Sample records for dispersed multiwalled carbon

  1. Multiwalled Carbon Nanotube Dispersion Methods Affect Their Aggregation, Deposition, and Biomarker Response

    EPA Science Inventory

    To systematically evaluate how dispersion methods affect the environmental behaviors of multiwalled carbon nanotubes (MWNTs), MWNTs were dispersed in various solutions (e.g., surfactants, natural organic matter (NOM), and etc.) via ultrasonication (SON) and long-term stirring (LT...

  2. Electrostatic stabilization of multi-walled carbon nanotubes dispersed in nonaqueous media.

    PubMed

    Damasceno, João Paulo V; Zarbin, Aldo J G

    2018-06-04

    Dispersing carbon nanotubes is an easy and low-cost way to manipulate these solids and allows the preparation of more complex materials or devices, so it is fundamental for further uses that these dispersions have controlled properties and high colloidal stability. In this work we report the spontaneous electrical charge build-up in pristine multi-walled carbon nanotubes dispersed in common organic solvents such as chloroform and tetrahydrofuran and the achievement of dispersions stable for long periods without adding passivant agents or functional groups on nanotubes surface. Results from electrokinetics, homo- and heterocoagulation provided macroscopic evidences that carbon nanotubes acquire electric charges after dispersion in some organic liquids and we confirmed this process by measuring in situ Raman spectra of the nanotubes dispersions with higher surface electric potentials. We also show that the signal of electric potential of the dispersions can be predicted by the acid-base behaviour of the dispersing medium, corroborating previously reports for other dispersions of carbon nanomaterials. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Novel star-like surfactant as dispersant for multi-walled carbon nanotubes in aqueous suspensions at high concentration

    NASA Astrophysics Data System (ADS)

    Qiao, Min; Ran, Qianping; Wu, Shishan

    2018-03-01

    A kind of novel surfactant with star-like molecular structure and terminated sulfonate was synthesized, and it was used as the dispersant for multi-walled carbon nanotubes (CNTs) in aqueous suspensions compared with a traditional single-chained surfactant. The star-like surfactant showed good dispersing ability for multi-walled CNTs in aqueous suspensions. Surface tension analysis, total organic carbon analysis, X-ray photoelectron spectroscopy, zeta potential, dynamic light scattering and transmission electron microscopy were performed to research the effect of star-like surfactant on the dispersion of multi-walled CNTs in aqueous suspensions. With the assistance of star-like surfactant, the CNTs could disperse well in aqueous suspension at high concentration of 50 g/L for more than 30 days, while the CNTs precipitated completely in aqueous suspension after 1 day without any dispersant or after 10 days with sodium 4-dodecylbenzenesulfonic acid as dispersant.

  4. Effect of Acid Oxidation on the Dispersion Property of Multiwalled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Goh, P. S.; Ismail, A. F.; Aziz, M.

    2009-06-01

    A means of dispersion of multiwalled carbon nanotube (MWCNT) via mixed acid (HNO3 and H2SO4) oxidation with different treatment durations was investigated through the solubility study of the treated carbon nanotubes in some common solvents. Fourier transformed infrared (FTIR) characterization of the reaction products revealed that the surface of MWCNTs was successfully functionalized with surface acidic groups. The acid-base titration demonstrated that the amount of surface acidic groups increased in parallel with the refluxing duration. The acid modified MWCNTs were found to be well dispersed in polar solvents, such as ethanol and water due to the presence of the hydrophilic acid functional groups on the surface of raw MWCNTs. Such chemical modification of carbon nanotube properties will pave the way towards the realistic applications in the nanotechnology world.

  5. Characterization of multiwalled carbon nanotube-polymethyl methacrylate composite resins as denture base materials.

    PubMed

    Wang, Russell; Tao, Junliang; Yu, Bill; Dai, Liming

    2014-04-01

    Most fractures of dentures occur during function, primarily because of the flexural fatigue of denture resins. The purpose of this study was to evaluate a polymethyl methacrylate denture base material modified with multiwalled carbon nanotubes in terms of fatigue resistance, flexural strength, and resilience. Denture resin specimens were fabricated: control, 0.5 wt%, 1 wt%, and 2 wt% of multiwalled carbon nanotubes. Multiwalled carbon nanotubes were dispersed by sonication. Thermogravimetric analysis was used to determine quantitative dispersions of multiwalled carbon nanotubes in polymethyl methacrylate. Raman spectroscopic analyses were used to evaluate interfacial reactions between the multiwalled carbon nanotubes and the polymethyl methacrylate matrix. Groups with and without multiwalled carbon nanotubes were subjected to a 3-point-bending test for flexural strength. Resilience was derived from a stress and/or strain curve. Fatigue resistance was conducted by a 4-point bending test. Fractured surfaces were analyzed by scanning electron microscopy. One-way ANOVA and the Duncan tests were used to identify any statistical differences (α=.05). Thermogravimetric analysis verified the accurate amounts of multiwalled carbon nanotubes dispersed in the polymethyl methacrylate resin. Raman spectroscopy showed an interfacial reaction between the multiwalled carbon nanotubes and the polymethyl methacrylate matrix. Statistical analyses revealed significant differences in static and dynamic loadings among the groups. The worst mechanical properties were in the 2 wt% multiwalled carbon nanotubes (P<.05), and 0.5 wt% and 1 wt% multiwalled carbon nanotubes significantly improved flexural strength and resilience. All multiwalled carbon nanotubes-polymethyl methacrylate groups showed poor fatigue resistance. The scanning electron microscopy results indicated more agglomerations in the 2% multiwalled carbon nanotubes. Multiwalled carbon nanotubes-polymethyl methacrylate groups

  6. Dispersion and characterization of Thermoplastic Polyurethane/Multiwalled Carbon Nanotubes in co-rotative twin screw extruder

    NASA Astrophysics Data System (ADS)

    Benedito, Adolfo; Buezas, Ignacio; Giménez, Enrique; Galindo, Begoña

    2010-06-01

    The dispersion of multi-walled carbon nanotubes in thermoplastic polyurethanes has been done in co-rotative twin screw extruder through a melt blending process. A specific experimental design was prepared taking into account different compounding parameters such as feeding, temperature profile, screw speed, screw design, and carbon nanotube loading. The obtained samples were characterized by thermogravimetric analysis (TGA), light transmission microscopy, dynamic rheometry, and dynamic mechanical analysis. The objective of this work has been to study the dispersion quality of the carbon nanotubes and the effect of different compounding parameters to optimize them for industrial scale-up to final applications.

  7. Dispersion of bamboo type multi-wall carbon nanotubes in calf-thymus double stranded DNA.

    PubMed

    Primo, Emiliano N; Cañete-Rosales, Paulina; Bollo, Soledad; Rubianes, María D; Rivas, Gustavo A

    2013-08-01

    We report for the first time the use of double stranded calf-thymus DNA (dsDNA) to successfully disperse bamboo-like multi-walled carbon nanotubes (bCNT). The dispersion and the modified electrodes were studied by different spectroscopic, microscopic and electrochemical techniques. The drastic treatment for dispersing the bCNT (45min sonication in a 50% (v/v) ethanol:water solution), produces a partial denaturation and a decrease in the length of dsDNA that facilitates the dispersion of CNT and makes possible an efficient electron transfer of guanine residues to the electrode. A critical analysis of the influence of different experimental conditions on the efficiency of the dispersion and on the performance of glassy carbon electrodes (GCE) modified with bCNT-dsDNA dispersion is also reported. The electron transfer of redox probes and guanine residues was more efficient at GCE modified with bCNT dispersed in dsDNA than at GCE modified with hollow CNT (hCNT) dispersed in dsDNA, demonstrating the importance of the presence of bCNT. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Industrial-Graded Epoxy Nanocomposites with Mechanically Dispersed Multi-Walled Carbon Nanotubes: Static and Damping Properties

    PubMed Central

    Di Maio, Dario

    2017-01-01

    The majority of currently published dispersion protocols of carbon nanotubes rely on techniques that are not scalable to an industrial level. This work shows how to obtain polymer nanocomposites with good mechanical characteristics using multi-walled carbon nanotubes epoxy resins obtained by mechanical mixing only. The mechanical dispersion method illustrated in this work is easily scalable to industrial level. The high shearing force due to the complex field of motion produces a good and reproducible carbon nanotube dispersion. We have tested an industrial epoxy matrix with good baseline mechanical characteristics at different carbon nanotube weight loads. ASTM-derived tensile and compressive tests show an increment in both Young’s modulus and compressive strength compared with the pristine resin from a starting low wt %. Comparative vibration tests show improvement in the damping capacity. The new carbon nanotube enhanced epoxy resin has superior mechanical proprieties compared to the market average competitor, and is among the top products in the bi-components epoxy resins market. The new dispersion method shows significant potential for the industrial use of CNTs in epoxy matrices. PMID:29064400

  9. Industrial-Graded Epoxy Nanocomposites with Mechanically Dispersed Multi-Walled Carbon Nanotubes: Static and Damping Properties.

    PubMed

    Giovannelli, Andrea; Di Maio, Dario; Scarpa, Fabrizio

    2017-10-24

    The majority of currently published dispersion protocols of carbon nanotubes rely on techniques that are not scalable to an industrial level. This work shows how to obtain polymer nanocomposites with good mechanical characteristics using multi-walled carbon nanotubes epoxy resins obtained by mechanical mixing only. The mechanical dispersion method illustrated in this work is easily scalable to industrial level. The high shearing force due to the complex field of motion produces a good and reproducible carbon nanotube dispersion. We have tested an industrial epoxy matrix with good baseline mechanical characteristics at different carbon nanotube weight loads. ASTM-derived tensile and compressive tests show an increment in both Young's modulus and compressive strength compared with the pristine resin from a starting low wt %. Comparative vibration tests show improvement in the damping capacity. The new carbon nanotube enhanced epoxy resin has superior mechanical proprieties compared to the market average competitor, and is among the top products in the bi-components epoxy resins market. The new dispersion method shows significant potential for the industrial use of CNTs in epoxy matrices.

  10. Fabrication and Characterization of Multi-Walled Carbon Nanotube (MWCNT) and Ni-Coated Multi-Walled Carbon Nanotube (Ni-MWCNT) Repair Patches for Carbon Fiber Reinforced Composite Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Brienne; Caraccio, Anne; Tate, LaNetra; Jackson, Dionne

    2011-01-01

    Multi-walled carbon nanotube (MWCNT)/epoxy and nickel-coated multi-walled carbon nanotube (Ni-MWCNT)/epoxy systems were fabricated into carbon fiber composite repair patches via vacuum resin infusion. Two 4 ply patches were manufactured with fiber orientations of [90/ 90/ 4590] and [0/90/ +45/ -45]. Prior to resin infusion, the MWCNT/Epoxy system and NiMWCNT/ epoxy systems were optimized for dispersion quality. Scanning electron microscopy (SEM) and optical microscopy (OM) were used to determine the presence ofcarbon nanotubes and assess dispersion quality. Decomposition temperatures were determined via thermogravametric analysis (TGA). SEM and TGA were also used to evaluate the composite repair patches.

  11. A Comparative Study of the Dispersion of Multi-Wall Carbon Nanotubes Made by Arc-Discharge and Chemical Vapour Deposition.

    PubMed

    Frømyr, Tomas-Roll; Bourgeaux-Goget, Marie; Hansen, Finn Knut

    2015-05-01

    A method has been developed to characterize the dispersion of multi-wall carbon nanotubes in water using a disc centrifuge for the detection of individual carbon nanotubes, residual aggregates, and contaminants. Carbon nanotubes produced by arc-discharge have been measured and compared with carbon nanotubes produced by chemical vapour deposition. Studies performed on both pristine (see text) arc-discharge nanotubes is rather strong and that high ultra-sound intensity is required to achieve complete dispersion of carbon nanotube bundles. The logarithm of the mode of the particle size distribution of the arc-discharge carbon nanotubes was found to be a linear function of the logarithm of the total ultrasonic energy input in the dispersion process.

  12. Ecotoxicity of multiwalled carbon nanotubes: standardization of the dispersion methods and concentration measurements.

    PubMed

    Cerrillo, Cristina; Barandika, Gotzone; Igartua, Amaya; Areitioaurtena, Olatz; Marcaide, Arrate; Mendoza, Gemma

    2015-08-01

    There are currently a variety of applications for multiwalled carbon nanotubes (MWCNTs), but considerable concerns exist regarding their release into the environment. Their potential accumulation by aquatic organisms could lead to transfer throughout food chains. Considering the divergences in experimental data published on the ecotoxicity of carbon nanotubes, further research is required. The dispersion of MWCNTs in aqueous culturing media of organisms as well as the determination of concentrations are relevant aspects to obtain accurate ecotoxicity results. Ultraviolet-visible spectroscopy is one of the most reported techniques to analyze concentration quickly and economically, but the methodologies to prepare dispersions and selecting the wavelengths for ultraviolet-visible measurements have not yet been clearly defined. The present study demonstrates that dispersion procedures influence absorbance, and an approach to determine the most appropriate measurement wavelength is proposed. Ecotoxicity tests with MWCNTs were performed on Vibrio fischeri bacteria, and divergences in the results were observed with respect to those previously reported. The present study contributes to the attempt to overcome the lack of standardization in the environmental assessment of MWCNTs. © 2015 SETAC.

  13. Control of multiwall carbon nanotubes dispersion in polyamide6 matrix: An assessment through electrical conductivity

    NASA Astrophysics Data System (ADS)

    Kodgire, Pravin V.; Bhattacharyya, Arup R.; Bose, Suryasarathi; Gupta, Nitin; Kulkarni, Ajit R.; Misra, Ashok

    2006-12-01

    The homogeneous dispersion of carbon nanotubes (CNT) remains a hindrance in exploiting the exceptional properties associated with CNT in polymer/CNT composites. Here we present for the first time the key role of sodium salt of 6-aminohexanoic acid (Na-AHA) in assisting debundling the multiwall carbon nanotubes (MWNT) through specific interactions leading to homogeneous dispersion within polyamide6 (PA6) matrix during melt-mixing. The composite fabricated via this route exhibits low electrical percolation threshold of 0.5 wt% at room temperature, the lowest reported value in this system so far. FTIR and Raman spectroscopy reveal the existence of 'cation-π' interaction between Na-AHA and MWNT. The phenomenon of reactive coupling between amine functionality of Na-AHA and acid end group of PA6 during melt-mixing is also established.

  14. Heat transport in electrically aligned multiwalled carbon nanotubes dispersed in water

    NASA Astrophysics Data System (ADS)

    Cervantes-Alvarez, F.; Macias, J. D.; Alvarado-Gil, J. J.

    2018-02-01

    A modified Ångström method was used to determine the thermal diffusivity and thermal conductivity of aqueous dispersions of multiwalled carbon nanotubes as a function of their weight fraction concentration and in the presence of an externally applied electric field. Measurements were performed in planar samples, with a fixed thickness of 3.18 mm applying an AC voltage in the range from 0 to 70~V_RMS and for concentrations of carbon nanotubes from 0 to 2 wf%. It is shown that this field induces the formation of clusters followed by their alignment along the electric field, which can favor heat transfer in that direction. Heat transfer measurements show two regimes, in the first one under 0.5 wf%, voltages lower than 30~V_RMS are not strong enough to induce the adequate order of the carbon nanostructures, and as a consequence, thermal diffusivity of the dispersion remains close to the thermal diffusivity of water. In contrast for higher concentrations (above 1.5 wf%), 10~V_RMS are enough to get a good alignment. Above such thresholds of concentrations and voltages, thermal diffusivity and conductivity increase, when the electric field is increased, in such a way that for an applied voltage of 20~V_RMS and for a concentration of 1.5 wf%, an increase of 49% of the thermal conductivity was obtained. It is also shown that this approach exhibits limits, due to the fact that the electric-field induced structure, can act as a heating element at high electric field intensities and carbon nanotubes concentrations, which can induce convection and evaporation of the liquid matrix.

  15. Multi-instrumental characterization of carbon nanotubes dispersed in aqueous solutions

    EPA Science Inventory

    Previous studies showed that the dispersion extent and physicochemical properties of carbon nanotubes are highly dependent upon the preparation methods (e.g., dispersion methods and dispersants). In the present work, multiwalled carbon nanotubes (MWNTs) are dispersed in aqueous s...

  16. Melt dispersion and electrospinning of non-functionalized multiwalled carbon nanotubes in thermoplastic polyurethane.

    PubMed

    Hunley, Matthew T; Pötschke, Petra; Long, Timothy E

    2009-12-16

    Nanoscale fibers with embedded, aligned, and percolated non-functionalized multiwalled carbon nanotubes (MWCNTs) were fabricated through electrospinning dispersions based on melt-compounded thermoplastic polyurethane/MWCNT nanocomposite, with up to 10 wt.-% MWCNTs. Transmission electron microscopy indicated that the nanotubes were highly oriented and percolated throughout the fibers, even at high MWCNT concentrations. The coupling of efficient melt compounding with electrospinning eliminated the need for intensive surface functionalization or sonication of the MWCNTs, and the high aspect ratio as well as the electrical and mechanical properties of the nanotubes were retained. This method provides a more efficient technique to generate one-dimensional nanofibers with aligned MWCNTs. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effect of dispersants of multi-walled carbon nanotubes on cellular uptake and biological responses

    PubMed Central

    Haniu, Hisao; Saito, Naoto; Matsuda, Yoshikazu; Kim, Yoong-Ahm; Park, Ki Chul; Tsukahara, Tamotsu; Usui, Yuki; Aoki, Kaoru; Shimizu, Masayuki; Ogihara, Nobuhide; Hara, Kazuo; Takanashi, Seiji; Okamoto, Masanori; Ishigaki, Norio; Nakamura, Koichi; Kato, Hiroyuki

    2011-01-01

    Although there have been many reports about the cytotoxicity of multi-walled carbon nanotubes (MWCNTs), the results are still controversial. To investigate one possible reason, the authors investigated the influence of MWCNT dispersants on cellular uptake and cytotoxicity. Cytotoxicity was examined (measured by alamarBlue® assay), as well as intracellular MWCNT concentration and cytokine secretion (measured by flow cytometry) in human bronchial epithelial cells (BEAS-2B) exposed to a type of highly purified MWCNT vapor grown carbon fiber (VGCF®, Shōwa Denkō Kabushiki-gaisha, Tokyo, Japan) in three different dispersants (gelatin, carboxylmethyl cellulose, and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine). The authors also researched the relationship between the intracellular concentration of MWCNTs and cytotoxicity by using two cell lines, BEAS-2B and MESO-1 human malignant pleural mesothelioma cells. The intracellular concentration of VGCF was different for each of the three dispersants, and the levels of cytotoxicity and inflammatory response were correlated with the intracellular concentration of VGCF. A relationship between the intracellular concentration of VGCF and cytotoxic effects was observed in both cell lines. The results indicate that dispersants affect VGCF uptake into cells and that cytotoxicity depends on the intracellular concentration of VGCF, not on the exposed dosage. Thus, toxicity appears to depend on exposure time, even at low VGCF concentrations, because VGCF is biopersistent. PMID:22228997

  18. Enhanced dispersion of multiwall carbon nanotubes in natural rubber latex nanocomposites by surfactants bearing phenyl groups.

    PubMed

    Mohamed, Azmi; Anas, Argo Khoirul; Bakar, Suriani Abu; Ardyani, Tretya; Zin, Wan Manshol W; Ibrahim, Sofian; Sagisaka, Masanobu; Brown, Paul; Eastoe, Julian

    2015-10-01

    Here is presented a systematic study of the dispersibility of multiwall carbon nanotubes (MWCNTs) in natural rubber latex (NR-latex) assisted by a series of single-, double-, and triple-sulfosuccinate anionic surfactants containing phenyl ring moieties. Optical polarising microscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Raman spectroscopy have been performed to obtain the dispersion-level profiles of the MWCNTs in the nanocomposites. Interestingly, a triple-chain, phenyl-containing surfactant, namely sodium 1,5-dioxo-1,5-bis(3-phenylpropoxy)-3-((3-phenylpropoxy)carbonyl) pentane-2-sulfonate (TCPh), has a greater capacity the stabilisation of MWCNTs than a commercially available single-chain sodium dodecylbenzenesulfonate (SDBS) surfactant. TCPh provides significant enhancements in the electrical conductivity of nanocomposites, up to ∼10(-2) S cm(-1), as measured by a four-point probe instrument. These results have allowed compilation of a road map for the design of surfactant architectures capable of providing the homogeneous dispersion of MWCNTs required for the next generation of polymer-carbon-nanotube materials, specifically those used in aerospace technology. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Graphene wrapped multiwalled carbon nanotubes dispersed nanofluids for heat transfer applications

    NASA Astrophysics Data System (ADS)

    Jyothirmayee Aravind, S. S.; Ramaprabhu, S.

    2012-12-01

    A two step method is employed for the preparation of graphene wrapped multiwalled carbon nanotubes (MWNT) dispersed nanofluids. Graphene wrapped MWNT composite is prepared by simple chemical vapor deposition technique and further purified prior to the synthesis of nanofluids. The functionalization of MWNT with the poly electrolyte, graphene drives out the need for surfactants or long term harsh chemical treatments as in the case of pristine carbon materials based nanofluids. The enhancement in thermal transport properties of surfactant free graphene wrapped MWNT composite in de-ionized (DI) water and ethylene glycol (EG) base fluids than that of pristine carbon nanomaterial based nanofluids indicates the potential usage of the hybrid composite based nanofluids in heat transfer applications. An enhancement in thermal conductivity of 11.3% and 13.7% has been attained with 0.04% volume fraction of hybrid composite based DI water and EG nanofluids at 25 °C. The nanocomposite possesses extreme stability in a variety of aqueous solvents without any surfactant. Electrical conductivity of the nanofluids analyzed as a function of volume fraction of nanoparticles and temperature shows a positive effect. Further, the analysis of forced convective heat transfer coefficients of the nanofluids flowing through a stain less steel tube shows significant enhancement in heat transfer, attributed to good aspect ratio of graphene wrapped MWNT and synergistic effect of high thermally conducting graphene and MWNT.

  20. Experimental Study of Magnetic Multi-Walled Carbon Nanotube-Doxorubicin Conjugate in a Lymph Node Metastatic Model of Breast Cancer.

    PubMed

    Ji, Jian; Liu, Minfeng; Meng, Yue; Liu, Runqi; Yan, Yan; Dong, Jianyu; Guo, Zhaoze; Ye, Changsheng

    2016-07-07

    BACKGROUND The lymphatic system plays a significant role in the defense of a subject against breast cancer and is one of the major pathways for the metastasis of breast cancer. To improve the prognosis, many means, including surgery, radiotherapy, and chemotherapy, have been used. However, the combination of all these modalities has limited efficacy. Lymph nodes, therefore, have become an exceptionally potential target organ in cancer chemotherapy. MATERIAL AND METHODS A lymph node metastatic model of breast cancer was established in BALB/c mice. Magnetic multi-walled carbon nanotube carrier with good adsorption and lymph node-targeting capacity was prepared and conjugated with doxorubicin to make the magnetic multi-walled carbon nanotube-doxorubicin suspension. Dispersions of doxorubicin, magnetic multi-walled carbon nanotube-doxorubicin, and magnetic multi-walled carbon nanotube were injected into lymph node metastatic mice to compare their inhibitory effects on tumor cells in vivo. Inhibition of these dispersions on EMT-6 breast cancer cells was detected via MTT assay in vitro. RESULTS Although no significant difference was found between the effects of doxorubicin and magnetic multi-walled carbon nanotube-doxorubicin with the same concentration of doxorubicin on EMT-6 breast cancer cells in vitro, in terms of sizes of metastatic lymph nodes and xenograft tumors, apoptosis in metastatic lymph nodes, and adverse reactions, the magnetic multi-walled carbon nanotube-doxorubicin group differed significantly from the other groups. CONCLUSIONS The magnetic multi-walled carbon nanotube-doxorubicin clearly played an inhibitory role in lymph node metastases to EMT-6 breast cancer cells.

  1. Multi-walled carbon nanotubes: A cytotoxicity study in relation to functionalization, dose and dispersion.

    PubMed

    Zhou, Lulu; Forman, Henry Jay; Ge, Yi; Lunec, Joseph

    2017-08-01

    Chemical functionalization broadens carbon nanotube (CNT) applications, conferring new functions, but at the same time potentially altering toxicity. Although considerable experimental data related to CNT toxicity, at the molecular and cellular levels, have been reported, there is very limited information available for the corresponding mechanism involved (e.g. cell apoptosis and genotoxicity). The threshold dose for safe medical application in relation to both pristine and functionalized carbon nanotubes remains ambiguous. In this study, we evaluated the in vitro cytotoxicity of pristine and functionalized (OH, COOH) multi-walled carbon nanotubes (MWCNTs) for cell viability, oxidant detection, apoptosis and DNA mutations, to determine the non-toxic dose and influence of functional group in a human lung-cancer cell line exposed to 1-1000μg/ml MWCNTs for 24, 48 and 72h. The findings suggest that pristine MWCNTs induced more cell death than functionalized MWCNTs while functionalized MWCNTs are more genotoxic compared to their pristine form. The level of both dose and dispersion in the matrix used should be taken into consideration before applying further clinical applications of MWCNTs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Angular dependent anisotropic terahertz response of vertically aligned multi-walled carbon nanotube arrays with spatial dispersion.

    PubMed

    Zhou, Yixuan; E, Yiwen; Xu, Xinlong; Li, Weilong; Wang, Huan; Zhu, Lipeng; Bai, Jintao; Ren, Zhaoyu; Wang, Li

    2016-12-14

    Spatial dispersion effect of aligned carbon nanotubes (CNTs) in the terahertz (THz) region has significance for both theoretical and applied consideration due to the unique intrinsically anisotropic physical properties of CNTs. Herein, we report the angular dependent reflection of p-polarized THz wave from vertically aligned multi-walled CNT arrays in both experiment and theory. The spectra indicate that the reflection depends on the film thickness of vertically aligned CNTs, the incident angle, and the frequency. The calculation model is based on the spatial dispersion effect of aligned CNTs and performed with effective impedance method and the Maxwell-Garnett approximation. The results fit well with the experiment when the thickness of CNT film is thin, which reveals a coherent superposition mechanism of the CNT surface reflection and CNTs/Si interface reflection. For thick CNT films, the CNTs/Si interface response determines the reflection at small incident angles, while the CNTs surface effect dominates at large incident angles. This work investigates the spatial dispersion effect of vertically aligned CNT arrays in the THz region, and paves a way for potential anisotropic THz applications based on CNTs with oblique incidence requirements.

  3. Angular dependent anisotropic terahertz response of vertically aligned multi-walled carbon nanotube arrays with spatial dispersion

    NASA Astrophysics Data System (ADS)

    Zhou, Yixuan; Yiwen, E.; Xu, Xinlong; Li, Weilong; Wang, Huan; Zhu, Lipeng; Bai, Jintao; Ren, Zhaoyu; Wang, Li

    2016-12-01

    Spatial dispersion effect of aligned carbon nanotubes (CNTs) in the terahertz (THz) region has significance for both theoretical and applied consideration due to the unique intrinsically anisotropic physical properties of CNTs. Herein, we report the angular dependent reflection of p-polarized THz wave from vertically aligned multi-walled CNT arrays in both experiment and theory. The spectra indicate that the reflection depends on the film thickness of vertically aligned CNTs, the incident angle, and the frequency. The calculation model is based on the spatial dispersion effect of aligned CNTs and performed with effective impedance method and the Maxwell-Garnett approximation. The results fit well with the experiment when the thickness of CNT film is thin, which reveals a coherent superposition mechanism of the CNT surface reflection and CNTs/Si interface reflection. For thick CNT films, the CNTs/Si interface response determines the reflection at small incident angles, while the CNTs surface effect dominates at large incident angles. This work investigates the spatial dispersion effect of vertically aligned CNT arrays in the THz region, and paves a way for potential anisotropic THz applications based on CNTs with oblique incidence requirements.

  4. Bioelectrochemical sensing of promethazine with bamboo-type multiwalled carbon nanotubes dispersed in calf-thymus double stranded DNA.

    PubMed

    Primo, Emiliano N; Oviedo, M Belén; Sánchez, Cristián G; Rubianes, María D; Rivas, Gustavo A

    2014-10-01

    We report the quantification of promethazine (PMZ) using glassy carbon electrodes (GCE) modified with bamboo-like multi-walled carbon nanotubes (bCNT) dispersed in double stranded calf-thymus DNA (dsDNA) (GCE/bCNT-dsDNA). Cyclic voltammetry measurements demonstrated that PMZ presents a thin film-confined redox behavior at GCE/bCNT-dsDNA, opposite to the irreversibly-adsorbed behavior obtained at GCE modified with bCNT dispersed in ethanol (GCE/bCNT). Differential pulse voltammetry-adsorptive stripping with medium exchange experiments performed with GCE/bCNT-dsDNA and GCE modified with bCNTs dispersed in single-stranded calf-thymus DNA (ssDNA) confirmed that the interaction between PMZ and bCNT-dsDNA is mainly hydrophobic. These differences are due to the intercalation of PMZ within the dsDNA that supports the bCNTs, as evidenced from the bathochromic displacement of UV-Vis absorption spectra of PMZ and quantum dynamics calculations at DFTB level. The efficient accumulation of PMZ at GCE/bCNT-dsDNA made possible its sensitive quantification at nanomolar levels (sensitivity: (3.50±0.05)×10(8) μA·cm(-2)·M(-1) and detection limit: 23 nM). The biosensor was successfully used for the determination of PMZ in a pharmaceutical product with excellent correlation. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. 40 CFR 721.10183 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10183 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-199) is subject to reporting under this section for the...

  6. 40 CFR 721.10155 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10155 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-177) is subject to reporting under this section for the...

  7. 40 CFR 721.10183 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10183 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-199) is subject to reporting under this section for the...

  8. 40 CFR 721.10155 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10155 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-177) is subject to reporting under this section for the...

  9. 40 CFR 721.10183 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10183 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-199) is subject to reporting under this section for the...

  10. 40 CFR 721.10155 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10155 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-177) is subject to reporting under this section for the...

  11. 40 CFR 721.10183 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10183 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-199) is subject to reporting under this section for the...

  12. 40 CFR 721.10155 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10155 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-177) is subject to reporting under this section for the...

  13. Exchange of Surfactant by Natural Organic Matter on the Surfaces of Multi-Walled Carbon Nanotubes

    EPA Science Inventory

    The increasing production and applications of multi-walled carbon nanotubes (MWCNTs) have elicited concerns regarding their release and potential adverse effects in the environment. To form stable aqueous MWCNTs suspensions, surfactants are often employed to facilitate dispersion...

  14. 40 CFR 721.10663 - Functionalized multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Specific Chemical Substances § 721.10663 Functionalized multi-walled carbon nanotubes (generic). (a... generically as functionalized multi-walled carbon nanotubes (PMN P-12-44) is subject to reporting under this... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Functionalized multi-walled carbon...

  15. 40 CFR 721.10663 - Functionalized multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Specific Chemical Substances § 721.10663 Functionalized multi-walled carbon nanotubes (generic). (a... generically as functionalized multi-walled carbon nanotubes (PMN P-12-44) is subject to reporting under this... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Functionalized multi-walled carbon...

  16. High-efficiency surfactant prepared from phenolic resin for multi-walled carbon nanotube aqueous suspension

    NASA Astrophysics Data System (ADS)

    Li, Yutong; Wei, Haixu; Li, Lizhi; Wang, Jie; Qian, Xin; He, Liu; Wang, Xuefei; Ouyang, Qin; Chen, Yousi; Zhang, Yonggang; Li, Yong

    2018-06-01

    Carbon nanotubes (CNTs) have been widely exploited to be used in many fields due to its perfect mechanical properties, but CNT agglomerates severely prevent CNTs' excellent properties from performing. Many dispersants were synthesized to resolve the difficulty reported in recent years. In this paper, a healthier and cheaper dispersant with phenolic resin as original reagent was synthesized (denoted as AEP-4). Fourier transform infrared spectroscopy, nuclear magnetic resonance, and mass spectra were carried out to characterize chemical structure of reagent and products. Ultraviolet-visible spectroscopy and transmission electron microscopy were employed to evaluate the dispersibility of multi-walled carbon nanotubes (MWCNTs) in aqueous solution. The results showed that AEP-4 containing tertiary ammonium cations exhibited strong ability to disperse MWCNTs in aqueous solution, which showed better dispersion ability than sodium dodecyl benzene sulfonate. The scanning electron microscope results of MWCNT/carbon fiber reinforcements showed that many single MWCNTs showed up and uniformly covered carbon fiber surface in the case of carbon fiber treated by MWCNT/AEP-4 suspension, which reflected that MWCNT suspension with AEP-4 had good dispersion.

  17. 76 FR 26186 - Multi-Walled Carbon Nanotubes; Significant New Use Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-06

    ... 2070-AB27 Multi-Walled Carbon Nanotubes; Significant New Use Rule AGENCY: Environmental Protection... as multi-walled carbon nanotubes (MWCNT) which was the subject of premanufacture notice (PMN) P-08... (due to confidentiality claims) as multi-walled carbon nanotubes (PMN P-08-199). This action requires...

  18. Electrical conductivity of multi-walled carbon nanotubes-SU8 epoxy composites

    NASA Astrophysics Data System (ADS)

    Grimaldi, Claudio; Mionić, Marijana; Gaal, Richard; Forró, László; Magrez, Arnaud

    2013-06-01

    We have characterized the electrical conductivity of the composite which consists of multi-walled carbon nanotubes dispersed in SU8 epoxy resin. Depending on the processing conditions of the epoxy (ranging from non-polymerized to cross-linked), we obtained tunneling and percolating-like regimes of the electrical conductivity of the composites. We interpret the observed qualitative change of the conductivity behavior in terms of reduced separation between the nanotubes induced by polymerization of the epoxy matrix.

  19. Calcium Alginate-Caged Multiwalled Carbon Nanotubes Dispersive Microsolid Phase Extraction Combined With Gas Chromatography-Flame Ionization Detection for the Determination of Polycyclic Aromatic Hydrocarbons in Water Samples.

    PubMed

    Abboud, Ayad Sami; Sanagi, Mohd Marsin; Ibrahim, Wan Aini Wan; Keyon, Aemi S Abdul; Aboul-Enein, Hassan Y

    2018-02-01

    In this study, caged calcium alginate-caged multiwalled carbon nanotubes dispersive microsolid phase extraction was described for the first time for the extraction of polycyclic aromatic hydrocarbons (PAHs) from water samples prior to gas chromatographic analysis. Fluorene, phenanthrene and fluoranthene were selected as model compounds. The caged calcium alginate-caged multiwalled carbon nanotubes was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and thermal gravimetry analyses. The effective parameters namely desorption solvent, solvent volume, extraction time, desorption time, the mass of adsorbent and sample volume were optimized. Under the optimum extraction conditions, the developed method showed good linearity in the range of 0.5-50 ng mL-1 (R2 ≥ 0.996), low limits of detection and quantification (0.42-0.22 ng mL-1) (0.73-1.38 ng mL-1) respectively, good relative recoveries (71.2-104.2%) and reproducibility (RSD 1.8-12.4%, n = 3) for the studied PAHs in water sample. With high enrichment factor (1,000), short extraction time (<30 min), low amounts of adsorbent (100 mg) and low amounts of solvent (0.1 mol) have proven that the microsolid phase extraction method based on calcium alginate-caged multiwalled carbon nanotubes are environmentally friendly and convenient extraction method to use as an alternative adsorbent in the simultaneous preconcentration of PAHs from environmental water samples. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Continuous dry dispersion of multi-walled carbon nanotubes to aerosols with high concentrations of individual fibers

    NASA Astrophysics Data System (ADS)

    Simonow, Barbara Katrin; Wenzlaff, Daniela; Meyer-Plath, Asmus; Dziurowitz, Nico; Thim, Carmen; Thiel, Jana; Jandy, Mikolaj; Plitzko, Sabine

    2018-06-01

    The assessment of the toxicity of airborne nanofibers is an important task. It relies on toxicological inhalation studies and validated exposure measurement techniques. Both require nanofiber-containing aerosols of known morphological composition and controlled fraction of individual fibers. Here, a dry powder dispersion method is presented that operates with mixtures of nanofibers and microscale beads. Aerosolization experiments of mixtures of multi-walled carbon nanotubes (MWCNTs) and glass beads that were continuously fed into a Venturi nozzle enabled high generation rates of aerosols composed of individual and agglomerate nanofiber structures. The aerosol process achieved good stability over more than 2 h with respect to concentration and aerodynamic size distribution. Its operation duration is limited only by the reservoir volume of the cyclone used to separate the beads from the aerosol. The aerosol concentration can be controlled by changing the mass ratio of MWCNTs and glass beads or by adapting the mass feed rate to the nozzle. For two agglomerated MWCNT materials, aerosol concentrations ranged from 1700 to 64,000 nano-objects per cm3. Comprehensive scanning electron microscope analysis of filter samples was performed to categorize and determine the morphological composition of the aerosol, its fiber content as well as fiber length and diameter distributions. High fractions of individual fibers of up to 34% were obtained, which shows the setup to be capable of dispersing also highly tangled MWCNT agglomerates effectively.

  1. Highly Stable and Flexible Pressure Sensors with Modified Multi-Walled Carbon Nanotube/Polymer Composites for Human Monitoring.

    PubMed

    He, Yin; Ming, Yue; Li, Wei; Li, Yafang; Wu, Maoqi; Song, Jinzhong; Li, Xiaojiu; Liu, Hao

    2018-04-26

    A facile method for preparing an easy processing, repeatable and flexible pressure sensor was presented via the synthesis of modified multi-walled carbon nanotubes (m-MWNTs) and polyurethane (PU) films. The surface modification of multi-walled carbon nanotubes (MWNTs) simultaneously used a silane coupling agent (KH550) and sodium dodecyl benzene sulfonate (SDBS) to improve the dispersibility and compatibility of the MWNTs in a polymer matrix. The electrical property and piezoresistive behavior of the m-MWNT/PU composites were compared with raw multi-walled carbon nanotube (raw MWNT)/PU composites. Under linear uniaxial pressure, the m-MWNT/PU composite exhibited 4.282%kPa −1 sensitivity within the pressure of 1 kPa. The nonlinear error, hysteresis error and repeatability error of the piezoresistivity of m-MWNT/PU decreased 9%, 16.72% and 54.95% relative to raw MWNT/PU respectively. Therefore, the piezoresistive response of m-MWNT/PU had better stability than that of raw MWNT/PU composites. The m-MWNT/PU sensors could be utilized in wearable devices for body movement detection, monitoring of respiration and pressure detection in garments.

  2. Electrochemical Detection of p-Aminophenol by Flexible Devices Based on Multi-Wall Carbon Nanotubes Dispersed in Electrochemically Modified Nafion

    PubMed Central

    Scandurra, Graziella; Antonella, Arena; Ciofi, Carmine; Saitta, Gaetano; Lanza, Maurizio

    2014-01-01

    A conducting composite prepared by dispersing multi-walled carbon nanotubes (MWCNTs) into a host matrix consisting of Nafion, electrochemically doped with copper, has been prepared, characterized and used to modify one of the gold electrodes of simply designed electrochemical cells having copier grade transparency sheets as substrates. Electrical measurements performed in deionized water show that the Au/Nafion/Au-MWCNTs–Nafion:Cu cells can be successfully used in order to detect the presence of p-aminophenol (PAP) in water, without the need for any supporting electrolyte. The intensity of the redox peaks arising when PAP is added to deionized water is found to be linearly related to the analyte in the range from 0.2 to 1.6 μM, with a detection limit of 90 nM and a sensitivity of 7 μA·(μM−1)·cm−2. PMID:24854357

  3. Hot wire production of single-wall and multi-wall carbon nanotubes

    DOEpatents

    Dillon, Anne C.; Mahan, Archie H.; Alleman, Jeffrey L.

    2010-10-26

    Apparatus (210) for producing a multi-wall carbon nanotube (213) may comprise a process chamber (216), a furnace (217) operatively associated with the process chamber (216), and at least one filament (218) positioned within the process chamber (216). At least one power supply (220) operatively associated with the at least one filament (218) heats the at least one filament (218) to a process temperature. A gaseous carbon precursor material (214) operatively associated with the process chamber (216) provides carbon for forming the multi-wall carbon nanotube (213). A metal catalyst material (224) operatively associated with the process (216) catalyzes the formation of the multi-wall carbon nanotube (213).

  4. The impact of different multi-walled carbon nanotubes on the X-band microwave absorption of their epoxy nanocomposites.

    PubMed

    Che, Bien Dong; Nguyen, Bao Quoc; Nguyen, Le-Thu T; Nguyen, Ha Tran; Nguyen, Viet Quoc; Van Le, Thang; Nguyen, Nieu Huu

    2015-01-01

    Carbon nanotube (CNT) characteristics, besides the processing conditions, can change significantly the microwave absorption behavior of CNT/polymer composites. In this study, we investigated the influence of three commercial multi-walled CNT materials with various diameters and length-to-diameter aspect ratios on the X-band microwave absorption of epoxy nanocomposites with CNT contents from 0.125 to 2 wt%, prepared by two dispersion methods, i.e. in solution with surfactant-aiding and via ball-milling. The laser diffraction particle size and TEM analysis showed that both methods produced good dispersions at the microscopic level of CNTs. Both a high aspect ratio resulting in nanotube alignment trend and good infiltration of the matrix in the individual nanotubes, which was indicated by high Brookfield viscosities at low CNT contents of CNT/epoxy dispersions, are important factors to achieve composites with high microwave absorption characteristics. The multi-walled carbon nanotube (MWCNT) with the largest aspect ratio resulted in composites with the best X-band microwave absorption performance, which is considerably better than that of reported pristine CNT/polymer composites with similar or lower thicknesses and CNT loadings below 4 wt%. A high aspect ratio of CNTs resulting in microscopic alignment trend of nanotubes as well as a good level of micro-scale CNT dispersion resulting from good CNT-matrix interactions are crucial to obtain effective microwave absorption performance. This study demonstrated that effective radar absorbing MWCNT/epoxy nanocomposites having small matching thicknesses of 2-3 mm and very low filler contents of 0.25-0.5 wt%, with microwave energy absorption in the X-band region above 90% and maximum absorption peak values above 97%, could be obtained via simple processing methods, which is promising for mass production in industrial applications. Graphical AbstractComparison of the X-band microwave reflection loss of epoxy composites of

  5. Marine fouling release silicone/carbon nanotube nanocomposite coatings: on the importance of the nanotube dispersion state.

    PubMed

    Beigbeder, Alexandre; Mincheva, Rosica; Pettitt, Michala E; Callow, Maureen E; Callow, James A; Claes, Michael; Dubois, Philippe

    2010-05-01

    The present work reports on the influence of the dispersion quality of multiwall carbon nanotubes (MWCNTs) in a silicone matrix on the marine fouling-release performance of the resulting nanocomposite coatings. A first set of coatings filled with different nanofiller contents was prepared by the dilution of a silicone/MWCNTs masterbatch within a hydrosilylation-curing polydimethylsiloxane resin. The fouling-release properties of the nanocomposite coatings were studied through laboratory assays with the marine alga (seaweed) Ulva, a common fouling species. As reported previously (see Ref. [19]), the addition of a small (0.05%) amount of carbon nanotubes substantially improves the fouling-release properties of the silicone matrix. This paper shows that this improvement is dependent on the amount of filler, with a maximum obtained with 0.1 wt% of multiwall carbon nanotubes (MWCNTs). The method of dispersion of carbon nanotubes in the silicone matrix is also shown to significantly (p = 0.05) influence the fouling-release properties of the coatings. Dispersing 0.1% MWCNTs using the masterbatch approach yielded coatings with circa 40% improved fouling-release properties over those where MWCNTs were dispersed directly in the polymeric matrix. This improvement is directly related to the state of nanofiller dispersion within the cross-linked silicone coating.

  6. Aerosol generation and measurement of multi-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Myojo, Toshihiko; Oyabu, Takako; Nishi, Kenichiro; Kadoya, Chikara; Tanaka, Isamu; Ono-Ogasawara, Mariko; Sakae, Hirokazu; Shirai, Tadashi

    2009-01-01

    Mass production of some kinds of carbon nanotubes (CNT) is now imminent, but little is known about the risk associated with their exposure. It is important to assess the propensity of the CNT to release particles into air for its risk assessment. In this study, we conducted aerosolization of a multi-walled CNT (MWCNT) to assess several aerosol measuring instruments. A Palas RBG-1000 aerosol generator applied mechanical stress to the MWCNT by a rotating brush at feed rates ranging from 2 to 20 mm/h, which the MWCNT was fed to a two-component fluidized bed. The fluidized bed aerosol generator was used to disperse the MWCNT aerosol once more. We monitored the generated MWCNT aerosol concentrations based on number, area, and mass using a condensation particle counter and nanoparticle surface area monitor. Also we quantified carbon mass in MWCNT aerosol samples by a carbon monitor. The shape of aerosolized MWCNT fibers was observed by a scanning electron microscope (SEM). The MWCNT was well dispersed by our system. We found isolated MWCNT fibers in the aerosols by SEM and the count median lengths of MWCNT fibers were 4-6 μm. The MWCNT was quantified by the carbon monitor with a modified condition based on the NIOSH analytical manual. The MWCNT aerosol concentration (EC mass base) was 4 mg/m3 at 2 mm/h in this study.

  7. Multi-Wall Carbon Nanotubes for Flow-Induced Voltage Generation (Preprint)

    DTIC Science & Technology

    2006-08-01

    flow sensors with a large dynamic range. The present work investigates voltage generation properties of multi-walled carbon nanotubes ( MWCNT ) as a...wall carbon nanotubes, has been generated from our perpendicularly-aligned MWCNT in an aqueous solution of 1 M NaCl at a relatively low flow velocity of...generation properties of multi-walled carbon nanotubes ( MWCNT ) as a function of the relative orientation of the nanotube array with respect to the flow

  8. Highly Stable and Flexible Pressure Sensors with Modified Multi-Walled Carbon Nanotube/Polymer Composites for Human Monitoring

    PubMed Central

    He, Yin; Ming, Yue; Li, Wei; Li, Yafang; Wu, Maoqi; Song, Jinzhong; Li, Xiaojiu; Liu, Hao

    2018-01-01

    A facile method for preparing an easy processing, repeatable and flexible pressure sensor was presented via the synthesis of modified multi-walled carbon nanotubes (m-MWNTs) and polyurethane (PU) films. The surface modification of multi-walled carbon nanotubes (MWNTs) simultaneously used a silane coupling agent (KH550) and sodium dodecyl benzene sulfonate (SDBS) to improve the dispersibility and compatibility of the MWNTs in a polymer matrix. The electrical property and piezoresistive behavior of the m-MWNT/PU composites were compared with raw multi-walled carbon nanotube (raw MWNT)/PU composites. Under linear uniaxial pressure, the m-MWNT/PU composite exhibited 4.282%kPa−1 sensitivity within the pressure of 1 kPa. The nonlinear error, hysteresis error and repeatability error of the piezoresistivity of m-MWNT/PU decreased 9%, 16.72% and 54.95% relative to raw MWNT/PU respectively. Therefore, the piezoresistive response of m-MWNT/PU had better stability than that of raw MWNT/PU composites. The m-MWNT/PU sensors could be utilized in wearable devices for body movement detection, monitoring of respiration and pressure detection in garments. PMID:29701643

  9. Atomic layer deposited highly dispersed platinum nanoparticles supported on non-functionalized multiwalled carbon nanotubes for the hydrogenation of xylose to xylitol

    NASA Astrophysics Data System (ADS)

    Liang, Xinhua; Jiang, Chengjun

    2013-09-01

    Highly dispersed platinum nanoparticles were deposited on gram quantities of non-functionalized multiwalled carbon nanotubes (MWCNTs) by atomic layer deposition (ALD) in a fluidized bed reactor at 300 °C. (Methylcyclopentadienyl) trimethylplatinum and oxygen were used as precursors. The results of TEM analysis showed that 1.3 nm Pt nanoparticles were highly dispersed on non-functionalized MWCNTs. The porous structures of MWCNTs did not change with the deposition of Pt nanoparticles. For comparison, the commercial 3 wt% Pt/C catalyst was also characterized. The ALD-prepared Pt/MWCNT was used for the hydrogenation of xylose to xylitol. The ALD-prepared Pt/MWCNT showed the best catalytic performance with 100 % conversion of xylose and 99.3 % selectivity to xylitol, compared to commercially available Pt/C, Ru/C, and Raney Ni catalysts. The stability of ALD produced Pt/MWCNT catalyst was higher than that of the commercial Pt/C, due to the presence of surface defects on the MWCNTs and the strong metal-support interaction for the ALD-prepared Pt/MWCNT catalyst.

  10. Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups

    NASA Astrophysics Data System (ADS)

    Zhao, Zhiyuan; Yang, Zhanhong; Hu, Youwang; Li, Jianping; Fan, Xinming

    2013-07-01

    In this paper, carboxyl and amino groups have been introduced onto the surface of the multi-walled carbon nanotubes (MWCNTs) by the mixed acid treatment and the diazonium reaction, respectively. The presence of multifunctionality groups on the MWCNTs has been characterized by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric (TGA) analysis, Raman spectra, scanning electron microscopy (SEM) and energy dispersive X-ray spectrum (EDS). The multifunctionalized carbon nanotubes were further utilized to react with acetyl chloride and ethylenediamine (EDA). The formation of the amide bond in the grafting reaction has been confirmed by FT-IR spectroscopy. The result indicates that the further grafting is successful. The multifunctionalized MWCNTs can be a new versatile platform for many interesting applications.

  11. Decoration of multi-walled carbon nanotubes by polymer wrapping and its application in MWCNT/polyethylene composites.

    PubMed

    Hsiao, An-En; Tsai, Shu-Ya; Hsu, Mei-Wen; Chang, Shinn-Jen

    2012-05-06

    We dispersed the non-covalent functionalization of multi-walled carbon nanotubes (CNTs) with a polymer dispersant and obtained a powder of polymer-wrapped CNTs. The UV-vis absorption spectrum was used to investigate the optimal weight ratio of the CNTs and polymer dispersant. The powder of polymer-wrapped CNTs had improved the drawbacks of CNTs of being lightweight and difficult to process, and it can re-disperse in a solvent. Then, we blended the polymer-wrapped CNTs and polyethylene (PE) by melt-mixing and produced a conductive masterbatch and CNT/PE composites. The polymer-wrapped CNTs showed lower surface resistivity in composites than the raw CNTs. The scanning electron microscopy images also showed that the polymer-wrapped CNTs can disperse well in composites than the raw CNTs.

  12. Modification of polydopamine-coated Fe3O4 nanoparticles with multi-walled carbon nanotubes for magnetic-μ-dispersive solid-phase extraction of antiepileptic drugs in biological matrices.

    PubMed

    Zhang, Ruiqi; Wang, Siming; Yang, Ye; Deng, Yulan; Li, Di; Su, Ping; Yang, Yi

    2018-06-01

    In this study, multi-walled carbon nanotubes were coated on the surface of magnetic nanoparticles modified by polydopamine. The synthesized composite was characterized and applied to magnetic-μ-dispersive solid-phase extraction of oxcarbazepine (OXC), phenytoin (PHT), and carbamazepine (CBZ) from human plasma, urine, and cerebrospinal fluid samples prior to analysis by a high-performance liquid chromatography-photodiode array detector. The extraction parameters were investigated and the optimum condition was obtained when the variables were set to the following: sorbent type, Fe 3 O 4 @polyDA-MWCNTs (length < 2 μm); sample pH, 6; amount of sorbent, 15 mg; sorption time, 1.5 min at room temperature; type and volume of the eluent, 2.5 mL methanol; and salt content, none added. Under the optimized conditions, the calibration curves are linear in the concentration range 2-2000 ng/mL, the limits of detection are in the range 0.4-3.1 ng/mL, and the relative standard deviations and relative recoveries of plasma (spiked at 200 ng/mL) and CSF (spiked at 50 ng/mL) are in the ranges 1.4-8.2% and 92.8-96.5%, respectively. The applicability of the method was successfully confirmed by extraction and determination of OXC, PHT, and CBZ in biological matrices. Graphical abstract Magnetic multi-walled carbon nanotube core-shell composites were applied as magnetic-μ-dispersive solid-phase extraction adsorbents for determination of antiepileptic drugs in biological matrices.

  13. Fabrication of antibacterial PVA nanocomposite films containing dendritic polymer functionalized multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sapalidis, Andreas; Sideratou, Zili; Panagiotaki, Katerina N.; Sakellis, Elias; Kouvelos, Evangelos P.; Papageorgiou, Sergios; Katsaros, Fotios

    2018-03-01

    A series of Poly(vinyl alcohol) (PVA) nanocomposite films containing quaternized hyperbranched polyethyleneimine (PEI) functionalized multi-walled carbon nanotubes (ox-CNTs@QPEI) are prepared by solvent casting technique. The modified carbon based material exhibits high aqueous solubility, due to the hydrophilic character of the functionalized hyperbranched dendritic polymer. The quaternized PEI successfully wraps around nanotube walls, as polycations provide electrostatic repulsion. Various contents of ox-CNTs@QPEI ranging from 0.05 to 1.0 % w/w were employed to prepare functionalized PVA nanocomposites. The developed films exhibit adequate optical transparency, improved mechanical properties and extremely high antibacterial behavior due to the excellent dispersion of the functionalized carbon nanotubes into the PVA matrix.

  14. Effects of different processing techniques on multi-walled carbon nanotubes/silicone rubber nanocomposite on tensile strength properties

    NASA Astrophysics Data System (ADS)

    Mazlan, N.; Jaafar, M.; Aziz, A.; Ismail, H.; Busfield, J. J. C.

    2016-10-01

    In this work, two different processing techniques were approached to identify the properties of the multi-walled carbon nanotubes (MWCNT) reinforced polydimethylsiloxane (PDMS). The MWCNT was dispersed in the polymer by using the ultrasonic and twin screw extruder mixer. The final composite showed different manner of dispersed tubes in the silicone rubber matrix. High shear twin screw extruder tends to fragment the tubes during processing compound, which can be observed by scanning electron microscope (SEM). Tensile strength of the extrusion MWCNT/PDMS nanocomposites was found to be higher compared to ultrasonic MWCNT/PDMS nanocomposites.

  15. Decoration of multi-walled carbon nanotubes by polymer wrapping and its application in MWCNT/polyethylene composites

    PubMed Central

    2012-01-01

    We dispersed the non-covalent functionalization of multi-walled carbon nanotubes (CNTs) with a polymer dispersant and obtained a powder of polymer-wrapped CNTs. The UV–vis absorption spectrum was used to investigate the optimal weight ratio of the CNTs and polymer dispersant. The powder of polymer-wrapped CNTs had improved the drawbacks of CNTs of being lightweight and difficult to process, and it can re-disperse in a solvent. Then, we blended the polymer-wrapped CNTs and polyethylene (PE) by melt-mixing and produced a conductive masterbatch and CNT/PE composites. The polymer-wrapped CNTs showed lower surface resistivity in composites than the raw CNTs. The scanning electron microscopy images also showed that the polymer-wrapped CNTs can disperse well in composites than the raw CNTs. PMID:22559082

  16. Construction of photo-driven bioanodes using thylakoid membranes and multi-walled carbon nanotubes.

    PubMed

    Takeuchi, Ryosuke; Suzuki, Arato; Sakai, Kento; Kitazumi, Yuki; Shirai, Osamu; Kano, Kenji

    2018-04-03

    A photo-driven bioanode was constructed using the thylakoid membrane from spinach, carbon nanotubes, and an artificial mediator. By considering a linear free-energy relationship in the electron transfer from the thylakoid membrane to the mediators, and the oxygen resistance of the reduced mediators, 1,2-naphthoquinone was selected as the most suitable mediator for the photo-driven bioanode. Water-dispersed multi-walled carbon nanotubes served as scaffolds to hold the thylakoid membrane on a porous electrode. The constructed photo-driven bioanode exhibited a photocurrent density of over 100μAcm -2 at a photon flux density of 1500μmolm -2 s -1 . Copyright © 2018. Published by Elsevier B.V.

  17. Dispersion of carbon nanotubes in melt compounded polypropylene based composites investigated by THz spectroscopy.

    PubMed

    Casini, R; Papari, G; Andreone, A; Marrazzo, D; Patti, A; Russo, P

    2015-07-13

    We investigate the use of Terahertz (THz) Time Domain Spectroscopy (TDS) as a tool for the measurement of the index dispersion of multi-walled carbon nanotubes (MWCNT) in polypropylene (PP) based composites. Samples containing 0.5% by volume concentration of non-functionalized and functionalized carbon nanotubes are prepared by melt compounding technology. Results indicate that the THz response of the investigated nanocomposites is strongly dependent on the kind of nanotube functionalization, which in turn impacts on the level of dispersion inside the polymer matrix. We show that specific dielectric parameters such as the refractive index and the absorption coefficient measured by THz spectroscopy can be both correlated to the index of dispersion as estimated using conventional optical microscopy.

  18. 75 FR 44198 - Proposed Significant New Use Rule for Multi-walled Carbon Nanotubes; Reopening of Comment Period

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ... Proposed Significant New Use Rule for Multi-walled Carbon Nanotubes; Reopening of Comment Period AGENCY... (SNUR) for the chemical substance identified generically as multi-walled carbon nanotubes (P-08-199). In... identified generically as multi-walled carbon nanotubes as identified in Premanufacture Notice (PMN) P-08-199...

  19. Thermogravimetric analysis of the interaction of ferromagnetic metal atom and multiwalled carbon nanotubes.

    PubMed

    Rawat, Naveen; Gudyaka, Russel; Kumar, Mohit; Joshi, Bharat; Santhanam, Kalathur S V

    2008-04-01

    This paper describes the thermal oxidative behavior of atomized iron or atomized cobalt in the presence of multiwalled carbon nanotubes (MWCNT). The thermogravimetric analysis shows the atomized iron thermal oxidation starts at about 500 degrees C that is absent when the atomized iron is sintered with multiwalled carbon naonotubes. The thermal oxidation of iron in the sintered samples requires the collapse of the multiwalled carbon nanotubes. A similar behavior is observed with atomized cobalt when its oxidation requires the collapse of the nanotubes. This thermal oxidative shift is interpreted as due to the atomized iron or atomized cobalt atom experiencing extensive overlap and confinement effect with multiwalled carbon nanotubes causing a spin transfer. This confinement effect is suggested to produce a transformation of iron from the outermost electronic distribution of 3d64s2 to an effective configuration of 3d84s0 and for cobalt 3d74s2 to 3d94s0 producing spintronics effect.

  20. Simple introduction of carboxyl head group with alkyl spacer onto multiwalled carbon nanotubes by solution plasma process

    NASA Astrophysics Data System (ADS)

    Nemoto, Shimpei; Ueno, Tomonaga; Watthanaphanit, Anyarat; Hieda, Junko; Bratescu, Maria Antoaneta; Saito, Nagahiro

    2017-09-01

    A simple method of fabricating carboxyl-terminated multiwalled carbon nanotubes (MWCNTs) with alkyl spacers was developed to improve the dispersion quality of MWCNTs in aqueous solutions using solution plasma (SP) in a 6-aminocaproic acid solution. The formation of SP in the solution led to better dispersion of MWCNTs in aqueous solutions. Fourier transform infrared spectroscopy (FT-IR) results indicate that a carboxyl group with an alkyl spacer can be introduced by SP treatment in the 6-aminocaproic acid solution. Sedimentation tests show that the SP-treated MWCNTs in the 6-aminocaproic acid solution retained their good dispersion quality in aqueous solutions of pHs 5, 6, and 9. The alkyl spacer plays an important role in the preservation of dispersion states particularly at pH 6.

  1. Dispersion stability in carbon nanotube modified polymers and its effect on the fracture toughness

    NASA Astrophysics Data System (ADS)

    Mirjalili, Vahid; Yourdkhani, Mostafa; Hubert, Pascal

    2012-08-01

    In this paper, the dispersion stability of multiwall carbon nanotubes (MWNTs) mixed with an epoxy resin is studied. An instrumented optical microscope with a hot stage was used to study the evolution of the carbon nanotubes (CNTs) dispersion during the cure of the resin. A new image processing approach is then introduced to quantify dispersion and identify the source of dispersion degradation during the cure. The results showed that the reduction of the resin viscosity at temperatures greater than 100 °C caused an irreversible re-agglomeration of the CNTs in the matrix. It was shown that the fine-tuning of the ratio and type of curing agent as well as the curing temperature directly affect the dispersion stability of MWNTs in the epoxy polymer. The dispersion quality was then directly correlated to the fracture toughness of the modified resin and a maximum of 20% improvement was achieved.

  2. Mild in situ growth of platinum nanoparticles on multiwalled carbon nanotube-poly (vinyl alcohol) hydrogel electrode for glucose electrochemical oxidation

    NASA Astrophysics Data System (ADS)

    Liu, Shumin; Zheng, Yudong; Qiao, Kun; Su, Lei; Sanghera, Amendeep; Song, Wenhui; Yue, Lina; Sun, Yi

    2015-12-01

    This investigation describes an effective strategy to fabricate an electrochemically active hybrid hydrogel made from platinum nanoparticles that are highly dense, uniformly dispersed, and tightly embedded throughout the conducting hydrogel network for the electrochemical oxidation of glucose. A suspension of multiwalled carbon nanotubes and polyvinyl alcohol aqueous was coated on glassy carbon electrode by electrophoretic deposition and then physically crosslinked to form a three-dimensional porous conductive hydrogel network by a process of freezing and thawing. The network offered 3D interconnected mass-transport channels (around 200 nm) and confined nanotemplates for in situ growth of uniform platinum nanoparticles via the moderate reduction agent, ascorbic acid. The resulting hybrid hydrogel electrode membrane demonstrates an effective method for loading platinum nanoparticles on multiwalled carbon nanotubes by the electrostatic adsorption between multiwalled carbon nanotubes and platinum ions within porous hydrogel network. The average diameter of platinum nanoparticles is 37 ± 14 nm, which is less than the particle size by only using the moderate reduction agent. The hybrid hydrogel electrode membrane-coated glassy carbon electrode showed excellent electrocatalytic activity and good long-term stability toward glucose electrochemical oxidation. The glucose oxidation current exhibited a linear relationship with the concentration of glucose in the presence of chloride ions, promising for potential applications of implantable biofuel cells, biosensors, and electronic devices.

  3. Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/graphene oxide hybrid biocomposite.

    PubMed

    Palanisamy, Selvakumar; Cheemalapati, Srikanth; Chen, Shen-Ming

    2014-01-01

    An amperometric glucose biosensor based on enhanced and fast direct electron transfer (DET) of glucose oxidase (GOx) at enzyme dispersed multiwalled carbon nanotubes/graphene oxide (MWCNT/GO) hybrid biocomposite was developed. The fabricated hybrid biocomposite was characterized by transmission electron microscopy (TEM), Raman and infrared spectroscopy (IR). The TEM image of hybrid biocomposite reveals that a thin layer of GOx was covered on the surface of MWCNT/GO hybrid composite. IR results validate that the hybrid biocomposite was formed through the electrostatic interactions between GOx and MWCNT/GO hybrid composite. Further, MWCNT/GO hybrid composite has also been characterized by TEM and UV-visible spectroscopy. A pair of well-defined redox peak was observed for GOx immobilized at the hybrid biocomposite electrode than that immobilized at the MWCNT modified electrode. The electron transfer rate constant (Ks) of GOx at the hybrid biocomposite was calculated to be 11.22s(-1). The higher Ks value revealed that fast DET of GOx occurred at the electrode surface. Moreover, fabricated biosensor showed a good sensitivity towards glucose oxidation over a linear range 0.05-23.2mM. The limit of detection (LOD) was estimated to be 28μM. The good features of the proposed biosensor could be used for the accurate detection of glucose in the biological samples. © 2013.

  4. Dispersion and Mechanical Properties of Carbon Nanotube/Polymer Composites via Melt Compounding

    NASA Astrophysics Data System (ADS)

    Gorga, Russell; Cohen, Robert

    2003-03-01

    This work is focused on the fabrication of carbon nanotube/ polymer composites via melt compounding. The main objective of this work is to realize the outstanding properties of carbon nanotubes (high modulus, high thermal and electrical conductivity, elastic buckling) at the macroscopic level by blending carbon nanotubes into a polymer matrix. The challenge lies in dispersing these one dimensional nanoparticles in the polymer matrix. Dispersion of the nanotubes in the composites is analyzed via transmission and scanning electron microscopy. Mechanical properties as well as electrical and thermal conductivity are measured as a function of nanotube loading, orientation, and extrusion conditions. Multi-wall nanotube loadings in the range of 1 and 10 wtconcave-downward departures from the linear stress-strain behavior of the unmodified polymer below 5observations are discussed in the context of possible deformation mechanisms for the nanotube composites.

  5. Vertically aligned multiwalled carbon nanotubes as electronic interconnects

    NASA Astrophysics Data System (ADS)

    Gopee, Vimal Chandra

    The drive for miniaturisation of electronic circuits provides new materials challenges for the electronics industry. Indeed, the continued downscaling of transistor dimensions, described by Moore’s Law, has led to a race to find suitable replacements for current interconnect materials to replace copper. Carbon nanotubes have been studied as a suitable replacement for copper due to its superior electrical, thermal and mechanical properties. One of the advantages of using carbon nanotubes is their high current carrying capacity which has been demonstrated to be three orders of magnitude greater than that of copper. Most approaches in the implementation of carbon nanotubes have so far focused on the growth in vias which limits their application. In this work, a process is described for the transfer of carbon nanotubes to substrates allowing their use for more varied applications. Arrays of vertically aligned multiwalled carbon nanotubes were synthesised by photo-thermal chemical vapour deposition with high growth rates. Raman spectroscopy was used to show that the synthesised carbon nanotubes were of high quality. The carbon nanotubes were exposed to an oxygen plasma and the nature of the functional groups present was determined using X-ray photoelectron spectroscopy. Functional groups, such as carboxyl, carbonyl and hydroxyl groups, were found to be present on the surface of the multiwalled carbon nanotubes after the functionalisation process. The multiwalled carbon nanotubes were metallised after the functionalisation process using magnetron sputtering. Two materials, solder and sintered silver, were chosen to bind carbon nanotubes to substrates so as to enable their transfer and also to make electrical contact. The wettability of solder to carbon nanotubes was investigated and it was demonstrated that both functionalisation and metallisation were required in order for solder to bond with the carbon nanotubes. Similarly, functionalisation followed by metallisation

  6. Spectroscopic investigations on oxidized multi-walled carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anandhi, C. M. S.; Premkumar, S.; Asath, R. Mohamed

    2016-05-06

    The pristine multi-walled carbon nanotubes (MWCNTs) were oxidized by the ultrasonication process. The oxidized MWCNTs were characterized by the X-ray diffraction (XRD), ultraviolet–visible (UV-Vis) and Fourier transform -Raman (FT-Raman) spectroscopic techniques. The XRD analysis confirms that the oxidized MWCNTs exist in a hexagonal structure and the sharp XRD peak corresponds to the (002) Bragg’s reflection plane, which indicates that the MWCNTs have higher crystalline nature. The UV-Vis analysis confirms that the MWCNTs functionalized with the carboxylic acid. The red shift was observed corresponds to the D band in the Raman spectrum, which reveals that the reduced disordered graphitic structure ofmore » oxidized MWCNTs. The strong Raman peak was observed at 2563 cm{sup -1} corresponds to the overtone of the D band, which is the characteristic vibrational mode of oxidized MWCNTs. The carboxylic acid functionalization of MWCNTs enhances the dispersibility, which paves the way for potential applications in the field of biosensors and targeted drug delivery.« less

  7. Rapid analysis of pesticide residues in drinking water samples by dispersive solid-phase extraction based on multiwalled carbon nanotubes and pulse glow discharge ion source ion mobility spectrometry.

    PubMed

    Zou, Nan; Gu, Kejia; Liu, Shaowen; Hou, Yanbing; Zhang, Jialei; Xu, Xiang; Li, Xuesheng; Pan, Canping

    2016-03-01

    An analytical method based on dispersive solid-phase extraction with a multiwalled carbon nanotubes sorbent coupled with positive pulse glow discharge ion mobility spectrometry was developed for analysis of 30 pesticide residues in drinking water samples. Reduced ion mobilities and the mass-mobility correlation of 30 pesticides were measured. The pesticides were divided into five groups to verify the separation capability of pulse glow discharge in mobility spectrometry. The extraction conditions such as desorption solvent, ionic strength, conditions of adsorption and desorption, the amounts of multiwalled carbon nanotubes, and solution pH were optimized. The enrichment factors of pesticides were 5.4- to 48.7-fold (theoretical enrichment factor was 50-fold). The detection limits of pesticides were 0.01∼0.77 μg/kg. The linear range was 0.005-0.2 mg/L for pesticide standard solutions, with determination coefficients from 0.9616 to 0.9999. The method was applied for the analysis of practical and spiked drinking water samples. All results were confirmed by high-performance liquid chromatography with tandem mass spectrometry. The proposed method was proven to be a commendably rapid screening qualitative and semiquantitative technique for the analysis of pesticide residues in drinking water samples on site. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Multiwalled Carbon Nanotube Deposition on Model Environmental Surfaces

    EPA Science Inventory

    Deposition of multiwalled carbon nanotubes (MWNTs) on model environmental surfaces was investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Deposition behaviors of MWNTs on positively and negatively charged surfaces were in good agreement with Der...

  9. Reduction of short wavelength reflectance of multi-wall carbon nanotubes through ultraviolet laser irradiation

    NASA Astrophysics Data System (ADS)

    Stephens, Michelle S.; Simonds, Brian J.; Yung, Christopher S.; Conklin, Davis; Livigni, David J.; Oliva, Alberto Remesal; Lehman, John H.

    2018-05-01

    Multi-wall carbon nanotube coatings are used as broadband, low-reflectance absorbers for bolometric applications and for stray light control. They are also used as high emittance blackbody radiators. Irradiation of single wall carbon nanotubes with ultraviolet (UV) laser light has been shown to remove amorphous carbon debris, but there have been few investigations of the interaction of UV light with the more complex physics of multi-wall carbon nanotubes. We present measurements of reflectance and surface morphology before and after exposure of multi-wall carbon nanotube coatings to 248 nm UV laser light. We show that UV exposure reduces the reflectivity at wavelengths below 600 nm and present modeling of the thermal cycling the UV exposure causes at the surface of the carbon nanotubes. This effect can be used to flatten the spectral shape of the reflectivity curve of carbon nanotube absorber coatings used for broadband applications. Finally, we find that the effect of UV exposure depends on the nanotube growth process.

  10. Biological Sensors Using DNA Functionalized Multiwalled Carbon Nanotubes

    DTIC Science & Technology

    2009-10-01

    BIOLOGICAL SENSORS USING DNA FUNCTIONALIZED MULTIWALLED CARBON NANOTUBES S. Ganguly, A. Leela Mohana Reddy and S. Ramaprabhu Alternative...Braun, E. Science 2003, 302, 1380. 9. Leela Mohana Reddy, A.; Shaijumon, M. M.; Ramaprabhu, S. Nanotechnology 2006, 17, 5299. 10. Kovtyukhova, N

  11. Preparation of supported electrocatalyst comprising multiwalled carbon nanotubes

    DOEpatents

    Wu, Gang; Zelenay, Piotr

    2013-08-27

    A process for preparing a durable non-precious metal oxygen reduction electrocatalyst involves heat treatment of a ball-milled mixture of polyaniline and multiwalled carbon nanotubes in the presence of a Fe species. The catalyst is more durable than catalysts that use carbon black supports. Performance degradation was minimal or absent after 500 hours of operation at constant cell voltage of 0.40 V.

