD concentration. Z(BH) values obtained by molecular probing correlated closely with values obtained from the modified batch test. However, the trend of consistently poor correspondence of measured and theoretical concentrations were evident. Therefore, the focus of this study was to investigate alternative technology, such as FISH to validate or replace kinetic parameters which are invariably

  19. Fluorescent protein tagging of endogenous protein in brain neurons using CRISPR/Cas9-mediated knock-in and in utero electroporation techniques

    PubMed Central

    Uemura, Takeshi; Mori, Takuma; Kurihara, Taiga; Kawase, Shiori; Koike, Rie; Satoga, Michiru; Cao, Xueshan; Li, Xue; Yanagawa, Toru; Sakurai, Takayuki; Shindo, Takayuki; Tabuchi, Katsuhiko

    2016-01-01

    Genome editing is a powerful technique for studying gene functions. CRISPR/Cas9-mediated gene knock-in has recently been applied to various cells and organisms. Here, we successfully knocked in an EGFP coding sequence at the site immediately after the first ATG codon of the β-actin gene in neurons in the brain by the combined use of the CRISPR/Cas9 system and in utero electroporation technique, resulting in the expression of the EGFP-tagged β-actin protein in cortical layer 2/3 pyramidal neurons. We detected EGFP fluorescence signals in the soma and neurites of EGFP knock-in neurons. These signals were particularly abundant in the head of dendritic spines, corresponding to the localization of the endogenous β-actin protein. EGFP knock-in neurons showed no detectable changes in spine density and basic electrophysiological properties. In contrast, exogenously overexpressed EGFP-β-actin showed increased spine density and EPSC frequency, and changed resting membrane potential. Thus, our technique provides a potential tool to elucidate the localization of various endogenous proteins in neurons by epitope tagging without altering neuronal and synaptic functions. This technique can be also useful for introducing a specific mutation into genes to study the function of proteins and genomic elements in brain neurons. PMID:27782168

  20. Quantitative analysis of human remains from 18(th)-19(th) centuries using X-ray fluorescence techniques: The mysterious high content of mercury in hair.

    PubMed

    Pessanha, Sofia; Carvalho, Marta; Carvalho, Maria Luisa; Dias, António

    2016-01-01

    In this work, we report the unusual concentration of mercury in the hair of an individual buried in the 18th to mid-19th centuries and the comparison with the elemental composition of other remains from the same individual. Two energy dispersive X-ray fluorescence (EDXRF) setups, one with tri-axial geometry and the second one with micro-beam capabilities and a vacuum system, for light elements detection, have been used. Quantitative evaluation of the obtained spectra were made by fundamental parameters and winAXIL program by compare mode method. The levels of Hg in the hair of buried samples presented a concentration over 5% (w/w), a significantly lower presence of this element in the cranium, and no Hg in the remaining organs. Furthermore, there was no evidence of Hg in the burial soil, which has been also analyzed. From this result, we could conclude that the possibility of post-mortem contamination from the burial surroundings is very unlikely. The obtained results are indicative of the apparent use of a mercury-based compound for medical purposes, most likely lice infestation.

  1. Fluorescence Visual Detection of Herbal Product Substitutions at Terminal Herbal Markets by CCP-based FRET technique

    PubMed Central

    Jiang, Chao; Yuan, Yuan; Yang, Guang; Jin, Yan; Liu, Libing; Zhao, Yuyang; Huang, Luqi

    2016-01-01

    Inaccurate labeling of materials used in herbal products may compromise the therapeutic efficacy and may pose a threat to medicinal safety. In this paper, a rapid (within 3 h), sensitive and visual colorimetric method for identifying substitutions in terminal market products was developed using cationic conjugated polymer-based fluorescence resonance energy transfer (CCP-based FRET). Chinese medicinal materials with similar morphology and chemical composition were clearly distinguished by the single-nucleotide polymorphism (SNP) genotyping method. Assays using CCP-based FRET technology showed a high frequency of adulterants in Lu-Rong (52.83%) and Chuan-Bei-Mu (67.8%) decoction pieces, and patented Chinese drugs (71.4%, 5/7) containing Chuan-Bei-Mu ingredients were detected in the terminal herbal market. In comparison with DNA sequencing, this protocol simplifies procedures by eliminating the cumbersome workups and sophisticated instruments, and only a trace amount of DNA is required. The CCP-based method is particularly attractive because it can detect adulterants in admixture samples with high sensitivity. Therefore, the CCP-based detection system shows great potential for routine terminal market checks and drug safety controls. PMID:27765955

  2. Assessment of serum selenium levels in 2-month-old sucking calves using total reflection X-ray fluorescence technique

    NASA Astrophysics Data System (ADS)

    Buoso, M. C.; Ceccato, D.; Moschini, G.; Bernardini, D.; Testoni, S.; Torboli, A.; Valdes, M.

    2001-11-01

    The assessment of selenium status of livestock plays an important role in the production of medicine since low serum Se levels influence disease resistance in ruminants. It has been proved that Se deficiency may cause muscular dystrophy, cardiomyopathy and even death. Serum level has been widely used to evaluate the Se short-term status in animals since there is a good association between serum Se level and the dietary intake of the element over a wide range. The purpose of this work was to determine the Se serum concentration in a population of 78 sucking 2-month-old calves, in order to corroborate a clinical diagnosis of severe deficiency status. The samples were analyzed by total reflection X-ray fluorescence (TXRF) at the ITAL STRUCTURES Research Laboratory. The results obtained from the serum samples presented Se concentrations varying from 10 to 66 ng/ml. The comparison between the obtained values and the expected serum selenium values (60-80 ng/ml), confirmed a mild to severe deficiency status in the investigated population.

  3. Rapid Detection and Identification of Streptococcus Iniae Using a Monoclonal Antibody-Based Indirect Fluorescent Antibody Technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus iniae is among the major pathogens of a large number of fish species cultured in fresh and marine recirculating and net pen production systems . The traditional plate culture technique to detect and identify S. iniae is time consuming and may be problematic due to phenotypic variations...

