GROA AIRBORNE RELEASE DISPERSION FACTOR CALCULATION
J. Wang
2005-03-21
The purpose of this document is to calculate airborne release dispersion factors ({chi}/Q) for the surface and subsurface facilities at the Geological Repository Operations Area (GROA). The calculated {chi}/Q values may be used to estimate radiological consequences to workers for potential releases from normal operations and event sequences for License Application. The scope of this document is to provide estimates of {chi}/Q values at potential onsite receptors from facility releases, under normal operating conditions and event sequences.
DISPERSION TOLERANCE CALCULATION FOR NSLS-II.
LIN,F.; GUO, W.
2007-06-25
In this paper we discuss the effect on the emittance of the residual dispersion in the insertion devices. The dispersion in the straights could be generated by the lattice error, trim dipole, and insertion device. The effect on the emittance is examined, and the dispersion tolerances are given for the NSLS-11.
Final disposal room structural response calculations
Stone, C.M.
1997-08-01
Finite element calculations have been performed to determine the structural response of waste-filled disposal rooms at the WIPP for a period of 10,000 years after emplacement of the waste. The calculations were performed to generate the porosity surface data for the final set of compliance calculations. The most recent reference data for the stratigraphy, waste characterization, gas generation potential, and nonlinear material response have been brought together for this final set of calculations.
Calculations of precursor propagation in dispersive dielectrics.
Bacon, Larry Donald
2003-08-01
The present study is a numerical investigation of the propagation of electromagnetic transients in dispersive media. It considers propagation in water using Debye and composite Rocard-Powles-Lorentz models for the complex permittivity. The study addresses this question: For practical transmitted spectra, does precursor propagation provide any features that can be used to advantage over conventional signal propagation in models of dispersive media of interest? A companion experimental study is currently in progress that will attempt to measure the effects studied here.
SOLVENT DISPERSION AND FLOW METER CALCULATION RESULTS
Nash, C.; Fondeur, F.; Peters, T.
2013-06-21
Savannah River National Laboratory (SRNL) found that the dispersion numbers for the six combinations of CSSX:Next Generation Solvent (NGS) “blend” and pure NGS versus salt solution, caustic wash, and strip aqueous solutions are all good. The dispersion numbers are indications of processability with centrifugal contactors. A comparison of solvent physical and thermal properties shows that the Intek™ solvent flow meter in the plant has a reading biased high versus calibrated flow when NGS is used, versus the standard CSSX solvent. The flow meter, calibrated for CSSX solvent, is predicted to read 2.8 gpm of NGS in a case where the true flow of NGS is 2.16 gpm.
Calculating the Phonon Dispersion From First Principles
NASA Astrophysics Data System (ADS)
Ceballos, Frank; O'Hara, Andy; Slepko, Alexander; Demkov, Alexander
2011-10-01
The goal of this project was to construct a user-friendly tool that can compute the phonon dispersion for any solid with a periodic crystal structure. The phonon dispersion describes the crystal's vibrational properties and thermodynamic properties of the solid. Using the Vienna Ab-initio Simulation Package (VASP) we compute the forces between the atoms. Assuming harmonic approximation we numerically evaluate force constant matrix. The lattice Fourier transform of the force constants yields the dynamical matrix, whose eigenvalues and eigenvectors represent the allowed phonon frequencies and displacement patterns for specific k-vectors. Our code then plots the frequencies along high symmetry lines in the Brillouin zone. We will present our results for silicon, GaAs and ZrO2.
Confined zone dispersion project. Final technical report
1994-06-01
This report describes the performance of the confined zone dispersion (CZD) flue gas desulfurization (FGD) system in removing sulfur dioxide (SO{sub 2}) from flue gas in the coal-fired boiler. The CZD-FGD system, installed at Pennsylvania Electric Company`s (Penelec`s) Seward Power Station, was designed to remove 50% of the SO{sub 2} from one-half of Unit No. 5`s flue gas when the boiler is fired with 1.5% sulfur coal. Section 1 discusses the significance of CZD, the purpose of this report, the history of the project, and the role of DOE in the project, describes the project organization, and lists the six design areas involving proprietary information. Section 2 presents project location, objectives, and phases, and discusses the test program. Section 3 explains the process flow diagram, piping and instrumentation diagrams and operating controls, site plan, equipment layouts, and process equipment. Section 4 provides an integrated discussion of all the test results obtained during the test program, backed by tabulations and graphics. Section 5 describes the testing failures and corrective actions taken. Section 6, reliability/availability/maintainability analysis data of major equipment, covers the following systems: atomizing, sootblowing, lime, flue gas, and controls and instrumentation. Section 7 summarizes the capital cost requirements for the Seward CZD demonstration unit and discusses the capital and operating costs of installing the process at plants with various unit capacities. Section 8 discusses plans to continue the CZD demonstration to achieve longer term continuous operation at SO{sub 2} removals of 50%. Section 9 presents the principal findings of the CZD demonstration and recommends additional testing.
Dispersion-corrected DFT calculations on C(60)-porphyrin complexes.
Liao, Meng-Sheng; Watts, John D; Huang, Ming-Ju
2009-06-07
The quality of the newly added, empirical dispersion correction in density functional theory (DFT) calculations is examined for several supramolecular complexes of fullerene (C(60)) with free-base and metal porphyrins (Por). The benzene dimer (C(6)H(6))(2), naphthalene dimer (C(10)H(8))(2), and anthracene dimer (C(14)H(10))(2) were also included in the study for comparison. Three density functionals, two damping functions, and two types of basis sets were employed in the computations. The estimated dispersion energies in the fullerene-porphyrin systems are rather large, ranging from 0.5 eV in C(60).ZnP to 1 eV in C(60).H(2)TPP. Any dispersion-corrected DFT (DFT + E(disp)) method is shown to perform well for C(60).H(2)TPP, C(60).ZnTPP, and C(60).ZnP, where the intermolecular distances are relatively large. But large basis sets, e.g. TZP (triple-zeta + one polarization function), are required in order to obtain reliable results with DFT + E(disp). In the case of C(60).FeP, where the intermolecular distance R is short, the DFT + E(disp) calculated R depends on the damping function as well as on the DFT method, and all the DFT + E(disp) calculations lead to significant changes in the relative energies of the various spin states. The quality of the DFT + E(disp) calculated results on C(60).FeP is hard to judge here without detailed experimental data on a C(60).FePor complex. Owing to error cancellation, the pure DFT calculations with a smaller DZP (double-zeta + one polarization function) basis set without any correction are shown to give quite accurate results.
Calculation of phonon dispersion relation using new correlation functional
NASA Astrophysics Data System (ADS)
Jitropas, Ukrit; Hsu, Chung-Hao
2017-06-01
To extend the use of Local Density Approximation (LDA), a new analytical correlation functional is introduced. Correlation energy is an essential ingredient within density functional theory and used to determine ground state energy and other properties including phonon dispersion relation. Except for high and low density limit, the general expression of correlation energy is unknown. The approximation approach is therefore required. The accuracy of the modelling system depends on the quality of correlation energy approximation. Typical correlation functionals used in LDA such as Vosko-Wilk-Nusair (VWN) and Perdew-Wang (PW) were obtained from parameterizing the near-exact quantum Monte Carlo data of Ceperley and Alder. These functionals are presented in complex form and inconvenient to implement. Alternatively, the latest published formula of Chachiyo correlation functional provides a comparable result for those much more complicated functionals. In addition, it provides more predictive power based on the first principle approach, not fitting functionals. Nevertheless, the performance of Chachiyo formula for calculating phonon dispersion relation (a key to the thermal properties of materials) has not been tested yet. Here, the implementation of new correlation functional to calculate phonon dispersion relation is initiated. The accuracy and its validity will be explored.
Substructure Versus Property-Level Dispersed Modes Calculation
NASA Technical Reports Server (NTRS)
Stewart, Eric C.; Peck, Jeff A.; Bush, T. Jason; Fulcher, Clay W.
2016-01-01
This paper calculates the effect of perturbed finite element mass and stiffness values on the eigenvectors and eigenvalues of the finite element model. The structure is perturbed in two ways: at the "subelement" level and at the material property level. In the subelement eigenvalue uncertainty analysis the mass and stiffness of each subelement is perturbed by a factor before being assembled into the global matrices. In the property-level eigenvalue uncertainty analysis all material density and stiffness parameters of the structure are perturbed modified prior to the eigenvalue analysis. The eigenvalue and eigenvector dispersions of each analysis (subelement and property-level) are also calculated using an analytical sensitivity approximation. Two structural models are used to compare these methods: a cantilevered beam model, and a model of the Space Launch System. For each structural model it is shown how well the analytical sensitivity modes approximate the exact modes when the uncertainties are applied at the subelement level and at the property level.
Monte Carlo calculations of the microstructure of barium ferrite dispersions
NASA Astrophysics Data System (ADS)
Walmsley, N. S.; Coverdale, G. N.; Chantrell, R. W.; Parker, D. A.; Bissell, P. R.
1998-07-01
A Monte Carlo (MC) model has been developed to investigate the influences of the volume packing fraction and applied field on the equilibrium microstructure of a dispersion of barium ferrite particles. We accounted for magnetostatic interaction effects by using a surface charge model which allows the calculation of the energy term required for the Metropolis-type MC algorithm. In addition to single particle moves, the model employs a clustering algorithm, based on particle proximity, in order to take into account the cooperative behaviour of the particles bound by magnetostatic energy. The stacks which are thought to be characteristic of barium ferrite systems are an example of this type of binding. Our study provides strong evidence, in agreement with experiment, for the formation of stacks both in the zero field and in the applied field equilibrium configurations. The simulation also predicts, by considering the effects of the packing density, that the dispersion properties are strongly affected by the mobility of these stacks. The equilibrium particle configurations have been investigated using a correlation function and visualized by computer graphics. The magnetic behaviour has been investigated by calculation of the magnetization curve.
NASA Astrophysics Data System (ADS)
Alexander, S. G.; Walentosky, M. J.; Messinger, Justin; Staron, Alexander; Blankartz, Benjamin; Clark, Tristan
2017-02-01
We present a new computational method for calculating the motion of stars in a dwarf spheroidal galaxy (dSph) that can use either Newtonian gravity or Modified Newtonian Dynamics (MOND). In our model, we explicitly calculate the motion of several thousand stars in a spherically symmetric gravitational potential, and we statistically obtain both the line-of-sight bulk velocity dispersion and dispersion profile. Our results for MOND calculated bulk dispersions for Local Group dSph’s agree well with previous calculations and observations. Our MOND calculated dispersion profiles are compared with the observations of Walker et al. for Milky Way dSph’s, and we present calculated dispersion profiles for a selection of Andromeda dSph’s.
Trajectory Dispersion Control for the Cassini Grand Finale Mission
NASA Technical Reports Server (NTRS)
Wong, Mau; Hahn, Yungsun; Roth, Duane; Vaquero, Mar
2015-01-01
The Cassini Grand Finale Mission, which consists of 22 ballistic orbits, will begin on April 22, 2017 after the last targeted Titan flyby. It will end on September 15, 2017 when the spacecraft dives into Saturn's atmosphere and be permanently captured. High volumes of unique science data from various onboard instruments are expected from the mission. To ensure its success and facilitate science planning, the trajectory dispersion needs to be controlled below 250 km (root-mean-square spatial deviation at the 68th percentile level) for a few segments of trajectory in the mission. This paper reports the formulation and solution of this dispersion control problem. We consider various sources of uncertainties including flyby error, orbit determination error, maneuver execution error, thruster firing control error, and uncertainty in Saturn's atmospheric model. A non-linear Monte Carlo Trajectory Dispersion tool is developed and employed for the analysis. It is found that a total of three Orbit Trim Maneuvers with a 99% (Delta)V usage of less than 2 m/s will adequately control the trajectory.
Final report on the safety assessment of disperse Blue 7.
2007-01-01
Disperse Blue 7 is an anthraquinone dye used in cosmetics as a hair colorant in five hair dye and color products reported to the Food and Drug Administration (FDA). Hair dyes containing Disperse Blue 7, as "coal tar" hair dye products, are exempt from the principal adulteration provision and from the color additive provision in sections 601 and 706 of the Federal Food, Drug, and Cosmetic Act of 1938 when the label bears a caution statement and "patch test" instructions for determining whether the product causes skin irritation. Disperse Blue 7 is also used as a textile dye. The components of Disperse Blue 7 reportedly include Disperse Turquoise ALF Granules, Disperse Turquoise LF2G, Reax 83A, Tamol SW, and Twitchell Oil. No data were available that addressed the acute, short-term, or chronic toxicity of Disperse Blue 7. A mouse lymph node assay used to predict the sensitization potential of Disperse Blue 7 was negative. Although most bacterial assays for genotoxicity were negative in the absence of metabolic activation, consistently positive results were found with metabolic activation in Salmonella strains TA1537, TA1538, and TA98, which were interpreted as indicative of point mutations. Studies using L5178Y mouse lymphoma cells appeared to confirm this mutagenic activity. Mammalian assays for chromosome damage, however, were negative and animal tests found no evidence of dominant lethal mutations. Cases reports describe patients patch tested with Disperse Blue 7 to determine the source of apparent adverse reactions to textiles. In most patients, patch tests were negative, but there are examples in which the patch test for Disperse Blue 7 was positive. In general, anthraquinone dyes are considered frequent causes of clothing dermatitis. The Cosmetic Ingredient Review Expert Panel determined that there was a paucity of data regarding the safety of Disperse Blue 7 as used in cosmetics. The following data are needed in order to arrive at a conclusion on the safety of
Density functional calculations of spin-wave dispersion curves.