  12. Magnesia tuned multi-walled carbon nanotubes–reinforced alumina nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Iftikhar, E-mail: ifahmad@ksu.edu.sa; Islam, Mohammad; Dar, Mushtaq Ahmad

    2015-01-15

    Magnesia tuned alumina ceramic nanocomposites, reinforced with multi-walled carbon nanotubes, were condensed using pressureless and hot-press sintering processes. Densification, microstructure and mechanical properties of the produced nanocomposites were meticulously investigated. Electron microscopy studies revealed the homogenous carbon nanotube dispersion within the alumina matrix and confirmed the retention of carbon nanotubes' distinctive tubular morphology and nanoscale features during the extreme mixing/sintering processes. Pressureless sintered nanocomposites showed meagre mechanical responses due to the poorly-integrated microstructures with a slight improvement upon magnesia addition. Conversely, both the magnesia addition and application of hot-press sintering technique resulted in the nanocomposite formation with near-theoretical densities (~more » 99%), well-integrated microstructures and superior mechanical properties. Hot-press sintered nanocomposites incorporating 300 and 600 ppm magnesia exhibited an increase in hardness (10 and 11%), flexural strength (5 and 10%) and fracture toughness (15 and 20%) with respect to similar magnesia-free samples. Compared to monolithic alumina, a decent rise in fracture toughness (37%), flexural strength (22%) and hardness (20%) was observed in the hot-press sintered nanocomposites tuned with merely 600 ppm magnesia. Mechanically superior hot-press sintered magnesia tailored nanocomposites are attractive for several load-bearing structural applications. - Highlights: • MgO tailored Al{sub 2}O{sub 3}–2 wt.% CNT nanocomposites are presented. • The role of MgO and sintering on nanocomposite structures and properties was studied. • Well-dispersed CNTs maintained their morphology/structure after harsh sintering. • Hot-pressing and MgO led nanocomposites to higher properties/unified structures. • MgO tuned composites showed higher toughness (37%) and strength (22%) than Al{sub 2}O{sub 3}.« less

  13. Graphene versus Multi-Walled Carbon Nanotubes for Electrochemical Glucose Biosensing

    PubMed Central

    Zheng, Dan; Vashist, Sandeep Kumar; Dykas, Michal Marcin; Saha, Surajit; Al-Rubeaan, Khalid; Lam, Edmond; Luong, John H.T.; Sheu, Fwu-Shan

    2013-01-01

    A simple procedure was developed for the fabrication of electrochemical glucose biosensors using glucose oxidase (GOx), with graphene or multi-walled carbon nanotubes (MWCNTs). Graphene and MWCNTs were dispersed in 0.25% 3-aminopropyltriethoxysilane (APTES) and drop cast on 1% KOH-pre-treated glassy carbon electrodes (GCEs). The EDC (1-ethyl-(3-dimethylaminopropyl) carbodiimide)-activated GOx was then bound covalently on the graphene- or MWCNT-modified GCE. Both the graphene- and MWCNT-based biosensors detected the entire pathophysiological range of blood glucose in humans, 1.4–27.9 mM. However, the direct electron transfer (DET) between GOx and the modified GCE’s surface was only observed for the MWCNT-based biosensor. The MWCNT-based glucose biosensor also provided over a four-fold higher current signal than its graphene counterpart. Several interfering substances, including drug metabolites, provoked negligible interference at pathological levels for both the MWCNT- and graphene-based biosensors. However, the former was more prone to interfering substances and drug metabolites at extremely pathological concentrations than its graphene counterpart. PMID:28809354

  14. Graphene versus Multi-Walled Carbon Nanotubes for Electrochemical Glucose Biosensing.

    PubMed

    Zheng, Dan; Vashist, Sandeep Kumar; Dykas, Michal Marcin; Saha, Surajit; Al-Rubeaan, Khalid; Lam, Edmond; Luong, John H T; Sheu, Fwu-Shan

    2013-03-14

    : A simple procedure was developed for the fabrication of electrochemical glucose biosensors using glucose oxidase (GOx), with graphene or multi-walled carbon nanotubes (MWCNTs). Graphene and MWCNTs were dispersed in 0.25% 3-aminopropyltriethoxysilane (APTES) and drop cast on 1% KOH-pre-treated glassy carbon electrodes (GCEs). The EDC (1-ethyl-(3-dimethylaminopropyl) carbodiimide)-activated GOx was then bound covalently on the graphene- or MWCNT-modified GCE. Both the graphene- and MWCNT-based biosensors detected the entire pathophysiological range of blood glucose in humans, 1.4-27.9 mM. However, the direct electron transfer (DET) between GOx and the modified GCE's surface was only observed for the MWCNT-based biosensor. The MWCNT-based glucose biosensor also provided over a four-fold higher current signal than its graphene counterpart. Several interfering substances, including drug metabolites, provoked negligible interference at pathological levels for both the MWCNT- and graphene-based biosensors. However, the former was more prone to interfering substances and drug metabolites at extremely pathological concentrations than its graphene counterpart.

  15. Pressure sensor based on pristine multi-walled carbon nanotubes forest

    NASA Astrophysics Data System (ADS)

    Yasar, M.; Mohamed, N. M.; Hamid, N. H.; Shuaib, M.

    2016-11-01

    In the course of the most recent decade, carbon nanotubes (CNTs) have been developed as alternate material for many sensing applications because of their interesting properties. Their outstanding electromechanical properties make them suitable for pressure/strain sensing application. Other than in view of their structure and number of walls (i.e. Single-Walled CNTs and MultiWalled CNTs), carbon nanotubes can likewise be classified based on their orientation and combined arrangement. One such classification is vertically aligned Multi-Walled Carbon Nanotubes (VA-MWCNTs), regularly termed as CNTs arrays, foam or forest which is macro scale form of CNTs. Elastic behavior alongside exceptional electromechanical (high gauge factor) make it suitable for pressure sensing applications. This paper presents pressure sensor based on such carbon nanotubes forest in pristine form which enables it to perform over wider temperature range as compared to pressure sensors based on conventional materials such as Silicon.

  16. Electronic structure of multi-walled carbon fullerenes

    NASA Astrophysics Data System (ADS)

    Doore, Keith; Cook, Matthew; Clausen, Eric; Lukashev, Pavel V.; Kidd, Tim E.; Stollenwerk, Andrew J.

    2017-02-01

    Despite an enormous amount of research on carbon based nanostructures, relatively little is known about the electronic structure of multi-walled carbon fullerenes, also known as carbon onions. In part, this is due to the very high computational expense involved in estimating electronic structure of large molecules. At the same time, experimentally, the exact crystal structure of the carbon onion is usually unknown, and therefore one relies on qualitative arguments only. In this work we present the results of a computational study on a series of multi-walled fullerenes and compare their electronic structures to experimental data. Experimentally, the carbon onions were fabricated using ultrasonic agitation of isopropanol alcohol and deposited onto the surface of highly ordered pyrolytic graphite using a drop cast method. Scanning tunneling microscopy images indicate that the carbon onions produced using this technique are ellipsoidal with dimensions on the order of 10 nm. The majority of differential tunneling spectra acquired on individual carbon onions are similar to that of graphite with the addition of molecular-like peaks, indicating that these particles span the transition between molecules and bulk crystals. A smaller, yet sizable number exhibited a semiconducting gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) levels. These results are compared with the electronic structure of different carbon onion configurations calculated using first-principles. Similar to the experimental results, the majority of these configurations are metallic with a minority behaving as semiconductors. Analysis of the configurations investigated here reveals that each carbon onion exhibiting an energy band gap consisted only of non-metallic fullerene layers, indicating that the interlayer interaction is not significant enough to affect the total density of states in these structures.

  17. Synthesis and characterization of novel low density polyethylene-multiwall carbon nanotube porous composites

    NASA Astrophysics Data System (ADS)

    Rizvi, Reza; Kim, Jae-Kyung; Naguib, Hani

    2009-10-01

    This study details the synthesis and characterization of novel porous composites of low density polyethylene (PE) and multiwalled carbon nanotubes (MWNT). PE-MWNT composites were prepared by melt blending the components in a twin screw compounder and porous structures were produced by a batch technique using CO2 as the solvent. The composites were characterized for dispersion using scanning electron microscopy and transmission electron microscopy; the results indicate a finely dispersed MWNT phase in PE. Thermal, rheological, electrical and mechanical properties of the composites were characterized and results indicate an electrical and rheological percolation threshold concentration of between 1 and 2 wt% MWNT in PE. Substantial improvements in the mechanical and electrical properties of PE were observed with the addition of 5 wt% MWNT. The porous PE-MWNT composites fabricated in this study were found to be conductive and have potential applications as anti-static materials for electrostatic discharge prevention.

  18. Tensile Yielding of Multi-Wall Carbon Nanotube

    NASA Technical Reports Server (NTRS)

    Wei, Chenyu; Cho, Kyeongjae; Srivastava, Deepak; Parks, John W. (Technical Monitor)

    2002-01-01

    The tensile yielding of multiwall carbon nanotubes (MWCNTs) has been studied using Molecular Dynamics simulations and a Transition State Theory based model. We find a strong dependence of the yielding on the strain rate. A critical strain rate has been predicted above/below which yielding strain of a MWCNT is larger/smaller than that of the corresponding single-wall carbon nanotubes. At experimentally feasible strain rate of 1% /hour and T = 300K, the yield strain of a MWCNT is estimated to be about 3-4 % higher than that of an equivalent SWCNT (Single Wall Carbon Nanotube), in good agreement with recent experimental observations.

  19. Inducing injection barrier by covalent functionalization of multiwall carbon nanotubes acting as Moiré crystals

    NASA Astrophysics Data System (ADS)

    Bonnet, Roméo; Barraud, Clément; Martin, Pascal; Della Rocca, Maria Luisa; Lafarge, Philippe

    2016-10-01

    Covalent functionalization of multiwall carbon nanotubes is a direct method to suppress the conduction of the outermost shell, subject to interactions with the environment. The rehybridized sp3 external shell of the functionalized multiwall carbon nanotubes becomes naturally a hybrid injection barrier allowing the control of the contact resistances and the study of quantum transport in the more protected inner shells. Charge transport measurements performed on isolated multiwall carbon nanotubes of large diameter show an increase of the contact resistance and stabilization in the MΩ range. Electronic quantum properties of the inner shells are highlighted by the observation of superlattice structures in the conductance, recently attributed to the formation of a one-dimensional Moiré pattern.

  20. Multi-walled carbon nanotubes/polymer composites in absence and presence of acrylic elastomer (ACM).

    PubMed

    Kumar, S; Rath, T; Mahaling, R N; Mukherjee, M; Khatua, B B; Das, C K

    2009-05-01

    Polyetherimide/Multiwall carbon nanotube (MWNTs) nanocomposites containing as-received and modified (COOH-MWNT) carbon nanotubes were prepared through melt process in extruder and then compression molded. Thermal properties of the composites were characterized by thermo-gravimetric analysis (TGA). Field emission scanning electron microscopy (FESEM) images showed that the MWNTs were well dispersed and formed an intimate contact with the polymer matrix without any agglomeration. However the incorporation of modified carbon nanotubes formed fascinating, highly crosslinked, and compact network structure throughout the polymer matrix. This showed the increased adhesion of PEI with modified MWNTs. Scanning electron microscopy (SEM) also showed high degree of dispersion of modified MWNTs along with broken ends. Dynamic mechanical analysis (DMA) results showed a marginal increase in storage modulus (E') and glass transition temperature (T(g)) with the addition of MWNTs. Increase in tensile strength and impact strength of composites confirmed the use the MWNTs as possible reinforcement agent. Both thermal and electrical conductivity of composites increased, but effect is more pronounced on modification due to formation of network of carbon nanotubes. Addition of acrylic elastomer to developed PEI/MWNTs (modified) nanocomposites resulted in the further increase in thermal and electrical properties due to the formation of additional bond between MWNTs and acrylic elastomers at the interface. All the results presented are well corroborated by SEM and FESEM studies.

  1. A Novel of Multi-wall Carbon Nanotubes/Chitosan Electrochemical Sensor for Determination of Cupric ion

    NASA Astrophysics Data System (ADS)

    Tan, Funeng; Li, Lei

    2018-03-01

    A multi-wall carbon nanotubes/Chitosan electrochemical sensor had been fabricated by dropping CHS/MWNT solution directly onto the GC surface. The sensor was charactered by cyclic voltammetry and AC impedance with K3Fe(CN)6 as a electrochemical probe; Cyclic voltammograms(CV) and electrochemical impedance spectroscopy(EIS) indicated that the active area and electrochemical behavior of the sensor increased and improved significantly after the electrode was modified by carbon nanotubes dispersed by the chitosan. The sensor showed good electrocatalytic activity of K3Fe(CN)6. Also, from the cyclic voltammograms, we can see the process was diffusion controlled on the bare electrode and kinetics and diffusion controlled on the modified electrode. Finally Cu2+ responsed sensitively at the sensor which supplied a new method for the detection of Cu2+.

  2. Platinum-TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications.

    PubMed

    Vinayan, B P; Ramaprabhu, S

    2013-06-07

    The efforts to push proton exchange membrane fuel cells (PEMFC) for commercial applications are being undertaken globally. In PEMFC, the sluggish kinetics of oxygen reduction reactions (ORR) at the cathode can be improved by the alloying of platinum with 3d-transition metals (TM = Fe, Co, etc.) and with nitrogen doping, and in the present work we have combined both of these aspects. We describe a facile method for the synthesis of a nitrogen doped (reduced graphene oxide (rGO)-multiwalled carbon nanotubes (MWNTs)) hybrid structure (N-(G-MWNTs)) by the uniform coating of a nitrogen containing polymer over the surface of the hybrid structure (positively surface charged rGO-negatively surface charged MWNTs) followed by the pyrolysis of these (rGO-MWNTs) hybrid structure-polymer composites. The N-(G-MWNTs) hybrid structure is used as a catalyst support for the dispersion of platinum (Pt), platinum-iron (Pt3Fe) and platinum-cobalt (Pt3Co) alloy nanoparticles. The PEMFC performances of Pt-TM alloy nanoparticle dispersed N-(G-MWNTs) hybrid structure electrocatalysts are 5.0 times higher than that of commercial Pt-C electrocatalysts along with very good stability under acidic environment conditions. This work demonstrates a considerable improvement in performance compared to existing cathode electrocatalysts being used in PEMFC and can be extended to the synthesis of metal, metal oxides or metal alloy nanoparticle decorated nitrogen doped carbon nanostructures for various electrochemical energy applications.

  3. The experimental study of the effect of microwave on the physical properties of multi-walled carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haque, A.K.M. Mahmudul; Oh, Geum Seok; Kim, Taeoh

    Highlights: • We study the microwave effect on the multi-walled carbon nanotubes (MWCNTs). • We examine the non uniform heating effect on the physical structure of MWCNTs. • We examine the purification of MWCNTs by microwave. • We analyze the thermal characteristics of microwave treated MWCNTs. - Abstract: This paper reports the effect of microwave on the physical properties of multi-walled carbon nanotubes (MWCNTs) where different power levels of microwave were applied on MWCNTs in order to apprehend the effect of microwave on MWCNTs distinctly. A low energy ball milling in aqueous circumstance was also applied on both MWCNTs andmore » microwave treated MWCNTs. Temperature profile, morphological analysis by field emission scanning electron microscopy (FESEM), defect analysis by Raman spectroscopy, thermal conductivity, thermal diffusivity as well as heat transfer coefficient enhancement ratio were studied which expose some strong witnesses of the effect of microwave on the both purification and dispersion properties of MWCNTs in base fluid distilled water. The highest thermal conductivity enhancement (6.06% at 40 °C) of MWCNTs based nanofluid is achieved by five minutes microwave treatment as well as wet grinding at 500 rpm for two hours.« less

  4. Photothermal therapy of melanoma tumor using multiwalled carbon nanotubes.

    PubMed

    Sobhani, Zahra; Behnam, Mohammad Ali; Emami, Farzin; Dehghanian, Amirreza; Jamhiri, Iman

    2017-01-01

    Photothermal therapy (PTT) is a therapeutic method in which photon energy is transformed into heat rapidly via different operations to extirpate cancer. Nanoparticles, such as carbon nanotubes (CNTs) have exceptional optical absorbance in visible and near infrared spectra. Therefore, they could be a good converter to induce hyperthermia in PTT technique. In our study, for improving the dispersibility of multiwalled CNTs in water, the CNTs were oxidized (O-CNTs) and then polyethylene glycol (PEG) was used for wrapping the surface of nanotubes. The formation of a thin layer of PEG around the nanotubes was confirmed through Fourier transform infrared, thermogravimetric analysis, and field emission scanning electron microscopy techniques. Results of thermogravimetric analysis showed that the amount of PEG component in the O-CNT-PEG was approximately 80% (w/w). Cell cytotoxicity study showed that O-CNT was less cytotoxic than pristine multiwalled nanotubes, and O-CNT-PEG had the lowest toxicity against HeLa and HepG2 cell lines. The effect of O-CNT-PEG in reduction of melanoma tumor size after PTT was evaluated. Cancerous mice were exposed to a continuous-wave near infrared laser diode (λ=808 nm, P =2 W and I =8 W/cm 2 ) for 10 minutes once in the period of the treatment. The average size of tumor in mice receiving O-CNT-PEG decreased sharply in comparison with those that received laser therapy alone. Results of animal studies indicate that O-CNT-PEG is a powerful candidate for eradicating solid tumors in PTT technique.

  5. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites.

    PubMed

    Gulotty, Richard; Castellino, Micaela; Jagdale, Pravin; Tagliaferro, Alberto; Balandin, Alexander A

    2013-06-25

    Carboxylic functionalization (-COOH groups) of carbon nanotubes is known to improve their dispersion properties and increase the electrical conductivity of carbon-nanotube-polymer nanocomposites. We have studied experimentally the effects of this type of functionalization on the thermal conductivity of the nanocomposites. It was found that while even small quantities of carbon nanotubes (~1 wt %) can increase the electrical conductivity, a larger loading fraction (~3 wt %) is required to enhance the thermal conductivity of nanocomposites. Functionalized multi-wall carbon nanotubes performed the best as filler material leading to a simultaneous improvement of the electrical and thermal properties of the composites. Functionalization of the single-wall carbon nanotubes reduced the thermal conductivity enhancement. The observed trends were explained by the fact that while surface functionalization increases the coupling between carbon nanotube and polymer matrix, it also leads to formation of defects, which impede the acoustic phonon transport in the single-wall carbon nanotubes. The obtained results are important for applications of carbon nanotubes and graphene flakes as fillers for improving thermal, electrical and mechanical properties of composites.

  6. 40 CFR 721.10703 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10703 Multi-walled carbon nanotubes (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as...

  7. 40 CFR 721.10671 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10671 Multi-walled carbon nanotubes (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as...

  8. The effect of extended polymer chains on the properties of transparent multi-walled carbon nanotubes/poly(methyl methacrylate/acrylic acid) film

    NASA Astrophysics Data System (ADS)

    Huang, Yuan-Li; Tien, Hsi-Wen; Ma, Chen-Chi M.; Yu, Yi-Hsiuan; Yang, Shin-Yi; Wei, Ming-Hsiung; Wu, Sheng-Yen

    2010-05-01

    Optically transparent and electrically conductive thin films composed of multi-walled carbon nanotube (MWCNT) reinforced polymethyl methacrylate/acrylic acid (PMMA/AA) were fabricated using a wire coating technique. Poly(acrylic acid) controls the level of MWCNT dispersion in aqueous mixtures and retains the well-dispersed state in the polymer matrix after solidification resulting from extended polymer chains by adjusting the pH value. The exfoliating the MWCNT bundles by extended polymer chains results in the excellent dispersion of MWCNT. It causes a lower surface electrical resistance at the same MWCNT content. The hydrophilic functional groups (-COO - NA + ) also caused a decrease in the crystallization of PMMA and led to an increase in the transmittance.

  9. The effect of extended polymer chains on the properties of transparent multi-walled carbon nanotubes/poly(methyl methacrylate/acrylic acid) film.

    PubMed

    Huang, Yuan-Li; Tien, Hsi-Wen; Ma, Chen-Chi M; Yu, Yi-Hsiuan; Yang, Shin-Yi; Wei, Ming-Hsiung; Wu, Sheng-Yen

    2010-05-07

    Optically transparent and electrically conductive thin films composed of multi-walled carbon nanotube (MWCNT) reinforced polymethyl methacrylate/acrylic acid (PMMA/AA) were fabricated using a wire coating technique. Poly(acrylic acid) controls the level of MWCNT dispersion in aqueous mixtures and retains the well-dispersed state in the polymer matrix after solidification resulting from extended polymer chains by adjusting the pH value. The exfoliating the MWCNT bundles by extended polymer chains results in the excellent dispersion of MWCNT. It causes a lower surface electrical resistance at the same MWCNT content. The hydrophilic functional groups (-COO( - )NA( + )) also caused a decrease in the crystallization of PMMA and led to an increase in the transmittance.

  10. Deformation and Failure of a Multi-Wall Carbon Nanotube Yarn Composite

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Jefferson, Gail D.; Frankland, Sarah-Jane V.

    2008-01-01

    Forests of multi-walled carbon nanotubes can be twisted and manipulated into continuous fibers or yarns that exhibit many of the characteristics of traditional textiles. Macro-scale analysis and test may provide strength and stiffness predictions for a composite composed of a polymer matrix and low-volume fraction yarns. However, due to the nano-scale of the carbon nanotubes, it is desirable to use atomistic calculations to consider tube-tube interactions and the influence of simulated twist on the effective friction coefficient. This paper reports laboratory test data on the mechanical response of a multi-walled, carbon nanotube yarn/polymer composite from both dynamic and quasi-static tensile tests. Macroscale and nano-scale analysis methods are explored and used to define some of the key structure-property relationships. The measured influence of hot-wet aging on the tensile properties is also reported.

  11. Carbon dots-decorated multiwalled carbon nanotubes nanocomposites as a high-performance electrochemical sensor for detection of H2O2 in living cells.

    PubMed

    Bai, Jing; Sun, Chunhe; Jiang, Xiue

    2016-07-01

    A novel enzyme-free hydrogen peroxide sensor composed of carbon dots (CDs) and multi-walled carbon nanotubes (MWCNTs) was prepared. It was found that the carbon dots-decorated multi-walled carbon nanotubes nanocomposites (CDs/MWCNTs) modified glassy carbon (GC) electrode (CDs/MWCNTs/GCE) exhibited a significant synergistic electrocatalytic activity towards hydrogen peroxide reduction as compared to carbon dots or multi-walled carbon nanotubes alone, and the CDs/MWCNTs/GCE has shown a low detection limit as well as excellent stability, selectivity, and reproducibility. These remarkable analytical advantages enable the practical application of CDs/MWCNTs/GCE for the real-time tracking of hydrogen peroxide (H2O2) released from human cervical cancer cells with satisfactory results. The enhanced electrochemical activity can be assigned to the edge plane-like defective sites and lattice oxygen in the CDs/MWCNTs nanocomposites due to the small amount of decoration of carbon dots on the multi-walled carbon nanotubes. Based on a facile preparation method and with good electrochemical properties, the CDs/MWCNTs nanocomposites represent a new class of carbon electrode for electrochemical sensor applications. Graphical Abstract CDs/MWCNTs exhibited good electrocatalytic activity and stability to H2O2 reduction and can be used for real-time detection of H2O2 released from living cells.

  12. Multiwalled carbon nanotubes effect on the bioavailability of artemisinin and its cytotoxity to cancerous cells

    NASA Astrophysics Data System (ADS)

    Rezaei, Behzad; Majidi, Najmeh; Noori, Shokoofe; Hassan, Zuhair M.

    2011-12-01

    Artemisinin regarded as one of the most promising anticancer drugs can bind to DNA with a binding constant of 1.04 × 104 M-1. The electrochemical experiments indicated that for longer incubation time periods, the reduction peak current of artemisinin on carbon nanotube modified electrode increases. Therefore, the uptake of drug molecules from a solution into CNTs will be achieved automatically by adsorption of 88.7% of artemisinin onto carbon nanotubes surface without alteration in drug properties. Hence, capability of carbon nanotubes to have synergistic effect on the bioavailability of artemisinin was investigated. Experimental tests on K562 cancer cell lines growth by MTT assay proved that multi-walled carbon nanotubes can enhance the cytotoxity of artemisinin to the targeted cancer cells with unprecedented accuracy and efficiency. The IC50 values were 65 and 35 μM for artemisinin and artemisinin loaded on multi-walled carbon nanotubes, respectively; demonstrating that artemisinin loaded on multi-walled carbon nanotubes is more effective in inhibition of cancer cell lines growth.

  13. Effective load transfer by a chromium carbide nanostructure in a multi-walled carbon nanotube/copper matrix composite

    NASA Astrophysics Data System (ADS)

    Cho, Seungchan; Kikuchi, Keiko; Kawasaki, Akira; Kwon, Hansang; Kim, Yangdo

    2012-08-01

    Multi-walled carbon nanotube (MWCNT) reinforced copper (Cu) matrix composites, which exhibit chromium (Cr) carbide nanostructures at the MWCNT/Cu interface, were prepared through a carbide formation using CuCr alloy powder. The fully densified and oriented MWCNTs dispersed throughout the composites were prepared using spark plasma sintering (SPS) followed by hot extrusion. The tensile strengths of the MWCNT/CuCr composites increased with increasing MWCNTs content, while the tensile strength of MWCNT/Cu composite decreased from that of monolithic Cu. The enhanced tensile strength of the MWCNT/CuCr composites is a result of possible load-transfer mechanisms of the interfacial Cr carbide nanostructures. The multi-wall failure of MWCNTs observed in the fracture surface of the MWCNT/CuCr composites indicates an improvement in the load-bearing capacity of the MWCNTs. This result shows that the Cr carbide nanostructures effectively transferred the tensile load to the MWCNTs during fracture through carbide nanostructure formation in the MWCNT/Cu composite.

  14. Dispersion of Multi-Walled Carbon Nanotubes in Skutterudites and Its Effect on Thermoelectric and Mechanical Properties.

    PubMed

    Schmitz, Andreas; Schmid, Carolin; de Boor, Johannes; Müller, Eckhard

    2017-03-01

    Filled cobalt-antimony based skutterudites have proven themselves as very promising thermoelectric materials for generator applications in an intermediate temperature range between 400 and 800 K due to their high figure of merit. Besides the functional thermoelectric properties also the skutterudites’ mechanical properties play an important role to withstand external mechanical and internal thermomechanical loads during operation. Properties of interest are hardness as well as fracture toughness and resistance to fatigue. Carbon nano tubes are well known for their high tensile strength and may therefore be used to increase the mechanical strength of composite materials. Additionally, the thermoelectric properties of the composite material might benefit from the high electrical conductivity of carbon nano tubes and increased phonon scattering at interfaces between matrix and carbon nano tube. A main precondition for benefiting from embedded nano-tubes is to achieve a homogeneous distribution of the CNTs and good adhesion between carbon nano tube and matrix material. In this work we present the influence of the introduction of multi-walled carbon nano tubes on the thermoelectric and mechanical properties of p-type skutterudites Ce(0.14)La(0.06)Co(2)Fe(2)Sb(12). The influence of different carbon nano tube concentrations and preparation routes on the resulting composite material’s thermoelectric, mechanical and microstructural properties is studied. A reduction of electrical and thermal conductivity as well as fracture strength is observed with increasing carbon nano tube content which is attributed to strong agglomeration of the nano tubes. The results underline the pivotal role of a homogeneous distribution of the carbon nano tubes for improving the mechanical properties of skutterudites.

  15. Ionic liquid-assisted multiwalled carbon nanotube-dispersive micro-solid phase extraction for sensitive determination of inorganic As species in garlic samples by electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Grijalba, Alexander Castro; Escudero, Leticia B.; Wuilloud, Rodolfo G.

    2015-08-01

    A highly sensitive dispersive micro-solid phase extraction (D-μ-SPE) method combining an ionic liquid (IL) and multi-walled carbon nanotubes (MWCNTs) for inorganic As species (As(III) and As(V)) species separation and determination in garlic samples by electrothermal atomic absorption spectrometry (ETAAS) was developed. Trihexyl(tetradecil)phosphonium chloride IL was used to form an ion pair with the arsenomolybdate complex obtained by reaction of As(V) with molybdate ion. Afterwards, 1.0 mg of MWCNTs was dispersed for As(V) extraction and the supernatant was separated by centrifugation. MWCNTs were re-dispersed with tetradecyltrimethylammonium bromide surfactant and ultrasound followed by direct injection into the graphite furnace of ETAAS for As determination. Pyrolysis and atomization conditions were carefully studied for complete decomposition of MWCNTs and IL matrices. Under optimum conditions, an extraction efficiency of 100% and a preconcentration factor of 70 were obtained with 5 mL of garlic extract. The detection limit was 7.1 ng L- 1 and the relative standard deviations (RSDs) for six replicate measurements at 5 μg L- 1 of As were 5.4% and 4.8% for As(III) and As(V), respectively. The proposed D-μ-SPE method allowed the efficient separation and determination of inorganic As species in a complex matrix such as garlic extract.

  16. Mass-produced multi-walled carbon nanotubes as catalyst supports for direct methanol fuel cells.

    PubMed

    Jang, In Young; Park, Ki Chul; Jung, Yong Chae; Lee, Sun Hyung; Song, Sung Moo; Muramatsu, Hiroyuki; Kim, Yong Jung; Endo, Morinobu

    2011-01-01

    Commercially mass-produced multi-walled carbon nanotubes, i.e., VGNF (Showa Denko Co.), were applied to support materials for platinum-ruthenium (PtRu) nanoparticles as anode catalysts for direct methanol fuel cells. The original VGNFs are composed of high-crystalline graphitic shells, which hinder the favorable surface deposition of the PtRu nanoparticles that are formed via borohydride reduction. The chemical treatment of VGNFs with potassium hydroxide (KOH), however, enables highly dispersed and dense deposition of PtRu nanoparticles on the VGNF surface. This capability becomes more remarkable depending on the KOH amount. The electrochemical evaluation of the PtRu-deposited VGNF catalysts showed enhanced active surface areas and methanol oxidation, due to the high dispersion and dense deposition of the PtRu nanoparticles. The improvement of the surface deposition states of the PtRu nanoparticles was significantly due to the high surface area and mesorporous surface structure of the KOH-activated VGNFs.

  17. Tuning the dispersion of multiwall carbon nanotubes in co-continuous polymer blends: a generic approach

    NASA Astrophysics Data System (ADS)

    Bose, Suryasarathi; Bhattacharyya, Arup R.; Khare, Rupesh A.; Kulkarni, Ajit R.; Umasankar Patro, T.; Sivaraman, P.

    2008-08-01

    Melt-mixed blends of polyamide 6 and acrylonitrile-butadiene-styrene (PA6/ABS) with multiwall carbon nanotubes (MWNTs) were prepared with the intention to develop conducting composites. A generic strategy, namely specific interactions combined with reactive coupling, was adopted to facilitate and to retain the 'network-like' structure of MWNTs during melt-mixing. This was facilitated by the sodium salt of 6-amino hexanoic acid (Na-AHA) and certain phosphonium based modifiers, where it was envisaged that these modifiers would establish specific interactions (either 'cation-π' or 'π-π' ) with the 'π-electron' clouds of MWNTs, as well as restricting them in the PA6 phase of the blends via reactive coupling. This route eventually led to a remarkable increase in the electrical conductivity and dielectric constant in the blends with MWNTs. Raman, FTIR and TEM investigations further supported these observations.

  18. Multi-walled Carbon Nanotubes/Graphite Nanosheets Modified Glassy Carbon Electrode for the Simultaneous Determination of Acetaminophen and Dopamine.

    PubMed

    Zhang, Susu; He, Ping; Zhang, Guangli; Lei, Wen; He, Huichao

    2015-01-01

    Graphite nanosheets prepared by thermal expansion and successive sonication were utilized for the construction of a multi-walled carbon nanotubes/graphite nanosheets based amperometric sensing platform to simultaneously determine acetaminophen and dopamine in the presence of ascorbic acid in physiological conditions. The synergistic effect of multi-walled carbon nanotubes and graphite nanosheets catalyzed the electrooxidation of acetaminophen and dopamine, leading to a remarkable potential difference up to 200 mV. The as-prepared modified electrode exhibited linear responses to acetaminophen and dopamine in the concentration ranges of 2.0 × 10(-6) - 2.4 × 10(-4) M (R = 0.999) and 2.0 × 10(-6) - 2.0 × 10(-4) M (R = 0.998), respectively. The detection limits were down to 2.3 × 10(-7) M for acetaminophen and 3.5 × 10(-7) M for dopamine (S/N = 3). Based on the simple preparation and prominent electrochemical properties, the obtained multi-walled carbon nanotubes/graphite nanosheets modified electrode would be a good candidate for the determination of acetaminophen and dopamine without the interference of ascorbic acid.

  19. Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black

    PubMed Central

    2013-01-01

    Background Carbon nanotubes, graphene, graphite nanoplatelets and carbon black are seemingly chemically identical carbon-based nano-materials with broad technological applications. Carbon nanotubes and carbon black possess different inhalation toxicities, whereas little is known about graphene and graphite nanoplatelets. Methods In order to compare the inhalation toxicity of the mentioned carbon-based nanomaterials, male Wistar rats were exposed head-nose to atmospheres of the respective materials for 6 hours per day on 5 consecutive days. Target concentrations were 0.1, 0.5, or 2.5 mg/m3 for multi-wall carbon nanotubes and 0.5, 2.5, or 10 mg/m3 for graphene, graphite nanoplatelets and low-surface carbon black. Toxicity was determined after end of exposure and after three-week recovery using broncho-alveolar lavage fluid and microscopic examinations of the entire respiratory tract. Results No adverse effects were observed after inhalation exposure to 10 mg/m3 graphite nanoplatelets or relatively low specific surface area carbon black. Increases of lavage markers indicative for inflammatory processes started at exposure concentration of 0.5 mg/m3 for multi-wall carbon nanotubes and 10 mg/m3 for graphene. Consistent with the changes in lavage fluid, microgranulomas were observed at 2.5 mg/m3 multi-wall carbon nanotubes and 10 mg/m3 graphene. In order to evaluate volumetric loading of the lung as the key parameter driving the toxicity, deposited particle volume was calculated, taking into account different methods to determine the agglomerate density. However, the calculated volumetric load did not correlate to the toxicity, nor did the particle surface burden of the lung. Conclusions The inhalation toxicity of the investigated carbon-based materials is likely to be a complex interaction of several parameters. Until the properties which govern the toxicity are identified, testing by short-term inhalation is the best option to identify hazardous properties in

  20. Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black.

    PubMed

    Ma-Hock, Lan; Strauss, Volker; Treumann, Silke; Küttler, Karin; Wohlleben, Wendel; Hofmann, Thomas; Gröters, Sibylle; Wiench, Karin; van Ravenzwaay, Bennard; Landsiedel, Robert

    2013-06-17

    Carbon nanotubes, graphene, graphite nanoplatelets and carbon black are seemingly chemically identical carbon-based nano-materials with broad technological applications. Carbon nanotubes and carbon black possess different inhalation toxicities, whereas little is known about graphene and graphite nanoplatelets. In order to compare the inhalation toxicity of the mentioned carbon-based nanomaterials, male Wistar rats were exposed head-nose to atmospheres of the respective materials for 6 hours per day on 5 consecutive days. Target concentrations were 0.1, 0.5, or 2.5 mg/m3 for multi-wall carbon nanotubes and 0.5, 2.5, or 10 mg/m3 for graphene, graphite nanoplatelets and low-surface carbon black. Toxicity was determined after end of exposure and after three-week recovery using broncho-alveolar lavage fluid and microscopic examinations of the entire respiratory tract. No adverse effects were observed after inhalation exposure to 10 mg/m3 graphite nanoplatelets or relatively low specific surface area carbon black. Increases of lavage markers indicative for inflammatory processes started at exposure concentration of 0.5 mg/m3 for multi-wall carbon nanotubes and 10 mg/m3 for graphene. Consistent with the changes in lavage fluid, microgranulomas were observed at 2.5 mg/m3 multi-wall carbon nanotubes and 10 mg/m3 graphene. In order to evaluate volumetric loading of the lung as the key parameter driving the toxicity, deposited particle volume was calculated, taking into account different methods to determine the agglomerate density. However, the calculated volumetric load did not correlate to the toxicity, nor did the particle surface burden of the lung. The inhalation toxicity of the investigated carbon-based materials is likely to be a complex interaction of several parameters. Until the properties which govern the toxicity are identified, testing by short-term inhalation is the best option to identify hazardous properties in order to avoid unsafe applications or select

  1. Pre-treatment of multi-walled carbon nanotubes for polyetherimide mixed matrix hollow fiber membranes.

    PubMed

    Goh, P S; Ng, B C; Ismail, A F; Aziz, M; Hayashi, Y

    2012-11-15

    Mixed matrix hollow fibers composed of multi-walled carbon nanotubes (MWCNTs) and polyetherimide (PEI) were fabricated. Pre-treatment of MWCNTs was carried out prior to the incorporation into the polymer matrix using a simple and feasible two stages approach that involved dry air oxidation and surfactant dispersion. The characterizations of the surface treated MWCNTs using TEM and Raman spectroscopy have evidenced the effectiveness of dry air oxidation in eliminating undesired amorphous carbon and metal catalyst while surfactant dispersion using Triton X100 has suppressed the agglomeration of MWCNTs. The resultant mixed matrix hollow fibers were applied for O(2)/N(2) pure gas separation. Interestingly, it was found that removal of disordered amorphous carbons and metal particles has allowed the hollow structures to be more accessible for the fast and smooth transport of gas molecules, hence resulted in noticeable improvement in the gas separation properties. The composite hollow fibers embedded with the surface modified MWCNTs showed increase in permeability as much as 60% while maintaining the selectivity of the O(2)/N(2) gas pair. This study highlights the necessity to establish an appropriate pre-treatment approach for MWCNTs in order to fully utilize the beneficial transport properties of this material in mixed matrix polymer nanocomposite for gas separation. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. STIR: Microwave Response of Carbon Nanotubes in Polymer Nanocomposite Welds

    DTIC Science & Technology

    2016-01-28

    system, we choose polylactic acid ( PLA ) as a model polymer, given its common application in additive manufacturing. 1-3 For the nanofiller, we utilize...polylactic acid ( PLA ) with dispersed multi-walled carbon nanotubes (MWCNTs) made at Texas A&M will be characterized in the microwave lab at TTU. In...the heating effects associated with percolated network formation. Samples of polylactic acid ( PLA ) with dispersed multi-walled carbon nanotubes

  3. Environmental aging and degradation of multiwalled carbon nanotube reinforced polypropylene

    EPA Science Inventory

    The degradation of polypropylene (PP) and PP-multiwalled carbon nanotube (PP-MWCNT) panels during environmental weathering resulted in an increased degree of crystallinity, making them brittle, and creating surface cracks. The degradation led to a breakdown of the panels and incr...

  4. Application of multiwall carbon nanotubes-based matrix solid phase dispersion extraction for determination of hormones in butter by gas chromatography mass spectrometry.

    PubMed

    Su, Rui; Wang, Xinghua; Xu, Xu; Wang, Ziming; Li, Dan; Zhao, Xin; Li, Xueyuan; Zhang, Hanqi; Yu, Aimin

    2011-08-05

    The multiwall carbon nanotubes (MWCNTs)-based matrix solid phase dispersion (MSPD) was applied for the extraction of hormones, including 17-α-ethinylestradiol, 17-α-estradiol, estriol, 17-β-estradiol, estrone, medroxyprogesterone, progesterone and norethisterone acetate in butter samples. The method includes MSPD extraction of the target analytes from butter samples, derivatization of hormones with heptafluorobutyric acid anhydride-acetonitrile mixture, and determination by gas chromatography-mass spectrometry. The mixture containing 0.30 g graphitized MWCNTs and 0.10 g MWCNTs was selected as absorbent. Ethyl acetate was used as elution solvent. The elution solvent volume and flow rate were 12 mL and 0.9 mL min(-1), respectively. The recoveries of hormones obtained by analyzing the five spiked butter samples were from 84.5 to 111.2% and relative standard deviations from 1.9 to 8.9%. Limits of detection and quantification for determining the analytes were in the range of 0.2-1.3 and 0.8-4.5 μg kg(-1), respectively. Compared with other traditional methods, the proposed method is simpler in the operation and shorter in the sample pretreatment time. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Dispersion of carbon nanotubes in vinyl ester polymer composites

    NASA Astrophysics Data System (ADS)

    Pena-Paras, Laura

    This work focused on a parametric study of dispersions of different types of carbon nanotubes in a polymer resin. Single-walled (SWNTs), double-walled (DWNTs), multi-walled (MWNTs) and XD-grade carbon nanotubes (XD-CNTs) were dispersed in vinyl ester (VE) using an ultra-sonic probe at a fixed frequency. The power, amplitude, and mixing time parameters of sonication were correlated to the electrical and mechanical properties of the composite materials in order to optimize dispersion. The quality of dispersion was quantified by Raman spectroscopy and verified through optical and scanning electron microscopy. By Raman, the CNT distribution, unroping, and damage was monitored and correlated with the composite properties for dispersion optimization. Increasing the ultrasonication energy was found to improve the distribution of all CNT materials and to decrease the size of nanotube ropes, enhancing the electrical conductivity and storage modulus. However, excessive amounts of energy were found to damage CNTs, which negatively affected the properties of the composite. Based on these results the optimum dispersion energy inputs were determined for the different composite materials. The electrical resistivity was lowered by as much as 14, 13, 13, and 11 orders of magnitude for SWNT/VE, DWNT/VE, MWNT/VE, and XD-CNT/VE respectively, compared to the neat resin. The storage modulus was also increased compared to the neat resin by 77%, 82%, 45%, 40% and 85% in SWNT, SAP-f-SWNT, DWNT, MWNT and XD-CNT/VE composites, respectively. This study provides a detailed understanding of how the properties of, nanocomposites are determined by the composite mixing parameters and the distribution, concentration, shape and size of the CNTs. Importantly, it indicates the importance of the need for dispersion metrics to correlate and understand these properties.

  6. Temperature dependent Raman investigation of multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Dilawar Sharma, Nita; Singh, Jasveer; Vijay, Aditi

    2018-04-01

    We report anomalous observations in our investigations of the temperature dependent Raman spectroscopic measurement of multiwall carbon nanotubes. The Micro-Raman spectra were recorded with the laser source having 514.5 nm wavelength and within the temperature range of 80-440 K. The major Raman bands, the G and D band, are observed at 1584 and 1348 cm-1, respectively, at ambient. The absence of the radial breathing mode confirms the multiwall nature of carbon nanotubes. It has been observed that with an increase in the temperature above 120 K, there is a shift in Raman bands towards the higher wave-number region. However, a drop in the G and D bands is observed from 80 to 120 K which was not observed for the second order band. Thereafter, all Raman modes exhibited mode hardening up to about 320 K followed by mild softening of the phonon modes. Linear temperature coefficients were found to have higher contribution to mode hardening as compared to higher order terms. Total anharmonicity estimation shows a predominant effect of the quasi-harmonic term as compared to the true anharmonic term.

  7. Heat dissipation for microprocessor using multiwalled carbon nanotubes based liquid.

    PubMed

    Hung Thang, Bui; Trinh, Pham Van; Chuc, Nguyen Van; Khoi, Phan Hong; Minh, Phan Ngoc

    2013-01-01

    Carbon nanotubes (CNTs) are one of the most valuable materials with high thermal conductivity (2000 W/m · K compared with thermal conductivity of Ag 419 W/m · K). This suggested an approach in applying the CNTs in thermal dissipation system for high power electronic devices, such as computer processor and high brightness light emitting diode (HB-LED). In this work, multiwalled carbon nanotubes (MWCNTs) based liquid was made by COOH functionalized MWCNTs dispersed in distilled water with concentration in the range between 0.2 and 1.2 gram/liter. MWCNT based liquid was used in liquid cooling system to enhance thermal dissipation for computer processor. By using distilled water in liquid cooling system, CPU's temperature decreases by about 10°C compared with using fan cooling system. By using MWCNT liquid with concentration of 1 gram/liter MWCNTs, the CPU's temperature decreases by 7°C compared with using distilled water in cooling system. Theoretically, we also showed that the presence of MWCNTs reduced thermal resistance and increased the thermal conductivity of liquid cooling system. The results have confirmed the advantages of the MWCNTs for thermal dissipation systems for the μ -processor and other high power electronic devices.

  8. Interactions of 14C-labeled multi-walled carbon nanotubes with soil minerals in water.

    PubMed

    Zhang, Liwen; Petersen, Elijah J; Zhang, Wen; Chen, Yongsheng; Cabrera, Miguel; Huang, Qingguo

    2012-07-01

    Carbon nanotubes are often modified to be stable in the aqueous phase by adding extensive hydrophilic surface functional groups. The stability of such CNTs in water with soil or sediment is one critical factor controlling their environmental fate. We conducted a series of experiments to quantitatively assess the association between water dispersed multi-walled carbon nanotubes (MWCNTs) and three soil minerals (kaolinite, smectite, or shale) in aqueous solution under different sodium concentrations. (14)C-labeling was used in these experiments to unambiguously quantify MWCNTs. The results showed that increasing ionic strength strongly promoted the removal of MWCNTs from aqueous phase. The removal tendency is inversely correlated with the soil minerals' surface potential and directly correlated with their hydrophobicity. This removal can be interpreted by the extended Derjaguin-Landau-Verwey-Overbeek (EDLVO) theory especially for kaolinite and smectite. Shale, which contains large and insoluble organic materials, sorbed MWCNTs the most strongly. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Mechanical Properties and Durability of Ultra High Strength Concrete Incorporating Multi-Walled Carbon Nanotubes

    PubMed Central

    Lu, Liulei; Ouyang, Dong; Xu, Weiting

    2016-01-01

    In this work, the effect of the addition of multi-walled carbon nanotubes (MWCNTs) on the mechanical properties and durability of ultra high strength concrete (UHSC) is reported. First, the MWCNTs were dispersed by a nano sand-mill in the presence of a surfactant in water. The UHSC specimens were prepared with various amounts of MWCNTs, ranging from 0% to 0.15% by weight of cement (bwoc). Results indicated that use of an optimal percentage of MWCNTs (0.05% bwoc) caused a 4.63% increase in compressive strength and a 24.0% decrease in chloride diffusion coefficient of UHSC at 28 days curing. Moreover, the addition of MWCNTs also improved the flexural strength and deformation ability. Furthermore, a field-emission scanning electron microscopy (FE-SEM) was used to observe the dispersion of MWCNTs in the cement matrix and morphology of the hardened cement paste containing MWCNTs. FE-SEM observation revealed that MWCNTs were well dispersed in the matrix and no agglomerate was found and the reinforcing effect of MWCNTs on UHSC was thought to be pulling out and microcrack bridging of MWCNTs, which transferred the load in tension. PMID:28773541

  10. Mechanical Properties and Durability of Ultra High Strength Concrete Incorporating Multi-Walled Carbon Nanotubes.

    PubMed

    Lu, Liulei; Ouyang, Dong; Xu, Weiting

    2016-05-27

    In this work, the effect of the addition of multi-walled carbon nanotubes (MWCNTs) on the mechanical properties and durability of ultra high strength concrete (UHSC) is reported. First, the MWCNTs were dispersed by a nano sand-mill in the presence of a surfactant in water. The UHSC specimens were prepared with various amounts of MWCNTs, ranging from 0% to 0.15% by weight of cement (bwoc). Results indicated that use of an optimal percentage of MWCNTs (0.05% bwoc) caused a 4.63% increase in compressive strength and a 24.0% decrease in chloride diffusion coefficient of UHSC at 28 days curing. Moreover, the addition of MWCNTs also improved the flexural strength and deformation ability. Furthermore, a field-emission scanning electron microscopy (FE-SEM) was used to observe the dispersion of MWCNTs in the cement matrix and morphology of the hardened cement paste containing MWCNTs. FE-SEM observation revealed that MWCNTs were well dispersed in the matrix and no agglomerate was found and the reinforcing effect of MWCNTs on UHSC was thought to be pulling out and microcrack bridging of MWCNTs, which transferred the load in tension.

  11. Optical transmission of nematic liquid crystal 5CB doped by single-walled and multi-walled carbon nanotubes.

    PubMed

    Lisetski, L N; Fedoryako, A P; Samoilov, A N; Minenko, S S; Soskin, M S; Lebovka, N I

    2014-08-01

    Comparative studies of optical transmission of single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), dispersed in nematic liquid crystal matrix 5CB, were carried out. The data evidence violations of Beer-Lambert-Bouguer (BLB) law both in cell thickness and concentration dependencies. The most striking is the fact that optical transmission dependencies for SWCNTs and MWCNTs were quite different in the nematic phase, but they were practically indistinguishable in the isotropic phase. Monte Carlo simulations of the impact of aggregation on direct transmission and violation of BLB law were also done. The results were discussed accounting for the tortuous shape of CNTs, their physical properties and aggregation, as well as strong impact of perturbations of the nematic 5CB structure inside coils and in the vicinity of CNT aggregates.

  12. The fabrication and electrochemical properties of electrospun nanofibers of a multiwalled carbon nanotube grafted by chitosan

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Wu, Zigang; Li, Yu; Feng, Yiyu; Yuan, Xiaoyan

    2008-03-01

    Multiwalled carbon nanotubes (MWCNTs) were grafted by chitosan (CS); the product could disperse well in poly(vinyl alcohol) (PVA) aqueous solution with 2% (v/v) acetic acid solution. Because this product has potential in several biological fields, it was electrospun so as to enlarge the surface area. Raman spectra indicated that the electrospinning process did not severely alter the electron hybridization of carbon atoms within the nanotube framework. Moreover and interestingly, these nanofibers showed a novel sheath-core structure; the outer and inner diameters of these sheath-core nanofibers were about 200 nm and 100 nm, respectively. These nanofibers' electrochemical properties were characterized by detection of hydrogen peroxide and voltammetric responses of potassium ferricyanide. The electrospun fibers' web displayed faster electron transfer kinetics and better electrochemical properties than its cast film, which justified further applications in biological areas.

  13. Diffusion of multiwall carbon nanotubes (MWCNTs) through a high density polyethylene (HDPE) geomembrane

    PubMed Central

    Saheli, P. T.; Rowe, R. K.; Petersen, E. J.; O’Carroll, D. M.

    2017-01-01

    The new applications for carbon nanotubes (CNTs) in various fields and consequently their greater production volume have increased their potential release to the environment. Landfills are one of the major locations where carbon nanotubes are expected to be disposed and it is important to ensure that they can limit the release of CNTs. Diffusion of multiwall carbon nanotubes (MWCNTs) dispersed in an aqueous media through a high-density polyethylene (HDPE) geomembrane (as a part of the landfill barrier system) was examined. Based on the laboratory tests, the permeation coefficient was estimated to be less than 5.1×10−15 m2/s. The potential performance of a HDPE geomembrane and geosynthetic clay liner (GCL) as parts of a composite liner in containing MWCNTs was modelled for six different scenarios. The results suggest that the low value of permeation coefficient of an HDPE geomembrane makes it an effective diffusive barrier for MWCNTs and by keeping the geomembrane defects to minimum during the construction (e.g., number of holes and length of wrinkles) a composite liner commonly used in municipal solid waste landfills will effectively contain MWCNTs. PMID:28740357

  14. Diffusion of multiwall carbon nanotubes (MWCNTs) through a high density polyethylene (HDPE) geomembrane.

    PubMed

    Saheli, P T; Rowe, R K; Petersen, E J; O'Carroll, D M

    2017-05-01

    The new applications for carbon nanotubes (CNTs) in various fields and consequently their greater production volume have increased their potential release to the environment. Landfills are one of the major locations where carbon nanotubes are expected to be disposed and it is important to ensure that they can limit the release of CNTs. Diffusion of multiwall carbon nanotubes (MWCNTs) dispersed in an aqueous media through a high-density polyethylene (HDPE) geomembrane (as a part of the landfill barrier system) was examined. Based on the laboratory tests, the permeation coefficient was estimated to be less than 5.1×10 -15 m 2 /s. The potential performance of a HDPE geomembrane and geosynthetic clay liner (GCL) as parts of a composite liner in containing MWCNTs was modelled for six different scenarios. The results suggest that the low value of permeation coefficient of an HDPE geomembrane makes it an effective diffusive barrier for MWCNTs and by keeping the geomembrane defects to minimum during the construction (e.g., number of holes and length of wrinkles) a composite liner commonly used in municipal solid waste landfills will effectively contain MWCNTs.

  15. Gallium-mediated growth of multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Pan, Zheng Wei; Dai, Sheng; Beach, David B.; Evans, Neal D.; Lowndes, Douglas H.

    2003-03-01

    Liquid gallium was used as a viable and effective solvent and template for high-yield growth of multiwall carbon nanotubes. The gallium-mediated nanotubes thus obtained differ morphologically from nanotubes obtained by using transition metals as catalysts. The nanotubes have a pin-like morphology, generally composed of an oval-shaped tip filled with liquid gallium and a tapered hollow body. The inner diameter of the tube is so large that the inner/outer diameter ratio is usually larger than 0.9. The tubes are naturally opened at both ends. These gallium-filled nanotubes may be used as a nanothermometer in the temperature range of 30 to 550 °C. This study opens an interesting route for carbon nanotube synthesis.

  16. Solid Lubrication by Multiwalled Carbon Nanotubes in Air and in Vacuum for Space and Aeronautics Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Street, Kenneth W., Jr.; Andraws, Rodney; Jacques, David; VanderWal, Randy L.; Sayir, Ali

    2005-01-01

    To evaluate recently developed aligned multiwalled carbon nanotubes (MWNTs) and dispersed MWNTs for solid lubrication applications, unidirectional sliding friction experiments were conducted with 440 C stainless steel balls and hemispherical alumina-yttria stabilized zirconia pins in sliding contact with the MWNTs deposited on quartz disks in air and in vacuum. The results indicate that MWNTs have superior solid lubrication friction properties and endurance lives in air and vacuum under dry conditions. The coefficient of friction of the dispersed MWNTs is close to 0.05 and 0.009 in air and in vacuum, respectively, showing good dry lubricating ability. The wear life of MWNTs exceeds 1 million passes in both air and vacuum showing good durability. In general, the low coefficient of friction can be attributed to the combination of the transferred, agglomerated patches of MWNTs on the counterpart ball or pin surfaces and the presence of tubular MWNTs at interfaces.

  17. A comparison of LLDPE-based nanocomposites containing multi-walled carbon nanotubes and graphene

    NASA Astrophysics Data System (ADS)

    Vasileiou, Alexandros; Docoslis, Aristides; Kontopoulou, Marianna

    2015-05-01

    Composites of linear-low density polyethylene (LLDPE) with multi-walled carbon nanotubes (MWCNT) and thermally reduced graphene (TRGO) were produced by melt compounding. The composites were compatibilized by grafting aromatic pyridine groups onto the LLDPE backbone. The aromatic moieties established non-covalent π-π interactions with the carbon nanostructures, thus allowing for efficient dispersion, without compromizing their electrical properties. By using identical matrices, it was possible to investigate the effects of filler geometry on the electrical, mechanical and rheological properties of the composites. The 1-D nature and smaller surface area of the MWCNT facilitated their dispersion within the polymer matrix, whereas the graphene agglomerates appeared to breakup through an erosion mechanism. The resulting mixture of aggregates and individual graphene platelets favored lower electrical and rheological percolation thresholds. However the maximum electrical conductivity achieved in the TRGO/LLDPE was lower by about an order of magnitude compared to the MWCNT/LLDPE composites, probably due to residual oxygen in the graphene's structure. TRGO based composites presented higher moduli at the same filler loadings, while elongations at break were comparable. All composites exhibited time-dependent rheological properties, indicative of their tendency to aggregate. A more pronounced increase in viscoelastic properties was noted in the composites containing TRGO, presumably due to the higher surface area of the graphene platelets, and the presence of larger aggregates.

  18. Multi-walled carbon nanotube (MWCNT) synthesis, preparation, labeling, and functionalization.

    PubMed

    Kateb, Babak; Yamamoto, Vicky; Alizadeh, Darya; Zhang, Leying; Manohara, Harish M; Bronikowski, Michael J; Badie, Behnam

    2010-01-01

    Nanomedicine is a growing field with a great potential for introducing new generation of targeted and personalized drug. Amongst new generation of nano-vectors are carbon nanotubes (CNTs), which can be produced as single or multi-walled. Multi-walled carbon nanotubes (MWCNTs) can be fabricated as biocompatible nanostructures (cylindrical bulky tubes). These structures are currently under investigation for their application in nanomedicine as viable and safe nanovectors for gene and drug delivery. In this chapter, we will provide you with the necessary information to understand the synthesis of MWCNTs, functionalization, PKH26 labeling, RNAi, and DNA loading for in vitro experimentation and in vivo implantation of labeled MWCNT in mice as well as materials used in this experimentation. We used this technique to manipulate microglia as part of a novel application for the brain cancer immunotherapy. Our published data show this is a promising technique for labeling, and gene and drug delivery into microglia.

  19. Passive approach for the improved dispersion of polyvinyl alcohol-based functionalized multi-walled carbon nanotubes/Nafion membranes for polymer electrolyte membrane fuel cells.

    PubMed

    Abu Sayeed, M D; Talukdar, Krishan; Kim, Hee Jin; Park, Younjin; Gopalan, A I; Kim, Young Ho; Lee, Kwang-Pill; Choi, Sang-June

    2014-12-01

    Multi-walled carbon nanotubes (MWCNTs) are regarded as ideal fillers for Nafion polymer electrolyte membranes (PEMs) for fuel cell applications. The highly aggregated properties of MWCNTs can be overcome by the successful cross-linking with polyvinyl alcohol (PVA) into the MWCNTs/Nafion membrane. In this study, a series of nanocomposite membranes were fabricated with the PVA-influenced functionalized MWCNTs reinforced into the Nafion polymer matrix by a solution casting method. Several different PVA contents were blended to f-MWCNTs/Nafion nanocomposite membranes followed by successful cross-linking by annealing. The surface morphologies and the inner structures of the resulting PVA-MWCNTs/Nafion nanocomposite membranes were then observed by optical microscopy and scanning electron microscopy (SEM) to investigate the dispersion of MWCNTs into the PVA/Nafion composite membranes. After that, the nanocomposite membranes were characterized by thermo-gravimetric analysis (TGA) to observe the thermal enhancement caused by effective cross-linking between the f-MWCNTs with the composite polymer matrixes. Improved water uptake with reduced methanol uptake revealed the successful fabrication of PVA-blended f-MWCNTs/Nafion membranes. In addition, the ion exchange capacity (IEC) was evaluated for PEM fuel cell (PEMFC) applications.

  20. Influence of Multi-Walled Carbon Nanotubes on the Thermal and Mechanical Behavior of Carbon/Epoxy Composites (Preprint)

    DTIC Science & Technology

    2007-03-01

    Stephenson Chemical Company, Inc. Carbon Nanotechnologies , Inc. 3 produced the multi-walled carbon nanotubes used in this study. The tube diameters range...5125-5132. 11. Kim S. , Pechar T. W. and Marand E., Desalination , 192(2006): 330-339 12. Cai H., Yan F. Y., and Xue Q. J., Materials Science and

  1. Comparison of quasistatic to impact mechanical properties of multiwall carbon nanotube/polycarbonate composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brühwiler, Paul A.; Barbezat, Michel; Necola, Adly

    2010-10-22

    We report the quasistatic tensile and impact penetration properties (falling dart test) of injection-molded polycarbonate samples, as a function of multiwall carbon nanotube (MWNT) concentration (0.0-2.5%). The MWNT were incorporated by dilution of a commercial MWNT/polycarbonate masterbatch. The stiffness and quasistatic yield strength of the composites increased approximately linearly with MWNT concentration in all measurements. The energy absorbed in fracture was, however, a negative function of the MWNT concentration, and exhibited different dependencies in quasistatic and impact tests. Small-angle x-ray scattering (SAXS) showed that the dispersion of the MWNT was similar at all concentrations. The negative effects on energy absorptionmore » are attributed to agglomerates remaining in the samples, which were observed in optical microscopy and SAXS. Overall, there was a good correspondence between static and dynamic energy absorption.« less

  2. Structure of junctions of multiwalled carbon nanotubes with tetragonal cross section and flattened nanotubes revealed by electron-beam tomography

    NASA Astrophysics Data System (ADS)

    Nagano, Yuta; Kohno, Hideo

    2017-11-01

    Multiwalled carbon nanotubes with tetragonal cross section frequently form junctions with flattened multi-walled carbon nanotubes, a kind of carbon nanoribbon. The three-dimensional structure of the junctions is revealed by transmission-electron-microscopy-based tomography. Two types of junction, parallel and diagonal, are found. The formation mechanism of these two types of junction is discussed in terms of the origami mechanism that was previously proposed to explain the formation of carbon nanoribbons and nanotetrahedra.

  3. Electrical Conductivity in Polymer Blends/ Multiwall Carbon Nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, Ajit R.; Bose, Suryasarathi; Bhattacharyya, Arup R.

    2008-10-23

    Carbon nanotubes (CNT) based polymer composites have emerged as the future multifunctional materials in view of its exceptional mechanical, thermal and electrical properties. One of the major interests is to develop conductive polymer composites preferably at low concentration of CNT utilizing their high aspect ratio (L/D) for numerous applications, which include antistatic devices, capacitors and materials for EMI shielding. In this context, polymer blends have emerged as a potential candidate in lowering the percolation thresholds further by the utilization of 'double-percolation' which arises from the synergistic improvements in blend properties associated with the co-continuous morphology. Due to strong inter-tube vanmore » der Waals' forces, they often tend to aggregate and uniform dispersion remains a challenge. To overcome this challenge, we exploited sodium salt of 6-aminohexanoic acid (Na-AHA) which was able to assist in debundlling the multiwall carbon nanotubes (MWNT) through 'cation-{pi}' interactions during melt-mixing leading to percolative 'network-like' structure of MWNT within polyamide6 (PA6) phase in co-continuous PA6/acrylonitrile butadiene styrene (ABS) blends. The composite exhibited low electrical percolation thresholds of 0.25 wt% of MWNT, the lowest reported value in this system so far. Retention of 'network-like structure' in the solid state with significant refinement was observed even at lower MWNT concentration in presence Na-AHA, which was assessed through AC electrical conductivity measurements. Reactive coupling was found to be a dominant factor besides 'cation-{pi}' interactions in achieving low electrical percolation in PA6/ABS+MWNT composites.« less

  4. Electrical Conductivity in Polymer Blends/ Multiwall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Kulkarni, Ajit R.; Bose, Suryasarathi; Bhattacharyya, Arup R.

    2008-10-01

    Carbon nanotubes (CNT) based polymer composites have emerged as the future multifunctional materials in view of its exceptional mechanical, thermal and electrical properties. One of the major interests is to develop conductive polymer composites preferably at low concentration of CNT utilizing their high aspect ratio (L/D) for numerous applications, which include antistatic devices, capacitors and materials for EMI shielding. In this context, polymer blends have emerged as a potential candidate in lowering the percolation thresholds further by the utilization of `double-percolation' which arises from the synergistic improvements in blend properties associated with the co-continuous morphology. Due to strong inter-tube van der Waals' forces, they often tend to aggregate and uniform dispersion remains a challenge. To overcome this challenge, we exploited sodium salt of 6-aminohexanoic acid (Na-AHA) which was able to assist in debundlling the multiwall carbon nanotubes (MWNT) through `cation-π' interactions during melt-mixing leading to percolative `network-like' structure of MWNT within polyamide6 (PA6) phase in co-continuous PA6/acrylonitrile butadiene styrene (ABS) blends. The composite exhibited low electrical percolation thresholds of 0.25 wt% of MWNT, the lowest reported value in this system so far. Retention of `network-like structure' in the solid state with significant refinement was observed even at lower MWNT concentration in presence Na-AHA, which was assessed through AC electrical conductivity measurements. Reactive coupling was found to be a dominant factor besides `cation-π' interactions in achieving low electrical percolation in PA6/ABS+MWNT composites.

  5. Heterodoped nanotubes: theory, synthesis, and characterization of phosphorus-nitrogen doped multiwalled carbon nanotubes.

    PubMed

    Cruz-Silva, Eduardo; Cullen, David A; Gu, Lin; Romo-Herrera, Jose Manuel; Muñoz-Sandoval, Emilio; López-Urías, Florentino; Sumpter, Bobby G; Meunier, Vincent; Charlier, Jean-Christophe; Smith, David J; Terrones, Humberto; Terrones, Mauricio

    2008-03-01

    Arrays of multiwalled carbon nanotubes doped with phosphorus (P) and nitrogen (N) are synthesized using a solution of ferrocene, triphenyl-phosphine, and benzylamine in conjunction with spray pyrolysis. We demonstrate that iron phosphide (Fe(3)P) nanoparticles act as catalysts during nanotube growth, leading to the formation of novel PN-doped multiwalled carbon nanotubes. The samples were examined by high resolution electron microscopy and microanalysis techniques, and their chemical stability was explored by means of thermogravimetric analysis in the presence of oxygen. The PN-doped structures reveal important morphology and chemical changes when compared to N-doped nanotubes. These types of heterodoped nanotubes are predicted to offer many new opportunities in the fabrication of fast-response chemical sensors.

  6. A Multi-Walled Carbon Nanotube-based Biosensor for Monitoring Microcystin-LR in Sources of Drinking Water Supplies

    EPA Science Inventory

    A multi-walled carbon nanotube-based electrochemical biosensor is developed for monitoring microcystin-LR (MC-LR), a toxic cyanobacterial toxin, in sources of drinking water supplies. The biosensor electrodes are fabricated using dense, mm-long multi-walled CNT (MWCNT) arrays gro...

  7. Nanocomposites of nitrile (NBR) rubber with multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Warasitthinon, Nuthathai

    Nanotechnology offers the promise of creating new materials with enhanced performance. There are different kinds of fillers used in rubber nanocomposites, such as carbon black, silica, carbon fibers, and organoclays. Carbon nanotube reinforced elastomers have potential for improved rubber properties in aggressive environments. The first chapter is an introduction to the literature. The second chapter investigated the incorporation of multi-walled carbon nanotubes (MWCNTs) into rubber matrix for potential use in high temperature applications. The vulcanization kinetics of acrylonitrile butadiene rubber (NBR) reinforced with multi-walled carbon nanotubes was investigated. The vulcanized NBR rubber with different loading percentages of MWCNTs was also compared to NBR reinforced with carbon black N330. The optimum curing time at 170°C (T90) was found to decrease with increasing content of MWCNTs. Increased filler loading of both carbon black and MWCNTs gave higher modulus and strength. The MWCNTs filled materials gave better retention of modulus and tensile strength at high temperatures, but lower strength as compared to the carbon black filled samples. In the third chapter, carbon black (CB, 50phr) content in nitrile rubber (NBR) nanocomposites was partially replaced by multi-walled carbon nanotubes (MWCNTs). NBR/CB/CNTs nanocomposites with varying ratio of CB/CNTs (50/0 phr to 40/10 phr) were formulated via the melt-mixing method using an internal mixer. The reinforcing effect of single filler (CB) and mixture of fillers (CB and CNTs) on the properties of NBR nanocomposites was investigated. The cure kinetics and bound rubber content were analyzed using rheometry and solvent swelling method. In addition, mechanical behavior at both room temperature and high temperature (350°F/ 121°C) were examined. The scorch time and curing time values showed that there was no significant effect on the curing behavior of NBR nanocomposites after the partial replacement of CB with

  8. Controllable pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells.

    PubMed

    Mu, Yongyan; Liang, Hanpu; Hu, Jinsong; Jiang, Li; Wan, Lijun

    2005-12-01

    We report a novel process to prepare well-dispersed Pt nanoparticles on CNTs. Pt nanoparticles, which were modified by the organic molecule triphenylphosphine, were deposited on multiwalled carbon nanotubes by the organic molecule, which acts as a cross linker. By manipulating the relative ratio of Pt nanoparticles and multiwalled carbon nanotubes in solution, Pt/CNT composites with different Pt content were achieved. The so-prepared Pt/CNT composite materials show higher electrocatalytic activity and better tolerance to poisoning species in methanol oxidation than the commercial E-TEK catalyst, which can be ascribed to the high dispersion of Pt nanoparticles on the multiwalled carbon nanotube surface.

  9. Comparison between Single-Walled CNT, Multi-Walled CNT, and Carbon Nanotube-Fiber Pyrograf III

    NASA Astrophysics Data System (ADS)

    Mousa, Marwan S.

    2018-02-01

    Single-Walled CNT (SWCNTs), Multi-walled Carbon Nanotubes (MWCNTs), and Carbon Nanotube-Fibers Pyrograf III PR-1 (CNTFs) were deposited by chemical vapor deposition under vacuum pressure value of (10-7mbar). Their structures were investigated by field emission microscopy. Carbon Nano-Fibers Pyrograf III PR-1 showed an average fiber diameter within the range of 100-200 nm and a length of (30-100) μm. Single-walled Carbon Nanotubes were produced by high-pressure Carbon Monoxide process with an average diameter ranging between (1-4) nm and a length of (1-3) μm. Thin Multiwall Carbon Nanotube of carbon purity (90%) showed an average diameter tube (9.5 nm) with a high-aspect-ratio (>150). The research work reported here includes the field electron emission current-voltage (I-V) characteristics and presented as Fowler-Nordheim (FN) plots and the spatial emission current distributions (electron emission images) obtained and analyzed in terms of electron source features. For the three types of emitters, a single spot pattern for the electron spatial; distributions were observed, with emission current fluctuations in some voltage region.

  10. Dielectric, electric and thermal properties of carboxylic functionalized multiwalled carbon nanotubes impregnated polydimethylsiloxane nanocomposite

    NASA Astrophysics Data System (ADS)

    Sagar, Sadia; Iqbal, Nadeem; Maqsood, Asghari

    2013-06-01

    The dielectric, electric and thermal properties of carboxylic functionalized multiwalled carbon nanotubes (F-MWCNT) incorporated into the polydimethylsiloxane (PDMS) were evaluated to determine their potential in the field of electronic materials. Carboxylic functionalization of the pristine multi walled carbon tubes (Ps-MWCNT) was confirmed through Fourier transform infrared spectroscopy, X-ray diffraction patterns for both Ps-MWCNTs and F-MWCNTs elaborated that crystalline behavior did not change with carboxylic moieties. Thermogravimetric and differential thermal analyses were performed to elucidate the thermal stability with increasing weight % addition of F-MWCNTs in the polymer matrix. Crystallization/glass transition / melting temperatures were evaluated using differential scanning calorimeter and it was observed that glass transition and crystallization temperatures were diminished while temperatures of first and second melting transitions were progressed with increasing F-MWCNT concentration in the PDMS matrix. Scanning electron microscopy and energy dispersive x-ray spectroscopy were carried out to confirm the morphology, functionalization, and uniform dispersion of F-MWCNTs in the polymer matrix. Electrical resistivity at temperature range (100-300°C), dielectric loss (tanδ) and dielectric parameters (epsilon/ epsilon//) were measured in the frequency range (1MHz-3GHz). The measured data simulate that the aforementioned properties were influenced by increasing filler contents in the polymer matrix because of the high polarization of conductive F-MWCNTs at the reinforcement/polymer interface.

  11. Synthesis of multiwalled carbon nanotube from different grades of carbon black using arc discharge method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, Neha, E-mail: n4neha31@gmail.com; Sharma, N. N.; Director, School of Automobile, Mechanical & Mechatronics, Manipal University,Jaipur,India

    2016-04-13

    This paper describes the synthesis of nanotube from different grades (Tread * A(non-ASTM), N134,N121,N660 and N330)of carbon black using DC arc discharge method at 40A current for 60sec. Carbon black samples of different grades were procured from industry (Aditya Birla Science and Technology Limited, India). Scanning Electron Micrographs (SEM) of the deposited carbon nanostructures suggests that MWCNTs are formed at 40A and for a minimal exposure time of 60sec.The result formed indicates the N330 grade of carbon black gets converted to MWCNTs (Multiwall Carbon nanotube) as compared to other grades.

  12. Extraction of ochratoxin A in red wine with dopamine-coated magnetic multi-walled carbon nanotubes.

    PubMed

    Wan, Hong; Zhang, Bo; Bai, Xiao-Lin; Zhao, Yan; Xiao, Meng-Wei; Liao, Xun

    2017-10-01

    A new, rapid, green, and cost-effective magnetic solid-phase extraction of ochratoxin A from red wine samples was developed using polydopamine-coated magnetic multi-walled carbon nanotubes as the absorbent. The polydopamine-coated magnetic multi-walled carbon nanotubes were fabricated with magnetic multi-walled carbon nanotubes and dopamine by an in situ oxidative self-polymerization approach. Transmission electron microscopy, dynamic light scattering, X-ray photoelectron spectroscopy and vibrating sample magnetometry were used to characterize the absorbents. Ochratoxin A was quantified with high-performance liquid chromatography coupled with fluorescence detection, with excitation and emission wavelengths of 338 and 455 nm, respectively. The conditions affecting the magnetic solid-phase extraction procedure, such as pH, extraction solution, extraction time, absorbent amount, desorption solution and desorption time were investigated to obtain the optimal extraction conditions. Under the optimized conditions, the extraction recovery was 91.8-104.5% for ochratoxin A. A linear calibration curve was obtained in the range of 0.1-2.0 ng/mL. The limit of detection was 0.07 ng/mL, and the limit of quantitation was 0.21 ng/mL. The recoveries of ochratoxin A for spiked red wine sample ranged from 95.65 to 100.65% with relative standard deviation less than 8%. The polydopamine-coated magnetic multi-walled carbon nanotubes showed a high affinity toward ochratoxin A, allowing selective extraction and quantification of ochratoxin A from complex sample matrixes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Plasma-modified graphene nanoplatelets and multiwalled carbon nanotubes as fillers for advanced rubber composites

    NASA Astrophysics Data System (ADS)

    Sicinski, M.; Gozdek, T.; Bielinski, D. M.; Szymanowski, H.; Kleczewska, J.; Piatkowska, A.

    2015-07-01

    In modern rubber industry, there still is a room for new fillers, which can improve the mechanical properties of the composites, or introduce a new function to the material. Modern fillers like carbon nanotubes or graphene nanoplatelets (GnP), are increasingly applied in advanced polymer composites technology. However, it might be hard to obtain a well dispersed system for such systems. The polymer matrix often exhibits higher surface free energy (SFE) level with the filler, which can cause problems with polymer-filler interphase adhesion. Filler particles are not wet properly by the polymer, and thus are easier to agglomerate. As a consequence, improvement in the mechanical properties is lower than expected. In this work, multi-walled carbon nanotubes (MWCNT) and GnP surface were modified with low-temperature plasma. Attempts were made to graft some functionalizing species on plasma-activated filler surface. The analysis of virgin and modified fillers’ SFE was carried out. MWCNT and GnP rubber composites were produced, and ultimately, their morphology and mechanical properties were studied.

  14. Improved electrical conductivity of poly(ethylene oxide) nanofibers using multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lee, J. Y.; Kang, T.-H.; Choi, J. H.; Choi, I.-S.; Yu, W.-R.

    2018-03-01

    Highly conductive nanofibers with 1570 S/m were obtained from an electrospun solution of polymer containing multiwalled carbon nanotubes (MWCNTs). Homogeneous dispersion of high concentrations of MWCNTs was achieved by attaching poly(styrenesulfonic acid graft aniline) (PSS-g-ANI), an amphiphilic surfactant, to the MWCNT surface. The hydrophilic sulfonic acid group facilitated the dissolution of PSS-g-ANI-grafted MWCNTs in a polyethylene oxide (PEO) solution up to 6.7 wt% MWCNT. To our knowledge, this is the highest level of MWCNT doping attained in a solution designed for electrospinning. With the incorporation of PSS-g-ANI, the concentration of MWCNTs embedded in the electrospun nanofibers increased. More importantly, the alignment of MWCNTs along the nanofiber axis increased significantly, as confirmed by observed birefringence under crossed polarizers. The combination of higher doping levels and better alignment afforded highly conductive nanofibers suitable for electronic nanodevices.