  4. Probing the micellization kinetics of pyrene end-labeled diblock copolymer via a combination of stopped-flow light-scattering and fluorescence techniques.

    PubMed

    Zhang, Jingyan; Li, Yuting; Armes, Steven P; Liu, Shiyong

    2007-10-25

    A pyrene end-labeled double hydrophilic diblock copolymer, poly(2-(diethylamino)ethyl methacrylate)-b-poly(2-(dimethylamino)ethyl methacrylate) (Py-PDEA-b-PDMA), was synthesized by sequential monomer addition via oxyanionic polymerization using a 1-pyrenemethanol-based initiator. This diblock copolymer exhibits reversible pH-responsive micellization behavior in aqueous solution, forming PDEA-core micelles stabilized by the soluble PDMA block at neutral or alkaline pH. Taking advantage of the pyrene probe covalently attached to the end of the PDEA block, the pH-induced micellization kinetics of Py-PDEA-b-PDMA was monitored by stopped-flow light scattering using a fluorescence detector. Upon a pH jump from 4.0 to 9.0, both the scattered light intensity and excimer/monomer fluorescence intensity ratios (IE/IM) increase abruptly initially, followed by a more gradual increase to reach plateau values. Interestingly, the IE/IM ratio increases abruptly within the first 10 ms: a triple exponential function is needed to fit the corresponding dynamic trace, leading to three characteristic relaxation time constants (tau(1,fluo) < tau(2,fluo) < tau(3,fluo)). On the other hand, dynamic traces for the scattered light intensity can be well-fitted by double exponential functions: the resulting time constants tau(1,scat) and tau(2,scat) can be ascribed to formation of the quasi-equilibrium micelles and relaxation into their final equilibrium state, respectively. Most importantly, tau(1,scat) obtained from stopped-flow light scattering is in general agreement with tau(2,fluo) obtained from stopped-flow fluorescence. The fastest process (tau(1,fluo) approximately 4 ms) detected by stopped-flow fluorescence is ascribed to the burst formation of small transient micelles comprising only a few chains, which are too small to be detected by conventional light scattering. These nascent micelles undergo rapid fusion and grow into quasi-equilibrium micelles and then slowly approach their final

  5. Determination of lysergic acid diethylamide (LSD) in mouse blood by capillary electrophoresis/ fluorescence spectroscopy with sweeping techniques in micellar electrokinetic chromatography.

    PubMed

    Fang, Ching; Liu, Ju-Tsung; Chou, Shiu-Huey; Lin, Cheng-Huang

    2003-03-01

    The separation and on-line concentration of lysergic acid diethylamide (LSD) in mouse blood was achieved by means of capillary electrophoresis/fluorescence spectroscopy using sodium dodecyl sulfate (SDS) as the surfactant. Techniques involving on-line sample concentration, including sweeping micellar electrokinetic chromatography (sweeping-MEKC) and cation-selective exhaustive injection-sweep-micellar electrokinetic chromatography (CSEI-sweep-MEKC) were applied; the optimum on-line concentration and separation conditions were determined. In the analysis of an actual sample, LSD was found in a blood sample from a test mouse (0.1 mg LSD fed to a 20 g mouse; approximately 1/10 to the value of LD(50)). As a result, 120 and 30 ng/mL of LSD was detected at 20 and 60 min, respectively, after ingestion of the doses.

  6. On-line identification of lysergic acid diethylamide (LSD) in tablets using a combination of a sweeping technique and micellar electrokinetic chromatography/77 K fluorescence spectroscopy.

    PubMed

    Fang, Ching; Liu, Ju-Tsung; Lin, Cheng-Huang

    2003-03-01

    This work describes a novel method for the accurate determination of lysergic acid diethylamide (LSD) in tablets. A technique involving sweeping-micellar electrokinetic chromatography (MEKC) was used for the initial on-line concentration and separation, after which a cryogenic molecular fluorescence experiment was performed at 77 K. Using this approach, not only the separation of LSD from the tablet extract was achieved, but on-line spectra were readily distinguishable and could be unambiguously assigned. The results are in agreement with analyses by gas chromatography-mass spectrometry (GC-MS). Thus, this method, which was found to be accurate, sensitive and rapid, has the potential for use as a reliable complementary method to GC-MS in such analyses.

  7. Note: A laser-flash photolysis and laser-induced fluorescence detection technique for measuring total HO2 reactivity in ambient air

    NASA Astrophysics Data System (ADS)

    Miyazaki, K.; Nakashima, Y.; Schoemaecker, C.; Fittschen, C.; Kajii, Y.

    2013-07-01

    A novel instrument for measuring total HO2 reactivity in the troposphere was successfully developed using a laser-flash photolysis and laser-induced fluorescence detection technique. Validation and testing were conducted through kinetic measurements of the reaction of HO2 radicals with NO2, and the results were found to be in good agreement with recent recommended values. The limit of detection (LOD) for HO2 loss rate measurement is achieved to be 0.024 s-1 (3σ) with 60 times decay integrations. An observation of ambient air was carried out in a suburb of Tokyo to test the practical use of the developed instrument and un-expected rapid HO2 loss rate has been observed.

  8. Determination of concentrations of Fe, Mg, and Zn in some ferrite samples using neutron activation analysis and X-ray fluorescence techniques.

    PubMed

    Ali, I A; Mohamed, Gehan Y; Azzam, A; Sattar, A A

    2017-01-14

    Mg-Zn ferrite is considered as one of the important materials with potential uses in many applications. In this work, samples of ferrite Mg(1-x)ZnxFe2O4 (where x=0.0, 0.2, 0.4, 0.6, 0.8 and 1) were synthesized by the sol-gel method for use in some hyperthermia applications. The composition and purity of the prepared samples hardly affected their properties. Therefore, the elemental concentration of these samples was measured by the X-ray fluorescence technique and thermal neutron activation analysis to check the quality of the prepared samples. The results of both methods were compared with each other and with the molecular ratios of the as-prepared samples. In addition, no existing elemental impurity, with considerable concentration, was measured.