NASA Astrophysics Data System (ADS)
Kleinman, Leonard; Niu, Qian
1998-03-01
Extending the density functional method of Kubler et al( J. Kubler et al, J. Phys. F 18, 469 (1983) and J. Phys. Condens. Matter 1, 8155 (1989). ) for calcuating spin density wave ground states (but not making their atomic sphere approximation which requires a constant spin polarization direction in each WS sphere) we dicuss the calculation of frozen spin-wave eigenfunctions and their total energies. From these and the results of Niu's talk, we describe the calculation of spin-wave frequencies.
1991-06-28
AD-A238 853 ANOMALOUS DISPERSION IN GASES DERIVED FROM THE OPTICAL DEPTH. THEORETICAL TREATMENT; LINE BY LINE CALCULATIONS BY EGIL BINGEN . BJ0RNAR...06054 917 1 04 ANOMALOUS DISPERSION IN GASES DERIVED FROM THE OPTICAL DEPTH. THEORETICAL TREATMENT; LINE BY LINE CALCULATIONS by - EGII, BINGEN . BJORNAR... BINGEN Egil, YSTAD Bjornar 61 DISTRIBUTION STATEMENT Approved for pub’ic release. Distribution unlimited (Offentlig tilgjengelig) 7) INDEXING TERMS IN
Robertson, Scott; Leonhardt, Ulf
2014-11-01
Hawking radiation has become experimentally testable thanks to the many analog systems which mimic the effects of the event horizon on wave propagation. These systems are typically dominated by dispersion and give rise to a numerically soluble and stable ordinary differential equation only if the rest-frame dispersion relation Ω^{2}(k) is a polynomial of relatively low degree. Here we present a new method for the calculation of wave scattering in a one-dimensional medium of arbitrary dispersion. It views the wave equation as an integral equation in Fourier space, which can be solved using standard and efficient numerical techniques.
Dispersive approaches for three-particle final state interaction
Guo, Peng; Danilkin, Igor V.; Szczepaniak, Adam P.
2015-10-30
In this work, we presented different representations of Khuri-Treiman equation, the advantage and disadvantage of each representations are discussed. With a scattering amplitude toy model, we also studied the sensitivity of solution of KT equation to left-hand cut of toy model and to the different approximate methods. At last, we give a brief discussion of Watson's theorem when three particles in final states are involved.
Dispersive approaches for three-particle final state interaction
Guo, Peng; Danilkin, Igor V.; Szczepaniak, Adam P.
2015-10-30
In this work, we presented different representations of Khuri-Treiman equation, the advantage and disadvantage of each representations are discussed. With a scattering amplitude toy model, we also studied the sensitivity of solution of KT equation to left-hand cut of toy model and to the different approximate methods. At last, we give a brief discussion of Watson's theorem when three particles in final states are involved.
Packo, Pawel; Uhl, Tadeusz; Staszewski, Wieslaw J
2014-09-01
The paper presents an efficient and accurate method for dispersion curve calculation and analysis of numerical models for guided waves. The method can be used for any arbitrarily selected anisotropic material. The proposed approach utilizes the wave equation and through-thickness-only discretization of anisotropic, layered plates to obtain the Lamb wave characteristics. Thus, layered structures, such as composites, can be analyzed in a straightforward manner. A general framework for the proposed analysis is given, along with application examples. Although these examples are based on the local interaction simulation approach for elastic waves propagation, the proposed methodology can be easily adopted for other methods (e.g., finite elements). The method can be also used to study the influence of discretization parameters on dispersion curves estimates.
Dispersive approaches for three-particle final state interaction
NASA Astrophysics Data System (ADS)
Guo, Peng; Danilkin, I. V.; Szczepaniak, Adam P.
2015-10-01
In this work, we present different representations of the Khuri-Treiman equation and discuss advantages and disadvantages of each representation. In particular we focus on the inversion technique proposed by Pasquier, which, even though developed a long time ago, has not been used in modern analyses of data on three particle decays. We apply the method to a toy model and compare the sensitivity of this and alternative solution methods to the left-hand cut contribution. We also discuss the meaning and applicability of Watson's theorem when three particles in final states are involved.
Calculations of Acute and Chronic "Chi I Q" Dispersion Estimates for a Sulface Release
P.M. Fransioli
1999-12-17
The objective of this calculation is to determine downwind normalized concentration, ''Chi/Q'' ({chi}/Q), estimates at the surface for acute (short-term) and chronic (long-term) exposures of an airborne material released from a surfaced-based point release. This calculation was requested by the Safety Analysis Department to support repository design in the Site Recommendation and possible future License Application activities. Attachment IV, item 1 displays this request. The {chi}/Q dispersion estimates will be calculated at twenty pre-determined distances from a surface release point. The acute exposure dispersion estimates will be calculated for five percentile, percentage of occurrences {chi}/Q values are not exceeded, values.
Levin, Alan; Chaves, Chris
2015-04-04
The Department of Energy (DOE) has performed an evaluation of the technical bases for the default value for the atmospheric dispersion parameter χ/Q. This parameter appears in the calculation of radiological dose at the onsite receptor location (co-located worker at 100 meters) in safety analysis of DOE nuclear facilities. The results of the calculation are then used to determine whether safety significant engineered controls should be established to prevent and/or mitigate the event causing the release of hazardous material. An evaluation of methods for calculation of the dispersion of potential chemical releases for the purpose of estimating the chemical exposure at the co-located worker location was also performed. DOE’s evaluation consisted of: (a) a review of the regulatory basis for the default χ/Q dispersion parameter; (b) an analysis of this parameter’s sensitivity to various factors that affect the dispersion of radioactive material; and (c) performance of additional independent calculations to assess the appropriate use of the default χ/Q value.
Method of calculation of a thermolysis and friction of a turbulent disperse flow in nozzles
NASA Astrophysics Data System (ADS)
Kovalnogov, Vladislav N.; Fedorov, Ruslan V.; Boyarkin, Mikhail S.
2017-07-01
The mathematical model and method of calculation of exchange processes in boundary layer of a carrying agent of a dispersible flow in nozzles which are adequately reflecting intensive aero mechanical and thermal influences of the condensed elements in the conditions of their directed cross movement in boundary layer and also effects of a laminarization of a current in a gradient stream.
Beam dispersion measurements with wire scanners in the SLC final focus systems
Emma, P.; McCormick, D.; Ross, M.C.
1993-05-01
A method is described to make a direct measurement of the horizontal and vertical momentum dispersion of the electron and positron beams as they pass through the chromatic correction sections (CCS) of the SLC final focus systems. The method is advantageous since it cleanly separates betatron components of the beam size from dispersive components, can be measured during standard colliding beams machine conditions in a minute or two, and directly measures the energy-position correlation within the beam.
A comparison of dispersion calculations in bluff body wakes using LES and unsteady RANS
Paschkewitz, J S
2006-01-19
Accurate modeling of the dispersion behavior of sprays or particles is critical for a variety of problems including combustion, urban pollution or release events, and splash and spray transport around heavy vehicles. Bluff body wakes are particularly challenging since these flows are both highly separated and strongly unsteady. Attempting to model the dispersion of droplets or particles interacting with bluff body wakes is even more difficult since small differences in the flow field encountered by particles can lead to large differences in the dispersion behavior. Particles with finite inertia can exhibit additional complicating effects such as preferential concentration. In this preliminary study, we consider the dispersion of solid particles in the wake of a rectangular plane at a Reynolds number (Re) of 10000 and that of droplets in the wake of a simplified tractor-trailer geometry at Re = 2 x 10{sup 6} using both the Large Eddy Simulation (LES) and Unsteady Reynolds-Averaged Navier-Stokes (URANS) turbulence modeling approaches. The calculations were performed using identical meshes for both the LES and URANS models. Particle stresses are not backcoupled to the carrier fluid velocity solution. In the case of the rectangular plane wake, the LES calculation predicts a finer-scale and more persistent wake structure than the URANS one; the resulting particle dispersion is considerably ({approx} 40%) underpredicted for low inertia particles. For the case of the simplified tractor-trailer geometry, although the LES is underresolved, similar trends are observed with strong differences in the vertical and horizontal dispersion of the smallest particles. These results suggest that it may be necessary to use LES to accurately capture the dispersion behavior of small, low inertia particles or droplets, but that URANS may be sufficient for problems in which only large particles with substantial inertia are of primary concern.
Robertson, Scott
2014-11-01
Analog gravity experiments make feasible the realization of black hole space-times in a laboratory setting and the observational verification of Hawking radiation. Since such analog systems are typically dominated by dispersion, efficient techniques for calculating the predicted Hawking spectrum in the presence of strong dispersion are required. In the preceding paper, an integral method in Fourier space is proposed for stationary 1+1-dimensional backgrounds which are asymptotically symmetric. Here, this method is generalized to backgrounds which are different in the asymptotic regions to the left and right of the scattering region.
NASA Astrophysics Data System (ADS)
Al-Jallal, Nada A.; El-Azhary, Adel A.
2017-09-01
We report for the first time a detailed vibrational analysis of dibenzo-18-crown-6, db18c6. The experimental IR and Raman spectra of db18c6 were measured. The assignment of the fundamental vibrational frequencies of db18c6 was aided by using scaled quantum mechanical force fields calculated at the B3LYP/6-311G** and CAM-B3LYP/6-311G** levels. Comparison between the experimental and calculated spectra of some of the important conformations of db18c6 led to the conclusion that db18c6 in the solid phase exists in a C2 conformation that is similar to that predicted by X-ray, for also the solid phase. The effect of inclusion of the atom pair-wise dispersion correction to the B3LYP method, known as the B3LYP-D3 method, on the calculated IR and Raman spectra of db18c6 at the B3LYP level was also investigated. It was concluded that the effect of inclusion of the dispersion correction on the calculated vibrational frequencies and intensities is negligible.
NASA Astrophysics Data System (ADS)
Artem'ev, V. A.; Nezvanov, A. Yu.; Nesvizhevsky, V. V.
2016-01-01
We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2-5 nm and for neutron energies 3 × 10-7-10-3 eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder.
Artem’ev, V. A.; Nezvanov, A. Yu.; Nesvizhevsky, V. V.
2016-01-15
We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2–5 nm and for neutron energies 3 × 10{sup -7}–10{sup -3} eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder.
Lichtner, P.C.; Helgeson, H.C.
1986-06-20
A general formulation of multi-phase fluid flow coupled to chemical reactions was developed based on a continuum description of porous media. A preliminary version of the computer code MCCTM was constructed which implemented the general equations for a single phase fluid. The computer code MCCTM incorporates mass transport by advection-diffusion/dispersion in a one-dimensional porous medium coupled to reversible and irreversible, homogeneous and heterogeneous chemical reactions. These reactions include aqueous complexing, oxidation/reduction reactions, ion exchange, and hydrolysis reactions of stoichiometric minerals. The code MCCTM uses a fully implicit finite difference algorithm. The code was tested against analytical calculations. Applications of the code included investigation of the propagation of sharp chemical reaction fronts, metasomatic alteration of microcline at elevated temperatures and pressures, and ion-exchange in a porous column. Finally numerical calculations describing fluid flow in crystalline rock in the presence of a temperature gradient were compared with experimental results for quartzite.
Liu, Wenshuo; Luo, Guangfu; Li, Hong; Wang, Lu; Lu, Jing; Zhou, Jing; Qin, Rui; Gao, Zhengxiang; Lai, Lin
2009-09-01
We have investigated the dispersion of charged single-wall carbon nanotube bundles by using density functional theory. We obtained the variation of equilibrium spacing between tubes as a function of charge density for the (4, 4) and (7, 0) tubes with different charge signs and the minimum charge density to cause separation. We also calculated the cohesive energies between two charged tubes as a function of interwall spacing and found that extra energy supply can promote separation of nanotube bundle. Our results are in good agreement with the experimental values.
Model calculating annual mean atmospheric dispersion factor for coastal site of nuclear power plant.
Hu, E B; Chen, J Y; Yao, R T; Zhang, M S; Gao, Z R; Wang, S X; Jia, P R; Liao, Q L
2001-07-01
This paper describes an atmospheric dispersion field experiment performed on the coastal site of nuclear power plant in the east part of China during 1995 to 1996. The three-dimension joint frequency are obtained by hourly observation of wind and temperature on a 100 m high tower; the frequency of the "event day of land and sea breezes" are given by observation of surface wind and land and sea breezes; the diffusion parameters are got from measurements of turbulent and wind tunnel simulation test. A new model calculating the annual mean atmospheric dispersion factor for coastal site of nuclear power plant is developed and established. This model considers not only the effect from mixing release and mixed layer but also the effect from the internal boundary layer and variation of diffusion parameters due to the distance from coast. The comparison between results obtained by the new model and current model shows that the ratio of annual mean atmospheric dispersion factor gained by the new model and the current one is about 2.0.