  15. Multi-residue determination of 171 pesticides in cowpea using modified QuEChERS method with multi-walled carbon nanotubes as reversed-dispersive solid-phase extraction materials.

    PubMed

    Han, Yongtao; Song, Le; Zou, Nan; Chen, Ronghua; Qin, Yuhong; Pan, Canping

    2016-09-15

    A rapid and sensitive method for the determination of 171 pesticides in cowpea was developed using multi-walled carbon nanotubes (MWCNTs) as reversed-dispersive solid-phase (r-DSPE) extraction materials. The clean-up performance of MWCNTs was proved to be obviously superior to PSA and GCB. This method was validated on cowpea spiked at 0.01 and 0.1mgkg(-1) with five replicates. The mean recoveries for 169 pesticides ranged from 74% to 129% with relative standard deviations (RSDs) (n=5) lower than 16.4%, except diflufenican and quizalofop-ethyl. Good linearity for all pesticides was obtained with the calibration curve coefficients (R(2)) larger than 0.9970. The limit of detection (LODs) and limit of quantification (LOQs) for the 171 pesticides ranged from 0.001 to 0.003mgkg(-1) and from 0.002 to 0.009mgkg(-1), respectively. The method was demonstrated to be reliable and sensitive for the routine monitoring of the 171 pesticides in cowpea samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Dispersion of multi-walled carbon nanotubes in [BMIM]PF6 for electrochemical sensing of acetaminophen.

    PubMed

    Gomes, Rayane N; Sousa, Camila P; Casciano, Paulo N S; Ribeiro, Francisco Wirley P; Morais, Simone; de Lima-Neto, Pedro; Correia, Adriana N

    2018-07-01

    The influence of functionalized multi-walled carbon nanotubes (fMWCNT) in the presence of 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF 6 ) in different ratios was investigated on the acetaminophen (ACOP) electrochemical determination. The electrochemical behavior of the ACOP exhibited a pair of well-defined redox peaks, suggesting that the reversibility of ACOP was significantly improved in comparison to irreversible oxidation peak on bare GCE. The redox process was controlled by adsorption, involves two electrons and the value of apparent rate constant (k s ) was equal to 14.7 s -1  ± 3.6 s -1 . The analytical curves were obtained for concentrations of ACOP ranging from 0.3 to 3.0 μmol L -1 . The values of the detection limit were calculated from SWV and found to be 6.73 × 10 -8  mol L -1 . The proposed electrochemical sensor exhibited good stability and reproducibility and was applied for ACOP determination in tablets (Tylenol® and Tylenol®DC) with satisfactory results. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. MICROWAVE-ASSISTED SYNTHESIS OF CROSSLINKED POLY(VINYL ALCOHOL) NANOCOMPOSITES COMPRISING SINGLE-WALLED CARBON NANOTUBES, MULTI-WALLED CARBON NANOTUBES AND BUCKMINSTERFULLERENE

    EPA Science Inventory

    We report a facile method to accomplish cross-linking reaction of poly (vinyl alcohol) (PVA) with single-wall carbon nanotubes (SWNT), multi-wall carbon nanotubes (MWNT), and Buckminsterfullerene (C-60) using microwave (MW) irradiation. Nanocomposites of PVA cross-linked with SW...

  18. Ultrasonically treated multi-walled carbon nanotubes (MWCNTs) as PtRu catalyst supports for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Yang, Chunwei; Hu, Xinguo; Wang, Dianlong; Dai, Changsong; Zhang, Liang; Jin, Haibo; Agathopoulos, Simeon

    In the quest of fabricating supported catalysts, experimental results of transmission electron microscopy, Raman and infrared spectroscopy indicate that ultrasonic treatment effectively functionalizes multi-walled carbon nanotubes (MWCNTs), endowing them with groups that can act as nucleation sites which can favor well-dispersed depositions of PtRu clusters on their surface. Ultrasonic treatment seems to be superior than functionalization via regular refluxing. This is confirmed by the determination of the electrochemistry active surface area (ECA) and the CO-tolerance performance of the PtRu catalysts, measured by adsorbed CO-stripping voltammetry in 0.5 M sulfuric acid solution, and the real surface area of the PtRu catalysts, evaluated by Brunauer-Emmett-Teller (BET) measurements. Finally, the effectiveness for methanol oxidation is assessed by cyclic voltammetry (CV) in a sulfuric acid and methanol electrolyte.

  19. Efficient electrochemical degradation of multiwall carbon nanotubes.

    PubMed

    Reipa, Vytas; Hanna, Shannon K; Urbas, Aaron; Sander, Lane; Elliott, John; Conny, Joseph; Petersen, Elijah J

    2018-07-15

    As the production mass of multiwall carbon nanotubes (MWCNT) increases, the potential for human and environmental exposure to MWCNTs may also increase. We have shown that exposing an aqueous suspension of pristine MWCNTs to an intense oxidative treatment in an electrochemical reactor, equipped with an efficient hydroxyl radical generating Boron Doped Diamond (BDD) anode, leads to their almost complete mineralization. Thermal optical transmittance analysis showed a total carbon mass loss of over two orders of magnitude due to the electrochemical treatment, a result consistent with measurements of the degraded MWCNT suspensions using UV-vis absorbance. Liquid chromatography data excludes substantial accumulation of the low molecular weight reaction products. Therefore, up to 99% of the initially suspended MWCNT mass is completely mineralized into gaseous products such as CO 2 and volatile organic carbon. Scanning electron microscopy (SEM) images show sporadic opaque carbon clusters suggesting the remaining nanotubes are transformed into structure-less carbon during their electrochemical mineralization. Environmental toxicity of pristine and degraded MWCNTs was assessed using Caenorhabditis elegans nematodes and revealed a major reduction in the MWCNT toxicity after treatment in the electrochemical flow-by reactor. Published by Elsevier B.V.

  20. Flexible and Transparent Strain Sensors with Embedded Multiwalled Carbon Nanotubes Meshes.

    PubMed

    Nie, Bangbang; Li, Xiangming; Shao, Jinyou; Li, Xin; Tian, Hongmiao; Wang, Duorui; Zhang, Qiang; Lu, Bingheng

    2017-11-22

    Strain sensors combining high sensitivity with good transparency and flexibility would be of great usefulness in smart wearable/flexible electronics. However, the fabrication of such strain sensors is still challenging. In this study, new strain sensors with embedded multiwalled carbon nanotubes (MWCNTs) meshes in polydimethylsiloxane (PDMS) films were designed and tested. The strain sensors showed elevated optical transparency of up to 87% and high sensitivity with a gauge factor of 1140 at a small strain of 8.75%. The gauge factors of the sensors were also found relatively stable since they did not obviously change after 2000 stretching/releasing cycles. The sensors were tested to detect motion in the human body, such as wrist bending, eye blinking, mouth phonation, and pulse, and the results were shown to be satisfactory. Furthermore, the fabrication of the strain sensor consisting of mechanically blading MWCNTs aqueous dispersions into microtrenches of prestructured PDMS films was straightforward, was low cost, and resulted in high yield. All these features testify to the great potential of these sensors in future real applications.

  1. Preparation of micelle supported magnetic hydroxylated multi-walled carbon nanotubes based DSPE for determination of PAHs

    NASA Astrophysics Data System (ADS)

    Wang, Mingyu; Zhang, Shaojun; Zhang, Xiao; Li, Deyu

    2017-06-01

    A micelle supported Fe3O4 magnetic nanoparticles decorated hydroxylated multi-walled carbon nanotubes material was synthesized. The material was facilely synthesized between carbon nanotubes and Fe2+. The synthesized nanomaterial served as an excellent support for micelles, exhibiting high loading capacity and selectivity. The prepared material used in dispersive solid-phase extraction (DSPE) for investigation of gaseous phase polycyclic aromatic hydrocarbons (PAHs) emitted from marine diesel engine for the first time. The application showed good response (R2 > 0.9981) in the range of 0.02 - 1.0 μg/L, satisfactory reproducibility (variation less than ± 10%) and high precision. Limits of detection of sixteen PAHs ranged from 0.009 to 0.018 μg/L (S/N=3). The spiked recovery of proposed method (72.65-96.54 %) was 1.01 - 2.32 times higher than that of the conventional method. The enrichment factors reached to 39.65-121.32 that exhibited good enrichment ability.

  2. Comparative Studies on Al-Based Composite Powder Reinforced with Nano Garnet and Multi-wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Basariya, M. Raviathul; Srivastava, V. C.; Mukhopadhyay, N. K.

    2015-11-01

    Effect of mechanical alloying/milling on microstructural evolution and hardness variations of garnet and multi-walled carbon nanotubes (MWCNTs)-reinforced Al-Mg-Si alloy (EN AW6082) composites are investigated. Structural and morphological studies revealed that the composite powders prepared by milling display a more homogenous distribution of the reinforcing particles. Improved nanoindentation hardness viz., 4.24 and 5.90 GPa are achieved for EN AW6082/Garnet and EN AW6082/MWCNTs composites, respectively, and it is attributed to severe deformation of the aluminum alloy powders and embedding of the harder reinforcement particles uniformly into the aluminum alloy matrix. However, enhancement in case of MWCNTs-reinforced composite makes apparent the effect of its nanosized uniform dispersion in the matrix, thereby resisting the plastic deformation at lower stress and increased dislocation density evolved during high-energy ball milling. The results of the present study indicate that carbon nanotubes and garnet can be effectively used as reinforcements for Al-based composites.

  3. Hydrophilic Modification of Multi-Walled Carbon Nanotube for Building Photonic Crystals with Enhanced Color Visibility and Mechanical Strength.

    PubMed

    Li, Feihu; Tang, Bingtao; Xiu, Jinghai; Zhang, Shufen

    2016-04-28

    Low color visibility and poor mechanical strength of polystyrene (PS) photonic crystal films have been the main shortcomings for the potential applications in paints or displays. This paper presents a simple method to fabricate PS/MWCNTs (multi-walled carbon nanotubes) composite photonic crystal films with enhanced color visibility and mechanical strength. First, MWCNTs was modified through radical addition reaction by aniline 2,5-double sulfonic acid diazonium salt to generate hydrophilic surface and good water dispersity. Then the MWCNTs dispersion was blended with PS emulsion to form homogeneous PS/MWCNTs emulsion mixtures and fabricate composite films through thermal-assisted method. The obtained films exhibit high color visibility under natural light and improved mechanical strength owing to the light-adsorption property and crosslinking effect of MWCNTs. The utilization of MWCNTs in improving the properties of photonic crystals is significant for various applications, such as in paints and displays.

  4. Multi-walled carbon nanotubes-dispersive solid-phase extraction combined with liquid chromatography-tandem mass spectrometry for the analysis of 18 sulfonamides in pork.

    PubMed

    Hou, Xiao-Lin; Wu, Yin-Liang; Yang, Ting; Du, Xiang-Dang

    2013-06-15

    A simple and cost-effective pre-treatment procedure was developed for 18 sulfonamides in pork using dispersive solid phase extraction (dSPE) with multi-walled carbon nanotubes (MWCNTs). The sample was analysed after purification by ultra high-performance liquid chromatography-positive electrospray ionisation tandem mass spectrometry (UHPLC-ESI-MS/MS). After extraction with phosphate buffer (pH 6.0), a dSPE procedure was conducted with MWCNTs. The pH value of the extract, extraction time with MWCNTs, type and amount of MWCNTs and type of eluent were optimised to increase the sample throughput and sensitivity. The samples were quantified using sulfamethazine-(13)C6 as an internal standard. The recoveries of the target compounds from the pork samples were most efficient when 150mg of MWCNTs with an outer diameter of less than 8nm and a length of 0.5-2μm was used. A mixture of acetonitrile/50mM ammonium acetate (95:5, v/v) was shown to be the most suitable solvent for desorbing the compounds from the MWCNTs. The proposed method was validated according to the European Commission Decision 2002/657/EC, which determines linearity, specificity, decision limit (CCα), detection capability (CCβ), recovery, precision and stability. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Comparative analysis of single-walled and multi-walled carbon nanotubes for electrochemical sensing of glucose on gold printed circuit boards.

    PubMed

    Alhans, Ruby; Singh, Anukriti; Singhal, Chaitali; Narang, Jagriti; Wadhwa, Shikha; Mathur, Ashish

    2018-09-01

    In the present work, a comparative study was performed between single-walled carbon nanotubes and multi-walled carbon nanotubes coated gold printed circuit board electrodes for glucose detection. Various characterization techniques were demonstrated in order to compare the modified electrodes viz. cyclic voltammetry, electrochemical impedance spectroscopy and chrono-amperometry. Results revealed that single-walled carbon nanotubes outperformed multi-walled carbon nanotubes and proved to be a better sensing interface for glucose detection. The single-walled carbon nanotubes coated gold printed circuit board electrodes showed a wide linear sensing range (1 mM to 100 mM) with detection limit of 0.1 mM with response time of 5 s while multi-walled carbon nanotubes coated printed circuit board gold electrodes showed linear sensing range (1 mM to 100 mM) with detection limit of 0.1 mM with response time of 5 s. This work provided low cost sensors with enhanced sensitivity, fast response time and reliable results for glucose detection which increased the affordability of such tests in remote areas. In addition, the comparative results confirmed that single-walled carbon nanotubes modified electrodes can be exploited for better amplification signal as compared to multi-walled carbon nanotubes. Copyright © 2018. Published by Elsevier B.V.

  6. Preparation and Characterization of PETI-330/Multiwalled Carbon Nanotube

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Watson, Kent A.; Working, Dennis C.; Criss, Jim M.; Siochi, Emilie J.; Connell, John W.

    2005-01-01

    As part of an ongoing effort to incorporate multifunctionality into advanced composites, blends of PETI-330 and multi-walled carbon nanotubes (MWCNTs) were prepared, characterized and fabricated into moldings. The PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight percent by dry mixing the components in a ball mill. The resulting powders were characterized for degree of mixing, thermal and rheological properties. Based on the characterization results, PETI-330/MWCNT samples were scaled up to 300 g and used to fabricate moldings 10.2 cm x 15.2 cm x 0.32 cm thick. The moldings were made by injecting the mixtures at 260-280 C into an Invar tool followed by curing for 1 h at 371 C. The tool was designed to impart shear during the injection process in an attempt to achieve some alignment of the MWCNTs in the flow direction. Good quality moldings were obtained that were subsequently characterized for thermal, mechanical and electrical properties. The degree of dispersion and alignment of the MWCNTs were investigated using high-resolution scanning electron microscopy. The preparation and preliminary characterization of PETI-330/MWCNT composites will be discussed. Keywords: phenylethynyl terminated imides, high temperature polymers, nanocomposites, moldings

  7. Eradicating group A streptococcus bacteria and biofilms using functionalised multi-wall carbon nanotubes.

    PubMed

    Levi-Polyachenko, Nicole; Young, Christie; MacNeill, Christopher; Braden, Amy; Argenta, Louis; Reid, Sean

    2014-11-01

    The aim of this study was to demonstrate that multi-wall carbon nanotubes can be functionalised with antibodies to group A streptoccocus (GAS) for targeted photothermal ablation of planktonic and biofilm residing bacteria. Antibodies for GAS were covalently attached to carboxylated multi-wall carbon nanotubes and incubated with either planktonic or biofilm GAS. Bacterium was then exposed to 1.3 W/cm(2) of 800 nm light for 10-120 s, and then serially diluted onto agar plates from which the number of colony forming units was determined. Photothermal ablation of GAS on the surface of full thickness ex vivo porcine skin and histological sectioning were done to examine damage in adjacent tissue. Approximately 14% of the GAS antibody-functionalised nanotubes attached to the bacterium, and this amount was found to be capable of inducing photothermal ablation of GAS upon exposure to 1.3 W/cm(2) of 800 nm light. Cell viability was not decreased upon exposure to nanotubes or infrared light alone. Compared to carboxylated multi-wall carbon nanotubes, antibody-labelled nanotubes enhanced killing in both planktonic and biofilm GAS in conjunction with infrared light. Analysis of GAS photothermally ablated in direct contact with ex vivo porcine skin shows that heat sufficient for killing GAS remains localised and does not cause collateral damage in tissue adjacent to the treated area. The results of this study support the premise that carbon nanotubes may be effectively utilised as highly localised photothermal agents with the potential for translation into the clinical treatment of bacterial infections of soft tissue.

  8. Multi-walled Carbon Nanotubes Reduce Toxicity of Diphenhydramine to Ceriodaphnia dubia in Water and Sediment Exposures.

    PubMed

    Myer, Mark H; Black, Marsha C

    2017-09-01

    Multi-walled carbon nanotubes are adsorptive materials that have potential for remediation of organic contaminants in water. Sediment elutriate exposures were undertaken with Ceriodaphnia dubia to compare the toxic effects of diphenhydramine in the presence and absence of sediment and multi-walled carbon nanotubes. In both sediment and solution-only treatments, addition of 0.318 mg/g of carbon nanotubes significantly decreased 48-h mortality relative to control, with a 78.7%-90.1% reduction in treatments with nanotube-amended sediment and 40.7%-53.3% reduction in nanotube-amended water exposures. The greatest degree of relative mortality reduction occurred in sediments containing higher levels of natural organic matter, indicating a potential additive effect.

  9. Limited transport of functionalized multi-walled carbon nanotubes in two natural soils

    USDA-ARS?s Scientific Manuscript database

    Column experiments were conducted in undisturbed and in repacked soil columns at water contents close to saturation (85–96%) to investigate the transport and retention of functionalized 14C-labeled multi-walled carbon nanotubes (MWCNT) in two natural soils. Additionally, a field lysimeter experiment...

  10. 40 CFR 721.10275 - Multi-walled carbon nanotubes (generic) (P-09-0417).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10275 Multi-walled carbon nanotubes (generic) (P-09-0417). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically...

  11. 40 CFR 721.10276 - Multi-walled carbon nanotubes (generic) (P-10-39).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10276 Multi-walled carbon nanotubes (generic) (P-10-39). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically...

  12. 40 CFR 721.10274 - Multi-walled carbon nanotubes (generic) (P-09-188).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10274 Multi-walled carbon nanotubes (generic) (P-09-188). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically...

  13. 40 CFR 721.10274 - Multi-walled carbon nanotubes (generic) (P-09-188).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10274 Multi-walled carbon nanotubes (generic) (P-09-188). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically...

  14. 40 CFR 721.10279 - Multi-walled carbon nanotubes (generic) (P-10-246).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10279 Multi-walled carbon nanotubes (generic) (P-10-246). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically...

  15. 40 CFR 721.10275 - Multi-walled carbon nanotubes (generic) (P-09-0417).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10275 Multi-walled carbon nanotubes (generic) (P-09-0417). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically...

  16. 40 CFR 721.10276 - Multi-walled carbon nanotubes (generic) (P-10-39).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10276 Multi-walled carbon nanotubes (generic) (P-10-39). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically...

  17. Rapid prototyping of three-dimensional microstructures from multiwalled carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, W.H.; Kumar, Rajay; Bushmaker, Adam

    The authors report a method for creating three-dimensional carbon nanotube structures, whereby a focused laser beam is used to selectively burn local regions of a dense forest of multiwalled carbon nanotubes. Raman spectroscopy and scanning electron microscopy are used to quantify the threshold for laser burnout and depth of burnout. The minimum power density for burning carbon nanotubes in air is found to be 244 {mu}W/{mu}m{sup 2}. We create various three-dimensional patterns using this method, illustrating its potential use for the rapid prototyping of carbon nanotube microstructures. Undercut profiles, changes in nanotube density, and nanoparticle formation are observed after lasermore » surface treatment and provide insight into the dynamic process of the burnout mechanism.« less

  18. Electrical conductivity and electromagnetic interference shielding of epoxy nanocomposite foams containing functionalized multi-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Jiantong; Zhang, Guangcheng; Zhang, Hongming; Fan, Xun; Zhou, Lisheng; Shang, Zhengyang; Shi, Xuetao

    2018-01-01

    Epoxy/functionalized multi-wall carbon nanotube (EP/F-MWCNT) microcellular foams were fabricated through a supercritical CO2 (scCO2) foaming method. MWCNTs with carboxylation treatment were disentangled by using alpha-zirconium phosphate (ZrP) assisting dispersion method and functionalized with sulfanilamide. The F-MWCNTs were redispersed in acetone for mixing with epoxy resins to prepare nanocomposites. It was found that the dispersion of MWCNTs could be improved, thus heterogeneous nucleation effect of F-MWCNTs took place effectively during the foaming process, resulting in the formation of microcellular structure with larger cell density and smaller cell size. The volume conductivity and electromagnetic interference shielding performance of foamed EP/F-MWCNT nanocomposites were studied. When the F-MWCNT addition was 5 wt%, the conductivity of the foamed EP/F-MWCNT nanocomposites was 3.02 × 10-4 S/cm and the EMI shielding effectiveness (SE) reached 20.5 dB, significantly higher than the corresponding results of nanocomposite counterparts, indicating that introducing microcellular structure in EP/F-MWCNT nanocomposites would beneficial to improve their electrical conductivity and electromagnetic interference shielding performance.

  19. Electrochemical synthesis of gold nanoparticles on the surface of multi-walled carbon nanotubes with glassy carbon electrode and their application

    NASA Astrophysics Data System (ADS)

    Song, Y. Z.; Li, X.; Song, Y.; Cheng, Z. P.; Zhong, H.; Xu, J. M.; Lu, J. S.; Wei, C. G.; Zhu, A. F.; Wu, F. Y.; Xu, J.

    2013-01-01

    Gold nanoparticles on the surface of multi-walled carbon nanotubes with glassy carbon electrode were prepared using electrochemical synthesis method. The thin films of gold Nanoparticles/multi-walled carbon nanotubes were characterized by scanning electron microscopy, powder X-ray diffraction, and cyclic voltammetry. Electrochemical behavior of adrenaline hydrochloride at gold nanoparticles/multi-walled carbon nanotube modified glassy carbon electrode was investigated. A simple, sensitive, and inexpensive method for determination of adrenaline hydrochloride was proposed.

  20. The effects of multi-walled carbon nanotubes on soil microbial community functional and structural diversity

    USDA-ARS?s Scientific Manuscript database

    Applications of nanomaterials, including carbon nanotubes (CNTs), are increasing; however, their impact on the environment is still not well understood. A semi-arid soil was treated with multi-walled carbon nanotubes (MWCNTs) at four different concentrations (10-10000 mgMWCNTs kg-1soil), and incubat...

  1. Adsorption of emerging pollutants on functionalized multiwall carbon nanotubes.

    PubMed

    Patiño, Yolanda; Díaz, Eva; Ordóñez, Salvador; Gallegos-Suarez, Esteban; Guerrero-Ruiz, Antonio; Rodríguez-Ramos, Inmaculada

    2015-10-01

    Adsorption of three representative emerging pollutants - 1,8-dichlorooctane, nalidixic acid and 2-(4-methylphenoxy)ethanol- on different carbon nanotubes was studied in order to determine the influence of the morphological and chemical properties of the materials on their adsorption properties. As adsorbents, multiwall carbon nanotubes (MWCNTs) without functionalization and with oxygen or nitrogen surface groups, as well as carbon nanotubes doped with nitrogen were used. The adsorption was studied in aqueous phase using batch adsorption experiments, results being fitted to both Langmuir and Freundlich models. The adsorption capacity is strongly dependent on both the hydrophobicity of the adsorbates and the morphology of the adsorbents. Thermodynamic parameters were determined observing strong interactions between the aromatic rings of the emerging pollutant and the nitrogen modified adsorbents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Strain and Temperature Sensing Properties of Multiwalled Carbon Nanotube Yarn Composites

    NASA Technical Reports Server (NTRS)

    Kahng, Seun K.; Gates, Thomas S.; Jefferson, Gail D.

    2008-01-01

    Strain and temperature response of Multiwalled Carbon Nanotube (MWCNT/CNT) yarns on a stainless steel test beam has been studied. The carbon nanotube yarns are spun from a multiwalled carbon nanotube forest grown on a silicon substrate to a 4-ply yarn with a diameter of about 15-20 microns. Four of the 4-ply CNT yarns are arranged in a Wheatstone bridge configuration on the stainless steel test beam using a thin layer of polyurethane resin that insulates and protects the yarns from the test beam. Strain sensitivities of the CNT yarn sensors range from 1.39 to 1.75 mV/V/1000 microstrain at room temperature, and temperature sensitivity of the CNT yarn bridge is 91 microA/degC. Resistance of the yarns range from 215 to 270 ohms for CNT yarn length of approximately 5 mm. Processes used in attaching the CNT yarns on the test beam and experimental procedures used for the measurements are described. Conventional metallic foil strain gages are attached to the test beam to compare with the CNT sensors. The study demonstrates multifunctional capability of the sensor for strain and temperature measurements and shows its applicability where engineering strain is less than 3%.

  3. Determination of multi-walled carbon nanotube bioaccumulation in earthworms measured by a microwave-based detection technique

    EPA Science Inventory

    Reliable quantification techniques for carbon nanotubes (CNTs) are limited. In this study, a new procedure was developed for quantifying multi-walled carbon nanotubes (MWNTs) in earthworms (Eisenia fetida) based on freeze drying and microwave-induced heating. Specifically, earthw...

  4. Hybrid Composite Using Natural Filler and Multi-Walled Carbon Nanotubes (MWCNTs)

    NASA Astrophysics Data System (ADS)

    Nabinejad, Omid; Sujan, D.; Rahman, Muhammad Ekhlasur; Liew, Willey Yun Hsien; Davies, Ian J.

    2017-12-01

    This paper presents an experimental study on the development of hybrid composites comprising of multi-walled carbon nanotubes (MWCNTs) and natural filler (oil palm shell (OPS) powder) within unsaturated polyester (UP) matrix. The results revealed that the dispersion of pristine MWCNTs in the polymer matrix was strongly enhanced through use of the solvent mixing method assisted by ultrasonication. Four different solvents were investigated, namely, ethanol, methanol, styrene and acetone. The best compatibility with minimum side effects on the curing of the polyester resin was exhibited by the styrene solvent and this produced the maximum tensile and flexural properties of the resulting nanocomposites. A relatively small amount of pristine MWCNTs well dispersed within the natural filler polyester composite was found to be capable of improving mechanical properties of hybrid composite. However, increasing the MWCNT amount resulted in increased void content within the matrix due to an associated rapid increase in viscosity of the mixture during processing. Due to this phenomenon, the maximum tensile and flexural strengths of the hybrid composites were achieved at MWCNT contents of 0.2 to 0.4 phr and then declined for higher MWCNT amounts. The flexural modulus also experienced its peak at 0.4 phr MWCNT content whereas the tensile modulus exhibited a general decrease with increasing MWCNT content. Thermal stability analysis using TGA under an oxidative atmosphere showed that adding MWCNTs shifted the endset degradation temperature of the hybrid composite to a higher temperature.

  5. Preparation of Electrically Conductive Polystyrene/Carbon Nanofiber Nanocomposite Films

    ERIC Educational Resources Information Center

    Sun, Luyi; O'Reilly, Jonathan Y.; Tien, Chi-Wei; Sue, Hung-Jue

    2008-01-01

    A simple and effective approach to prepare conductive polystyrene/carbon nanofiber (PS/CNF) nanocomposite films via a solution dispersion method is presented. Inexpensive CNF, which has a structure similar to multi-walled carbon nanotubes, is chosen as a nanofiller in this experiment to achieve conductivity in PS films. A good dispersion is…

  6. Facile and one-pot synthesis of uniform PtRu nanoparticles on polydopamine-modified multiwalled carbon nanotubes for direct methanol fuel cell application.

    PubMed

    Chen, Fengxia; Ren, Junkai; He, Qian; Liu, Jun; Song, Rui

    2017-07-01

    A facile, environment-friendly and one-pot synthesis method for the preparation of high performance PtRu electrocatalysts on the multiwalled carbon nanotubes (MWCNTs) is reported. Herein, bimetallic PtRu electrocatalysts are deposited onto polydopamine (Pdop) - functionalized MWCNTs by mildly stirring at room temperature. Without the use of expensive chemicals or corrosive acids, this noncovalent functionalization of MWCNTs by Pdop is simple, facile and eco-friendly, and thus preserving the integrity and electronic structure of MWCNTs. Due to the well improved dispersion and the decreased size of alloy nanoparticles, the PtRu electrocatalysts on Pdop-functionalized MWCNTs show much better dispersion, higher electrochemically active surface area, and higher electrocatalytic activity for the electrooxidation of methanol in direct methanol fuel cells, compared with the conventional acid-treated MWCNTs. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Effects of nitrogen-doped multi-walled carbon nanotubes compared to pristine multi-walled carbon nanotubes on human small airway epithelial cells.

    PubMed

    Mihalchik, Amy L; Ding, Weiqiang; Porter, Dale W; McLoughlin, Colleen; Schwegler-Berry, Diane; Sisler, Jennifer D; Stefaniak, Aleksandr B; Snyder-Talkington, Brandi N; Cruz-Silva, Rodolfo; Terrones, Mauricio; Tsuruoka, Shuji; Endo, Morinobu; Castranova, Vincent; Qian, Yong

    2015-07-03

    Nitrogen-doped multi-walled carbon nanotubes (ND-MWCNTs) are modified multi-walled carbon nanotubes (MWCNTs) with enhanced electrical properties that are used in a variety of applications, including fuel cells and sensors; however, the mode of toxic action of ND-MWCNT has yet to be fully elucidated. In the present study, we compared the interaction of ND-MWCNT or pristine MWCNT-7 with human small airway epithelial cells (SAEC) and evaluated their subsequent bioactive effects. Transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction suggested the presence of N-containing defects in the lattice of the nanotube. The ND-MWCNTs were determined to be 93.3% carbon, 3.8% oxygen, and 2.9% nitrogen. A dose-response cell proliferation assay showed that low doses of ND-MWCNT (1.2μg/ml) or MWCNT-7 (0.12μg/ml) increased cellular proliferation, while the highest dose of 120μg/ml of either material decreased proliferation. ND-MWCNT and MWCNT-7 appeared to interact with SAEC at 6h and were internalized by 24h. ROS were elevated at 6 and 24h in ND-MWCNT exposed cells, but only at 6h in MWCNT-7 exposed cells. Significant alterations to the cell cycle were observed in SAEC exposed to either 1.2μg/ml of ND-MWCNT or MWCNT-7 in a time and material-dependent manner, possibly suggesting potential damage or alterations to cell cycle machinery. Our results indicate that ND-MWCNT induce effects in SAEC over a time and dose-related manner which differ from MWCNT-7. Therefore, the physicochemical characteristics of the materials appear to alter their biological effects. Published by Elsevier Ireland Ltd.

  8. Effect of Novel Quercetin Titanium Dioxide-Decorated Multi-Walled Carbon Nanotubes Nanocomposite on Bacillus subtilis Biofilm Development

    PubMed Central

    Raie, Diana S.; Mhatre, Eisha; El-Desouki, Doaa S.; Labena, Ahmed; El-Ghannam, Gamal; Farahat, Laila A.; Youssef, Tareq; Fritzsche, Wolfgang; Kovács, Ákos T.

    2018-01-01

    The present work was targeted to design a surface against cell seeding and adhering of bacteria, Bacillus subtilis. A multi-walled carbon nanotube/titanium dioxide nano-power was produced via simple mixing of carbon nanotube and titanium dioxide nanoparticles during the sol-gel process followed by heat treatment. Successfully, quercetin was immobilized on the nanocomposite via physical adsorption to form a quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite. The adhesion of bacteria on the coated-slides was verified after 24 h using confocal laser-scanning microscopy. Results indicated that the quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite had more negativity and higher recovery by glass surfaces than its counterpart. Moreover, coating surfaces with the quercetin-modified nanocomposite lowered both hydrophilicity and surface-attached bacteria compared to surfaces coated with the multi-walled carbon nanotubes/titanium dioxide nanocomposite. PMID:29346268

  9. Electrophoretic deposition of multi-walled carbon nanotubes on porous anodic aluminum oxide using ionic liquid as a dispersing agent

    NASA Astrophysics Data System (ADS)

    Hekmat, F.; Sohrabi, B.; Rahmanifar, M. S.; Jalali, A.

    2015-06-01

    Multi-wall carbon nanotubes (MW-CNTs) have been arranged in nanochannels of anodic aluminum oxide template (AAO) by electrophoretic deposition (EPD) to make a vertically-aligned carbon nanotube (VA-CNT) based electrode. Well ordered AAO templates were prepared by a two-step anodizing process by applying a constant voltage of 45 V in oxalic acid solution. The stabilized CNTs in a water-soluble room temperature ionic liquid (1-methyl-3-octadecylimidazolium bromide), were deposited in the pores of AAO templates which were conductive by deposition of Ni nanoparticles in the bottom of pores. In order to obtain ideal results, different EPD parameters, such as concentration of MWCNTs and ionic liquid on stability of MWCNT suspensions, deposition time and voltage which are applied in EPD process and also optimal conditions for anodizing of template were investigated. The capacitive performance of prepared electrodes was analyzed by measuring the specific capacitance from cyclic voltammograms and the charge-discharge curves. A maximum value of 50 Fg-1 at the scan rate of 20 mV s-1was achieved for the specific capacitance.

  10. Alginic Acid-Aided Dispersion of Carbon Nanotubes, Graphene, and Boron Nitride Nanomaterials for Microbial Toxicity Testing

    PubMed Central

    Chang, Chong Hyun

    2018-01-01

    Robust evaluation of potential environmental and health risks of carbonaceous and boron nitride nanomaterials (NMs) is imperative. However, significant agglomeration of pristine carbonaceous and boron nitride NMs due to strong van der Waals forces renders them not suitable for direct toxicity testing in aqueous media. Here, the natural polysaccharide alginic acid (AA) was used as a nontoxic, environmentally relevant dispersant with defined composition to disperse seven types of carbonaceous and boron nitride NMs, including multiwall carbon nanotubes, graphene, boron nitride nanotubes, and hexagonal boron nitride flakes, with various physicochemical characteristics. AA’s biocompatibility was confirmed by examining AA effects on viability and growth of two model microorganisms (the protozoan Tetrahymena thermophila and the bacterium Pseudomonas aeruginosa). Using 400 mg·L−1 AA, comparably stable NM (200 mg·L−1) stock dispersions were obtained by 30-min probe ultrasonication. AA non-covalently interacted with NM surfaces and improved the dispersibility of NMs in water. The dispersion stability varied with NM morphology and size rather than chemistry. The optimized dispersion protocol established here can facilitate preparing homogeneous NM dispersions for reliable exposures during microbial toxicity testing, contributing to improved reproducibility of toxicity results. PMID:29385723

  11. Alginic Acid-Aided Dispersion of Carbon Nanotubes, Graphene, and Boron Nitride Nanomaterials for Microbial Toxicity Testing.

    PubMed

    Wang, Ying; Mortimer, Monika; Chang, Chong Hyun; Holden, Patricia A

    2018-01-30

    Robust evaluation of potential environmental and health risks of carbonaceous and boron nitride nanomaterials (NMs) is imperative. However, significant agglomeration of pristine carbonaceous and boron nitride NMs due to strong van der Waals forces renders them not suitable for direct toxicity testing in aqueous media. Here, the natural polysaccharide alginic acid (AA) was used as a nontoxic, environmentally relevant dispersant with defined composition to disperse seven types of carbonaceous and boron nitride NMs, including multiwall carbon nanotubes, graphene, boron nitride nanotubes, and hexagonal boron nitride flakes, with various physicochemical characteristics. AA's biocompatibility was confirmed by examining AA effects on viability and growth of two model microorganisms (the protozoan Tetrahymena thermophila and the bacterium Pseudomonas aeruginosa ). Using 400 mg·L -1 AA, comparably stable NM (200 mg·L -1 ) stock dispersions were obtained by 30-min probe ultrasonication. AA non-covalently interacted with NM surfaces and improved the dispersibility of NMs in water. The dispersion stability varied with NM morphology and size rather than chemistry. The optimized dispersion protocol established here can facilitate preparing homogeneous NM dispersions for reliable exposures during microbial toxicity testing, contributing to improved reproducibility of toxicity results.

  12. Fabrication of enzyme-based coatings on intact multi-walled carbon nanotubes as highly effective electrodes in biofuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Byoung Chan; Lee, Inseon; Kwon, Seok-Joon; Wee, Youngho; Kwon, Ki Young; Jeon, Chulmin; An, Hyo Jin; Jung, Hee-Tae; Ha, Su; Dordick, Jonathan S.; Kim, Jungbae

    2017-01-01

    CNTs need to be dispersed in aqueous solution for their successful use, and most methods to disperse CNTs rely on tedious and time-consuming acid-based oxidation. Here, we report the simple dispersion of intact multi-walled carbon nanotubes (CNTs) by adding them directly into an aqueous solution of glucose oxidase (GOx), resulting in simultaneous CNT dispersion and facile enzyme immobilization through sequential enzyme adsorption, precipitation, and crosslinking (EAPC). The EAPC achieved high enzyme loading and stability because of crosslinked enzyme coatings on intact CNTs, while obviating the chemical pretreatment that can seriously damage the electron conductivity of CNTs. EAPC-driven GOx activity was 4.5- and 11-times higher than those of covalently-attached GOx (CA) on acid-treated CNTs and simply-adsorbed GOx (ADS) on intact CNTs, respectively. EAPC showed no decrease of GOx activity for 270 days. EAPC was employed to prepare the enzyme anodes for biofuel cells, and the EAPC anode produced 7.5-times higher power output than the CA anode. Even with a higher amount of bound non-conductive enzymes, the EAPC anode showed 1.7-fold higher electron transfer rate than the CA anode. The EAPC on intact CNTs can improve enzyme loading and stability with key routes of improved electron transfer in various biosensing and bioelectronics devices.

  13. Preparation and Characterization of PETI-330/Multiwalled Carbon Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Watson, Kent A.; Working, Dennis C.; Delozier, Donavon M.; Criss, Jim M.; Siochi, Emilie J.; Connell, John W.

    2005-01-01

    As part of an ongoing effort to incorporate multi-functionality into advanced composites, blends of PETI-330 and multi-walled carbon nanotubes (MWCNTs) were prepared, characterized and fabricated into moldings. The PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight percent by dry mixing the components in a ball mill. The resulting powders were characterized for degree of mixing, thermal and rheological properties. Based on the characterization results, PETI-330/MWCNT samples were scaled up to approx. 300 g and used to fabricate moldings 10.2 cm x 15.2 cm x 0.32 cm thick. The moldings were fabricated by injecting the mixtures at 260-280 C into a stainless steel tool followed by curing for 1 h at 371 C. The tool was designed to impart high shear during the injection process in an attempt to achieve some alignment of the MWCNTs in the flow direction. Good quality moldings were obtained that were subsequently characterized for thermal, mechanical and electrical properties. The degree of dispersion and alignment of the MWCNTs were investigated using high-resolution scanning electron microscopy and Raman spectroscopy. The preparation and preliminary characterization of PETI-330/MWCNT composites will be discussed. Keywords: phenylethynyl terminated imides, high temperature polymers, nanocomposites,

  14. Functionalization of multi-walled carbon nanotubes with thermo-responsive azide-terminated poly(N-isopropylacrylamide) via click reactions.

    PubMed

    Su, Xin; Shuai, Ya; Guo, Zanru; Feng, Yujun

    2013-04-18

    Covalently functionalized multi-walled carbon nanotubes (MWNTs) were prepared by grafting well-defined thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) via click reactions. First, azide-terminated poly(N-isopropylacrylamide) (N3-PNIPAM) was synthesized by reversible addition fragmentation chain-transfer (RAFT) polymerization, and then the N₃-PNIPAM moiety was connected onto MWNTs by click chemistry. The products were characterized by means of FT-IR, TGA and TEM. The results show that the modification of MWNTs is very successful and MWNTs functionalized by N₃-PNIPAM (MWNTs-PNIPAM) have good solubility and stability in water. TEM images show the functionalized MWNTs are dispersed individually, indicating that the bundles of original MWNTs are separated into individual tubes by surface modification with polymer chains. These MWNTs modified with PNIPAM represent a potential nano-material for preparation of hydrophilic composite materials.

  15. Adsorption of selected volatile organic vapors on multiwall carbon nanotubes.

    PubMed

    Shih, Yang-hsin; Li, Mei-syue

    2008-06-15

    Carbon nanotubes are expected to play an important role in sensing, pollution treatment and separation techniques. This study examines the adsorption behaviors of volatile organic compounds (VOCs), n-hexane, benzene, trichloroethylene and acetone on two multiwall carbon nanotubes (MWCNTs), CNT1 and CNT2. Among these VOCs, acetone exhibits the highest adsorption capacity. The highest adsorption enthalpies and desorption energies of acetone were also observed. The strong chemical interactions between acetone and both MWCNTs may be the result from chemisorption on the topological defects. The adsorption heats of trichloroethylene, benzene, and n-hexane are indicative of physisorption on the surfaces of both MWCNTs. CNT2 presents a higher adsorption capacity than CNT1 due to the existence of an exterior amorphous carbon layer on CNT2. The amorphous carbon enhances the adsorption capacity of organic chemicals on carbon nanotubes. The morphological and structure order of carbon nanotubes are the primary affects on the adsorption process of organic chemicals.

  16. Core/shell, protuberance-free multiwalled carbon nanotube/polyaniline nanocomposites via interfacial chemistry of aryl diazonium salts.

    PubMed

    Mekki, Ahmed; Samanta, Soumen; Singh, Ajay; Salmi, Zakaria; Mahmoud, Rachid; Chehimi, Mohamed M; Aswal, Dinesh K

    2014-03-15

    Highly uniform core-shell like multi-walled carbon nanotubes-polyaniline (MWCNT-PANI) nanocomposites were prepared in two steps (i) surface modification of MWCNTs with a 4-aminodiphenylamine group via in situ diazonium generation process; and (ii) polymerization of aniline onto surface modified MWCNTs. This functionalization helped to easily disperse the MWCNTs in acidic solutions; hence it is suitable for the chemical oxidative polymerization of aniline. It was found that MWCNT-PANI nano-composites with higher MWCNTs loading yield PANI chains with more quinoid units than the pure PANI, which results in significant improvement in the conductivity of the composites. This facile approach of synthesizing core-shell nanocomposites highlights the efficiency of the interfacial chemistry of aryl diazonium salts in generating conductive polymer/MWCNT nanocomposites with enhanced conductivity and high surface area. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Plasma-enhanced chemical vapor deposition of multiwalled carbon nanofibers.

    PubMed

    Matthews, Kristopher; Cruden, Brett A; Chen, Bin; Meyyappan, M; Delzeit, Lance

    2002-10-01

    Plasma-enhanced chemical vapor deposition is used to grow vertically aligned multiwalled carbon nanofibers (MWNFs). The graphite basal planes in these nanofibers are not parallel as in nanotubes; instead they exhibit a small angle resembling a stacked cone arrangement. A parametric study with varying process parameters such as growth temperature, feedstock composition, and substrate power has been conducted, and these parameters are found to influence the growth rate, diameter, and morphology. The well-aligned MWNFs are suitable for fabricating electrode systems in sensor and device development.

  18. Plasma-enhanced chemical vapor deposition of multiwalled carbon nanofibers

    NASA Technical Reports Server (NTRS)

    Matthews, Kristopher; Cruden, Brett A.; Chen, Bin; Meyyappan, M.; Delzeit, Lance

    2002-01-01

    Plasma-enhanced chemical vapor deposition is used to grow vertically aligned multiwalled carbon nanofibers (MWNFs). The graphite basal planes in these nanofibers are not parallel as in nanotubes; instead they exhibit a small angle resembling a stacked cone arrangement. A parametric study with varying process parameters such as growth temperature, feedstock composition, and substrate power has been conducted, and these parameters are found to influence the growth rate, diameter, and morphology. The well-aligned MWNFs are suitable for fabricating electrode systems in sensor and device development.

  19. Localized plasmon resonance in boron-doped multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Shuba, M. V.; Yuko, D. I.; Kuzhir, P. P.; Maksimenko, S. A.; Chigir, G. G.; Pyatlitski, A. N.; Sedelnikova, O. V.; Okotrub, A. V.; Lambin, Ph.

    2018-05-01

    Substitutionally boron-doped multiwalled carbon nanotubes (B-CNTs) with lengths mainly less than 0.5 μ m and diameters 10-30 nm have been obtained by arc-discharge evaporation of the graphite anode containing boron material. The broad peak has been observed in the midinfrared conductivity spectra of the thin film comprising B-CNTs. The peak was suggested to be associated with a phenomenon known as localized plasmon resonance. Theoretical analysis has been done to confirm the possibility of this phenomenon to occur in the B-CNTs.

  20. Controlled Patterning and Growth of Single Wall and Multi-wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance D. (Inventor)

    2005-01-01

    Method and system for producing a selected pattern or array of at least one of a single wall nanotube and/or a multi-wall nanotube containing primarily carbon. A substrate is coated with a first layer (optional) of a first selected metal (e.g., Al and/or Ir) and with a second layer of a catalyst (e.g., Fe, Co, Ni and/or Mo), having selected first and second layer thicknesses provided by ion sputtering, arc discharge, laser ablation, evaporation or CVD. The first layer and/or the second layer may be formed in a desired non-uniform pattern, using a mask with suitable aperture(s), to promote growth of carbon nanotubes in a corresponding pattern. A selected heated feed gas (primarily CH4 or C2Hn with n=2 and/or 4) is passed over the coated substrate and forms primarily single wall nanotubes or multiple wall nanotubes, depending upon the selected feed gas and its temperature. Nanofibers, as well as single wall and multi-wall nanotubes, are produced using plasma-aided growth from the second (catalyst) layer. An overcoating of a selected metal or alloy can be deposited, over the second layer, to provide a coating for the carbon nanotubes grown in this manner.

  1. Simultaneous electrochemical determination of dopamine and paracetamol on multiwalled carbon nanotubes/graphene oxide nanocomposite-modified glassy carbon electrode.

    PubMed

    Cheemalapati, Srikanth; Palanisamy, Selvakumar; Mani, Veerappan; Chen, Shen-Ming

    2013-12-15

    In the present study, multiwalled carbon nanotubes (MWCNT)/graphene oxide (GO) nanocomposite was prepared by homogenous dispersion of MWCNT and GO and used for the simultaneous voltammetric determination of dopamine (DA) and paracetamol (PA). The TEM results confirmed that MWCNT walls were wrapped well with GO sheets. The MWCNT/GO nanocomposite showed superior electrocatalytic activity towards the oxidation of DA and PA, when compared with either pristine MWCNT or GO. The major reason for the efficient simultaneous detection of DA and PA at nanocomposite was the synergistic effect between MWCNT and GO. The electrochemical oxidation of DA and PA was investigated by cyclic voltammetry, differential pulse voltammetry and amperometry. The nanocomposite modified electrode showed electrocatalytic oxidation of DA and PA in the linear response range from 0.2 to 400 µmol L(-1) and 0.5 to 400 µmol L(-1) with the detection limit of 22 nmol L(-1) and 47 nmol L(-1) respectively. The proposed sensor displayed good selectivity, sensitivity, stability with appreciable consistency and precision. © 2013 Elsevier B.V. All rights reserved.

  2. Synthesis and evaluation of multi-wall carbon nanotube-paclitaxel complex as an anti-cancer agent.

    PubMed

    Ghasemvand, Fariba; Biazar, Esmaeil; Tavakolifard, Sara; Khaledian, Mohammad; Rahmanzadeh, Saeid; Momenzadeh, Daruosh; Afroosheh, Roshanak; Zarkalami, Faezeh; Shabannezhad, Marjan; Hesami Tackallou, Saeed; Massoudi, Nilofar; Heidari Keshel, Saeed

    2016-01-01

    The aim of this study was to design multi-walled carbon nanotubes (MWCNTs) loaded with paclitaxel (PTX) anti-cancer drug and investigate its anti-cancerous efficacy of human gastric cancer. Carbon nanotubes (CNTs) represent a novel nano-materials applied in various fields such as drug delivery due to their unique chemical properties and high drug loading. In this study, multi-walled carbon nanotubes (MWCNTs) pre-functionalized covalently with a paclitaxel (PTX) as an anti-cancer drug and evaluated by different analyses including, scanning electron microscope (SEM), particle size analyzer and cellular analyses. A well conjugated of anti-cancer drug on the carbon nanotube surfaces was shown. This study demonstrates that the MWCN-PTX complex is a potentially useful system for delivery of anti-cancer drugs. The flow cytometry, CFU and MTT assay results have disclosed that MWCNT/PTXs might promote apoptosis in MKN-45 gastric adenocarcinoma cell line. According to results, our simple method can be designed a candidate material for chemotherapy. It has presented a few bio-related applications including, their successful use as a nano-carriers for drug transport.

  3. Applications of multi-walled carbon nanotube in electronic packaging

    PubMed Central

    2012-01-01

    Thermal management of integrated circuit chip is an increasing important challenge faced today. Heat dissipation of the chip is generally achieved through the die attach material and solders. With the temperature gradients in these materials, high thermo-mechanical stress will be developed in them, and thus they must also be mechanically strong so as to provide a good mechanical support to the chip. The use of multi-walled carbon nanotube to enhance the thermal conductivity, and the mechanical strength of die attach epoxy and Pb-free solder is demonstrated in this work. PMID:22405035

  4. Explosive compaction of aluminum oxide modified by multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Buzyurkin, A. E.; Kraus, E. I.; Lukyanov, Ya L.

    2018-04-01

    This paper presents experiments and numerical research on explosive compaction of aluminum oxide powder modified by multiwall carbon nanotubes (MWCNT) and modeling of the stress state behind the shock front at shock loading. The aim of this study was to obtain a durable low-porosity compact sample. The explosive compaction technology is used in this problem because the aluminum oxide is an extremely hard and refractory material. Therefore, its compaction by traditional methods requires special equipment and considerable expenses.

  5. Transport comparison of multiwall carbon nanotubes by contacting outer shell and all shells.

    PubMed

    Luo, Qiang; Cui, A-Juan; Zhang, Yi-Guang; Lu, Chao; Jin, Ai-Zi; Yang, Hai-Fang; Gu, Chang-Zhi

    2010-11-01

    Carbon nanotubes, particularly multiwall carbon nanotubes (MWCNTs) can serve as interconnects in nanoelectronic devices and integrated circuits because of their extremely large current-carrying capacity. Many experimental results about the transport properties of individual MWCNTs by contacting outer shell or all shells have been reported. In this work, a compatible method with integrated circuit manufacturing process was presented to compare the transport property of an individual multiwall carbon nanotube (MWCNT) by contacting outer shell only and all shells successively. First of the Ti/Au electrodes contacting outer shell only were fabricated onto the nanotube through the sequence of electron beam lithography (EBL) patterning, metal deposition and lift-off process. After the characterization of its transport property, focused ion beam (FIB) was used to drill holes through the same nanotube at the as-deposited electrodes. Then new contact to the holes and electrodes were made by ion-induced deposition of tungsten from W(CO)6 precursor gas. The transport results indicated that the new contact to all shells can clear up the intershell resistance and the electrical conductance of the tube can be improved about 8 times compared to that of by contacting outer shell only.

  6. Interfacial Reaction During High Energy Ball Milling Dispersion of Carbon Nanotubes into Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Adegbenjo, A. O.; Olubambi, P. A.; Potgieter, J. H.; Nsiah-Baafi, E.; Shongwe, M. B.

    2017-12-01

    The unique thermal and mechanical properties of carbon nanotubes (CNTs) have made them choice reinforcements for metal matrix composites (MMCs). However, there still remains a critical challenge in achieving homogeneous dispersion of CNTs in metallic matrices. Although high energy ball milling (HEBM) has been reported as an effective method of dispersing CNTs into metal matrices, a careful selection of the milling parameters is important not to compromise the structural integrity of CNTs which may cause interfacial reactions with the matrix. In this study, multi-walled carbon nanotubes (MWCNTs) were purified by annealing in argon and vacuum atmospheres at 1000 and 1800 °C, respectively, for 5 h to remove possible metallic catalyst impurities. Subsequently, 1, 2 and 3 wt.% MWCNTs were dispersed by adapted HEBM into Ti6Al4V alloy metal matrix. Raman spectroscopy (RS), x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray spectrometry and transmission electron microscopy techniques were used to characterize the as-received and annealed MWCNTs, as well as the admixed MWCNT/Ti6Al4V nanocomposite powders. The experimental results showed that vacuum annealing successfully eliminated retained nickel (Ni) catalysts from MWCNTs, while the adapted HEBM method achieved a relative homogeneous dispersion of MWCNTs into the Ti6Al4V matrix and helped to control interfacial reactions between defective MWCNTs and the metal matrix.

  7. Highly selective determination of dopamine in the presence of ascorbic acid and serotonin at glassy carbon electrodes modified with carbon nanotubes dispersed in polyethylenimine.

    PubMed

    Rodríguez, Marcela C; Rubianes, María D; Rivas, Gustavo A

    2008-11-01

    We report the highly selective and sensitive voltammetric dopamine quantification in the presence of ascorbic acid and serotonin by using glassy carbon electrodes modified with a dispersion of multi-wall carbon nanotubes (MWCNT) in polyethylenimine, PEI (GCE/MWCNT-PEI). The electrocatalytic activity of the MWCNT deposited on the glassy carbon electrode has allowed an important decrease in the overvoltages for the oxidation of ascorbic acid and dopamine, making possible a clear definition of dopamine, serotonin and ascorbic acid oxidation processes. The sensitivities for dopamine in the presence and absence of 1.0 mM ascorbic acid and serotonin were (2.18 +/- 0.03) x 10(5) microAM(-1) (r = 0.9998); and (2.10 +/- 0.07) x 10(5) miroAM(-1) (r=0.9985), respectively, demonstrating the excellent performance of the GCE/MWCNT-PEI. The detection limit for dopamine in the mixture was 9.2 x 10(-7) M. The R. S. D. for the determination of 50 microM dopamine using four different electrodes was 3.9% when modified with the same MWCNT/PEI dispersion, and 4.6% when using four different dispersions. The modified electrode has been successfully applied for recovery assays of dopamine in human blood serum. Therefore, the new sensor represents an interesting and promising alternative for the electrochemical quantification of neurotransmitters and other analytes of clinical interest.

  8. Wetting behavior of multi-walled carbon nanotube nanofluids

    NASA Astrophysics Data System (ADS)

    Karthikeyan, A.; Coulombe, S.; Kietzig, A. M.

    2017-03-01

    Nanofluids—engineered colloidal suspensions in base liquids—have captivated the interest of researchers over the last two decades for various existing as well as emerging technological applications. The main impetus for the synthesis of such novel nanocomposite liquids is the potential to alter properties of the base liquid, such as its viscosity, thermal conductivity, and surface tension, and to introduce specific optical and magnetic properties. Numerous studies suggest trends and explanations for the effects associated with the addition of nanoparticles, and that deviation from the base liquid properties are dependent on nanoparticle concentration. However, there remains a certain ambiguity in the available literature. The wetting behavior and surface tension of nanofluids are particular examples where highly conflicting results exist. In this study, we used multi-walled carbon nanotubes (MWCNTs) functionalized by plasma treatment and dispersed in reverse osmosis water and 99% anhydrous ethanol. Our observations reveal that the surface tension and wetting behavior of the stable aqueous and ethanol-based nanofluids containing plasma functionalized MWCNTs are unaffected by the MWCNT loading up to 120 (0.012) and ∼210 (0.021) ppm (vol%), respectively. The ethanol-based MWCNT nanofluids allowed us to extend the study to higher loadings, and a linear increase of the surface tension past ∼200 ppm was observed. Conversely, nanofluids containing non-functionalized or surfactant-stabilized MWCNTs show drastically different contact angle values when compared to the base liquids even at very low concentrations (less than 100 ppm). We demonstrate that the stability of nanofluid and method of stabilization are crucial parameters in determining the wetting behavior of nanofluids.

  9. Highly Conductive Aromatic Functionalized Multi-Walled Carbon Nanotube for Inkjet Printable High Performance Supercapacitor Electrodes

    PubMed Central

    Attri, Pankaj

    2015-01-01

    We report the functionalization of multiwalled carbon nanotubes (MWCNT) via the 1,3-dipolar [3+2] cycloaddition of aromatic azides, which resulted in a detangled CNT as shown by transmission electron microscopy (TEM). Carboxylic moieties (-COOH) on aromatic azide result in highly stable aqueous dispersion (max. conc. ~ 10 mg/mL H2O), making the suitable for inkjet printing. Printed patterns on polyethylene terephthalate (PET) flexible substrate exhibit low sheet resistivity ~65 Ω. cm, which is attributed to enhanced conductivity. Fabricated Supercapacitors (SC) assembled using these printed substrates exhibit good electrochemical performance in organic as well as aqueous electrolytes. High energy and power density (57.8 Wh/kg and 0.85 kW/kg) in 1M H2SO4 aqueous electrolyte demonstrate the excellent performance of the proposed supercapacitor. Capacitive retention varies from ~85–94% with columbic efficiency ~95% after 1000 charge/discharge cycles in different electrolytes, demonstrating the excellent potential of the device for futuristic power applications. PMID:26153688

  10. Ultrasound-aided formation of gold nanoparticles on multi-walled carbon nanotubes functionalized with mercaptobenzene moieties.

    PubMed

    Park, Gle; Lee, Kyung G; Lee, Seok Jae; Park, Tae Jung; Wi, Ringbok; Wang, Kye Won; Kim, Do Hyun

    2011-07-01

    A hybrid of multi-walled carbon nanotube (MWCNT) and gold nanoparticle (Au NP) was prepared under ultrasound irradiation. The approach starts with the functionalization of the walls of MWCNTs with mercaptobenzene moieties for the subsequent immobilization of Au NPs. From the Raman spectra, mercaptobenzene was proven to exist on the MWCNTs. Gold ions were added to the aqueous dispersion of functionalized MWCNTs (f-MWCNTs), and were reduced with the aid of ultrasound and ammonium hydroxide. The reduced gold nanoparticles were examined from the TEM images. Au NPs adhered specifically on the thiol groups of mercaptobenzene to be deposited uniformly on the outer walls of the f-MWCNTs. The application of ultrasound led to a high yield of MWCNT-Au nanocomposites and to the dense distribution of the Au NPs. Moreover, the synthesis reaction rate of the hybrid was considerably enhanced relative to synthesis with mechanical agitation. Through an adsorption test using gold-binding-peptide-(GBP)-modified biomolecules, the hybrid's potential for biological diagnosis was verified.

  11. Inflammation response at the transcriptional level of HepG2 cells induced by multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Piret, Jean-Pascal; Vankoningsloo, Sébastien; Noël, Florence; Mejia Mendoza, Jorge; Lucas, Stéphane; Saout, Christelle; Toussaint, Olivier

    2011-07-01

    Poor information are currently available about the biological effects of multi-walled carbon nanotubes (MWCNT) on the liver. In this study, we evaluated the effects of MWCNT at the transcriptional level on the classical in vitro model of HepG2 hepatocarcinoma cells. The expression levels of 96 transcript species implicated in the inflammatory and immune responses was studied after a 24h incubation of HepG2 cells in presence of raw MWCNT dispersed in water by stirring. Among the 46 transcript species detected, only a few transcripts including mRNA coding for interleukine-7, chemokines receptor of the C-C families CCR7, as well as Endothelin-1, were statistically more abundant after treatment with MWCNT. Altogether, these data indicate that MWCNT can only induce a weak inflammatory response in HepG2 cells.

  12. 3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration

    NASA Astrophysics Data System (ADS)

    Lee, Se-Jun; Zhu, Wei; Nowicki, Margaret; Lee, Grace; Nyoung Heo, Dong; Kim, Junghoon; Zuo, Yi Y.; Zhang, Lijie Grace

    2018-02-01

    Objective. Nanomaterials, such as carbon nanotubes (CNTs), have been introduced to modify the surface properties of scaffolds, thus enhancing the interaction between the neural cells and biomaterials. In addition to superior electrical conductivity, CNTs can provide nanoscale structures similar to those present in the natural neural environment. The primary objective of this study is to investigate the proliferative capability and differential potential of neural stem cells (NSCs) seeded on a CNT incorporated scaffold. Approach. Amine functionalized multi-walled carbon nanotubes (MWCNTs) were incorporated with a PEGDA polymer to provide enhanced electrical properties as well as nanofeatures on the surface of the scaffold. A stereolithography 3D printer was employed to fabricate a well-dispersed MWCNT-hydrogel composite neural scaffold with a tunable porous structure. 3D printing allows easy fabrication of complex 3D scaffolds with extremely intricate microarchitectures and controlled porosity. Main results. Our results showed that MWCNT-incorporated scaffolds promoted neural stem cell proliferation and early neuronal differentiation when compared to those scaffolds without the MWCNTs. Furthermore, biphasic pulse stimulation with 500 µA current promoted neuronal maturity quantified through protein expression analysis by quantitative polymerase chain reaction. Significance. Results of this study demonstrated that an electroconductive MWCNT scaffold, coupled with electrical stimulation, may have a synergistic effect on promoting neurite outgrowth for therapeutic application in nerve regeneration.

  13. Oxidation behavior of multiwall carbon nanotubes with different diameters and morphology

    NASA Astrophysics Data System (ADS)

    Mazov, Ilya; Kuznetsov, Vladimir L.; Simonova, Irina A.; Stadnichenko, Andrey I.; Ishchenko, Arkady V.; Romanenko, Anatoly I.; Tkachev, Evgeniy N.; Anikeeva, Olga B.

    2012-06-01

    Multiwall carbon nanotubes (MWNT) with three medium diameters (20-22, 9-13, and 6-8 nm) and different morphology were chemically oxidized using concentrated nitric acid, mixture of nitric and sulfuric acids ("mélange" solution) and mixture of sulfuric acid and hydrogen peroxide ("piranha" solution). Influence of MWNT type and structure as well as type of oxidizer on the surface composition and structure of nanotubes after oxidation was investigated. Acid-base titration, X-ray photoelectron spectroscopy and thermal gravimetric analysis were used for quantitative and qualitative investigation of surface group composition of initial and oxidized nanotubes. Amount of oxygen-containing groups on the surface of oxidized MWNT depends on the type of initial MWNT. It was found that ratio of different oxygen containing groups is less dependent on the type of oxidizer. Electrophysical properties of initial and oxidized nanotubes were investigated in temperature range 4-293 K and main types of electrical conductivity were determined. It was shown that oxidation results in decrease in electrical conductivity of all samples with simultaneous change in the conductivity mechanism. Dispersive behavior of initial and oxidized nanotubes in different commonly used solvents was investigated. It was shown that oxidation leads to the improvement of sedimentation stability of MWNT in polar solvents.

  14. Mechanical and Electrical Properties of Organogels with Multiwall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Moniruzzaman, Mohammad; Winey, Karen

    2008-03-01

    Organogels are fascinating thermally reversible viscoelastic materials that are comprised of an organic liquid and low concentrations (typically <2 wt %) of low molecular mass organic gelators. We have fabricated the first organogel/carbon nanotube composites using 12-hydroxystearic acid (HSA) as the gelator molecule and pristine and carboxylated multi-wall carbon nanotubes as the nanofillers and 1,2-dichlorobenzene as the organic solvent. We have achieved significant improvements in the mechanical and electrical properties of organogels by incorporating these carbon nanotubes. For example, the linear viscoelastic regime of the HSA organogel, an indicator of the strength of the gel, extends by a factor of 4 with the incorporation of 0.2 wt% of the carboxylated nanotubes. Also, the carbon nanotubes (specially the pristine tubes) improve the electrical conductivity of the organogels, e.g. six orders of magnitude enhancement in electrical conductivity with 0.2 wt% of pristine tubes. Differential scanning calorimetry experiments indicate that the nanotubes do not affect the thermoreversibility of the organogels.

  15. Growth of multiwalled-carbon nanotubes using vertically aligned carbon nanofibers as templates/scaffolds and improved field-emission properties

    NASA Astrophysics Data System (ADS)

    Cui, H.; Yang, X.; Baylor, L. R.; Lowndes, D. H.

    2005-01-01

    Multiwalled-carbon nanotubes (MWCNTs) are grown on top of vertically aligned carbon nanofibers (VACNFs) via microwave plasma-enhanced chemical vapor deposition (MPECVD). The VACNFs are first grown in a direct-current plasma-enhanced chemical vapor deposition reactor using nickel catalyst. A layer of carbon-silicon materials is then deposited on the VACNFs and the nickel catalyst particle is broken down into smaller nanoparticles during an intermediate reactive-ion-plasma deposition step. These nickel nanoparticles nucleate and grow MWCNTs in the following MPECVD process. Movable-probe measurements show that the MWCNTs have greatly improved field-emission properties relative to the VACNFs.

  16. Fast preparation of hydroxyapatite/superhydrophilic vertically aligned multiwalled carbon nanotube composites for bioactive application.

    PubMed

    Lobo, Anderson O; Corat, Marcus A F; Ramos, Sandra C; Matsushima, Jorge T; Granato, Alessandro E C; Pacheco-Soares, Cristina; Corat, Evaldo J

    2010-12-07

    A method for the electrodeposition of hydroxyapatite films on superhydrophilic vertically aligned multiwalled carbon nanotubes is presented. The formation of a thin homogeneous film with high crystallinity was observed without any thermal treatment and with bioactivity properties that accelerate the in vitro biomineralization process and osteoblast adhesion.

  17. Atomic Layer Deposition on Gram Quantities of Multi-Walled Carbon Nanotubes

    DTIC Science & Technology

    2009-06-03

    the amount of reactant that is lost to the vacuum pump . Recent work has demonstrated the feasibility of ALD on gram quantities of nanopowders in a...and left to outgas under vacuum for 24 h. Vacuum was obtained using a dual-stage rotary vane pump . Pressure was monitored with a Baratron capacitance...Atomic layer deposition on gram quantities of multi-walled carbon nanotubes This article has been downloaded from IOPscience. Please scroll down to

  18. The effect of calcination on multi-walled carbon nanotubes produced by dc-arc discharge.

    PubMed

    Pillai, Sreejarani K; Augustyn, Willem G; Rossouw, Margaretha H; McCrindle, Robert I

    2008-07-01

    Multi-walled carbon nanotubes were synthesized by dc-arc discharge in helium atmosphere and the effect of calcination at different temperatures ranging from 300-600 degrees C was studied in detail. The degree of degradation to the structural integrity of the multi-walled carbon nanotubes during the thermal process was studied by Raman spectroscopy, Scanning electron microscopy and High resolution transmission electron microscopy. The thermal behaviour of the as prepared and calcined samples was investigated by thermogravimetric analysis. Calcination in air at 400 degrees C for 2 hours was found to be an efficient and simple method to eliminate carbonaceous impurities from the nanotube bundles with minimal damage to the tube walls and length. The impurities were oxidized at a faster rate when compared to the nanotubes and gave good yield of about 50%. The nanotubes were observed to be damaged at temperature higher than 450 degrees C. The results show that this method is less destructive when compared liquid phase oxidation with 5 M HNO3.

  19. Hydrothermal synthesis of graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite for removal of Cu (II) and methylene blue

    NASA Astrophysics Data System (ADS)

    Long, Zhihang; Zhan, Yingqing; Li, Fei; Wan, Xinyi; He, Yi; Hou, Chunyan; Hu, Hai

    2017-09-01

    In this work, highly activated graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite adsorbent was prepared from a simple hydrothermal route by using ferrous sulfate as precursor. For this purpose, the graphene oxide/multiwalled carbon nanotube architectures were formed through the π-π attractions between them, followed by attaching Fe3O4 nanoparticles onto their surface. The structure and composition of as-prepared ternary nanocomposite were characterized by XRD, FTIR, XPS, SEM, TEM, Raman, TGA, and BET. It was found that the resultant porous graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite with large surface area could effectively prevent the π-π stacking interactions between graphene oxide nanosheets and greatly improve sorption sites on the surfaces. Thus, owing to the unique ternary nanocomposite architecture and synergistic effect among various components, as-prepared ternary nanocomposite exhibited high separation efficiency when they were used to remove the Cu (II) and methylene blue from aqueous solutions. Furthermore, the adsorption isotherms of ternary nanocomposite structures for Cu (II) and methylene blue removal fitted the Langmuir isotherm model. This work demonstrated that the graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite was promising as an efficient adsorbent for heavy metal ions and organic dye removal from wastewater in low concentration.

  20. Direct measurement of chiral structure and transport in single- and multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cui, Taoran; Lin, Letian; Qin, Lu-Chang; Washburn, Sean

    2016-11-01

    Electrical devices based on suspended multi-wall carbon nanotubes were constructed and studied. The chiral structure of each shell in a particular nanotube was determined using nanobeam electron diffraction in a transmission electron microscope. The transport properties of the carbon nanotube were also measured. The nanotube device length was short enough that the transport was nearly ballistic, and multiple subbands contributed to the conductance. Thermal excitation of carriers significantly affected nanotube resistance at room temperature.

  1. Effects of multiwalled carbon nanotubes and triclocarban on several eukaryotic cell lines: elucidating cytotoxicity, endocrine disruption, and reactive oxygen species generation

    NASA Astrophysics Data System (ADS)

    Simon, Anne; Maletz, Sibylle X.; Hollert, Henner; Schäffer, Andreas; Maes, Hanna M.

    2014-08-01

    To date, only a few reports about studies on toxic effects of carbon nanotubes (CNT) are available, and their results are often controversial. Three different cell lines (rainbow trout liver cells (RTL-W1), human adrenocortical carcinoma cells (T47Dluc), and human adrenocarcinoma cells (H295R)) were exposed to multiwalled carbon nanotubes, the antimicrobial agent triclocarban (TCC) as well as the mixture of both substances in a concentration range of 3.13 to 50 mg CNT/L, 31.25 to 500 μg TCC/L, and 3.13 to 50 mg CNT/L + 1% TCC (percentage relative to carbon nanotubes concentration), respectively. Triclocarban is a high-production volume chemical that is widely used as an antimicrobial compound and is known for its toxicity, hydrophobicity, endocrine disruption, bioaccumulation potential, and environmental persistence. Carbon nanotubes are known to interact with hydrophobic organic compounds. Therefore, triclocarban was selected as a model substance to examine mixture toxicity in this study. The influence of multiwalled carbon nanotubes and triclocarban on various toxicological endpoints was specified: neither cytotoxicity nor endocrine disruption could be observed after exposure of the three cell lines to carbon nanotubes, but the nanomaterial caused intracellular generation of reactive oxygen species in all cell types. For TCC on the other hand, cell vitality of 80% could be observed at a concentration of 2.1 mg/L for treated RTL-W1 cells. A decrease of luciferase activity in the ER Calux assay at a triclocarban concentration of 125 μg/L and higher was observed. This effect was less pronounced when multiwalled carbon nanotubes were present in the medium. Taken together, these results demonstrate that multiwalled carbon nanotubes induce the production of reactive oxygen species in RTL-W1, T47Dluc, and H295R cells, reveal no cytotoxicity, and reduce the bioavailability and toxicity of the biocide triclocarban.

  2. Experimental consideration of the Hansen solubility parameters of as-produced multi-walled carbon nanotubes by inverse gas chromatography.

    PubMed

    Lim, Hyeong Jun; Lee, Kunsil; Cho, Young Shik; Kim, Yern Seung; Kim, Taehoon; Park, Chong Rae

    2014-09-07

    The Hansen solubility parameters (HSPs) of as-produced multi-walled carbon nanotubes (APMWCNTs) were determined by means of the inverse gas chromatography (IGC) technique. Due to non-homogeneous surfaces of the APMWCNTs arising from defects and impurities, it was necessary to establish adequate working conditions for determining the HSPs of the CNTs. We then obtained the HSPs of the APMWCNTs and compared these results with earlier reports as determined by using sedimentation and molecular dynamics simulation methods. It was found that the determination of the HSPs of the CNTs by IGC can give an enhanced determination range based on the adsorption thermodynamic parameters, compared to the HSPs determined using sedimentation methods. And the HSPs of the APMWCNTs, determined here, provided good guidelines for the selection of feasible solvents that can improve the dispersion of the APMWCNTs.

  3. An evaluation of the impact of multi-walled carbon nanotubes on soil microbial community structure and functional diversity

    USDA-ARS?s Scientific Manuscript database

    Increasing application of carbon nanotubes (CNTs) triggers the need for an assessment of their effects on organisms in the environment. Soil microbial communities play a significant role in soil organic matter dynamics and nutrient cycling. This study evaluated the impacts of multi-walled carbon nan...

  4. The effect of ultrasonic processing of multi-wall carbon nanotubes on properties of elastomeric compositions on the basis of synthetic isoprene rubber

    NASA Astrophysics Data System (ADS)

    Mitryaeva, N. S.; Myshlyavtsev, A. V.; Akimenko, S. S.

    2017-08-01

    The paper studies the effect of ultrasonic processing on the vulcanizing, physical, mechanical and electrophysical properties of elastomeric compositions based on synthetic isoprene rubber. Microscopic studies of multi-wall carbon nanotubes samples before and after ultrasonic processing are carried out. Due to the research, the applied ultrasonic processing method provides splitting of bundles formed from multi-wall carbon nanotubes. This results in elastomeric material with increased strength and high electrical conductivity with a low concentration of nanofiller.