  9. Protein-Flavonoid Interaction Studies by a Taylor Dispersion Surface Plasmon Resonance (SPR) Technique: A Novel Method to Assess Biomolecular Interactions

    PubMed Central

    Vachali, Preejith P.; Li, Binxing; Besch, Brian M.; Bernstein, Paul S.

    2016-01-01

    Flavonoids are common polyphenolic compounds widely distributed in fruits and vegetables. These pigments have important pharmacological relevance because emerging research suggests possible anti-cancer and anti-inflammatory properties as well other beneficial health effects. These compounds are relatively hydrophobic molecules, suggesting the role of blood transport proteins in their delivery to tissues. In this study, we assess the binding interactions of four flavonoids (kaempferol, luteolin, quercetin, and resveratrol) with human serum albumin (HSA), the most abundant protein in the blood, and with glutathione S-transferase pi isoform-1 (GSTP1), an enzyme with well-characterized hydrophobic binding sites that plays an important role in detoxification of xenobiotics with reduced glutathione, using a novel Taylor dispersion surface plasmon resonance (SPR) technique. For the first time, HSA sites revealed a high-affinity binding site for flavonoid interactions. Out of the four flavonoids that we examined, quercetin and kaempferol showed the strongest equilibrium binding affinities (KD) of 63 ± 0.03 nM and 37 ± 0.07 nM, respectively. GSTP1 displayed lower affinities in the micromolar range towards all of the flavonoids tested. The interactions of flavonoids with HSA and GSTP1 were studied successfully using this novel SPR assay method. The new method is compatible with both kinetic and equilibrium analyses. PMID:26927197

  10. Protein-Flavonoid Interaction Studies by a Taylor Dispersion Surface Plasmon Resonance (SPR) Technique: A Novel Method to Assess Biomolecular Interactions.

    PubMed

    Vachali, Preejith P; Li, Binxing; Besch, Brian M; Bernstein, Paul S

    2016-02-25

    Flavonoids are common polyphenolic compounds widely distributed in fruits and vegetables. These pigments have important pharmacological relevance because emerging research suggests possible anti-cancer and anti-inflammatory properties as well other beneficial health effects. These compounds are relatively hydrophobic molecules, suggesting the role of blood transport proteins in their delivery to tissues. In this study, we assess the binding interactions of four flavonoids (kaempferol, luteolin, quercetin, and resveratrol) with human serum albumin (HSA), the most abundant protein in the blood, and with glutathione S-transferase pi isoform-1 (GSTP1), an enzyme with well-characterized hydrophobic binding sites that plays an important role in detoxification of xenobiotics with reduced glutathione, using a novel Taylor dispersion surface plasmon resonance (SPR) technique. For the first time, HSA sites revealed a high-affinity binding site for flavonoid interactions. Out of the four flavonoids that we examined, quercetin and kaempferol showed the strongest equilibrium binding affinities (K(D)) of 63 ± 0.03 nM and 37 ± 0.07 nM, respectively. GSTP1 displayed lower affinities in the micromolar range towards all of the flavonoids tested. The interactions of flavonoids with HSA and GSTP1 were studied successfully using this novel SPR assay method. The new method is compatible with both kinetic and equilibrium analyses.

  11. EX6AFS: A data acquisition system for high-speed dispersive EXAFS measurements implemented using object-oriented programming techniques

    SciTech Connect

    Jennings, G.; Lee, P.L. )

    1995-02-01

    In this paper we describe the design and implementation of a computerized data-acquisition system for high-speed energy-dispersive EXAFS experiments on the X6A beamline at the National Synchrotron Light Source. The acquisition system drives the stepper motors used to move the components of the experimental setup and controls the readout of the EXAFS spectra. The system runs on a Macintosh IIfx computer and is written entirely in the object-oriented language C++. Large segments of the system are implemented by means of commercial class libraries, specifically the MacApp application framework from Apple, the Rogue Wave class library, and the Hierarchical Data Format datafile format library from the National Center for Supercomputing Applications. This reduces the amount of code that must be written and enhances reliability. The system makes use of several advanced features of C++: Multiple inheritance allows the code to be decomposed into independent software components and the use of exception handling allows the system to be much more reliable in the event of unexpected errors. Object-oriented techniques allow the program to be extended easily as new requirements develop. All sections of the program related to a particular concept are located in a small set of source files. The program will also be used as a prototype for future software development plans for the Basic Energy Science Synchrotron Radiation Center Collaborative Access Team beamlines being designed and built at the Advanced Photon Source.

  12. Evaluation of Mercury in Environmental Samples by a Supramolecular SolventBased Dispersive LiquidLiquid Microextraction Method Before Analysis by a Cold Vapor Generation Technique.

    PubMed

    Ali, Jamshed; Tuzen, Mustafa; Kazi, Tasneem G

    2017-02-01

    Supramolecular solvent–based dispersive liquid–liquid microextraction was used as a preconcentration method for the determination of trace levels of Hg. This simple method accurately measured oxidized HgII content in claystone and sandstone samples obtained from the Thar Coalfield in Pakistan. Cold vapor atomic absorption spectrometry was used as the detection technique because it is reliable and accurate. The HgII in acidic media forms a complex with dithizone (DTz) in the presence of supramolecular solvent (tetrahydrofuran and 1-undecanol), forming reverse micelles. Formation of the Hg-DTz complex was achieved to increase the interactions with the supramolecular solvent phase at pH 2.5 under the optimized experimental conditions. After addition of the supramolecular solvent to the aqueous solution, the micelles were uniformly mixed using a vortex mixer. The cloudy solution was centrifuged, and the Hg-DTz complex was extracted into the supramolecular solvent phase. Under optimized experimental conditions, the LOD and enrichment factor were found to be 5.61 ng/L and 77.8, respectively. Accuracy of the developed method was checked with Certified Reference Materials. The developed method was successfully applied for the determination of HgII in claystone and sandstone samples from the Block VII and Block VIII areas of the Thar Coalfield on the basis of depth.