NASA Astrophysics Data System (ADS)
Oliveira, Micael; Komarova-Vladimirova, Ksenia; Remacle, Francoise; Vertraete, Matthieu
The London-van der Waals dispersion forces arising from instantaneously induced dipoles in molecules are a key ingredient in a wide range of phenomena in physics, chemistry, and biology. Therefore, the ability to control and manipulate dispersion forces between atoms and molecules is of great importance. Because those dispersion interactions depend crucially on the electronic properties of the molecular systems, a simple route to achieve this would consist in manipulating their electronic states. The recent development of ultra-short optical pulses has given researchers unprecedented control over the electronic degrees of freedom. These pulses, tailored in their frequency and envelope, allow the generation of a strongly out of equilibrium population of electronic states. In this talk we show how the Hamacker constants characterizing the London-van der Waals interaction between two molecules subject to an optical pulse can be calculated using time-dependent density functional theory (TD-DFT) or standard quantum chemistry methods and present several test cases of molecules subjected to IR and UV attosecond pulses.
NASA Astrophysics Data System (ADS)
Kholokhonova, Polina A.; Erg, G. V.
2005-11-01
A method is proposed for the calculation of negative-dispersion mirrors with resonator cavities. The mirror optimisation algorithm combines the capabilities of the gradient method and the random search method. A multilayer mirror structure with a reflectivity R>99.9% and a group delay dispersion of -60±10 fs2 in the 930-1070 nm wavelength range was calculated. The sensitivity of the obtained structure to random variations of layer thicknesses was analysed.
Clobert, J.; Danchin, E.; Dhondt, A.A.; Nichols, J.D.
2001-01-01
The ability of species to migrate and disperse is a trait that has interested ecologists for many years. Now that so many species and ecosystems face major environmental threats from habitat fragmentation and global climate change, the ability of species to adapt to these changes by dispersing, migrating, or moving between patches of habitat can be crucial to ensuring their survival. This book provides a timely and wide-ranging overview of the study of dispersal and incorporates much of the latest research. The causes, mechanisms, and consequences of dispersal at the individual, population, species and community levels are considered. The potential of new techniques and models for studying dispersal, drawn from molecular biology and demography, is also explored. Perspectives and insights are offered from the fields of evolution, conservation biology and genetics. Throughout the book, theoretical approaches are combined with empirical data, and care has been taken to include examples from as wide a range of species as possible.
NASA Astrophysics Data System (ADS)
Piringer, Martin; Knauder, Werner; Petz, Erwin; Schauberger, Günther
2016-09-01
Direction-dependent separation distances to avoid odour annoyance, calculated with the Gaussian Austrian Odour Dispersion Model AODM and the Lagrangian particle diffusion model LASAT at two sites, are analysed and compared. The relevant short-term peak odour concentrations are calculated with a stability-dependent peak-to-mean algorithm. The same emission and meteorological data, but model-specific atmospheric stability classes are used. The estimate of atmospheric stability is obtained from three-axis ultrasonic anemometers using the standard deviations of the three wind components and the Obukhov stability parameter. The results are demonstrated for the Austrian villages Reidling and Weissbach with very different topographical surroundings and meteorological conditions. Both the differences in the wind and stability regimes as well as the decrease of the peak-to-mean factors with distance lead to deviations in the separation distances between the two sites. The Lagrangian model, due to its model physics, generally calculates larger separation distances. For worst-case calculations necessary with environmental impact assessment studies, the use of a Lagrangian model is therefore to be preferred over that of a Gaussian model. The study and findings relate to the Austrian odour impact criteria.
Pinfield, Valerie J
2007-07-01
Measurements of ultrasound speed and attenuation can be related to the properties of dispersed systems by applying a scattering model. Rayleigh's method for scattering of sound by a spherical object, and its subsequent developments to include viscous, thermal, and other effects (known as the ECAH model) has been widely adopted. The ECAH method has difficulties, including numerical ill-conditioning, calculation of Bessel functions at large arguments, and inclusion of thermal effects in all cases. The present work develops techniques for improving the ECAH calculations to allow its use in instrumentation. It is shown that thermal terms can be neglected in some boundary equations up to approximately 100 GHz in water, and several simplified solutions result. An analytical solution for the zero-order coefficient is presented, with separate nonthermal and thermal parts, allowing estimation of the thermal contribution. Higher orders have been simplified by estimating the small shear contribution as the inertial limit is approached. The condition of the matrix solutions have been greatly improved by these techniques and by including appropriate scaling factors. A method is presented for calculating the required Bessel functions when the argument is large (high frequency or large particle size). The required number of partial wave orders is also considered.
NASA Astrophysics Data System (ADS)
Fischer, Michael; Angel, Ross J.
2017-05-01
Density-functional theory (DFT) calculations incorporating a pairwise dispersion correction were employed to optimize the structures of various neutral-framework compounds with zeolite topologies. The calculations used the PBE functional for solids (PBEsol) in combination with two different dispersion correction schemes, the D2 correction devised by Grimme and the TS correction of Tkatchenko and Scheffler. In the first part of the study, a benchmarking of the DFT-optimized structures against experimental crystal structure data was carried out, considering a total of 14 structures (8 all-silica zeolites, 4 aluminophosphate zeotypes, and 2 dense phases). Both PBEsol-D2 and PBEsol-TS showed an excellent performance, improving significantly over the best-performing approach identified in a previous study (PBE-TS). The temperature dependence of lattice parameters and bond lengths was assessed for those zeotypes where the available experimental data permitted such an analysis. In most instances, the agreement between DFT and experiment improved when the experimental data were corrected for the effects of thermal motion and when low-temperature structure data rather than room-temperature structure data were used as a reference. In the second part, a benchmarking against experimental enthalpies of transition (with respect to α-quartz) was carried out for 16 all-silica zeolites. Excellent agreement was obtained with the PBEsol-D2 functional, with the overall error being in the same range as the experimental uncertainty. Altogether, PBEsol-D2 can be recommended as a computationally efficient DFT approach that simultaneously delivers accurate structures and energetics of neutral-framework zeotypes.
Limberger, Romana; Low-Décarie, Etienne; Fussmann, Gregor F
2014-10-22
Predicting the effect of climate change on biodiversity is a multifactorial problem that is complicated by potentially interactive effects with habitat properties and altered species interactions. In a microcosm experiment with communities of microalgae, we analysed whether the effect of rising temperature on diversity depended on the initial or the final temperature of the habitat, on the rate of change, on dispersal and on landscape heterogeneity. We also tested whether the response of species to temperature measured in monoculture allowed prediction of the composition of communities under rising temperature. We found that the final temperature of the habitat was the primary driver of diversity in our experimental communities. Species richness declined faster at higher temperatures. The negative effect of warming was not alleviated by a slower rate of warming or by dispersal among habitats and did not depend on the initial temperature. The response of evenness, however, did depend on the rate of change and on the initial temperature. Community composition was not predictable from monoculture assays, but higher fitness inequality (as seen by larger variance in growth rate among species in monoculture at higher temperatures) explained the faster loss of biodiversity with rising temperature.
Limberger, Romana; Low-Décarie, Etienne; Fussmann, Gregor F.
2014-01-01
Predicting the effect of climate change on biodiversity is a multifactorial problem that is complicated by potentially interactive effects with habitat properties and altered species interactions. In a microcosm experiment with communities of microalgae, we analysed whether the effect of rising temperature on diversity depended on the initial or the final temperature of the habitat, on the rate of change, on dispersal and on landscape heterogeneity. We also tested whether the response of species to temperature measured in monoculture allowed prediction of the composition of communities under rising temperature. We found that the final temperature of the habitat was the primary driver of diversity in our experimental communities. Species richness declined faster at higher temperatures. The negative effect of warming was not alleviated by a slower rate of warming or by dispersal among habitats and did not depend on the initial temperature. The response of evenness, however, did depend on the rate of change and on the initial temperature. Community composition was not predictable from monoculture assays, but higher fitness inequality (as seen by larger variance in growth rate among species in monoculture at higher temperatures) explained the faster loss of biodiversity with rising temperature. PMID:25186000
Optical dispersion functions of Co2-xEuxVSn using ab-initio calculations
NASA Astrophysics Data System (ADS)
Mahmoud, Nada T.; Mousa, Ahmad A.; Juwhari, Hassan K.; Khalifeh, Jamil M.; Abu-Jafar, Mohammed S.
2015-10-01
The magnetic, electronic and optical properties of Co2-xEuxVSn alloys for selected concentrations (x = 0, 0.25, 0.50, 0.75 and 1.0) were investigated by means of density functional theory (DFT) calculations utilizing full potential linearized augmented plane wave (FP-LAPW) method. It was found that doping the Co2VSn alloy with rare-earth ions like Eu generates the nonstoichiometric Co2-xEuxVSn and changes its original behavior from half ferromagnetic material to a metallic one. In addition, the total magnetic moment was found to increase with increasing dopant concentration with maximum local magnetic contributions on the Eu-sites. The optical dielectric functions as well as their static value for all the above alloys were also investigated. Moreover, the absorption coefficient, reflectivity and refractive indices were calculated. All the optical calculations were found to agree well with the band structure calculations when determining the alloys’ half-metallic behavior. Finally, the nonstoichiometric metallic compounds found in this series might be useful in the flat panel industry as potential phosphors.
Qiu, Diana Y; Cao, Ting; Louie, Steven G
2015-10-23
Exciton dispersion as a function of center-of-mass momentum Q is essential to the understanding of exciton dynamics. We use the ab initio GW-Bethe-Salpeter equation method to calculate the dispersion of excitons in monolayer MoS(2) and find a nonanalytic lightlike dispersion. This behavior arises from an unusual |Q|-term in both the intra- and intervalley exchange of the electron-hole interaction, which concurrently gives rise to a valley quantum phase of winding number two. A simple effective Hamiltonian to Q(2) order with analytic solutions is derived to describe quantitatively these behaviors.
NASA Astrophysics Data System (ADS)
Qiu, Diana Y.; Cao, Ting; Louie, Steven G.
2015-10-01
Exciton dispersion as a function of center-of-mass momentum Q is essential to the understanding of exciton dynamics. We use the ab initio G W -Bethe-Salpeter equation method to calculate the dispersion of excitons in monolayer MoS2 and find a nonanalytic lightlike dispersion. This behavior arises from an unusual |Q |-term in both the intra- and intervalley exchange of the electron-hole interaction, which concurrently gives rise to a valley quantum phase of winding number two. A simple effective Hamiltonian to Q2 order with analytic solutions is derived to describe quantitatively these behaviors.
Metz, J A; Gyllenberg, M
2001-03-07
We define a fitness concept applicable to structured metapopulations consisting of infinitely many equally coupled patches. In addition, we introduce a more easily calculated quantity Rm that relates to fitness in the same manner as R0 relates to fitness in ordinary population dynamics: the Rm of a mutant is only defined when the resident population dynamics converges to a point equilibrium and Rm is larger (smaller) than 1 if and only if mutant fitness is positive (negative). Rm corresponds to the average number of newborn dispersers resulting from the (on average less than one) local colony founded by a newborn disperser. Efficient algorithms for calculating its numerical value are provided. As an example of the usefulness of these concepts we calculate the evolutionarily stable conditional dispersal strategy for individuals that can account for the local population density in their dispersal decisions. Below a threshold density x, at which staying and leaving are equality profitable, everybody should stay and above x everybody should leave, where profitability is measured as the mean number of dispersers produced through lines of descent consisting of non-dispersers.
Field evaluation of fog dispersal tests at Elmira, NY: Final report
Rogers, C.W.; Wattle, B.J.; Mack, E.J.
1987-06-01
Calspan Corp., under contract to Energy Innovations, Inc., assisted in tests of the EGD Fog Precipiation System at Elmira/Corning Regional Airport in New York during the summer/fall fog season of 1986 by conducting an independent, objective evaluation of the EGD System during these tests. Specifically, Calspan's role was to: Establish and maintain a network of ground-based visibility monitors and supporting meteorological instrumentation for measuring fog characteristics during EGD System tests at Elmira; provide weather forecasts of the potential for fog at Elmira during the summer-fall fog season; analyze visibility and surface wind velocity measurements to determine the efficacy of the EGD system in producing visibility improvement during dispersal tests; and provide a final independent summary report documenting experiment protocol and the results of Calspan's analyses. 2 refs., 12 figs., 6 tabs.
On the precision of chiral-dispersive calculations of ππ scattering
NASA Astrophysics Data System (ADS)
Ynduráin, F. J.