  5. Nanostructured copper phthalocyanine-sensitized multiwall carbon nanotube films.

    PubMed

    Hatton, Ross A; Blanchard, Nicholas P; Stolojan, Vlad; Miller, Anthony J; Silva, S Ravi P

    2007-05-22

    We report a detailed study of the interaction between surface-oxidized multiwall carbon nanotubes (o-MWCNTs) and the molecular semiconductor tetrasulfonate copper phthalocyanine (TS-CuPc). Concentrated dispersions of o-MWCNT in aqueous solutions of TS-CuPc are stable toward nanotube flocculation and exhibit spontaneous nanostructuring upon rapid drying. In addition to hydrogen-bonding interactions, the compatibility between the two components is shown to result from a ground-state charge-transfer interaction with partial charge transfer from o-MWCNT to TS-CuPc molecules orientated such that the plane of the macrocycle is parallel to the nanotube surface. The electronegativity of TS-CuPc as compared to unsubsubtituted copper phthalocyanine is shown to result from the electron-withdrawing character of the sulfonate substituents, which increase the molecular ionization potential and promote cofacial molecular aggregation upon drying. Upon spin casting to form uniform thin films, the experimental evidence is consistent with an o-MWCNT scaffold decorated with phthalocyanine molecules self-assembled into extended aggregates reminiscent of 1-D linearly stacked phthalocyanine polymers. Remarkably, this self-organization occurs in a fraction of a second during the spin-coating process. To demonstrate the potential utility of this hybrid material, it is successfully incorporated into a model organic photovoltaic cell at the interface between a poly(3-hexylthiophene):[6,6]-phenyl-C61 butyric acid methyl ester bulk heterojunction layer and an indium-tin oxide-coated glass electrode to increase the light-harvesting capability of the device and facilitate hole extraction. The resulting enhancement in power conversion efficiency is rationalized in terms of the electronic, optical, and morphological properties of the nanostructured thin film.

  6. Application of Polypyrrole Multi-Walled Carbon Nanotube Composite Layer for Detection of Mercury, Lead and Iron Ions Using Surface Plasmon Resonance Technique

    PubMed Central

    Sadrolhosseini, Amir Reza; Noor, A. S. M.; Bahrami, Afarin; Lim, H. N.; Talib, Zainal Abidin; Mahdi, Mohd. Adzir

    2014-01-01

    Polypyrrole multi-walled carbon nanotube composite layers were used to modify the gold layer to measure heavy metal ions using the surface plasmon resonance technique. The new sensor was fabricated to detect trace amounts of mercury (Hg), lead (Pb), and iron (Fe) ions. In the present research, the sensitivity of a polypyrrole multi-walled carbon nanotube composite layer and a polypyrrole layer were compared. The application of polypyrrole multi-walled carbon nanotubes enhanced the sensitivity and accuracy of the sensor for detecting ions in an aqueous solution due to the binding of mercury, lead, and iron ions to the sensing layer. The Hg ion bonded to the sensing layer more strongly than did the Pb and Fe ions. The limitation of the sensor was calculated to be about 0.1 ppm, which produced an angle shift in the region of 0.3° to 0.6°. PMID:24733263

  7. Amino acid-functionalized multi-walled carbon nanotubes for improving compatibility with chiral poly(amide-ester-imide) containing L-phenylalanine and L-tyrosine linkages

    NASA Astrophysics Data System (ADS)

    Abdolmaleki, Amir; Mallakpour, Shadpour; Borandeh, Sedigheh

    2013-12-01

    Amino acid functionalized multi-walled carbon nanotubes (f-MWCNTs)/poly(amide-ester-imide) (PAEI) composites were fabricated by solution mixing method. Proper functionalization and mixing strategy of MWCNTs provides the best opportunity for better distribution and bonding of nanoparticles to the polymer matrix. MWCNTs have been chemically modified with L-phenylalanine to improve their compatibility with L-phenylalanine based PAEI. Field emission scanning electron microscopy micrographs of composite revealed that f-MWCNTs made a good interaction with polymer chains by wrapping the polymer around them, and transmission electron microscopy results confirmed well dispersion with nano size of f-MWCNTs in the polymer matrix. In addition, thermal analysis showed good enhancement in thermal properties of composites compared to pure polymer. Thermal stability of the composites containing f-MWCNTs was enhanced due to their good dispersion and improved interfacial interaction between the amino acid based PAEI matrix and f-MWCNTs.

  8. Material with high dielectric constant, low dielectric loss, and good mechanical and thermal properties produced using multi-wall carbon nanotubes wrapped with poly(ether sulphone) in a poly(ether ether ketone) matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Shuling; Wang, Hongsong; Wang, Guibin; Jiang, Zhenhua

    2012-07-01

    A material with high dielectric constant, low dielectric loss, and good mechanical and thermal properties was produced using multi-wall carbon nanotubes (MWCNTs) wrapped with poly(ether sulphone) (PES) dispersed in a poly(ether ether ketone) (PEEK) matrix. The material was fabricated using melt-blending, and MWCNT/PEEK composites show different degrees of improvement in the measured dielectric, mechanical, and thermal properties as compared to pure PEEK. This is attributed to the high conductivity of MWCNTs, the effect of wrapping MWCNTs with PES, the good dispersion of the wrapped MWCNTs in PEEK, and the strong interfacial adhesion between the wrapped MWCNTs and the PEEK.

  9. Multiwalled Carbon Nanotubes at the Interface of Pickering Emulsions.

    PubMed

    Briggs, Nicholas M; Weston, Javen S; Li, Brian; Venkataramani, Deepika; Aichele, Clint P; Harwell, Jeffrey H; Crossley, Steven P

    2015-12-08

    Carbon nanotubes exhibit very unique properties in biphasic systems. Their interparticle attraction leads to reduced droplet coalescence rates and corresponding improvements in emulsion stability. Here we use covalent and noncovalent techniques to modify the hydrophilicity of multiwalled carbon nanotubes (MWCNTs) and study their resulting behavior at an oil-water interface. By using both paraffin wax/water and dodecane/water systems, the thickness of the layer of MWNTs at the interface and resulting emulsion stability are shown to vary significantly with the approach used to modify the MWNTs. Increased hydrophilicity of the MWNTs shifts the emulsions from water-in-oil to oil-in-water. The stability of the emulsion is found to correlate with the thickness of nanotubes populating the oil-water interface and relative strength of the carbon nanotube network. The addition of a surfactant decreases the thickness of nanotubes at the interface and enhances the overall interfacial area stabilized at the expense of increased droplet coalescence rates. To the best of our knowledge, this is the first time the interfacial thickness of modified carbon nanotubes has been quantified and correlated to emulsion stability.

  10. Patterned forests of vertically-aligned multiwalled carbon nanotubes using metal salt catalyst solutions.

    PubMed

    Garrett, David J; Flavel, Benjamin S; Baronian, Keith H R; Downard, Alison J

    2013-01-01

    A simple method for producing patterned forests of multiwalled carbon nanotubes (MWCNTs) is described. An aqueous metal salt solution is spin-coated onto a substrate patterned with photoresist by standard methods. The photoresist is removed by acetone washing leaving the acetone-insoluble catalyst pattern on the substrate. Dense forests of vertically aligned (VA) MWCNTs are grown on the patterned catalyst layers by chemical vapour deposition. The procedures have been demonstrated by growing MWCNT forests on two substrates: silicon and conducting graphitic carbon films. The forests adhere strongly to the substrates and when grown directly on carbon film, offer a simple method of preparing MWCNT electrodes.

  11. The hepatotoxicity of multi-walled carbon nanotubes in mice

    NASA Astrophysics Data System (ADS)

    Ji, Zongfei; Zhang, Danying; Li, Ling; Shen, Xizhong; Deng, Xiaoyong; Dong, Ling; Wu, Minhong; Liu, Yuanfang

    2009-11-01

    The hepatotoxicity of two types of multi-walled carbon nanotubes (MWCNTs), acid-oxidized MWCNTs (O-MWCNTs) and Tween-80-dispersed MWCNTs (T-MWCNTs), were investigated with Kunming mice exposed to 10 and 60 mg kg-1 by intravenous injection for 15 and 60 d. Compared with the PBS group, the body-weight gain of the mice decreased and the level of total bilirubin and aspartate aminotransferase increased in the MWCNT-exposed group with a significant dose-effect relationship, while tumor necrosis factor alpha level did not show significant statistical change within 60 d. Spotty necrosis, inflammatory cell infiltration in portal region, hepatocyte mitochondria swelling and lysis were observed with a significant dose-effect relationship in the MWCNT groups. Liver damage of the T-MWCNT group was more severe than that of the O-MWCNT group according to the Roenigk classification system. Furthermore, T-MWCNTs induce slight liver oxidative damage in mice at 15 d, which was recovered at 60 d. Part of the gene expressions of mouse liver in the MWCNT groups changed compared to the PBS group, including GPCRs (G protein-coupled receptors), cholesterol biosynthesis, metabolism by cytochrome P450, natural-killer-cell-mediated cytotoxicity, TNF- α, NF-κB signaling pathway, etc. In the P450 pathway, the gene expressions of Gsta2 (down-regulated), Cyp2B19 (up-regulated) and Cyp2C50 (down-regulated) had significant changes in the MWCNT groups. These results show that a high dose of T-MWCNTs can induce hepatic toxicity in mice while O-MWCNTs seem to have less toxicity.

  12. 40 CFR 721.10277 - Single-walled and multi-walled carbon nanotubes (generic) (P-10-40).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10277 Single-walled and multi-walled carbon nanotubes (generic) (P-10-40). (a) Chemical substance and significant new uses subject to reporting. (1) The...

  13. 40 CFR 721.10277 - Single-walled and multi-walled carbon nanotubes (generic) (P-10-40).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10277 Single-walled and multi-walled carbon nanotubes (generic) (P-10-40). (a) Chemical substance and significant new uses subject to reporting. (1) The...

  14. Study on effects of E-glass fiber hybrid composites enhanced with multi-walled carbon nanotubes under tensile load using full factorial design of experiments

    NASA Astrophysics Data System (ADS)

    Musthak, Md.; Madhavi, M.; Ahsanullah, F. M.

    2017-08-01

    Carbon nanotubes (CNT's) are attracting scientific and industrial interest by virtue of their outstanding characteristics. The present research problem deals with the fabrication and characterization of E-glass fiber composites enhanced by carbon nanotubes. In the present study, three factors with two levels are considered. Hence, the design is called 23 full factorial design of experiment. The process parameters considered for the present problem are weight of multi-walled carbon nanotubes, process to disperse nano-particles in resin, and orientation of woven fabric. In addition, their levels considered for the experiment are higher level (+1) and lower level (-1). Fabrication of E-glass fiber composites was carried out according to design, and the specimens were prepared with respect to the ASTM standards D3039-76 and tensile testing was performed. The results show that the nano-particulated composite plate can be manufactured by considering lower level nano-particles stirred with probe sonicator and plied-up with hybrid orientation.

  15. Decorating multi-walled carbon nanotubes with nickel nanoparticles for selective hydrogenation of citral

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Yuechao; Yang Dong; Qin Feng

    The nanocomposites of multi-walled carbon nanotubes (MWNTs) decorated with nickel nanoparticles were conveniently prepared by a chemical reduction of nickel salt in the present of poly(acrylic acid) grafted MWNTs (PAA-g-MWNTs). Due to the strong interaction between Ni{sup 2+} and -COOH, PAA-g-MWNTs became an excellent supporting material for Ni nanoparticles. The morphology and distribution of Ni nanoparticles on the surface of MWNTs were greatly influenced by the reduction temperatures, the experimental results also showed that the distribution of Ni nanoparticles was greatly improved while the MWNTs were modified by poly(acrylic acid) (PAA). The hydrogenation activity and selectivity of MWNTs decorated withmore » Ni nanoparticles (Ni-MWNTs) for alpha, beta-unsaturated aldehyde (citral) were also studied, and the experimental results showed that the citronellal, an important raw material for flavoring and perfumery industries, is the favorable product with a percentage as high as 86.9%, which is 7 times higher than that of catalyst by Ni-supported active carbon (Ni-AC). - Abstract: Nickel nanoparticles decorated multi-walled carbon nanotubes (Ni-MWNTs) nanocomposites were conveniently prepared by a chemical reduction of nickel salt in the present of poly(acrylic acid) grafted MWNTs (PAA-g-MWNTs). These nanocomposites possessed excellent catalytic activity and selectivity for hydrogenation of citral.« less

  16. Facile Synthesis of Highly Aligned Multiwalled Carbon Nanotubes from Polymer Precursors

    DOE PAGES

    Han, Catherine Y.; Xiao, Zhi-Li; Wang, H. Hau; ...

    2009-01-01

    We report a facile one-step approach which involves no flammable gas, no catalyst, and no in situ polymerization for the preparation of well-aligned carbon nanotube array. A polymer precursor is placed on top of an anodized aluminum oxide (AAO) membrane containing regular nanopore arrays, and slow heating under Ar flow allows the molten polymer to wet the template through adhesive force. The polymer spread into the nanopores of the template to form polymer nanotubes. Upon carbonization the resulting multi-walled carbon nanotubes duplicate the nanopores morphology precisely. The process is demonstrated for 230, 50, and 20 nm pore membranes. The synthesized carbonmore » nanotubes are characterized with scanning/transmission electron microscopies, Raman spectroscopy, and resistive measurements. Convenient functionalization of the nanotubes with this method is demonstrated through premixing CoPt nanoparticles in the polymer precursors.« less

  17. Electrical transport via variable range hopping in an individual multi-wall carbon nanotube

    NASA Astrophysics Data System (ADS)

    Husain Khan, Zishan; Husain, M.; Perng, T. P.; Salah, Numan; Habib, Sami

    2008-11-01

    E-beam lithography is used to make four leads on an individual multi-wall carbon nanotube for carrying out electrical transport measurements. Temperature dependence of conductance of an individual multi-wall carbon nanotube (MWNT) is studied over a temperature range of (297 4.8 K). The results indicate that the conduction is governed by variable range hopping (VRH) for the entire temperature range (297 4.8 K). This VRH mechanism changes from three dimensions (3D) to two dimensions (2D) as we go down to 70 K. Three-dimensional variable range hopping (3D VRH) is responsible for conduction in the temperature range (297 70 K), which changes to two-dimensional VRH for much lower temperatures (70 4.8 K). For 3D VRH, various Mott parameters such as density of states, hopping distance and hopping energy have been calculated. The 2D VRH mechanism has been applied for the temperature range (70 4.8 K) and, with the help of this model, the parameters such as localization length and hopping distance are calculated. All these parameters give interesting information about this complex structure, which may be useful for many applications.

  18. Effects of multiwall carbon nanotubes on viscoelastic properties of magnetorheological elastomers

    NASA Astrophysics Data System (ADS)

    Aziz, Siti Aishah Abdul; Amri Mazlan, Saiful; Intan Nik Ismail, Nik; Ubaidillah, U.; Choi, Seung-Bok; Khairi, Muntaz Hana Ahmad; Azhani Yunus, Nurul

    2016-07-01

    The effect of different types of multiwall carbon nanotubes (MWCNTs) on the morphological, magnetic and viscoelastic properties of magnetorheological elastomers (MREs) are studied in this work. A series of natural rubber MRE are prepared by adding MWCNTs as a new additive in MRE. Effects of functionalized MWCNT namely carboxylated MWCNT (COOH-MWCNT) and hydroxylated MWCNT (OH-MWCNT) on the rheological properties of MREs are investigated and the pristine MWCNTs is referred as a control. Epoxidised palm oil (EPO) is used as a medium to disperse carbonyl iron particle (CIP) and sonicate the MWCNTs. Morphological and magnetic properties of MREs are characterized by field emission scanning electron microscopy (FESEM) and vibrating sample magnetometer (VSM), respectively. Rheological properties under different magnetic field are evaluated by using parallel plate rheometer. From the results obtained, FESEM images indicate that COOH-MWCNT and CIP have better compatibility which leads to the formation of interconnected network in the matrix. In addition, by adding functionalized COOH-MWCNT, it is shown that the saturation magnetization is 5% higher than the pristine MWCNTs. It is also found that with the addition of COOH-MWCNT, the magnetic properties are improved parallel with enhancement of MR effect particularly at low strain amplitude. It is finally shown that the use of EPO also can contribute to the enhancement of MR performance.

  19. Aspect ratio has no effect on genotoxicity of multi-wall carbon nanotubes.

    PubMed

    Kim, Jin Sik; Lee, Kyu; Lee, Young Hee; Cho, Hyun Sun; Kim, Ki Heon; Choi, Kyung Hee; Lee, Sang Hee; Song, Kyung Seuk; Kang, Chang Soo; Yu, Il Je

    2011-07-01

    Carbon nanotubes (CNTs) have specific physico-chemical and electrical properties that are useful for telecommunications, medicine, materials, manufacturing processes and the environmental and energy sectors. Yet, despite their many advantages, it is also important to determine whether CNTs may represent a hazard to the environment and human health. Like asbestos, the aspect ratio (length:diameter) and metal components of CNTs are known to have an effect on the toxicity of carbon nanotubes. Thus, to evaluate the toxic potential of CNTs in relation to their aspect ratio and metal contamination, in vivo and in vitro genotoxicity tests were conducted using high-aspect-ratio (diameter: 10-15 nm, length: ~10 μm) and low-aspect-ratio multi-wall carbon nanotubes (MWCNTs, diameter: 10-15 nm, length: ~150 nm) according to OECD test guidelines 471 (bacterial reverse mutation test), 473 (in vitro chromosome aberration test), and 474 (in vivo micronuclei test) with a good laboratory practice system. To determine the treatment concentration for all the tests, a solubility and dispersive test was performed, and a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) solution found to be more suitable than distilled water. Neither the high- nor the low-aspect-ratio MWCNTs induced any genotoxicity in a bacterial reverse mutation test (~1,000 μg/plate), in vitro chromosome aberration test (without S9: ~6.25 μg/ml, with S9: ~50 μg/ml), or in vivo micronuclei test (~50 mg/kg). However, the high-aspect-ratio MWCNTs were found to be more toxic than the low-aspect-ratio MWCNTs. Thus, while high-aspect-ratio MWCNTs do not induce direct genotoxicity or metabolic activation-mediated genotoxicity, genotoxicity could still be induced indirectly through oxidative stress or inflammation.

  20. Electrochemical detection and degradation of ibuprofen from water on multi-walled carbon nanotubes-epoxy composite electrode.

    PubMed

    Motoc, Sorina; Remes, Adriana; Pop, Aniela; Manea, Florica; Schoonman, Joop

    2013-04-01

    This work describes the electrochemical behaviour of ibuprofen on two types of multi-walled carbon nanotubes based composite electrodes, i.e., multi-walled carbon nanotubes-epoxy (MWCNT) and silver-modified zeolite-multi-walled carbon nanotubes-epoxy (AgZMWCNT) composites electrodes. The composite electrodes were obtained using two-roll mill procedure. SEM images of surfaces of the composites revealed a homogeneous distribution of the composite components within the epoxy matrix. AgZMWCNT composite electrode exhibited the better electrical conductivity and larger electroactive surface area. The electrochemical determination of ibuprofen (IBP) was achieved using AgZMWCNT by cyclic voltammetry, differential-pulsed voltammetry, square-wave voltammetry and chronoamperometry. The IBP degradation occurred on both composite electrodes under controlled electrolysis at 1.2 and 1.75 V vs. Ag/AgCl, and IBP concentration was determined comparatively by differential-pulsed voltammetry, under optimized conditions using AgZMWCNT electrode and UV-Vis spectrophotometry methods to determine the IBP degradation performance for each electrode. AgZMWCNT electrode exhibited a dual character allowing a double application in IBP degradation process and its control.

  1. A settling curve modeling method for quantitative description of the dispersion stability of carbon nanotubes in aquatic environments.

    PubMed

    Zhou, Lixia; Zhu, Dunxue; Zhang, Shujuan; Pan, Bingcai

    2015-03-01

    Understanding the aggregation and deposition behavior of carbon nanotubes (CNTs) is of great significance in terms of their fate and transport in the environment. Attachment efficiency is a widely used index for well-dispersed CNT solutions. However, in natural waters, CNTs are usually heterogeneous in particle size. The attachment efficiency method is not applicable to such systems. Describing the dispersion stability of CNTs in natural aquatic systems is still a challenge. In this work, a settling curve modeling (SCM) method was developed for the description of the aggregation and deposition behavior of CNTs in aqueous solutions. The effects of water chemistry (natural organic matter, pH, and ionic strength) on the aggregation and deposition behavior of pristine and surface-functionalized multi-walled carbon nanotubes (MWCNTs) were systematically studied to evaluate the reliability of the SCM method. The results showed that, as compared to particle size and optical density, the centrifugal sedimentation rate constant (ks) from the settling curve profile is a practical, useful and reliable index for the description of heterogeneous CNT suspensions. The SCM method was successfully applied to MWCNT in three natural waters. The constituents in water, especially organic matter, determine the dispersion stability of MWCNTs in natural water bodies. Copyright © 2015. Published by Elsevier B.V.

  2. A facile synthesis of zinc oxide/multiwalled carbon nanotube nanocomposite lithium ion battery anodes by sol-gel method

    NASA Astrophysics Data System (ADS)

    Köse, Hilal; Karaal, Şeyma; Aydın, Ali Osman; Akbulut, Hatem

    2015-11-01

    Free standing zinc oxide (ZnO) and multiwalled carbon nanotube (MWCNT) nanocomposite materials are prepared by a sol gel technique giving a new high capacity anode material for lithium ion batteries. Free-standing ZnO/MWCNT nanocomposite anodes with two different chelating agent additives, triethanolamine (TEA) and glycerin (GLY), yield different electrochemical performances. Field emission gun scanning electron microscopy (FEG-SEM), energy dispersive X-ray spectrometer (EDS), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) analyses reveal the produced anode electrodes exhibit a unique structure of ZnO coating on the MWCNT surfaces. Li-ion cell assembly using a ZnO/MWCNT/GLY free-standing anode and Li metal cathode possesses the best discharge capacity, remaining as high as 460 mAh g-1 after 100 cycles. This core-shell structured anode can offer increased energy storage and performance over conventional anodes in Li-ion batteries.

  3. Multi-wall carbon nanotube@zeolite imidazolate framework composite from a nanoscale zinc oxide precursor

    DOE PAGES

    Yue, Yanfeng; Guo, Bingkun; Qiao, Zhenan; ...

    2014-07-24

    Nanocomposite of multi-walled carbon nanotube@zeolite imidazolate frameworks (MWNT@ZIF) was prepared through a nanotube-facilitated growth based on a nanosized ZnO precursor. The electrically conductive nanocomposite displays a capacity of 380 mAh/g at 0.1 °C in Li–sulfur battery, transforming electrically inactive ZIF into the active one for battery applications.

  4. A novel multi-walled carbon nanotube-based antibody conjugate for quantitative and semi-quantitative lateral flow assays.

    PubMed

    Sun, Wenjuan; Hu, Xiaolong; Liu, Jia; Zhang, Yurong; Lu, Jianzhong; Zeng, Libo

    2017-10-01

    In this study, the multi-walled carbon nanotubes (MWCNTs) were applied in lateral flow strips (LFS) for semi-quantitative and quantitative assays. Firstly, the solubility of MWCNTs was improved using various surfactants to enhance their biocompatibility for practical application. The dispersed MWCNTs were conjugated with the methamphetamine (MET) antibody in a non-covalent manner and then manufactured into the LFS for the quantitative detection of MET. The MWCNTs-based lateral flow assay (MWCNTs-LFA) exhibited an excellent linear relationship between the values of test line and MET when its concentration ranges from 62.5 to 1500 ng/mL. The sensitivity of the LFS was evaluated by conjugating MWCNTs with HCG antibody and the MWCNTs conjugated method is 10 times more sensitive than the one conjugated with classical colloidal gold nanoparticles. Taken together, our data demonstrate that MWCNTs-LFA is a more sensitive and reliable assay for semi-quantitative and quantitative detection which can be used in forensic analysis.

  5. Effects of multiwalled carbon nanotubes and triclocarban on several eukaryotic cell lines: elucidating cytotoxicity, endocrine disruption, and reactive oxygen species generation

    PubMed Central

    2014-01-01

    To date, only a few reports about studies on toxic effects of carbon nanotubes (CNT) are available, and their results are often controversial. Three different cell lines (rainbow trout liver cells (RTL-W1), human adrenocortical carcinoma cells (T47Dluc), and human adrenocarcinoma cells (H295R)) were exposed to multiwalled carbon nanotubes, the antimicrobial agent triclocarban (TCC) as well as the mixture of both substances in a concentration range of 3.13 to 50 mg CNT/L, 31.25 to 500 μg TCC/L, and 3.13 to 50 mg CNT/L + 1% TCC (percentage relative to carbon nanotubes concentration), respectively. Triclocarban is a high-production volume chemical that is widely used as an antimicrobial compound and is known for its toxicity, hydrophobicity, endocrine disruption, bioaccumulation potential, and environmental persistence. Carbon nanotubes are known to interact with hydrophobic organic compounds. Therefore, triclocarban was selected as a model substance to examine mixture toxicity in this study. The influence of multiwalled carbon nanotubes and triclocarban on various toxicological endpoints was specified: neither cytotoxicity nor endocrine disruption could be observed after exposure of the three cell lines to carbon nanotubes, but the nanomaterial caused intracellular generation of reactive oxygen species in all cell types. For TCC on the other hand, cell vitality of 80% could be observed at a concentration of 2.1 mg/L for treated RTL-W1 cells. A decrease of luciferase activity in the ER Calux assay at a triclocarban concentration of 125 μg/L and higher was observed. This effect was less pronounced when multiwalled carbon nanotubes were present in the medium. Taken together, these results demonstrate that multiwalled carbon nanotubes induce the production of reactive oxygen species in RTL-W1, T47Dluc, and H295R cells, reveal no cytotoxicity, and reduce the bioavailability and toxicity of the biocide triclocarban. PMID:25170332

  6. Synthesis and characterization of poly lactic acid and multiwall carbon nano-tubes mixtures

    NASA Astrophysics Data System (ADS)

    Kumar LG, Santhosh; del A. Cardona, Rocío; Berríos-Soto, Melvin; Santiago-Avilés, Jorge J.

    2011-10-01

    The motivation for this study is to reproduce processing conditions which lead to the formation of photo or photoinduced thermal actuation, combined with inexpensive, environmentally friendly (easily degradable) materials. Commercially available polymer, poly lactic acid (PLA), was used in our studies. PLA is a well know biodegradable polymer naturally obtained from corn. PLA was received as a solid resin in pellet form and dissolved in 1:3 acetone/chloroform solutions, to achieve the proper electrospinning kinematic viscosity. Once in the liquid phase, the material was mixed with commercially available multi-walled carbon nanotubes (MWCNTs) at varying concentrations and dispersed by severe sonication. The mixtures was electrospun at room temperature using a home built electrospinning apparatus capable of depositing randomly oriented fiber mats or oriented fibers onto different substrates, ranging from oxidized silicon wafers, alumina squares or glass microscope slides. The fibers diameters and lengths are statistically distributed following a log-normal distribution and the mean and dispersion are controlled by spinning parameters. Once the fibers were electrospun, they were compositionally, morphologically and structurally characterized by thermal and gravimetric analysis (TGA/DTA), rheology, imaging using a focused Ion Beam Scanning Electron Microscope (IBSEM), and IR /Raman methodologies. These studies can be used to explore PLA-MWCNTs mixtures suitability in applications such as super-capacitor technology, which would enable us to pursue further research in this field, while focusing on improving the electro spinning conditions so as to be able to better anticipate fiber morphology to generate a consistent regime of fibers.

  7. Effect of the cesium and potassium doping of multiwalled carbon nanotubes grown in an electrical arc on their emission characteristics

    NASA Astrophysics Data System (ADS)

    Izrael'yants, K. R.; Orlov, A. P.; Ormont, A. B.; Chirkova, E. G.

    2017-04-01

    The effect of cesium and potassium atoms deposited onto multiwalled carbon nanotubes grown in an electrical arc on their emission characteristics was studied. The current-voltage characteristics of the field electron emission of specimens with cesium or potassium doped multiwalled carbon nanotubes of this type were revealed to retain their linear character in the Fowler-Nordheim coordinates within several orders of magnitude of change in the emission current. The deposition of cesium and potassium atoms was shown to lead to a considerable increase in the emission current and a decrease in the work function φ of studied emitters with multiwalled nanotubes. The work function was established to decrease to φ 3.1 eV at an optimal thickness of coating with cesium atoms and to φ 2.9 eV in the case of doping with potassium atoms. Cesium and potassium deposition conditions optimal for the attainment of a maximum emission current were found.

  8. An enhanced electrochemical platform based on graphene oxide and multi-walled carbon nanotubes nanocomposite for sensitive determination of Sunset Yellow and Tartrazine.

    PubMed

    Qiu, Xinlan; Lu, Limin; Leng, Jing; Yu, Yongfang; Wang, Wenmin; Jiang, Min; Bai, Ling

    2016-01-01

    A novel electrochemical platform was designed for the simultaneous determination of Sunset Yellow (SY) and Tartrazine (TT), synthetic food dyes, by combining the signal amplification properties of graphene oxide (GO) and the excellent electronic and antifouling properties of multi-walled carbon nanotubes (MWCNTs). Stable dispersion of GO/MWCNTs composite was produced by sonication mixing. Compared with glassy carbon, MWCNTs and GO electrodes, GO/MWCNTs electrode exhibited strong enhancement effect and greatly increased the oxidation signal of SY and TT. Under optimized conditions, the enhanced anodic peak currents represented the excellent analytical performance of simultaneous detection of SY and TT in the range of 0.09-8.0 μM, with a low limit of detection of 0.025 μM for SY and 0.01 μM for TT (S/N = 3), respectively. To further validate its possible application, the proposed method was successfully used for the determination of SY and TT in orange juice with satisfactory results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Mechanical and Combustion Performance of Multi-Walled Carbon Nanotubes as an Additive to Paraffin-Based Solid Fuels for Hybrid Rockets

    NASA Technical Reports Server (NTRS)

    Larson, Daniel B.; Boyer, Eric; Wachs, Trevor; Kuo, Kenneth, K.; Koo, Joseph H.; Story, George

    2012-01-01

    Paraffin-based solid fuels for hybrid rocket motor applications are recognized as a fastburning alternative to other fuel binders such as HTPB, but efforts to further improve the burning rate and mechanical properties of paraffin are still necessary. One approach that is considered in this study is to use multi-walled carbon nanotubes (MWNT) as an additive to paraffin wax. Carbon nanotubes provide increased electrical and thermal conductivity to the solid-fuel grains to which they are added, which can improve the mass burning rate. Furthermore, the addition of ultra-fine aluminum particles to the paraffin/MWNT fuel grains can enhance regression rate of the solid fuel and the density impulse of the hybrid rocket. The multi-walled carbon nanotubes also present the possibility of greatly improving the mechanical properties (e.g., tensile strength) of the paraffin-based solid-fuel grains. For casting these solid-fuel grains, various percentages of MWNT and aluminum particles will be added to the paraffin wax. Previous work has been published about the dispersion and mixing of carbon nanotubes.1 Another manufacturing method has been used for mixing the MWNT with a phenolic resin for ablative applications, and the manufacturing and mixing processes are well-documented in the literature.2 The cost of MWNT is a small fraction of single-walled nanotubes. This is a scale-up advantage as future applications and projects will require low cost additives to maintain cost effectiveness. Testing of the solid-fuel grains will be conducted in several steps. Dog bone samples will be cast and prepared for tensile testing. The fuel samples will also be analyzed using thermogravimetric analysis and a high-resolution scanning electron microscope (SEM). The SEM will allow for examination of the solid fuel grain for uniformity and consistency. The paraffin-based fuel grains will also be tested using two hybrid rocket test motors located at the Pennsylvania State University s High Pressure

  10. Single wall carbon nanotube supports for portable direct methanol fuel cells.

    PubMed

    Girishkumar, G; Hall, Timothy D; Vinodgopal, K; Kamat, Prashant V

    2006-01-12

    Single-wall and multiwall carbon nanotubes are employed as carbon supports in direct methanol fuel cells (DMFC). The morphology and electrochemical activity of single-wall and multiwall carbon nanotubes obtained from different sources have been examined to probe the influence of carbon support on the overall performance of DMFC. The improved activity of the Pt-Ru catalyst dispersed on carbon nanotubes toward methanol oxidation is reflected as a shift in the onset potential and a lower charge transfer resistance at the electrode/electrolyte interface. The evaluation of carbon supports in a passive air breathing DMFC indicates that the observed power density depends on the nature and source of carbon nanostructures. The intrinsic property of the nanotubes, dispersion of the electrocatalyst and the electrochemically active surface area collectively influence the performance of the membrane electrode assembly (MEA). As compared to the commercial carbon black support, single wall carbon nanotubes when employed as the support for anchoring the electrocatalyst particles in the anode and cathode sides of MEA exhibited a approximately 30% enhancement in the power density of a single stack DMFC operating at 70 degrees C.

  11. 40 CFR 721.10266 - Multi-walled carbon nanotubes (generic) (P-08-733 and P-08-734).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10266 Multi-walled carbon nanotubes (generic) (P-08-733 and P-08-734). (a) Chemical substances and significant new uses subject to reporting. (1) The...

  12. 40 CFR 721.10266 - Multi-walled carbon nanotubes (generic) (P-08-733 and P-08-734).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10266 Multi-walled carbon nanotubes (generic) (P-08-733 and P-08-734). (a) Chemical substances and significant new uses subject to reporting. (1) The...

  13. Evaluating the biological risk of functionalized multiwalled carbon nanotubes and functionalized oxygen-doped multiwalled carbon nanotubes as possible toxic, carcinogenic, and embryotoxic agents

    PubMed Central

    Lara-Martínez, Luis A; Massó, Felipe; Palacios González, Eduardo; García-Peláez, Isabel; Contreras–Ramos, Alejandra; Valverde, Mahara; Rojas, Emilio; Cervantes-Sodi, Felipe; Hernández-Gutiérrez, Salomón

    2017-01-01

    Carbon nanotubes (CNTs) have been a focus of attention due to their possible applications in medicine, by serving as scaffolds for cell growth and proliferation and improving mesenchymal cell transplantation and engraftment. The emphasis on the benefits of CNTs has been offset by the ample debate on the safety of nanotechnologies. In this study, we determine whether functionalized multiwalled CNTs (fMWCNTs) and functionalized oxygen-doped multiwalled CNTs (fCOxs) have toxic effects on rat mesenchymal stem cells (MSCs) in vitro by analyzing morphology and cell proliferation and, using in vivo models, whether they are able to transform MSCs in cancer cells or induce embryotoxicity. Our results demonstrate that there are statistically significant differences in cell proliferation and the cell cycle of MSCs in culture. We identified dramatic changes in cells that were treated with fMWCNTs. Our evaluation of the transformation to cancer cells and cytotoxicity process showed little effect. However, we found a severe embryotoxicity in chicken embryos that were treated with fMWCNTs, while fCOxs seem to exert cardioembryotoxicity and a discrete teratogenicity. Furthermore, it seems that the time of contact plays an important role during cell transformation and embryotoxicity. A single contact with fMWCNTs is not sufficient to transform cells in a short time; an exposure of fMWCNTs for 2 weeks led to cell transformation risk and cardioembryotoxicity effects. PMID:29089764

  14. Evaluating the biological risk of functionalized multiwalled carbon nanotubes and functionalized oxygen-doped multiwalled carbon nanotubes as possible toxic, carcinogenic, and embryotoxic agents.

    PubMed

    Lara-Martínez, Luis A; Massó, Felipe; Palacios González, Eduardo; García-Peláez, Isabel; Contreras-Ramos, Alejandra; Valverde, Mahara; Rojas, Emilio; Cervantes-Sodi, Felipe; Hernández-Gutiérrez, Salomón

    2017-01-01

    Carbon nanotubes (CNTs) have been a focus of attention due to their possible applications in medicine, by serving as scaffolds for cell growth and proliferation and improving mesenchymal cell transplantation and engraftment. The emphasis on the benefits of CNTs has been offset by the ample debate on the safety of nanotechnologies. In this study, we determine whether functionalized multiwalled CNTs (fMWCNTs) and functionalized oxygen-doped multiwalled CNTs (fCOxs) have toxic effects on rat mesenchymal stem cells (MSCs) in vitro by analyzing morphology and cell proliferation and, using in vivo models, whether they are able to transform MSCs in cancer cells or induce embryotoxicity. Our results demonstrate that there are statistically significant differences in cell proliferation and the cell cycle of MSCs in culture. We identified dramatic changes in cells that were treated with fMWCNTs. Our evaluation of the transformation to cancer cells and cytotoxicity process showed little effect. However, we found a severe embryotoxicity in chicken embryos that were treated with fMWCNTs, while fCOxs seem to exert cardioembryotoxicity and a discrete teratogenicity. Furthermore, it seems that the time of contact plays an important role during cell transformation and embryotoxicity. A single contact with fMWCNTs is not sufficient to transform cells in a short time; an exposure of fMWCNTs for 2 weeks led to cell transformation risk and cardioembryotoxicity effects.

  15. Synthesis of gold nanoparticles on multi-walled carbon nanotubes (Au-MWCNTs) via deposition precipitation method

    NASA Astrophysics Data System (ADS)

    Zulikifli, Farah Wahida Ahmad; Yazid, Hanani; Halim, Muhammad Zikri Budiman Abdul; Jani, Abdul Mutalib Md

    2017-09-01

    Carbon nanotubes (CNTs) have received impressive consideration as support materials of noble metal catalysts in heterogeneous catalysis due to their good mechanical strength, large surface area and good durability under harsh conditions. The interaction between CNTs and noble metal nanoparticles (NPs) gives an unusual unique microstructure properties and or modification of the electron density of the noble metal clusters, and enhances the catalytic activity. In this study, the MWCNTs were first treated with a mixture of concentrated sulfuric and nitric acid by sonication to improve its dispersibility and to introduce the carboxylic (-COOH) groups on CNTs surfaces. Gold nanoparticles (Au NPs) on multiwalled carbon nanotubes (MWCNTs) were synthesized by the deposition precipitation (DP) method as this method is simpler, low cost, and excellent method. Then, the effect of reducing agent (NaBH4) on gold distribution on the support of MWCNTs was also studied. Dispersion test, Fourier Transform Infrared spectroscopy (FTIR) and Field Emission Scanning Electron Microscope (FESEM) are all used to characterize the functionalized MWCNTs (fCNTs) and the Au NPs-fCNTs catalyst. There are three important peaks in functionalized MWCNTs which correspond to C=O, O-H, and C-O absorption peaks, as a result of the oxidation of COOH groups on the surface of CNTs. The absorption band at 1717 cm-1 is corresponded to C=O stretching of COOH, while the absorption bands at 3384 cm-1 and 1011cm-1 are associated with O-H bending and C-O stretching, respectively. Surface morphology of Au NPs-fCNTs R4 and Au NPs- fCNTs WR catalyst by FESEM showed that the Au NPs of 19.22 ± 2.33 nm and 23.05 ± 2.57 nm size were successfully deposited on CNTs, respectively.

  16. A New Sensitive Sensor for Simultaneous Differential Pulse Voltammetric Determination of Codeine and Acetaminophen Using a Hydroquinone Derivative and Multiwall Carbon Nanotubes Carbon Paste Electrode

    PubMed Central

    Garazhian, Elahe; Shishehbore, M. Reza

    2015-01-01

    A new sensitive sensor was fabricated for simultaneous determination of codeine and acetaminophen based on 4-hydroxy-2-(triphenylphosphonio)phenolate (HTP) and multiwall carbon nanotubes paste electrode at trace levels. The sensitivity of codeine determination was deeply affected by spiking multiwall carbon nanotubes and a modifier in carbon paste. Electron transfer coefficient, α, catalytic electron rate constant, k, and the exchange current density, j 0, for oxidation of codeine at the HTP-MWCNT-CPE were calculated using cyclic voltammetry. The calibration curve was linear over the range 0.2–844.7 μM with two linear segments, and the detection limit of 0.063 μM of codeine was obtained using differential pulse voltammetry. The modified electrode was separated codeine and acetaminophen signals by differential pulse voltammetry. The modified electrode was applied for the determination of codeine and acetaminophen in biological and pharmaceutical samples with satisfactory results. PMID:25945094

  17. Structural and proactive safety aspects of oxidation debris from multiwalled carbon nanotubes.

    PubMed

    Stéfani, Diego; Paula, Amauri J; Vaz, Boniek G; Silva, Rodrigo A; Andrade, Nádia F; Justo, Giselle Z; Ferreira, Carmen V; Filho, Antonio G Souza; Eberlin, Marcos N; Alves, Oswaldo L

    2011-05-15

    The removal of oxidation debris from the oxidized carbon nanotube surface with a NaOH treatment is a key step for an effective functionalization and quality improvement of the carbon nanotube samples. In this work, we show via infrared spectroscopy and ultrahigh resolution and accuracy mass spectrometry that oxidation debris obtained from HNO(3)-treated multiwalled carbon nanotubes is a complex mixture of highly condensed aromatic oxygenated carbonaceous fragments. We have also evaluated their cytotoxicity by using BALB/c 3T3 mouse fibroblasts and HaCaT human keratinocytes as models. By knowing the negative aspects of dissolved organic carbon (DOC) to the water quality, we have demonstrated the removal of these carbon nanotube residues from the NaOH solution (wastewater) by using aluminium sulphate, which is a standard coagulant agent used in conventional drinking water purification and wastewater treatment plants. Our results contribute to elucidate the structural and proactive safety aspects of oxidation debris from oxidized carbon nanotubes towards a greener nanotechnology. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. The Influence of Multiwalled Carbon Nanotubes on Polycyclic Aromatic Hydrocarbon (PAH) Bioavailability and Toxicity to Soil Microbial Communities in Alfalfa Rhizosphere

    USDA-ARS?s Scientific Manuscript database

    Carbon nanotubes (CNTs) may affect bioavailability and toxicity of organic contaminants due to their adsorption properties. Recent studies have observed the influence of multiwalled carbon nanotubes (MWNTs) on the fate of polycyclic aromatic hydrocarbons (PAHs) and other organic contaminants. Greenh...

  19. Co-transport of chlordecone and sulfadiazine in the presence of functionalized multi-walled carbon nanotubes in soils

    USDA-ARS?s Scientific Manuscript database

    Batch and saturated soil column experiments were conducted to investigate sorption and mobility of two 14C-labeled contaminants, the hydrophobic chlordecone (CLD) and the readily water-soluble sulfadiazine (SDZ), in the absence or presence of functionalized multi-walled carbon nanotubes (MWCNTs). Th...

  20. PEGylation of magnetic multi-walled carbon nanotubes for enhanced selectivity of dispersive solid phase extraction.

    PubMed

    Zeng, Qiong; Liu, Yi-Ming; Jia, Yan-Wei; Wan, Li-Hong; Liao, Xun

    2017-02-01

    Carbon nanotubes (CNTs) possess large potential as extraction absorbents in solid phase extraction. They have been widely applied in biomedicine research, while very rare application in natural product chemistry has been reported. In this work, methoxypolyethylene glycol amine (mPEG-NH 2 ) is covalently coupled to CNTs-magnetic nanoparticles (CNTs-MNP) to prepare a novel magnetic nanocomposite (PEG-CNTs-MNP) for use as dispersive solid-phase extraction (DSPE) absorbent. The average particle size was 86nm, and the saturation magnetization was 52.30emu/g. This nanocomposite exhibits excellent dispersibility in aqueous systems, high selectivity and fast binding kinetics when used for extraction of Z-ligustilide, the characteristic bioactive compound from two popular Asian herbal plants, R. chuanxiong and R. ligusticum. HPLC quantification of Z-ligustilide extracted from the standard sample solution showed a high recovery of 98.9%, and the extraction rate from the extracts of the above two herbs are both around 70.0%. To our knowledge, this is the first report on using PEG-CNTs-MNP as DSPE nanosorbents for selective extraction of natural products. This nano-material has promising application in isolation and enrichment of targeted components from complex matrices. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Solid-contact pH-selective electrode using multi-walled carbon nanotubes.

    PubMed

    Crespo, Gastón A; Gugsa, Derese; Macho, Santiago; Rius, F Xavier

    2009-12-01

    Multi-walled carbon nanotubes (MWCNT) are shown to be efficient transducers of the ionic-to-electronic current. This enables the development of a new solid-contact pH-selective electrode that is based on the deposition of a 35-microm thick layer of MWCNT between the acrylic ion-selective membrane and the glassy carbon rod used as the electrical conductor. The ion-selective membrane was prepared by incorporating tridodecylamine as the ionophore, potassium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate as the lipophilic additive in a polymerized methylmethacrylate and an n-butyl acrylate matrix. The potentiometric response shows Nernstian behaviour and a linear dynamic range between 2.89 and 9.90 pH values. The response time for this electrode was less than 10 s throughout the whole working range. The electrode shows a high selectivity towards interfering ions. Electrochemical impedance spectroscopy and chronopotentiometry techniques were used to characterise the electrochemical behaviour and the stability of the carbon-nanotube-based ion-selective electrodes.

  2. [Comparison study on adsorption of middle molecular substances with multiwalled carbon nanotubes and activated carbon].

    PubMed

    Li, Guifeng; Wan, Jianxin; Huang, Xiangqian; Zeng, Qiao; Tang, Jing

    2011-08-01

    In recent years, multi-walled carbon nanotubes (MWCTs) are very favorable to the adsorption of middle molecular substances in the hemoperfusion because of their multiporous structure, large surface area and high reactivity, which are beneficial to the excellent absorption properties. The purpose of this study was to study the MWCTs on the adsorption capacity of the middle molecular substances. Vitamin B12 (VB12) was selected as a model of the middle molecular substances. The morphologies of MWCTs and activated carbon from commercial "carbon kidney" were observed with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The adsorption behavior of VB12 was compared to each other with UV-visible absorption spectra. The MWCTs formed a sophistaicate gap structure, and compared to the activated carbon, MWCTs had a larger surface area. By Langmuir equation and Freundlich equation fitting analysis, VB12 adsorption on MWCTs is fit for multi-molecular layer adsorption, and the adsorption type of activated carbon is more inclined to the model corresponding to Langmuir monolayer adsorption. The adsorption rate of MWCTs is faster than that of the activated carbon and the adsorption capacity is greater, which could be expected to become the new adsorbent in the hemoperfusion.

  3. Electric current distribution of a multiwall carbon nanotube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Li-Ying; Chang, Chia-Seng, E-mail: jasonc@phys.sinica.edu.tw; Institute of Physics, Academia Sinica, Taipei 11529, Taiwan

    2016-07-15

    The electric current distribution in a multiwall carbon nanotube (MWCNT) was studied by in situ measuring the electric potential along an individual MWCNT in the ultra-high vacuum transmission electron microscope (TEM). The current induced voltage drop along each section of a side-bonded MWCNT was measured by a potentiometric probe in TEM. We have quantitatively derived that the current on the outermost shell depends on the applied current and the shell diameter. More proportion of the total electronic carriers hop into the inner shells when the applied current is increased. The larger a MWCNT’s diameter is, the easier the electronic carriersmore » can hop into the inner shells. We observed that, for an 8 nm MWCNT with 10 μA current applied, 99% of the total current was distributed on the outer two shells.« less

  4. Freestanding Aligned Multi-walled Carbon Nanotubes for Supercapacitor Devices

    NASA Astrophysics Data System (ADS)

    Moreira, João Vitor Silva; Corat, Evaldo José; May, Paul William; Cardoso, Lays Dias Ribeiro; Lelis, Pedro Almeida; Zanin, Hudson

    2016-11-01

    We report on the synthesis and electrochemical properties of multi-walled carbon nanotubes (MWCNTs) for supercapacitor devices. Freestanding vertically-aligned MWCNTs and MWCNT powder were grown concomitantly in a one-step chemical vapour deposition process. Samples were characterized by scanning and transmission electron microscopies and Fourier transform infrared and Raman spectroscopies. At similar film thicknesses and surface areas, the freestanding MWCNT electrodes showed higher electrochemical capacitance and gravimetric specific energy and power than the randomly-packed nanoparticle-based electrodes. This suggests that more ordered electrode film architectures facilitate faster electron and ion transport during the charge-discharge processes. Energy storage and supply or supercapacitor devices made from these materials could bridge the gap between rechargeable batteries and conventional high-power electrostatic capacitors.

  5. Anomalous thermal hysteresis in the high-field magnetic moments of magnetic nanoparticles embedded in multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhao, Guo-Meng; Wang, Jun; Ren, Yang; Beeli, Pieder

    2012-02-01

    We report high-temperature (300-1120 K) magnetic properties of Fe and Fe3O4 nanoparticles embedded in multi-walled carbon nanotubes. We unambiguously show that the magnetic moments of Fe and Fe3O4 nanoparticles are seemingly enhanced by a factor of about 3 compared with what they would be expected to have for free (unembedded) magnetic nanoparticles. What is more intriguing is that the enhanced moments were completely lost when the sample was heated up to 1120 K and the lost moments at 1120 K were completely recovered through several thermal cycles below 1020 K. The anomalous thermal hysteresis of the high-field magnetic moments is unlikely to be explained by existing physical models except for the high-field paramagnetic Meissner effect due to the existence of ultrahigh temperature superconductivity in the multi-walled carbon nanotubes.

  6. Functionalization of multi-walled carbon nanotubes with iron phthalocyanine via a liquid chemical reaction for oxygen reduction in alkaline media

    NASA Astrophysics Data System (ADS)

    Yan, Xiaomei; Xu, Xiao; Liu, Qin; Guo, Jia; Kang, Longtian; Yao, Jiannian

    2018-06-01

    Iron single-atom catalyst in form of iron-nitrogen-carbon structure possesses the excellent catalytic activity in various chemical reactions. However, exploring a sustainable and stable single-atom metal catalyst still faces a great challenge due to low yield and complicated synthesis. Here, we report a functional multi-wall carbon nanotubes modified with iron phthalocyanine molecules via a liquid chemical reaction and realize the performance of similar single-atom catalysis for oxygen reduction reaction. A serial of characterizations strongly imply the structure change of iron phthalocyanine molecule and its close recombination with multi-wall carbon nanotubes, which are in favor of ORR catalysis. Compared to commercial platinum-carbon catalyst, composites exhibit superior activity for oxygen reduction reaction with higher half-wave potential (0.86 V), lower Tafel slope (38 mV dec-1), higher limiting current density and excellent electrochemical stability. The corresponding Zinc-air battery also presents higher maximum power density and discharge stability. Therefore, these findings provide a facile route to synthesize a highly efficient non-precious metal carbon-based catalyst.

  7. Pristine multi-walled carbon nanotubes/SDS modified carbon paste electrode as an amperometric sensor for epinephrine.

    PubMed

    Thomas, Tony; Mascarenhas, Ronald J; D' Souza, Ozma J; Detriche, Simon; Mekhalif, Zineb; Martis, Praveen

    2014-07-01

    An amperometric sensor for the determination of epinephrine (EP) was fabricated by modifying the carbon paste electrode (CPE) with pristine multi-walled carbon nanotubes (pMWCNTs) using bulk modification followed by drop casting of sodium dodecyl sulfate (SDS) onto the surface for its optimal potential application. The modified electrode showed an excellent electrocatalytic activity towards EP by decreasing the overpotential and greatly enhancing the current sensitivity. FE-SEM images confirmed the dispersion of pMWCNTs in the CPE matrix. EDX analysis ensured the surface coverage of SDS. A comparative study of pMWCNTs with those of oxidized MWCNTs (MWCNTsOX) modified electrodes reveals that the former is the best base material for the construction of the sensor with advantages of lower oxidation overpotential and the least background current. The performance of the modified electrode was impressive in terms of the least charge transfer resistance (Rct), highest values for diffusion coefficient (DEP) and standard heterogeneous electron transfer rate constant (k°). Analytical characterization of the modified electrode exhibited two linear dynamic ranges from 1.0×10(-7) to 1.0×10(-6)M and 1.0×10(-6) to 1.0×10(-4)M with a detection limit of (4.5±0.18)×10(-8)M. A 100-fold excess of serotonin, acetaminophen, folic acid, uric acid, tryptophan, tyrosine and cysteine, 10-fold excess of ascorbic acid and twofold excess of dopamine do not interfere in the quantification of EP at this electrode. The analytical applications of the modified electrode were demonstrated by determining EP in spiked blood serum and adrenaline tartrate injection. The modified electrode involves a simple fabrication procedure, minimum usage of the modifier, quick response, excellent stability, reproducibility and anti-fouling effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The effects of liquid-phase oxidation of multiwall carbon nanotubes on their surface characteristics

    NASA Astrophysics Data System (ADS)

    Burmistrov, I. N.; Muratov, D. S.; Ilinykh, I. A.; Kolesnikov, E. A.; Godymchuk, A. Yu; Kuznetsov, D. V.

    2016-01-01

    The development of new sorbents based on nanostructured carbon materials recently became a perspective field of research. Main topic of current study is to investigate the effect of different regimes of multiwall carbon nanotubes (MWCNT) surface modification process on their structural characteristics. MWCNT samples were treated with nitric acid at high temperature. Structural properties were studied using low temperature nitrogen adsorption and acid-base back titration methods. The study showed that diluted nitric acid does not affect MWCNT structure. Concentrated nitric acid treatment leads to formation of 2.8 carboxylic groups per 1 nm2 of the sample surface.

  9. Automatic dispersion, long-term stability of multi-walled carbon nanotubes in high concentration electrolytes

    NASA Astrophysics Data System (ADS)

    Ma, Lan; He, Yi; Luo, Pingya; Zhang, Liyun; Yu, Yalu

    2018-02-01

    Nanoparticles have been known as the useful materials in working fluids for petroleum industry. But the stabilization of nano-scaled materials in water-based working fluids at high salinities is still a big challenge. In this study, we successfully prepared the anionic polymer/multi-walled carbon nanotubes (MWNTs) composites by covalently wrapping of MWNTs with poly (sodium 4-styrenesulfonate) (PSS) to improve the stability of MWNTs in high concentration electrolytes. The PSS/MWNTs composites can automatically disperse in salinity up to 15 wt% NaCl and API brines (8 wt% NaCl + 2 wt% CaCl2). Hydrodynamic diameters of composites were measured as a function of ionic strength and API brines by dynamic light scattering (DLS). By varying the concentration of brines, hydrodynamic diameter of PSS/MWNTs composites in brines fluctuated between 545 ± 110 nm for 14 days and 673 ± 171 nm for 30 days. Above results showed that PSS/MWNTs could be well stable in high salts solutions for a long period of time. After wrapped with PSS, the diameters of nanotubes changed from 30 40 to 430 nm, the thickness of wrapped polymer is about 400 nm by analysis of morphologies. The zeta potentials of PSS/MWNTs composites in various salinity of brines kept at approximately - 41 - 52 mV. Therefore, the well dispersion of PSS/MWNTs in high salinity is due to large negative charges of poly (sodium 4-styrenesulfonate), which provide enough electrostatic repulsion and steric repulsion to hinder compression of electric double layer caused by high concentration electrolytes.

  10. Comparison of cellular toxicity between multi-walled carbon nanotubes and onion-like shell-shaped carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Kang, Seunghyon; Kim, Ji-Eun; Kim, Daegyu; Woo, Chang Gyu; Pikhitsa, Peter V.; Cho, Myung-Haing; Choi, Mansoo

    2015-09-01

    The cellular toxicity of multi-walled carbon nanotubes (MWCNTs) and onion-like shell-shaped carbon nanoparticles (SCNPs) was investigated by analyzing the comparative cell viability. For the reasonable comparison, physicochemical characteristics were controlled thoroughly such as crystallinity, carbon bonding characteristic, hydrodynamic diameter, and metal contents of the particles. To understand relation between cellular toxicity of the particles and generation of reactive oxygen species (ROS), we measured unpaired singlet electrons of the particles and intracellular ROS, and analyzed cellular toxicity with/without the antioxidant N-acetylcysteine (NAC). Regardless of the presence of NAC, the cellular toxicity of SCNPs was found to be lower than that of MWCNTs. Since both particles show similar crystallinity, hydrodynamic size, and Raman signal with negligible contribution of remnant metal particles, the difference in cell viability would be ascribed to the difference in morphology, i.e., spherical shape (aspect ratio of one) for SCNP and elongated shape (high aspect ratio) for MWCNT.

  11. ZnO Functionalization of Multi-walled Carbon Nanotubes for Methane Sensing at Single Parts Per Million Concentration Levels

    EPA Science Inventory

    This paper presents a novel atomic layer deposition (ALD) based ZnO functionalization of surface pre-treated multi-walled carbon nanotubes (MWCNTs) for highly sensitive methane chemoresistive sensors. The temperature optimization of the ALD process leads to enhanced ZnO nanopart...

  12. Lightning Damage of Carbon Fiber/Epoxy Laminates with Interlayers Modified by Nickel-Coated Multi-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Dong, Qi; Wan, Guoshun; Xu, Yongzheng; Guo, Yunli; Du, Tianxiang; Yi, Xiaosu; Jia, Yuxi

    2017-12-01

    The numerical model of carbon fiber reinforced polymer (CFRP) laminates with electrically modified interlayers subjected to lightning strike is constructed through finite element simulation, in which both intra-laminar and inter-laminar lightning damages are considered by means of coupled electrical-thermal-pyrolytic analysis method. Then the lightning damage extents including the damage volume and maximum damage depth are investigated. The results reveal that the simulated lightning damages could be qualitatively compared to the experimental counterparts of CFRP laminates with interlayers modified by nickel-coated multi-walled carbon nanotubes (Ni-MWCNTs). With higher electrical conductivity of modified interlayer and more amount of modified interlayers, both damage volume and maximum damage depth are reduced. This work provides an effective guidance to the anti-lightning optimization of CFRP laminates.

  13. Enhancement of electrical conductivity by changing phase morphology for composites consisting of polylactide and poly(ε-caprolactone) filled with acid-oxidized multiwalled carbon nanotubes.

    PubMed

    Xu, Zhaohua; Zhang, Yaqiong; Wang, Zhigang; Sun, Ning; Li, Heng

    2011-12-01

    Composites consisting of polylactide (PLA) and poly(ε-caprolactone) (PCL) filled with acid-oxidized multiwalled carbon nanotubes (A-MWCNTs) were prepared through melt compounding. Phase morphologies of PLA/PCL/A-MWCNT composites with different contents of filled A-MWCNTs and PCL compositions were mainly observed by scanning electron microscope. The results show that A-MWCNTs are selectively dispersed in the PCL phase, regardingless of PCL phase domain sizes. For PLA/PCL/A-MWCNT composites with fixed PLA/PCL ratio of 95/5, the dispersed PCL phase domain sizes in the PLA matrix decrease even though a small content of A-MWCNTs is added, compared with PLA/PCL blend with the same composition, indicating that A-MWCNTs effectively prevent from coalescence of the dispersed PCL phase domains. With filling of 1.0 wt % A-MWCNTs, an interesting change of electrical conductivity for PLA/PCL/A-MWCNT composites is observed, in which the maximum conductivity is observed for PLA/PCL/A-MWCNT composite with PLA/PCL ratio of 60/40. The result is well-explained by the formed cocontinuous phase morphology and effective A-MWCNT content. © 2011 American Chemical Society

  14. Evaluation of multiwalled carbon nanotubes toxicity in two fish species.

    PubMed

    Cimbaluk, Giovani Valentin; Ramsdorf, Wanessa Algarte; Perussolo, Maiara Carolina; Santos, Hayanna Karla Felipe; Da Silva De Assis, Helena Cristina; Schnitzler, Mariane Cristina; Schnitzler, Danielle Caroline; Carneiro, Pedro Gontijo; Cestari, Marta Margarete

    2018-04-15

    Carbon Nanotubes are among the most promising materials for the technology industry. Their unique physical and chemical proprieties may reduce the production costs and improve the efficiency of a large range of products. However, the same characteristics that have made nanomaterials interesting for industry may be responsible for inducing toxic effects on the aquatic organisms. Since the carbon nanotubes toxicity is still a controversial issue, we performed tests of acute and subchronic exposure to a commercial sample of multiwalled carbon nanotubes in two fish species, an exotic model (Danio rerio) and a native one (Astyanax altiparanae). Using the alkaline version of the comet assay on erythrocytes and the piscine micronucleous, also performed on erythrocytes, it was verified that the tested carbon nanotubes sample did not generate apparent genotoxicity by means of single/double DNA strand break or clastogenic/aneugenic effects over any of the species, independently of the exposure period. Although, our findings indicate the possibility of the occurrence of CNTs-DNA crosslinks. Apparently, the sample tested induces oxidative stress after subchronic exposure as shown by activity of superoxide dismutase and catalase. The data obtained by the activity levels of acetylcholinesterase suggests acute neurotoxicity in Astyanax altiparanae and subchronic neurotoxicity in Danio rerio. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Dispersions of Carbon nanotubes in Polymer Matrices

    NASA Technical Reports Server (NTRS)

    Wise, Kristopher Eric (Inventor); Park, Cheol (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor); Lillehei, Peter T. (Inventor); Lowther, Sharon E. (Inventor)

    2010-01-01

    Dispersions of carbon nanotubes exhibiting long term stability are based on a polymer matrix having moieties therein which are capable of a donor-acceptor complexation with carbon nanotubes. The carbon nanotubes are introduced into the polymer matrix and separated therein by standard means. Nanocomposites produced from these dispersions are useful in the fabrication of structures, e.g., lightweight aerospace structures.

  16. Removal of heavy metal ions from wastewaters using dendrimer-functionalized multi-walled carbon nanotubes.

    PubMed

    Iannazzo, Daniela; Pistone, Alessandro; Ziccarelli, Ida; Espro, Claudia; Galvagno, Signorino; Giofré, Salvatore V; Romeo, Roberto; Cicero, Nicola; Bua, Giuseppe D; Lanza, Giuseppe; Legnani, Laura; Chiacchio, Maria A

    2017-06-01

    Dendrimer-functionalized multi-walled carbon nanotubes (MWCNT) for heavy metal ion removal from wastewaters were developed. Triazole dendrimers (TD) were built directly onto the carbon nanotube surface by successive click chemistry reactions affording the zero- and first-generation dendrimer-functionalized MWCNT (MWCNT-TD1 and MWCNT-TD2). The Moedritzer-Irani reaction carried out on the amino groups present on the MWCNT-TD2 sample gave the corresponding α-aminophosphonate nanosystem MWCNT-TD2P. Both MWCNT-TD2 and MWCNT-TD2P nanosystems have been characterized by physical, chemical, and morphological analyses. Their chelating abilities towards the toxic metal ions Pb 2+ , Hg 2+ , and Ni 2+ and the harmless Ca 2+ ion have been experimentally evaluated in the two different sets of experiments and at the salt concentrations of 1 mg/mL or 1 μg/mL by inductively coupled plasma mass spectrometry (ICP-MS). The results of these studies pointed out the interesting chelating behavior for the phosphonated nanosystem towards the Hg 2+ ion. The complexation mode of the best chelating system MWCNT-TD2P with mercury was investigated through density functional theory (DFT) calculations, suggesting a chelation mechanism involving the two oxygen atoms of the phosphate group. The synthesized dendrimers, supported on the multi-walled carbon nanotubes, have shown the potential to be used for the selective toxic metal ion removal and recovery.

  17. Facile synthesis of palladium nanoparticles supported on multi-walled carbon nanotube for efficient hydrogenation of biomass-derived levulinic acid

    NASA Astrophysics Data System (ADS)

    Yan, Kai; Lafleur, Todd; Liao, Jiayou

    2013-09-01

    Different loading of palladium (Pd) nanoparticles were successfully fabricated on multi-walled carbon nanotubes using Pd acetylacetonate as the precursor via a simple liquid impregnation method. The crystal phase, morphology, textural structure and the chemical state of the resulting Pd nanoparticles (Pd/CNT) catalysts were studied and the characterization results indicated that the uniform dispersion of small Pd nanoparticles with the size range of 1.0-4.5 nm was achieved. The synthesized Pd/CNT catalysts exhibited efficient performance for the catalytic hydrogenation of biomass-derived levulinic acid into biofuel γ-valerolactone. In comparison with the commercial 5 wt% Pd/C and the 5 wt% Pd/CNT catalyst prepared by Pd nitrate precursor, much higher activities were achieved, whereas the biofuel γ-valerolactone was highly produced with 56.3 % yield at 57.6 % conversion of levulinic acid on the 5 wt% Pd/CNT catalyst under mild conditions. The catalyst developed in this work may be a good candidate for the wide applications in the hydrogenation.

  18. Effect of Spark-Plasma-Sintering Conditions on Tensile Properties of Aluminum Matrix Composites Reinforced with Multiwalled Carbon Nanotubes (MWCNTs)

    NASA Astrophysics Data System (ADS)

    Chen, B.; Imai, H.; Umeda, J.; Takahashi, M.; Kondoh, K.

    2017-04-01

    In this study, aluminum (Al) matrix composites containing 2 wt.% multiwalled carbon nanotubes (CNTs) were fabricated by powder metallurgy using high-energy ball milling (HEBM), spark plasma sintering (SPS), and subsequent hot extrusion. The effect of SPS conditions on the tensile properties of CNT/Al composites was investigated. The results showed that composites with well-dispersed CNTs and nearly full-density CNT/Al can be obtained. During HEBM, CNTs were shortened, inserted into welded Al powder particles, bonded to Al, and still stable without CNT-Al reaction. After consolidation, Al4C3 phases formed in composites under different sintering conditions. With the increase of sintering temperature and holding time, the strength decreased. Conversely, the ductility and toughness noticeably increased. As a result, a good balance between strength (367 MPa in ultimate tensile strength) and ductility (13% in elongation) was achieved in the as-extruded CNT/Al composite sintered at 630°C with a holding time of 300 min.

  19. Biofunctionalization of multiwalled carbon nanotubes by electropolymerized poly(pyrrole-concanavalin A) films.

    PubMed

    Papper, Vladislav; Elouarzaki, Kamal; Gorgy, Karine; Sukharaharja, Ayrine; Cosnier, Serge; Marks, Robert S

    2014-10-13

    The synthesis and electropolymerization of a pyrrolic concanavalin A derivative (pyrrole-Con A) onto a multiwalled carbon nanotube (MWCNT) deposit is reported. Glucose oxidase was then immobilized onto the MWCNT-poly(pyrrole-Con A) coating by affinity carbohydrate interactions with the polymerized Con A protein. The resulting enzyme electrode was applied to the amperometric detection of glucose exhibiting a high sensitivity of 36 mA cm(-2) mol(-1) L and a maximum current density of 350 μA cm(-2) . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nanoscale welding of multi-walled carbon nanotubes by 1064 nm fiber laser

    NASA Astrophysics Data System (ADS)

    Yuan, Yanping; Liu, Zhi; Zhang, Kaihu; Han, Weina; Chen, Jimin

    2018-07-01

    This study proposes an efficient approach which uses 1064 nm continuous fiber laser to achieve nanoscale welding of crossed multi-walled carbon nanotubes (MWCNTs). By changing the irradiation time, different quality of nanoscale welding is obtained. The morphology changes are investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). The experiments demonstrate that better quality of MWCNTs nanoscale welding after 3 s irradiation can be obtained. It is found that new graphene layers between crossed nanotubes induced by laser make the nanoscale welding achieved due to the absorption of laser energy.

  1. Highly selective electrodeposition of sub-10 nm crystalline noble metallic nanorods inside vertically aligned multiwall carbon nanotubes.

    PubMed

    Wang, Xuyang; Wang, Ranran; Wu, Qiang; Zhang, Xiaohua; Yang, Zhaohui; Guo, Jun; Chen, Muzi; Tang, Minghua; Cheng, Yajun; Chu, Haibin

    2016-07-08

    In this paper crystalline noble metallic nanorods including Au and Ag with sub-10 nm diameter, are encapsulated within prealigned and open-ended multiwall carbon nanotubes (MWCNTs) through an electrodeposition method. As the external surface of CNTs has been insulated by the epoxy the CNT channel becomes the only path for the mass transport as well as the nanoreactor for the metal deposition. Highly crystallized Au and Ag2O nanorods parallel to the radial direction of CNTs are confirmed by high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy and x-ray powder diffraction spectroscopy. The Ag2O nanorods are formed by air oxidation on the Ag metals and show a single crystalline structure with (111) planes. The Au nanorods exhibit a complex crystalline structure including twin-crystal and lattice dislocation with (111) and (200) planes. These crystalline noble metallic nanostructures may have important applications for nanocatalysts for fuel cells as well as nanoelectronic and nanophotonic devices. This method is deemed to benefit the precise deposition of other crystalline nanostructures inside CNTs with a small diameter.

  2. Highly selective electrodeposition of sub-10 nm crystalline noble metallic nanorods inside vertically aligned multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Xuyang; Wang, Ranran; Wu, Qiang; Zhang, Xiaohua; Yang, Zhaohui; Guo, Jun; Chen, Muzi; Tang, Minghua; Cheng, Yajun; Chu, Haibin

    2016-07-01

    In this paper crystalline noble metallic nanorods including Au and Ag with sub-10 nm diameter, are encapsulated within prealigned and open-ended multiwall carbon nanotubes (MWCNTs) through an electrodeposition method. As the external surface of CNTs has been insulated by the epoxy the CNT channel becomes the only path for the mass transport as well as the nanoreactor for the metal deposition. Highly crystallized Au and Ag2O nanorods parallel to the radial direction of CNTs are confirmed by high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy and x-ray powder diffraction spectroscopy. The Ag2O nanorods are formed by air oxidation on the Ag metals and show a single crystalline structure with (111) planes. The Au nanorods exhibit a complex crystalline structure including twin-crystal and lattice dislocation with (111) and (200) planes. These crystalline noble metallic nanostructures may have important applications for nanocatalysts for fuel cells as well as nanoelectronic and nanophotonic devices. This method is deemed to benefit the precise deposition of other crystalline nanostructures inside CNTs with a small diameter.

  3. Application of multiwalled carbon nanotubes and its magnetite derivative for emulsified oil removal from produced water.

    PubMed

    Ibrahim, Taleb H; Sabri, Muhammad A; Khamis, Mustafa I

    2018-05-10

    Multiwalled carbon nanotubes and their magnetite derivatives were employed as adsorbents for emulsified oil removal from produced water. The experimental parameters for maximum emulsified oil removal efficiency and effective regeneration of these adsorbents were determined. The optimum parameters in terms of adsorbent dosage, contact time, salinity, pH and temperature were 3.0 g/L, 20.0 min, 0 ppm, 7.0 and 25°C for both adsorbents. Due to their low density, multiwalledcarbon nanotubes could not be successfully employed in packed bed columns. The magnetite derivative has a larger density and hence, for the removal of emulsified oil from produced water packed bed column studies were performed utilizing multiwalled carbon magnetite nanotubes. The packed bed column efficiency and behaviour were evaluated using Thomas, Clark, Yan et al. and Bohart and Adams models. The Yan model was found to best describe the column experimental data. The adsorbents were regenerated using n-hexane and reused several times for oil removal from produced water without any significant decrease in their initial adsorption capacities.

  4. Electrochemical sensor for terbutaline sulfate based on a glassy carbon electrode modified with grapheme and multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Zhou; Hua, Xin; Pei, Hongying; Shen, Yuan; Shen, Guijun

    2017-12-01

    A glass carbon electrode was prepared that coated with a composite film containing grapheme and multi-walled carbon nanotubes. It was used to study the electrochemical response of terbutaline sulfate. Under the optimized conditions, the oxidation peak current was found to be proportional to its concentration in the range of 0.2-5 μmol·L-1 and 5-40 μmol·L-1).Compared with the bare GC electrode, the GN-MWNTs-modified GC (GN-MWNTs/GC) had many advantages such as relatively high sensitivity, good stability and long life time. The modified electrode was used to determine the TES tablets with satisfactory results.

  5. Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake.

    PubMed

    Miralles, Pola; Johnson, Errin; Church, Tamara L; Harris, Andrew T

    2012-12-07

    Data on the bioavailability and toxicity of carbon nanotubes (CNTs) in the environment, and, in particular, on their interactions with vascular plants, are limited. We investigated the effects of industrial-grade multiwalled CNTs (75 wt% CNTs) and their impurities on alfalfa and wheat. Phytotoxicity assays were performed during both seed germination and seedling growth. The germinations of both species were tolerant of up to 2560 mg l(-1) CNTs, and root elongation was enhanced in alfalfa and wheat seedlings exposed to CNTs. Remarkably, catalyst impurities also enhanced root elongation in alfalfa seedlings as well as wheat germination. Thus the impurities, not solely the CNTs, impacted the plants. CNT internalization by plants was investigated using electron microscopy and two-dimensional Raman mapping. The latter showed that CNTs were adsorbed onto the root surfaces of alfalfa and wheat without significant uptake or translocation. Electron microscopy investigations of internalization were inconclusive owing to poor contrast, so Fe(3)O(4)-functionalized CNTs were prepared and studied using energy-filter mapping of Fe(3)O(4). CNTs bearing Fe(3)O(4) nanoparticles were detected in the epidermis of one wheat root tip only, suggesting that internalization was possible but unusual. Thus, alfalfa and wheat tolerated high concentrations of industrial-grade multiwalled CNTs, which adsorbed onto their roots but were rarely taken up.

  6. Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake

    PubMed Central

    Miralles, Pola; Johnson, Errin; Church, Tamara L.; Harris, Andrew T.