  13. In vivo optical analysis of pancreatic cancer tissue in living model mice using fluorescence and Raman spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshiaki; Hattori, Yusuke; Katagiri, Takashi; Mitsuoka, Hiroki; Sato, Ken-ichi; Asakura, Toru; Shimosegawa, Toru; Sato, Hidetoshi

    2009-02-01

    Living pancreatic cancer tissues grown subcutaneously in nude mice are studied by in vivo Raman spectroscopy and autofluorescence imaging. Comparing the same point spectra of alive pancreatic cancer tissue to that of the dead tissue, it is found that they are different each other. The results suggest that the spectral changes reflect the protein conformational changes in the tumor tissue with death of the host animal. From the result of autofluorescence study, in vivo autofluorescence imaging has potential as a method to assign the histological elements of the pancreatic cancer tissue without any staining. These results strongly suggest that combination of these techniques is very important to study biological tissue.

  14. A new device to mount portable energy dispersive X-ray fluorescence spectrometers (p-ED-XRF) for semi-continuous analyses of split (sediment) cores and solid samples

    NASA Astrophysics Data System (ADS)

    Hoelzmann, Philipp; Klein, Torsten; Kutz, Frank; Schütt, Brigitta

    2016-04-01

    Portable energy-dispersive X-ray fluorescence spectrometers (p-ED-XRF) have become increasingly popular in sedimentary laboratories to quantify the chemical composition of a range of materials such as sediments, solid samples, and artefacts. Here, we introduce a low-cost, clearly arranged unit that functions as a sample chamber (German industrial property right no. 20 2014 106 048.0) for p-ED-XRF devices to facilitate economic, non-destructive, fast, and semi-continuous analysis of (sediment) cores and/or other solid samples. The spatial resolution of the measurements is limited to the specifications of the applied p-ED-XRF device - in our case a Thermo Scientific NITON XL3t p-ED-XRF spectrometer with a maximum spatial resolution of 1 cm and equipped with a charge-coupled device (CCD)-camera to document the measurement spot. We demonstrate the strength of combining p-ED-XRF analyses with this new sample chamber to identify Holocene facies changes (e.g. marine vs terrestrial sedimentary facies) using a sediment core from an estuarine environment in context of a geoarchaeological investigation at the Atlantic coast of southern Spain.

  15. The use of wavelength dispersive X-ray fluorescence and discriminant analysis in the identification of the elemental composition of cumin samples and the determination of the country of origin.

    PubMed

    Hondrogiannis, E; Peterson, K; Zapf, C M; Roy, W; Blackney, B; Dailey, K

    2012-12-15

    Sixteen elements found in 33 cumin spice samples from China, India, Syria, and Turkey were analysed by wavelength dispersive X-ray fluorescence (WDXRF) spectroscopy using the commercially available Bruker - AXS S4 Explorer for the purpose of using the elements to discriminate among country of origin. Pellets were prepared of the samples and elemental concentrations calculated from calibration curves constructed using four National Institute of Standards and Technology (NIST) standards. A separate NIST tomato standard (1573a) was used as a validation check, while the WDXRF data for six of the cumin samples was further validated using inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The elements measured included Ca, Mg, K, P, S, Al, Ba, Br, Cl, Fe, Na, Mn, Rb, Sr, Cu, and Zn and were detected in the range from an average mean of 4.3 mg kg(-1) for Ba up to 19223.8 mg kg(-1) for K. Analysis of variance (ANOVA) was used to determine which elemental concentrations were statistically different from one another, and discriminant analysis was used to classify the cumin samples by country of origin. Using only eight elements (Ca, Mg, K, Fe, Na, Mn, Sr, and Zn) we were able to differentiate among cumin samples from four different geographic origins. Validation of the model with the validation set yielded 87.50% accuracy. Successful discrimination with just eight elements will allow for higher throughput in the screening of cumin samples using WDXRF for origin verification in less time.

  16. A new device to mount portable energy-dispersive X-ray fluorescence spectrometers (p-ED-XRF) for semi-continuous analyses of split (sediment) cores and solid samples

    NASA Astrophysics Data System (ADS)

    Hoelzmann, Philipp; Klein, Torsten; Kutz, Frank; Schütt, Brigitta

    2017-02-01

    Portable energy-dispersive X-ray fluorescence spectrometers (p-ED-XRF) have become increasingly popular in sedimentary laboratories to quantify the chemical composition of a range of materials such as sediments, soils, solid samples, and artefacts. Here, we introduce a low-cost, clearly arranged unit that functions as a sample chamber (German industrial property rights no. 20 2014 106 048.0) for p-ED-XRF devices to facilitate economic, non-destructive, fast, and semi-continuous analysis of (sediment) cores or other solid samples. The spatial resolution of the measurements is limited to the specifications of the applied p-ED-XRF device - in our case a Thermo Scientific Niton XL3t p-ED-XRF spectrometer with a maximum spatial resolution of 0.3 cm and equipped with a charge-coupled device (CCD) camera to document the measurement spot. We demonstrate the strength of combining p-ED-XRF analyses with this new sample chamber to identify Holocene facies changes (e.g. marine vs. terrestrial sedimentary facies) using a sediment core from an estuarine environment in the context of a geoarchaeological investigation at the Atlantic coast of southern Spain.