2004-01-01
We evaluate two representative crossing sum rules and prove that, contrarily to claims by Ananthanarayan, Colangelo, Gasser and Leutwyler, standard Regge behaviour is perfectly compatible with low energy ππ phase shifts. We then calculate the combination 2 a0(0) - 5 a0(2) (the Olsson sum rule) and the scattering lengths and effective ranges a1, a2( I) and b1, b2( I) dispersively (with the Froissart-Gribov representation) using, at low energy, the phase shifts for ππ scattering obtained by Colangelo, Gasser and Leutwyler (CGL) from the Roy equations and chiral perturbation theory, plus experiment and Regge behaviour at high energy, or directly, using the CGL parameters for as and bs. We find mismatch, both among the CGL phases themselves and with the independent results obtained from the pion form factor. This reaches the level of several (2 to 5) standard deviations. We consider possible reasons for this mismatch, in particular in connection with an alternate set of phase shifts. We also discuss two quantities, a3 and the coefficient cπ in the pion form factor where chiral perturbation theory diverges, thus casting further doubts on the CGL analysis. The details may be found in the article with the same title by J. R. Peláez and F. J. Ynduráin, hep-ph/0304067, to appear in Physical Review D.
Doppler acoustic sounding: observational inputs to pollutant-dispersion models. Final report
MacCready, P.; Worden, J.
1982-01-01
To accurately model the dilution of pollutants, as in the form of plumes from large power plants, actual observations of atmospheric characteristics aloft are needed. The goal of this program was to find out whether a portable, multi-beam, monostatic Doppler acoustic system (DAS) can provide the measurements of conditions aloft that are required as inputs to dispersion models suitable for routine applications. Evaluation of what the Doppler system can measure and the related accuracy of that measurement was based on a comparison of its observations with those from a nearby instrumented 300-m tower in Colorado (supplemented by instrumented airplane ascents above tower height), and also based on considerations of continuity in vertical profiles of Doppler system outputs. Input data requirements for dispersion models were then assessed. It is apparent that the Doppler system can provide all the approximate mean flow and turbulence factors used by the models, usually to altitudes beyond 600 m. There is also a need in the models for an input which is related to temperature stability, both for plume rise calculations, and for predicting vertical diffusion versus observed vertical turbulence. It is expected that a stability factor can be derived objectively from the Doppler acoustic signals; various candidate methods are discussed, but complete development of the technique is in the future.
NASA Astrophysics Data System (ADS)
Feng, Lei; Zhang, Yugui
2017-08-01
Dispersion analysis is an important part of in-seam seismic data processing, and the calculation accuracy of the dispersion curve directly influences pickup errors of channel wave travel time. To extract an accurate channel wave dispersion curve from in-seam seismic two-component signals, we proposed a time-frequency analysis method based on single-trace signal processing; in addition, we formulated a dispersion calculation equation, based on S-transform, with a freely adjusted filter window width. To unify the azimuth of seismic wave propagation received by a two-component geophone, the original in-seam seismic data undergoes coordinate rotation. The rotation angle can be calculated based on P-wave characteristics, with high energy in the wave propagation direction and weak energy in the vertical direction. With this angle acquisition, a two-component signal can be converted to horizontal and vertical directions. Because Love channel waves have a particle vibration track perpendicular to the wave propagation direction, the signal in the horizontal and vertical directions is mainly Love channel waves. More accurate dispersion characters of Love channel waves can be extracted after the coordinate rotation of two-component signals.
Calculation of molecular final states and their effect on a precision neutrino mass experiment
Fackler, O.; Mugge, M.; Sticker, H.; Winter, N.; Woerner, R.
1984-02-01
An experiment to determine the electron neutrino mass is being performed with the precision of a few electron volts by measuring the tritium beta decay energy distribution near the endpoint. At the few electron volt level, a major consideration in the choice of a tritium source is the effect of excited final atomic or molecular states on the beta decay distribution. It is important to choose a source for which the initial and final states can be accurately calculated. Frozen tritium was chosen as the source since the states of molecular tritium and those of the HeT/sup +/ daughter ion have electronic wavefunctions that can be calculated with high accuracy. The effects of final excited states on the neutrino mass determination and the results of these calculations are described.
Bellantoni, J.
1982-11-01
The use of chemicals for oil spill dispersal, while not presently widespread in the U.S., would have implications for the U.S. Coast Guard's Marine Environmental Protection program. This report explores the logistics of oil disperant application by the U.S. Coast Guard. Data were reviewed for the 13 disperants for which data had been submitted to the EPA as of October 1979. Manufacturer's data and published test results were also examined and information summarized with regard to classification, handling and storage application, availability and cost.
NASA Astrophysics Data System (ADS)
Takahashi, Masae; Ishikawa, Yoichi; Ito, Hiromasa
2013-03-01
A weak hydrogen bond (WHB) such as CH-O is very important for the structure, function, and dynamics in a chemical and biological system WHB stretching vibration is in a terahertz (THz) frequency region Very recently, the reasonable performance of dispersion-corrected first-principles to WHB has been proven. In this lecture, we report dispersion-corrected first-principles calculation of the vibrational absorption of some organic crystals, and low-temperature THz spectral measurement, in order to clarify WHB stretching vibration. The THz frequency calculation of a WHB crystal has extremely improved by dispersion correction. Moreover, the discrepancy in frequency between an experiment and calculation and is 10 1/cm or less. Dispersion correction is especially effective for intermolecular mode. The very sharp peak appearing at 4 K is assigned to the intermolecular translational mode that corresponds to WHB stretching vibration. It is difficult to detect and control the WHB formation in a crystal because the binding energy is very small. With the help of the latest intense development of experimental and theoretical technique and its careful use, we reveal solid-state WHB stretching vibration as evidence for the WHB formation that differs in respective WHB networks The research was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant No. 22550003).
Haeger-Eugensson, Marie; Ferm, Martin; Elfman, Lena
2014-03-31
The interest in equestrian sports has increased substantially during the last decades, resulting in increased number of horse facilities around urban areas. In Sweden, new guidelines for safe distance have been decided based on the size of the horse facility (e.g., number of horses) and local conditions, such as topography and meteorology. There is therefore an increasing need to estimate dispersion of horse allergens to be used, for example, in the planning processes for new residential areas in the vicinity of horse facilities. The aim of this study was to develop a method for calculating short- and long-term emissions and dispersion of horse allergen and odor around horse facilities. First, a method was developed to estimate horse allergen and odor emissions at hourly resolution based on field measurements. Secondly, these emission factors were used to calculate concentrations of horse allergen and odor by using 3-D dispersion modeling. Results from these calculations showed that horse allergens spread up to about 200 m, after which concentration levels were very low (<2 U/m³). Approximately 10% of a study-group detected the smell of manure at 60m, while the majority--80%-90%--detected smell at 60 m or shorter distance from the manure heap. Modeling enabled horse allergen exposure concentrations to be determined with good time resolution.
Menzie, D.E.
1995-05-01
The main objective of this research project is to investigate dispersion as a method of quantifying geological characterization and defining reservoir heterogeneity in order to enhance crude oil recovery. The dispersion of flow of a reservoir rock (dispersion coefficient and dispersivity) was identified as one of the physical properties of a reservoir rock by measuring the mixing of two miscible fluids, one displacing the other in a porous medium. A rock was 100% saturated with a resident fluid and displaced by a miscible fluid of equal viscosity and equal density. Some specific experiments were performed with unequal densities. Produced fluid was analyzed by refractometer, nuclear reaction, electrical conductivity and X-ray scan. Several physical and flow characteristics were measured on the sand rock sample in order to establish correlations with the measured dispersion property. Absolute permeability, effective porosity, relative permeability, capillary pressure, the heterogeneity factor and electrical conductivity were used to better understand the flow system. Linear, transverse, 2-D and 3-D dispersions were measured and used to characterize the rock heterogeneity of the flow system. A new system of measuring dispersion was developed using a gas displacing gas system in a porous medium. An attempt was also made to determine the dispersion property of an actual reservoir from present day well log data on a producing well. 275 refs., 102 figs., 17 tabs.
Monari, Antonio; Bendazzoli, Gian Luigi; Evangelisti, Stefano; Angeli, Celestino; Ben Amor, Nadia; Borini, Stefano; Maynau, Daniel; Rossi, Elda
2007-03-01
The dispersion interactions of the Ne2 dimer were studied using both the long-range perturbative and supramolecular approaches: for the long-range approach, full CI or string-truncated CI methods were used, while for the supramolecular treatments, the energy curves were computed by using configuration interaction with single and double excitation (CISD), coupled cluster with single and double excitation, and coupled-cluster with single and double (and perturbative) triple excitations. From the interatomic potential-energy curves obtained by the supramolecular approach, the C6 and C8 dispersion coefficients were computed via an interpolation scheme, and they were compared with the corresponding values obtained within the long-range perturbative treatment. We found that the lack of size consistency of the CISD approach makes this method completely useless to compute dispersion coefficients even when the effect of the basis-set superposition error on the dimer curves is considered. The largest full-CI space we were able to use contains more than 1 billion symmetry-adapted Slater determinants, and it is, to our knowledge, the largest calculation of second-order properties ever done at the full-CI level so far. Finally, a new data format and libraries (Q5Cost) have been used in order to interface different codes used in the present study.
FY16/Q2 status report on initial dispersion calculations for tight crude oils project
Luketa, Anay; Rudeen, David Keith
2016-04-01
The objective of this work is to assess dispersion distances of a vapor mixture of species released from a railcar containing a tight crude oil. Tight crude oils can have higher levels of light ends as compared to conventional crude oils [1], which if released and dispersed could pose a potential hazard with regards to a flash fire, explosion, and/or asphyxiation. A historical accident involving rail transport in Viareggio, Italy illustrates how the spillage of LPG can lead to severe damage as a result of a propagating vapor cloud [2]. One of 14 railcars was punctured after derailment, releasing about 110 m^{3 } of LPG into a densely populated area (2000 persons/km^{2} ). The resulting vapor cloud propagated and infiltrated nearby buildings and houses which were an average of 10 m in height. Ignition of the cloud occurred approximately 100 to 300 seconds after the start of the spill. A flash fire and explosions resulted, killing 31 people. Evidence suggests that most deaths occurred due to the asphyxiation and thermal hazards from the flash fire. Thus, the motivation for this work is to assess if significant vapors can develop from a railcar carrying a tight crude oil and if this cloud could disperse potentially to nearby populations.
Spent fuel sabotage test program, characterization of aerosol dispersal : interim final report.
Gregson, Michael Warren; Brockmann, John E.; Loiseau, Olivier; Klennert, Lindsay A.; Nolte, Oliver; Molecke, Martin Alan; Autrusson, Bruno A.; Koch, Wolfgang; Pretzsch, Gunter Guido; Brucher, Wenzel; Steyskal, Michele D.
2008-03-01
This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program provides source-term data that are relevant to plausible sabotage scenarios in relation to spent fuel transport and storage casks and associated risk assessments. We present details and significant results obtained from this program from 2001 through 2007. Measured aerosol results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; measurements of volatile fission product species enhanced sorption--enrichment factors onto respirable particles; and, status on determination of the spent fuel ratio, SFR, needed for scaling studies. Emphasis is provided on recent Phase 3 tests using depleted uranium oxide pellets plus non-radioactive fission product dopants in surrogate spent fuel test rodlets, plus the latest surrogate cerium oxide results and aerosol laboratory supporting calibration work. The DUO{sub 2}, CeO{sub 2}, plus fission product dopant aerosol particle results are compared with available historical data. We also provide a status review on continuing preparations for the final Phase 4 in this program, tests using individual short rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. The source-term data, aerosol results, and program design have been tailored to support and guide follow-on computer modeling of aerosol dispersal hazards and radiological consequence assessments. This spent fuel sabotage, aerosol test program was performed primarily at Sandia National Laboratories, with support provided by both the U.S. Department of Energy and the Nuclear Regulatory Commission. This program has significant input from, and is cooperatively
Fornaro, Teresa; Biczysko, Malgorzata; Monti, Susanna; Barone, Vincenzo
2015-01-01
Computational spectroscopy techniques have become in the last years effective means to analyze and assign infrared (IR) spectra for molecular systems of increasing dimensions and in different environments. However, transition from compilations of harmonic data to full anharmonic simulations of spectra is still under way. The most promising results for large systems have been obtained, in our opinion, by perturbative vibrational approaches based on potential energy surfaces computed by hybrid (especially B3LYP) density functionals and medium size (e.g. SNSD) basis sets. In this framework, we are actively developing a comprehensive and robust computational protocol aimed to a quantitative reproduction of the spectra of nucleic acid bases complexes and their adsorption on solid supports (organic/inorganic). In this contribution we report the essential results of the first step devoted to isolated monomers and dimers. It is well known that in order to model the vibrational spectra of weakly bound molecular complexes dispersion interactions should be taken into proper account. In this work, we have chosen two popular and inexpensive approaches to model dispersion interaction, namely the semi-empirical dispersion correction (D3) and pseudopotential based (DCP) methodologies both in conjunction with the B3LYP functional. These have been used for simulating fully anharmonic IR spectra of nucleobases and their dimers through generalized second order vibrational perturbation theory (GVPT2). We have studied, in particular, isolated adenine, hypoxanthine, uracil, thymine and cytosine, the hydrogen-bonded and stacked adenine and uracil dimers, and the stacked adenine-naphthalene heterodimer. Anharmonic frequencies are compared with standard B3LYP results and experimental findings, while the computed interaction energies and structures of complexes are compared to the best available theoretical estimates. PMID:24531740
Modeling the polluted coastal urban environment: Volume 2, The dispersion model: Final report
Bornstein, R.; Pechinger, U.; Salvador, R.; Shieh, L.J.; Ludwig, F.