    2012-01-01

    Data on the bioavailability and toxicity of carbon nanotubes (CNTs) in the environment, and, in particular, on their interactions with vascular plants, are limited. We investigated the effects of industrial-grade multiwalled CNTs (75 wt% CNTs) and their impurities on alfalfa and wheat. Phytotoxicity assays were performed during both seed germination and seedling growth. The germinations of both species were tolerant of up to 2560 mg l−1 CNTs, and root elongation was enhanced in alfalfa and wheat seedlings exposed to CNTs. Remarkably, catalyst impurities also enhanced root elongation in alfalfa seedlings as well as wheat germination. Thus the impurities, not solely the CNTs, impacted the plants. CNT internalization by plants was investigated using electron microscopy and two-dimensional Raman mapping. The latter showed that CNTs were adsorbed onto the root surfaces of alfalfa and wheat without significant uptake or translocation. Electron microscopy investigations of internalization were inconclusive owing to poor contrast, so Fe3O4-functionalized CNTs were prepared and studied using energy-filter mapping of Fe3O4. CNTs bearing Fe3O4 nanoparticles were detected in the epidermis of one wheat root tip only, suggesting that internalization was possible but unusual. Thus, alfalfa and wheat tolerated high concentrations of industrial-grade multiwalled CNTs, which adsorbed onto their roots but were rarely taken up. PMID:22977097

  7. Copper Multiwall Carbon Nanotubes and Copper-Diamond Composites for Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Ellis, Dave L.; Smelyanskiy, Vadim; Foygel, Michael; Singh, Jogender; Rape, Aaron; Vohra, Yogesh; Thomas, Vinoy; Li, Deyu; Otte, Kyle

    2013-01-01

    This paper reports on the research effort to improve the thermal conductivity of the copper-based alloy NARloy-Z (Cu-3 wt.%Ag-0.5 wt.% Zr), the state-of-the-art alloy used to make combustion chamber liners in regeneratively-cooled liquid rocket engines, using nanotechnology. The approach was to embed high thermal conductivity multiwall carbon nanotubes (MWCNTs) and diamond (D) particles in the NARloy-Z matrix using powder metallurgy techniques. The thermal conductivity of MWCNTs and D have been reported to be 5 to 10 times that of NARloy-Z. Hence, 10 to 20 vol. % MWCNT finely dispersed in NARloy-Z matrix could nearly double the thermal conductivity, provided there is a good thermal bond between MWCNTs and copper matrix. Quantum mechanics-based modeling showed that zirconium (Zr) in NARloy-Z should form ZrC at the MWCNT-Cu interface and provide a good thermal bond. In this study, NARloy-Z powder was blended with MWCNTs in a ball mill, and the resulting mixture was consolidated under high pressure and temperature using Field Assisted Sintering Technology (FAST). Microstructural analysis showed that the MWCNTs, which were provided as tangles of MWCNTs by the manufacturer, did not detangle well during blending and formed clumps at the prior particle boundaries. The composites made form these powders showed lower thermal conductivity than the base NARloy-Z. To eliminate the observed physical agglomeration, tangled multiwall MWCNTs were separated by acid treatment and electroless plated with a thin layer of chromium to keep them separated during further processing. Separately, the thermal conductivities of MWCNTs used in this work were measured, and the results showed very low values, a major factor in the low thermal conductivity of the composite. On the other hand, D particles embedded in NARloy-Z matrix showed much improved thermal conductivity. Elemental analysis showed migration of Zr to the NARloy-Z-D interface to form ZrC, which appeared to provide a low contact

  8. Copper-Multiwall Carbon Nanotubes and Copper-Diamond Composites for Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Ellis, Dave L.; Smelyanskiy, Vadim; Foygel, Michael; Rape, Aaron; Singh, Jogender; Vohra, Yogesh K.; Thomas, Vinoy; Otte, Kyle G.; Li, Deyu

    2013-01-01

    This paper reports on the research effort to improve the thermal conductivity of the copper-based alloy NARloy-Z (Cu-3 wt.%Ag-0.5 wt.% Zr), the state-of-the-art alloy used to make combustion chamber liners in regeneratively-cooled liquid rocket engines, using nanotechnology. The approach was to embed high thermal conductivity multiwall carbon nanotubes (MWCNTs) and diamond (D) particles in the NARloy-Z matrix using powder metallurgy techniques. The thermal conductivity of MWCNTs and D have been reported to be 5 to 10 times that of NARloy-Z. Hence, 10 to 20 vol. % MWCNT finely dispersed in NARloy-Z matrix could nearly double the thermal conductivity, provided there is a good thermal bond between MWCNTs and copper matrix. Quantum mechanics-based modeling showed that zirconium (Zr) in NARloy-Z should form ZrC at the MWCNT-Cu interface and provide a good thermal bond. In this study, NARloy-Z powder was blended with MWCNTs in a ball mill, and the resulting mixture was consolidated under high pressure and temperature using Field Assisted Sintering Technology (FAST). Microstructural analysis showed that the MWCNTs, which were provided as tangles of MWCNTs by the manufacturer, did not detangle well during blending and formed clumps at the prior particle boundaries. The composites made form these powders showed lower thermal conductivity than the base NARloy-Z. To eliminate the observed physical agglomeration, tangled multiwall MWCNTs were separated by acid treatment and electroless plated with a thin layer of chromium to keep them separated during further processing. Separately, the thermal conductivities of MWCNTs used in this work were measured, and the results showed very low values, a major factor in the low thermal conductivity of the composite. On the other hand, D particles embedded in NARloy-Z matrix showed much improved thermal conductivity. Elemental analysis showed migration of Zr to the NARloy-Z-D interface to form ZrC, which appeared to provide a low contact

  9. Chemical splitting of multiwalled carbon nanotubes to enhance electrochemical capacitance for supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Xinlu; Li, Tongtao; Zhang, Xinlin; Zhong, Qineng; Li, Hongyi; Huang, Jiamu

    2014-06-01

    Multiwalled carbon nanotubes (MWCNTs) were chemically split and self-assembled to a flexible porous paper made of graphene oxide nanoribbons (GONRs). The morphology and microstructure of the pristine MWCNTs and GONRs were analyzed by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, Raman spectroscopy and Fourier transform infrared spectroscopy. And the specific surface area and porosity structure were measured by N2 adsorption-desorption. The longitudinally split MWCNTs show an enhancement in specific capacitance from 21 F g-1 to 156 F g-1 compared with the pristine counterpart at 0.1 A g-1 in a 6 M KOH aqueous electrolytes. The electrochemical experiments prove that the chemical splitting of MWCNTs will make inner carbon layers opened and exposed to electrochemical double layers, which can effectively improve the electrochemical capacitance for supercapacitors.

  10. Elastic Response and Failure Studies of Multi-Wall Carbon Nanotube Twisted Yarns

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Jefferson, Gail D.; Frankland, Sarah-Jane V.

    2007-01-01

    Experimental data on the stress-strain behavior of a polymer multiwall carbon nanotube (MWCNT) yarn composite are used to motivate an initial study in multi-scale modeling of strength and stiffness. Atomistic and continuum length scale modeling methods are outlined to illustrate the range of parameters required to accurately model behavior. The carbon nanotubes yarns are four-ply, twisted, and combined with an elastomer to form a single-layer, unidirectional composite. Due to this textile structure, the yarn is a complicated system of unique geometric relationships subjected to combined loads. Experimental data illustrate the local failure modes induced by static, tensile tests. Key structure-property relationships are highlighted at each length scale indicating opportunities for parametric studies to assist the selection of advantageous material development and manufacturing methods.

  11. Application of NaClO-treated multiwalled carbon nanotubes as solid phase extraction sorbents for preconcentration of trace 2,4-dichlorophenoxyacetic acid in aqueous samples.

    PubMed

    Lu, Ping; Deng, Dayi; Ni, Xiaodan

    2012-09-01

    Multiwalled carbon nanotubes functionalized by oxidation of original multiwalled carbon nanotubes with NaClO were prepared and their application as solid phase extraction sorbent for 2,4-dichlorophenoxyacetic acid (2,4-D) was investigated systemically, and a new method was developed for the determination of trace 2,4-D in water samples based on extraction and preconcentration of 2,4-D with solid phase extraction columns packed with NaClO-treated multiwalled carbon nanotubes prior to its determination by HPLC. The optimum experimental parameters for preconcentration of 2,4-D, including the column activating conditions, the amount of the sorbent, pH of the sample, elution composition, and elution volume, were investigated. The results indicated 2,4-D could be quantitatively retained by 100 mg NaClO-treated multiwalled carbon nanotubes at pH 5, and then eluted completely with 10 mL 3:1 (v/v) methanol-ammonium acetate solution (0.3 mol/L). The detection limit of this method for 2,4-D was 0.15 μg/L, and the relative standard deviation was 2.3% for fortified tap water samples and 2.5% for fortified riverine water sample at the 10 μg/L level. The method was validated using fortified tap water and riverine water samples with known amount of 2,4-D at the 0.4, 10, and 30 μg/L levels, respectively. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Controlling exfoliation in order to minimize damage during dispersion of long SWCNTs for advanced composites

    PubMed Central

    Yoon, Howon; Yamashita, Motoi; Ata, Seisuke; Futaba, Don N.; Yamada, Takeo; Hata, Kenji

    2014-01-01

    We propose an approach to disperse long single-wall carbon nanotubes (SWCNTs) in a manner that is most suitable for the fabrication of high-performance composites. We compare three general classes of dispersion mechanisms, which encompass 11 different dispersion methods, and we have dispersed long SWCNTs, short multi-wall carbon nanotubes, and short SWCNTs in order to understand the most appropriate dispersion methods for the different types of CNTs. From this study, we have found that the turbulent flow methods, as represented by the Nanomizer and high-pressure jet mill methods, produced unique and superior dispersibility of long SWCNTs, which was advantageous for the fabrication of highly conductive composites. The results were interpreted to imply that the biaxial shearing force caused an exfoliation effect to disperse the long SWCNTs homogeneously while suppressing damage. A conceptual model was developed to explain this dispersion mechanism, which is important for future work on advanced CNT composites. PMID:24469607

  13. KOH-activated multi-walled carbon nanotubes as platinum supports for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    He, Chaoxiong; Song, Shuqin; Liu, Jinchao; Maragou, Vasiliki; Tsiakaras, Panagiotis

    In the present investigation, multi-walled carbon nanotubes (MWCNTs) thermally treated by KOH were adopted as the platinum supporting material for the oxygen reduction reaction electrocatalysts. FTIR and Raman spectra were used to investigate the surface state of MWCNTs treated by KOH at different temperatures (700, 800, and 900 °C) and showed MWCNTs can be successfully functionalized. The structural properties of KOH-activated MWCNTs supported Pt were determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and their electrochemical performance was evaluated by the aid of cyclic voltammetry (CV) and rotating disk electrode (RDE) voltammetry. According to the experimental findings of the present work, the surrface of MWCNTs can be successfully functionalized with oxygen-containing groups after activation by KOH, favoring the good dispersion of Pt nanoparticles with narrow size distribution. The as-prepared Pt catalysts supported on KOH treated MWCNTs at higher temperature, possess higher electrochemical surface area and exhibit desirable activity towards oxygen reduction reaction (ORR). More precisely, it has been found that the electrochemical active area of Pt/MWCNTs-900 is approximately two times higher than that of Pt/MWCNTs. It can be concluded that KOH activation is an effective way to decorate MWCNTs' surface with oxygen-containing groups and bigger surface area, which makes them more suitable as electrocatalyst support materials.

  14. Construction of an electrochemical sensor based on the electrodeposition of Au-Pt nanoparticles mixtures on multi-walled carbon nanotubes film for voltammetric determination of cefotaxime.

    PubMed

    Shahrokhian, Saeed; Rastgar, Shokoufeh

    2012-06-07

    Mixtures of gold-platinum nanoparticles (Au-PtNPs) are fabricated consecutively on a multi-walled carbon nanotubes (MWNT) coated glassy carbon electrode (GCE) by the electrodeposition method. The surface morphology and nature of the hybrid film (Au-PtNPs/MWCNT) deposited on glassy carbon electrodes is characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The modified electrode is used as a new and sensitive electrochemical sensor for the voltammetric determination of cefotaxime (CFX). The electrochemical behavior of CFX is investigated on the surface of the modified electrode using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable improvement in the oxidation peak current of CFX compared to glassy carbon electrodes individually coated with MWCNT or Au-PtNPs. Under the optimized conditions, the modified electrode showed a wide linear dynamic range of 0.004-10.0 μM with a detection limit of 1.0 nM for the voltammetric determination of CFX. The modified electrode was successfully applied for the accurate determination of trace amounts of CFX in pharmaceutical and clinical preparations.

  15. Dispersion of Co/CNTs via strong electrostatic adsorption method: Thermal treatment effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbarzadeh, Omid, E-mail: omid.akbarzadeh63@gmail.com; Abdullah, Bawadi, E-mail: bawadi-abdullah@petronas.com.my; Subbarao, Duvvuri, E-mail: duvvuri-subbarao@petronas.com.my

    The effect of different thermal treatment temperature on the structure of multi-walled carbon nanotubes (MWCNTs) and Co particle dispersion on CNTs support is studied using Strong electrostatic adsorption (SEA) method. The samples tested by N{sub 2}-adsorption, field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). N{sub 2}-adsorption results showed BET surface area increased using thermal treatment and TEM images showed that increasing the thermal treatment temperature lead to flaky CNTs and defects introduced on the outer surface and Co particle dispersion increased.

  16. Effect of multiwalled carbon nanotubes on UASB microbial consortium.

    PubMed

    Yadav, Tushar; Mungray, Alka A; Mungray, Arvind K

    2016-03-01

    The continuous rise in production and applications of carbon nanotubes (CNTs) has grown a concern about their fate and toxicity in the environment. After use, these nanomaterials pass through sewage and accumulate in wastewater treatment plants. Since, such plants rely on biological degradation of wastes; their activity may decrease due to the presence of CNTs. This study investigated the effect of multiwalled carbon nanotubes (MWCNTs) on upflow anaerobic sludge blanket (UASB) microbial activity. The toxic effect on microbial viability, extracellular polymeric substances (EPS), volatile fatty acids (VFA), and biogas generation was determined. The reduction in a colony-forming unit (CFU) was 29 and 58 % in 1 and 100 mg/L test samples, respectively, as compared to control. The volatile fatty acids and biogas production was also found reduced. The scanning electron microscopy (SEM) and fluorescent microscopy images confirmed that the MWCNT mediated microbial cell damage. This damage caused the increase in EPS carbohydrate, protein, and DNA concentration. Fourier transform infrared (FTIR) spectroscopy results supported the alterations in sludge EPS due to MWCNT. Our observations offer a new insight to understand the nanotoxic effect of MWCNTs on UASB microflora in a complex environment system.

  17. Graphite nanoplatelets/multiwalled carbon nanotubes hybrid nanostructure for electrochemical capacitor.

    PubMed

    Mishra, Ashish Kumar; Ramaprabhu, S

    2012-08-01

    Recently, the focus on carbon based nanostructures for various applications has been due to their novel properties such as high electrical conductivity, high mechanical strength and high surface area. In the present work, we have investigated the charge storage capacity of modified graphite nanoplatelets and hybrid structure of graphite nanoplatelets-multiwalled carbon nanotubes (MWNTs). These MWNTs can be used as spacers to reduce the possibility of restacking of graphite nanoplatelets and hence increases the surface area of the hybrid carbon nanostructure thereby high degree of metal oxide decoration is achieved over the hybrid structure. MWNTs were prepared by catalytic chemical vapor deposition technique and further purified with air oxidation and acid treatment. Graphite was treated with conc. nitric acid and sulphuric acid in the volumetric ratio of 1:3 for 3 days and these modified graphite nanoplatelets were further stirred with MWNTs in equal weight ratio to form hybrid nanostructure. Further, ruthenium oxide (RuO2) nanoparticles were decorated on this hybrid structure using chemical route followed by calcination. RuO2 decorated hybrid carbon nanostructure was characterized by using X-ray diffraction, Electron microscopy and Raman spectroscopy. The performance of the hybrid structure based nanocomposite as electrochemical capacitor electrodes was analyzed by studing its capacitive and charge-discharge behaviours using cyclic voltammetry and chronopotentiometry techniques and the results have been discussed.

  18. Electrochemical selective detection of dopamine on microbial carbohydrate-doped multiwall carbon nanotube-modified electrodes.

    PubMed

    Jin, Joon-Hyung; Cho, Eunae; Jung, Seunho

    2010-03-01

    Microbial carbohydrate-doped multiwall carbon nanotube (MWNT)-modified electrodes were prepared for the purpose of determining if 4-(2-aminoethyl)benzene-1,2-diol (3,4-dihydroxyphenylalanine; dopamine) exists in the presence of 0.5 mM ascorbic acid, a representative interfering agent in neurotransmitter detection. The microbial carbohydrate dopants were alpha-cyclosophorohexadecaose (alpha-C16) from Xanthomonas oryzae and cyclic-(1 --> 2)-beta-d-glucan (Cys) from Rhizobium meliloti. The cyclic voltammetric responses showed that the highest sensitivity (5.8 x 10(-3) mA cm(-2) microM(-1)) is attained with the Cys-doped MWNT-modified ultra-trace carbon electrode, and that the alpha-C16-doped MWNT-modified glassy carbon electrode displays the best selectivity to dopamine (the approximate peak potential separation is 310 mV).

  19. Subcutaneous injection of water-soluble multi-walled carbon nanotubes in tumor-bearing mice boosts the host immune activity

    NASA Astrophysics Data System (ADS)

    Meng, Jie; Yang, Man; Jia, Fumin; Kong, Hua; Zhang, Weiqi; Wang, Chaoying; Xing, Jianmin; Xie, Sishen; Xu, Haiyan

    2010-04-01

    The immunological responses induced by oxidized water-soluble multi-walled carbon nanotubes on a hepatocarcinoma tumor-bearing mice model via a local administration of subcutaneous injection were investigated. Experimental results show that the subcutaneously injected carbon nanotubes induced significant activation of the complement system, promoted inflammatory cytokines' production and stimulated macrophages' phagocytosis and activation. All of these responses increased the general activity of the host immune system and inhibited the progression of tumor growth.

  20. Nonlinear tapping dynamics of multi-walled carbon nanotube tipped atomic force microcantilevers

    NASA Astrophysics Data System (ADS)

    Lee, S. I.; Howell, S. W.; Raman, A.; Reifenberger, R.; Nguyen, C. V.; Meyyappan, M.

    2004-05-01

    The nonlinear dynamics of an atomic force microcantilever (AFM) with an attached multi-walled carbon nanotube (MWCNT) tip is investigated experimentally and theoretically. We present the experimental nonlinear frequency response of a MWCNT tipped microcantilever in the tapping mode. Several unusual features in the response distinguish it from those traditionally observed for conventional tips. The MWCNT tipped AFM probe is apparently immune to conventional imaging instabilities related to the coexistence of attractive and repulsive tapping regimes. A theoretical interaction model for the system using an Euler elastica MWCNT model is developed and found to predict several unusual features of the measured nonlinear response.

  1. Effect of Acid and Alcohol Network Forces within Functionalized Multiwall Carbon Nanotubes Bundles on Adsorption of Copper (II) Species

    EPA Science Inventory

    Adsorption of metals on carbon nanotubes (CNTs) has important applications in sensors, membranes, and water treatment. The adsorptive capacity of multiwall CNTs for copper species in water depends on the type of functional group present on their surface. The alcohol (COOH) and ac...

  2. Do goethite surfaces really control the transport and retention of multi-walled carbon nanotubes in chemically heterogeneous porous media?

    USDA-ARS?s Scientific Manuscript database

    Transport and retention behavior of multiwalled carbon nanotubes (MWCNTs) was studied in mixtures of negatively charged quartz sand (QS) and positively charged goethite-coated sand (GQS) to assess the role of chemical heterogeneity. The linear equilibrium sorption model provided a good description o...

  3. Initial Studies of the Bidirectional Reflectance Distribution Function of Multi-Walled Carbon Nanotube Structures for Stray Light Control Applications

    NASA Technical Reports Server (NTRS)

    Butler, J. J.; Tveekrem, J. L.; Quijada, M. A.; Getty, S. A.; Hagopian, J. G.; Georglev, G. T.

    2010-01-01

    The presentation examines the application of low reflectance surfaces in optical instruments, multi-walled carbon nanotubes (MWCNTs), research objects, MWCNT samples, measurement of 8 deg. directional/hemispherical reflectance, measurement of bidirectional reflectance distribution function (BRDF), and what is current the "blackest ever black".

  4. Dispersion and separation of nanostructured carbon in organic solvents

    NASA Technical Reports Server (NTRS)

    Evans, Christopher M. (Inventor); Ruf, Herbert J. (Inventor); Landi, Brian J. (Inventor); Raffaelle, Ryne P. (Inventor)

    2011-01-01

    The present invention relates to dispersions of nanostructured carbon in organic solvents containing alkyl amide compounds and/or diamide compounds. The invention also relates to methods of dispersing nanostructured carbon in organic solvents and methods of mobilizing nanostructured carbon. Also disclosed are methods of determining the purity of nanostructured carbon.

  5. Solid-phase extraction using bis(indolyl)methane-modified silica reinforced with multiwalled carbon nanotubes for the simultaneous determination of flavonoids and aromatic organic acid preservatives.

    PubMed

    Wang, Na; Liao, Yuan; Wang, Jiamin; Tang, Sheng; Shao, Shijun

    2015-12-01

    A novel bis(indolyl)methane-modified silica reinforced with multiwalled carbon nanotubes sorbent for solid-phase extraction was designed and synthesized by chemical immobilization of nitro-substituted 3,3'-bis(indolyl)methane on silica modified with multiwalled carbon nanotubes. Coupled with high-performance liquid chromatography analysis, the extraction properties of the sorbent were evaluated for flavonoids and aromatic organic acid compounds. Under optimum conditions, the sorbent can simultaneously extract five flavonoids and two aromatic organic acid preservatives in aqueous solutions in a single-step solid-phase extraction procedure. Wide linear ranges were obtained with correlation coefficients (R(2) ) ranging from 0.9843 to 0.9976, and the limits of detection were in the range of 0.5-5 μg/L for the compounds tested. Compared with the silica modified with multiwalled carbon nanotubes sorbent and the nitro-substituted 3,3'-bis(indolyl)methane-modified silica sorbent, the developed sorbent exhibited higher extraction efficiency toward the selected analytes. The synergistic effect of nitro-substituted 3,3'-bis(indolyl)methane and multiwalled carbon nanotubes not only improved the surface-to-volume ratio but also enhanced multiple intermolecular interactions, such as hydrogen bonds, π-π, and hydrophobic interactions, between the new sorbent and the selected analytes. The as-established solid-phase extraction with high-performance liquid chromatography and diode array detection method was successfully applied to the simultaneous determination of flavonoids and aromatic organic acid preservatives in grape juices with recoveries ranging from 83.9 to 112% for all the selected analytes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Linear strain sensor made of multi-walled carbon nanotube/epoxy composite

    NASA Astrophysics Data System (ADS)

    Tong, Shuying; Yuan, Weifeng; Liu, Haidong; Alamusi; Hu, Ning; Zhao, Chaoyang; Zhao, Yangzhou

    2017-11-01

    In this study, a fabrication process was developed to make the multi-walled carbon nanotubes/epoxy (MWCNT/EP) composite films. The electrical-strain behaviour of the films in direct and alternating current circuits were both tested. It is found that the direct current resistance and the dielectric loss tangent of the MWCNT/EP composite films are dependent on the strain and the weight fraction of the carbon nanotubes. In an alternating current circuit, the test frequency affects the impedance and the phase angle of the composite film, but it has nothing to do with the change ratio of the dielectric loss tangent of the film in tension. This phenomenon can be interpreted by a proposed equivalent circuit model. Experiment results show that the change rate of the dielectric loss tangent of the MWCNT/EP sensor is linearly proportional to the strain. The findings obtained in the present study provide a promising method to develop ultrasensitive linear strain gauges.

  7. Monolayer formation of human osteoblastic cells on vertically aligned multiwalled carbon nanotube scaffolds.

    PubMed

    Lobo, Anderson O; Antunes, Erica F; Palma, Mariana Bs; Pacheco-Soares, Cristina; Trava-Airoldi, Vladimir J; Corat, Evaldo J

    2010-03-12

    Monolayer formation of SaOS-2 (human osteoblast-like cells) was observed on VACNT (vertically aligned multiwalled carbon nanotubes) scaffolds without purification or functionalization. The VACNT were produced by a microwave plasma chemical vapour deposition on titanium surfaces with nickel or iron as catalyst. Cell viability and morphology studies were evaluated by LDH (lactate dehydrogenase) release assay and SEM (scanning electron microscopy), respectively. The non-toxicity and the flat spreading with monolayer formation of the SaOs-2 on VACNT scaffolds surface indicate that they can be used for biomedical applications.

  8. Highly Conductive Flexible Multi-Walled Carbon Nanotube Sheet Films for Transparent Touch Screen

    NASA Astrophysics Data System (ADS)

    Jung, Daewoong; Lee, Kyung Hwan; Kim, Donghyun; Burk, Dorothea; Overzet, Lawrence J.; Lee, Gil Sik

    2013-03-01

    Highly conductive and transparent thin films were prepared using highly purified multi-walled carbon nanotube (MWCNT) sheets. The electrical properties of the MWCNT sheet were remarkably improved by an acid treatment, resulting in densely packed MWCNTs. The morphology of the sheets reveals that continuous electrical pathways were formed by the acid treatment, greatly improving the sheet resistance all the while maintaining an excellent optical transmittance. These results encourage the use of these MWCNT sheets with low sheet resistance (450 Ω/sq) and high optical transmittance (90%) as a potential candidate for flexible display applications.

  9. Sn/MWCNT Nanocomposites Fabricated by Ultrasonic Dispersion of Ni-Coated MWCNTs in Molten Tin

    NASA Astrophysics Data System (ADS)

    Billah, Md Muktadir; Chen, Quanfang

    2018-04-01

    Carbon nanotubes (CNTs) are regarded as a desirable filler to develop advanced composites including advanced solders due to their exceptional mechanical properties. However, some issues remain unsolved for metallic composites owing to "wetting" and nonuniform dispersion of CNTs. In this study, electroless nickel coating onto CNTs was used to overcome these issues. Multiwalled carbon nanotubes (MWCNTs) were used for this study, and Ni-coated MWCNTs were dispersed in molten Sn assisted by sonication and compared with MWCNTs without Ni coating. Adding 3 wt.% Ni-coated MWCNTs, which corresponds to 0.6 wt.% pure CNTs, resulted in an increase in tensile strength by 95% and hardness by 123%. Nickel coating also prevented separation of the CNTs from the molten metal due to buoyancy effects, leading to more uniform dispersion.

  10. Vertically aligned multiwalled carbon nanotubes for pressure, tactile and vibration sensing.

    PubMed

    Yilmazoglu, O; Popp, A; Pavlidis, D; Schneider, J J; Garth, D; Schüttler, F; Battenberg, G

    2012-03-02

    We report a simple method for the micro-nano integration of flexible, vertically aligned multiwalled CNT arrays sandwiched between a top and bottom carbon layer via a porous alumina (Al(2)O(3)) template approach. The electromechanical properties of the flexible CNT arrays have been investigated under mechanical stress conditions. First experiments show highly sensitive piezoresistive sensors with a resistance decrease of up to ∼35% and a spatial resolution of <1 mm. The results indicate that these CNT structures can be utilized for tactile sensing components. They also confirm the feasibility of accessing and utilizing nanoscopic CNT bundles via lithographic processing. The method involves room-temperature processing steps and standard microfabrication techniques.

  11. Selective electrochemical reduction of CO2 to CO with a cobalt chlorin complex adsorbed on multi-walled carbon nanotubes in water.

    PubMed

    Aoi, Shoko; Mase, Kentaro; Ohkubo, Kei; Fukuzumi, Shunichi

    2015-06-25

    Electrocatalytic reduction of CO2 occurred efficiently using a glassy carbon electrode modified with a cobalt(II) chlorin complex adsorbed on multi-walled carbon nanotubes at an applied potential of -1.1 V vs. NHE to yield CO with a Faradaic efficiency of 89% with hydrogen production accounting for the remaining 11% at pH 4.6.

  12. Control of tunnel barriers in multi-wall carbon nanotubes using focused ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Tomizawa, H.; Suzuki, K.; Yamaguchi, T.; Akita, S.; Ishibashi, K.

    2017-04-01

    We have formed tunnel barriers in individual multi-wall carbon nanotubes using the Ga focused ion beam irradiation. The barrier height was estimated by the temperature dependence of the current (Arrhenius plot) and the current-voltage curves (Fowler-Nordheim plot). It is shown that the barrier height has a strong correlation with the barrier resistance that is controlled by the dose. Possible origins for the variation in observed barrier characteristics are discussed. Finally, the single electron transistor with two barriers is demonstrated.

  13. Effects of multi-walled carbon nanotube materials on Ruditapes philippinarum under climate change: The case of salinity shifts.

    PubMed

    De Marchi, Lucia; Neto, Victor; Pretti, Carlo; Figueira, Etelvina; Chiellini, Federica; Morelli, Andrea; Soares, Amadeu M V M; Freitas, Rosa

    2018-06-01

    The toxicity of carbon nanotubes (CNTs) is closely related to their physico-chemical characteristics as well as the physico-chemical parameters of the media where CNTs are dispersed. In a climate change scenario, changes in seawater salinity are becoming a topic of concern particularly in estuarine and coastal areas. Nevertheless, to our knowledge no information is available on how salinity shifts may alter the sensitivity (in terms of biochemical responses) of bivalves when exposed to different CNTs. For this reason, a laboratory experiment was performed exposing the Manila clam Ruditapes philippinarum, one of the most dominant bivalves of the estuarine and coastal lagoon environments, for 28 days to unfunctionalized multi-walled carbon nanotube MWCNTs (Nf-MWCNTs) and carboxylated MWCNTs (f-MWCNTs), maintained at control salinity (28) and low salinity 21. Concentration-dependent toxicity was demonstrated in individuals exposed to both MWCNT materials and under both salinities, generating alterations of energy reserves and metabolism, oxidative status and neurotoxicity compared to non-contaminated clams. Moreover, our results showed greater toxic impacts induced in clams exposed to f-MWCNTs compared to Nf-MWCNTs. In the present study it was also demonstrated how salinity shifts altered the toxicity of both MWCNT materials as well as the sensitivity of R. philippinarum exposed to these contaminates in terms of clam metabolism, oxidative status and neurotoxicity. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Multiwall carbon nanotube and poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) composite films for transistor and inverter devices.

    PubMed

    Yun, Dong-Jin; Hong, KiPyo; Kim, Se hyun; Yun, Won-Min; Jang, Jae-young; Kwon, Woo-Sung; Park, Chan-Eon; Rhee, Shi-Woo

    2011-01-01

    Highly conductive multiwalled carbon nanotube (MWNT)/Poly(3,4-ethylenedioxythiophene) polymerized with poly(4-styrenesulfonate) (PEDOT:PSS) films were prepared by spin coating a mixture solution. The solution was prepared by dispersing MWNT in the PEDOT:PSS solution in water using ultrasonication without any oxidation process. The effect of the MWNT loading in the solution on the film properties such as surface roughness, work function, surface energy, optical transparency, and conductivity was studied. The conductivity of MWNT/PEDOT:PSS composite film was increased with higher MWNT loading and the high conductivity of MWNT/PEDOT:PSS films enabled them to be used as a source/drain electrode in organic thin film transistor (OTFT). The pentacene TFT with MWNT/PEDOT:PSS S/D electrode showed much higher performance with mobility about 0.2 cm²/(V s) and on/off ratio about 5 × 10⁵ compared to that with PEDOT:PSS S/D electrode (∼0.05 cm²/(V s), 1 × 10⁵). The complementary inverters exhibited excellent characteristics, including high gain value of about 30.

  15. Polyvinyl alcohol (PVA)-cellulose nanofibril (CNF)-multiwalled carbon nanotube (MWCNT) hybrid organic aerogels with superior mechanical properties

    Treesearch

    Qifeng Zheng; Alireza Javadi; Ronald Sabo; Zhiyong Cai; Shaoqin Gong

    2013-01-01

    Polyvinyl alcohol (PVA)–cellulose nanofibril (CNF)–multiwalled carbon nanotube (MWCNT) hybrid organic aerogels were prepared using an environmentally friendly freeze-drying process with renewable materials. The material properties of these “green” hybrid aerogels were characterized extensively using various techniques. It was found that adding a small amount of CNFs...

  16. Characterization of Multiwalled Carbon Nanotube-Reinforced Hydroxyapatite Composites Consolidated by Spark Plasma Sintering

    PubMed Central

    Kim, Duk-Yeon; Han, Young-Hwan; Lee, Jun Hee; Kang, Inn-Kyu; Jang, Byung-Koog; Kim, Sukyoung

    2014-01-01

    Pure HA and 1, 3, 5, and 10 vol% multiwalled carbon nanotube- (MWNT-) reinforced hydroxyapatite (HA) were consolidated using a spark plasma sintering (SPS) technique. The relative density of pure HA increased with increasing sintering temperature, but that of the MWNT/HA composite reached almost full density at 900°C, and then decreased with further increases in sintering temperature. The relative density of the MWNT/HA composites increased with increasing MWNT content due to the excellent thermal conductivity of MWNTs. The grain size of MWNT/HA composites decreased with increasing MWNT content and increased with increasing sintering temperature. Pull-out toughening of the MWNTs of the MWNT/HA composites was observed in the fractured surface, which can be used to predict the improvement of the mechanical properties. On the other hand, the existence of undispersed or agglomerate MWNTs in the MWNT/HA composites accompanied large pores. The formation of large pores increased with increasing sintering temperature and MWNT content. The addition of MWNT in HA increased the hardness and fracture toughness by approximately 3~4 times, despite the presence of large pores produced by un-dispersed MWNTs. This provides strong evidence as to why the MWNTs are good candidates as reinforcements for strengthening the ceramic matrix. The MWNT/HA composites did not decompose during SPS sintering. The MWNT-reinforced HA composites were non-toxic and showed a good cell affinity and morphology in vitro for 1 day. PMID:24724100

  17. Antibacterial activity and cytotoxicity of multi-walled carbon nanotubes decorated with silver nanoparticles

    PubMed Central

    Seo, Youngmin; Hwang, Jangsun; Kim, Jieun; Jeong, Yoon; Hwang, Mintai P; Choi, Jonghoon

    2014-01-01

    Recently, various nanoscale materials, including silver (Ag) nanoparticles, have been actively studied for their capacity to effectively prevent bacterial growth. A critical challenge is to enhance the antibacterial properties of nanomaterials while maintaining their biocompatibility. The conjugation of multiple nanomaterials with different dimensions, such as spherical nanoparticles and high-aspect-ratio nanotubes, may increase the target-specific antibacterial capacity of the consequent nanostructure while retaining an optimal biocompatibility. In this study, multi-walled carbon nanotubes (MWCNTs) were treated with a mixture of acids and decorated with Ag nanoparticles via a chemical reduction of Ag cations by ethanol solution. The synthesized Ag-MWCNT complexes were characterized by transmission electron microscopy, X-ray diffractometry, and energy-dispersive X-ray spectroscopy. The antibacterial function of Ag-MWCNTs was evaluated against Methylobacterium spp. and Sphingomonas spp. In addition, the biocompatibility of Ag-MWCNTs was evaluated using both mouse liver hepatocytes (AML 12) and human peripheral blood mononuclear cells. Finally, we determined the minimum amount of Ag-MWCNTs required for a biocompatible yet effective antibacterial treatment modality. We report that 30 μg/mL of Ag-MWCNTs confers antibacterial functionality while maintaining minimal cytotoxicity toward both human and animal cells. The results reported herein would be beneficial for researchers interested in the efficient preparation of hybrid nanostructures and in determining the minimum amount of Ag-MWCNTs necessary to effectively hinder the growth of bacteria. PMID:25336943

  18. Structural dependence of the multi-functionalized carbon nanotubes to the substituents on the grafted diazo compounds

    NASA Astrophysics Data System (ADS)

    Amiri, Rahebeh; Rasouli, Sousan; Ghasemi, Alireza; Eghbali, Babak; Mohammadi, Soutodeh

    2014-05-01

    Systematic studies on the covalent functionalization of multi-walled carbon nanotubes were performed by a series of azo molecules with different substituents. For this investigation, 4-substituted diazonium reagents have been used in the reaction with the functionalized multi-walled carbon nanotubes. We analyzed the effect of the substituted groups on the diazo component affinity in the grafting. Also, the structural differences of the final products were evaluated by visual dispersion test, UV-Vis absorption. Fourier transforms infrared, Raman, and several complementary techniques (scanning electron microscopy, thermal gravimetric analysis, and colorimetry test). Nuclear magnetic resonance spectroscopy has been used to confirm the allylic protons attached to the surface of carbon nanotubes after functionalization.

  19. Transport and retention of multi-walled carbon nanotubes in saturated porous media: Effects of input concentration and grain size

    USDA-ARS?s Scientific Manuscript database

    Water-saturated column experiments were conducted to investigate the effect of input concentration (Co) and sand grain size on the transport and retention of low concentrations (1, 0.01, and 0.005 mg L/1) of functionalized 14C-labeled multi-walled carbon nanotubes (MWCNT) under repulsive electrostat...

  20. Methods of Functionalization of Carbon Nanotubes by Photooxidation

    NASA Technical Reports Server (NTRS)

    Lebron-Colon, Marisabel (Inventor); Meador, Michael A. (Inventor)

    2016-01-01

    A method of photooxidizing carbon nanotubes, such as single-walled and multi-walled carbon nanotubes. The nanotubes are purified and dispersed in a solvent, such as n-methyl pyrrolidinone or dimethylformamide. A singlet oxygen sensitizer like Rose Bengal is added to the solution. Oxygen gas is continuously supplied while irradiating the solution while irradiating the solution with ultraviolet light to produce singlet oxygen to oxidize the single-walled carbon nanotubes. Advantageously, the method significantly increases the level of oxidation compared with prior art methods.

  1. Cellular cytotoxic response induced by highly purified multi-wall carbon nanotube in human lung cells.

    PubMed

    Tsukahara, Tamotsu; Haniu, Hisao

    2011-06-01

    Carbon nanotubes, a promising nanomaterial with unique characteristics, have applications in a variety of fields. The cytotoxic effects of carbon nanotubes are partially due to the induction of oxidative stress; however, the detailed mechanisms of nanotube cytotoxicity and their interaction with cells remain unclear. In this study, the authors focus on the acute toxicity of vapor-grown carbon fiber, HTT2800, which is one of the most highly purified multi-wall carbon nanotubes (MWCNT) by high-temperature thermal treatment. The authors exposed human bronchial epithelial cells (BEAS-2B) to HTT2800 and measured the cellular uptake, mitochondrial function, cellular LDH release, apoptotic signaling, reactive oxygen species (ROS) generation and pro-inflammatory cytokine release. The HTT2800-exposed cells showed cellular uptake of the carbon nanotube, increased cell death, enhanced DNA damage, and induced cytokine release. However, the exposed cells showed no obvious intracellular ROS generation. These cellular and molecular findings suggest that HTT2800 could cause a potentially adverse inflammatory response in BEAS-2B cells.

  2. Polymeric monolith column composited with multiwalled carbon nanotubes-β-cyclodextrin for the selective extraction of psoralen and isopsoralen.

    PubMed

    Ling, Xu; Zou, Li; Chen, Zilin

    2017-09-01

    A polymeric column that contains multiwalled carbon nanotubes-β-cyclodextrin composite was developed. The composite was wrapped into the poly(butyl methacrylate-ethylene dimethacrylate) monolith column (0.76 mm id and 10 cm in length). The column was then applied for the online solid-phase microextraction of psoralen and isopsoralen from Fructus Psoraleae. Following microextraction, the coumarins were quantified by high-performance liquid chromatography with C 18 separation column and UV detection. The effects of sample flow rate, sample volume, and pH value were optimized. The method showed low limits of detection (20 pg/mL, S/N = 3) for both psoralen and isopsoralen. Finally the method was successfully applied to the determination of psoralen and isopsoralen in spiked herb extracts and rat plasma where it gave recoveries that ranged between 93.2 and 102.1%. The empty hydrophobic cavities of β-cyclodextrin and the hydrophobicity of multiwalled carbon nanotubes provided specific extraction capability for psoralen and isopsoralen. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Mobility of multiwalled carbon nanotubes in porous media.

    PubMed

    Liu, Xueying; O'Carroll, Denis M; Petersen, Elijah J; Huang, Qingguo; Anderson, C Lindsay

    2009-11-01

    Engineered multiwalled carbon nanotubes (MWCNTs) are the subject of intense research and are expected to gain widespread usage in a broad variety of commercial products. However, concerns have been raised regarding potential environmental and human health risks. The mobility of MWCNTs in porous media is examined in this study using one-dimensional flow-through column experiments under conditions representative of subsurface and drinking water treatment systems. Results demonstrate that pore water velocity strongly influenced MWCNT transport, with high MWCNT mobility at pore water velocities greater than 4.0 m/d. A numerical simulator, which incorporated a newly developed theoretical collector efficiency relationship for MWCNTs in spherical porous media, was developed to model observed column results. The model, which incorporated traditional colloid filtration theory in conjunction with a site-blocking term, yielded good agreement with observed results in quartz sand-packed column experiments. Experiments were also conducted in glass bead-packed columns with the same mean grain size as the quartz sand-packed columns. MWCNTs were more mobile in the glass bead-packed columns.

  4. Immobilization of ruthenium phthalocyanine on silica-coated multi-wall partially oriented carbon nanotubes: Electrochemical detection of fenitrothion pesticide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canevari, Thiago C., E-mail: tccanevari@gmail.com; Prado, Thiago M.; Cincotto, Fernando H.

    Highlights: • Hybrid material, SiO{sub 2}/MWCNTs containing ruthenium phthalocyanine (RuPc) synthesized in situ. • Silica containing multi-walled carbon nanotube partially oriented. • Determination of pesticide fenitrothion in orange juice. - Abstract: This paper reports on the determination of the pesticide fenitrothion using a glassy carbon electrode modified with silica-coated, multi-walled, partially oriented carbon nanotubes, SiO{sub 2}/MWCNTs, containing ruthenium phthalocyanine (RuPc) synthesized in situ. The hybrid SiO{sub 2}/MWCNTs/RuPc material was characterized by UV–vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and differential pulse voltammetry. The modified electrode showed well-defined peaks in the presencemore » of fenitrothion in acetate buffer, pH 4.5, with a sensitivity of 0.0822 μA μM{sup −1} mm{sup −2} and a detection limit of 0.45 ppm. Notably, the modified SiO{sub 2}/MWCNTs/RuPc electrodes with did not suffer from significant influences in the presence of other organophosphorus pesticides during the determination of the fenitrothion pesticide. Moreover, this modified electrode showed excellent performance in the determination of fenitrothion in orange juice.« less

  5. Study on interfacial and mechanical improvement of carbon fiber/epoxy composites by depositing multi-walled carbon nanotubes on fibers

    NASA Astrophysics Data System (ADS)

    Xiao, Chufan; Tan, Yefa; Wang, Xiaolong; Gao, Li; Wang, Lulu; Qi, Zehao

    2018-07-01

    To improve the interfacial properties between carbon fiber (CF) and epoxy resin (EP), T300 carbon fibers were coated with multi-walled carbon nanotubes (MWCNTs) using aqueous suspension deposition method. The carbon fiber/epoxy laminated composites were prepared by molding process. The wettability and interfacial properties between MWCNTs deposited carbon fibers (MWCNTs-T300) and EP were studied. The mechanical properties of carbon fiber/epoxy laminated composites were tested, and the mechanism of the interface strengthening was discussed. The results show that the surface energy of T300 carbon fiber is obviously increased after MWCNT deposition. The contact angle between MWCNTs-T300 and EP is reduced, and the interfacial energy and adhesion work are greatly improved. The MWCNTs-T300/EP laminated composites have excellent mechanical properties, the flexural strength is 822 MPa, the tensile strength is 841 MPa, and the interlaminar shear strength (ILSS) is 25.68 MPa, which are increased by 15.1%, 17.6% and 12.6% compared with those of the original carbon fiber/EP laminated composites (original T300/EP) respectively. The MWCNTs-T300/EP composites have good interface bonding performance, low porosity and uniform fiber distribution. Interfacial friction and resin toughening are the main mechanisms for the interface enhancement of MWCNTs-T300/EP composites.

  6. Carbon nanotubes enhanced the lead toxicity on the freshwater fish

    NASA Astrophysics Data System (ADS)

    Martinez, D. S. T.; Alves, O. L.; Barbieri, E.

    2013-04-01

    Carbon nanotubes are promising nanostructures for many applications in materials industry and biotechnology. However, it is mandatory to evaluate their toxicity and environmental implications. We evaluated nitric acid treated multiwalled carbon nanotubes (HNO3-MWCNT) toxicity in Nile tilapia (Oreochromis niloticus) and also the lead (Pb) toxicity modulation after the nanotube interaction. Industrial grade multiwalled carbon nanotubes [Ctube 100, CNT Co. Ltd] were treated with 9M HNO3 for 12h at 150°C to generate oxygenated groups on the nanotube surface, to improve water dispersion and heavy metal interaction. The HNO3-treated multiwalled carbon nanotubes were physico-chemically characterized by several techniques [e.g. TEM, FE-SEM, TGA, ζ-potential and Raman spectroscopy]. HNO3-MWCNT did not show toxicity on Nile tilapia when the concentration ranged from 0.1 to 3.0 mg/L, and the maximum exposure time was 96h. After 24, 48, 72 and 96h the LC50 values of Pb were 1.65, 1.32, 1.10 and 0.99 mg/L, respectively. To evaluate the Pb-nanotube interaction influence on the ecotoxicity, we submitted the Nile tilapia to different concentrations of Pb mixed with a non-toxic concentration of HNO3-MWCNT (1.0 mg/L). After 24, 48, 72, 96 h the LC50 values of Pb plus nanotubes were: 0.32, 0.25, 0.20, 0.18 mg/L, respectively. These values showed a synergistic effect after Pb-nanotube interaction since Pb toxicity increased over five times. X-ray energy dispersive spectroscopy (EDS) was used to confirm lead adsorption on the carbon nanotube oxidized surface. The exposure of Nile tilapia to Pb plus HNO3-MWCNT caused both oxygen consumption and ammonium excretion decrease, when compared to the control. Finally, our results show that carbon nanotubes interact with classical pollutants drawing attention to the environmental implications.

  7. Electrochemical reduction of nalidixic acid at glassy carbon electrode modified with multi-walled carbon nanotubes.

    PubMed

    Patiño, Yolanda; Pilehvar, Sanaz; Díaz, Eva; Ordóñez, Salvador; De Wael, Karolien

    2017-02-05

    The aqueous phase electrochemical degradation of nalidixic acid (NAL) is studied in this work, using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) as instrumental techniques. The promotional effect of multi-walled carbon nanotubes (MWCNT) on the performance of glassy carbon electrodes is demonstrated, being observed that these materials catalyze the NAL reduction. The effect of surface functional groups on MWCNT -MWCNT-COOH and MWCNT-NH 2 -was also studied. The modification of glassy carbon electrode (GCE) with MWCNT leads to an improved performance for NAL reduction following the order of MWCNT>MWCNT-NH 2 >MWCNT-COOH. The best behavior at MWCNT-GCE is mainly due to both the increased electrode active area and the enhanced MWCNT adsorption properties. The NAL degradation was carried out under optimal conditions (pH=5.0, deposition time=20s and volume of MWCNT=10μL) using MWCNT-GCE obtaining an irreversible reduction of NAL to less toxic products. Paramaters as the number of DPV cycles and the volume/area (V/A) ratio were optimized for maximize pollutant degradation. It was observed that after 15 DPV scans and V/A=8, a complete reduction was obtained, obtaining two sub-products identified by liquid chromatography-mass spectrometry (LC-MS). Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The Study on the Mechanical Properties of Multi-walled Carbon Nanotube/Polypropylene Fibers

    NASA Astrophysics Data System (ADS)

    Youssefi, Mostafa; Safaie, Banafsheh

    2018-06-01

    Polypropylene (PP) is an important semicrystalline polymer with various applications. Polypropylene fibers containing 1 wt% of multi-walled carbon nanotube was spun using a conventional melt spinning apparatus. The produced fibers were drawn with varying levels of draw ratio. The mechanical properties of the composites were studied. Tensile strength and modulus of the composite fibers were increased with the increase in draw ratio. Molecular orientation and helical content of the composite fibers were increased after drawing. To conclude, tensile properties and molecular orientation of the composite fibers were higher than those of neat polypropylene fibers with the same draw ratio.

  9. The Study on the Mechanical Properties of Multi-walled Carbon Nanotube/Polypropylene Fibers

    NASA Astrophysics Data System (ADS)

    Youssefi, Mostafa; Safaie, Banafsheh

    2018-01-01

    Polypropylene (PP) is an important semicrystalline polymer with various applications. Polypropylene fibers containing 1 wt% of multi-walled carbon nanotube was spun using a conventional melt spinning apparatus. The produced fibers were drawn with varying levels of draw ratio. The mechanical properties of the composites were studied. Tensile strength and modulus of the composite fibers were increased with the increase in draw ratio. Molecular orientation and helical content of the composite fibers were increased after drawing. To conclude, tensile properties and molecular orientation of the composite fibers were higher than those of neat polypropylene fibers with the same draw ratio.

  10. Electrochemical biosensing of galactose based on carbon materials: graphene versus multi-walled carbon nanotubes.

    PubMed

    Dalkıran, Berna; Erden, Pınar Esra; Kılıç, Esma

    2016-06-01

    In this study, two enzyme electrodes based on graphene (GR), Co3O4 nanoparticles and chitosan (CS) or multi-walled carbon nanotubes (MWCNTs), Co3O4 nanoparticles, and CS, were fabricated as novel biosensing platforms for galactose determination, and their performances were compared. Galactose oxidase (GaOx) was immobilized onto the electrode surfaces by crosslinking with glutaraldehyde. Optimum working conditions of the biosensors were investigated and the analytical performance of the biosensors was compared with respect to detection limit, linearity, repeatability, and stability. The MWCNTs-based galactose biosensor provided about 1.6-fold higher sensitivity than its graphene counterpart. Moreover, the linear working range and detection limit of the MWCNTs-based galactose biosensor was superior to the graphene-modified biosensor. The successful application of the purposed biosensors for galactose biosensing in human serum samples was also investigated.

  11. He ion irradiation effects on multiwalled carbon nanotubes structure

    NASA Astrophysics Data System (ADS)

    Elsehly, Emad M.; Chechenin, Nikolay G.; Makunin, Alexey V.; Shemukhin, Andrey A.; Motaweh, Hussien A.

    2017-03-01

    Samples of multi-walled carbon nanotubes (MWNTs) were irradiated with 80 keV He ions. Scanning electron microscopy (SEM) inspection showed that the average outer diameters of the tube decreased as a result of ion irradiation. The samples were also characterized using Raman spectrometry by analysis of the intensity of main bands in the spectra of virgin and irradiated MWNT samples. Modifications of the disorder mode (D-band) and the tangential mode (G-band) were studied as a function of irradiation fluences. Raman spectra showed that as the fluence increases, the MWNTs first show disorder due to the produced defects, and then amorphization under still higher fluence of ion irradiation. Thermal and athermal mechanisms of the radiation induced MWNTs modifications are discussed. Contribution to the Topical Issue "Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces", edited by A.N. Grum-Grzhimailo, E.V. Gryzlova, Yu V. Popov, and A.V. Solov'yov.

  12. Adsorptive Behavior and Voltammetric Determination of Hydralazine Hydrochloride at A Glassy Carbon Electrode Modified with Multiwalled Carbon Nanotubes

    PubMed Central

    Khodadadian, Mehdi; Jalili, Ronak; Bahrami, Mohammad Taher; Bahrami, Gholamreza

    2017-01-01

    An electroanalytical method has been introduced for highly sensitive determination of hydralazine hydrochloride (Hy-HCl) based on its oxidation at a glassy carbon electrode modified with multiwalled carbon nanotubes (MWCNT/GCE). Studies showed that the electrochemical oxidation of Hy-HCl was accompanied by adsorption and highly sensitive responses could be achieved by adsorptive stripping voltammetry. The electrooxidation of Hy-HCl at MWCNT/GCE occurred at ~32 mV which was lower than that observed at bare GCE (~52 mV). The optimum working conditions for determination of the drug using differential-pulse adsorptive stripping voltammetry (DPAdSV) were established. The method exhibited linear responses to Hy-HCl in the concentration range 10-220 nM with a detection limit of 2.7 nM. The proposed method was successfully applied to the determination of this compound in pharmaceutical dosage forms. PMID:29552043

  13. Metal Decorated Multi-Walled Carbon Nanotube/Polyimide Composites with High Dielectric Constants and Low Loss Factors

    NASA Technical Reports Server (NTRS)

    Elliott, Holly A.; Dudley, Kenneth L.; Smith, Joseph G.; Connell, John W.; Ghose, Sayata; Watson, Kent A.; Sun, Keun J.

    2009-01-01

    The measurement of observable electromagnetic phenomena in materials and their derived intrinsic electrical material properties are of prime importance in the discovery and development of material systems for electronic and aerospace applications. Nanocomposite materials comprised of metal decorated multi-walled carbon nanotubes (MWCNTs) were prepared by a facile method and characterized. Metal particles such as silver(Ag), platinum(Pt) and palladium(Pd) with diameters ranging from less than 5 to over 50 nanometers were distributed randomly on the MWCNTs. The present study is focused on silver decorated MWCNTs dispersed in a polyimide matrix. The Ag-containing MWCNTs were melt mixed into Ultem(TradeMark) and the mixture extruded as ribbons. The extruded ribbons exhibited a moderate to high degree of MWCNT alignment as determined by HRSEM. These ribbons were then fabricated into test specimens while maintaining MWCNT alignment and subsequently characterized for electrical and electromagnetic properties at 8-12 GHz. The results of the electromagnetic characterization showed that certain sample configurations exhibited a decoupling of the permittivity (epsilon ) and loss factor (epsilon") indicating that these properties could be tailored within certain limits. The decoupling and independent control of these fundamental electrical material parameters offers a new class of materials with potential applications in electronics, microwave engineering and optics.

  14. Metal Decorated Multi-Walled Carbon Nanotube/Polyimide Composites with High Dielectric Constants and Low Loss Factors

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Watson, Kent A.; Dudley, Kenneth L.; Elliott, Holly A.; Smith, Joseph G.; Connell, John W.

    2009-01-01

    The measurement of observable electromagnetic phenomena in materials and their derived intrinsic electric material properties are of prime importance in the discovery and development of material systems for electronic and aerospace applications. Nanocomposite materials comprised of metal decorated multi-walled carbon nanotubes (MWCNTs) were prepared by a facile method and characterized. Metal particles such as silver, platinum and palladium with diameters ranging from less than 5 to over 50 nanometers were distributed randomly on the MWCNTs. The metal-containing MWCNTs were then melt mixed into a polymer matrix and the mixture extruded as ribbons. These extruded ribbons exhibited a moderate to high degree of MWCNT alignment as determined by HRSEM. These ribbons were then fabricated into test specimens while maintaining MWCNT alignment and subsequently characterized for electromagnetic properties at 8-12 GHz. The present study is focused on silver decorated MWCNTs dispersed in an Ultem polyimide matrix. The results of the electromagnetic characterization showed that certain sample configurations exhibited a decoupling of the permittivity and loss factor (?? and ??) indicating that these properties could be tailored within certain limits. The decoupling and independent control of these fundamental electrical material parameters offer a new class of materials with potential applications in electronics, microwave engineering and optics.

  15. Adsorption of triazine herbicides from aqueous solution by functionalized multiwall carbon nanotubes grown on silicon substrate

    NASA Astrophysics Data System (ADS)

    D'Archivio, Angelo Antonio; Maggi, Maria Anna; Odoardi, Antonella; Santucci, Sandro; Passacantando, Maurizio

    2018-02-01

    Multi-walled carbon nanotubes (MWCNTs), because of their small size and large available surface area, are potentially efficient sorbents for the extraction of water solutes. Dispersion of MWCNTs in aqueous medium is suitable to adsorb organic contaminants from small sample volumes, but, the recovery of the suspended sorbent for successive re-use represents a critical step, which makes this method inapplicable in large-scale water-treatment technologies. To overcome this problem, we proposed here MWCNTs grown on silicon supports and investigated on a small-volume scale their adsorption properties towards triazine herbicides dissolved in water. The adsorption efficiency of the supported MWCNTs has been tested on seven triazine herbicides, which are emerging water contaminants in Europe and USA, because of their massive use, persistence in soils and potential risks for the aquatic organisms and human health. The investigated compounds, in spite of their common molecular skeleton, cover a relatively large property range in terms of both solubility in water and hydrophilicity/hydrophobicity. The functionalisation of MWCNTs carried out by acidic oxidation, apart from increasing wettability of the material, results in a better adsorption performance. Increasing of functionalisation time between 17 and 60 h progressively increases the extraction of all seven pesticides and produces a moderate increment of selectivity.

  16. MHDA-Functionalized Multiwall Carbon Nanotubes for detecting non-aromatic VOCs

    NASA Astrophysics Data System (ADS)

    Thamri, Atef; Baccar, Hamdi; Struzzi, Claudia; Bittencourt, Carla; Abdelghani, Adnane; Llobet, Eduard

    2016-10-01

    The chemical modification of multiwalled carbon nanotubes (MWCNTs) with a long chain mercapto acid is reported as a way to improve sensitivity and response time of gas sensors for detecting alcohols, acetone and toxic gases such as DMMP. We have developed sensors employing MWCNTs decorated with gold nanoparticles and modified with a 16-mercaptohexadecanoic acid (MHDA) monolayer. Morphological and compositional analysis by Transmission Electron Microscopy (TEM), Fourier Transform Infra-red Spectroscopy (FTIR) and X-ray photoelectron spectroscopy were performed to characterize the gold nanoparticles and to check the bonding of the thiol monolayer. The detection of aromatic and non-aromatic volatiles and DMMP vapors by MWCNT/Au and MWCNT/Au/MHDA shows that the presence of the self-assembled layer increases sensitivity and selectivity towards non-aromatics. Furthermore, it ameliorates response dynamics, and significantly reduces nitrogen dioxide and moisture cross-sensitivity.

  17. Effect of porosity variation on the electrochemical behavior of vertically aligned multi-walled carbon nanotubes.

    PubMed

    Raut, Akshay S; Parker, Charles B; Stoner, Brian R; Glass, Jeffrey T

    2012-06-01

    Electrochemical charge storage characteristics of vertically aligned multi-walled carbon nanotubes (MWCNTs) as a function of varying diameter and spacing are reported. It was observed that the specific capacitance of the MWCNTs increased as both diameter and inter-tube spacing decreased. The MWCNT films with 229 nm inter-MWCNT spacing exhibited specific capacitance of 228 F/g versus 70 F/g for 506 nm spacing, when tested in a non-aqueous electrolyte. Further, a trend in specific capacitance versus pore size is proposed. Coupled with previously reported trends observed in the sub-10 nm pore size regime, this is expected to offer better understanding of electrochemical behavior of porous carbon materials over a wide range of pore sizes.

  18. Genotoxicity of multi-walled carbon nanotubes at occupationally relevant doses

    PubMed Central

    2014-01-01

    Carbon nanotubes are commercially-important products of nanotechnology; however, their low density and small size makes carbon nanotube respiratory exposures likely during their production or processing. We have previously shown mitotic spindle aberrations in cultured primary and immortalized human airway epithelial cells exposed to single-walled carbon nanotubes (SWCNT). In this study, we examined whether multi-walled carbon nanotubes (MWCNT) cause mitotic spindle damage in cultured cells at doses equivalent to 34 years of exposure at the NIOSH Recommended Exposure Limit (REL). MWCNT induced a dose responsive increase in disrupted centrosomes, abnormal mitotic spindles and aneuploid chromosome number 24 hours after exposure to 0.024, 0.24, 2.4 and 24 μg/cm2 MWCNT. Monopolar mitotic spindles comprised 95% of disrupted mitoses. Three-dimensional reconstructions of 0.1 μm optical sections showed carbon nanotubes integrated with microtubules, DNA and within the centrosome structure. Cell cycle analysis demonstrated a greater number of cells in S-phase and fewer cells in the G2 phase in MWCNT-treated compared to diluent control, indicating a G1/S block in the cell cycle. The monopolar phenotype of the disrupted mitotic spindles and the G1/S block in the cell cycle is in sharp contrast to the multi-polar spindle and G2 block in the cell cycle previously observed following exposure to SWCNT. One month following exposure to MWCNT there was a dramatic increase in both size and number of colonies compared to diluent control cultures, indicating a potential to pass the genetic damage to daughter cells. Our results demonstrate significant disruption of the mitotic spindle by MWCNT at occupationally relevant exposure levels. PMID:24479647

  19. Nanocomposites from Stable Dispersions of Carbon Nanotubes in Polymeric Matrices Using Dispersion Interaction

    NASA Technical Reports Server (NTRS)

    Wise, Kristopher Eric (Inventor); Park, Cheol (Inventor); Kang, Jin Ho (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor)

    2016-01-01

    Stable dispersions of carbon nanotubes (CNTs) in polymeric matrices include CNTs dispersed in a host polymer or copolymer whose monomers have delocalized electron orbitals, so that a dispersion interaction results between the host polymer or copolymer and the CNTs dispersed therein. Nanocomposite products, which are presented in bulk, or when fabricated as a film, fiber, foam, coating, adhesive, paste, or molding, are prepared by standard means from the present stable dispersions of CNTs in polymeric matrices, employing dispersion interactions, as presented hereinabove.

  20. Construction of novel sensitive electrochemical sensor for electro-oxidation and determination of citalopram based on zinc oxide nanoparticles and multi-walled carbon nanotubes.

    PubMed

    Ghaedi, Hamed; Afkhami, Abbas; Madrakian, Tayyebeh; Soltani-Felehgari, Farzaneh

    2016-02-01

    A new chemically modified carbon paste electrode (CMCPE) was applied to the simple, rapid, highly selective and sensitive determination of citalopram in human serum and pharmaceutical preparations using adsorptive square wave voltammetry (ASWV). The ZnO nanoparticles and multi-walled carbon nanotubes modified CPE (ZnO-MWCNT/CPE) electrode was prepared by incorporation of the ZnO nanoparticles and multi-walled carbon nanotubes (MWCNT) in carbon paste electrode. The limit of detection and the linear range were found to be 0.005 and 0.012 to 1.54μmolL(-1) of citalopram, respectively. The effects of potentially interfering substances on the determination of this compound were investigated and found that the electrode is highly selective. The proposed CMCPE was used to the determination of citalopram in human serum, urine and pharmaceutical samples. This reveals that ZnO-MWCNT/CPE shows excellent analytical performance for the determination of citalopram in terms of very low detection limit, high sensitivity, very good repeatability and reproducibility over other methods reported in the literature. Copyright © 2015. Published by Elsevier B.V.

  1. Ecotoxicological effects of carbofuran and oxidised multiwalled carbon nanotubes on the freshwater fish Nile tilapia: nanotubes enhance pesticide ecotoxicity.

    PubMed

    Campos-Garcia, Janaína; Martinez, Diego Stéfani T; Alves, Oswaldo L; Leonardo, Antônio Fernando Gervásio; Barbieri, Edison

    2015-01-01

    The interactions of carbon nanotubes with pesticides, such as carbofuran, classical contaminants (e.g., pesticides, polyaromatic hydrocarbons, heavy metals, and dyes) and emerging contaminants, including endocrine disruptors, are critical components of the environmental risks of this important class of carbon-based nanomaterials. In this work, we studied the modulation of acute carbofuran toxicity to the freshwater fish Nile tilapia (Oreochromis niloticus) by nitric acid treated multiwalled carbon nanotubes, termed HNO3-MWCNT. Nitric acid oxidation is a common chemical method employed for the purification, functionalisation and aqueous dispersion of carbon nanotubes. HNO3-MWCNT were not toxic to Nile tilapia at concentrations ranging from 0.1 to 3.0 mg/L for exposure times of up to 96 h. After 24, 48, 72 and 96 h, the LC50 values of carbofuran were 4.0, 3.2, 3.0 and 2.4 mg/mL, respectively. To evaluate the influence of carbofuran-nanotube interactions on ecotoxicity, we exposed the Nile tilapia to different concentrations of carbofuran mixed together with a non-toxic concentration of HNO3-MWCNT (1.0 mg/L). After 24, 48, 72, and 96 h of exposure, the LC50 values of carbofuran plus nanotubes were 3.7, 1.6, 0.7 and 0.5 mg/L, respectively. These results demonstrate that HNO3-MWCNT potentiate the acute toxicity of carbofuran, leading to a more than five-fold increase in the LC50 values. Furthermore, the exposure of Nile tilapia to carbofuran plus nanotubes led to decreases in both oxygen consumption and swimming capacity compared to the control. These findings indicate that carbon nanotubes could act as pesticide carriers affecting fish survival, metabolism and behaviour. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. A Flexible Cotton-Based Supercapacitor Electrode with High Stability Prepared by Multiwalled CNTs/PANI

    NASA Astrophysics Data System (ADS)

    Hao, Tianqi; Wang, Wei; Yu, Dan

    2018-05-01

    Multiwalled nanotubes/cotton composite was prepared firstly as conductive fabric, and then, polyaniline (PANI) doped with multi-walled carbon nanotubes (MWCNTs) were fabricated on the conductive fabric to make flexible cotton-based supercapacitor electrodes. The doping of MWCNTs cannot only provide good conductivity and large specific surface area of the electrode, but also help to increase the loading of aniline monomer in the polyaniline polymerization. Field emission scanning electron microscopy was applied to observe the surface morphology of the composite, and Fourier transform infrared and Energy dispersion spectrum were used to analysis the existence of PANI. Electrochemical tests were adopted to measure the electrochemical performance. The results demonstrated the multivariate mixture composite flexible electrode exhibited a specific capacitance of 590.93 F g-1 at a scan rate of 0.001 V s-1 and an excellent capacitance retention of 89% at 0.1 V s-1 after 3000 cycles. Based on our method, the cycle stability of the composite was great and so was the capacitance retention.

  3. A Flexible Cotton-Based Supercapacitor Electrode with High Stability Prepared by Multiwalled CNTs/PANI

    NASA Astrophysics Data System (ADS)

    Hao, Tianqi; Wang, Wei; Yu, Dan

    2018-07-01

    Multiwalled nanotubes/cotton composite was prepared firstly as conductive fabric, and then, polyaniline (PANI) doped with multi-walled carbon nanotubes (MWCNTs) were fabricated on the conductive fabric to make flexible cotton-based supercapacitor electrodes. The doping of MWCNTs cannot only provide good conductivity and large specific surface area of the electrode, but also help to increase the loading of aniline monomer in the polyaniline polymerization. Field emission scanning electron microscopy was applied to observe the surface morphology of the composite, and Fourier transform infrared and Energy dispersion spectrum were used to analysis the existence of PANI. Electrochemical tests were adopted to measure the electrochemical performance. The results demonstrated the multivariate mixture composite flexible electrode exhibited a specific capacitance of 590.93 F g-1 at a scan rate of 0.001 V s-1 and an excellent capacitance retention of 89% at 0.1 V s-1 after 3000 cycles. Based on our method, the cycle stability of the composite was great and so was the capacitance retention.

  4. Time-domain finite-difference based analysis of induced crosstalk in multiwall carbon nanotube interconnects

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Nehra, Vikas; Kaushik, Brajesh Kumar

    2017-08-01

    Graphene rolled-up cylindrical sheets i.e. carbon nanotubes (CNTs) is one of the finest and emerging research area. This paper presents the investigation of induced crosstalk in coupled on-chip multiwalled carbon nanotube (MWCNT) interconnects using finite-difference analysis (FDA) in time-domain i.e. the finite-difference time-domain (FDTD) method. The exceptional properties of versatile MWCNTs profess their candidacy to replace conventional on-chip copper interconnects. Time delay and crosstalk noise have been evaluated for coupled on-chip MWCNT interconnects. With a decrease in CNT length, the obtained results for an MWCNT shows that transmission performance improves as the number of shells increases. It has been observed that the obtained results using the finite-difference time domain (FDTD) technique shows a very close match with the HSPICE simulated results.

  5. Sensitive electrochemical sensing platform for microRNAs detection based on shortened multi-walled carbon nanotubes with high-loaded thionin.

    PubMed

    Deng, Keqin; Liu, Xinyan; Li, Chunxiang; Huang, Haowen

    2018-05-31

    The loading capacity of thionin (Thi) on shortened multi-walled carbon nanotubes (S-MWCNTs) and acidified multi-walled carbon nanotubes (A-MWCNTs) was compared. Two DNA probe fragments were designed for hybridization with microRNA-21 (miR-21), the microRNAs (miRNAs) model analyte. DNA probe 1 (P1) was assembled on Au nanoparticles (AuNPs) modified electrode. MiR-21 was captured by the pre-immobilized P1. A signal nanoprobe was synthesized by loading large amount of Thi on S-MWCNTs with covalently bonded probe 2 (P2). Owing to the large effective surface area of MWCNTs, fast electron shuttle of MWCNTs, high-loaded Thi on S-MWCNTs, and the increased conductivity from AuNPs, after signal probe hybridized with miR-21, it gave rise to a magnified current response on electrode. The increased electrochemical current enabled us to quantitatively detect miR-21. Expensive bioreagents and labeled target/detection DNA or miRNAs were avoided in this strategy. The operation complexity and assay cost were also reduced. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. [Study on solid dispersion of precipitated calcium carbonate-based oleanolic acid].

    PubMed

    Yan, Hong-mei; Zhang, Zhen-hai; Jia, Xiao-bin; Jiang, Yan-rong; Sun, E

    2015-05-01

    Oleanolic acid-precipitated calcium carbonate solid dispersion was prepared by using solvent evaporation method. The microscopic structure and physicochemical properties of solid dispersion were analyzed using differential scanning calorimetry and scanning electron microscopy (SEM). And its in vitro release also was investigated. The properties of the precipitated calcium carbonate was studied which was as a carrier of oleanolic acid solid dispersion. Differential scanning calorimetry analysis suggested that oleanolic acid may be present in solid dispersion as amorphous substance. The in vitro release determination results of oleanolic acid-precipitated calcium carbonate (1: 5) solid dispersion showed accumulated dissolution rate of.oleanolic acid was up to 90% at 45 min. Accelerating experiment showed that content and in vitro dissolution of oleanolic acid solid dispersion did not change after storing over 6 months. The results indicated that in vitro dissolution of oleanolic acid was improved greatly by the solid dispersion with precipitated calcium carbonate as a carrier. The solid dispersion is a stabilizing system which has actual applied value.

  7. Phase-Imaging with a Sharpened Multi-Walled Carbon Nanotube AFM Tip: Investigation of Low-k Dielectric Polymer Hybrids

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V.; Stevens, Ramsey M.; Meyyappan, M.; Volksen, Willi; Miller, Robert D.

    2005-01-01

    Phase shift tapping mode scanning force microscopy (TMSFM) has evolved into a very powerful technique for the nanoscale surface characterization of compositional variations in heterogeneous samples. Phase shift signal measures the difference between the phase angle of the excitation signal and the phase angle of the cantilever response. The signal correlates to the tip-sample inelastic interactions, identifying the different chemical and/or physical property of surfaces. In general, the resolution and quality of scanning probe microscopic images are highly dependent on the size of the scanning probe tip. In improving AFM tip technology, we recently developed a technique for sharpening the tip of a multi-walled carbon nanotube (CNT) AFM tip, reducing the radius of curvature of the CNT tip to less than 5 nm while still maintaining the inherent stability of multi-walled CNT tips. Herein we report the use of sharpened (CNT) AFM tips for phase-imaging of polymer hybrids, a precursor for generating nanoporous low-k dielectrics for on-chip interconnect applications. Using sharpened CNT tips, we obtained phase-contrast images having domains less than 10 nm. In contrast, conventional Si tips and unsharpened CNT tips (radius greater than 15 nm) were not able to resolve the nanoscale domains in the polymer hybrid films. C1early, the size of the CNT tip contributes significantly to the resolution of phase-contrast imaging. In addition, a study on the nonlinear tapping dynamics of the multi-walled CNT tip indicates that the multi-walled CNT tip is immune to conventional imaging instabilities related to the coexistence of attractive and repulsive tapping regimes. This factor may also contribute to the phase-contrast image quality of multi-walled CNT AFM tips. This presentation will also offer data in support of the stability of the CNT tip for phase shift TMSFM.

  8. Construction of a carbon ionic liquid paste electrode based on multi-walled carbon nanotubes-synthesized Schiff base composite for trace electrochemical detection of cadmium.

    PubMed

    Afkhami, Abbas; Khoshsafar, Hosein; Bagheri, Hasan; Madrakian, Tayyebeh

    2014-02-01

    A simple, highly sensitive and selective carbon nanocomposite electrode has been developed for the electrochemical trace determination of cadmium. This sensor was designed by incorporation of multi-walled carbon nanotubes (MWCNTs) and a new synthesized Schiff base into the carbon paste ionic liquid electrode (CPE(IL)) which provides remarkably improved sensitivity and selectivity for the electrochemical stripping assay of Cd(II). The detection limit of the method was found to be 0.08 μg L(-1) (S/N=3) that is lower than the maximum contaminant level of Cd(II) allowed by the Environmental Protection Agency (EPA) in standard drinking waters. The proposed electrode exhibits good applicability for monitoring Cd(II) in various real samples. © 2013.

  9. Micro/Nanomechanical characterization of multi-walled carbon nanotubes reinforced epoxy composite.

    PubMed

    Cui, Peng; Wang, Xinnan; Tangpong, X W

    2012-11-01

    In this paper, the mechanical properties of 1 wt.% multi-walled carbon nanotubes (MWCNTs) reinforced epoxy nanocomposites were characterized using a self-designed micro/nano three point bending tester that was on an atomic force microscope (AFM) to in situ observe MWCNTs movement on the sample surface under loading. The migration of an individual MWCNT at the surface of the nanocomposite was tracked to address the nanomechanical reinforcing mechanism of the nanocomposites. Through morphology analysis of the nanocomposite via scanning electron microscopy, AFM, and digital image correlation technique, it was found that the MWCNTs agglomerate and the bundles were the main factors for limiting the bending strength of the composites. The agglomeration/bundle effect was included in the Halpin-Tsai model to account for the elastic modulus of the nanocomposites.