  17. Determination of trace amounts of hexavalent chromium in drinking waters by dispersive microsolid-phase extraction using modified multiwalled carbon nanotubes combined with total reflection X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Bahadir, Z.; Bulut, V. N.; Hidalgo, M.; Soylak, M.; Marguí, E.

    2015-05-01

    A methodology based on the combination of dispersive microsolid-phase extraction (DMSPE) with total reflection X-ray fluorescence (TXRF) spectrometry is proposed for the determination of hexavalent chromium in drinking waters. Multiwalled carbon nanotubes (MWCNTs) modified with the anionic exchanger tricaprylmethylammonium chloride (Aliquat 336) were used as solid sorbents. After the sorption process of Cr(VI) on the modified MWCNTs, the aqueous sample was separated by centrifugation and the loaded MWCNTs were suspended using a small volume of an internal standard solution and analyzed directly by a benchtop TXRF spectrometer, without any elution step. Parameters affecting the extraction process (pH and volume of the aqueous sample, amount of MWCNTs, extraction time) and TXRF analysis (volume of internal standard, volume of deposited suspension on the reflector, drying mode, and instrumental parameters) have been carefully evaluated to test the real capability of the developed methodology for the determination of Cr(VI) at trace levels. Using the best analytical conditions, it was found that the minimum Cr(VI) content that can be detected in an aqueous solution was 3 μg L- 1. This value is almost 20 times lower than the maximum hexavalent chromium content permissible in drinking waters, according to the World Health Organization (WHO). Recoveries for spiked tap and mineral water samples were, in most cases, in the range of 101-108% which demonstrates the suitability of the TXRF methodology for monitoring Cr(VI) at trace levels in drinking water samples.

  18. Fluorescence characteristics of carbon nanoemitters derived from sucrose by green hydrothermal and microwave methods

    NASA Astrophysics Data System (ADS)

    Patidar, Rajesh; Rebary, Babulal; Bhadu, Gopala Ram

    2016-12-01

    In this work, fluorescent carbon nanoparticles (CNPs) were prepared through two green methods i.e. microwave and hydrothermal, using sucrose as carbon precursor. Both of these methods have offered fluorescent CNPs as characterized by TEM, FTIR, zeta potential, absorbance and emission techniques. Excitation dependent emission spectra were exhibited by aqueous dispersion of these CNPs when they were subjected to different excitation wavelengths. The luminous characteristics of CNPs obtained from both of these methods were studied and compared. Their fluorescence stability in water and buffer was monitored for about three months. Influence of pH and various metal ions on emission spectra were investigated.

  19. Tetraphenylethene-based aggregation-induced emission fluorescent organic nanoparticles: facile preparation and cell imaging application.

    PubMed

    Zhang, Xiqi; Liu, Meiying; Yang, Bin; Zhang, Xiaoyong; Wei, Yen

    2013-12-01

    Tetraphenylethene-based (TPE) aggregation-induced emission fluorescent organic nanoparticles (FONs) were facilely prepared via Schiff base condensation with ɛ-polylysine (Ply) and subsequent reduction to form stable CN covalent bond. Thus obtained TPE-Ply FONs were characterized by a series of techniques including fluorescent spectroscopy, Fourier transform infrared spectroscopy and transmission electron microscopy. Biocompatibility evaluation and cell uptake behavior of TPE-Ply FONs were further investigated to explore their potential biomedical application. We demonstrated that such FONs showed high water dispersibility, intense fluorescence, uniform morphology (100-200nm) and excellent biocompatibility, making them promising for cell imaging application.

  20. Investigating Early/Middle Bronze Age copper and bronze axes by micro X-ray fluorescence spectrometry and neutron imaging techniques

    NASA Astrophysics Data System (ADS)

    Figueiredo, Elin; Pereira, Marco A. Stanojev; Lopes, Filipa; Marques, José G.; Santos, Joana P.; Araújo, M. Fátima; Silva, Rui J. C.; Senna-Martinez, João C.

    2016-08-01

    Micro X-ray fluorescence (micro-XRF) analysis and neutron imaging techniques, namely 2D radiography and 3D tomography, have been applied for the study of four metal axes from the Early/Middle Bronze Age in Western Iberia, a period characterized by a metallurgical change in the use of copper to bronze. Micro-XRF analysis has shown that one of the axes was produced in copper with some arsenic while the other three were produced in a copper-tin alloy (bronze) with variable tin contents and some arsenic and lead. Neutron radiography and tomography were applied to study internal heterogeneities of the axes in a non-invasive way since the specificities of neutron interaction with matter allow a suitable penetration of these relatively thick copper-based objects when compared to the use of a conventional X-ray radiography. Neutron imaging allowed the visualization of internal fissures and pores and the evaluation of their distribution, size and shape. Relevant information for the reconstruction of ancient manufacturing techniques was gathered, revealing that one ax was produced with the mold in an angle of ≈ 25°, probably to facilitate gas escape during metal pouring. Also, information regarding physical weaknesses of the axes was collected, providing relevant data for their conservation. The combination of these non-destructive techniques allowed the evaluation of the metal composition and the internal structure of the axes. Micro-XRF allowed the distinction among copper and bronze axes, and provided data about the composition of early bronzes for which data is scarce. The neutron imaging study allowed for the first time the visualization of internal heterogeneities in early bronze axes, namely pores and large voids, providing relevant information for the reconstruction of ancient manufacturing techniques and raising pertinent information regarding physical weaknesses of these types of objects.

  1. Particle Image Velocimetry Applications Using Fluorescent Dye-Doped Particles

    NASA Technical Reports Server (NTRS)

    Petrosky, Brian J.; Maisto, Pietro; Lowe, K. Todd; Andre, Matthieu A.; Bardet, Philippe M.; Tiemsin, Patsy I.; Wohl, Christopher J.; Danehy, Paul M.