1987-02-01
A three-dimensional Eulerian grid air pollution dispersion model was developed using meteorological parameters from a three-dimsnsional finite-difference planetary boundary layer (PBL) model. The PBL and dispersion models were used to simulate sulfur dioxide concentrations resulting from multiple area and point source emissions in New York City for a three-day period, during which a sea breeze front passed through the area. Predicted meteorological and concentration fields were compared with data collected during the period. Results from the initial simulations demonstrate that the dispersion model can correctly simulate most of the qualitative features of the observed time-varying three-dimensional surface and PBL sulfur dioxide concentration fields during periods with complex meteorological conditions associated with thermally generated mesoscale circulations. The model was somewhat less successful in accurately reproducing the values of the observed concentrations; however, most predicted concentration values were within a factor of two of corresponding observed values.
Fadda, Elisa; Woods, Robert J
2013-09-01
In this work we analyze the effect of the inclusion of an empirical dispersion term to standard DFT (DFT-D) in the prediction of the conformational energy of the alanine dipeptide (Ala2) and in assessing the relative stabilities of short polyala-nine peptides in helical conformations, i.e., α and 310 helices, from Ala4 to Ala16. The Ala2 conformational energies obtained with the dispersion-corrected GGA functional B97-D are compared to previously published high level MP2 data. Meanwhile, the B97-D performance on larger polyalanine peptides is compared to MP2, B3LYP and RHF calculations obtained at a lower level of theory. Our results show that electron correlation affects the conformational energies of short peptides with a weight that increases with the peptide length. Indeed, while the contribution of vdW forces is significant for larger peptides, in the case of Ala2 it is negligible when compared to solvent effects. Even for short peptides, the inclusion of an empirical dispersion term greatly improves accuracy of DFT methods, providing results that correlate very well with the MP2 reference at no additional computational cost.
Fadda, Elisa; Woods, Robert J.
2014-01-01
In this work we analyze the effect of the inclusion of an empirical dispersion term to standard DFT (DFT-D) in the prediction of the conformational energy of the alanine dipeptide (Ala2) and in assessing the relative stabilities of short polyala-nine peptides in helical conformations, i.e., α and 310 helices, from Ala4 to Ala16. The Ala2 conformational energies obtained with the dispersion-corrected GGA functional B97-D are compared to previously published high level MP2 data. Meanwhile, the B97-D performance on larger polyalanine peptides is compared to MP2, B3LYP and RHF calculations obtained at a lower level of theory. Our results show that electron correlation affects the conformational energies of short peptides with a weight that increases with the peptide length. Indeed, while the contribution of vdW forces is significant for larger peptides, in the case of Ala2 it is negligible when compared to solvent effects. Even for short peptides, the inclusion of an empirical dispersion term greatly improves accuracy of DFT methods, providing results that correlate very well with the MP2 reference at no additional computational cost. PMID:25418993
Entrained liquid fraction calculation in adiabatic disperse-annular flows at low rate in film
NASA Astrophysics Data System (ADS)
Yagov, V. V.; Minko, M. V.
2016-04-01
In this work, we continue our study [1] and extend further an approach to low reduced pressures. An approximate model of droplets entrainment from the laminar film surface and an equation for calculating entrainment intensity are proposed. To carry out direct verification of this equation using experimental data is extremely difficult because the integral effect—liquid flow rate in a film at a dynamic equilibrium between entrainment and deposition—is usually measured in the experiments. The balance between flows of droplets entrainment and deposition corresponds to the dynamic equilibrium because of turbulent diffusion. The transcendental equation, which was obtained on the basis of this balance, contains one unknown numerical factor and allows one to calculate the liquid rate. Comparing calculation results with the experimental data for the water-air and water-helium flows at low reduced pressures (less than 0.03) has shown their good agreement at the universal value of a numerical constant, if an additional dimensionless parameter, a fourth root of vaporliquid densities ratio, is introduced. The criterion that determines the boundary of using methods of this work and that of [1] in calculations and that reflects effect of pressure and state of film surface on distribution of the liquid in the annular flow is proposed; the numerical value of this criterion has been determined.
Handling, transport and dispersion of sorbent powder for in-furnace injection. Final report
Fan, Liang-Shih; Abou-Zeida, E.; Liang, Shu-Chien; Luo, Xukun
1996-02-01
The focus of this project is on sorbent injection technologies using dry, calcium-based sorbents for high-sulfur coal flue gas desulfurization. The goal is to provide research findings on handling, transport and dispersion of sorbent powder, aimed at improving SO{sub 2} (to at least 90%) removal and increasing sorbent utilization in a cost-effective fashion. With this goal, the purpose of this project is to investigate the fundamental aspects of powder technology relevant to the fine sorbent powders, and to provide means of improving sorbent performance through superior dispersion and reduced dispersed particle size. The fifth year`s project contains three phases, Phase I ``Characterization of Electrostatic Properties``, Phase II ``Cohesive Strength of Modified Sorbents``. and Phase III ``Modeling of Powder Dispersion``. Work under Phase I involves characterization of the sorbents in terms of their electrostatic properties. Phase II investigates the flow properties of several calcium-based sorbents under different handling and transporting conditions. In Phase III, experimental studies are performed to measure the sorbent powder size distribution in different apparatuses and under different conditions. The population balance model proposed in previous studies can reasonably simulate these experiment results. These three areas of investigations are discussed in this report.
Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Final report
Chunshan Song; Schobert, H.H.; Parfitt, D.P.
1997-11-01
Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on exploring novel bimetallic dispersed catalysts for coal liquefaction and the effectiveness of temperature-programmed liquefaction using dispersed catalysts. The primary objective of this research was to explore novel bimetallic dispersed catalysts from organometallic molecular precursors, that could be used in low concentrations but exhibit relatively high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. We have synthesized and tested various catalyst precursors in liquefaction of subbituminous and bituminous coals and in model compound studies to examine how do the composition and structure of the catalytic precursors affect their effectiveness for coal liquefaction under different reaction conditions, and how do these factors affect their catalytic functions for hydrogenation of polyaromatic hydrocarbons, for cleavage of C-C bonds in polycyclic systems such as 4-(1-naphthylmethyl)bibenzyl, for hydrogenolysis of C-O bond such as that in dinaphthylether, for hydrodeoxygenation of phenolic compounds and other oxygen-containing compounds such as xanthene, and for hydrodesulfurization of polycyclic sulfur compounds such as dibenzothiophene. The novel bimetallic and monometallic precursors synthesized and tested in this project include various Mo- and Fe-based compounds.
Not Available
1980-10-01
Dispersed Storage and Generation (DSG) is the term that characterizes the present and future dispersed, relatively small (<30 MW) energy systems, such as solar thermal electric, photovoltaic, wind, fuel cell, storage battery, hydro, and cogeneration, that can help achieve national energy conservation goals and can be dispersed throughout the distribution portion of an electric utility system. A study of trends reveals that the need for DSG monitoring and control equipment by 1990 to 2000 will be great, measured in tens of thousands. Criteria for assessing DSG integration have been defined and indicate that economic and institutional as well as technical and other factors must be included. The principal emphasis in this report is on the functional requirements for DSG monitoring and control in six major categories. Twenty-four functional requirements have been prepared under these six categories and serve to indicate how to integrate the DSGs with the distribution and other portions of the electric utility system. The results indicate that there are no fundamental technical obstacles to prevent the connection of dispersed storage and generation to the distribution system. However, a communication system of some sophistication will be required to integrate the distribution system and the dispersed generation sources for effective control. The large-size span of generators from 10 kW to 30 MW means that a variety of remote monitoring and control may be required. The results show that an increased effort is required to develop demonstration equipment to perform the DSG monitoring and control functions and to acquire experience with this equipment in the utility distribution environment.
Faddegon, B A; Villarreal-Barajas, J E
2005-11-01
The Final Aperture Superposition Technique (FAST) is described and applied to accurate, near instantaneous calculation of the relative output factor (ROF) and central axis percentage depth dose curve (PDD) for clinical electron beams used in radiotherapy. FAST is based on precalculation of dose at select points for the two extreme situations of a fully open final aperture and a final aperture with no opening (fully shielded). This technique is different than conventional superposition of dose deposition kernels: The precalculated dose is differential in position of the electron or photon at the downstream surface of the insert. The calculation for a particular aperture (x-ray jaws or MLC, insert in electron applicator) is done with superposition of the precalculated dose data, using the open field data over the open part of the aperture and the fully shielded data over the remainder. The calculation takes explicit account of all interactions in the shielded region of the aperture except the collimator effect: Particles that pass from the open part into the shielded part, or visa versa. For the clinical demonstration, FAST was compared to full Monte Carlo simulation of 10 x 10, 2.5 x 2.5, and 2 x 8 cm2 inserts. Dose was calculated to 0.5% precision in 0.4 x 0.4 x 0.2 cm3 voxels, spaced at 0.2 cm depth intervals along the central axis, using detailed Monte Carlo simulation of the treatment head of a commercial linear accelerator for six different electron beams with energies of 6-21 MeV. Each simulation took several hours on a personal computer with a 1.7 Mhz processor. The calculation for the individual inserts, done with superposition, was completed in under a second on the same PC. Since simulations for the pre calculation are only performed once, higher precision and resolution can be obtained without increasing the calculation time for individual inserts. Fully shielded contributions were largest for small fields and high beam energy, at the surface, reaching a
Hanson A. L.; Diamond D.
2014-06-30
A plan is being developed for the conversion of the NIST research reactor (NBSR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. The LEU fuel may be a monolithic foil (LEUm) of U10Mo (10% molybdenum by weight in an alloy with uranium) or a dispersion of U7Mo in aluminum (LEUd). A previous report provided neutronic calculations for the LEUm fuel and this report presents the neutronics parameters for the LEUd fuel. The neutronics parameters for the LEUd fuel are compared to those previously obtained for the present HEU fuel and the proposed LEUm fuel. The results show no significant differences between the LEUm and the LEUd other than the LEUd fuel requires slightly less uranium than the LEUm fuel due to less molybdenum being present. The calculations include kinetics parameters, reactivity coefficients, reactivity worths of control elements and abnormal configurations, and power distributions under normal operation and with misloaded fuel elements.
van de Streek, Jacco; Neumann, Marcus A.
2010-01-01
This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 Å either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect. PMID:20841921
van de Streek, Jacco; Neumann, Marcus A
2010-10-01
This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 A either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect.
2007-12-11
Christian temperature fitting [9] • Jones-Wilkens-Lee (JWL) for gaseous detonation products [10]; explosive fitting parameters calculated using Cheetah ...cylindrical charge also shows a greater influence of particle distribution (shell versus matrix) on fireball size. The maximum fireball extent for...UCRL-50422, Lawrence Livermore Laboratory, University of California, 1968. [II] Fried, L. E., Howard, W. M., and Souers, P.C., " Cheetah 2.0 User’s
User`s guide for the CALPUFF dispersion model. Final report
1995-07-01
This report describes the CALPUFF dispersion model and associated processing programs. The CALPUFF model described in this report reflect improvements to the model including (1) new modules to treat buoyant rise and dispersion from area sources (such as forest fires), buoyant line sources, and volume sources, (2) an improved treatment of complex terrain, (3) additional model switches to facilitate its use in regulatory applications, (4) an enhanced treatment of wind shear through puff splitting, and (4) an optional PC-based GUI. CALPUFF has been coupled to the Emissions Production Model (EPM) developed by the Forest Service through an interface processor. EPM provides time-dependent emissions and heat release data for use in modeling controlled burns and wildfires.
Review and evaluation of the Adam 2. 1 dispersion model. Final report, October 1991-September 1992
Kunkel, B.A.
1992-10-01
ADAM 2.1 is a heavy gas, gaussian puff dispersion model which predicts the hazard area resulting from the release of a toxic chemical. The model takes into account: (1) the chemical reaction, if any, that takes place when the chemical is released to the atmosphere; (2) the gravitational slumping due to the high density of the cloud (due to aerosol presence, temperature or molecular weight); and, (3) the dispersion due to atmospheric turbulence. Sixteen different source types are modeled including instantaneous and continuous releases, pressurized liquid and gas releases, and non-pressurized liquid releases, cryogenic and non-cryogenic liquid releases, and diked and undiked releases. The chemical data base contains data on eight chemicals--ammonia, chlorine, fluorine, hydrogen fluoride, hydrogen sulfide, nitrogen tetroxide, phosgene, and sulfur dioxide. This report gives a general review of the model structure and its performance capabilities. A more detailed discussion of the model physics can be obtained from two earlier contractor reports. Model results are compared with the AFTOX dispersion model results and with field data.
Ingber, M. S.; Mondy, L. A.; Graham, A.; Brenner, H.
2001-03-31
The objective of this research is to combine recent advances in high performance computing (HPC), theoretical mechanics, and parallel nonlinear algorithms to make fundamental advances in the ability to predict transport phenomena in concentrated, multiphase, dispersed systems from first principles. The. ability to accurately model multiphase flow is central to the development of many energy-related technologies such as transport of muds, cements, proppants, and produced solids in petroleum production; transport of coal slurry feedstocks and design of fluidized bed reactors in synfuel production; and the manufacture of semiconductors, turbine blades, and advanced composite materials for energy conservation.