  10. Surface modification of commercial seawater reverse osmosis membranes by grafting of hydrophilic monomer blended with carboxylated multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Vatanpour, Vahid; Zoqi, Naser

    2017-02-01

    In this study, modification of commercial seawater reverse osmosis membranes was carried out with simultaneous use of surface grafting and nanoparticle incorporation. Membrane grafting with a hydrophilic acrylic acid monomer and thermal initiator was used to increase membrane surface hydrophilicity. The used nanomaterial was carboxylated multiwalled carbon nanotubes (MWCNTs), which were dispersed in the grafting solution and deposited on membrane surface to reduce fouling by creating polymer brushes and hydrodynamic resistance. Effectiveness of the grafting process (formation of graft layer on membrane surface) was proved by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analyses. Increase of membrane surface hydrophilicity was approved with contact angle test. First, the grafting was performed on the membrane surfaces with different monomer concentrations, various contact times and several membrane curing times (three variables for optimization). The modified membranes were tested by a cross-flow setup using saline solution for permeability and rejection tests, and bovine serum albumin (BSA) solution for fouling test. The results showed that the modified membranes with 0.75 M of monomer, 3 min contact time and 80 min curing time in an oven at 50 °C presented the highest flux and lowest rejection decline related to the commercial reverse osmosis membrane. In the next step, the optimum grafting condition was selected and the nanotubes with different weight percentages were dispersed in the acrylic acid monomer solution. The membrane containing 0.25 wt% COOH-MWCNTs showed the highest fouling resistance.

  11. Multiwalled carbon nanotubes for drug delivery: Efficiency related to length and incubation time.

    PubMed

    Sciortino, Niccolò; Fedeli, Stefano; Paoli, Paolo; Brandi, Alberto; Chiarugi, Paola; Severi, Mirko; Cicchi, Stefano

    2017-04-15

    Batches of oxidized multiwalled carbon nanotubes differing in length were adopted to prepare two drug delivery systems (DDS) loaded with doxorubicin. The different internalization of the two batches, verified by atomic emission spectroscopy onto cell lysates, was also confirmed by the different toxicity of the same DDS loaded with doxorubicin. In vitro experiments evidenced, after 48h of incubation, the superior efficacy of the shortest nanotubes. However, upon prolonging the incubation time up to 72h the difference in efficiency was minimized due to the spontaneous release of doxorubicin by the non-internalized long nanotubes. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Long-term hepatotoxicity of polyethylene-glycol functionalized multi-walled carbon nanotubes in mice

    NASA Astrophysics Data System (ADS)

    Zhang, Danying; Deng, Xiaoyong; Ji, Zongfei; Shen, Xizhong; Dong, Ling; Wu, Minghong; Gu, Taoying; Liu, Yuanfang

    2010-04-01

    The toxicity of polyethylene-glycol functionalized (PEGylated) multi-walled carbon nanotubes (MWCNTs) and non-PEGylated MWCNTs in vivo was evaluated and compared. Mice were exposed to MWCNTs by intravenous injection. The activity level of glutathione, superoxide dismutase and gene expression in liver, as well as some biochemical parameters and the tumor necrosis factor alpha level in blood were measured over 2 months. The pathological and electron micrographic observations of liver evidently indicate that the damage caused by non-PEGylated MWCNTs is slightly more severe than that of PEGylated MWCNTs, which means that PEGylation can partly, but not substantially, improve the in vivo biocompatibility of MWCNTs.

  13. Nitrogen doped carbon derived from polyimide/multiwall carbon nanotube composites for high performance flexible all-solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Kim, Dae Kyom; Kim, Nam Dong; Park, Seung-Keun; Seong, Kwang-dong; Hwang, Minsik; You, Nam-Ho; Piao, Yuanzhe

    2018-03-01

    Flexible all-solid-state supercapacitors are desirable as potential energy storage systems for wearable technologies. Herein, we synthesize aminophenyl multiwall carbon nanotube (AP-MWCNT) grafted polyimide precursor by in situ polymerization method as a nitrogen-doped carbon precursor. Flexible supercapacitor electrodes are fabricated via a coating of carbon precursor on carbon cloth surface and carbonization at high temperature directly. The as-obtained electrodes, which can be directly used without any binders or additives, can deliver a high specific capacitance of 333.4 F g-1 at 1 A g-1 (based on active material mass) and excellent cycle stability with 103% capacitance retention after 10,000 cycles in a three-electrode system. The flexible all-solid-state supercapacitor device exhibits a high volumetric capacitance of 3.88 F cm-3 at a current density of 0.02 mA cm-3. And also the device can deliver a maximum volumetric energy density of 0.50 mWh cm-3 and presents good cycling stability with 85.3% capacitance retention after 10,000 cycles. This device cell can not only show extraordinary mechanical flexibilities allowing folding, twisting, and rolling but also demonstrate remarkable stable electrochemical performances under their forms. This work provides a novel approach to obtain carbon textile-based flexible supercapacitors with high electrochemical performance and mechanical flexibility.

  14. Adsorption of crystal violet onto functionalised multi-walled carbon nanotubes: Equilibrium and kinetic studies.

    PubMed

    Sabna, V; Thampi, Santosh G; Chandrakaran, S

    2016-12-01

    Synthetic dyes present in effluent from textile, paper and paint industries contain crystal violet (CV), a known carcinogenic agent. This study investigates the modification of multiwalled carbon nanotubes by acid reflux method and equilibrium and kinetic behaviour of adsorption of CV onto functionalized multi-walled carbon nanotubes (fMWNTs) in batch system. High stability of the fMWNTs suspension in water indicates the hydrophilicity of fMWNTs induced due to the formation of functional groups that make hydrogen bonds with water molecules. fMWNTs were characterized by Fourier Transform Infra Red (FTIR) spectroscopy and the functional groups present on the fMWNTs were confirmed. Characteristic variation was observed in the FTIR spectra of fMWNTs after adsorption of crystal violet onto it. Adsorption characteristics were evaluated as a function of system variables such as contact time, dosage of fMWNTs and initial concentration and pH of the crystal violet solution. Adsorption capacity of fMWNTs and percentage removal of the dye increased with increase in contact time, adsorbent dosage and pH but declined with increase in initial concentration of the dye. fMWNTs showed higher adsorption capacity compared to that of pristine MWNTs. Data showed good fit with the Langmuir and Freundlich isotherm models and the pseudo-second order kinetic model; the maximum adsorption capacity was 90.52mg/g. Kinetic parameters such as rate constants, equilibrium adsorption capacities and regression coefficients were estimated. Results indicate that fMWNTs are an effective adsorbent for the removal of crystal violet from aqueous solution. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Adsorption of methyl green dye onto multi-walled carbon nanotubes decorated with Ni nanoferrite

    NASA Astrophysics Data System (ADS)

    Bahgat, Mohamed; Farghali, Ahmed Ali; El Rouby, Waleed; Khedr, Mohamed; Mohassab-Ahmed, Mohassab Y.

    2013-06-01

    This research was carried out to evaluate the capability of multi-walled carbon nanotubes (CNTs) and NiFe2O4-decorated multi-walled carbon nanotubes (NiFe2O4-CNTs) toward waste water treatment relevant to organic dyes. CNTs were prepared via chemical vapor deposition method. NiFe2O4-CNTs were prepared by in-situ chemical precipitation of metal hydroxides followed by hydrothermal processing. The samples were characterized using XRD and TEM. The adsorption efficiency of CNTs and NiFe2O4-CNTs of methyl green dye at various temperatures was examined. The adsorbed amount increased with the CNTs and NiFe2O4-CNTs dosage. The linear correlation coefficients and standard deviations of Langmuir and Freundlich isotherms were determined. It was found that Langmuir isotherm fitted the experimental results well in both adsorption cases n of methyl green onto CNTs and NiFe2O4-CNTs. Kinetics analyses were conducted using pseudo first-order, second-order and the intraparticle diffusion models. The results showed that the adsorption kinetics was controlled by a pseudo second-order model for adsorption of methyl green onto CNTs and best controlled by pseudo first-order in case of NiFe2O4-CNTs. Changes in the free energy of adsorption (Δ G°), enthalpy (Δ H°), entropy (Δ S°), and the activation energy ( E a) were determined. The Δ H°, Δ G° and E a values indicated that the adsorption of methyl green onto MWCNTs and NiFe2O4-MWCNTs was physisorption.

  16. Development and Characterization of Gas Diffusion Layer Using Carbon Slurry Dispersed by Ammonium Lauryl Sulfate for Proton Exchange Member Fuel Cells

    NASA Astrophysics Data System (ADS)

    Villacorta, Rashida

    Gas diffusion layers (GDLs) are a critical and essential part of proton exchange membrane fuel cells (PEMFCs). They carry out various important functions such as transportation of reactants to and from the reaction sites. The material properties and structural characteristics of the substrate and the microporous layer strongly influence fuel cell performance. The microporous layer of the GDLs was fabricated with the carbon slurry dispersed in water containing ammonium lauryl sulfate (ALS) using the wire rod coating method. GDLs were fabricated with different materials to compose the microporous layer and evaluated the effects on PEMFC power output performance. The consistency of the carbon slurry was achieved by adding 25 wt. % of PTFE, a binding agent with a 75:25 ratio of carbon (Pureblack and vapor grown carbon fiber). The GDLs were investigated in PEMFC under various relative humidity (RH) conditions using H2/O2 and H2/Air. GDLs were also fabricated with the carbon slurry dispersed in water containing sodium dodecyl sulfate (SDS) and multiwalled carbon nanotubes (MWCNTs) with isopropyl alcohol (IPA) based for fuel cell performance comparison. MWCNTs and SDS exhibits the highest performance at 60% and 70% RH with a peak power density of 1100 mW.cm-2 and 850 mW.cm-2 using air and oxygen as an oxidant. This means that the gas diffusion characteristics of these two samples were optimum at 60 and 70 % RH with high limiting current density range. It was also found that the composition of the carbon slurry, specifically ALS concentration has the highest peak power density of 1300 and 500mW.cm-2 for both H2/O 2 and H2/Air at 100% RH. However, SDS and MWCNTs demonstrates the lowest power density using air and oxygen as an oxidants at 100% RH.

  17. Cellular uptake mechanisms of functionalised multi-walled carbon nanotubes by 3D electron tomography imaging

    NASA Astrophysics Data System (ADS)

    Al-Jamal, Khuloud T.; Nerl, Hannah; Müller, Karin H.; Ali-Boucetta, Hanene; Li, Shouping; Haynes, Peter D.; Jinschek, Joerg R.; Prato, Maurizio; Bianco, Alberto; Kostarelos, Kostas; Porter, Alexandra E.

    2011-06-01

    Carbon nanotubes (CNTs) are being investigated for a variety of biomedical applications. Despite numerous studies, the pathways by which carbon nanotubes enter cells and their subsequent intracellular trafficking and distribution remain poorly determined. Here, we use 3-D electron tomography techniques that offer optimum enhancement of contrast between carbon nanotubes and the plasma membrane to investigate the mechanisms involved in the cellular uptake of shortened, functionalised multi-walled carbon nanotubes (MWNT-NH3+). Both human lung epithelial (A549) cells, that are almost incapable of phagocytosis and primary macrophages, capable of extremely efficient phagocytosis, were used. We observed that MWNT-NH3+ were internalised in both phagocytic and non-phagocytic cells by any one of three mechanisms: (a) individually via membrane wrapping; (b) individually by direct membrane translocation; and (c) in clusters within vesicular compartments. At early time points following intracellular translocation, we noticed accumulation of nanotube material within various intracellular compartments, while a long-term (14-day) study using primary human macrophages revealed that MWNT-NH3+ were able to escape vesicular (phagosome) entrapment by translocating directly into the cytoplasm.Carbon nanotubes (CNTs) are being investigated for a variety of biomedical applications. Despite numerous studies, the pathways by which carbon nanotubes enter cells and their subsequent intracellular trafficking and distribution remain poorly determined. Here, we use 3-D electron tomography techniques that offer optimum enhancement of contrast between carbon nanotubes and the plasma membrane to investigate the mechanisms involved in the cellular uptake of shortened, functionalised multi-walled carbon nanotubes (MWNT-NH3+). Both human lung epithelial (A549) cells, that are almost incapable of phagocytosis and primary macrophages, capable of extremely efficient phagocytosis, were used. We observed

  18. Reagentless biosensor based on layer-by-layer assembly of functional multiwall carbon nanotubes and enzyme-mediator biocomposite.

    PubMed

    Zhou, Xing-Hua; Xi, Feng-Na; Zhang, Yi-Ming; Lin, Xian-Fu

    2011-06-01

    A simple and controllable layer-by-layer (LBL) assembly method was proposed for the construction of reagentless biosensors based on electrostatic interaction between functional multiwall carbon nanotubes (MWNTs) and enzyme-mediator biocomposites. The carboxylated MWNTs were wrapped with polycations poly(allylamine hydrochloride) (PAH) and the resulting PAH-MWNTs were well dispersed and positively charged. As a water-soluble dye methylene blue (MB) could mix well with horseradish peroxidase (HRP) to form a biocompatible and negatively-charged HRP-MB biocomposite. A (PAH-MWNTs/HRP-MB)(n) bionanomultilayer was then prepared by electrostatic LBL assembly of PAH-MWNTs and HRP-MB on a polyelectrolyte precursor film-modified Au electrode. Due to the excellent biocompatibility of HRP-MB biocomposite and the uniform LBL assembly, the immobilized HRP could retain its natural bioactivity and MB could efficiently shuttle electrons between HRP and the electrode. The incorporation of MWNTs in the bionanomultilayer enhanced the surface coverage concentration of the electroactive enzyme and increased the catalytic current response of the electrode. The proposed biosensor displayed a fast response (2 s) to hydrogen peroxide with a low detection limit of 2.0×10⁻⁷ mol/L (S/N=3). This work provided a versatile platform in the further development of reagentless biosensors.

  19. Fabrication of an electrochemical platform based on the self-assembly of graphene oxide-multiwall carbon nanotube nanocomposite and horseradish peroxidase: direct electrochemistry and electrocatalysis

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Yang, Shaojun; Zhang, Jing; Zhang, Ling; Kang, Pingli; Li, Jinghong; Xu, Jingwei; Zhou, Hua; Song, Xi-Ming

    2011-12-01

    A novel hybrid nanomaterial (GO-MWNTs) was explored based on the self-assembly of multiwall carbon nanotubes (MWNTs) and graphene oxide (GO). Compared with pristine MWNTs, such a nanocomposite could be well dispersed in aqueous solution and exhibit a negative charge. Driven by the electrostatic interaction, positively charged horseradish peroxidase (HRP) could then be immobilized onto GO-MWNTs at the surface of a glassy carbon (GC) electrode to form a HRP/GO-MWNT/GC electrode under mild conditions. TEM was used to characterize the morphology of the GO-MWNT nanocomposite. UV-vis and FTIR spectra suggested that HRP was immobilized onto the hybrid matrix without denaturation. Furthermore, the immobilized HRP showed enhanced direct electron transfer for the HRP-Fe(III)/Fe(II) redox center. Based on the direct electron transfer of the immobilized HRP, the HRP/GO-MWNT/GC electrode exhibited excellent electrocatalytic behavior to the reduction of H2O2 and NaNO2, respectively. Therefore, GO-MWNTs could provide a novel and efficient platform for the immobilization and biosensing of redox enzymes, and thus may find wide potential applications in the fabrication of biosensors, biomedical devices, and bioelectronics.

  20. Molecular Dynamics Simulation of a Multi-Walled Carbon Nanotube Based Gear

    NASA Technical Reports Server (NTRS)

    Han, Jie; Globus, Al; Srivastava, Deepak; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    We used molecular dynamics to investigate the properties of a multi-walled carbon nanotube based gear. Previous work computationally suggested that molecular gears fashioned from (14,0) single-walled carbon nanotubes operate well at 50-100 gigahertz. The gears were formed from nanotubes with teeth added via a benzyne reaction known to occur with C60. A modified, parallelized version of Brenner's potential was used to model interatomic forces within each molecule. A Leonard-Jones 6-12 potential was used for forces between molecules. The gear in this study was based on the smallest multi-walled nanotube supported by some experimental evidence. Each gear was a (52,0) nanotube surrounding a (37,10) nanotube with approximate 20.4 and 16,8 A radii respectively. These sizes were chosen to be consistent with inter-tube spacing observed by and were slightly larger than graphite inter-layer spacings. The benzyne teeth were attached via 2+4 cycloaddition to exterior of the (52,0) tube. 2+4 bonds were used rather than the 2+2 bonds observed by Hoke since 2+4 bonds are preferred by naphthalene and quantum calculations by Jaffe suggest that 2+4 bonds are preferred on carbon nanotubes of sufficient diameter. One gear was 'powered' by forcing the atoms near the end of the outside buckytube to rotate to simulate a motor. A second gear was allowed to rotate by keeping the atoms near the end of its outside buckytube on a cylinder. The ends of both gears were constrained to stay in an approximately constant position relative to each other, simulating a casing, to insure that the gear teeth meshed. The stiff meshing aromatic gear teeth transferred angular momentum from the powered gear to the driven gear. The simulation was performed in a vacuum and with a software thermostat. Preliminary results suggest that the powered gear had trouble turning the driven gear without slip. The larger radius and greater mass of these gears relative to the (14,0) gears previously studied requires a

  1. Immobilization of cross-linked tannase enzyme on multiwalled carbon nanotubes and its catalytic behavior.

    PubMed

    Ong, Chong-Boon; Annuar, Mohamad S M

    2018-02-07

    Immobilization of cross-linked tannase on pristine multiwalled carbon nanotubes (MWCNT) was successfully performed. Cross-linking of tannase molecules was made through glutaraldehyde. The immobilized tannase exhibited significantly improved pH, thermal, and recycling stability. The optimal pH for both free and immobilized tannase was observed at pH 5.0 with optimal operating temperature at 30°C. Moreover, immobilized enzyme retained greater biocatalytic activities upon 10 repeated uses compared to free enzyme in solution. Immobilization of tannase was accomplished by strong hydrophobic interaction most likely between hydrophobic amino acid moieties of the glutaraldehyde-cross-linked tannase to the MWCNT.

  2. Coulomb blockade in a single tunnel junction directly connected to a multiwalled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Haruyama, Junji; Takesue, Izumi; Sato, Yuki

    2000-10-01

    We report on Coulomb blockade in a single tunnel junction directly connected to a multiwalled carbon nanotube (MWNT) by utilizing a nanoporous alumina film. The MWNT exhibits a weak localization effect with strong spin flip scattering. Experimental results and analysis suggest that a high-impedance external environment caused by the weak localization in the MWNT can yield Coulomb blockade, in accordance with phase correlation theory in a single junction system. It is also revealed that the Coulomb blockade is very sensitive to phase modulation in the MWNT, which also acts as a high-impedance transmission line.

  3. Bioaccumulation, stress, and swimming impairment in Daphnia magna exposed to multiwalled carbon nanotubes, graphene, and graphene oxide.

    PubMed

    Cano, Amanda M; Maul, Jonathan D; Saed, Mohammad; Shah, Smit A; Green, Micah J; Cañas-Carrell, Jaclyn E

    2017-08-01

    The use of carbon-based nanomaterials (CNMs) such as multiwalled carbon nanotubes (MWCNTs), graphene, and graphene oxide (GO) is increasing across many applications because of their unique and versatile properties. These CNMs may enter the aquatic environment through many pathways, creating the potential for organism exposure. The present study addresses the bioaccumulation and toxicity seen in Daphnia magna exposed to CNMs dispersed in sodium dodecyl benzene sulfonate (SDBS). In study I, D. magna were exposed to varying outer diameters of MWCNTs for 24 h in moderately hard or hard freshwater. Bioaccumulation of MWCNT was found in all treatments, with the highest concentrations (0.53 ± 0.27 μg/g) in D. magna exposed in hard freshwater (p < 0.005). The median lethal concentration (LC50) was determined for D. magna exposed to CNMs in moderately hard and hard freshwater. In study II, D. magna were exposed to CNMs for 72 h in moderately hard freshwater to assess swimming velocity and generation of reactive oxygen species (ROS) detected by dichlorofluorescein fluorescence. An overall decrease was seen in D. magna swimming velocity after exposure to CNMs. The generation of ROS was significantly higher (1.54 ± 0.38 dichlorofluorescein mM/mg dry wt) in D. magna exposed to MWCNTs of smaller outer diameters than in controls after 72 h (p < 0.05). These results suggest that further investigation of CNM toxicity and behavior in the aquatic environment is needed. Environ Toxicol Chem 2017;36:2199-2204. © 2017 SETAC. © 2017 SETAC.

  4. Appearance of radial breathing modes in Raman spectra of multi-walled carbon nanotubes upon laser illumination

    NASA Astrophysics Data System (ADS)

    Rai, Padmnabh; Mohapatra, Dipti R.; Hazra, K. S.; Misra, D. S.; Ghatak, Jay; Satyam, P. V.

    2008-03-01

    The Raman spectra of the multi-walled carbon nanotubes are studied with the laser power of 5-20 mW. We observe the Raman bands at ˜1352, 1581, 1607, and 2700 cm -1 with 5 mW laser power. As the laser power is increased to 10, 15 and 20 mW, the radial breathing modes (RBMs) of the single wall carbon nanotubes (SWNTs) appear in the range 200-610 cm -1. The diameter corresponding to the highest RBM is ˜0.37 nm, the lowest reported so far. The RBMs are attributed to the local synthesis of the SWNTs at the top surface of the samples at higher laser power.

  5. Enhanced-Adhesion Multi-Walled Carbon Nanotubes on Titanium Substrates for Stray Light Control

    NASA Technical Reports Server (NTRS)

    Hagopian, John; Getty, Stephanie; Quijada, Manuel

    2012-01-01

    Carbon nanotubes previously grown on silicon have extremely low reflectance, making them a good candidate for stray light suppression. Silicon, however, is not a good structural material for stray light components such as tubes, stops, and baffles. Titanium is a good structural material and can tolerate the 700 C nanotube growth process. The ability to grow carbon nanotubes on a titanium substrate that are ten times blacker than the current NASA state-of-the-art paints in the visible to near infrared spectra has been achieved. This innovation will allow significant improvement of stray light performance in scientific instruments or any other optical system. This innovation is a refinement of the utilization of multiwalled carbon nano tubes for stray light suppression in spaceflight instruments. The innovation is a process to make the surface darker and improve the adhesion to the substrate, improving robustness for spaceflight use. Bright objects such as clouds or ice scatter light off of instrument structures and components and make it difficult to see dim objects in Earth observations. A darker material to suppress this stray light has multiple benefits to these observations, including enabling scientific observations not currently possible, increasing observational efficiencies in high-contrast scenes, and simplifying instruments and lowering their cost by utilizing fewer stray light components and achieving equivalent performance. The prior art was to use commercially available black paint, which resulted in approximately 4% of the light being reflected (hemispherical reflectance or total integrated scatter, or TIS). Use of multiwalled carbon nanotubes on titanium components such as baffles, entrance aperture, tubes, and stops, can decrease this scattered light by a factor of ten per bounce over the 200-nm to 2,500-nm wavelength range. This can improve system stray light performance by orders of magnitude. The purpose of the innovation is to provide an enhanced

  6. Multiwall carbon nanotubes modulate paraquat toxicity in Arabidopsis thaliana.

    PubMed

    Fan, Xiaoji; Xu, Jiahui; Lavoie, Michel; Peijnenburg, W J G M; Zhu, Youchao; Lu, Tao; Fu, Zhengwei; Zhu, Tingheng; Qian, Haifeng

    2018-02-01

    Carbon nanotubes can be either toxic or beneficial to plant growth and can also modulate toxicity of organic contaminants through surface sorption. The complex interacting toxic effects of carbon nanotubes and organic contaminants in plants have received little attention in the literature to date. In this study, the toxicity of multiwall carbon nanotubes (MWCNT, 50 mg/L) and paraquat (MV, 0.82 mg/L), separately or in combination, were evaluated at the physiological and the proteomic level in Arabidopsis thaliana for 7-14 days. The results revealed that the exposure to MWCNT had no inhibitory effect on the growth of shoots and leaves. Rather, MWCNT stimulated the relative electron transport rate and the effective photochemical quantum yield of PSII value as compared to the control by around 12% and lateral root production up to nearly 4-fold as compared to the control. The protective effect of MWCNT on MV toxicity on the root surface area could be quantitatively explained by the extent of MV adsorption on MWCNT and was related to stimulation of photosynthesis, antioxidant protection and number and area of lateral roots which in turn helped nutrient assimilation. The influence of MWCNT and MV on photosynthesis and oxidative stress at the physiological level was consistent with the proteomics analysis, with various over-expressed photosynthesis-related proteins (by more than 2 folds) and various under-expressed oxidative stress related proteins (by about 2-3 folds). This study brings new insights into the interactive effects of two xenobiotics (MWCNT and MV) on the physiology of a model plant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Facile synthesis of stable superhydrophobic nanocomposite based on multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Mokarian, Zahra; Rasuli, Reza; Abedini, Yousefali

    2016-04-01

    A facile approach to fabricate a stable superhydrophobic composite comprising multi-walled carbon nanotubes and silicone rubber has been reported. Contact angle of de-ionized water droplets on the prepared surface was measured with the value of near 159°; while water droplets easily rolled off and bounced on it. Surface free energy of the superhydrophobic coating was examined by three methods about 26 mJ/m2. The prepared film shows good stability under high stress conditions such as ultraviolet exposure, heating, pencil hardness test, attacking with different pH value and ionic-strength solutions. In addition, remarkable stability of the coating was observed after soaking in condensed hydrochloric acid, 5 wt.% NaCl aqueous solution, boiling water and tape test.

  8. One step biofunctionalized electrospun multiwalled carbon nanotubes embedded zinc oxide nanowire interface for highly sensitive detection of carcinoma antigen-125.

    PubMed

    Paul, K Brince; Singh, Vikrant; Vanjari, Siva Rama Krishna; Singh, Shiv Govind

    2017-02-15

    Ovarian cancer is the most leading cause of cancer-related death in women . The carcinoma antigen-125, which is found on the surface of many ovarian cancer cells is known to be a gold standard clinical biomarker associated with life-threatening gynecological malignancy. In this work, we demonstrate a novel biosensor platform based on multiwalled carbon nanotubes embedded zinc oxide nanowire for the ultrasensitive detection of carcinoma antigen-125. Label free detection of the carcinoma antigen-125 was accomplished by differential voltammetry technique that demonstrated excellent sensitivity (90.14µA/(U/mL)/cm 2 ) with a detection limit of 0.00113UmL -1 concentration. The fabricated immunosensor exhibits good performance with wider detection range (0.001UmL -1 -1kUmL -1 ), reproducibility, selectivity, acceptable stability, and thus is a potential cost-effective methodology for point-of-care diagnosis. The multiwalled carbon nanotubes (MWCNTs) embedded highly oriented zinc oxide (ZnO) nanowires were synthesized by simple, low cost electrospinning technique. Compared to pure ZnO nanowires, electrochemical activity of MWCNTs embedded ZnO nanowires was found to be much higher. The calcination temperature was optimized to avoid any decomposition of the CNTs and to obtain multiwalled carbon nanotubes embedded highly crystalline ZnO nanowires. The salient feature of this biosensing platform is that one step calcination process is enough to create the functional groups on MWCNT-ZnO nanowire surface that are effective for the covalent conjugation of antibody without further surface modification. To the best of our knowledge, this is the first report on MWCNT-ZnO nanowire based immunosensor explored for the detection of cancer biomarker. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Nonenzymatic electrochemical detection of glucose using well-distributed nickel nanoparticles on straight multi-walled carbon nanotubes.

    PubMed

    Nie, Huagui; Yao, Zhen; Zhou, Xuemei; Yang, Zhi; Huang, Shaoming

    2011-12-15

    A nonenzymatic electrochemical sensor device was fabricated for glucose detection based on nickel nanoparticles (NiNPs)/straight multi-walled carbon nanotubes (SMWNTs) nanohybrids, which were synthesized through in situ precipitation procedure. SMWNTs can be easily dispersed in solution after mild sonication pretreatment, which facilitates the precursor of NiNPs binding to their surface and results in the homogeneous distribution of NiNPs on the surface of SMWNTs. The morphology and component of the nanohybrids were characterized by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD), respectively. Cyclic voltammetry (CV) and amperometry were used to evaluate the catalytic activity of the NiNPs/SMWNTs nanohybrids modified electrode towards glucose. It was found that the nanohybrids modified electrode showed remarkably enhanced electrocatalytic activity towards the oxidation of glucose in alkaline solution compared to that of the bare glass carbon electrode (GCE), the NiNPs and the SMWNTs modified electrode, attributing to the synergistic effect of SMWNTs and Ni(2+)/Ni(3+) redox couple. Under the optimal detection conditions, the as-prepared sensors exhibited linear behavior in the concentration range from 1 μM to 1 mM for the quantification of glucose with a limit of detection of 500 nM (3σ). Moreover, the NiNPs/SMWNTs modified electrode was also relatively insensitive to commonly interfering species such as ascorbic acid (AA), uric acid (UA), dopamine (DA), galactose (GA), and xylose (XY). The robust selectivities, sensitivities, and stabilities determined experimentally indicated the great potential of NiNPs/SMWNTs nanohybrids for construction of a variety of electrochemical sensors. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Novel Chemoresistive CH4 Sensor with 10 ppm Sensitivity Based on Multi-Walled Carbon Nanotubes (MWCNTs) Functionalized with SnO2nanocrystals

    EPA Science Inventory

    Chemoresistive sensors based on multi-walled carbon nanotubes (MWCNTs)functionalized with SnO2 nanocrystals have great potential for detecting trace gases at low concentrations (single ppm levels) at room temperature, because the SnO2 nanocrystals act as active sites for the chem...

  11. On-chip purification via liquid immersion of arc-discharge synthesized multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hokkanen, Matti J.; Lautala, Saara; Shao, Dongkai; Turpeinen, Tuomas; Koivistoinen, Juha; Ahlskog, Markus

    2016-07-01

    Arc-discharge synthesized multiwalled carbon nanotubes (AD-MWNT) have been proven to be of high quality, but their use is very limited due to difficulties in obtaining them in a clean and undamaged form. Here, we present a simple method that purifies raw AD-MWNT material in laboratory scale without damage, and that in principle can be scaled up. The method consists of depositing raw AD-MWNT material on a flat substrate and immersing the substrate slowly in water, whereby the surface tension force of the liquid-substrate contact line selectively sweeps away the larger amorphous carbon debris and leaves relatively clean MWNTs on the substrate. We demonstrate the utility of the method by preparing clean individual MWNTs for measurement of their Raman spectra. The spectra exhibit the characteristics of high-quality tubes free from contaminants. We also show how one concomitantly with the purification process can obtain large numbers of clean suspended MWNTs.

  12. Super-hydrophobic multi-walled carbon nanotube coatings for stainless steel.

    PubMed

    De Nicola, Francesco; Castrucci, Paola; Scarselli, Manuela; Nanni, Francesca; Cacciotti, Ilaria; De Crescenzi, Maurizio

    2015-04-10

    We have taken advantage of the native surface roughness and the iron content of AISI 316 stainless steel to directly grow multi-walled carbon nanotube (MWCNT) random networks by chemical vapor deposition (CVD) at low-temperature (1000°C) without the addition of any external catalysts or time-consuming pre-treatments. In this way, super-hydrophobic MWCNT films on stainless steel sheets were obtained, exhibiting high contact angle values (154°C) and high adhesion force (high contact angle hysteresis). Furthermore, the investigation of MWCNT films with scanning electron microscopy (SEM) reveals a two-fold hierarchical morphology of the MWCNT random networks made of hydrophilic carbonaceous nanostructures on the tip of hydrophobic MWCNTs. Owing to the Salvinia effect, the hydrophobic and hydrophilic composite surface of the MWCNT films supplies a stationary super-hydrophobic coating for conductive stainless steel. This biomimetical inspired surface not only may prevent corrosion and fouling, but also could provide low friction and drag reduction.

  13. The functionalization and characterization of multi-walled carbon nanotubes (MWCNTs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdullah, Mohd Pauzi; Center of Water Analysis and Research; Zulkepli, Siti Aminah

    2015-09-25

    Functionalization is the process of introducing chemical functional groups on the surface of the material. In this study, a multi-walled carbon nanotube (MWCNTs) was functionalized by oxidation treatment using concentrated nitric acid. The functionalized and pristine MWCNTs were analyzed by using Fourier Transform Infrared Spectroscopy (FT-IR) and X-Ray Diffraction (XRD). The XRD patterns exhibit the graphitic properties for all samples. Besides, the XRD results also demonstrate that the percent of crystallinity of MWCNTs increases as the duration of acid treatment increases. The percent of crystallinity increases from 66% to 80% when the pristine MWCNT treated for 12 hours with additionalmore » 12 hours reflux process with nitric acid. The IR spectrum for the 12 hours-treated MWCNTs shows the formation of carboxyl functional group. Additional 12 hours reflux process with nitric acid on the 12 hours-treated MWCNTs have shown the loss of existing carboxyl group and only hydroxyl group formed.« less

  14. Electrical and Raman spectroscopic studies of vertically aligned multi-walled carbon nanotubes.

    PubMed

    Mathur, Ashish; Tweedie, Mark; Roy, Susanta Sinha; Maguire, P D; McLaughlin, James A

    2009-07-01

    Microwave plasma enhanced chemical vapour deposition (MPECVD) was used for the production of carbon nanotubes. Vertically aligned multi-walled carbon nanotubes (MWCNTs) were grown on silicon substrates coated with cobalt thin films of thickness ranging from 0.5 nm to 3 nm. Prior to the nanotube growth the catalyst were treated with N2 plasma for 5-10 minutes that break the films into small nanoparticles which favour the growth of nanotubes. The CNTs were grown at a substrate temperature of 700 degrees C for 5, 10 and 15 minutes. The height of the CNT films ranging from 10 microm-30 microm indicating that the initial growth rate of the CNTs are very high at a rate of approximately 100 nm/sec. Electrical resistivity of the above samples was evaluated from I-V measurements. The activation energy (E(a)) was also calculated from the temperature dependent studies and it was found that the E(a) lies in the range of 15-35 meV. Raman spectroscopy was used to identify the quality of the nanotubes.

  15. Characterization of functionalized multiwalled carbon nanotubes for use in an enzymatic sensor.

    PubMed

    Guadarrama-Fernández, Leonor; Chanona-Pérez, Jorge; Manzo-Robledo, Arturo; Calderón-Domínguez, Georgina; Martínez-Rivas, Adrián; Ortiz-López, Jaime; Vargas-García, Jorge Roberto

    2014-10-01

    Carbon nanotubes (CNT) have proven to be materials with great potential for the construction of biosensors. Development of fast, simple, and low cost biosensors to follow reactions in bioprocesses, or to detect food contaminants such as toxins, chemical compounds, and microorganisms, is presently an important research topic. This report includes microscopy and spectroscopy to characterize raw and chemically modified multiwall carbon nanotubes (MWCNTs) synthesized by chemical vapor deposition with the intention of using them as the active transducer in bioprocessing sensors. MWCNT were simultaneously purified and functionalized by an acid mixture involving HNO3-H2SO4 and amyloglucosidase attached onto the chemically modified MWCNT surface. A 49.0% decrease in its enzymatic activity was observed. Raw, purified, and enzyme-modified MWCNTs were analyzed by scanning and transmission electron microscopy and Raman and X-ray photoelectron spectroscopy. These studies confirmed purification and functionalization of the CNTs. Finally, cyclic voltammetry electrochemistry was used for electrical characterization of CNTs, which showed promising results that can be useful for construction of electrochemical biosensors applied to biological areas.

  16. ;Green; carbon with hierarchical three dimensional porous structure derived from - Pongamia pinnata seed oil extract cake and NiCo2O4-Ni(OH)2/Multiwall carbon nanotubes nanocomposite as electrode materials for high performance asymmetric supercapacitor

    NASA Astrophysics Data System (ADS)

    Chaitra, K.; Narendra, Reddy; Venkatesh, Krishna; Nagaraju, N.; Kathyayini, Nagaraju

    2017-07-01

    Herein, we report for the first time synthesis and electrochemical supercapacitance performance of 3-D hierarchical porous "Green" carbon derived from Pongamia pinnata seed oil extract cake and its activation using different amounts of KOH. Also, nanocomposites of multiwalled carbon nanotubes (MWCNT) with various weight percentages of Ni and Co were prepared by hydrothermal method. Physico-chemical properties of "Green" carbon and nanocomposites were analyzed by Powder X-ray Diffraction, Brunner Emmett Teller surface area, Scanning Electron Microscopy-Elemental Dispersive Spectrum, Transmission Electron Microscopy and Raman techniques. KOH activated carbon was found associated with combination of micropores & mesopores while the nanocomposite with mixture of spinel NiCo2O4 and Ni(OH)2. Porous carbon activated with 2:1::KOH:C (KC2) and the nanocomposite with 1:1 Ni & Co (NC1) exhibited excellent electrochemical performance in three electrode system. Further, fabricated asymmetric supercapacitor (AS) device Ni-Co-MWCNT (NC1)//KC2 exhibited specific capacitance (Cs) of 177 F/g as determined by cyclic voltammetry at 10 mV/s and retained 90% even at 3000th cycle in life cycle test conducted at high current density of 50 A/g. In order to evaluate its practical performance, the AS device was charged to 1.8 V at 5 A/g and used successfully to power a calculator for more than 1 h.

  17. 3D Interconnected and Multiwalled Carbon@MoS2 @Carbon Hollow Nanocables as Outstanding Anodes for Na-Ion Batteries.

    PubMed

    Wang, Yan; Qu, Qunting; Li, Guangchao; Gao, Tian; Qian, Feng; Shao, Jie; Liu, Weijie; Shi, Qiang; Zheng, Honghe

    2016-11-01

    Currently, the specific capacity and cycling performance of various MoS 2 /carbon-based anode materials for Na-ion storage are far from satisfactory due to the insufficient structural stability of the electrode, incomplete protection of MoS 2 by carbon, difficult access of electrolyte to the electrode interior, as well as inactivity of the adopted carbon matrix. To address these issues, this work presents the rational design and synthesis of 3D interconnected and hollow nanocables composed of multiwalled carbon@MoS 2 @carbon. In this architecture, (i) the 3D nanoweb-like structure brings about excellent mechanical property of the electrode, (ii) the ultrathin MoS 2 nanosheets are sandwiched between and doubly protected by two layers of porous carbon, (iii) the hollow structure of the primary nanofibers facilitates the access of electrolyte to the electrode interior, (iv) the porous and nitrogen-doping properties of the two carbon materials lead to synergistic Na-storage of carbon and MoS 2 . As a result, this hybrid material as the anode material of Na-ion battery exhibits fast charge-transfer reaction, high utilization efficiency, and ultrastability. Outstanding reversible capacity (1045 mAh g -1 ), excellent rate behavior (817 mAh g -1 at 7000 mA g -1 ), and good cycling performance (747 mAh g -1 after 200 cycles at 700 mA g -1 ) are obtained. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Voltammetric Determination of Ferulic Acid Using Polypyrrole-Multiwalled Carbon Nanotubes Modified Electrode with Sample Application

    PubMed Central

    Abdel-Hamid, Refat; Newair, Emad F.

    2015-01-01

    A polypyrrole-multiwalled carbon nanotubes modified glassy carbon electrode-based sensor was devised for determination of ferulic acid (FA). The fabricated sensor was prepared electrochemically using cyclic voltammetry (CV) and characterized using CV and scanning electron microscope (SEM). The electrode shows an excellent electrochemical catalytic activity towards FA oxidation. Under optimal conditions, the anodic peak current correlates linearly to the FA concentration throughout the range of 3.32 × 10−6 to 2.59 × 10−5 M with a detection limit of 1.17 × 10−6 M (S/N = 3). The prepared sensor is highly selective towards ferulic acid without the interference of ascorbic acid. The sensor applicability was tested for total content determination of FA in a commercial popcorn sample and showed a robust functionality. PMID:28347090

  19. Fast microextraction of phthalate acid esters from beverage, environmental water and perfume samples by magnetic multi-walled carbon nanotubes.

    PubMed

    Luo, Yan-Bo; Yu, Qiong-Wei; Yuan, Bi-Feng; Feng, Yu-Qi

    2012-02-15

    In this work, magnetic carbon nanotubes (CNTs) were prepared by mixing the magnetic particles and multi-walled carbon nanotubes dispersed solutions. Due to their excellent adsorption capability towards hydrophobic compounds, the magnetic CNTs were used as adsorbent of magnetic solid-phase extraction (MSPE) to extract phthalate acid esters (PAEs), which are widely used in many consumable products with potential carcinogenic properties. By coupling MSPE with gas chromatography/mass spectrometry (GC/MS), a rapid, sensitive and cost-effective method for the analysis of PAEs was established. Our results showed that the limits of detection (LODs) of 16 PAEs ranged from 4.9 to 38 ng L(-1), which are much lower compared to the previously reported methods. And good linearities of the detection method were obtained with correlation coefficients (R(2)) between 0.9821 and 0.9993. In addition, a satisfying reproducibility was achieved by evaluating the intra- and inter-day precisions with relative standard deviations (RSDs) less than 11.7% and 14.6%, respectively. Finally, the established MSPE-GC/MS method was successfully applied to the determination of PAEs from bottled beverages, tap water and perfume samples. The recoveries of the 16 PAEs from the real samples ranged from 64.6% to 125.6% with the RSDs less than 16.5%. Taken together, the MSPE-GC/MS method developed in current study provides a new option for the detection of PAEs from real samples with complex matrices. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Biofunctionalization of multiwalled carbon nanotubes by irradiation of electropolymerized poly(pyrrole-diazirine) films.

    PubMed

    Papper, Vladislav; Gorgy, Karine; Elouarzaki, Kamal; Sukharaharja, Ayrine; Cosnier, Serge; Marks, Robert S

    2013-07-15

    A photoactivatable poly(pyrrole-diazirine) film was synthesized and electropolymerized as a versatile tool for covalent binding of laccase and glucose oxidase on multiwalled carbon nanotube coatings and Pt, respectively. Irradiation of the functionalized nanotubes allowed photochemical grafting of laccase and its subsequent direct electrical wiring, as illustrated by the electrocatalytic reduction of oxygen. Moreover, covalent binding of glucose oxidase as model enzyme, achieved by UV activation of electropolymerized pyrrole-diazirine, allowed a glucose biosensor to be realized. This original method to graft biomolecules combines electrochemical and photochemical techniques. The simplicity of this new method allows it to be extended easily to other biological systems. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Multi-Wavelength Q-Switched Ytterbium-Doped Fiber Laser with Multi-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Al-Masoodi, A. H. H.; Ahmed, M. H. M.; Arof, H.; Harun, S. W.

    2018-03-01

    We demonstrate a passively multi-wavelength Q-switched Ytterbium-doped fiber laser (YDFL) based on a multi-wall carbon nanotubes embedded in polyethylene oxide film as saturable absorber. The YDFL generates a stable multi-wavelength with spacing of 1.9 nm as the 980 nm pump power is fixed within 62. 4 mW and 78.0 mW. The repetition rate of the laser is tunable from 10.41 to 29.04 kHz by increasing the pump power from the threshold power of 62.4 mW to 78 mW. At 78 mW pump power, the maximum pulse energy of 38 nJ and the shortest pulse width of 8.87 µs are obtained.

  2. Crystalline multiwall carbon nanotubes and their application as a field emission electron source.

    PubMed

    Liu, Peng; Zhou, Duanliang; Zhang, Chunhai; Wei, Haoming; Yang, Xinhe; Wu, Yang; Li, Qingwei; Liu, Changhong; Du, Bingchu; Liu, Liang; Jiang, Kaili; Fan, Shoushan

    2018-05-18

    Using super-aligned carbon nanotube (CNT) film, we have fabricated van der Waals crystalline multiwall CNTs (MWCNT) by adopting high pressure and high temperature processing. The CNTs keep parallel to each other and are distributed uniformly. X-ray diffraction characterization shows peaks at the small angle range, which can be assigned to the spacing of the MWCNT crystals. The mechanical, electrical and thermal properties are all greatly improved compared with the original CNT film. The field emission properties of van der Waals crystalline MWCNTs are tested and they show a better surface morphology stability for the large emission current. We have further fabricated a field emission x-ray tube and demonstrated a precise resolution imaging ability.

  3. Effect of electric field induced alignment and dispersion of functionalized carbon nanotubes on properties of natural rubber

    NASA Astrophysics Data System (ADS)

    Gao, Jiangshan; He, Yan; Gong, Xiubin

    2018-06-01

    The original equipment and method for orienting multi-walled carbon nanotubes (MWCNTs) in natural rubber (NR) by alternating current (AC) electric field were reported in the present study. MWCNTs with various volume fractions were dispersed in the mixture latex which composed of natural rubber, additives and methylbenzene. The application of AC electric field during nanocomposites curing process was used to induce the formation of aligned conductive nanotube networks between the electrodes. The aligned MWCNTs in the composites have a better orientation performance and dispersion quality than these of random MWCNTs by analyzing TEM and SEM images. The effects of MWCNTs anisotropy on thermal conductivity, dielectric properties, and dynamic mechanical properties of NR were studied. The mean value of thermal conductivity of composites loading with aligned MWCNTs was 8.67% higher than that of composites with random MWCNTs due to the anisotropy of aligned MWCNTs. The compounds with aligned MWCNTs possessed low dielectric constant, loss tangents and conductivity, namely a good insulativity. The compounds loading with aligned MWCNTs had lower loss modulus and better dynamic mechanical properties than those with random MWCNTs. This method can make full use of the high thermal conductivity of MWCNTs axis, and expand the application areas of natural rubber like conducting heat in a certain direction with a high efficiency.

  4. Rapid detection of ssDNA and RNA using multi-walled carbon nanotubes modified screen-printed carbon electrode.

    PubMed

    Ye, Yongkang; Ju, Huangxian

    2005-11-15

    A method for rapid sensitive detection of DNA or RNA was designed using a composite screen-printed carbon electrode modified with multi-walled carbon nanotubes (MWNTs). MWNTs showed catalytic characteristics for the direct electrochemical oxidation of guanine or adenine residues of signal strand DNA (ssDNA) and adenine residues of RNA, leading to indicator-free detection of ssDNA and RNA concentrations. With an accumulation time of 5 min, the proposed method could be used for detection of calf thymus ssDNA ranging from 17.0 to 345 microg ml(-1) with a detection limit of 2.0 microg ml(-1) at 3 sigma and yeast tRNA ranging from 8.2 microg ml(-1) to 4.1 mg ml(-1). AC impedance was employed to characterize the surface of modified electrodes. The advantages of convenient fabrication, low-cost detection, short analysis time and combination with nanotechnology for increasing the sensitivity made the subject worthy of special emphasis in the research programs and sources of new commercial products.

  5. From Bench Top to Market: Growth of Multi-Walled Carbon Nanotubes by Injection CVD Using Fe Organometallics - Production of a Commercial Reactor

    NASA Technical Reports Server (NTRS)

    Rowsell, J.; Hepp, A. F.; Harris, J. D.; Raffaelle, R. P.; Cowen, J. C.; Scheiman, D. A.; Flood, D. M.; Flood, D. J.

    2009-01-01

    Preferential oriented multiwalled carbon nanotubes were prepared by the injection chemical vapor deposition (CVD) method using either cyclopentadienyliron dicarbonyl dimer or cyclooctatetraene iron tricarbonyl as the iron catalyst source. The catalyst precursors were dissolved in toluene as the carrier solvent for the injections. The concentration of the catalyst was found to influence both the growth (i.e., MWNT orientation) of the nanotubes, as well as the amount of iron in the deposited material. As deposited, the multiwalled carbon nanotubes contained as little as 2.8% iron by weight. The material was deposited onto tantalum foil and fused silica substrates. The nanotubes were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and thermogravimetric analysis. This synthetic route provides a simple and scalable method to deposit MWNTs with a low defect density, low metal content and a preferred orientation. Subsequently, a small start-up was founded to commercialize the deposition equipment. The contrast between the research and entrepreneurial environments will be discussed.

  6. Nanomaterial Case Study: A Comparison of Multiwalled Carbon Nanotube and Decabromodiphenyl Ether Flame-Retardant Coatings Applied to Upholstery Textiles (Independent Peer Review Draft)

    EPA Science Inventory

    This Independent Peer Review Draft document presents a case study of multiwalled carbon nanotubes (MWCNTs); it focuses on the specific example of MWCNTs as used in flame-retardant coatings applied to upholstery textiles. This case study is organized around the comprehensive envir...

  7. Finely dispersed brown carbon in a smoggy atmosphere

    NASA Astrophysics Data System (ADS)

    Gorchakov, G. I.; Vasiliev, A. V.; Verichev, K. S.; Semoutnikova, E. G.; Karpov, A. V.

    2016-11-01

    It is shown that the absorption capacity of smoke aerosol during mass forest and forest-peat fires is determined to a considerable degree by light absorbing organic compounds or brown carbon. According to the data from the AERONET global network of stations [1], the absorption spectra of smoke aerosol vary significantly if airborne particulate matter is contained in brown carbon. It is established that in several cases, the absorption spectra of smoke aerosol are approximated with satisfactory accuracy by exponents. It is shown that the finely dispersed (submicron) fraction of the smoke aerosol makes a major contribution to its optical characteristics in the 0.44-1.02 μm spectral region. Strong variation in the single scattering albedo is discovered in the presence of brown carbon in the smoke aerosol. It is shown that the optical characteristics of coarsely dispersed and finely dispersed fractions of smoke aerosol differ considerably.

  8. Aqueous carbon black dispersions prepared with steam jet-cooked corn starch

    USDA-ARS?s Scientific Manuscript database

    The utilization of jet-cooked waxy and normal corn starch to prepare aqueous dispersions of hydrophobic carbon black (Vulcan XC-72R) is reported. Blending carbon black (CB) into aqueous jet-cooked dispersions of starch followed by high pressure homogenization produced stable aqueous carbon black di...

  9. Comprehensive studies on the nature of interaction between carboxylated multi-walled carbon nanotubes and bovine serum albumin.

    PubMed

    Lou, Kai; Zhu, Zhaohua; Zhang, Hongmei; Wang, Yanqing; Wang, Xiaojiong; Cao, Jian

    2016-01-05

    Herein, the interaction between carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) and bovine serum albumin has been investigated by using circular dichroism, UV-vis, and fluorescence spectroscopic methods and molecular modeling in order to better understand the basic behavior of carbon nanotubes in biological systems. The spectral results showed that MWCNTs-COOH bound to BSA and induced the relatively large changes in secondary structure of protein by mainly hydrophobic forces and π-π stacking interactions. Thermal denaturation of BSA in the presence of MWCNTs-COOH indicated that carbon nanotubes acted as a structure destabilizer for BSA. In addition, the putative binding site of MWCNTs-COOH on BSA was near to domain II. With regard to human health, the present study could provide a better understanding of the biological properties, cytotocicity of surface modified carbon nanotubes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Synergic effect of SDBS and GA to prepare stable dispersion of CNT in water for industrial heat transfer applications

    NASA Astrophysics Data System (ADS)

    Babita; Sharma, S. K.; Mital Gupta, Shipra

    2018-05-01

    Dispersion of hydrophobic carbon nanotubes in water is challenging. Herein, efforts have been made to study the dispersive effect of surface active agents on multi-walled carbon nanotubes (MWCNT). A method was developed to prepare a stable dispersion of MWCNT using sodium dodecyl benzene sulfonate (SDBS) and gum arabic (GA). Effect of ultrasonication time and surfactant concentration was also investigated. Compared to pure SDBS and GA based dispersion, their mixture was found to be effective to obtain a better dispersion of MWCNT, reflecting a synergistic effect of this mixture due to electrostatic and steric hindrance mechanism of surfactants. Rheology of CNT nanofluids showed the Newtonian behavior as viscosity was independent of shear rate. The viscosity of CNT nanofluids was higher than that of water. The thermal conductivity of dispersion was much higher than that of base fluid. This study provides the bases for using mixed surfactant system to disperse MWCNT in the polar base fluid to prepare nanofluids having enhanced thermal conductivity which can be used for heat transfer applications.

  11. Electrophoretically deposited multiwalled carbon nanotube based amperometric genosensor for E.coli detection

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Hema; Solanki, Shipra; Sumana, Gajjala

    2016-04-01

    This work reports on a sensitive and selective genosensor fabrication method for Escherichia coli (E.coli) detection. The functionalized multiwalled carbon nanotubes (MWCNT) synthesized via chemical vapour deposition have been deposited electrophoretically onto indium tin oxide coated glass surface and have been utilized as matrices for the covalent immobilization of E.coli specific probe oligonucleotide that was identified from the 16s rRNA coding region of the E.coli genome. This fabricated functionalized MWCNT based platform sought to provide improved fundamental characteristics to electrode interface in terms of electro-active surface area and diffusion coefficient. Electrochemical cyclic voltammetry revealed that this genosensor exhibits a linear response to complementary DNA in the concentration range of 10-7 to 10-12 M with a detection limit of 1×10-12 M.

  12. Skin effect mitigation in laser processed multi-walled carbon nanotube/copper conductors

    NASA Astrophysics Data System (ADS)

    Keramatnejad, K.; Zhou, Y. S.; Gao, Y.; Rabiee Golgir, H.; Wang, M.; Jiang, L.; Silvain, J.-F.; Lu, Y. F.

    2015-10-01

    In this study, laser-processed multi-walled carbon nanotube (MWCNT)/Cu conductors are introduced as potential passive components to mitigate the skin effect of Cu at high frequencies (0-10 MHz). Suppressed skin effect is observed in the MWCNT/Cu conductors compared to primitive Cu. At an AC frequency of 10 MHz, a maximum AC resistance reduction of 94% was observed in a MWCNT/Cu conductor after being irradiated at a laser power density of 189 W/cm2. The reduced skin effect in the MWCNT/Cu conductors is ascribed to the presence of MWCNT channels which are insensitive to AC frequencies. The laser irradiation process is observed to play a crucial role in reducing contact resistance at the MWCNT-Cu interfaces, removing impurities in MWCNTs, and densifying MWCNT films.

  13. Nano-engineered Multiwall Carbon Nanotube-copper Composite Thermal Interface Material for Efficient Heat Conduction

    NASA Technical Reports Server (NTRS)

    Ngo, Quoc; Cruden, Brett A.; Cassell, Alan M.; Sims, Gerard; Li, Jun; Meyyappa, M.; Yang, Cary Y.

    2005-01-01

    Efforts in integrated circuit (IC) packaging technologies have recently been focused on management of increasing heat density associated with high frequency and high density circuit designs. While current flip-chip package designs can accommodate relatively high amounts of heat density, new materials need to be developed to manage thermal effects of next-generation integrated circuits. Multiwall carbon nanotubes (MWNT) have been shown to significantly enhance thermal conduction in the axial direction and thus can be considered to be a candidate for future thermal interface materials by facilitating efficient thermal transport. This work focuses on fabrication and characterization of a robust MWNT-copper composite material as an element in IC package designs. We show that using vertically aligned MWNT arrays reduces interfacial thermal resistance by increasing conduction surface area, and furthermore, the embedded copper acts as a lateral heat spreader to efficiently disperse heat, a necessary function for packaging materials. In addition, we demonstrate reusability of the material, and the absence of residue on the contacting material, both novel features of the MWNT-copper composite that are not found in most state-of-the-art thermal interface materials. Electrochemical methods such as metal deposition and etch are discussed for the creation of the MWNT-Cu composite, detailing issues and observations with using such methods. We show that precise engineering of the composite surface affects the ability of this material to act as an efficient thermal interface material. A thermal contact resistance measurement has been designed to obtain a value of thermal contact resistance for a variety of different thermal contact materials.

  14. Detection of Quinoline in G. boninense-Infected Plants Using Functionalized Multi-Walled Carbon Nanotubes: A Field Study.

    PubMed

    Akanbi, Fowotade Sulayman; Yusof, Nor Azah; Abdullah, Jaafar; Sulaiman, Yusran; Hushiarian, Roozbeh

    2017-07-01

    Carbon nanotubes (CNTs) reinforced with gold nanoparticles (AuNPs) and chitosan nanoparticles (CTSNPs) were anchored on a screen-printed electrode to fabricate a multi-walled structure for the detection of quinoline. The surface morphology of the nanocomposites and the modified electrode was examined by an ultra-high resolution field emission scanning electron microscope (FESEM), and Fourier-transform infrared (FT-IR) spectroscopy was used to confirm the presence of specific functional groups on the multi-walled carbon nanotubes MWCNTs. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were used to monitor the layer-by-layer assembly of ultra-thin films of nanocomposites on the surface of the electrode and other electrochemical characterizations. Under optimized conditions, the novel sensor displayed outstanding electrochemical reactivity towards the electro-oxidation of quinoline. The linear range was fixed between 0.0004 and 1.0 μM, with a limit of detection (LOD) of 3.75 nM. The fabricated electrode exhibited high stability with excellent sensitivity and selectivity, specifically attributable to the salient characteristics of AuNPs, CTSNPs, and MWCNTs and the synergistic inter-relationship between them. The newly developed electrode was tested in the field. The Ipa increased with an increase in the amount of quinoline solution added, and the peak potential deviated minimally, depicting the real capability of the newly fabricated electrode.

  15. Proficiency feasibility of multi-walled carbon nanotubes in the presence of polymeric surfactant on enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Nezhad, Javad Razavi; Jafari, Arezou; Abdollahi, Mahdi

    2018-01-01

    Enhanced heavy oil recovery methods are widely utilized to increase oil recovery. For this purpose, polymer and surfactant flooding have been used extensively. Recently, polymeric surfactant flooding has become an attractive alternative to sole polymer flooding due to their capability of providing an increase in solution viscosity and a decrease in interfacial tension, which are both beneficial for efficiency of the process. Applying nanoparticles as an additive to polymer solutions is a method to improve viscosity and alter rock wettability. Therefore, in this research, multi-walled carbon nanotube (MWCNT) was mixed with a polymeric surfactant of polyacrylamide-graft-lignin copolymer (PAM-g-L) synthesized via radical grafting reaction. Moreover, several solutions with different concentrations of nanoparticles with PAM-g-L were prepared. The solutions were injected into a micromodel to evaluate the PAM-g-L flooding efficiency in presence of the multi-walled carbon nanotubes. The results of micromodel flooding showed that increasing MWCNT concentration results in lower sweep efficiencies; and consequently, oil production will decrease. Therefore, MWCNT along with PAM-g-L has an unacceptable performance in enhanced heavy oil recovery. But data of wettability tests revealed that MWCNT can change the wettability from oil-wet to water-wet. In addition, the combination of the PAM-g-L and MWCNT in a solution will cause more water-wet condition.

  16. Detection of Quinoline in G. boninense-Infected Plants Using Functionalized Multi-Walled Carbon Nanotubes: A Field Study

    PubMed Central

    Akanbi, Fowotade Sulayman; Yusof, Nor Azah; Abdullah, Jaafar; Sulaiman, Yusran; Hushiarian, Roozbeh

    2017-01-01

    Carbon nanotubes (CNTs) reinforced with gold nanoparticles (AuNPs) and chitosan nanoparticles (CTSNPs) were anchored on a screen-printed electrode to fabricate a multi-walled structure for the detection of quinoline. The surface morphology of the nanocomposites and the modified electrode was examined by an ultra-high resolution field emission scanning electron microscope (FESEM), and Fourier-transform infrared (FT-IR) spectroscopy was used to confirm the presence of specific functional groups on the multi-walled carbon nanotubes MWCNTs. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were used to monitor the layer-by-layer assembly of ultra-thin films of nanocomposites on the surface of the electrode and other electrochemical characterizations. Under optimized conditions, the novel sensor displayed outstanding electrochemical reactivity towards the electro-oxidation of quinoline. The linear range was fixed between 0.0004 and 1.0 μM, with a limit of detection (LOD) of 3.75 nM. The fabricated electrode exhibited high stability with excellent sensitivity and selectivity, specifically attributable to the salient characteristics of AuNPs, CTSNPs, and MWCNTs and the synergistic inter-relationship between them. The newly developed electrode was tested in the field. The Ipa increased with an increase in the amount of quinoline solution added, and the peak potential deviated minimally, depicting the real capability of the newly fabricated electrode. PMID:28671561

  17. Three-Dimensional Conductive Nanocomposites Based on Multiwalled Carbon Nanotube Networks and PEDOT:PSS as a Flexible Transparent Electrode for Optoelectronics.

    PubMed

    Cho, Er-Chieh; Li, Chiu-Ping; Huang, Jui-Hsiung; Lee, Kuen-Chan; Huang, Jen-Hsien

    2015-06-03

    We have synthesized conductive nanocomposites composed of multiwalled carbon nanotubes (MWCNTs) and Au nanoparticles (NPs). The Au NPs with an average size of approximately 4.3 nm are uniformly anchored on the MWCNT. After being exposed to microwave (MW) plasma irradiation, the anchored Au NPs melt and fuse, leading to larger aggregates (34 nm) that can connect the MWCNT forming a three-dimensional conducting network. The formation of a continuous MWCNT network can produce more a conductive pathway, leading to lower sheet resistance. When the Au-MWCNT is dispersed in the highly conductive polymer, poly(ethylene dioxythiophene):polystyrenesulfonate ( PSS), we can obtain solution-processable composite formulations for the preparation of a flexible transparent electrode. The resulting Au-MWCNT/PEDOT:PSS hybrid films possess a sheet resistance of 51 Ω/sq with a transmittance of 86.2% at 550 nm. We also fabricate flexible organic solar cells and electrochromic devices to demonstrate the potential use of the as-prepared composite electrodes. Compared with the indium tin oxide-based devices, both the solar cells and electrochromic devices with the composites incorporated as a transparent electrode deliver comparable performance.

  18. Effect of Multiwalled Carbon Nanotubes on the Mechanical Properties of Carbon Fiber-Reinforced Polyamide-6/Polypropylene Composites for Lightweight Automotive Parts.

    PubMed

    Nguyen-Tran, Huu-Duc; Hoang, Van-Tho; Do, Van-Ta; Chun, Doo-Man; Yum, Young-Jin

    2018-03-15

    The development of lightweight automotive parts is an important issue for improving the efficiency of vehicles. Polymer composites have been widely applied to reduce weight and improve mechanical properties by mixing polymers with carbon fibers, glass fibers, and carbon nanotubes. Polypropylene (PP) has been added to carbon fiber-reinforced nylon-6 (CF/PA6) composite to achieve further weight reduction and water resistance. However, the mechanical properties were reduced by the addition of PP. In this research, multiwalled carbon nanotubes (CNTs) were added to compensate for the reduced mechanical properties experienced when adding PP. Tensile testing and bending tests were carried out to evaluate the mechanical properties. A small amount of CNTs improved the mechanical properties of carbon fiber-reinforced PA6/PP composites. For example, the density of CF/PA6 was reduced from 1.214 to 1.131 g/cm³ (6.8%) by adding 30 wt % PP, and the tensile strength of 30 wt % PP composite was improved from 168 to 173 MPa (3.0%) by adding 0.5 wt % CNTs with small increase of density (1.135 g/cm³). The developed composite will be widely used for lightweight automotive parts with improved mechanical properties.

  19. Roles of cation valance and exchange on the retention and colloid-facilitated transport of functionalized multi-walled carbon nanotubes in a natural soil

    USDA-ARS?s Scientific Manuscript database

    Saturated soil column experiments were conducted to investigate the transport, retention, and release behavior of a low concentration (1 mg L-1) of functionalized 14C-labeled multi-walled carbon nanotubes (MWCNTs) in a natural soil under various solution chemistries. Breakthrough curves (BTCs) for M...

  20. Multiwalled carbon nanotubes and dispersed nanodiamond novel hybrids: Microscopic structure evolution, physical properties, and radiation resilience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, S.; Farmer, J.

    2011-01-01

    We report the structure and physical properties of novel hybrids of multiwalled carbon nanotubes (MWCNTs) and ultradispersed diamond (UDD) forming nanocomposite ensemble that were subjected to 50, 100, and 10{sup 3} kGy gamma ray doses and characterized using various analytical tools to investigate hierarchical defects evolution. This work is prompted by recent work on single-walled CNTs and UDD ensemble [Gupta et al., J. Appl. Phys. 107, 104308 (2010)] where radiation-induced microscopic defects seem to be stabilized by UDD. The present experiments show similar effects where these hybrids display only a minimal structural modification under the maximum dose. Quantitative analyses ofmore » multiwavelength Raman spectra revealed lattice defects induced by irradiation assessed through the variation in prominent D, G, and 2D bands. A minimal change in the position of D, G, and 2D bands and a marginal increase in intensity of the defect-induced double resonant Raman scattered D and 2D bands are some of the implications suggesting the radiation coupling. The in-plane correlation length (L{sub a}) was also determined following Tunistra-Koenig relation from the ratio of D to G band (I{sub D}/I{sub G}) besides microscopic stress. However, we also suggest the following taking into account of intrinsic defects of the constituents: (a) charge transfer arising at the interface due to the difference in electronegativity of MWCNT C sp{sup 2} and UDD core (C sp{sup 3}) leading to phonon and electron energy renormalization; (b) misorientation of C sp{sup 2} at the interface of MWCNT and UDD shell (C sp{sup 2}) resulting in structural disorder; (c) softening or violation of the q{approx}0 selection rule leading to D band broadening and a minimal change in G band intensity; and (d) normalized intensity of D and G bands with 2D band help to distinguish defect-induced double resonance phenomena. The MWCNT when combined with nanodiamond showed a slight decrease in their conductance

  1. Rheological behaviour, mechanical properties and morphological aspects of thermoplastic polyurethane reinforced with multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Russo, Pietro; Acierno, Domenico; Spena, Paola

    2010-06-01

    Melt blended compounds based on a film grade thermoplastic polyurethane resin filled with relatively low contents of multiwalled carbon nanotubes have been investigated. Materials, prepared through the production of a masterbatch containing 3 wt% of nanotubes and subsequent dilution of the same by addition of matrix pellets, were analyzed in the form of tapes and films always taking the neat matrix, processed in the same conditions, as the reference. Improvements of the matrix extrudability and mechanical benefits showed for all investigated composite samples have been satisfactorily interpreted by morphological observations carried out in both transmission and scanning electron microscopy.

  2. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saheed, M. Shuaib M.; Muti Mohamed, Norani; Arif Burhanudin, Zainal, E-mail: zainabh@petronas.com.my

    2014-03-24

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.

  3. Mechanical and microwave absorbing properties of carbon-filled polyurethane.

    PubMed

    Kucerová, Z; Zajícková, L; Bursíková, V; Kudrle, V; Eliás, M; Jasek, O; Synek, P; Matejková, J; Bursík, J

    2009-01-01

    Polyurethane (PU) matrix composites were prepared with various carbon fillers at different filler contents in order to investigate their structure, mechanical and microwave absorbing properties. As fillers, flat carbon microparticles, carbon microfibers and multiwalled carbon nanotubes (MWNT) were used. The microstructure of the composite was examined by scanning electron microscopy and transmission electron microscopy. Mechanical properties, namely universal hardness, plastic hardness, elastic modulus and creep were assessed by means of depth sensing indentation test. Mechanical properties of PU composite filled with different fillers were investigated and the composite always exhibited higher hardness, elastic modulus and creep resistance than un-filled PU. Influence of filler shape, content and dispersion was also investigated.

  4. Adsorption and desorption of oxytetracycline and carbamazepine by multiwalled carbon nanotubes.

    PubMed

    Oleszczuk, Patryk; Pan, Bo; Xing, Baoshan

    2009-12-15

    We investigated the adsorption-desorption by multiwalled carbon nanotubes (MWCNTs) of two pharmaceuticals, oxytetracycline (OTC) and carbamazepine (CBZ). The pharmaceuticals demonstrated relatively fast sorption kinetics on MWCNTs. All adsorption isotherms were nonlinear and fit the Polanyi-Manes model (PMM). The single point adsorption coefficient (K) values for OTC were more than 1 order of magnitude higher than those for CBZ on corresponding MWCNTs. The adsorbed volume capacity (Q(0)) and K values of PMM showed a significant relationship with surface areas and the meso- and micropore volume of MWCNTs for both chemicals. Depending on the MWCNT outer diameter, 13.8-25.2% and 62.7-90.6% of initially adsorbed OTC and CBZ, respectively, were desorbed after 200 h. The rate of desorption of both OTC and CBZ depended upon pH and the quantity of initially adsorbed pharmaceuticals, as well as aggregation in the case of OTC.

  5. Dielectric properties of vertically aligned multi-walled carbon nanotubes in the terahertz and mid-infrared range

    NASA Astrophysics Data System (ADS)

    Thomson, Mark D.; Zouaghi, Wissem; Meng, Fanqi; Wiecha, Matthias M.; Rabia, Kaneez; Heinlein, Thorsten; Hussein, Laith; Babu, Deepu; Yadav, Sandeep; Engstler, Jörg; Schneider, Jörg J.; Nicoloso, Norbert; Rychetský, Ivan; Kužel, Petr; Roskos, Hartmut G.

    2018-01-01

    We investigate the broadband dielectric properties of vertically aligned, multi-wall carbon nanotubes (VACNT), over both the terahertz (THz) and mid-infrared spectral ranges. The nominally undoped, metallic VACNT samples are probed at normal incidence, i.e. the response is predominantly due to polarisation perpendicular to the CNT axis. A detailed comparison of various conductivity models and previously reported results is presented for the non-Drude behaviour we observe in the conventional THz range (up to 2.5 THz). Extension to the mid-infrared range reveals an absorption peak at \

  6. Enhancement of the energy storage properties of supercapacitors using graphene nanosheets dispersed with metal oxide-loaded carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Rakhi, R. B.; Alshareef, H. N.

    2011-10-01

    Graphene nanosheets (GNs) dispersed with SnO2 nanoparticles loaded multiwalled carbon nanotubes (SnO2-MWCNTs) were investigated as electrode materials for supercapacitors. SnO2-MWCNTs were obtained by a chemical method followed by calcination. GNs/SnO2-MWCNTs nanocomposites were prepared by ultrasonication of the GNs and SnO2-MWCNTs. Electrochemical double layer capacitors were fabricated using the composite as the electrode material and aqueous KOH as the electrolyte. Electrochemical performance of the composite electrodes were compared to that of pure GNs electrodes and the results are discussed. Electrochemical measurements show that the maximum specific capacitance, power density and energy density obtained for supercapacitor using GNs/SnO2-MWCNTs nanocomposite electrodes were respectively 224 F g-1, 17.6 kW kg-1 and 31 Wh kg-1. The fabricated supercapacitor device exhibited excellent cycle life with ∼81% of the initial specific capacitance retained after 6000 cycles. The results suggest that the hybrid composite is a promising supercapacitor electrode material.

  7. The mechanical properties measurement of multiwall carbon nanotube reinforced nanocrystalline aluminum matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Manjula, E-mail: manjula.physics@gmail.com; Pal, Hemant; Sharma, Vimal

    Nanocrystalline aluminum matrix composite containing carbon nanotubes were fabricated using physical mixing method followed by cold pressing. The microstructure of the composite has been investigated using X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy techniques. These studies revealed that the carbon nanotubes were homogeneously dispersed throughout the metal matrix. The consolidated samples were pressureless sintered in inert atmosphere to further actuate a strong interface between carbon nanotubes and aluminum matrix. The nanoindentation tests carried out on considered samples showed that with the addition of 0.5 wt% carbon nanotubes, the hardness and elastic modulus of the aluminum matrix increased bymore » 21.2 % and 2 % repectively. The scratch tests revealed a decrease in the friction coefficient of the carbon nanotubes reinforced composite due to the presence of lubricating interfacial layer. The prepared composites were promising entities to be used in the field of sporting goods, construction materials and automobile industries.« less

  8. Alternative mannosylation method for nanomaterials: application to oxidized debris-free multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    de Sousa, Marcelo; Martinez, Diego Stéfani Teodoro; Alves, Oswaldo Luiz

    2016-06-01

    Mannosylation is a method commonly used to deliver nanomaterials to specific organs and tissues via cellular macrophage uptake. In this work, for the first time, we proposed a method that involves the binding of d-mannose to ethylenediamine to form mannosylated ethylenediamine, which is then coupled to oxidized and purified multiwalled carbon nanotubes. The advantage of this approach is that mannosylated ethylenediamine precipitates in methanol, which greatly facilitates the separation of this product in the synthesis process. Carbon nanotubes were oxidized using concentrated H2SO4 and HNO3 by conventional reflux method. However, during this oxidation process, carbon nanotubes generated carboxylated carbonaceous fragments (oxidation debris). These by-products were removed from the oxidized carbon nanotubes to ensure that the functionalization would occur only on the carbon nanotube surface. The coupling of mannosylated ethylenediamine to debris-free carbon nanotubes was accomplished using n-(3-dimethylaminopropyl)-n-ethylcarbodiimide and n-hydroxysuccinimide. Deconvoluted N1s spectra obtained from X-ray photoelectron spectroscopy gave binding energies of 399.8 and 401.7 eV, which we attributed to the amide and amine groups, respectively, of carbon nanotubes functionalized with mannosylated ethylenediamine. Deconvoluted O1s spectra showed a binding energy of 532.4 eV, which we suggest is caused by an overlap in the binding energies of the aliphatic CO groups of d-mannose and the O=C group of the amide bond. The functionalization degree was approximately 3.4 %, according to the thermogravimetric analysis. Scanning electron microscopy demonstrated that an extended carbon nanotube morphology was preserved following the oxidation, purification, and functionalization steps.

  9. Co-transport of chlordecone and sulfadiazine in the presence of functionalized multi-walled carbon nanotubes in soils.