    2015-01-01

    Polystyrene latex sphere particles are widely used to seed flows for velocimetry techniques such as Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV). These particles may be doped with fluorescent dyes such that signals spectrally shifted from the incident laser wavelength may be detected via Laser Induced Fluorescence (LIF). An attractive application of the LIF signal is achieving velocimetry in the presence of strong interference from laser scatter, opening up new research possibilities very near solid surfaces or at liquid/gas interfaces. Additionally, LIF signals can be used to tag different fluid streams to study mixing. While fluorescence-based PIV has been performed by many researchers for particles dispersed in water flows, the current work is among the first in applying the technique to micron-scale particles dispersed in a gas. A key requirement for such an application is addressing potential health hazards from fluorescent dyes; successful doping of Kiton Red 620 (KR620) has enabled the use of this relatively safe dye for fluorescence PIV for the first time. In this paper, basic applications proving the concept of PIV using the LIF signal from KR620-doped particles are exhibited for a free jet and a twophase flow apparatus. Results indicate that while the fluorescence PIV techniques are roughly 2 orders of magnitude weaker than Mie scattering, they provide a viable method for obtaining data in flow regions previously inaccessible via standard PIV. These techniques have the potential to also complement Mie scattering signals, for example in multi-stream and/or multi-phase experiments.

  2. Rate constant for the reaction H + NO2 from 195 to 400 K with FP-RF and DF-RF techniques. [Flash Photolysis and Discharge Flow-Resonance Fluorescence

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Nava, D. F.; Payne, W. A.; Lee, J. H.; Stief, L. J.

    1979-01-01

    Measurements are made of the rate constant for the reaction H + NO2 yielding OH + NO over significant temperature ranges with the flash photolysis-resonance fluorescence (FP-RF) technique and also with the discharge flow-resonance fluorescence (DF-RF) technique. Since it is important to study chemical reactions with more than one technique, the above reaction is investigated with the FP-RF technique over the temperature range 230-400 K. The results reported do not agree with earlier determinations. Accordingly, a separate set of measurements is made with the DF-RF technique over the temperature range 195-368 K; the results are also reported. The reaction is also considered theoretically, especially with regard to the question of temperature dependence and absolute magnitude of the rate constant.

  3. Bench-Top Antigen Detection Technique that Utilizes Nanofiltration and Fluorescent Dyes which Emit and Absorb Light in the Near Infrared

    NASA Technical Reports Server (NTRS)

    Varaljay-Spence, Vanessa A.; Scardelletti, Maximilian C.

    2007-01-01

    This article discusses the development of a bench-top technique to detect antigens in fluids. The technique involves the use of near infrared NIR fluorescent dyes conjugated to antibodies, centrifugation, nanofilters, and spectrometry. The system used to detect the antigens utilizes a spectrometer, fiber optic cables, NIR laser, and laptop computer thus making it portable and ideally suited for desk top analysis. Using IgM as an antigen and the secondary antibody, anti-IgM conjugated to the near infrared dye, IRDye (trademark) 800, for detection, we show that nanofiltration can efficiently and specifically separate antibody-antigen complexes in solution and that the complexes can be detected by a spectrometer and software using NIR laser excitation at 778 nm and NIR dye offset emission at 804 nm. The peak power detected at 778 nm for the excitation emission and at 804 nm for the offset emission is 879 pW (-60.06 dBm) and 35.7 pW (-74.5 dBm), respectively.

  4. Genomic arrays in chronic lymphocytic leukemia routine clinical practice: are we ready to substitute conventional cytogenetics and fluorescence in situ hybridization techniques?

    PubMed

    Puiggros, Anna; Puigdecanet, Eulàlia; Salido, Marta; Ferrer, Ana; Abella, Eugènia; Gimeno, Eva; Nonell, Lara; Herranz, María José; Galván, Ana Belén; Rodríguez-Rivera, María; Melero, Carme; Pairet, Silvia; Bellosillo, Beatriz; Serrano, Sergi; Florensa, Lourdes; Solé, Francesc; Espinet, Blanca

    2013-05-01

    Chronic lymphocytic leukemia (CLL) is characterized by a highly variable clinical course. Del(11q) and del(17p), routinely studied by conventional G-banding cytogenetics (CGC) and fluorescence in situ hybridization (FISH), have been related to progression and shorter overall survival. Recently, array-based karyotyping has gained acceptance as a high-resolution new tool for detecting genomic imbalances. The aim of the present study was to compare genomic arrays with CGC and FISH to ascertain whether the current techniques could be substituted in routine procedures. We analyzed 70 patients with CLL using the Cytogenetics Whole-Genome 2.7M Array and CytoScan HD Array (Affymetrix), CGC and FISH with the classical CLL panel. Whereas 31.4% and 68.6% of patients presented abnormalities when studied by CGC and FISH, respectively, these rates increased when arrays were also analyzed (78.6% and 80%). Although abnormality detection is higher when arrays are applied, one case with del(11q) and three with del(17p) were missed by genomic arrays due to their limited sensitivity. We consider that the complete substitution of CGC and FISH by genomic arrays in routine laboratories could negatively affect the management of some patients harboring 11q or 17p deletions. In conclusion, genomic arrays are valid to detect known and novel genomic imbalances in CLL, but should be maintained as a complementary tool to the current techniques.