Dispersed oil toxicity tests with biological species indigenous to the Gulf of Mexico. Final report
Fucik, K.W.; Carr, K.A.; Balcom, B.J.
1994-08-01
Static and flowthrough aquatic acute toxicity testing protocols were utilized on eggs and larvae of seven commercially important invertebrates and fishes from the Gulf of Mexico. Test organisms were exposed to Central and Western Gulf oils, dispersed oil, and Corexit 9527. Species included brown shrimp (Penaeus aztecus), white shrimp (Penaeus setiferus), blue crab (Callinectes sapidus), eastern oyster (Crassostrea virginica), red drum (Sciaenops ocellatus), inland silverside (Menidia berylina), and spot (Leiosomus xanthurus). Atlantic menhaden (Brevoortia tyrannus) was also tested because gulf menhaden were not available. Mysids (Mysidopsis bahia) were evaluated as part of a chronic toxicity assessment.
NASA Astrophysics Data System (ADS)
Abuzariba, Suad Mohamed
This thesis includes a theoretical study of the performance of an optical network system with linear impairments: chromatic dispersion (CD), polarization mode dispersion (PMD), polarization dependent loss (PDL), and amplified spontaneous emission (ASE) noise. Both the a-factor and bit error rate (BER) were used as performance parameters in this study. First, an analytical optical eye diagram evaluation for a system of highly mode coupled PMD/PDL fiber and lumped sections (up to fifteen sections) have been presented in this study. Based on this evaluation we found that with PDL considered as well as PMD, the a-factor of the output becomes higher than that of a Maxwellian fiber having the same total root mean-squared PMD and PDL values, when the mean-square PDL element of the lumped sections makes up the major portion of the total mean-square of the whole system. Whereas without considering PDL, the a-factor becomes higher as the mean-square PMD element of the Maxwellian fiber takes the major portion of the total mean-square PMD element of the whole system. Also the worst case for the a-factor occurred when the lumped sections were in the middle between two equivalent Maxwellian fibers, rether than if the lumped sections were followed by Maxwellian fiber or the Maxwellian fiber is followed by the lumped sections. We also note that two equivalent Maxwellian fibers connected in series will not give the same a-factor as a Maxwellian fiber equivalent calculated by concatenation rules unless they have the same values of PMD, PDL, and polarization direction correlation elements. Second, considering ASE-noise besides CD, PMD, and PDL, improved values of bit error rate (BER) were gotten using the moment generation function for the optical system in cases of ON-OFF modulation format and DPSK modulation format. We found that, even when considering the noise only without the signal, the probability density function of the output current was dependent on the output state of
NASA Astrophysics Data System (ADS)
Urbina-Villalba, German; García-Sucre, Máximo; Toro-Mendoza, Jhoan
2003-12-01
In order to account for the hydrodynamic interaction (HI) between suspended particles in an average way, Honig et al. [J. Colloid Interface Sci. 36, 97 (1971)] and more recently Heyes [Mol. Phys. 87, 287 (1996)] proposed different analytical forms for the diffusion constant. While the formalism of Honig et al. strictly applies to a binary collision, the one from Heyes accounts for the dependence of the diffusion constant on the local concentration of particles. However, the analytical expression of the latter approach is more complex and depends on the particular characteristics of each system. Here we report a combined methodology, which incorporates the formula of Honig et al. at very short distances and a simple local volume-fraction correction at longer separations. As will be shown, the flocculation behavior calculated from Brownian dynamics simulations employing the present technique, is found to be similar to that of Batchelor’s tensor [J. Fluid. Mech. 74, 1 (1976); 119, 379 (1982)]. However, it corrects the anomalous coalescence found in concentrated systems as a result of the overestimation of many-body HI.
Phonon dispersion of Cu oxides from ab initio DFPT+U+J calculations
NASA Astrophysics Data System (ADS)
Cococcioni, M.; Himmetoglu, B.; Floris, A.
2012-12-01
After almost three decades from its discovery high Tc superconductivity is still waiting for a comprehensive explanation. Ab initio computer simulations can play a very important role in clarifying the physics of high Tc superconductors. One particular aspect, still under investigation, is the role played by the electron-phonon coupling in the onset of superconductivity at finite doping. To explore the effects of this coupling on the behavior of these materials is a formidable task as it requires the ability to efficiently compute phonons and to precisely capture the effects of electronic correlation (the parent materials of high Tc superconductors are, in general, correlated oxides). In this work we present the latest extension of density functional perturbation theory (DFPT - used to compute the vibrational properties of materials) to the corrected DFT+U+J functional we recently introduced to study the effects of electronic correlation on Cu oxides. The phonon frequencies and modes of CaCuO2, a prototype of high Tc parent materials, are computed and discussed in comparison with available experiments and calculations based on "standard" DFT approximations. This new numerical tool will be very important to investigate the role of electron-phonon couplings on the structural and transport properties of many transition-metal minerals for which electronic localization and magnetism play a very important role.
2007-07-05
Subtitle 2 of Title XXI of the Public Health Service Act, as enacted by the National Childhood Vaccine Injury Act of 1986, as amended (the Act), governs the National Vaccine Injury Compensation Program (VICP). The VICP, administered by the Secretary of Health and Human Services (the Secretary), provides that a proceeding for compensation for a vaccine-related injury or death shall be initiated by service upon the Secretary, and the filing of a petition with the United States Court of Federal Claims (the Court). In some cases, the injured individual may receive compensation for future lost earnings, less appropriate taxes and the "average cost of a health insurance policy, as determined by the Secretary." The final rule establishes the new method of calculating the average cost of a health insurance policy and determines the amount of the average cost of a health insurance policy to be deducted from the compensation award.
NASA Astrophysics Data System (ADS)
Poloni, Roberta; Howe, Joshua; Neaton, Jeffrey B.; Galli, Giulia; Smit, Berend
2011-03-01
Metal-organic frameworks (MOFs) have attracted much attention over the past 20 years for their possible applications in gas storage. In this study, we provide computational insight into what makes a MOF structure optimum for CO2 capture. We present a density functional theory-based study of the electronic and structural properties of recently synthesized frameworks M'3 [(M4 Cl)3 (BTT)8 ]2 , with M'=extraframework cation and M=Ca. We study the interactions between CO2 and different binding sites, and predict an unexpected favored binding site at the organic linker. We explore how binding energies are affected by the ordering and type of the extraframework cations. Finally, we address the role of dispersion forces by employing a recent non-local van der Waals functional, and compare with a DFT+D approach.
Kumar, Sumit; Singh, Santosh K; Vaishnav, Jamuna K; Hill, J Grant; Das, Aloke
2017-04-05
π-Hydrogen bonding interactions are ubiquitous in both materials and biology. Despite their relatively weak nature, great progress has been made in their investigation by experimental and theoretical methods, but this becomes significantly more complicated when secondary intermolecular interactions are present. In this study, the effect of successive methyl substitution on the supramolecular structure and interaction energy of indole⋅⋅⋅methylated benzene (ind⋅⋅⋅n-mb, n=1-6) complexes is probed through a combination of supersonic jet experiments and benchmark-quality quantum chemical calculations. It is demonstrated that additional secondary interactions introduce a subtle interplay among electrostatic and dispersion forces, as well as steric repulsion, which fine-tunes the overall structural motif. Resonant two-photon ionization and IR-UV double-resonance spectroscopy techniques are used to probe jet-cooled ind⋅⋅⋅n-mb (n=2, 3, 6) complexes, with redshifting of the N-H IR stretching frequency showing that increasing the degree of methyl substitution increases the strength of the primary N-H⋅⋅⋅π interaction. Ab initio harmonic frequency and binding energy calculations confirm this trend for all six complexes. Electronic spectra of the three dimers are broad and structureless, with quantum chemical calculations revealing that this is likely to be due to multiple tilted conformations of each dimer possessing similar stabilization energies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Catalyst dispersion and activity under conditions of temperature-staged liquefaction. Final report
Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.
1993-02-01
This research program involves the investigation of the use of highly dispersed catalyst precursors for the pretreatment of coals by mild hydrogenation. During the course of this effort solvent preswelling of the coal was evaluated as a means of deeply impregnating catalysts into coal, active phases of catalysts under reaction conditions were studied and the impact of these techniques were evaluated during pretreatment and temperature-staged liquefaction. Two coals, a Texas subbituminous and a Utah high volatile A bituminous, were used to examine the effects of solvent swelling pretreatment and catalyst impregnation on conversion behavior at 275{degrees}C, representative of the first, low-temperature stage in a temperature-staged liquefaction reaction. Ferrous sulfate, iron pentacarbonyl, ammonium tetrathiomolybdate, and molybdenum hexacarbonyl were used as catalyst precursors. Without swelling pretreatment, impregnation of both coals increased conversion, mainly through increased yields of preasphaltenes.
Vaporization, dispersion, and radiant fluxes from LPG spills. Final technical report
Not Available
1982-05-01
Both burning and non-burning spills of LPG (primarily propane) were studied. Vaporization rates for propane spills on soil, concrete, insulating concrete, asphalt, sod, wood, and polymer foams were measured. Thermal conductivity, heat transfer coefficients, and steady state vaporization rates were determined. Vapor concentrations were measured downwind of open propane pools and a Gaussian dispersion model modified for area sources provided a good correlation of measured concentrations. Emitted and incident radiant fluxes from propane fires were measured. Simplified flame radiation models were adequate for predicting radiant fluxes. Tests in which propane was sprayed into the air showed that at moderately high spray rates all the propane flashed to vapor or atomized; no liquid collected on the ground.
Wei, Wei; Lv, Zhaofeng; Yang, Gan; Cheng, Shuiyuan; Li, Yue; Wang, Litao
2016-11-01
This study aimed to apply an inverse-dispersion calculation method (IDM) to estimate the emission rate of volatile organic compounds (VOCs) for the complicated industrial area sources, through a case study on a petroleum refinery in Northern China. The IDM was composed of on-site monitoring of ambient VOCs concentrations and meteorological parameters around the source, calculation of the relationship coefficient γ between the source's emission rate and the ambient VOCs concentration by the ISC3 model, and estimation of the actual VOCs emission rate from the source. Targeting the studied refinery, 10 tests and 8 tests were respectively conducted in March and in June of 2014. The monitoring showed large differences in VOCs concentrations between background and downwind receptors, reaching 59.7 ppbv in March and 248.6 ppbv in June, on average. The VOCs increases at receptors mainly consisted of ethane (3.1%-22.6%), propane (3.8%-11.3%), isobutane (8.5%-10.2%), n-butane (9.9%-13.2%), isopentane (6.1%-12.9%), n-pentane (5.1%-9.7%), propylene (6.1-11.1%) and 1-butylene (1.6%-5.4%). The chemical composition of the VOCs increases in this field monitoring was similar to that of VOCs emissions from China's refineries reported, which revealed that the ambient VOCs increases were predominantly contributed by this refinery. So, we used the ISC3 model to create the relationship coefficient γ for each receptor of each test. In result, the monthly VOCs emissions from this refinery were calculated to be 183.5 ± 89.0 ton in March and 538.3 ± 281.0 ton in June. The estimate in June was greatly higher than in March, chiefly because the higher environmental temperature in summer produced more VOCs emissions from evaporation and fugitive process of the refinery. Finally, the VOCs emission factors (g VOCs/kg crude oil refined) of 0.73 ± 0.34 (in March) and 2.15 ± 1.12 (in June) were deduced for this refinery, being in the same order with previous direct
Foster, K; Arnold, E; Bonner, D; Eme, B; Fischer, K; Gash, J; Nasstrom, J; Walker, H; Guber, A; Logan, C; Wasiolek, P; Fulton, J
2005-09-20
Staff from Lawrence Livermore National Laboratory (LLNL), Bechtel Nevada Remote Sensing Laboratory (RSL), and Sandia National Laboratory (SNL) completed the proposed work for the Technology Integration Project titled Integration of AMS and ERDS Measurement Data into NARAC Dispersion Models. The objectives of this project were to develop software to convert Aerial Measurement Survey (AMS) and Emergency Response Data System (ERDS) field measurement data into a standard electronic format for transmission to the National Atmospheric Release Advisory Center (NARAC), and to streamline aspects of the NARAC operational atmospheric dispersion modeling system to quickly process these data for use in generating consequence calculations based on refined, field measurement-based estimates of the source strength. Although NARAC continues to develop and maintain a state-of-the-art atmospheric dispersion modeling system, model predictions are constrained by the availability of information to properly characterize the source term. During an actual atmospheric release, very little may be known initially about the source material properties, amount, or release time and location. Downwind measurements often provide the best information about the scope and nature of the release. The timely integration of field measurement data with model calculations is an obvious approach toward improving the model consequence predictions. By optimizing these predictions a more accurate representation of the consequences may be provided to (a) predict contamination levels which may be below the detectable limit of sensors, but which may still pose a significant hazard, (b) determine contamination is areas where measurements have not yet been made, and (c) prioritize the locations of future measurement surveys. By automating and streamlining much of the related field measurement data processing, these optimized predictions may be provided within a significantly reduced period, and with a reduction in
Fischer, Michael
2015-10-14
The chabazite-type silicoaluminophosphate SAPO-34 is a promising adsorbent for applications in thermal energy storage using water adsorption-desorption cycles. In order to develop a microscopic understanding of the impact of local heterogeneities and defects on the water adsorption properties, the interaction of different models of SAPO-34 with water was studied using dispersion-corrected density-functional theory (DFT-D) calculations. In addition to SAPO-34 with isolated silicon atoms, the calculations considered models incorporating two types of heterogeneities (silicon islands, aluminosilicate domains), and two defect-containing (partially and fully desilicated) systems. DFT-D optimisations were performed for systems with small amounts of adsorbed water, in which all H2O molecules can interact with framework protons, and systems with large amounts of adsorbed water (30 H2O molecules per unit cell). At low loadings, the host-guest interaction energy calculated for SAPO-34 with isolated Si atoms amounts to approximately -90 kJ mol(-1). While the presence of local heterogeneities leads to the creation of some adsorption sites that are energetically slightly more favourable, the interaction strength is drastically reduced in systems with defects. At high water loadings, energies in the range of -70 kJ mol(-1) are obtained for all models. The DFT-D interaction energies are in good agreement with experimentally measured heats of water adsorption. A detailed analysis of the equilibrium structures was used to gain insights into the binding modes at low coverages, and to assess the extent of framework deprotonation and changes in the coordination environment of aluminium atoms at high water loadings.