    PubMed

    Zhang, Miaoyue; Engelhardt, Irina; Šimůnek, Jirka; Bradford, Scott A; Kasel, Daniela; Berns, Anne E; Vereecken, Harry; Klumpp, Erwin

    2017-02-01

    Batch and saturated soil column experiments were conducted to investigate sorption and mobility of two 14 C-labeled contaminants, the hydrophobic chlordecone (CLD) and the sulfadiazine (SDZ), in the absence or presence of functionalized multi-walled carbon nanotubes (MWCNTs). The transport behaviors of CLD, SDZ, and MWCNTs were studied at environmentally relevant concentrations (0.1-10 mg L -1 ) and they were applied in the column studies at different times. The breakthrough curves and retention profiles were simulated using a numerical model that accounted for the advective-dispersive transport of all compounds, attachment/detachment of MWCNTs, equilibrium and kinetic sorption of contaminants, and co-transport of contaminants with MWCNTs. The experimental results indicated that the presence of mobile MWCNTs facilitated remobilization of previously deposited CLD and its co-transport into deeper soil layers, while retained MWCNTs enhanced SDZ deposition in the topsoil layers due to the increased adsorption capacity of the soil. The modeling results then demonstrated that the mobility of engineered nanoparticles (ENPs) in the environment and the high affinity and entrapment of contaminants to ENPs were the main reasons for ENP-facilitated contaminant transport. On the other hand, immobile MWCNTs had a less significant impact on the contaminant transport, even though they were still able to enhance the adsorption capacity of the soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Systemic and immunotoxicity of pristine and PEGylated multi-walled carbon nanotubes in an intravenous 28 days repeated dose toxicity study

    PubMed Central

    Zhang, Ting; Tang, Meng; Zhang, Shanshan; Hu, Yuanyuan; Li, Han; Zhang, Tao; Xue, Yuying; Pu, Yuepu

    2017-01-01

    The numerous increasing use of carbon nanotubes (CNTs) derived from nanotechnology has raised concerns about their biosafety and potential toxicity. CNTs cause immunologic dysfunction and limit the application of CNTs in biomedicine. The immunological responses induced by pristine multi-walled carbon nanotubes (p-MWCNTs) and PEGylated multi-walled carbon nanotubes (MWCNTs-PEG) on BALB/c mice via an intravenous administration were investigated. The results reflect that the p-MWCNTs induced significant increases in spleen, thymus, and lung weight. Mice treated with p-MWCNTs showed altered lymphocyte populations (CD3+, CD4+, CD8+, and CD19+) in peripheral blood and increased serum IgM and IgG levels, and splenic macrophage ultrastructure indicated mitochondria swelling. p-MWCNTs inhibited humoral and cellular immunity function and were associated with decreased immune responses against sheep erythrocytes and serum hemolysis level. Natural killer (NK) activity was not modified by two types of MWCNTs. In comparison with two types of MWCNTs, for a same dose, p-MWCNTs caused higher levels of inflammation and immunosuppression than MWCNTs-PEG. The results of immunological function suggested that after intravenous administration with p-MWCNTs caused more damage to systemic immunity than MWCNTs-PEG. Here, we demonstrated that a surface functional modification on MWCNTs reduces their immune perturbations in vivo. The chemistry-modified MWCNTs change their preferred immune response in vivo and reduce the immunotoxicity of p-MWCNTs. PMID:28280324

  11. Systemic and immunotoxicity of pristine and PEGylated multi-walled carbon nanotubes in an intravenous 28 days repeated dose toxicity study.

    PubMed

    Zhang, Ting; Tang, Meng; Zhang, Shanshan; Hu, Yuanyuan; Li, Han; Zhang, Tao; Xue, Yuying; Pu, Yuepu

    2017-01-01

    The numerous increasing use of carbon nanotubes (CNTs) derived from nanotechnology has raised concerns about their biosafety and potential toxicity. CNTs cause immunologic dysfunction and limit the application of CNTs in biomedicine. The immunological responses induced by pristine multi-walled carbon nanotubes (p-MWCNTs) and PEGylated multi-walled carbon nanotubes (MWCNTs-PEG) on BALB/c mice via an intravenous administration were investigated. The results reflect that the p-MWCNTs induced significant increases in spleen, thymus, and lung weight. Mice treated with p-MWCNTs showed altered lymphocyte populations (CD3 + , CD4 + , CD8 + , and CD19 + ) in peripheral blood and increased serum IgM and IgG levels, and splenic macrophage ultrastructure indicated mitochondria swelling. p-MWCNTs inhibited humoral and cellular immunity function and were associated with decreased immune responses against sheep erythrocytes and serum hemolysis level. Natural killer (NK) activity was not modified by two types of MWCNTs. In comparison with two types of MWCNTs, for a same dose, p-MWCNTs caused higher levels of inflammation and immunosuppression than MWCNTs-PEG. The results of immunological function suggested that after intravenous administration with p-MWCNTs caused more damage to systemic immunity than MWCNTs-PEG. Here, we demonstrated that a surface functional modification on MWCNTs reduces their immune perturbations in vivo. The chemistry-modified MWCNTs change their preferred immune response in vivo and reduce the immunotoxicity of p-MWCNTs.

  12. Magnetic MoS2 on multiwalled carbon nanotubes for sulfide sensing.

    PubMed

    Li, Chunxiang; Zhang, Dan; Wang, Jiankang; Hu, Pingan; Jiang, Zhaohua

    2017-07-04

    A novel hybrid metallic cobalt insided in multiwalled carbon nanotubles/molybdenum disulfide (Co@CNT/MoS 2 ) modified glass carbon electrode (GCE) was fabricated with a adhesive of Nafion suspension and used as chemical sensors for sulfide detection. Single-layered MoS 2 was coated on CNTs through magnetic traction force between paramagnetic monolayer MoS 2 and Co particles in CNTs. Co particles faciliated the collection of paramagnetic monolayer MoS 2 exfoliated from bulk MoS 2 in solution. Amperometric analysis, cycle voltammetry, cathodic stripping analysis and linear sweep voltammetry results showed the Co@CNT/MoS 2 modified GCE exhibited excellent electrochemical activity to sulfide in buffer solutions, but amperometric analysis was found to be more sensitive than the other methods. The amperometric response result indicated the Co@CNT/MoS 2 -modified GCE electrode was an excellent electrochemical sensor for detecting S 2- with a detection limit of 7.6 nM and sensitivity of 0.23 mA/μM. The proposed electrode was used for the determination of sulfide levels in hydrogen sulfide-pretreated fruits, and the method was also verified with recovery studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Laser-induced selective metallization of polypropylene doped with multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ratautas, Karolis; Gedvilas, Mindaugas; Stankevičiene, Ina; Jagminienė, Aldona; Norkus, Eugenijus; Pira, Nello Li; Sinopoli, Stefano; Račiukaitis, Gediminas

    2017-08-01

    Moulded interconnect devices (MID) offer the material, weight and cost saving by integration electronic circuits directly into polymeric components used in automotive and other consumer products. Lasers are used to write circuits directly by modifying the surface of polymers followed by an electroless metal plating. A new composite material - the polypropylene doped with multiwall carbon nanotubes was developed for the laser-induced selective metallization. Mechanism of surface activation by laser irradiation was investigated in details utilising pico- and nanoseconds lasers. Deposition of copper was performed in the autocatalytic electroless plating bath. The laser-activated polymer surfaces have been studied using the Raman spectroscopy and scanning electron microscope (SEM). Microscopic images revealed that surface becomes active only after its melting by a laser. Alterations in the Raman spectra of the D and G bands indicated the clustering of carbon additives in the composite material. Optimal laser parameters for the surface activation were found by measuring a sheet resistance of the finally metal-plated samples. A spatially selective copper plating was achieved with the smallest conductor line width of 22 μm at the laser scanning speed of 3 m/s and the pulse repetition rate of 100 kHz. Finally, the technique was validated by making functional electronic circuits by this MID approach.

  14. Interface interactions in benzophenone doped by multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lebovka, N. I.; Goncharuk, A.; Melnyk, V. I.; Puchkovska, G. A.

    2009-08-01

    The interface interactions were studied by methods of conductometry, low-temperature phosphorescence and differential scanning calorimetry (DSC) in multiwalled carbon nanotubes (MWCNT) and benzophenone (BP) composite. The concentration of MWCNTs was varied within 0-1 wt%. A percolative threshold was found at MWCNT concentrations exceeding 0.1 wt%. The integration of MWCNTs caused melting temperature increase (≈3 K for 1 wt% of MWCNTs). The effect of positive thermal resistively coefficient, as well as substantial hysteretic behaviour of electrical conductivity σ in a heating-cooling cycle, was observed near the melting point of BP ( T m=321.5 K). The activation-type temperature behaviour of electrical conductivity was observed in the temperature range of supercooled BP. The activation energy was decreasing with increase of MWCNT concentration. The observed nonlinear dependencies of electrical conductivity σ vs. applied voltage U reflect the transport mechanism of the charge carriers through amorphous interface films formed near the surface of the MWCNTs. The thermal shifts of phosphorescence spectra measured within the temperature range 5-200 K evidence existence of such interface films of amorphous BP with width of the order of 0.1 μm.

  15. Biomarker analysis of liver cells exposed to surfactant-wrapped and oxidized multi-walled carbon nanotubes (MWCNTs).

    PubMed

    Henderson, W Matthew; Bouchard, Dermont; Chang, Xiaojun; Al-Abed, Souhail R; Teng, Quincy

    2016-09-15

    Carbon nanotubes (CNTs) have great potential in industrial, consumer, and mechanical applications, based partly on their unique structural, optical and electronic properties. CNTs are commonly oxidized or treated with surfactants to facilitate aqueous solution processing, and these CNT surface modifications also increase possible human and ecological exposures to nanoparticle-contaminated waters. To determine the exposure outcomes of oxidized and surfactant-wrapped multiwalled carbon nanotubes (MWCNTs) on biochemical processes, metabolomics-based profiling of human liver cells (C3A) was utilized. Cells were exposed to 0, 10, or 100ng/mL of MWCNTs for 24 and 48h; MWCNT particle size distribution, charge, and aggregation were monitored concurrently during exposures. Following MWCNT exposure, cellular metabolites were extracted, lyophilized, and buffered for (1)H NMR analysis. Acquired spectra were subjected to both multivariate and univariate analysis to determine the consequences of nanotube exposure on the metabolite profile of C3A cells. Resulting scores plots illustrated temporal and dose-dependent metabolite responses to all MWCNTs tested. Loadings plots coupled with t-test filtered spectra identified metabolites of interest. XPS analysis revealed the presence of hydroxyl and carboxyl functionalities on both MWCNTs surfaces. Metal content analysis by ICP-AES indicated that the total mass concentration of the potentially toxic impurities in the exposure experiments were extremely low (i.e. [Ni]≤2×10(-10)g/mL). Preliminary data suggested that MWCNT exposure causes perturbations in biochemical processes involved in cellular oxidation as well as fluxes in amino acid metabolism and fatty acid synthesis. Dose-response trajectories were apparent and spectral peaks related to both dose and MWCNT dispersion methodologies were determined. Correlations of the significant changes in metabolites will help to identify potential biomarkers associated with carbonaceous

  16. Ultrahigh interlayer friction in multiwalled boron nitride nanotubes.

    PubMed

    Niguès, A; Siria, A; Vincent, P; Poncharal, P; Bocquet, L

    2014-07-01

    Friction at the nanoscale has revealed a wealth of behaviours that depart strongly from the long-standing macroscopic laws of Amontons-Coulomb. Here, by using a 'Christmas cracker'-type of system in which a multiwalled nanotube is torn apart between a quartz-tuning-fork-based atomic force microscope (TF-AFM) and a nanomanipulator, we compare the mechanical response of multiwalled carbon nanotubes (CNTs) and multiwalled boron nitride nanotubes (BNNTs) during the fracture and telescopic sliding of the layers. We found that the interlayer friction for insulating BNNTs results in ultrahigh viscous-like dissipation that is proportional to the contact area, whereas for the semimetallic CNTs the sliding friction vanishes within experimental uncertainty. We ascribe this difference to the ionic character of the BN, which allows charge localization. The interlayer viscous friction of BNNTs suggests that BNNT membranes could serve as extremely efficient shock-absorbing surfaces.

  17. Single-walled carbon nanotube, multi-walled carbon nanotube and Fe2O3 nanoparticles induced mitochondria mediated apoptosis in melanoma cells.

    PubMed

    Naserzadeh, Parvaneh; Ansari Esfeh, Fatemeh; Kaviani, Mahboubeh; Ashtari, Khadijeh; Kheirbakhsh, Raheleh; Salimi, Ahmad; Pourahmad, Jalal

    2018-06-01

    Nanomaterials (NM) exhibit novel anticancer properties. The toxicity of three nanoparticles that are currently being produced in high tonnage including single-walled carbon nanotube (SWCNT), multi-walled carbon nanotube (MWCNT) and Fe 2 O 3 nanoparticles, were compared with normal and melanoma cells. All tested nanoparticles induced selective toxicity and caspase 3 activation through mitochondria pathway in melanoma cells and mitochondria cause the generating of reactive oxygen species (ROS), mitochondrial membrane potential decline (MMP collapse), mitochondria swelling, and cytochrome c release. The pretreatment of butylated hydroxytoluene (BHT), a cell-permeable antioxidant and cyclosporine A (Cs. A), a mitochondrial permeability transition (MPT), pore sealing agent decreased cytotoxicity, caspase 3 activation, ROS generation, and mitochondrial damages induced by SWCNT, MWCNT, and IONPs. Our promising results provide a potential approach for the future therapeutic use of SWCNT, MWCNT, and IONPs in melanoma through mitochondrial targeting.

  18. Adsorption of cadmium and lead onto oxidized nitrogen-doped multiwall carbon nanotubes in aqueous solution: equilibrium and kinetics

    NASA Astrophysics Data System (ADS)

    Perez-Aguilar, Nancy Veronica; Muñoz-Sandoval, Emilio; Diaz-Flores, Paola Elizabeth; Rangel-Mendez, Jose Rene

    2010-02-01

    Nitrogen-doped multiwall carbon nanotubes (CNx) were chemically oxidized and tested to adsorb cadmium and lead from aqueous solution. Physicochemical characterization of carbon nanotubes included morphological analysis, textural properties, and chemical composition. In addition, the cadmium adsorption capacity of oxidized-CNx was compared with commercially available activated carbon and single wall carbon nanotubes. Carboxylic and nitro groups on the surface of oxidized CNx shifted the point of zero charge from 6.6 to 3.1, enhancing their adsorption capacity for cadmium and lead to 0.083 and 0.139 mmol/g, respectively, at pH 5 and 25 °C. Moreover, oxidized-CNx had higher selectivity for lead when both metal ions were in solution. Kinetic experiments for adsorption of cadmium showed that the equilibrium was reached at about 4 min. Finally, the small size, geometry, and surface chemical composition of oxidized-CNx are the key factors for their higher adsorption capacity than activated carbon.

  19. Heat transfer nanofluid based on curly ultra-long multi-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Boncel, Sławomir; Zniszczoł, Aurelia; Pawlyta, Mirosława; Labisz, Krzysztof; Dzido, Grzegorz

    2018-02-01

    The main challenge in the use of multi-wall carbon nanotube (MWCNT) as key components of nanofluids is to transfer excellent thermal properties from individual nanotubes into the bulk systems. We present studies on the performance of heat transfer nanofluids based on ultra-long ( 2 mm), curly MWCNTs - in the background of various other nanoC-sp2, i.e. oxidized MWCNTs, commercially available Nanocyl™ MWCNTs and spherical carbon nanoparticles (SCNs). The nanofluids prepared via ultrasonication from water and propylene glycol were studied in terms of heat conductivity and heat transfer in a scaled up thermal circuit containing a copper helical heat exchanger. Ultra-long curly MWCNT (1 wt.%) nanofluids (stabilized with Gum Arabic in water) emerged as the most thermally conducting ones with a 23-30%- and 39%-enhancement as compared to the base-fluids for water and propylene glycol, respectively. For turbulent flows ( Re = 8000-11,000), the increase of heat transfer coefficient for the over-months stable 1 wt.% ultra-long MWCNT nanofluid was found as high as >100%. The findings allow to confirm that longer MWCNTs are promising solid components in nanofluids and hence to predict their broader application in heat transfer media.

  20. Carbon coated titanium dioxide nanotubes: synthesis, characterization and potential application as sorbents in dispersive micro solid phase extraction.

    PubMed

    García-Valverde, M T; Lucena, R; Galán-Cano, F; Cárdenas, S; Valcárcel, M

    2014-05-23

    In this article, carbon coated titanium dioxide nanotubes (c-TNTs) have been synthesized. The synthesis of the bare TNTs (b-TNTs) using anatase as precursor and their coating with a caramel layer have been performed by simple and cheap hydrothermal processes. The final conversion of the caramel layer in a carbon coating has been accomplished by a thermal treatment (600°C) in an inert (Ar) atmosphere. The c-TNTs have been characterized by different techniques including transmission microscopy, infrared spectroscopy, X-ray powder diffraction, thermogravimetry and Brunauer, Emmett and Teller (BET) adsorption isotherms. The extraction performance of the c-TNTs under a microextraction format has been evaluated and compared with that provided by b-TNTs and multiwalled carbon nanotubes (MWCNTs) using naproxen and ketoprofen as model analytes. c-TNTs provided better results than the other nanoparticles, especially at low acidic pH values. In addition, c-TNTs presented a better dispersibility than MWCNTs, which is very interesting for their use in dispersive micro-solid phase extraction. Finally, a microextraction format, adapted to low sample volumes, has been proposed and applied for the determination of naproxen and ketoprofen in saliva and urine samples by liquid chromatography with UV detection. The results indicate that this approach is promising for the analysis of biological samples. In fact, the recoveries were in the range between 96% and 119% while the precision, expressed as relative standard deviation, was better than 8.5% and 26.3% for urine and saliva, respectively. The detection limits were in the range 34.1-40.8μg/L for saliva samples and 81.1-110μg/L for urine samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. PH-sensitive dispersion of carbon nanotubes by myoglobin

    NASA Astrophysics Data System (ADS)

    Nie, Haiyu; Shen, Ganni; Sun, Junlin; Zhang, Tao

    2017-03-01

    A facile and effective method of dispersion of double-walled carbon nanotubes (DWNTs) was developed. At appropriate pH value and sonication, myoglobin helps the solubilization of DWNTs. The product is a pH-sensitive dispersion, which remains in a highly dispersed state at pH<3.0 and pH>10.0. This approach can be used to disperse DWNTs in scale. A reversible conversion of the highly dispersed state to the aggregated state could be observed by changing the pH value. This feature holds great promise for the development of pH sensors.

  2. Skin effect mitigation in laser processed multi-walled carbon nanotube/copper conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keramatnejad, K.; Zhou, Y. S.; Gao, Y.

    2015-10-21

    In this study, laser-processed multi-walled carbon nanotube (MWCNT)/Cu conductors are introduced as potential passive components to mitigate the skin effect of Cu at high frequencies (0–10 MHz). Suppressed skin effect is observed in the MWCNT/Cu conductors compared to primitive Cu. At an AC frequency of 10 MHz, a maximum AC resistance reduction of 94% was observed in a MWCNT/Cu conductor after being irradiated at a laser power density of 189 W/cm{sup 2}. The reduced skin effect in the MWCNT/Cu conductors is ascribed to the presence of MWCNT channels which are insensitive to AC frequencies. The laser irradiation process is observed to playmore » a crucial role in reducing contact resistance at the MWCNT-Cu interfaces, removing impurities in MWCNTs, and densifying MWCNT films.« less

  3. Planarized arrays of aligned, untangled multiwall carbon nanotubes with Ohmic back contacts

    DOE PAGES

    Rochford, C.; Limmer, S. J.; Howell, S. W.; ...

    2014-11-26

    Vertically aligned, untangled planarized arrays of multiwall carbon nanotubes (MWNTs) with Ohmic back contacts were grown in nanopore templates on arbitrary substrates. The templates were prepared by sputter depositing Nd-doped Al films onto W-coated substrates, followed by anodization to form an aluminum oxide nanopore array. The W underlayer helps eliminate the aluminum oxide barrier that typically occurs at the nanopore bottoms by instead forming a thin WO 3 layer. The WO 3 can be selectively etched to enable electrodeposition of Co catalysts with control over the Co site density. This led to control of the site density of MWNTs grownmore » by thermal chemical vapor deposition, with the W also serving as a back electrical contact. As a result, Ohmic contact to MWNTs was confirmed, even following ultrasonic cutting of the entire array to a uniform height.« less

  4. Microwave conductance properties of aligned multiwall carbon nanotube textile sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Brian L.; Martinez, Patricia; Zakhidov, Anvar A.

    2015-07-06

    Understanding the conductance properties of multi-walled carbon nanotube (MWNT) textile sheets in the microwave regime is essential for their potential use in high-speed and high-frequency applications. To expand current knowledge, complex high-frequency conductance measurements from 0.01 to 50 GHz and across temperatures from 4.2 K to 300 K and magnetic fields up to 2 T were made on textile sheets of highly aligned MWNTs with strand alignment oriented both parallel and perpendicular to the microwave electric field polarization. Sheets were drawn from 329 and 520 μm high MWNT forests that resulted in different DC resistance anisotropy. For all samples, themore » microwave conductance can be modeled approximately by a shunt capacitance in parallel with a frequency-independent conductance, but with no inductive contribution. Finally, this is consistent with diffusive Drude conduction as the primary transport mechanism up to 50 GHz. Further, it is found that the microwave conductance is essentially independent of both temperature and magnetic field.« less

  5. Decoration of multi-walled carbon nanotubes with metal nanoparticles in supercritical carbon dioxide medium as a novel approach for the modification of screen-printed electrodes.

    PubMed

    Moreno, Virginia; Llorent-Martínez, Eulogio J; Zougagh, Mohammed; Ríos, Angel

    2016-12-01

    A supercritical carbon dioxide medium was used for the decoration of functionalized multi-walled carbon nanotubes (MWCNTs) with metallic nanoparticles. This procedure allowed the rapid and simple decoration of carbon nanotubes with the selected metallic nanoparticles. The prepared nanomaterials were used to modify screen-printed electrodes, improving their electrochemical properties and allowing to obtain a wide range of working electrodes based on carbon nanotubes. These electrodes were applied to the amperometric determination of vitamin B6 in food and pharmaceutical samples as an example of the analytical potentiality of the electrodes thus prepared. Using Ru-nanoparticles-MWCNTs as the working electrode, a linear dynamic range between 2.6×10 -6 and 2×10 -4 molL -1 and a limit of detection of 0.8×10 -6 molL -1 were obtained. These parameters represented a minimum 3-fold increase in sensitivity compared to the use of bare MWCNTs or other carbon-based working electrodes. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Anchorage of γ-Al 2O 3 nanoparticles on nitrogen-doped multiwalled carbon nanotubes

    DOE PAGES

    Rodríguez-Pulido, A.; Martínez-Gutiérrez, H.; Calderon-Polania, G. A.; ...

    2016-06-07

    Nitrogen-doped multiwalled carbon nanotubes (CNx-MWNTs) have been decorated with γ-Al 2O 3 nanoparticles by a novel method. This process involved a wet chemical approach in conjunction with thermal treatment. During the particle anchoring process, individual CNx-MWNT nanotubes agglomerated into bundles, resulting in arrays of aligned CNx-MWNT coated with γ-Al 2O 3. Extensive characterization of the resulting γ-Al 2O 3/CNx-MWNT bundles was performed using a range of electron microscopy imaging and microanalytical techniques. In conclusion, a possible mechanism explaining the nanobundle alignment is described, and possible applications of these materials for the fabrication of ceramic composites using CNx-MWNTs are briefly discussed.

  7. Size- and shape-dependent pleural translocation, deposition, fibrogenesis, and mesothelial proliferation by multiwalled carbon nanotubes

    PubMed Central

    Xu, Jiegou; Alexander, David B; Futakuchi, Mitsuru; Numano, Takamasa; Fukamachi, Katsumi; Suzui, Masumi; Omori, Toyonori; Kanno, Jun; Hirose, Akihiko; Tsuda, Hiroyuki

    2014-01-01

    Multiwalled carbon nanotubes (MWCNT) have a fibrous structure similar to asbestos, raising concern that MWCNT exposure may lead to asbestos-like diseases. Previously we showed that MWCNT translocated from the lung alveoli into the pleural cavity and caused mesothelial proliferation and fibrosis in the visceral pleura. Multiwalled carbon nanotubes were not found in the parietal pleura, the initial site of development of asbestos-caused pleural diseases in humans, probably due to the short exposure period of the study. In the present study, we extended the exposure period to 24 weeks to determine whether the size and shape of MWCNT impact on deposition and lesion development in the pleura and lung. Two different MWCNTs were chosen for this study: a larger sized needle-like MWCNT (MWCNT-L; l = 8 μm, d = 150 nm), and a smaller sized MWCNT (MWCNT-S; l = 3 μm, d = 15 nm), which forms cotton candy-like aggregates. Both MWCNT-L and MWCNT-S suspensions were administered to the rat lung once every 2 weeks for 24 weeks by transtracheal intrapulmonary spraying. It was found that MWCNT-L, but not MWCNT-S, translocated into the pleural cavity, deposited in the parietal pleura, and induced fibrosis and patchy parietal mesothelial proliferation lesions. In addition, MWCNT-L induced stronger inflammatory reactions including increased inflammatory cell number and cytokine/chemokine levels in the pleural cavity lavage than MWCNT-S. In contrast, MWCNT-S induced stronger inflammation and higher 8-hydroxydeoxyguanosine level in the lung tissue than MWCNT-L. These results suggest that MWCNT-L has higher risk of causing asbestos-like pleural lesions relevant to mesothelioma development. PMID:24815191

  8. Preparation and application of a molecular capture for safety detection of cosmetics based on surface imprinting and multi-walled carbon nanotubes.

    PubMed

    Wang, Fang; Li, Xiaoyan; Li, Junjie; Zhu, Chen; Liu, Min; Wu, Zongyuan; Liu, Li; Tan, Xuecai; Lei, Fuhou

    2018-05-14

    A novel composite material for prednisone molecular capture (PS-MC) was prepared by surface imprinting technique in combination with a polyethylene filter plate coated with multi-walled carbon nanotubes for the first time. PS-MC was achieved by using prednisone as the template molecule, 3-aminopropyltriethoxysilane as the monomer, and tetraethoxysilane as the cross-linker. The structure, morphology, and thermal stability of the prepared PS-MC were studied by fourier-transform infrared spectrometry, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. PS-MC was assessed by re-binding experiments such as adsorption kinetics, adsorption isotherms, molecular identification, and applied to the separation and enrichment of prednisone in cosmetics. The results indicated that PS-MC has rapid binding kinetic, high adsorption capacity, and favorable reusability. The imprinted materials were coupled with HPLC to selectively separation, purification, and detection of prednisone from spiked cosmetic samples. The recoveries of spiked cosmetic samples were in the range of 83.0-106.0%, with relative standard deviations of less than 2.10%, and the limit of detection of 5 ng/mL (S/N = 3). Copyright © 2018. Published by Elsevier Inc.

  9. Inter-wall bridging induced peeling of multi-walled carbon nanotubes during tensile failure in aluminum matrix composites.

    PubMed

    Chen, Biao; Li, Shufeng; Imai, Hisashi; Umeda, Junko; Takahashi, Makoto; Kondoh, Katsuyoshi

    2015-02-01

    In situ scanning electron microscopy (SEM) observation of a tensile test was performed to investigate the fracturing behavior of multi-walled carbon nanotubes (MWCNTs) in powder metallurgy Al matrix composites. A multiple peeling phenomenon during MWCNT fracturing was clearly observed. Its formation mechanism and resultant effect on the composite strength were examined. Through transition electron microscopy characterizations, it was observed that defective structures like inter-wall bridges cross-linked adjacent walls of MWCNTs. This structure was helpful to improve the inter-wall bonding conditions, leading to the effective load transfer between walls and resultant peeling behaviors of MWCNTs. These results might provide new understandings of the fracturing mechanisms of carbon nanotube reinforcements for designing high-performance nanocomposites. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Carbon capture from natural gas using multi-walled CNTs based mixed matrix membranes.

    PubMed

    Hussain, Abid; Farrukh, Sarah; Hussain, Arshad; Ayoub, Muhammad

    2017-12-05

    Most of the polymers and their blends, utilized in carbon capture membranes, are costly, but cellulose acetate (CA) being inexpensive is a lucrative choice. In this research, pure and mixed matrix membranes (MMMs) have been fabricated to capture carbon from natural gas. Polyethylene glycol (PEG) has been utilized in the fabrication of membranes to modify the chain flexibility of polymers. Multi-walled carbon nanotubes (MWCNTs) provide mechanical strength, thermal stability, an extra free path for CO 2 molecules and augment CO 2 /CH 4 selectivity. Membranes of pure CA, CA/PEG blend of different PEG concentrations (5%, 10%, 15%) and CA/PEG/MWCNTs blend of 10% PEG with different MWCNTs concentrations (5%, 10%, 15%) were prepared in acetone using solution casting techniques. Fabricated membranes were characterized using SEM, TGA and tensile testing. Permeation results revealed remarkable improvement in CO 2 /CH 4 selectivity. In single gas experiments, CO 2 /CH 4 selectivity is enhanced 8 times for pure membranes containing 10% PEG and 14 times for MMMs containing 10% MWCNTs. In mix gas experiments, the CO 2 /CH 4 selectivity is increased 13 times for 10% PEG and 18 times for MMMs with 10% MWCNTs. Fabricated MMMs have a tensile strength of 13 MPa and are more thermally stable than CA membranes.

  11. Dexamethasone-Loaded, PEGylated, Vertically Aligned, Multiwalled Carbon Nanotubes for Potential Ischemic Stroke Intervention.

    PubMed

    Komane, Patrick P; Kumar, Pradeep; Marimuthu, Thashree; Toit, Lisa C du; Kondiah, Pierre P D; Choonara, Yahya E; Pillay, Viness

    2018-06-10

    The complete synthesis, optimization, purification, functionalization and evaluation of vertically aligned multiwalled carbon nanotubes (VA-MWCNTs) was reported for potential application in dexamethasone delivery to the ischemic brain tissue. The conditions for high yield were optimized and carbon nanotubes functionalized and PEGylated prior to dexamethasone loading. Morphological changes were confirmed by SEM and TEM. Addition of functional groups to MWCNTs was demonstrated by FTIR. Thermal stability reduced following MWCNTs functionalization as demonstrated in TGA. The presence of carbon at 2θ of 25° and iron at 2θ of 45° in MWCNTs was illustrated by XRD. Polydispersive index and zeta potential were found to be 0.261 and −15.0 mV, respectively. Dexamethasone release increased by 55%, 65% and 95% in pH of 7.4, 6.5 and 5.5 respectively as evaluated by UV-VIS. The functionalized VA-MWCNTs were demonstrated to be less toxic in PC-12 cells in the concentration range from 20 to 20,000 µg/mL. These findings have demonstrated the potential of VA-MWCNTs in the enhancement of fast and prolonged release of dexamethasone which could lead to the effective treatment of ischemic stroke. More work is under way for targeting ischemic sites using atrial natriuretic peptide antibody in stroke rats.

  12. Investigating the potential of multiwalled carbon nanotubes based zinc nanocomposite as a recognition interface towards plant pathogen detection.

    PubMed

    Tahir, Muhammad Ali; Hameed, Sadaf; Munawar, Anam; Amin, Imran; Mansoor, Shahid; Khan, Waheed S; Bajwa, Sadia Zafar

    2017-11-01

    The emergence of nanotechnology has opened new horizons for constructing efficient recognition interfaces. This is the first report where the potential of a multiwalled carbon nanotube based zinc nanocomposite (MWCNTs-Zn NPs) investigated for the detection of an agricultural pathogen i.e. Chili leaf curl betasatellite (ChLCB). Atomic force microscope analyses revealed the presence of multiwalled carbon nanotubes (MWCNTs) having a diameter of 50-100nm with zinc nanoparticles (Zn-NPs) of 25-500nm. In this system, these bunches of Zn-NPs anchored along the whole lengths of MWCNTs were used for the immobilization of probe DNA strands. The electrochemical performance of DNA biosensor was assessed in the absence and presence of the complementary DNA during cyclic and differential pulse voltammetry scans. Target binding events occurring on the interface surface patterned with single-stranded DNA was quantitatively translated into electrochemical signals due to hybridization process. In the presence of complementary target DNA, as the result of duplex formation, there was a decrease in the peak current from 1.89×10 -04 to 5.84×10 -05 A. The specificity of this electrochemical DNA biosensor was found to be three times as compared to non-complementary DNA. This material structuring technique can be extended to design interfaces for the recognition of the other plant viruses and biomolecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Determination of antidepressants in human urine extracted by magnetic multiwalled carbon nanotube poly(styrene-co-divinylbenzene) composites and separation by capillary electrophoresis.

    PubMed

    Murtada, Khaled; de Andrés, Fernando; Ríos, Angel; Zougagh, Mohammed

    2018-04-20

    Poly(styrene-co-divinylbenzene)-coated magnetic multiwalled carbon nanotube composite synthesized by in-situ high temperature combination and precipitation polymerization of styrene-co-divinylbenzene has been employed as a magnetic sorbent for the solid phase extraction of antidepressants in human urine samples. Fluoxetine, venlafaxine, citalopram and sertraline were, afterwards, separated and determined by capillary electrophoresis with diode array detection. The presence of magnetic multiwalled carbon nanotubes in native poly(styrene-co-divinylbenzene) not only simplified sample treatment but also enhanced the adsorption efficiencies, obtaining extraction recoveries higher than 89.5% for all analytes. Moreover, this composite can be re-used at least 10 times without loss of efficiency and limits of detection ranging from 0.014 to 0.041 μg mL -1 were calculated. Additionally, precision values ranging from 0.08 to 7.50% and from 0.21 to 3.05% were obtained for the responses and for the migration times of the analytes, respectively. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Functionalized multi-walled carbon nanotubes in an aldol reaction

    NASA Astrophysics Data System (ADS)

    Chronopoulos, D. D.; Kokotos, C. G.; Karousis, N.; Kokotos, G.; Tagmatarchis, N.

    2015-01-01

    The covalent functionalization of multi-walled carbon nanotubes (MWCNTs) with a proline-based derivative is reported. Initially, MWCNTs were oxidized in order to introduce a large number of carboxylic units on their tips followed by N-tert-butoxycarbonyl-2,2'(ethylenedioxy)bis-(ethylamine) conjugation through an amide bond. Then, a proline derivative bearing a carboxylic terminal moiety at the 4-position was coupled furnishing proline-modified MWCNTs. This new hybrid material was fully characterized by spectroscopic and microscopy means and its catalytic activity in the asymmetric aldol reaction between acetone and 4-nitrobenzaldehyde was evaluated for the first time, showing to proceed almost quantitatively in aqueous media. Furthermore, several amino-modified MWCNTs were prepared and examined in the particular aldol reaction. These new hybrid materials exhibited an enhanced catalytic activity in water, contrasting with the pristine MWCNTs as well as the parent organic molecule, which failed to catalyze the reaction efficiently. Furthermore, the modified MWCNTs proved to catalyze the aldol reaction even after three repetitive cycles. Overall, a green approach for the aldol reaction is presented, where water can be employed as the solvent and modified MWCNTs can be used as catalysts, which can be successfully recovered and reused, while their catalytic activity is retained.The covalent functionalization of multi-walled carbon nanotubes (MWCNTs) with a proline-based derivative is reported. Initially, MWCNTs were oxidized in order to introduce a large number of carboxylic units on their tips followed by N-tert-butoxycarbonyl-2,2'(ethylenedioxy)bis-(ethylamine) conjugation through an amide bond. Then, a proline derivative bearing a carboxylic terminal moiety at the 4-position was coupled furnishing proline-modified MWCNTs. This new hybrid material was fully characterized by spectroscopic and microscopy means and its catalytic activity in the asymmetric aldol reaction

  15. Surface-initiated graft polymerization on multiwalled carbon nanotubes pretreated by corona discharge at atmospheric pressure.

    PubMed

    Xu, Lihua; Fang, Zhengping; Song, Ping'an; Peng, Mao

    2010-03-01

    Surface-initiated graft polymerization on multi-walled carbon nanotubes pretreated with a corona discharge at atmospheric pressure was explored. The mechanism of the corona-discharge-induced graft polymerization is discussed. The results indicate that MWCNTs were encapsulated by poly(glycidyl methacrylate) (PGMA), demonstrating the formation of PGMA-grafted MWCNTs (PGMA-g-MWCNTs), with a grafting ratio of about 22 wt%. The solubility of PGMA-g-MWCNTs in ethanol was dramatically improved compared to pristine MWCNTs, which could contribute to fabricating high-performance polymer/MWCNTs nanocomposites in the future. Compared with most plasma processes, which operate at low pressures, corona discharge has the merit of working at atmospheric pressure.

  16. Effect of electrode gap on the sensing properties of multiwalled carbon nanotubes based gas sensor

    NASA Astrophysics Data System (ADS)

    Saheed, Mohamed Shuaib Mohamed; Mohamed, Norani Muti; Burhanudin, Zainal Arif

    2016-11-01

    Vertically aligned multiwalled carbon nanotubes (MWCNT) were grown on Si substrate coated with alumina and iron using chemical vapor deposition. Electrode gap of 10, 25 and 50 µm were adopted to determine the effect of varying gap spacing on the sensing properties such as voltage breakdown, sensitivity and selectivity for three gases namely argon, carbon dioxide and ammonia. Argon has the lowest voltage breakdown for every electrode gap. The fabricated MWCNT based gas sensor drastically reduced the voltage breakdown by 89.5% when the electrode spacing is reduced from 50 µm to 10 µm. The reduction is attributed to the high non-uniform electric field between the electrodes caused by the protrusion of nanotips. The sensor shows good sensitivity and selectivity with the ability to detect the gas in the mixture with air provided that the concentration is ≥ 20% where the voltage breakdown will be close to the pure gas.

  17. The effects of temperature on the surface resistivity of polyvinyl alcohol (PVA) thin films doped with silver nanoparticles and multi-walled carbon-nanotubes for optoelectronic and sensor applications

    NASA Astrophysics Data System (ADS)

    Polius, Jemilia R.

    This thesis reports measurements of the temperature-dependent surface resistivity of multi-wall carbon nanotube doped polyvinyl alcohol (PVA) thin films. In the temperature range from 22°C to 40°C in a humidity controlled environment, it was found that the surface resistivity decreased initially but raised as the temperature continued to increase. I report surface resistivity measurements as a function of temperature of both multiwall and single-wall carbon nanotube doped PVA thin films, with comparison of the similarities and differences between the two types of film types. This research was conducted using the combined instrumentation of the KEITHLEY Model 6517 Electrometer and the KEITHLEY Model 8009 resistivity test fixture using both commercial and in-house produced organic thin films.

  18. Effect of Multiwalled Carbon Nanotubes on the Mechanical Properties of Carbon Fiber-Reinforced Polyamide-6/Polypropylene Composites for Lightweight Automotive Parts

    PubMed Central

    Nguyen-Tran, Huu-Duc; Do, Van-Ta; Yum, Young-Jin

    2018-01-01

    The development of lightweight automotive parts is an important issue for improving the efficiency of vehicles. Polymer composites have been widely applied to reduce weight and improve mechanical properties by mixing polymers with carbon fibers, glass fibers, and carbon nanotubes. Polypropylene (PP) has been added to carbon fiber-reinforced nylon-6 (CF/PA6) composite to achieve further weight reduction and water resistance. However, the mechanical properties were reduced by the addition of PP. In this research, multiwalled carbon nanotubes (CNTs) were added to compensate for the reduced mechanical properties experienced when adding PP. Tensile testing and bending tests were carried out to evaluate the mechanical properties. A small amount of CNTs improved the mechanical properties of carbon fiber-reinforced PA6/PP composites. For example, the density of CF/PA6 was reduced from 1.214 to 1.131 g/cm3 (6.8%) by adding 30 wt % PP, and the tensile strength of 30 wt % PP composite was improved from 168 to 173 MPa (3.0%) by adding 0.5 wt % CNTs with small increase of density (1.135 g/cm3). The developed composite will be widely used for lightweight automotive parts with improved mechanical properties. PMID:29543754

  19. A novel flexible nanogenerator made of ZnO nanoparticles and multiwall carbon nanotube

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Tian, He; Yang, Yi; Xie, Dan; Zhang, Yu-Chi; Liu, Xuan; Ma, Shuo; Zhao, Hai-Ming; Ren, Tian-Ling

    2013-06-01

    In this paper, a novel flexible nanogenerator (FNG) made of zinc-oxide (ZnO) nanoparticles (NPs) and multiwall-carbon nanotubes (MW-CNTs) is presented. In this structure, ZnO NPs and MW-CNTs are mixed with polydimethylsiloxane (PDMS) uniformly to form an entire flexible nanogenerator. Serial tests illustrate that the output voltage and power density are as high as 7.5 V and 18.75 μW per cycle, respectively. Furthermore, by foot stamp on the FNG, a peak voltage as high as 30 V can be generated. Comparing to the control samples, it is also proved that adding MW-CNTs into the matrix could significantly enhance the output voltage from 0.8 to 7.5 V. In summary, our work indicates that the realization of flexible nanogenerators made of ZnO NPs and MW-CNTs is technologically feasible, which may bring out some important and interesting applications in energy harvesting.In this paper, a novel flexible nanogenerator (FNG) made of zinc-oxide (ZnO) nanoparticles (NPs) and multiwall-carbon nanotubes (MW-CNTs) is presented. In this structure, ZnO NPs and MW-CNTs are mixed with polydimethylsiloxane (PDMS) uniformly to form an entire flexible nanogenerator. Serial tests illustrate that the output voltage and power density are as high as 7.5 V and 18.75 μW per cycle, respectively. Furthermore, by foot stamp on the FNG, a peak voltage as high as 30 V can be generated. Comparing to the control samples, it is also proved that adding MW-CNTs into the matrix could significantly enhance the output voltage from 0.8 to 7.5 V. In summary, our work indicates that the realization of flexible nanogenerators made of ZnO NPs and MW-CNTs is technologically feasible, which may bring out some important and interesting applications in energy harvesting. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00866e

  20. Effect of multi-walled carbon nanotubes aspect ratio and temperature on the dielectric behavior of alternating alkene-carbon monoxide polyketone nanocomposites

    NASA Astrophysics Data System (ADS)

    Abu-Surrah, Adnan S.; Abdul Jawad, Saadi; Al-Ramahi, Esraa; Hallak, Awni B.; Khattari, Z.

    2015-04-01

    New alternating poly(propylene-alt-carbon monoxide/ethylene-alt-carbon monoxide) (PECO)/multiwalled carbon nanotubes (MWCNTs) composites have been prepared. Dielectric permittivity, electric modulus and ac conductivity of the isolated materials were investigated as a function of fiber aspect ratio, frequency and temperature. For aspect ratio of 30 and 200, a transition from insulator to semiconductor was observed at frequency 1×104. However, for high aspect ratio sample (660), no transition was observed and the conductivity is frequency independent in the measured frequency range of 10-106 Hz. The conductivity increases from about 1×10-4 for the sample that contain fibers of aspect ratio 30 and reaches 5×10-2 (Ω m)-1 for aspect ratio was 660. This behavior can be modeled by a circuit that consists of a contact resistance in series with a parallel combination of resistance (R) and capacitance (C). The calculated activation energy for sample filled with fibers having aspect ratio 30 is about 0.26 eV and decreases to about 0.16 eV when the aspect ratio is 660.

  1. Free vibration of multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, C. Y.; Ru, C. Q.; Mioduchowski, A.

    2005-06-01

    A multiple-elastic shell model is applied to systematically study free vibration of multiwall carbon nanotubes (MWNTs). Using Flugge [Stresses in Shells (Springer, Berlin, 1960)] equations of elastic shells, vibrational frequencies and associated modes are calculated for MWNTs of innermost radii 5 and 0.65 nm, respectively. The emphasis is placed on the effect of interlayer van der Waals (vdW) interaction on free vibration of MWNTs. Our results show that the interlayer vdW interaction has a crucial effect on radial (R) modes of large-radius MWNTs (e.g., of the innermost radius 5 nm), but is less pronounced for R modes of small-radius MWNTs (e.g., of the innermost radius 0.65 nm), and usually negligible for torsional (T) and longitudinal (L) modes of MWNTs. This is attributed to the fact that the interlayer vdW interaction, characterized by a radius-independent vdW interaction coefficient, depends on radial deflections only, and is dominant only for large-radius MWNTs of lower radial rigidity but less pronounced for small-radius MWNTs of much higher radial rigidity. As a result, the R modes of large-radius MWNTs are typically collective motions of almost all nested tubes, and the R modes of small-radius MWNTs, as well as the T and L modes of MWNTs, are basically vibrations of individual tubes. In particular, an approximate single-shell model is suggested to replace the multiple-shell model in calculating the lowest frequency of R mode of thin MWNTs (defined by the innermost radius-to-thickness ratio not less than 4) with relative errors less than 10%. In addition, the simplified Flugge single equation is adopted to substitute the exact Flugge equations in determining the R-mode frequencies of MWNTs with relative errors less than 10%.

  2. MnO2/multiwall carbon nanotube/Ni-foam hybrid electrode for electrochemical capacitor

    NASA Astrophysics Data System (ADS)

    Chen, L. H.; Li, L.; Qian, W. J.; Dong, C. K.

    2018-01-01

    The ternary composites of manganese dioxide/multiwall carbon nanotube/Ni-foam (MnO2/MWNT/Ni-foam) for supercapacitors were fabricated via a hydrothermal method after direct growth of MWNTs on the Ni-foam. The structural properties of the electrodes were characterized by SEM and TEM. The electrode exhibited excellent electrochemical properties from the investigation based on the three-electrode setup. Low contact resistance Rs of about 0.291 Ω between MnO2/MWNT and Ni-foam was reached benefited from the direct growth structure. High capacitance of 355.1 F/g at the current density of 2 A/g was achieved, with good capacitive response at high current density. The MnO2/MWNT/Ni-foam electrode exhibits good stability performance after 2000 cycles at a current of 40 mA.

  3. One-step preparation of multiwall carbon nanotube/silicon hybrids for solar energy conversion

    NASA Astrophysics Data System (ADS)

    Lobiak, Egor V.; Bychanok, Dzmitry S.; Shlyakhova, Elena V.; Kuzhir, Polina P.; Maksimenko, Sergey A.; Bulusheva, Lyubov G.; Okotrub, Alexander V.

    2016-03-01

    The hybrid material consisting of a thin layer of multiwall carbon nanotubes (MWCNTs) on an n-doped silicon wafer was obtained in one step using an aerosol-assisted catalytic chemical vapor deposition. The MWCNTs were grown from a mixture of acetone and ethanol with ˜0.2 wt.% of iron polyoxomolybdate nanocluster of the keplerate-type structure. The samples produced at 800°C and 1050°C were tested as a solar energy converter. It was shown that photoresponse of the hybrid material significantly depends on the presence of structural defects in MWCNTs, being much higher in the case of more defective nanotubes. This is because defects lead to p-doping of nanotubes, whereas the p-n heterojunction between MWCNTs and silicon provides a high efficiency of the solar cell.

  4. Incorporation of Multiwalled Carbon Nanotubes into High Temperature Resin Using Dry Mixing Techniques

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Watson, Kent A.; Delozier, Donavon M.; Working, Dennis C.; Siochi, Emilie J.; Connell, John W.

    2006-01-01

    As part of an ongoing effort to develop multifunctional advanced composites, blends of PETI330 and multiwalled carbon nanotubes (MWNTs) were prepared and characterized. Dry mixing techniques were employed and the maximum loading level of the MWNT chosen was based primarily on its effect on melt viscosity. The PETI330/ MWNT mixtures were prepared at concentrations ranging from 3 to 25 wt %. The resulting powders were characterized for homogeneity, thermal and rheological properties and extrudability as continuous fibers. Based on the characterization results, samples containing 10, 15 and 20 wt % MWNTs were chosen for more comprehensive evaluation. Samples were also prepared using in situ polymerization and solution mixing techniques and their properties were compared with the ball-mill prepared samples. The preparation and characterization of PETI330/ MWNT nanocomposites are discussed herein.

  5. Multiwall TPS: An emerging concept

    NASA Technical Reports Server (NTRS)

    Shideler, J. L.; Kelly, H. N.; Avery, D. E.; Blosser, M. L.; Adelman, H. M.

    1981-01-01

    The transformation of a titanium multiwall thermal protection system from a conceptual design to a working reality is described. The thermal and structural performance of the basic multiwall concept is analyzed. Radiant heat, wind tunnel, vibration, acoustic, and lightning strike tests are used to verify the performance of multiwall tiles under representative operating conditions. Flat, all titanium multiwall configurations limited to temperature below 810 K are discussed. Curved surface, higher temperature versions of the multiwall are considered. Preliminary mass estimates for advanced multiwall concepts are presented.

  6. Nanomaterial Case Study: A Comparison of Multiwalled ...

    EPA Pesticide Factsheets

    This Independent Peer Review Draft document presents a case study of multiwalled carbon nanotubes (MWCNTs); it focuses on the specific example of MWCNTs as used in flame-retardant coatings applied to upholstery textiles. This case study is organized around the comprehensive environmental assessment (CEA) framework, which structures available information pertaining to the product life cycle, environmental transport and fate, exposure-dose in receptors (i.e., humans, ecological populations, and the environment), and potential impacts in these receptors. The document does not draw conclusions about potential risks, or present an exhaustive review of the literature. Rather, it was used in an independent peer review to provide feedback on revisions that EPA made to the external review draft of the document based on public comments and the CEA process to identify research gaps for MWCNTs. This document seeks to identify what is known and unknown related to assessing the health and environmental implications of a nanomaterial; in this case multiwalled carbon nanotubes (MWCNTs) used in flame-retardant coatings applied to textiles.

  7. Multi-walled carbon nanotubes: sampling criteria and aerosol characterization

    PubMed Central

    Chen, Bean T.; Schwegler-Berry, Diane; McKinney, Walter; Stone, Samuel; Cumpston, Jared L.; Friend, Sherri; Porter, Dale W.; Castranova, Vincent; Frazer, David G.

    2015-01-01

    This study intends to develop protocols for sampling and characterizing multi-walled carbon nanotube (MWCNT) aerosols in workplaces or during inhalation studies. Manufactured dry powder containing MWCNT’s, combined with soot and metal catalysts, form complex morphologies and diverse shapes. The aerosols, examined in this study, were produced using an acoustical generator. Representative samples were collected from an exposure chamber using filters and a cascade impactor for microscopic and gravimetric analyses. Results from filters showed that a density of 0.008–0.10 particles per µm2 filter surface provided adequate samples for particle counting and sizing. Microscopic counting indicated that MWCNT’s, resuspended at a concentration of 10 mg/m3, contained 2.7 × 104 particles/cm3. Each particle structure contained an average of 18 nanotubes, resulting in a total of 4.9 × 105 nanotubes/cm3. In addition, fibrous particles within the aerosol had a count median length of 3.04 µm and a width of 100.3 nm, while the isometric particles had a count median diameter of 0.90 µm. A combination of impactor and microscopic measurements established that the mass median aerodynamic diameter of the mixture was 1.5 µm. It was also determined that the mean effective density of well-defined isometric particles was between 0.71 and 0.88 g/cm3, and the mean shape factor of individual nanotubes was between 1.94 and 2.71. The information obtained from this study can be used for designing animal inhalation exposure studies and adopted as guidance for sampling and characterizing MWCNT aerosols in workplaces. The measurement scheme should be relevant for any carbon nanotube aerosol. PMID:23033994

  8. Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon.

    PubMed

    Machado, Fernando M; Bergmann, Carlos P; Fernandes, Thais H M; Lima, Eder C; Royer, Betina; Calvete, Tatiana; Fagan, Solange B

    2011-09-15

    Multi-walled carbon nanotubes and powdered activated carbon were used as adsorbents for the successful removal of Reactive Red M-2BE textile dye from aqueous solutions. The adsorbents were characterised by infrared spectroscopy, N(2) adsorption/desorption isotherms and scanning electron microscopy. The effects of pH, shaking time and temperature on adsorption capacity were studied. In the acidic pH region (pH 2.0), the adsorption of the dye was favourable using both adsorbents. The contact time to obtain equilibrium at 298K was fixed at 1h for both adsorbents. The activation energy of the adsorption process was evaluated from 298 to 323K for both adsorbents. The Avrami fractional-order kinetic model provided the best fit to the experimental data compared with pseudo-first-order or pseudo-second-order kinetic adsorption models. For Reactive Red M-2BE dye, the equilibrium data were best fitted to the Liu isotherm model. Simulated dyehouse effluents were used to check the applicability of the proposed adsorbents for effluent treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Chitosan-folate decorated carbon nanotubes for site specific lung cancer delivery.

    PubMed

    Singh, Rahul Pratap; Sharma, Gunjan; Sonali; Singh, Sanjay; Bharti, Shreekant; Pandey, Bajarangprasad L; Koch, Biplob; Muthu, Madaswamy S

    2017-08-01

    The aim of this work was to formulate chitosan-folate conjugated multi-walled carbon nanotubes for the lung cancer targeted delivery of docetaxel. The chitosan-folate conjugate was synthesized and the conjugation was confirmed by Fourier transform infrared spectroscopy. The multi-walled carbon nanotubes were characterized for their particle size, polydispersity, zeta potential, surface morphology, drug encapsulation efficiency and in vitro release study. The in vitro cellular uptake, cytotoxicity, and cell cycle analysis of the docetaxel/coumarin-6 loaded multi-walled carbon nanotubes were carried out to compare the effectiveness of the formulations. The biocompatibility and safety of chitosan-folate conjugated multi-walled carbon nanotubes was analyzed by lung histopathology in comparison with marketed docetaxel formulation (Docel™) and acylated multi-walled carbon nanotubes. The cellular internalization study shown that the chitosan-folate conjugated multi-walled carbon nanotubes could be easily internalized into the lung cancer cells through a folate receptor-mediated endocytic pathway. The IC 50 values exhibited that chitosan-folate conjugated multi-walled carbon nanotubes could be 89-fold more effective than Docel™ in human lung cancer cells (A549 cells). Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Dispersion fraction enhances cellular growth of carbon nanotube and aluminum oxide reinforced ultrahigh molecular weight polyethylene biocomposites.

    PubMed

    Patel, Anup Kumar; Balani, Kantesh

    2015-01-01

    Ultrahigh molecular weight polyethylene (UHMWPE) is widely used as bone-replacement material for articulating surfaces due to its excellent wear resistance and low coefficient of friction. But, the wear debris, generated during abrasion between mating surfaces, leads to aseptic loosening of implants. Thus, various reinforcing agents are generally utilized, which may alter the surface and biological properties of UHMWPE. In the current work, the cellular response of compression molded UHMWPE upon reinforcement of bioactive multiwalled carbon nanotubes (MWCNTs) and bioinert aluminum oxide (Al2O3) is investigated. The phase retention and stability were observed using X-ray diffraction, Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The reinforcement of MWCNTs and Al2O3 has shown to alter the wettability (from contact angle of ~88°±2° to ~118°±4°) and surface energy (from ~23.20 to ~17.75 mN/m) of composites with respect to UHMWPE, without eliciting any adverse effect on cytocompatibility for the L929 mouse fibroblast cell line. Interestingly, the cellular growth of the L929 mouse fibroblast cell line is observed to be dominated by the dispersion fraction of surface free energy (SFE). After 48 h of incubation period, a decrease in metabolic activity of MWCNT-Al2O3 reinforced composites is attributed to apatite formation that reduces the dispersion fraction of surface energy. The mineralized apatite during incubation was confirmed and quantified by energy dispersive spectroscopy and X-ray diffraction respectively. Thus, the dispersion fraction of surface free energy can be engineered to play an important role in achieving enhanced metabolic activity of the MWCNT-Al2O3 reinforced UHMWPE biopolymer composites. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Superhydrophobic to hydrophilic transition of multi-walled carbon nanotubes induced by Na+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Das, Pritam; Dhal, Satyanarayan; Ghosh, Susanta; Chatterjee, Sriparna; Rout, Chandra S.; Ramgir, Niranjan; Chatterjee, Shyamal

    2017-12-01

    Multi-walled carbon nanotubes (MWCNT) having diameter in the range of 5-30 nm were coated on silicon wafer using spray coating technique. The coated film was irradiated with 5 keV Na+ at a fluence of 1 × 1016 ions·cm-2. A large-scale welding is observed in the post-irradiated nanotube assembly under scanning electron microscope. We have studied dynamic wetting properties of the nanotubes. While the pristine MWCNT shows superhydrophobic nature, the irradiated MWCNT turns into hydrophilic. Our simulation based on iradina and experimental evidences show defect formation in MWCNT due to ion irradiation. We have invoked mechanism based on defect mediated adsorption of water, which plays major role for transition from superhydrophobic to hydrophilic.

  12. Chlorophenol sorption on multi-walled carbon nanotubes: DFT modeling and structure-property relationship analysis.

    PubMed

    Watkins, Marquita; Sizochenko, Natalia; Moore, Quentarius; Golebiowski, Marek; Leszczynska, Danuta; Leszczynski, Jerzy

    2017-02-01

    The presence of chlorophenols in drinking water can be hazardous to human health. Understanding the mechanisms of adsorption under specific experimental conditions would be beneficial when developing methods to remove toxic substances from drinking water during water treatment in order to limit human exposure to these contaminants. In this study, we investigated the sorption of chlorophenols on multi-walled carbon nanotubes using a density functional theory (DFT) approach. This was applied to study selected interactions between six solvents, five types of nanotubes, and six chlorophenols. Experimental data were used to construct structure-adsorption relationship (SAR) models that describe the recovery process. Specific interactions between solvents and chlorophenols were taken into account in the calculations by using novel specific mixture descriptors.

  13. Giant enhancement and anomalous thermal hysteresis of saturation moment in magnetic nanoparticles embedded in multiwalled carbon nanotubes.

    PubMed

    Zhao, Guo-meng; Wang, Jun; Ren, Yang; Beeli, Pieder

    2013-06-12

    We report high-energy synchrotron X-ray diffraction spectrum and high-temperature magnetic data for multiwalled carbon nanotubes (MWCNTs) embedded with Fe and Fe3O4 nanoparticles. We unambiguously show that the saturation moments of the embedded Fe and Fe3O4 nanoparticles are enhanced by a factor of about 3.0 compared with what would be expected if they would be unembedded. More intriguingly the enhanced moments were completely lost when the sample was heated up to 1120 K, and the lost moments were completely recovered through two more thermal cycles below 1020 K. These novel results cannot be explained by the magnetism of the Fe and Fe3O4 impurity phases, the magnetic proximity effect between magnetic nanoparticles and carbon, and the ballistic transport of MWCNTs.

  14. Ionization Gas Sensor using Aligned Multiwalled Carbon Nanotubes Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kermany, A. R.; Mohamed, N. M.; Singh, B. S. M.

    2011-05-25

    The challenge with current conventional gas sensors which are operating using semiconducting oxides is their size. After the introduction of nanotechnology and in order to reduce the dimension and consequently the power consumption and cost, new materials such as carbon nanotubes (CNTs) are being introduced. From previous works and characterization results, it was proven that the CNTs based gas sensor has better sensitivity, selectivity and faster response time in compared with semiconducting oxides based gas sensors. As in this work, a fabrication and successful testing of an ionization-based gas sensor using aligned Multiwalled CNTs (MWCNTs) as sensing element is discussed,more » in which MWCNTs array and Al film are used as anode and cathode plates respectively with electrode separation ranging from 80 {mu}m to 140 {mu}m. Aligned MWCNTs array was incorporated into a sensor configuration in the gas chamber for testing of gases such as argon, air, and mixed gas of 2%H{sub 2} in air. Obtained results show that among the three gases, argon has the lowest breakdown voltage whilst air has the highest value and the breakdown voltage was found to decrease as the electrode spacing was reduced from 140 {mu}m to 80 {mu}m for all three gases.« less

  15. On the synthesis and magnetic properties of multiwall carbon nanotube-superparamagnetic iron oxide nanoparticle nanocomposites.

    PubMed

    Narayanan, T N; Mary, A P Reena; Shaijumon, M M; Ci, Lijie; Ajayan, P M; Anantharaman, M R

    2009-02-04

    Multiwall carbon nanotubes (MWCNTs) possessing an average inner diameter of 150 nm were synthesized by template assisted chemical vapor deposition over an alumina template. Aqueous ferrofluid based on superparamagnetic iron oxide nanoparticles (SPIONs) was prepared by a controlled co-precipitation technique, and this ferrofluid was used to fill the MWCNTs by nanocapillarity. The filling of nanotubes with iron oxide nanoparticles was confirmed by electron microscopy. Selected area electron diffraction indicated the presence of iron oxide and graphitic carbon from MWCNTs. The magnetic phase transition during cooling of the MWCNT-SPION composite was investigated by low temperature magnetization studies and zero field cooled (ZFC) and field cooled experiments. The ZFC curve exhibited a blocking at approximately 110 K. A peculiar ferromagnetic ordering exhibited by the MWCNT-SPION composite above room temperature is because of the ferromagnetic interaction emanating from the clustering of superparamagnetic particles in the constrained volume of an MWCNT. This kind of MWCNT-SPION composite can be envisaged as a good agent for various biomedical applications.

  16. Comprehensive Environmental Assessment Applied to Multiwalled Carbon Nanotube Flame-Retardant Coatings in Upholstery Textiles: A Case Study Presenting Priority Research Gaps for Future Risk Assessments (Final Report)

    EPA Science Inventory

    In September 2013, EPA announced the availability of the final report, Comprehensive Environmental Assessment Applied to Multiwalled Carbon Nanotube Flame-Retardant Coatings in Upholstery Textiles: A Case Study Presenting Priority Research Gaps for Future Risk Assessments...

  17. Synthesis and CO{sub 2} adsorption study of modified MOF-5 with multi-wall carbon nanotubes and expandable graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullah, Sami, E-mail: samichemist1@gmail.com, E-mail: azmibustam@petronas.com.my, E-mail: azmish@petronas.com.my, E-mail: lkhlfh@gmail.com, E-mail: hmurshid@gmail.com, E-mail: nadiariazz@gmail.com; Bustam, M. A., E-mail: samichemist1@gmail.com, E-mail: azmibustam@petronas.com.my, E-mail: azmish@petronas.com.my, E-mail: lkhlfh@gmail.com, E-mail: hmurshid@gmail.com, E-mail: nadiariazz@gmail.com; Shariff, A. M., E-mail: samichemist1@gmail.com, E-mail: azmibustam@petronas.com.my, E-mail: azmish@petronas.com.my, E-mail: lkhlfh@gmail.com, E-mail: hmurshid@gmail.com, E-mail: nadiariazz@gmail.com

    2014-10-24

    MOF-5 was synthesized by solvothermal method and its reactivation under anhydrous conditions. This research is conducted to investigate the effect of MOF-5 and MOF-5 modified with multi-wall carbon nanotubes (MWCNTs) and expandable graphite (EG) on the performance of CO{sub 2} adsorption. The synthesized MOFs were characterized using Field emission scanning electron microscopy (FESEM) for surface morphology, Thermogravimetric analysis (TGA) for thermal stability, X-ray diffraction (XRD) for crystals plane, Brunauer-Emmet-Teller (BET) for surface area and CO{sub 2} adsorption. The result had showed that the modified MOF-5 enhanced the CO{sub 2} adsorption compared to the pure MOF-5. The increment in the CO{submore » 2} uptake capacities of MOF materials was attributed to the decrease in the pore size and enhancement of micropore volume of MOF-5 by multi-walled carbon nanotube and EG incorporation. The BET surface area of the synthesized MOF-5@MWCNTs is more than MOF-5. The CO{sub 2} sorption capacities of MOF-5 and MOF-5@MWCNTs were observed to increase from 0.00008 to 0.00048 mol g-1 at 298 K and 1 bar. The modified MOF-5@MWCNTs resulted in the highest CO{sub 2} adsorption followed by the modified MOF-5@ EG and lastly, MOF-5.« less

  18. Transformation of multiwall carbon nanotubes to onions with layers cross-linked by sp3 bonds under high pressure and shear deformation

    NASA Astrophysics Data System (ADS)

    Pankov, A. M.; Bredikhina, A. S.; Kulnitskiy, B. A.; Perezhogin, I. A.; Skryleva, E. A.; Parkhomenko, Yu. N.; Popov, M. Yu.; Blank, V. D.

    2017-08-01

    A pressure-induced phase transition of multiwall carbon nanotubes (MWNT) to a new structure at room temperature is studied using a shear diamond anvil cell, X-ray photoelectron spectra (XPS), transmission electron microscope (TEM) and Raman procedures. We observe a cardinal pressure-induced change in the nanoparticles shape from multi-shell tubes to multi-shell spheres. MWNT transforms to onions with layers cross-linked by sp3 bonds under the 45-65 GPa compressive stress combined with shear deformation at room temperature. TEM and XPS results show that about 40% of the carbon atoms in the new phase are sp3-bounded.

  19. Evaluation of the sorption mechanism of ionic liquids onto multi-walled carbon nanotubes.

    PubMed

    Wojsławski, Jerzy; Białk-Bielińska, Anna; Paszkiewicz, Monika; Toński, Michał; Stepnowski, Piotr; Dołżonek, Joanna

    2018-01-01

    The knowledge of the sorption mechanism of different chemicals onto third generation carbon sorbents such as carbon nanotubes (CNTs) is needed in order to project systems for the effective removal of pollutants from the environment. This paper reports evaluation of the sorption mechanism of selected ionic liquids (ILs), being considered as potential pollutant in environment, onto various CNTs. CNTs characterized by the smallest diameter and the biggest surface area showed the highest sorption capacity to isolate ILs from an aqueous solution. CNTs with a bigger diameter, a functionalized surface and particularly a helical shape showed a lower sorption capacity. The sorption mechanism has been defined as complex, including van der Waals, π-π and electrostatic interactions with dominating π-π interactions. Due to the relatively high sorption coefficient (355.98 ± 20.69-6397.10 ± 355.42 L kg -1 depending on the IL) the study showed that multi-walled carbon nanotubes can potentially be used to effectively isolate ILs from an aqueous solution. Moreover, proved in this study, the fast sorption kinetic, and uncomplicated regeneration process, leading to an even higher sorption capacity, means that CNTs are promising material which could find potential applications in the treatment of water contaminated by ILs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Influence of the Hybrid Combination of Multiwalled Carbon Nanotubes and Graphene Oxide on Interlaminar Mechanical Properties of Carbon Fiber/Epoxy Laminates

    NASA Astrophysics Data System (ADS)

    Rodríguez-González, J. A.; Rubio-González, C.; Jiménez-Mora, M.; Ramos-Galicia, L.; Velasco-Santos, C.

    2017-10-01

    An effective strategy to improve the mode I and mode II interlaminar fracture toughness (G IC and G IIC ) of unidirectional carbon fiber/epoxy (CF/E) laminates using a hybrid combination of multiwalled carbon nanotubes (MWCNTs) and graphene oxide (GO) is reported. Double cantilever beam (DCB) and end notched flexure (ENF) tests were conducted to evaluate the G IC and G IIC of the CF/E laminates fabricated with sprayed MWCNTs, GO and MWCNTs/GO hybrid. Scanning electron microscopy was employed to observe the fracture surfaces of tested DCB and ENF specimens. Experimental results showed the positive effect on the G IC and G IIC by 17% and 14% improvements on CF/E laminates with 0.25 wt.% MWCNTs/GO hybrid content compared to the neat CF/E. Also, the interlaminar shear strength value was increased for MWCNTs/GO-CF/E laminates. A synergetic effect between MWCNTs and GO resulted in improved interlaminar mechanical properties of CF/E laminates made by prepregs.

  1. Chronocoulometry of wine on multi-walled carbon nanotube modified electrode: Antioxidant capacity assay.

    PubMed

    Ziyatdinova, Guzel; Kozlova, Ekaterina; Budnikov, Herman

    2016-04-01

    Phenolic antioxidants of wine were electrochemically oxidized on multi-walled carbon nanotubes modified glassy carbon electrode (MWNT/GCE) in phosphate buffer solution. Three oxidation peaks were observed at 0.39, 0.61 and 0.83V for red dry wine and 0.39, 0.80 and 1.18 V for white dry wine, respectively, using differential pulse voltammetry at pH 4.0. The oxidation potentials for individual phenolic antioxidants confirmed the integral nature of the analytical signals for the wines examined. A one-step chronocoulometric method at 0.83 and 1.18 V for red and white wines, respectively, has been developed for the evaluation of wine antioxidant capacity (AOC). The AOC is expressed in gallic acid equivalents per 1L of wine. The AOC of white wine was significantly less than red wine (386 ± 112 vs. 1224 ± 184, p<0.0001), as might be expected. Positive correlations were observed between gallic acid equivalent AOC of wine and total antioxidant capacity, based on coulometric titration with electrogenerated bromine (r=0.8957 at n=5 and r=0.8986 at n=4 for red and white wines, respectively). Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Influence of surface oxides on the adsorption of naphthalene onto multiwalled carbon nanotubes.

    PubMed

    Cho, Hyun-Hee; Smith, Billy A; Wnuk, Joshua D; Fairbrother, D Howard; Ball, William P

    2008-04-15

    As greater quantities of carbon nanotubes (CNTs) enter the environment, they will have an increasingly important effect on the availability and transport of aqueous contaminants. As a consequence of purification, deliberate surface functionalization, and/or exposure to oxidizing agents after release to the environment, CNTs often contain surface oxides (i.e., oxygen containing functional groups). To probe the influence that surface oxides exert on CNT sorption properties, multiwalled CNTs (MWCNTs) with varying oxygen concentrations were studied with respect to their sorption properties toward naphthalene. For pristine (as-received) MWCNTs, the sorption capacity was intermediate between that of a natural char and a granular activated carbon. Sorption data also reveal that a linear relationship exists between the oxygen content of MWCNTs and their maximum adsorption capacity for naphthalene, with 10% surface oxygen concentration resulting in a roughly 70% decrease in maximum adsorption capacity. The relative distribution of sorption energies, as characterized by Freundlich isotherm exponents was, however, unaffected by oxidation. Thus, the data are consistent with the idea that incorporated surface oxides create polar regions that reduce the surface area available for naphthalene sorption. These results highlight the important role of surface chemistry in controlling the environmental properties of CNTs.

  3. Electron Beam Irradiation Induced Multiwalled Carbon Nanotubes Fusion inside SEM.

    PubMed

    Shen, Daming; Chen, Donglei; Yang, Zhan; Liu, Huicong; Chen, Tao; Sun, Lining; Fukuda, Toshio

    2017-01-01

    This paper reported a method of multiwalled carbon nanotubes (MWCNTs) fusion inside a scanning electron microscope (SEM). A CNT was picked up by nanorobotics manipulator system which was constructed in SEM with 21 DOFs and 1 nm resolution. The CNT was picked up and placed on two manipulators. The tensile force was 140 nN when the CNT was pulled into two parts. Then, two parts of the CNT were connected to each other by two manipulators. The adhered force between two parts was measured to be about 20 nN. When the two parts of CNT were connected again, the contact area was fused by focused electron beam irradiation for 3 minutes. The tensile force of the junction was measured to be about 100 nN. However, after fusion, the tensile force was five times larger than the tensile force connected only by van der Waals force. This force was 70 percent of the tensile force before pulling out of CNTs. The results revealed that the electron beam irradiation was a promising method for CNT fusion. We hope this technology will be applied to nanoelectronics in the near future.

  4. Additive-free carbon nanotube dispersions, pastes, gels, and doughs in cresols.

    PubMed

    Chiou, Kevin; Byun, Segi; Kim, Jaemyung; Huang, Jiaxing

    2018-05-29

    Cresols are a group of naturally occurring and massively produced methylphenols with broad use in the chemical industry. Here, we report that m -cresol and its liquid mixtures with other isomers are surprisingly good solvents for processing carbon nanotubes. They can disperse carbon nanotubes of various types at unprecedentedly high concentrations of tens of weight percent, without the need for any dispersing agent or additive. Cresols interact with carbon nanotubes by charge transfer through the phenolic hydroxyl proton and can be removed after processing by evaporation or washing, without altering the surface of carbon nanotubes. Cresol solvents render carbon nanotubes polymer-like rheological and viscoelastic properties and processability. As the concentration of nanotubes increases, a continuous transition of four states can be observed, including dilute dispersion, thick paste, free-standing gel, and eventually a kneadable, playdough-like material. As demonstrated with a few proofs of concept, cresols make powders of agglomerated carbon nanotubes immediately usable by a broad array of material-processing techniques to create desirable structures and form factors and make their polymer composites.

  5. Voltammetric Determination of Penicillamine Using a Carbon Paste Electrode Modified with Multiwall Carbon Nanotubes In the Presence of Methyldopa as a Mediator.

    PubMed

    Safari, Fardin; Keyvanfard, Mohsen; Karimi-Maleh, Hassan; Alizad, Khadijeh

    2017-01-01

    A multiwall carbon nanotubes-modified carbon paste electrode (MWCNTs/MCPE) was fabricated and used to study the electrooxidation of penicillamine (PA) by electrochemical methods in the presence of methyldopa (MDOP) as a homogeneous mediator. The electrochemical oxidation of PA on the new sensor has been carefully studied. The kinetic parameters such as electron transfer coefficient, α, and catalytic reaction rate constant, K / h , were also determined using electrochemical approaches. The electrocatalytic oxidation peak current of PA showed a linear dependent on the PA concentrations and linear calibration curves were obtained in the ranges of 0.2-250.0 µM of PA concentration with square wave voltammetry (SWV) method. The detection limit (3σ) was determined as 0.1 µM. This sensor was also examined as a fast, selective, simple and precise new sensor for voltammetric determination of PA in real samples such as drug and urine.