  5. Development of a two photon/laser induced fluorescence technique for the detection of atmospheric OH radicals

    NASA Technical Reports Server (NTRS)

    Bradshaw, John

    1990-01-01

    The development of a new mid-IR laser source was the primary goal. Backward propagating stimulated D2 Raman frequency down conversion of a commercially available 1.06 micron Nd:YAG laser was shown to generate an efficient source of 1.56 micron radiation with near diffraction limited beam quality. The efficient generation of a 2.9 micron laser source was also achieved using backward propagating CH4 Raman frequency down conversion of the 1.56 micron pump. Slightly higher efficiencies were obtained for frequency down conversion of the 1.06 micron Nd:YAG using the H2 Raman shift yielding a near diffraction limited source in the 200 mJ range at 1.9 micron. Similar conversion efficiencies are anticipated as a result of extending the wavelength coverage of recently available Ti:sapphire pulse laser to not only cover the 740 to 860 nm fundamental wavelength range but also the .95 to 1.15 and 1.06 to 1.33 micron range using D2 and H2, respectively. The anticipated sensitivity of a TP-LIF OH sensor using this mid-IR source would give signal limited detection of 1.4 x 10(exp 5) OH/cu cm under boundary layer conditions and 5.5 x 10(exp 4) OH/cu cm under free troposphere sampling conditions for a five minute signal integration period. This level of performance coupled with the techniques non-perturbing nature and freedom from both interferences and background would allow reliable tropospheric OH measurement to be obtained under virtually any ambient condition of current interest, including interstitial and sampling.

  6. Extraction and preconcentration technique for triazole pesticides from cow milk using dispersive liquid-liquid microextraction followed by GC-FID and GC-MS determinations.

    PubMed

    Farajzadeh, Mir Ali; Djozan, Djavanshir; Mogaddam, M R Afshar; Bamorowat, Mehdi

    2011-06-01

    A simple and rapid dispersive liquid-liquid microextraction (DLLME) technique coupled with gas chromatography-flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS) was developed for the extraction, preconcentration, and analysis of triazole pesticides (penconazole, hexaconazole, tebuconazole, triticonazole, and difenoconazole) in cow milk samples. Initially to 5 mL milk sample, NaCl and acetonitrile were added as salting-out agent and extraction solvent, respectively. After manual shaking, the mixture was centrifuged. In the presence of sodium chloride, a two-phase system was formed: upper phase, acetonitrile containing triazole pesticides and lower phase, aqueous phase containing soluble compounds and the precipitated proteins. After the extraction of pesticides from milk, a portion of supernatant phase (acetonitrile) was removed, mixed with chloroform at microliter level and rapidly injected by syringe into 5 mL distilled water. In this process, triazole pesticides were extracted into fine droplets of chloroform (as extraction solvent). After centrifugation, the fine droplets of chloroform were sedimented in bottom of the conical test tube. Finally, GC-FID and GC-MS were used for the separation and determination of analytes in the sedimented phase. Some important parameters like type of solvent for extraction of pesticides from milk, salt amount, the volume of extraction solvent, etc., which affect the extraction efficiency, were completely studied. Under the optimum conditions, enrichment factors were in the range of 156-380. The linear ranges of calibration curves were wide and limits of detection (LODs) and limits of quantification (LOQs) were between 4-58 and 13-180 μg/L, respectively. This method is very simple and rapid, requiring <15 min for sample preparation.

  7. Studies of the laser-induced fluorescence of explosives and explosive compositions.

    SciTech Connect

    Hargis, Philip Joseph, Jr.; Thorne, Lawrence R.; Phifer, Carol Celeste; Parmeter, John Ethan; Schmitt, Randal L.

    2006-10-01

    Continuing use of explosives by terrorists throughout the world has led to great interest in explosives detection technology, especially in technologies that have potential for standoff detection. This LDRD was undertaken in order to investigate the possible detection of explosive particulates at safe standoff distances in an attempt to identify vehicles that might contain large vehicle bombs (LVBs). The explosives investigated have included the common homogeneous or molecular explosives, 2,4,6-trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), cyclonite or hexogen (RDX), octogen (HMX), and the heterogeneous explosive, ammonium nitrate/fuel oil (ANFO), and its components. We have investigated standard excited/dispersed fluorescence, laser-excited prompt and delayed dispersed fluorescence using excitation wavelengths of 266 and 355 nm, the effects of polarization of the laser excitation light, and fluorescence imaging microscopy using 365- and 470-nm excitation. The four nitro-based, homogeneous explosives (TNT, PETN, RDX, and HMX) exhibit virtually no native fluorescence, but do exhibit quenching effects of varying magnitude when adsorbed on fluorescing surfaces. Ammonium nitrate and fuel oil mixtures fluoresce primarily due to the fuel oil, and, in some cases, due to the presence of hydrophobic coatings on ammonium nitrate prill or impurities in the ammonium nitrate itself. Pure ammonium nitrate shows no detectable fluorescence. These results are of scientific interest, but they provide little hope for the use of UV-excited fluorescence as a technique to perform safe standoff detection of adsorbed explosive particulates under real-world conditions with a useful degree of reliability.

  8. Monte Carlo fluorescence microtomography

    NASA Astrophysics Data System (ADS)

    Cong, Alexander X.; Hofmann, Matthias C.; Cong, Wenxiang; Xu, Yong; Wang, Ge

    2011-07-01

    Fluorescence microscopy allows real-time monitoring of optical molecular probes for disease characterization, drug development, and tissue regeneration. However, when a biological sample is thicker than 1 mm, intense scattering of light would significantly degrade the spatial resolution of fluorescence microscopy. In this paper, we develop a fluorescence microtomography technique that utilizes the Monte Carlo method to image fluorescence reporters in thick biological samples. This approach is based on an l0-regularized tomography model and provides an excellent solution. Our studies on biomimetic tissue scaffolds have demonstrated that the proposed approach is capable of localizing and quantifying the distribution of optical molecular probe accurately and reliably.

  9. Technique for in situ measurement of calcium in intracellular inositol 1,4,5-trisphosphate-sensitive stores using the fluorescent indicator mag-fura-2.