Hickman, R.; Reitter, T.
1985-01-01
The purpose of our investigation was to determine if the rapid progression of fire to flashover conditions in a furnished room, observed in a 1953 nuclear weapons test at the Nevada Test Site (the Encore Event), might be typical behavior rather than an aberration. If flashover under such conditions is indeed likely, this phenomenon is worth pursuing in view of the increased threat to buildings and human life from possible large-scale fires. We placed special emphasis on fires that occurred in modern rooms, i.e., ones furnished with upholstery and drapery materials made from synthetic polymers. Examination of photochemical processes showed them to be an unlikely explanation, either in Encore or in the future. Our calculation of rapid radiant-heating behavior of a few materials demonstrated that fabrics and fabric-covered foams would exceed their autoignition temperature when exposed to a 25-cal/cm/sup 2/ fluence from a 1-Mt air burst weapon. Because synthetic polymers have higher heating values and release heat faster during combustion than do the cellulosics used in the Encore experiment, early flashover should not be unexpected in contemporary households. However, the far-field thermal fluence required would be higher because of the absorption of thermal energy by windows and window coverings. Because of the complexity of the problem, carefully planned, full-scale experiments will be needed to finally answer the question. 39 refs., 9 figs., 8 tabs.
NASA Astrophysics Data System (ADS)
Lai, S. K.; Peng, W. P.; Wang, G. F.
2001-04-01
A realistic statistical-mechanics model is applied to describe the repulsive interaction between charged colloids. The latter, in combination with the long-range van der Waals attraction simulated under excess salt environment, gives rise to a total intercolloidal particle potential showing a clear second potential minimum. Differing from the usual Derjaguin-Landau-Verwey-Overbeek (DLVO) model, the present model is valid at any finite concentration of colloids and is thus an appropriate model for investigating the low- and high-density liquid phase transition. Employing this two-body colloid-colloid potential and in conjunction with the Weeks-Chandler-Andersen [J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237 (1971)] thermodynamic perturbation theory, we derive analytical expressions for the pressure, chemical potential, and related thermodynamic functions. These thermodynamic quantities were used to calculate the phase diagrams of charged colloidal dispersions in terms of the critical parameters: temperature, volume fraction, and electrolyte concentration parameter kD. Compared with the DLVO model, we find the areas enclosed within the spinodal decomposition and also the liquid-liquid coexistence curves broader in the present model for an excess salt condition κ=kDσ0<~200, σ0 being the macroion diameter, in addition to exhibiting a shift in the critical point κc to lower values; for κ>300, the disparities between the two models reduce. The same thermodynamic perturbation theory has been employed to study also the weak reversible coagulation whose physical origin is attributed to the presence of the second potential minimum. We examine various colloidal parameters that affect the structure of the latter and deduce from our analysis the conditions of colloidal stability. In comparison with the measured flocculation data for a binary mixture of polystyrene lattices and water, we find that our calculated results are generally reasonable, thus
Lai, S K; Peng, W P; Wang, G F
2001-04-01
A realistic statistical-mechanics model is applied to describe the repulsive interaction between charged colloids. The latter, in combination with the long-range van der Waals attraction simulated under excess salt environment, gives rise to a total intercolloidal particle potential showing a clear second potential minimum. Differing from the usual Derjaguin-Landau-Verwey-Overbeek (DLVO) model, the present model is valid at any finite concentration of colloids and is thus an appropriate model for investigating the low- and high-density liquid phase transition. Employing this two-body colloid-colloid potential and in conjunction with the Weeks-Chandler-Andersen [J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237 (1971)] thermodynamic perturbation theory, we derive analytical expressions for the pressure, chemical potential, and related thermodynamic functions. These thermodynamic quantities were used to calculate the phase diagrams of charged colloidal dispersions in terms of the critical parameters: temperature, volume fraction, and electrolyte concentration parameter k(D). Compared with the DLVO model, we find the areas enclosed within the spinodal decomposition and also the liquid-liquid coexistence curves broader in the present model for an excess salt condition kappa=k(D)sigma(0)< or similar to 200, sigma(0) being the macroion diameter, in addition to exhibiting a shift in the critical point kappa(c) to lower values; for kappa>300, the disparities between the two models reduce. The same thermodynamic perturbation theory has been employed to study also the weak reversible coagulation whose physical origin is attributed to the presence of the second potential minimum. We examine various colloidal parameters that affect the structure of the latter and deduce from our analysis the conditions of colloidal stability. In comparison with the measured flocculation data for a binary mixture of polystyrene lattices and water, we find that our calculated
Hunter, C.H.
1990-10-22
The Environmental Protection Agency's (EPA) Industrial Source Complex -- Short Term (ISCST) air dispersion model was used to examine potential atmospheric impacts of routine benzene and mercury emissions from the Defense Waste Processing Facility (DWPF), In-Tank Precipitation (ITP) facilities, and the Saltstone Facility. The highest model estimated 8-hour average ground-level benzene concentrations were found to occur in the immediate vicinity of the ITP filter/stripper building (241-96H). Subsequent model calculations were used to determine minimum stack release heights that would be necessary to achieve compliance with this workplace exposure standard for currently anticipated emission levels. The highest 24-hour average site boundary concentrations of benzene and mercury generally occurred to the north of S and H areas. Concentrations were well below the ambient concentration standards that have been identified for these substances in an air toxics policy proposed by the State of South Carolina. Estimates of annual average benzene concentrations for offsite locations were used to estimate the excess lifetime cancer risk. Assuming continuous 70-year exposure to the estimated annual benzene concentrations, the excess cancer risk to the maximum exposed individual was estimated to be 3 {times} 10{sup {minus}7}. Similar lifetime exposure summed over the surrounding population resulted in an estimated average of 6 {times} 10{sup {minus}4} excess cancers per year. 14 refs., 1 fig., 7 tabs.
Bauer, Timothy J
2013-06-15
The Jack Rabbit Test Program was sponsored in April and May 2010 by the Department of Homeland Security Transportation Security Administration to generate source data for large releases of chlorine and ammonia from transport tanks. In addition to a variety of data types measured at the release location, concentration versus time data was measured using sensors at distances up to 500 m from the tank. Release data were used to create accurate representations of the vapor flux versus time for the ten releases. This study was conducted to determine the importance of source terms and meteorological conditions in predicting downwind concentrations and the accuracy that can be obtained in those predictions. Each source representation was entered into an atmospheric transport and dispersion model using simplifying assumptions regarding the source characterization and meteorological conditions, and statistics for cloud duration and concentration at the sensor locations were calculated. A detailed characterization for one of the chlorine releases predicted 37% of concentration values within a factor of two, but cannot be considered representative of all the trials. Predictions of toxic effects at 200 m are relevant to incidents involving 1-ton chlorine tanks commonly used in parts of the United States and internationally.
Zhao, Xingtao; Liu, Xiaoxu; Wang, Shutao; Wang, Wei; Han, Ying; Liu, Zhaolun; Li, Shuguang; Hou, Lantian
2015-10-19
Photonic crystal fibers with three and four zero-dispersion wavelengths are presented through special design of the structural parameters, in which the closing to zero and ultra-flattened dispersion can be obtained. The unique phase-matching properties of the fibers with three and four zero-dispersion wavelengths are analyzed. Variation of the phase-matching wavelengths with the pump wavelengths, pump powers, dispersion properties, and fiber structural parameters is analyzed. The presence of three and four zero-dispersion wavelengths can realize wavelength conversion of optical soliton between two anomalous dispersion regions, generate six phase-matching sidebands through four-wave mixing and create more new photon pairs, which can be used for the study of supercontinuum generation, optical switches and quantum optics.
Not Available
1993-12-31
This task involved the calculation of neutron and proton radii of cesium isotopes. The author has written a computer code that calculates radii according to two models: Myers 1983 and FRDM 1992. Results of calculations in both these models for both cesium and francium isotopes are attached as figures. He is currently interpreting these results in collaboration with D. Vieira and J.R. Nix, and they expect to use the computer code for further studies of nuclear radii.
Kang, Young Kee; Byun, Byung Jin
2010-12-01
Density functionals with long-range and/or empirical dispersion corrections, including LC-ωPBE, B97-D, ωB97X-D, M06-2X, B2PLYP-D, and mPW2PLYP-D functionals, are assessed for their ability to describe the conformational preferences of Ac-Ala-NHMe (the alanine dipeptide) and Ac-Pro-NHMe (the proline dipeptide) in the gas phase and in water, which have been used as prototypes for amino acid residues of peptides. For both dipeptides, the mean absolute deviation (MAD) is estimated to be 0.22-0.40 kcal/mol in conformational energy and 2.0-3.2° in torsion angles φ and ψ using these functionals with the 6-311++G(d,p) basis set against the reference values calculated at the MP2/aug-cc-pVTZ//MP2/aug-cc-pVDZ level of theory in the gas phase. The overall performance is obtained in the order B2PLYP-D ≈ mPW2PLYP-D > ωB97X-D ≈ M06-2X > MP2 > LC-ωPBE > B3LYP with the 6-311++G(d,p) basis set. The SMD model at the M06-2X/6-31+G(d) level of theory well reproduced experimental hydration free energies of the model compounds for backbone and side chains of peptides with MADs of 0.47 and 4.3 kcal/mol for 20 neutral and 5 charged molecules, respectively. The B2PLYP-D/6-311++G(d,p)//SMD M06-2X/6-31+G(d) level of theory provides the populations of backbone and/or prolyl peptide bond for the alanine and proline dipeptides in water that are consistent with the observed values.
Bellantoni, J.
1982-11-01
The use of chemicals for oil spill dispersal, while not presently widespread in the U.S., would have implications for the U.S. Coast Guard's Marine Environmental Protection program. This report explores the logistics of oil disperant application by the U.S. Coast Guard. Data were reviewed for the 13 dispersants for which data had been submitted to the EPA as of October 1979. Manufacturer's data and published test results were also examined and information summarized with regard to classification, handling and storage application, availability and cost.
NASA Astrophysics Data System (ADS)
Kovalets, Ivan V.; Korolevych, Vladimir Y.; Khalchenkov, Alexander V.; Ievdin, Ievgen A.; Zheleznyak, Mark J.; Andronopoulos, Spyros
2013-11-01
The impact of diagnostic wind field model on the results of calculation of microscale atmospheric dispersion in moderately complex terrain conditions was investigated. The extensive radiological and meteorological data set collected at the site of the research reactor of the Chalk River Laboratories (CRL) in Canada had been compared with the results of calculations of the Local Scale Model Chain of the EU nuclear emergency response system JRODOS. The diagnostic wind field model based on divergence minimizing procedure and the atmospheric dispersion model RIMPUFF were used in calculations. Taking into account complex topography features with the use of diagnostic wind field model improved the results of calculations. For certain months, the level of improvement of the normalized mean squared error reached the factor of 2. For the whole simulation period (January-July, 2007) the level of improvement by taking into account terrain features with the diagnostic wind field model was about 9%. The use of diagnostic wind field model also significantly improved the fractional bias of the calculated results. Physical analysis of the selected cases of atmospheric dispersion at the CRL site had been performed.
Early time Starfish calculations. Final report, 30 April 1979-15 June 1980
Fajen, F.E.; Kilb, R.W.
1982-02-01
In this report, we present results from recent CMHD (Collisionless Magnetohydrodynamics) code calculations of the early time (0 to 1 sec.) evolution of the STARFISH event. The emphasis of this report is on the velocity spectrum of the energy going to the conjugate patches. We present a parameter study, utilizing results from eight simplified, CMHD-like calculations, which demonstrates the dominant role played by ionizing collisions during the blast wave expansion.