  6. Voltammetric Determination of Penicillamine Using a Carbon Paste Electrode Modified with Multiwall Carbon Nanotubes In the Presence of Methyldopa as a Mediator

    PubMed Central

    Safari, Fardin; Keyvanfard, Mohsen; Karimi-Maleh, Hassan; Alizad, Khadijeh

    2017-01-01

    A multiwall carbon nanotubes-modified carbon paste electrode (MWCNTs/MCPE) was fabricated and used to study the electrooxidation of penicillamine (PA) by electrochemical methods in the presence of methyldopa (MDOP) as a homogeneous mediator. The electrochemical oxidation of PA on the new sensor has been carefully studied. The kinetic parameters such as electron transfer coefficient, α, and catalytic reaction rate constant, K/h, were also determined using electrochemical approaches. The electrocatalytic oxidation peak current of PA showed a linear dependent on the PA concentrations and linear calibration curves were obtained in the ranges of 0.2-250.0 µM of PA concentration with square wave voltammetry (SWV) method. The detection limit (3σ) was determined as 0.1 µM. This sensor was also examined as a fast, selective, simple and precise new sensor for voltammetric determination of PA in real samples such as drug and urine. PMID:29201090

  7. Multiwall carbon nanotubes increase the microbial community in crude oil contaminated fresh water sediments.

    PubMed

    Abbasian, Firouz; Lockington, Robin; Palanisami, Thavamani; Megharaj, Mallavarapu; Naidu, Ravi

    2016-01-01

    Since crude oil contamination is one of the biggest environmental concerns, its removal from contaminated sites is of interest for both researchers and industries. In situ bioremediation is a promising technique for decreasing or even eliminating crude oil and hydrocarbon contamination. However, since these compounds are potentially toxic for many microorganisms, high loads of contamination can inhibit the microbial community and therefore reduce the removal rate. Therefore, any strategy with the ability to increase the microbial population in such circumstances can be of promise in improving the remediation process. In this study, multiwall carbon nanotubes were employed to support microbial growth in sediments contaminated with crude oil. Following spiking of fresh water sediments with different concentrations of crude oil alone and in a mixture with carbon nanotubes for 30days, the microbial profiles in these sediments were obtained using FLX-pyrosequencing. Next, the ratios of each member of the microbial population in these sediments were compared with those values in the untreated control sediment. This study showed that combination of crude oil and carbon nanotubes can increase the diversity of the total microbial population. Furthermore, these treatments could increase the ratios of several microorganisms that are known to be effective in the degradation of hydrocarbons. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Comparison of 4-chloro-2-nitrophenol adsorption on single-walled and multi-walled carbon nanotubes

    PubMed Central

    2012-01-01

    The adsorption characteristics of 4-chloro-2-nitrophenol (4C2NP) onto single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs) from aqueous solution were investigated with respect to the changes in the contact time, pH of solution, carbon nanotubes dosage and initial 4C2NP concentration. Experimental results showed that the adsorption efficiency of 4C2NP by carbon nanotubes (both of SWCNTs and MWCNTs) increased with increasing the initial 4C2NP concentration. The maximum adsorption took place in the pH range of 2–6. The linear correlation coefficients of different isotherm models were obtained. Results revealed that the Langmuir isotherm fitted the experimental data better than the others and based on the Langmuir model equation, maximum adsorption capacity of 4C2NP onto SWCNTs and MWCNTs were 1.44 and 4.42 mg/g, respectively. The observed changes in the standard Gibbs free energy, standard enthalpy and standard entropy showed that the adsorption of 4C2NP onto SWCNTs and MWCNTs is spontaneous and exothermic in the temperature range of 298–328 K. PMID:23369489

  9. Synthesis and properties of platinum on multiwall carbon nanotube modified by chitosan

    NASA Astrophysics Data System (ADS)

    Fikriyyah, A. K.; Chaldun, E. R.; Indriyati

    2018-03-01

    Platinum nanoparticles on multiwall carbon nanotubes (Pt/MWCNT) play an important role in fuel cell to convert the chemical energy from a fuel into electricity. In this study, Pt/MWCNT electrocatalysts were prepared by chemical reduction of the metal salts in chitosan as the support. Firstly, commercial MWCNTs were functionalized by oxidative process using a mixture of nitric acid and sulfuric acid. Then, functionalized MWCNTs were mixed with chitosan-acetic acid solution to conduct grafting reaction with NH2 groups in chitosan by solution polymerization method. Platinum nanoparticles were loaded onto the surface of the MWCNTs after hexachloroplatinic acid was reduced by sodium hydroxide solution. The result showed that Pt was attached on MWCNT based on analysis from EDS, XRD, and UV Vis Spectroscopy. UV Vis analysis indicates the plasmon absorbance band of Pt nanoparticles in Pt/MWCNT, while XRD analysis confirmed the size of Pt particle in nanometer. This elucidates the potential procedure to synthesize Pt/MWCNT using chitosan.

  10. Synthesis and Catalytic Applications of Multi-Walled Carbon Nanotube-Polyamidoamine Dendrimer Hybrids.

    PubMed

    Desmecht, Antonin; Steenhaut, Timothy; Pennetreau, Florence; Hermans, Sophie; Riant, Olivier

    2018-06-20

    Polyamidoamine (PAMAM) dendrimers were covalently immobilized on multi-walled carbon nanotubes (MWNT) via two 'grafting to' strategies. We demonstrate the existence of non-covalent interactions between the two components but outline the superiority of our two grafting approaches, namely xanthate and click chemistry. MWNT surfaces were functionalized with activated ester and propargylic moieties prior to their reaction with PAMAM or azido-PAMAM dendrimers, respectively. The grafting of PAMAM generations 0 to 3 was evaluated with X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and transmission electron microscopy (TEM). The versatility of our hybrids was demonstrated by post-functionalization sequences involving copper alkyne-azide cycloaddition (CuAAC). We synthesized homogeneous supported iridium complexes at the extremities of the dendrimers. In addition, our materials were used as template for the encapsulation of Pd nanoparticles (NP), validating our nanocomposites for catalytic applications. The palladium-based catalyst was active for carbonylative coupling during 5 consecutive runs without loss of activity. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Electrical response of liquid crystal cells doped with multi-walled carbon nanotubes.

    PubMed

    García-García, Amanda; Vergaz, Ricardo; Algorri, José Francisco; Quintana, Xabier; Otón, José Manuel

    2015-01-01

    The inclusion of nanoparticles modifies a number of fundamental properties of many materials. Doping of nanoparticles in self-organized materials such as liquid crystals may be of interest for the reciprocal interaction between the matrix and the nanoparticles. Elongated nanoparticles and nanotubes can be aligned and reoriented by the liquid crystal, inducing noticeable changes in their optical and electrical properties. In this work, cells of liquid crystal doped with high aspect ratio multi-walled carbon nanotubes have been prepared, and their characteristic impedance has been studied at different frequencies and excitation voltages. The results demonstrate alterations in the anisotropic conductivity of the samples with the applied electric field, which can be followed by monitoring the impedance evolution with the excitation voltage. Results are consistent with a possible electric contact between the coated substrates of the LC cell caused by the reorientation of the nanotubes. The reversibility of the doped system upon removal of the electric field is quite low.

  12. Multiwalled Carbon Nanotube/nanofiber Arrays as Conductive and Dry Adhesive Interface Materials

    NASA Technical Reports Server (NTRS)

    Tong, Tao; Zhao, Yang; Delzeit, Lance; Majumdar, Arun; Kashani, Ali

    2004-01-01

    We demonstrate the possibility of making conductive and dry adhesive interfaces between multiwalled carbon nanotube (MWNT) and nanofiber (MWNF) arrays grown by chemical vapor deposition with transition-metal as catalyst on highly Boron doped silicon substrates. The maximum observed adhesion force between MWNT and MWNF surfaces is 3.5 mN for an apparent contact area of 2 mm by 4 mm. The minimum contact resistance measured at the same time is approx.20 Omega. Contact resistances of MWNT-MWNT and MWNT-gold interfaces were also measured as pressure forces around several mN were applied at the interface. The resulting minimum contact resistances are on the same order but with considerable variation from sample to sample. For MWNT-MWNT contacts, a minimum contact resistance of approx.1 Omega is observed for a contact area of 2 mm by 1 mm. The relatively high contact resistances, considering the area density of the nanotubes, might be explained by the high cross-tube resistances at the contact interfaces.

  13. Dispersion quality of amine functionalized multiwall carbon nanotubes plays critical roles in polymerase chain reaction enhancement

    NASA Astrophysics Data System (ADS)

    Yuce, Meral; Budak, Hikmet

    2014-12-01

    Impact of dispersion quality of NH2-MWCNTs (13-18 nm in diameter with a length between 1 and 12 µm, >99 % purity) in the amplification efficiency of a random DNA oligonucleotide library (96 bp) was investigated. Amplification yield in the presence of non-filtered NH2-MWCNT dispersion, filtered NH2-MWCNT dispersion and surface-attached NH2-MWCNTs was explored, and physical interactions between NH2-MWCNTs and major PCR reagents including DNA template, wild type Taq DNA polymerase enzyme and primers were determined using high resolution polyacrylamide gel electrophoresis, dynamic light scattering, UV-Vis-NIR spectroscopy and scanning electron microscopy techniques. The results revealed that presence of NH2-MWCNT dispersion which was sonicated, centrifuged and filtered, enhanced the total PCR efficiency up to 70 % while the presence of NH2-MWCNT only centrifuged after sonication, inhibited the reaction significantly at similar concentrations. Furthermore, the NH2-MWCNTs coupled covalently onto magnetic microspheres, contributed for the specificity enhancement whilst decreasing the amplification efficiency by 30 % at the maximum concentration, which suggests a removable enhancement system for sensitive applications. On the other hand, the relative hydrodynamic size distribution measurements displayed a clear difference between the filtered NH2 and non-filtered NH2-MWCNT water dispersions, which justifies the inhibition of the amplification by the non-filtered NH2-MWCNTs containing big agglomerates and bundles. Finally, we demonstrated that major PCR components adsorb onto the NH2-MWCNTs with diverse affinities, and maintain their functions after adsorption, which provides a good framework to further develop tunable NH2-MWCNT-carriers to be utilized in various nanobiotechnology and material science applications.

  14. Determinants of the Thrombogenic Potential of Multiwalled Carbon Nanotubes

    PubMed Central

    Burke, Andrew; Singh, Ravi; Carroll, David L.; Owen, John; Kock, Nancy D.; D’Agostino, Ralph; Torti, Frank M.; Torti, Suzy V.

    2011-01-01

    Multiwalled carbon nanotubes (MWCNTs) are cylindrical tubes of graphitic carbon with unique physical and electrical properties. MWCNTs are being explored for a variety of diagnostic and therapeutic applications. Successful biomedical application of MWCNTs will require compatibility with normal circulatory components, including constituents of the hemostatic cascades. In this manuscript, we compare the thrombotic activity of MWCNTs in vitro and in vivo. We also assess the influence of functionalization of MWCNTs on thrombotic activity. In vitro, MWCNT activate the intrinsic pathway of coagulation as measured by activated partial thromboplastin time (aPTT) assays. Functionalization by amidation or carboxylation enhances this procoagulant activity. Mechanistic studies demonstrate that MWCNTs enhance propagation of the intrinsic pathway via a non-classical mechanism strongly dependent on factor IX. MWCNTs preferentially associate with factor IXa and may provide a platform for its activation. In addition to their effects on the coagulation cascade, MWCNTs activate platelets in vitro, with amidated MWCNTs exhibiting greater platelet activation than carboxylated or pristine MWCNTs. However, contrasting trends are obtained in vivo, where functionalization tends to diminish rather than enhance pro-coagulant activity. Thus, following systemic injection of MWCNTs in mice, pristine MWCNTs decreased platelet counts, increased vWF, and increased D-dimers. In contrast, carboxylated MWCNTS exhibited little procoagulant tendency in vivo, eliciting only a mild and transient decrease in platelets. Amidated MWCNTs elicited no statistically significant change in platelet count. Further, neither carboxylated nor amidated MWCNTs increased vWF or D-dimers in mouse plasma. We conclude that the pro-coagulant tendencies of MWCNTs observed in vitro are not necessarily recapitulated in vivo. Further, functionalization can markedly attenuate the procoagulant activity of MWCNTs in vivo. This

  15. Fabrication of nanoscale to macroscale nickel-multiwall carbon nanotube hybrid materials with tunable material properties

    NASA Astrophysics Data System (ADS)

    Abdalla, Ahmed M.; Majdi, Tahereh; Ghosh, Suvojit; Puri, Ishwar K.

    2016-12-01

    To utilize their superior properties, multiwall carbon nanotubes (MWNTs) must be manipulated and aligned end-to-end. We describe a nondestructive method to magnetize MWNTs and provide a means to remotely manipulate them through the electroless deposition of magnetic nickel nanoparticles on their surfaces. The noncovalent bonds between Ni nanoparticles and MWNTs produce a Ni-MWNT hybrid material (NiCH) that is electrically conductive and has an enhanced magnetic susceptibility and elastic modulus. Our experiments show that MWNTs can be plated with Ni for Ni:MWNT weight ratios of γ = 1, 7, 14 and 30, to control the material properties. The phase, atom-level, and morphological information from x-ray diffraction, energy dispersive x-ray spectroscopy, scanning electron microscopy, transmission electron microscopy, dark field STEM, and atomic force microscopy clarify the plating process and reveal the mechanical properties of the synthesized material. Ni metalizes at the surface of the Pd catalyst, forming a continuous wavy layer that encapsulates the MWNT surfaces. Subsequently, Ni acts as an autocatalyst, allowing the plating to continue even after the original Pd catalyst has been completely covered. Raising γ increases the coating layer thickness from 10 to 150 nm, which influences the NiCH magnetic properties and tunes its elastic modulus from 12.5 to 58.7 GPa. The NiCH was used to fabricate Ni-MWNT macrostructures and tune their morphologies by changing the direction of an applied magnetic field. Leveraging the hydrophilic Ni-MWNT outer surface, a water-based conductive ink was created and used to print a conductive path that had an electrical resistivity of 5.9 Ω m, illustrating the potential of this material for printing electronic circuits.

  16. Thermal characteristics of carbon fiber reinforced epoxy containing multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lee, Jin-woo; Park, Soo-Jeong; Kim, Yun-hae; Riichi-Murakami

    2018-06-01

    The material with irregular atomic structures such as polymer material exhibits low thermal conductivity because of the complex structural properties. Even materials with same atomic configurations, thermal conductivity may be different based on their structural properties. It is expected that nanoparticles with conductivity will change non-conductive polymer base materials to electrical conductors, and improve the thermal conductivity even with extremely small filling amount. Nano-composite materials contain nanoparticles with a higher surface ratio which makes the higher interface percentage to the total surface of nanoparticles. Therefore, thermal resistance of the interface becomes a dominating factor determines the effective thermal conductivity in nano-composite materials. Carbon fiber has characteristic of resistance or magnetic induction and Also, Carbon nanotube (CNT) has electronic and thermal property. It can be applied for heating system. These characteristic are used as heating composite. In this research, the exothermic characteristics of Carbon fiber reinforced composite added CNT were evaluated depend on CNT length and particle size. It was found that the CNT dispersed in the resin reduces the resistance between the interfaces due to the decrease in the total resistance of the heating element due to the addition of CNTs. It is expected to improve the life and performance of the carbon fiber composite material as a result of the heating element resulting from this paper.

  17. Healing of broken multiwalled carbon nanotubes using very low energy electrons in SEM: a route toward complete recovery.

    PubMed

    Kulshrestha, Neha; Misra, Abhishek; Hazra, Kiran Shankar; Roy, Soumyendu; Bajpai, Reeti; Mohapatra, Dipti Ranjan; Misra, D S

    2011-03-22

    We report the healing of electrically broken multiwalled carbon nanotubes (MWNTs) using very low energy electrons (3-10 keV) in scanning electron microscopy (SEM). Current-induced breakdown caused by Joule heating has been achieved by applying suitably high voltages. The broken tubes were examined and exposed to electrons of 3-10 keV in situ in SEM with careful maneuvering of the electron beam at the broken site, which results in the mechanical joining of the tube. Electrical recovery of the same tube has been confirmed by performing the current-voltage measurements after joining. This easy approach is directly applicable for the repairing of carbon nanotubes incorporated in ready devices, such as in on-chip horizontal interconnects or on-tip probing applications, such as in scanning tunneling microscopy.

  18. Multi-walled carbon nanotubes increase antibody-producing B cells in mice immunized with a tetravalent vaccine candidate for dengue virus.

    PubMed

    Calegari, Luan P; Dias, Roberto S; de Oliveira, Michelle D; Pessoa, Carine Ribeiro; de Oliveira, André S; Oliveira, Ana F C S; da Silva, Cynthia C; Fonseca, Flavio G; Versiani, Alice F; De Paula, Sérgio O

    2016-07-27

    In recent times, studies have demonstrated that carbon nanotubes are good candidates for use as vehicles for transfection of exogenous material into the cells. However, there are few studies evaluating the behavior of carbon nanotubes as DNA vectors and few of these studies have used multi-walled carbon nanotubes (MWCNTs) or carboxylated MWCNTs. Thus, this study aims to assess the MWCNTs' (carboxylated or not) efficiency in the increase in expression of the tetravalent vaccine candidate (TVC) plasmid vector for dengue virus in vitro using Vero cells, and in vivo, through the intramuscular route, to evaluate the immunological response profile. Multi-walled carbon nanotubes internalized by Vero cells, have been found in the cytoplasm and nucleus associated with the plasmid. However, it was not efficient to increase the messenger ribonucleic acid (mRNA) compared to the pure vaccine candidate associated with Lipofectamine(®) 2000. The in vivo experiments showed that the use of intramuscular injection of the TVC in combination with MWCNTs reduced the immune response compared to pure TVC, in a general way, although an increase was observed in the population of the antibody-producing B cells, as compared to pure TVC. The results confirm the data found by other authors, which demonstrate the ability of nanotubes to penetrate target cells and reach both the cytoplasm and the cell nucleus. The cytotoxicity values are also in accordance with the literature, which range from 5 to 20 µg/mL. This has been found to be 10 µg/mL in this study. Although the expression levels are higher in cells that receive the pure TVC transfected using Lipofectamine(®) 2000, the nanotubes show an increase in B-cells producing antibodies.

  19. A biosensor based on Coriolopsis gallica laccase immobilized on nitrogen-doped multiwalled carbon nanotubes and graphene oxide for polyphenol detection

    PubMed Central

    Aguila, Sergio A; Shimomoto, David; Ipinza, Franscisco; Bedolla-Valdez, Zaira I; Romo-Herrera, José; Contreras, Oscar E; Farías, Mario H; Alonso-Núñez, Gabriel

    2015-01-01

    The use of nanomaterials allows the design of ultrasensitive biosensors with advantages in the detection of organic molecules. Catechol and catechin are molecules that occur naturally in fruits, and their presence in products like dyes and wines affects quality standards. In this study, catechol and catechin were measured at the nanoscale by means of cyclic voltammetry. The oxidation of Coriolopsis gallica laccase immobilized on nitrogen-doped multiwalled carbon nanotubes (Lac/CNx-MWCNT) and on graphene oxide (Lac/GO) was used to measure the concentrations of catechol and catechin. Nitrogen-doped multiwalled carbon nanotubes (CNx-MWCNT) were synthesized by spray pyrolysis and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS). Covalently bonded hybrids with laccase (Lac/CNx-MWCNT and Lac/GO) were generated. Catalytic activity of free enzymes determined with syringaldazine yielded 14 584 UmL−1. With Lac/CNx-MWCNT at concentrations of 6.4 mmol L−1 activity was 9326 U mL−1, while enzyme activity measured with Lac/GO at concentration of 6.4 mmol L−1 was 9 234 U mL−1. The Lac/CNx-MWCNT hybrid showed higher stability than Lac/GO at different ethyl alcohol concentrations. The Lac/CNx-MWCNT hybrid can measure concentrations, not previously reported, as low as 1 × 10−8 mol L−1 by measuring the electric current responses. PMID:27877839

  20. A biosensor based on Coriolopsis gallica laccase immobilized on nitrogen-doped multiwalled carbon nanotubes and graphene oxide for polyphenol detection

    NASA Astrophysics Data System (ADS)

    Aguila, Sergio A.; Shimomoto, David; Ipinza, Franscisco; Bedolla-Valdez, Zaira I.; Romo-Herrera, José; Contreras, Oscar E.; Farías, Mario H.; Alonso-Núñez, Gabriel

    2015-10-01

    The use of nanomaterials allows the design of ultrasensitive biosensors with advantages in the detection of organic molecules. Catechol and catechin are molecules that occur naturally in fruits, and their presence in products like dyes and wines affects quality standards. In this study, catechol and catechin were measured at the nanoscale by means of cyclic voltammetry. The oxidation of Coriolopsis gallica laccase immobilized on nitrogen-doped multiwalled carbon nanotubes (Lac/CNx-MWCNT) and on graphene oxide (Lac/GO) was used to measure the concentrations of catechol and catechin. Nitrogen-doped multiwalled carbon nanotubes (CNx-MWCNT) were synthesized by spray pyrolysis and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS). Covalently bonded hybrids with laccase (Lac/CNx-MWCNT and Lac/GO) were generated. Catalytic activity of free enzymes determined with syringaldazine yielded 14 584 UmL-1. With Lac/CNx-MWCNT at concentrations of 6.4 mmol L-1 activity was 9326 U mL-1, while enzyme activity measured with Lac/GO at concentration of 6.4 mmol L-1 was 9 234 U mL-1. The Lac/CNx-MWCNT hybrid showed higher stability than Lac/GO at different ethyl alcohol concentrations. The Lac/CNx-MWCNT hybrid can measure concentrations, not previously reported, as low as 1 × 10-8 mol L-1 by measuring the electric current responses.

  1. The formation of hollow poly(methyl methacrylate)/multiwalled carbon nanotube nanocomposite cylinders by microwave irradiation.

    PubMed

    Wang, Huan; Feng, Jiyun; Hu, Xijun; Ming Ng, Ka

    2009-03-04

    Poly(methyl methacrylate) (PMMA)/multiwalled carbon nanotube (MWCNT) nanocomposite particles with 1, 2 and 4 wt% of MWCNTs were prepared by mechanical grinding of PMMA and MWCNT powders in a mortar at room temperature. Both scanning electron microscopy and Raman scattering characterizations revealed that these nanocomposite particles consist of a PMMA core and a MWCNT shell. The PMMA/MWCNT nanocomposite particles were used to fabricate the corresponding nanocomposites in the form of a hollow cylinder with various diameters and heights under 700 W microwave irradiation within 1 min. A mechanism for the fast microwave assisted forming process is proposed. These experimental results may lead to a new technology for forming hollow polymeric articles that is different from the conventional injection and blowing process.

  2. Simple quantification of surface carboxylic acids on chemically oxidized multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Gong, Hyejin; Kim, Seong-Taek; Lee, Jong Doo; Yim, Sanggyu

    2013-02-01

    The surface of multi-walled carbon nanotube (MWCNT) was chemically oxidized using nitric acid and sulfuric-nitric acid mixtures. Thermogravimetric analysis, transmission electron microscopy and infrared spectroscopy revealed that the use of acid mixtures led to higher degree of oxidation. More quantitative identification of surface carboxylic acids was carried out using X-ray photoelectron spectroscopy (XPS) and acid-base titration. However, these techniques are costly and require very long analysis times to promptly respond to the extent of the reaction. We propose a much simpler method using pH measurements and pre-determined pKa value in order to estimate the concentration of carboxylic acids on the oxidized MWCNT surfaces. The results from this technique were consistent with those obtained from XPS and titration, and it is expected that this simple quantification method can provide a cheap and fast way to monitor and control the oxidation reaction of MWCNT.

  3. A novel flexible nanogenerator made of ZnO nanoparticles and multiwall carbon nanotube.

    PubMed

    Sun, Hui; Tian, He; Yang, Yi; Xie, Dan; Zhang, Yu-Chi; Liu, Xuan; Ma, Shuo; Zhao, Hai-Ming; Ren, Tian-Ling

    2013-07-07

    In this paper, a novel flexible nanogenerator (FNG) made of zinc-oxide (ZnO) nanoparticles (NPs) and multiwall-carbon nanotubes (MW-CNTs) is presented. In this structure, ZnO NPs and MW-CNTs are mixed with polydimethylsiloxane (PDMS) uniformly to form an entire flexible nanogenerator. Serial tests illustrate that the output voltage and power density are as high as 7.5 V and 18.75 μW per cycle, respectively. Furthermore, by foot stamp on the FNG, a peak voltage as high as 30 V can be generated. Comparing to the control samples, it is also proved that adding MW-CNTs into the matrix could significantly enhance the output voltage from 0.8 to 7.5 V. In summary, our work indicates that the realization of flexible nanogenerators made of ZnO NPs and MW-CNTs is technologically feasible, which may bring out some important and interesting applications in energy harvesting.

  4. Self-sensing of elastic strain, matrix yielding and plasticity in multiwall carbon nanotube/vinyl ester composites

    NASA Astrophysics Data System (ADS)

    Ku-Herrera, J. J.; Avilés, F.; Seidel, G. D.

    2013-08-01

    The piezoresistive response of multiwalled carbon nanotube/vinyl ester composites containing 0.3, 0.5 and 1% w/w carbon nanotubes (CNTs) loaded in tension and compression is investigated. The change in electrical resistance (ΔR) under tension loading was positive and showed a linear relationship with the applied strain up to failure, with slightly increased sensitivity for decreased CNT content. In compression, a nonlinear and non-monotonic piezoresistive behavior was observed, with ΔR initially decreasing in the elastic regime, leveling off at the onset of yielding and increasing after matrix yielding. The piezoresistive response of the composite is more sensitive to the CNT content for compression than for tension, and the calculated gage factors are higher in the compressive plastic regime. The results show that the piezoresistive signal is dependent on the CNT concentration, loading type and material elastoplastic behavior, and that recording ΔR during mechanical loading can allow self-identification of the elastic and plastic regimes of the composite.

  5. Relevance of octanol-water distribution measurements to the potential ecological uptake of multi-walled carbon nanotubes.

    PubMed

    Petersen, Elijah J; Huang, Qingguo; Weber, Walter J

    2010-05-01

    Many potential applications of carbon nanotubes (CNTs) require various physicochemical modifications prior to use, suggesting that nanotubes having varied properties may pose risks in ecosystems. A means for estimating bioaccumulation potentials of variously modified CNTs for incorporation in predictive fate models would be highly valuable. An approach commonly used for sparingly soluble organic contaminants, and previously suggested for use as well with carbonaceous nanomaterials, involves measurement of their octanol-water partitioning coefficient (KOW) values. To test the applicability of this approach, a methodology was developed to measure apparent octanol-water distribution behaviors for purified multi-walled carbon nanotubes and those acid treated. Substantial differences in apparent distribution coefficients between the two types of CNTs were observed, but these differences did not influence accumulation by either earthworms (Eisenia foetida) or oligochaetes (Lumbriculus variegatus), both of which showed minimal nanotube uptake for both types of nanotubes. The results suggest that traditional distribution behavior-based KOW approaches are likely not appropriate for predicting CNT bioaccumulation. Copyright (c) 2010 SETAC.

  6. An Amperometric Immunosensor Based on Multi-Walled Carbon Nanotubes-Thionine-Chitosan Nanocomposite Film for Chlorpyrifos Detection

    PubMed Central

    Sun, Xia; Cao, Yaoyao; Gong, Zhili; Wang, Xiangyou; Zhang, Yan; Gao, Jinmei

    2012-01-01

    In this work, a novel amperometric immunosensor based on multi-walled carbon nanotubes-thionine-chitosan (MWCNTs-THI-CHIT) nanocomposite film as electrode modified material was developed for the detection of chlorpyrifos residues. The nanocomposite film was dropped onto a glassy carbon electrode (GCE), and then the anti-chlorpyrifos monoclonal antibody was covalently immobilized onto the surface of MWCNTs-THI-CHIT/GCE using the crosslinking agent glutaraldehyde (GA). The modification procedure was characterized by using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Under the optimized conditions, a linear relationship between the relative change in peak current of different pulse voltammetry (DPV) and the logarithm of chlorpyrifos solution concentration was obtained in the range from 0.1 to 1.0 × 105 ng/mL with a detection limit of 0.046 ng/mL. The proposed chlorpyrifos immunosensor exhibited high reproducibility, stability, and good selectivity and regeneration, making it a potential alternative tool for ultrasensitive detection of chlorpyrifos residues in vegetables and fruits. PMID:23443396

  7. In vivo electrochemical characterization and inflammatory response of multiwalled carbon nanotube-based electrodes in rat hippocampus

    NASA Astrophysics Data System (ADS)

    Minnikanti, Saugandhika; Pereira, Marilia G. A. G.; Jaraiedi, Sanaz; Jackson, Kassandra; Costa-Neto, Claudio M.; Li, Qiliang; Peixoto, Nathalia

    2010-02-01

    Stimulating neural electrodes are required to deliver charge to an environment that presents itself as hostile. The electrodes need to maintain their electrical characteristics (charge and impedance) in vivo for a proper functioning of neural prostheses. Here we design implantable multi-walled carbon nanotubes coating for stainless steel substrate electrodes, targeted at wide frequency stimulation of deep brain structures. In well-controlled, low-frequency stimulation acute experiments, we show that multi-walled carbon nanotube electrodes maintain their charge storage capacity (CSC) and impedance in vivo. The difference in average CSCs (n = 4) between the in vivo (1.111 mC cm-2) and in vitro (1.008 mC cm-2) model was statistically insignificant (p > 0.05 or P-value = 0.715, two tailed). We also report on the transcription levels of the pro-inflammatory cytokine IL-1β and TLR2 receptor as an immediate response to low-frequency stimulation using RT-PCR. We show here that the IL-1β is part of the inflammatory response to low-frequency stimulation, but TLR2 is not significantly increased in stimulated tissue when compared to controls. The early stages of neuroinflammation due to mechanical and electrical trauma induced by implants can be better understood by detection of pro-inflammatory molecules rather than by histological studies. Tracking of such quantitative response profits from better analysis methods over several temporal and spatial scales. Our results concerning the evaluation of such inflammatory molecules revealed that transcripts for the cytokine IL-1β are upregulated in response to low-frequency stimulation, whereas no modulation was observed for TLR2. This result indicates that the early response of the brain to mechanical trauma and low-frequency stimulation activates the IL-1β signaling cascade but not that of TLR2.

  8. Kinetic and isotherm modeling of Cd (II) adsorption by L-cysteine functionalized multi-walled carbon nanotubes as adsorbent.

    PubMed

    Taghavi, Mahmoud; Zazouli, Mohammad Ali; Yousefi, Zabihollah; Akbari-adergani, Behrouz

    2015-11-01

    In this study, multi-walled carbon nanotubes were functionalized by L-cysteine to show the kinetic and isotherm modeling of Cd (II) ions onto L-cysteine functionalized multi-walled carbon nanotubes. The adsorption behavior of Cd (II) ion was studied by varying parameters including dose of L-MWCNTs, contact time, and cadmium concentration. Equilibrium adsorption isotherms and kinetics were also investigated based on Cd (II) adsorption tests. The results showed that an increase in contact time and adsorbent dosage resulted in increase of the adsorption rate. The optimum condition of the Cd (II) removal process was found at pH=7.0, 15 mg/L L-MWCNTs dosage, 6 mg/L cadmium concentration, and contact time of 60 min. The removal percent was equal to 89.56 at optimum condition. Langmuir and Freundlich models were employed to analyze the experimental data. The data showed well fitting with the Langmuir model (R2=0.994) with q max of 43.47 mg/g. Analyzing the kinetic data by the pseudo-first-order and pseudo-second-order equations revealed that the adsorption of cadmium using L-MWSNTs following the pseudo-second-order kinetic model with correlation coefficients (R2) equals to 0.998, 0.992, and 0.998 for 3, 6, and 9 mg/L Cd (II) concentrations, respectively. The experimental data fitted very well with the pseudo-second-order. Overall, treatment of polluted solution to Cd (II) by adsorption process using L-MWCNT can be considered as an effective technology.

  9. Selective Localization and Migration of Multiwalled Carbon Nanotubes in Blends of Polycarbonate and Poly(styrene-acrylonitrile).

    PubMed

    Göldel, Andreas; Kasaliwal, Gaurav; Pötschke, Petra

    2009-03-19

    Multiwalled carbon nanotubes (MWNTs) have been introduced into blends of polycarbonate (PC) and poly(styrene-acrylonitrile) (SAN) by melt mixing in a microcompounder. Co-continuous blends are prepared by either pre-compounding low amounts of nanotubes into PC or SAN or by mixing all three components together. Interestingly, in all blends, regardless of the way of introducing the nanotubes, the MWNTs were exclusively located within the PC phase, which resulted in much lower electrical resistivities as compared to PC or SAN composites with the same MWNT content. The migration of MWNTs from the SAN phase into the PC phase during common mixing is explained by interfacial effects. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Responses of soil ammonia-oxidizing microorganisms to repeated exposure of single-walled and multi-walled carbon nanotubes.

    PubMed

    Chen, Qinglin; Wang, Hui; Yang, Baoshan; He, Fei; Han, Xuemei; Song, Ziheng

    2015-02-01

    The impacts of carbon nanotubes (CNTs) including single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs) on soil microbial biomass and microbial community composition (especially on ammonium oxidizing microorganisms) have been evaluated. The first exposure of CNTs lowered the microbial biomass immediately, but the values recovered to the level of the control at the end of the experiment despite the repeated addition of CNTs. The abundance and diversity of ammonium-oxidizing archaea (AOA) were higher than that of ammonium-oxidizing bacteria (AOB) under the exposure of CNTs. The addition of CNTs decreased Shannon-Wiener diversity index of AOB and AOA. Two-way ANOVA analysis showed that CNTs had significant effects on the abundance and diversity of AOB and AOA. Dominant terminal restriction fragments (TRFs) of AOB exhibited a positive relationship with NH4(+), while AOA was on the contrary. It implied that AOB prefer for high-NH4(+) soils whereas AOA is favored in low NH4(+) soils in the CNT-contaminated soil. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Linear free energy relationships for the adsorption of volatile organic compounds onto multiwalled carbon nanotubes at different relative humidities: comparison with organoclays and activated carbon.

    PubMed

    Li, Mei-Syue; Wang, Reuben; Fu Kuo, Dave Ta; Shih, Yang-Hsin

    2017-03-22

    Accurate prediction of the sorption coefficients of volatile organic compounds (VOCs) on carbon nanotubes (CNTs) is of major importance for developing an effective VOC removal process and risk assessment of released nanomaterial-carrying contaminants. The linear free energy relationship (LFER) approach was applied to investigate the adsorption mechanisms of VOCs on multiwalled CNTs (MWCNTs). The gas-solid partition coefficients (log K d ) of 17 VOCs were determined at 0%, 55%, and 90% relative humidity (RH). The cavity/dispersion interaction is generally the most influential adsorption mechanism for all RH cases. The hydrogen-accepting interactions declined but with constant hydrogen-donating interactions during the increase of RH, suggesting that the acidity of VOC was important in forming sorptive interaction with the MWCNT surface. Moreover, the comparison of log K d of VOCs on MWCNTs and other sorbents revealed that the sorption performance of MWCNTs is much more stable over a wider range of RHs due to better site availability and site quality. Furthermore, for all 6 adsorbents in all RHs, the positive contribution of hydrogen bonding ability was found as compared to the negative one found for sorbents completely in water, indicating that the hydrogen-bond donor and acceptor on the sorbent surface contribute to the sorption in the gas phase. In conclusion, the LFER-derived coefficients can be useful in predicting the performance of VOC adsorption on adsorbents and in facilitating the design of efficient VOC removal systems.

  12. Sorption of carbamazepine by commercial graphene oxides: a comparative study with granular activated carbon and multiwalled carbon nanotubes.

    PubMed

    Cai, Nan; Larese-Casanova, Philip

    2014-07-15

    Graphene nanosheet materials represent a potentially new high surface area sorbent for the treatment of endocrine disrupting compounds (EDCs) in water. However, sorption behavior has been reported only for laboratory graphene prepared by a laborious and hazardous graphite exfoliation process. A careful examination of commercially available, clean, high-volume produced graphene materials should reveal whether they are appropriate for sorbent technologies and which physicochemical properties most influence sorption performance. In this study, three commercially available graphene oxide powders of various particle sizes, specific surface areas, and surface chemistries were evaluated for their sorption performance using carbamazepine and nine other EDCs and were compared to that of conventional granular activated carbon (GAC) and multi-walled carbon nanotubes (MWCNTs). Sorption kinetics of carbamazepine on graphene oxide powders was rapid and reversible with alcohol washing, consistent with π-π interactions. The various sorption extents as described by Freundlich isotherms were best explained by available surface area, and only the highest surface area graphene oxide (771 m(2)/g) out-performed GAC and MWCNTs. Increasing pH caused more negative surface charge, a twofold decrease in sorption of anionic ibuprofen, a onefold increase in sorption of cationic atenolol, and no change for neutral carbamazepine, highlighting the role of electrostatic interactions. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Tuning vertical alignment and field emission properties of multi-walled carbon nanotube bundles

    NASA Astrophysics Data System (ADS)

    Sreekanth, M.; Ghosh, S.; Srivastava, P.

    2018-01-01

    We report the growth of vertically aligned carbon nanotube bundles on Si substrate by thermal chemical vapor deposition technique. Vertical alignment was achieved without any carrier gas or lithography-assisted deposition. Growth has been carried out at 850 °C for different quantities of solution of xylene and ferrocene ranging from 2.25 to 3.00 ml in steps of 0.25 ml at a fixed concentration of 0.02 gm (ferrocene) per ml. To understand the growth mechanism, deposition was carried out for different concentrations of the solution by changing only the ferrocene quantity, ranging from 0.01 to 0.03 gm/ml. A tunable vertical alignment of multi-walled carbon nanotubes (CNTs) has been achieved by this process and examined by scanning and transmission electron microscopic techniques. Micro-crystalline structural analysis has been done using Raman spectroscopy. A systematic variation in field emission (FE) current density has been observed. The highest FE current density is seen for the film grown with 0.02 gm/ml concentration, which is attributed to the better alignment of CNTs, less structural disorder and less entanglement of CNTs on the surface. The alignment of CNTs has been qualitatively understood on the basis of self-assembled catalytic particles.

  14. Third Sound Generation in Superfluid 4He Films Adsorbed on Multiwall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Iaia, Vito; Menachekanian, Emin; Williams, Gary

    2014-03-01

    A technique is developed for generating third sound in superfluid 4He films coating the surface of multiwall carbon nanotubes. Third sound is a thickness and temperature wave of the helium film, and in our case we detect the temperature oscillations with a carbon resistance bolometer. The nanotubes are packed in an annular resonator that is vibrated with a mechanical shaker assembly consisting of a permanent magnet mounted on springs, and surrounded by a superconducting coil. The coil is driven with an oscillating current, vibrating the cell at that frequency. Sweeping the drive frequency over the range 100-200 Hz excites the resonant third sound mode of the cell, seen as a high-Q signal in the FFT analysis of the bolometer signal. A problem with our original cell was that the mechanical drive would also shake the dilution refrigerator cooling the cell to low temperatures, and increasing the drive would start to heat up the refrigerator and the cell, which were rigidly coupled together. A new configuration now suspends the cell as a pendulum on a string, with thermal contact made by copper wires. Piezo sensor measurements show this reduces the vibration reaching the refrigerator by two orders of magnitude, which should allow measurements at lower temperatures.

  15. Solvothermal in situ synthesis of Fe{sub 3}O{sub 4}-multi-walled carbon nanotubes with enhanced heterogeneous Fenton-like activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Jingheng; Wen, Xianghua, E-mail: xhwen@tsinghua.edu.cn; Wang, Qinian

    Graphical abstract: After purification, the multi-wall carbon nanotubes (MWCNTs) act as seeds for Fe{sub 3}O{sub 4} nanoparticles heterogeneous nucleation. The Fe{sub 3}O{sub 4} nanoparticles with diameter range of 4.2–10.0 nm synthesized in situ on the MWCNTs under solvothermal condition. The formed nano Fe{sub 3}O{sub 4}-MWCNTs decolorized the Acid Orange II effectively via Fenton-like reaction. Highlights: ► The amount of water tunes size and size distribution of the Fe{sub 3}O{sub 4} nanoparticles (FNs). ► FNs are homogeneously coated on the multi-walled carbon nanotubes (MWCNTs). ► FNs have diameters in the range of 4.2–10.0 nm, average grain size of 7.4 nm. ►more » Fe{sub 3}O{sub 4}-MWCNTs are used as a Fenton-like catalyst to decompose Acid Orange II. ► Fe{sub 3}O{sub 4}-MWCNTs displayed a higher activity than nanometer-size Fe{sub 3}O{sub 4}. -- Abstract: Fe{sub 3}O{sub 4}-multi-walled carbon nanotubes (Fe{sub 3}O{sub 4}-MWCNTs) hybrid materials were synthesized by a solvothermal process using acid treated MWCNTs and iron acetylacetonate in a mixed solution of ethylene glycol and ultrapure water. The materials were characterized using X-ray powder diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. The results showed that a small amount of water in the synthesis system played a role in controlling crystal phase formation, size of Fe{sub 3}O{sub 4}, and the homogeneous distribution of the Fe{sub 3}O{sub 4} nanoparticles deposited on the MWCNTs. The Fe{sub 3}O{sub 4} nanoparticles had diameters in the range of 4.2–10.0 nm. They displayed good superparamagnetism at room temperature and their magnetization was influenced by the reaction conditions. They were used as a Fenton-like catalyst to decompose Acid Orange II and displayed a higher activity than nanometer-size Fe{sub 3}O{sub 4}.« less

  16. The effect of different temperature profiles upon the length and crystallinity of vertically-aligned multi-walled carbon nanotubes.

    PubMed

    Yun, Jongju; Lee, Cheesung; Zheng, Qing; Baik, Seunghyun

    2012-08-01

    We synthesized vertically-aligned multi-walled carbon nanotubes with an inner diameter of 1.6-7.5 nm and stack height of 80-28600 microm by chemical vapor deposition. The effects of synthesis conditions such as substrate position in the tube furnace, maximum temperature, temperature increasing rate and synthesis duration on the structure of nanotubes were investigated. It was found that slightly faster temperature increase rate resulted in significantly longer length, larger diameter and more defects of nanotubes. Structural parameters such as inner, outer diameters, wall thickness and defects were investigated using transmission electron microscopy and Raman spectroscopy.

  17. Multiwalled carbon nanotube monoliths prepared by spark plasma sintering (SPS) and their mechanical properties.

    PubMed

    Uo, Motohiro; Hasegawa, Tomoka; Akasaka, Tsukasa; Tanaka, Isao; Munekane, Fuminori; Omori, Mamoru; Kimura, Hisamichi; Nakatomi, Reiko; Soga, Kohei; Kogo, Yasuo; Watari, Fumio

    2009-01-01

    Three types of multiwalled carbon nanotube (MWCNT) monoliths without any binders were obtained by spark plasma sintering (SPS) treatment at 2000 degrees C under 80 MPa sintering pressure. Three MWCNTs with different diameters: thin (slashed circle20-30 nm, CNT Co., Ltd., Korea), thick (slashed circle100 nm, Nano Carbon Technologies Co., Ltd., Japan) and spherical thin (slashed circle20-30 nm, granulated diameter = 1-3 microm, Shimizu Corporation, Japan) were employed for SPS. SEM observation confirmed that these materials maintained the nanosized tube microstructure of raw CNT powder after SPS treatment. The densest monolith was prepared with the spherical MWCNTs. The mechanical properties of this material were estimated by the dynamic hardness test. The elastic modulus of the monolith did not depend on the difference of MWCNTs, but the hardness of spherical MWCNTs was higher than that of thick MWCNTs. The high density and hardness of the spherical MWCNTs were caused by the high packing density during the SPS process because of its spherical granulation. Thus, the spherical MWCNTs were most useful for the MWCNT monolith preparation with the SPS process and its application as a bone substitute material and a bone tissue engineering scaffold material was suggested.

  18. Anodic stripping voltammetric determination of mercury using multi-walled carbon nanotubes film coated glassy carbon electrode.

    PubMed

    Yi, Hongchao

    2003-10-01

    An electrochemical method for the determination of trace levels of mercury based on a multi-walled carbon nanotubes (MWNT) film coated glassy carbon electrode (GCE) is described. In 0.1 mol L(-1) HCl solution containing 0.02 mol L(-1) KI, Hg(2+) was firstly preconcentrated at the MWNT film and then reduced at -0.60 V. During the anodic potential sweep, reduced mercury was oxidized, and then a sensitive and well-defined stripping peak at about -0.20 V appeared. Under identical conditions, a MWNT film coated GCE greatly enhances the stripping peak current of mercury in contrast to a bare GCE. Low concentrations of I(-) remarkably improve the determining sensitivity, since this increases the accumulation efficiency of Hg(2+) at the MWNT film coated GCE. The stripping peak current is proportional to the concentration of Hg(2+) over the range 8 x 10(-10)-5 x 10(-7) mol L(-1). The lowest detectable concentration of Hg(2+) is 2 x 10(-10) mol L(-1) at 5 min accumulation. The relative standard deviation (RSD) at 1 x 10(-8) mol L(-1) Hg(2+) was about 6% ( n=10). By using this proposed method, Hg(2+) in some water samples was determined, and the results were compared with those obtained by atomic absorption spectrometry (AAS). The two results are similar, suggesting that the MWNT-film coated GCE has great potential in practical analysis.

  19. Multi-Wall Carbon Nanotubes as Lithium Nanopipettes and SPM Probes

    NASA Astrophysics Data System (ADS)

    Larson, Jonathan; Bharath, Satyaveda; Cullen, William; Reutt-Robey, Janice

    2014-03-01

    A multi-walled carbon nanotube (MWCNT) - terminated SPM cantilever, was utilized to perform nanolithography and surface diffusion measurements on a thin film of vapor-deposited lithium atop a silicon (111) substrate under ultra-high vacuum conditions. In these investigations the MWCNT tip was shown to act as both a lithium nanopipette and a probe for non-contact atomic force microscopy (NC-AFM) measurements. With the application of appropriate bias conditions, the MWCNT could site-selectively extract (expel) nano-scale amounts of lithium from (to) the sample surface. Depressions, mounds, and spikes were generated on the surface in this way and were azimuthally symmetric about the selected point of pipetting. Following lithium transfer to/from the substrate, the MWCNT pipette-induced features were sequentially imaged with NC-AFM using the MWCNT as the probe. Vacancy pits of ca. 300 nm diameter and 1.5 nm depth were observed to decay on a timescale of hours at room temperature, through diffusion-limited decay processes. A continuum model was utilized to simulate the island decay rates, and the lithium surface diffusion coefficient of D =7.5 (+/-1.3)*10-15 cm2/s was extracted. U.S. Department of Energy Award Number DESC0001160.

  20. Long-Term Effects of Multiwalled Carbon Nanotubes and Graphene on Microbial Communities in Dry Soil.

    PubMed

    Ge, Yuan; Priester, John H; Mortimer, Monika; Chang, Chong Hyun; Ji, Zhaoxia; Schimel, Joshua P; Holden, Patricia A

    2016-04-05

    Little is known about the long-term effects of engineered carbonaceous nanomaterials (ECNMs) on soil microbial communities, especially when compared to possible effects of natural or industrial carbonaceous materials. To address these issues, we exposed dry grassland soil for 1 year to 1 mg g(-1) of either natural nanostructured material (biochar), industrial carbon black, three types of multiwalled carbon nanotubes (MWCNTs), or graphene. Soil microbial biomass was assessed by substrate induced respiration and by extractable DNA. Bacterial and fungal communities were examined by terminal restriction fragment length polymorphism (T-RFLP). Microbial activity was assessed by soil basal respiration. At day 0, there was no treatment effect on soil DNA or T-RFLP profiles, indicating negligible interference between the amended materials and the methods for DNA extraction, quantification, and community analysis. After a 1-year exposure, compared to the no amendment control, some treatments reduced soil DNA (e.g., biochar, all three MWCNT types, and graphene; P < 0.05) and altered bacterial communities (e.g., biochar, carbon black, narrow MWCNTs, and graphene); however, there were no significant differences across the amended treatments. These findings suggest that ECNMs may moderately affect dry soil microbial communities but that the effects are similar to those from natural and industrial carbonaceous materials, even after 1-year exposure.

  1. Substituted copper phthalocyanine/multiwalled carbon nanotubes hybrid material for Cl{sub 2} sensing application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Anshul Kumar, E-mail: dramanmahajan@yahoo.co.in; Saini, Rajan, E-mail: dramanmahajan@yahoo.co.in; Singh, Rajinder, E-mail: dramanmahajan@yahoo.co.in

    2014-04-24

    In this work, hybrid of soluble copper phthalocyanine (CuPcOC{sub 8}) and functionalized multi-walled carbon nanotubes (MWCNTs) has been synthesized. The formation of CuPcOC{sub 8}-MWCNTs hybrid is confirmed by atomic force microscopy, UV-Visible and FTIR spectroscopy. Subsequently, a chemi-resistive sensor is fabricated by drop casting CuPcOC{sub 8}-MWCNTs hybrid onto glass substrate. It has been demonstrated that CuPcOC{sub 8}-MWCNTs hybrid is highly selective towards Cl{sub 2} gas with minimum detection limit of 100 ppb. The response of sensor increases linearly with increase in the concentration of Cl{sub 2} gas. For 2000 ppb of Cl{sub 2}, CuPcOC{sub 8}-MWCNTs hybrid gives a response asmore » large as 53% in 40 seconds.« less

  2. High loading of uniformly dispersed Pt nanoparticles on polydopamine coated carbon nanotubes and its application in simultaneous determination of dopamine and uric acid

    NASA Astrophysics Data System (ADS)

    Lin, Mouhong; Huang, Haoliang; Liu, Yingju; Liang, Canjian; Fei, Shidong; Chen, Xiaofen; Ni, Chunlin

    2013-02-01

    Multiwalled carbon nanotubes (MWCNT) were homogeneously covered with a bio-functional polydopamine (PDOP) by a simple dip-coating approach in mild basic solution. Then, uniformly dispersed and highly loaded platinum nanoparticles (PtNPs) were deposited on MWCNT@PDOP by a mild reductant, and were characterized by transmission electron microscopy and x-ray photoelectron spectroscopy. Afterwards, this nanocomposite was modified on the glass carbon electrode and applied to simultaneously determine dopamine (DA) and uric acid (UA) by differential pulse voltammetry (DPV). Results showed that a linear electro-oxidation response was found for DA and UA in the range of 0.25-20 μM and 0.3-13 μM with the detection limit (S/N = 3) of 0.08 μM and 0.12 μM, respectively. In addition, the detection sensitivities for DA and UA by DPV were 1.03 μA μM-1 and 2.09 μA μM-1, respectively, which were much higher than those from a cyclic voltammogram. Finally, the reproducibility and stability of the nanocomposite were also evaluated, demonstrating that such MWCNT@PDOP@PtNPs can be a promising candidate for advanced electrode material in electrochemical sensing and other electrocatalytic applications.

  3. Electrochemical determination of estrogenic compound bisphenol F in food packaging using carboxyl functionalized multi-walled carbon nanotubes modified glassy carbon electrode.

    PubMed

    Wang, Xin; Yang, Lijun; Jin, Xudong; Zhang, Lei

    2014-08-15

    A simple and highly sensitive electroanalytical method for the determination of bisphenol F (BPF) was developed, which was carried out on multi-walled carbon nanotubes-COOH (MWCNT-COOH) modified glassy carbon electrode (GCE) using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results showed that MWCNT-COOH remarkably enhanced the oxidation of BPF, which improved the anodic peak current of BPF significantly. The mechanism was oxidation of BPF lose electrons on the electrode surface via adsorption-controlled process, electrode reaction is the two electrons/two protons process. Under the optimised conditions, the oxidation peak current was proportional to BPF concentration the range from 0.12 to 6.01 μg mL(-1). The detection limit was 0.11 μg mL(-1) (S/N=3), and the relative standard deviation (R.S.D.) was 3.5% (n=9). Moreover, the MWCNT-COOH/GCE electrode showed good reproducibility, stability and anti-interference. Therefore, the proposed method was successfully applied to determine BPF in food packing and the results were satisfactory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. FTIR spectroscopy of multiwalled carbon nanotubes: a simple approach to study the nitrogen doping.

    PubMed

    Misra, Abha; Tyagi, Pawan K; Rai, Padmnabh; Misra, D S

    2007-06-01

    The nitrogen doped multiwalled carbon nanotubes (MWNTs) were synthesized by microwave plasma chemical vapor deposition (MPCVD) technique. In this paper, we report the results of FTIR, Raman, and TGA studies to confirm the presence of N-doping inside carbon nanotubes. Fourier transform infrared (FTIR) studies were carried out in the range 400-4000 cm(-1) to study the attachment of nitrogen impurities on carbon nanotubes. FTIR spectra of the virgin sample of MWNTs show dominant peaks which are corresponding to Si-O, C-N, N-CH3, CNT, C-O, and C-Hx, respectively. The Si-O peak has its origin in silicon substrate whereas the other peaks are due to the precursor gases present in the gas mixture. The peaks are sharp and highly intense showing the chemisorption nature of the dipole bond. The intensity of the peaks due to N-CH3, C-N, and C-H reduces after annealing. It is interesting to note that these peaks vanish on annealing at high temperature (900 degrees C). The presence of C-N peak may imply the doping of the MWNTs with N in substitution mode. The position of this intense peak is in agreement with the reported peak in carbon nitride samples prepared by plasma CVD process, since the Raman modes are also expected to be delocalized over both carbon and nitrogen sites it was found that the intensity ratio of the D and G peaks, I(D)/I(G), varies as a function of ammonia concentration. The TGA measurements, carried out under argon flow, show that the dominant weight loss of the sample occurs in the temperature range 400-600 degrees C corresponding to the removal of the impurities and amorphous carbon.

  5. Fabrication of free-standing aligned multiwalled carbon nanotube array for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Bulusheva, L. G.; Arkhipov, V. E.; Fedorovskaya, E. O.; Zhang, Su; Kurenya, A. G.; Kanygin, M. A.; Asanov, I. P.; Tsygankova, A. R.; Chen, Xiaohong; Song, Huaihe; Okotrub, A. V.

    2016-04-01

    We show that a high-temperature CCl4 vapor treatment of vertically aligned multiwalled carbon nanotubes (VA-MWCNTs) grown on silicon substrate allows carefully detach the array from the substrate. Moreover, this procedure partially purifies the VA-MWCNTs from the residual iron catalyst. To improve electrical connectivity of free-standing VA-MWCNTs in an electrochemical cell, the array was placed between the layers of Ni foam. Such assembly demonstrated the better performance in Li-battery as compared to the disordered MWCNTs. After 50 cycles, the specific capacity of VA-MWCNT array synthesized from 0.5 wt% ferrocene solution in toluene was 350 mAh g-1 at a current density of 0.1 A g-1, while the battery with the disordered MWCNTs achieved 197 mAh g-1 only. By the results of electrochemical impedance spectroscopy, the higher capacity of VA-MWCNTs was attributed to larger surface area available for electrolyte and Li ions due to the absence of binder coating.

  6. Rheological and mechanical properties of polypropylene prepared with multi-walled carbon nanotube masterbatch.

    PubMed

    Shim, Young-Sun; Park, Soo-Jin

    2012-07-01

    In this study, the effects of polypropylene-grafted maleic-anhydride-treated multi-walled carbon nanotubes (PP-MWNTs) on the viscoelastic behaviors and mechanical properties of a polypropylene-(PP)-based composite system were examined. The PP-MWNT/PP composites were prepared via melt mixing with a 3:1 ratio of PP-g-MA and acid-treated MWNTs at 220 degrees C. The surface characteristics of the PP-MWNTs were confirmed via Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM). The viscoelastic behavior and mechanical properties of the PP-MWNT/PP composites were confirmed using a rheometer and an ultimate testing machine (UTM). The storage and loss moduli increased with increasing PP-MWNT content. The critical intensity stress factor (K(IC)) of the PP-MWNT/PP composites at high filler loading was also higher than that of the MWNT/PP composites. In conclusion, the viscoelastic behavior and mechanical properties of MWNT/PP can be improved by grafting MWNTs to PP-g-MA.

  7. Development of multi-walled carbon nanotubes reinforced monetite bionanocomposite cements for orthopedic applications.

    PubMed

    Boroujeni, Nariman Mansoori; Zhou, Huan; Luchini, Timothy J F; Bhaduri, Sarit B

    2013-10-01

    In this study, we present results of our research on biodegradable monetite (DCPA, CaHPO4) cement with surface-modified multi-walled carbon nanotubes (mMWCNTs) as potential bone defect repair material. The cement pastes showed desirable handling properties and possessed a suitable setting time for use in surgical setting. The incorporation of mMWCNTs shortened the setting time of DCPA and increased the compressive strength of DCPA cement from 11.09±1.85 MPa to 21.56±2.47 MPa. The cytocompatibility of the materials was investigated in vitro using the preosteoblast cell line MC3T3-E1. An increase of cell numbers was observed on both DCPA and DCPA-mMWCNTs. Scanning electron microscopy (SEM) results also revealed an obvious cell growth on the surface of the cements. Based on these results, DCPA-mMWCNTs composite cements can be considered as potential bone defect repair materials. © 2013.

  8. The construction of glucose biosensor based on platinum nanoclusters-multiwalled carbon nanotubes nanocomposites.

    PubMed

    Wang, Cheng Yan; Tan, Xing Rong; Chen, Shi Hong; Hu, Fang Xin; Zhong, Hua An; Zhang, Yu

    2012-02-01

    One-step synthesis method was proposed to obtain the nanocomposites of platinum nanoclusters and multiwalled carbon nanotubes (PtNCs-MWNTs), which were used as a novel immobilization matrix for the enzyme to fabricate glucose biosensor. The fabrication process of the biosensor was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, atomic force microscopy and scanning electron microscope. Due to the favorable characteristic of PtNCs-MWNTs nanocomposites, the biosensor exhibited good characteristics, such as wide linear range (3.0 μM-12.1 mM), low detection limit (1.0 μM), high sensitivity (12.8 μA mM⁻¹), rapid response time (within 6 s). The apparent Michaelis-Menten constant (K(app)(m)) is 2.1 mM. The performance of the resulting biosensor is more prominent than that of most of the reported glucose biosensors. Furthermore, it was demonstrated that this biosensor can be used for the assay of glucose in human serum samples.

  9. A very low potential electrochemical detection of L-cysteine based on a glassy carbon electrode modified with multi-walled carbon nanotubes/gold nanorods.

    PubMed

    Silva, Francisco de Assis dos Santos; da Silva, Monique Gabriella Angelo; Lima, Phabyanno Rodrigues; Meneghetti, Mario Roberto; Kubota, Lauro Tatsuo; Goulart, Marilia Oliveira Fonseca

    2013-12-15

    A nanohybrid platform built with multi-walled carbon nanotubes and gold nanorods, prepared via a cationic surfactant-containing seed-mediated sequential growth process, in aqueous solution, on a glassy carbon substrate has been successfully developed to be used in the electrocatalytic oxidation of L-cysteine (Cys). The nanohybrid was characterized by transmission electron microscopy, Raman spectroscopy and electrochemical measurements. Cyclic voltammetry results had shown that the modified electrode allows the oxidation of Cys at a very low anodic potential (0.00 V vs. Ag/AgCl). The kinetic constant kcat for the catalytic oxidation of Cys was evaluated by chronoamperometry and provided a value of 5.6×10(4) L mol(-1) s(-1). The sensor presents a linear response range from 5.0 up to 200.0 µmol L(-1), detection limit of 8.25 nmol L(-1) and a sensitivity of 120 nA L µmol(-1). Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Ice Nucleation Properties of Oxidized Carbon Nanomaterials

    PubMed Central

    2015-01-01

    Heterogeneous ice nucleation is an important process in many fields, particularly atmospheric science, but is still poorly understood. All known inorganic ice nucleating particles are relatively large in size and tend to be hydrophilic. Hence it is not obvious that carbon nanomaterials should nucleate ice. However, in this paper we show that four different readily water-dispersible carbon nanomaterials are capable of nucleating ice. The tested materials were carboxylated graphene nanoflakes, graphene oxide, oxidized single walled carbon nanotubes and oxidized multiwalled carbon nanotubes. The carboxylated graphene nanoflakes have a diameter of ∼30 nm and are among the smallest entities observed so far to nucleate ice. Overall, carbon nanotubes were found to nucleate ice more efficiently than flat graphene species, and less oxidized materials nucleated ice more efficiently than more oxidized species. These well-defined carbon nanomaterials may pave the way to bridging the gap between experimental and computational studies of ice nucleation. PMID:26267196

  11. Health surveillance study of workers who manufacture multi-walled carbon nanotubes.

    PubMed

    Lee, Jong Seong; Choi, Young Chul; Shin, Jae Hoon; Lee, Ji Hyun; Lee, Yurim; Park, So Young; Baek, Jin Ee; Park, Jung Duck; Ahn, Kangho; Yu, Il Je

    2015-01-01

    While many in vivo and in vitro toxicology studies of multi-walled carbon nanotubes (MWCNTs) have already indicated that exposure to MWCNTs can potentially induce health effects in humans, the actual health effects of MWCNTs among exposed workers are not yet known. Moreover, the levels of exposure and internal doses of MWCNTs are becoming more and more important for estimating the health effects resulting from exposure to MWCNTs. However, information on biomonitoring and exposure to MWCNTs remains limited. Therefore, the authors conducted a health surveillance study in a workplace that manufactures MWCNTs, including assessment of the personal and area exposure levels to MWCNTs, a walk-through evaluation of the manufacturing process, and collection of blood and exhaled breath condensates (EBCs) from the MWCNT manufacturing and office workers. In addition, a pulmonary function test was also conducted on the MWCNT manufacturing workers (9) and office workers (4). The worker exposure to elemental carbon was found to be 6.2-9.3 μg/m(3) in the personal samplings and 5.5-7.3 μg/m(3) in the area samplings. Notwithstanding, the workers exhibited a normal range of hematology and blood biochemistry values and normal lung function parameters. When analyzing the EBCs, the malondialdehyde (MDA), 4-hydroxy-2-hexenal (4-HHE) and n-hexanal levels in the MWCNT manufacturing workers were significantly higher than those in the office workers. The MDA and n-hexanal levels were also significantly correlated with the blood molybdenum concentration, suggesting MDA, n-hexanal and molybdenum as useful biomarkers of MWCNT exposure.

  12. Structural, thermal and electrical characterizations of multiwalled carbon nanotubes and polyaniline composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Kamal, E-mail: singhkamal204@gmail.com; Garg, Leena; Singh, Jaspal

    2016-05-06

    The undoped and doped composite of MWNTs (Multiwalled Carbon Nanotubes) with PANI (/Polyaniline) was prepared by chemical oxidative polymerization. The MWNTs/PANI composites have been characterized by using various techniques like Thermogravometric Analysis (TGA), Fourier transform infrared (FT-IR) spectrometer and Field emission scanning electron microscope (FE-SEM) and conductivity measurement by using two probe method. TGA results has shown that thermal stability followed the pattern undoped MWNTs/PANI composite < doped MWNTs/PANI composite. FE-SEM micrographs demonstrated the morphological changes on the surface of MWNTs as a result of composite formation. Fourier transformed infrared (FT-IR) spectra ascertained the formation of the composite. Study ofmore » electrical characteristics demonstrated that the doped MWNTs/PANI composite (1.2 × 10{sup 1} Scm{sup −1}) have better conductivity than the undoped MWNTs/PANI composite (10{sup −4} Scm{sup −1}). These CNTs based polymeric composites are of great importance in developing new nano-scale devices for future chemical, mechanical and electronic applications.« less

  13. Multi-walled carbon nanotubes suppress potassium channel activities in PC12 cells

    NASA Astrophysics Data System (ADS)

    Xu, Haifei; Bai, Juan; Meng, Jie; Hao, Wei; Xu, Haiyan; Cao, Ji-Min

    2009-07-01

    The advancement in nanotechnology has produced technological and conceptual breakthroughs but the effects nanomaterials have on organisms at the cellular level are poorly understood. Here we report that carboxyl-terminated multi-walled carbon nanotubes (MWCNTs) act as antagonists of three types of potassium channels as assessed by whole-cell patch clamp electrophysiology on undifferentiated pheochromocytoma (PC12) cells. Our results showed that carboxyl-terminated MWCNTs suppress the current densities of Ito, IK and IK1 in a time-dependent and irreversible manner. The suppressions were most distinct 24 h after incubation with MWCNTs. However, MWCNTs did not significantly change the expression levels of reactive oxygen species (ROS) or intracellular free calcium and also did not alter the mitochondrial membrane potential (ΔΨm) in PC12 cells. These results suggest that oxidative stress was not involved in the MWCNTs suppression of Ito, IK and IK1 current densities. Nonetheless, the suppression of potassium currents by MWCNTs will impact on electrical signaling of excitable cells such as neurons and muscles.

  14. Enhanced water vapor separation by temperature-controlled aligned-multiwalled carbon nanotube membranes.

    PubMed

    Jeon, Wonjae; Yun, Jongju; Khan, Fakhre Alam; Baik, Seunghyun

    2015-09-14

    Here we present a new strategy of selectively rejecting water vapor while allowing fast transport of dry gases using temperature-controlled aligned-multiwalled carbon nanotubes (aligned-MWNTs). The mechanism is based on the water vapor condensation at the entry region of nanotubes followed by removing aggregated water droplets at the tip of the superhydrophobic aligned-MWNTs. The first condensation step could be dramatically enhanced by decreasing the nanotube temperature. The permeate-side relative humidity was as low as ∼17% and the helium-water vapor separation factor was as high as 4.62 when a helium-water vapor mixture with a relative humidity of 100% was supplied to the aligned-MWNTs. The flow through the interstitial space of the aligned-MWNTs allowed the permeability of single dry gases an order of magnitude higher than the Knudsen prediction regardless of membrane temperature. The water vapor separation performance of hydrophobic polytetrafluoroethylene membranes could also be significantly enhanced at low temperatures. This work combines the membrane-based separation technology with temperature control to enhance water vapor separation performance.

  15. Decorating multi-walled carbon nanotubes with quantum dots for construction of multi-color fluorescent nanoprobes.

    PubMed

    Jia, Nengqin; Lian, Qiong; Tian, Zhong; Duan, Xin; Yin, Min; Jing, Lihong; Chen, Shouhui; Shen, Hebai; Gao, Mingyuan

    2010-01-29

    Novel multi-color fluorescent nanoprobes were prepared by electrostatically assembling differently sized CdTe quantum dots on polyethylenimine (PEI) functionalized multi-walled carbon nanotubes (MWNTs). The structural and optical properties of the nano-assemblies (MWNTs-PEI-CdTe) were characterized by transmission electron microscopy (TEM), electron diffraction spectra (EDS), Raman spectroscopy, confocal microscopy and photoluminescence spectroscopy (PL), respectively. Electrochemical impedance spectroscopy (EIS) was also applied to investigate the electrostatic assembling among oxidized MWNTs, PEI and CdTe. Furthermore, confocal fluorescence microscopy was used to monitor the nano-assemblies' delivery into tumor cells. It was found that the nano-assemblies exhibit efficient intracellular transporting and strong intracellular tracking. These properties would make this luminescent nano-assembly an excellent building block for the construction of intracellular nanoprobes, which could hold great promise for biomedical applications.

  16. Anchoring alpha-manganese oxide nanocrystallites on multi-walled carbon nanotubes as electrode materials for supercapacitor

    NASA Astrophysics Data System (ADS)

    Li, Li; Qin, Zong-Yi; Wang, Ling-Feng; Liu, Hong-Jin; Zhu, Mei-Fang

    2010-09-01

    The partial coverage of manganese oxide (MnO2) particles was achieved on the surfaces of multi-walled carbon nanotubes (MWCNTs) through a facile hydrothermal process. These particles were demonstrated to be alpha-manganese dioxide (α-MnO2) nanocrystallites, and exhibited the appearance of the whisker-shaped crystals with the length of 80-100 nm. In such a configuration, the uncovered CNTs in the nanocomposite acted as a good conductive pathway and the whisker-shaped MnO2 nanocrystallites efficiently increased the contact of the electrolyte with the active materials. Thus, the highest specific capacitance of 550 F g-1 was achieved using the resulting nanocomposites as the supercapacitor electrode. In addition, the enhancement of the capacity retention was observed, with the nanocomposite losing only 10% of the maximum capacity after 1,500 cycles.

  17. Analysis of polyphenols in white wine by CZE with amperometric detection using carbon nanotube-modified electrodes.

    PubMed

    Moreno, Mónica; Arribas, Alberto Sánchez; Bermejo, Esperanza; Zapardiel, Antonio; Chicharro, Manuel

    2011-04-01

    A method for the simultaneous detection of five polyphenols (caffeic, chlorogenic, ferulic and gallic acids and (+)-catechin) by CZE with electrochemical detection was developed. Separation of these polyphenols was performed in a 100 mM borate buffer (pH 9.2) within 15 min. Under optimized separation conditions, the performance of glassy carbon (GC) electrodes modified with multiwalled carbon nanotube layer obtained from different dispersions was examined. GC electrode modified with a dispersion of multi-walled carbon nanotubes (CNT) in polyethylenimine has proven to be the most suitable CNT-based electrode for its application as amperometric detector for the CZE separation of the studied compounds. The excellent electrochemical properties of this electrode allowed the detection of the selected polyphenols at +200 mV and improved the efficiency and the resolution of their CZE separation. Limits of detection below 3.1 μM were obtained with linear ranges covering the 10⁻⁵ to 10⁻⁴  M range. The proposed method has been successfully applied for the detection (ferulic, caffeic and gallic acids and (+)-catechin) and the quantification (gallic acid and (+)-catechin) of polyphenols in two different white wines without any preconcentration step. A remarkable signal stability was observed on the electrode performance despite the presence of potential fouling substances in wine. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. An amperometric hydrogen peroxide biosensor based on Co3O4 nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode

    NASA Astrophysics Data System (ADS)

    Kaçar, Ceren; Dalkiran, Berna; Erden, Pınar Esra; Kiliç, Esma

    2014-08-01

    In this work a new type of hydrogen peroxide biosensor was fabricated based on the immobilization of horseradish peroxidase (HRP) by cross-linking on a glassy carbon electrode (GCE) modified with Co3O4 nanoparticles, multiwall carbon nanotubes (MWCNTs) and gelatin. The introduction of MWCNTs and Co3O4 nanoparticles not only enhanced the surface area of the modified electrode for enzyme immobilization but also facilitated the electron transfer rate, resulting in a high sensitivity of the biosensor. The fabrication process of the sensing surface was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Amperometric detection of hydrogen peroxide was investigated by holding the modified electrode at -0.30 V (vs. Ag/AgCl). The biosensor showed optimum response within 5 s at pH 7.0. The optimized biosensor showed linear response range of 7.4 × 10-7-1.9 × 10-5 M with a detection limit of 7.4 × 10-7. The applicability of the purposed biosensor was tested by detecting hydrogen peroxide in disinfector samples. The average recovery was calculated as 100.78 ± 0.89.

  19. Retention of 14C-labeled multiwall carbon nanotubes by humic acid and polymers: Roles of macromolecule properties

    PubMed Central

    Zhao, Qing; Petersen, Elijah J.; Cornelis, Geert; Wang, Xilong; Guo, Xiaoying; Tao, Shu; Xing, Baoshan

    2016-01-01

    Developing methods to measure interactions of carbon nanotubes (CNTs) with soils and sediments and understanding the impact of soil and sediment properties on CNT deposition are essential for assessing CNT environmental risks. In this study, we utilized functionalized carbon-14 labeled nanotubes to systematically investigate retention of multiwall CNTs (MWCNTs) by 3 humic acids, 3 natural biopolymers, and 10 model solid-phase polymers, collectively termed macromolecules. Surface properties, rather than bulk properties of macromolecules, greatly influenced MWCNT retention. As shown via multiple linear regression analysis and path analysis, aromaticity and surface polarity were the two most positive factors for retention, suggesting retention was regulated by π-π stacking and hydrogen bonding interactions. Moreover, MWCNT deposition was irreversible. These observations may explain the high retention of MWCNT in natural soils. Moreover, our findings on the relative contribution of each macromolecule property on CNT retention provide information on macromolecule selection for removal of MWCNTs from wastewater and provide a method for measuring CNT interactions with organic macromolecules. PMID:27458320

  20. Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes

    PubMed Central

    Abdel-Ghani, Nour T.; El-Chaghaby, Ghadir A.; Helal, Farag S.

    2014-01-01

    Individual and competitive adsorption studies were carried out to investigate the removal of phenol and nickel ions by adsorption onto multiwalled carbon nanotubes (MWCNTs). The carbon nanotubes were characterized by different techniques such as X-ray diffraction, scanning electron microscopy, thermal analysis and Fourier transformation infrared spectroscopy. The different experimental conditions affecting the adsorption process were investigated. Kinetics and equilibrium models were tested for fitting the adsorption experimental data. The characterization experimental results proved that the studied adsorbent possess different surface functional groups as well as typical morphological features. The batch experiments revealed that 300 min of contact time was enough to achieve equilibrium for the adsorption of both phenol and nickel at an initial adsorbate concentration of 25 mg/l, an adsorbent dosage of 5 g/l, and a solution pH of 7. The adsorption of phenol and nickel by MWCNTs followed the pseudo-second order kinetic model and the intraparticle diffusion model was quite good in describing the adsorption mechanism. The Langmuir equilibrium model fitted well the experimental data indicating the homogeneity of the adsorbent surface sites. The maximum Langmuir adsorption capacities were found to be 32.23 and 6.09 mg/g, for phenol and Ni ions, respectively. The removal efficiency of MWCNTs for nickel ions or phenol in real wastewater samples at the optimum conditions reached up to 60% and 70%, respectively. PMID:26257938