    PubMed Central

    Hofer, A M; Machen, T E

    1993-01-01

    Stimulation of cells with calcium-mobilizing agonists frequently results in inositol 1,4,5-trisphosphate (InsP3)-mediated discharge of Ca from an internal store. We report here a technique for directly monitoring Ca within this and other stores in gastric epithelial cells. This technique takes advantage of the propensity of the acetoxymethyl ester derivative of the fluorescent dye mag-fura-2 (which is sensitive to Ca concentrations above 5 microM) to accumulate in subcellular compartments where it can report changes in the free Ca concentration. Intact dye-loaded cells responded to cholinergic stimulation with a decrease in the 350 nm/385 nm excitation ratio, as measured in individual cells with a digital imaging microscope, consistent with reduced Ca concentration in one or more cellular compartments. When cells were permeabilized with digitonin and incubated in an "intracellular buffer," the cytoplasmic dye was released, leaving the mag-fura-2 in the internal store. InsP3 caused the ratio from the trapped indicator to decrease (i.e., Ca was released) in a dose-dependent manner, and this effect was blocked by the InsP3 receptor antagonist heparin. Ca sequestration into the internal store was ATP-dependent, and reuptake into the InsP3-sensitive pool was blocked by thapsigargin, a specific inhibitor of the Ca-ATPase of the internal store. We used this technique to investigate the role of Cl on the release and reloading of the InsP3-sensitive internal store and found that Ca uptake was reduced in Cl-free solutions, suggesting an important function for Cl in the refilling of this pool. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8464866

  10. Amorphous drug-PVP dispersions: application of theoretical, thermal and spectroscopic analytical techniques to the study of a molecule with intermolecular bonds in both the crystalline and pure amorphous state.

    PubMed

    Tobyn, Michael; Brown, Jonathan; Dennis, Andrew B; Fakes, Michael; Gao, Qi; Gamble, John; Khimyak, Yaroslav Z; McGeorge, Gary; Patel, Chhaya; Sinclair, Wayne; Timmins, Peter; Yin, Shawn

    2009-09-01

    We report the case of BMS-488043-PVP solid dispersions which when analysed using modulated DSC showed compliance with the Gordon-Taylor model, confirming ideal mixing behaviour of the two components. The nature or presence of stabilising interactions between drug and PVP could not be confirmed using this technique. Use of FT-IR, Raman and solid-state NMR spectroscopy confirmed the presence of stabilising hydrogen bond interactions between the drug and PVP. Similar interactions are present as intermolecular bonds in the crystalline and pure amorphous drug system. The Gordon-Taylor equation, as it is not predictive of the presence of intermolecular bonds such as hydrogen bonding in an amorphous dispersion, may underestimate the likely physical stability of solid dispersions which are produced and stabilised by these interactions.

  11. A magnetic-based dispersive micro-solid-phase extraction method using the metal-organic framework HKUST-1 and ultra-high-performance liquid chromatography with fluorescence detection for determining polycyclic aromatic hydrocarbons in waters and fruit tea infusions.

    PubMed

    Rocío-Bautista, Priscilla; Pino, Verónica; Ayala, Juan H; Pasán, Jorge; Ruiz-Pérez, Catalina; Afonso, Ana M

    2016-03-04

    A hybrid material composed by the metal-organic framework (MOF) HKUST-1 and Fe3O4 magnetic nanoparticles (MNPs) has been synthetized in a quite simple manner, characterized, and used in a magnetic-assisted dispersive micro-solid-phase extraction (M-d-μSPE) method in combination with ultra-high-performance liquid chromatography (UHPLC) and fluorescence detection (FD). The application was devoted to the determination of 8 heavy polycyclic aromatic hydrocarbons (PAHs) in different aqueous samples, specifically tap water, wastewaters, and fruit tea infusion samples. The overall M-d-μSPE-UHPLC-FD method was optimized and validated. The method is characterized by: its simplicity in both the preparation of the hybrid material (simple mixing) and the magnetic-assisted approach (∼10min extraction time), the use of low sorbent amounts (20mg of HKUST-1 and 5mg of Fe3O4 MNPs), and the low organic solvent consumption in the overall M-d-μSPE-UHPLC-FD method (1.5mL of acetonitrile in the M-d-μSPE method and 2.8mL of acetonitrile in the UHPLC-FD run). The resulting method has high sensitivity, with LODs down to 0.8ngL(-1); adequate intermediate precision, with relative standard deviation values (RSD) always lower than 6.3% (being the range 5.9-9.0% in tap water for a spiked level of 45ngL(-1), 6.1-14% in wastewaters for a spiked level of 45ngL(-1), and 7.2-17% in fruit tea infusion samples for a spiked level of 45ngL(-1)); and adequate relative recoveries, with average values of 82% in tap water, and 94% and 75% in wastewater and fruit tea infusion samples, respectively, if using the proper matrix-matched calibration.

  12. Determination of bisphenol A, 4-octylphenol, and 4-nonylphenol in soft drinks and dairy products by ultrasound-assisted dispersive liquid-liquid microextraction combined with derivatization and high-performance liquid chromatography with fluorescence detection.

    PubMed

    Lv, Tao; Zhao, Xian-En; Zhu, Shuyun; Qu, Fei; Song, Cuihua; You, Jinmao; Suo, Yourui

    2014-10-01

    A novel hyphenated method based on ultrasound-assisted dispersive liquid-liquid microextraction coupled to precolumn derivatization has been established for the simultaneous determination of bisphenol A, 4-octylphenol, and 4-nonylphenol by high-performance liquid chromatography with fluorescence detection. Different parameters that influence microextraction and derivatization have been optimized. The quantitative linear range of analytes is 5.0-400.0 ng/L, and the correlation coefficients are more than 0.9998. Limits of detection for soft drinks and dairy products have been obtained in the range of 0.5-1.2 ng/kg and 0.01-0.04 μg/kg, respectively. Relative standard deviations of intra- and inter-day precision for retention time and peak area are in the range of 0.47-2.31 and 2.76-8.79%, respectively. Accuracy is satisfactory in the range of 81.5-118.7%. Relative standard deviations of repeatability are in the range of 0.35-1.43 and 2.36-4.75% for retention time and peak area, respectively. Enrichment factors for bisphenol A, 4-octylphenol, and 4-nonylphenol