NASA Astrophysics Data System (ADS)
Morel, Jacques; Kravtsov, V.; Grigoriev, V.
2013-01-01
This supplementary intercomparison was requested by VNIIOFI in order to establish the link with previous works, which were performed in the frame of EUROMET-PR.S1 and EUROMET-PR.S1.1. This bilateral intercomparison was carried out by using the same rules and technical procedures that were applied for the two previous studies. Measurements of the total chromatic dispersion, of the zero dispersion wavelength and of the dispersion slope were performed on two references, namely one G.652 fibre and one G.653 fibre. The measurement of the chromatic dispersion and of the dispersion slope showed a very good agreement between VNIIOFI and METAS results. The determination of the zero dispersion wavelength of the G.653 fibre showed deviations that were at the limit of the measurement uncertainty. This bilateral intercomparison allowed the VNIIOFI measurement system to be validated and also provided the link to the results of the EUROMET-PR.S1 project. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by EURAMET, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Erba, Alessandro; Maul, Jefferson; Civalleri, Bartolomeo
2016-01-31
An ab initio quantum-mechanical theoretical framework is presented to compute the thermal properties of molecular crystals. The present strategy combines dispersion-corrected density-functional-theory (DFT-D), harmonic phonon dispersion, quasi-harmonic approximation to the lattice dynamics for thermal expansion and thermodynamic functions, and quasi-static approximation for anisotropic thermo-elasticity. The proposed scheme is shown to reliably describe thermal properties of the urea molecular crystal by a thorough comparison with experimental data.
NASA Technical Reports Server (NTRS)
Bahn, G. S.
1978-01-01
Two files of data, obtained with a modular multiband scanner, for an acid waste dump into ocean water, were analyzed intensively. Signatures were derived for background water at different levels of effective sunlight intensity, and for different iron concentrations in the dispersed plume from the dump. The effect of increased sunlight intensity on the calculated iron concentration was found to be relatively important at low iron concentrations and relatively unimportant at high values of iron concentration in dispersed plumes. It was concluded that the basic equation for iron concentration is not applicable to dense plumes, particularly because lower values are indicated at the very core of the plume, than in the surrounding sheath, whereas radiances increase consistently from background water to dispersed plume to inner sheath to innermost core. It was likewise concluded that in the dense plume the iron concentration would probably best be measured by the higher wave length radiances, although the suitable relationship remains unknown.
Lauber, T.S.
1980-12-01
The purpose of this report is to present a digital computer program capable of calculating the electrostatic field in an arbitrary two-dimensional configuration. The program was developed as a preliminary result in a project aimed at producing a three-dimensional program. Thus, this report represents an interim report on the entire project.
Numerically induced pressure excursions in two-phase-flow calculations. Final report
Mahaffy, J.H.; Liles, D.R.
1983-01-01
Pressure spikes that cannot be traced to any physical origin sometimes are observed when standard Eulerian finite-difference methods are used to calculate two-phase-flow transients. This problem occurs with varying frequency in nuclear reactor safety codes such as RELAP, RETRAN, COBRA, and TRAC. These spikes usually result from numerical water packing or from interactions between spatial discretization and heat transfer.
Butcher, B.M.
1997-08-01
A summary of the input parameter values used in final predictions of closure and waste densification in the Waste Isolation Pilot Plant disposal room is presented, along with supporting references. These predictions are referred to as the final porosity surface data and will be used for WIPP performance calculations supporting the Compliance Certification Application to be submitted to the U.S. Environmental Protection Agency. The report includes tables and list all of the input parameter values, references citing their source, and in some cases references to more complete descriptions of considerations leading to the selection of values.
Castañeda-Priego, R; Lobaskin, V; Mixteco-Sánchez, J C; Rojas-Ochoa, L F; Linse, P
2012-02-15
The structure of charge-stabilized colloidal dispersions has been studied through a one-component model using a Yukawa potential with density-dependent parameters examined with integral equation theory and Monte Carlo simulations. Partial thermodynamic consistency was guaranteed by considering the osmotic pressure of the dispersion from the approximate mean-field renormalized jellium and Poisson-Boltzmann cell models. The colloidal structures could be accurately described by the Ornstein-Zernike equation with the Rogers-Young closure by using the osmotic pressure from the renormalized jellium model. Although we explicitly show that the correct effective pair-potential obtained from the inverse Monte Carlo method deviates from the Yukawa shape, the osmotic pressure constraint allows us to have a good description of the colloidal structure without losing information on the system thermodynamics. Our findings are corroborated by primitive model simulations of salt-free colloidal dispersions.
Waste Isolation Pilot Plant Title I operator dose calculations. Final report, LATA report No. 90
Hughes, P.S.; Rigdon, L.D.
1980-02-01
The radiation exposure dose was estimated for the Waste Isolation Pilot Plant (WIPP) operating personnel who do the unloading and transporting of the transuranic contact-handled waste. Estimates of the radiation source terms for typical TRU contact-handled waste were based on known composition and properties of the waste. The operations sequence for waste movement and storage in the repository was based upon the WIPP Title I data package. Previous calculations had been based on Conceptual Design Report data. A time and motion sequence was developed for personnel performing the waste handling operations both above and below ground. Radiation exposure calculations were then performed in several fixed geometries and folded with the time and motion studies for individual workers in order to determine worker exposure on an annual basis.
Calculations to assist in a new Hiroshima yield estimate. Final report, August 19-December 31, 1983
Kennedy, L.W.; Roth, L.A.; Needham, C.E.
1984-06-15
This report describes calculations and analysis performed in an attempt to provide a new estimate for the yield of the Hiroshima weapon. Newly discovered meteorological data was adapted for use in one- and two-dimensional hydrodynamic codes, and a series of calculations was then run for different values of yield. The objective was to determine what yield produced an overpressure record which could best be correlated with an actual trace measured at a parachute-dropped canister. Altitude of the bomb and canister-carrying aircraft at drop time was also a variable parameter. The analysis provides an estimate of 16.6 + 0.3 kt for the yield of the Hiroshima weapon. A drop altitude of near 35,500 feet is shown to be consistent with the signal time-of-arrival. This yield value is within the range of other estimates, but the drop altitude is higher than that previously assumed to be reasonable.
Mitchell, Scott A.; Ebeida, Mohamed Salah; Romero, Vicente J.; Swiler, Laura Painton; Rushdi, Ahmad A.; Abdelkader, Ahmad
2015-09-01
This SAND report summarizes our work on the Sandia National Laboratory LDRD project titled "Efficient Probability of Failure Calculations for QMU using Computational Geometry" which was project #165617 and proposal #13-0144. This report merely summarizes our work. Those interested in the technical details are encouraged to read the full published results, and contact the report authors for the status of the software and follow-on projects.
Breuer, G D; Chow, J H; Lindh, C B; Miller, N W; Numrich, F H; Price, W W; Turner, A E; Whitney, R R
1982-09-01
Improved methods are needed to characterize ac system harmonic behavior for ac filter design for HVDC systems. The purpose of this General Electric Company RP1138 research is to evaluate the present filter design practice and to investigate methods for calculating system harmonic impedances. An overview of ac filter design for HVDC systems and a survey of literature related to filter design have been performed. Two methods for calculating system harmonic impedances have been investigated. In the measurement method, an instrumentation system for measuring system voltage and current has been assembled. Different schemes of using the measurements to calculate system harmonic impedances have been studied. In the analytical method, a procedure to include various operating conditions has been proposed. Computer programs for both methods have been prepared, and the results of the measurement and analytical methods analyzed. A conclusion of the project is that the measurement and analytical methods both provided reasonable results. There are correlations between the measured and analytical results for most harmonics, although there are discrepancies between the assumptions used in the two methods. A sensitivity approach has been proposed to further correlate the results. From the results of the analysis, it is recommended that both methods should be tested further. For the measurement method, more testing should be done to cover different system operating conditions. In the analytical method, more detailed models for representing system components should be studied. In addition, alternative statistical and sensitivity approaches should be attempted.
NASA Astrophysics Data System (ADS)
Manney, Gloria L.; Lawrence, Zachary D.
2016-12-01
The 2015/16 Northern Hemisphere winter stratosphere appeared to have the greatest potential yet seen for record Arctic ozone loss. Temperatures in the Arctic lower stratosphere were at record lows from December 2015 through early February 2016, with an unprecedented period of temperatures below ice polar stratospheric cloud thresholds. Trace gas measurements from the Aura Microwave Limb Sounder (MLS) show that exceptional denitrification and dehydration, as well as extensive chlorine activation, occurred throughout the polar vortex. Ozone decreases in 2015/16 began earlier and proceeded more rapidly than those in 2010/11, a winter that saw unprecedented Arctic ozone loss. However, on 5-6 March 2016 a major final sudden stratospheric warming ("major final warming", MFW) began. By mid-March, the mid-stratospheric vortex split after being displaced far off the pole. The resulting offspring vortices decayed rapidly preceding the full breakdown of the vortex by early April. In the lower stratosphere, the period of temperatures low enough for chlorine activation ended nearly a month earlier than that in 2011 because of the MFW. Ozone loss rates were thus kept in check because there was less sunlight during the cold period. Although the winter mean volume of air in which chemical ozone loss could occur was as large as that in 2010/11, observed ozone values did not drop to the persistently low values reached in 2011.We use MLS trace gas measurements, as well as mixing and polar vortex diagnostics based on meteorological fields, to show how the timing and intensity of the MFW and its impact on transport and mixing halted chemical ozone loss. Our detailed characterization of the polar vortex breakdown includes investigations of individual offspring vortices and the origins and fate of air within them. Comparisons of mixing diagnostics with lower-stratospheric N2O and middle-stratospheric CO from MLS (long-lived tracers) show rapid vortex erosion and extensive mixing during
Keeton, L.W.; Marchland, E.O.; Singhal, A.K.; Spalding, D.B.
1980-01-01
The URSULA2 computer program has been developed for the thermal-hydraulic analysis of steam generators for PWR nuclear power plants. It computes three-dimensional distributions of velocity, pressure, enthalpy, etc., in the shell of the generator, and the distributions of primary-fluid temperature within the tubes. The code is applicable to both steady and unsteady flows and is equiped with three physical models: the equal velocity homogeneous model, a slip (or two-fluid) model, and an algebraic slip model. Applications, sensitivity studies, and demonstration calculations are presented.
Andronopoulos, S; Bartzis, J G
2010-12-01
The paper presents the development of a model for the calculation of the gamma radiation dose rate from a cloud or plume of radionuclides. The model has been implemented in the Lagrangian puff dispersion model DIPCOT which is used in the framework of the RODOS system for nuclear emergency management. The basic characteristics of the model are its speed of execution and its ability to calculate the gamma dose rates from clouds or plumes of random shape formed under non-homogeneous meteorological conditions or over complicated topography. The three-dimensional integral that would normally have to be numerically calculated in such circumstances has been transformed to a one-dimensional one through a coordinate transformation for each model puff and by using a separation of variables technique. The resulting one-dimensional integrals have been pre-calculated and their values stored for a range of parameters that cover the possible ranges of photon energies, puff dimensions and distances encountered in cases of atmospheric dispersion. During runtime the model calculates the exact values by interpolation from stored tables of values. This is a very fast and accurate method, as the evaluation study has proved. The model performance has been evaluated through simulations of a real-scale experiment involving routine emissions of (41)Ar from a reactor and comparisons of model predictions with measured fluence rates. The comparisons have revealed a satisfactory level of agreement and the model performance statistical indices are well above the acceptance criteria that are suggested in the literature.
Gowda, Varun; Hogue, Michael
2015-07-17
This report will discuss the methods and the results from economic impact analysis applied to the development of Enhanced Geothermal Systems (EGS), conventional hydrothermal, low temperature geothermal and coproduced fluid technologies resulting in electric power production. As part of this work, the Energy & Geoscience Institute (EGI) has developed a web-based Geothermal Economics Calculator (Geothermal Economics Calculator (GEC)) tool that is aimed at helping the industry perform geothermal systems analysis and study the associated impacts of specific geothermal investments or technological improvements on employment, energy and environment. It is well-known in the industry that geothermal power projects will generate positive economic impacts for their host regions. Our aim in the assessment of these impacts includes quantification of the increase in overall economic output due to geothermal projects and of the job creation associated with this increase. Such an estimate of economic impacts of geothermal investments on employment, energy and the environment will also help us understand the contributions that the geothermal industry will have in achieving a sustainable path towards energy production.
Zhang, Hongmao; Chu, Wei; Zhang, Zhibin
2017-01-01
Little is known about seeding regeneration of cultivated trees compared to wild relatives in areas where seed dispersers are shared. Here, we investigated the differences in seed fates of cultivated walnut (Juglans regia) and wild Manchurian walnut (Juglans mandshurica) trees under rodent predation and dispersal. J. regia seeds have higher nutritional value (large size, mass and kernel mass) and lower mechanical defensiveness (thin endocarp) than J. mandshurica seeds. We tracked seeds of J. regia and J. mandshurica under both enclosure and field conditions to assess differences in competing for seed dispersers of the two co-occurring tree species of the same genus. We found that rodents preferred to harvest, eat and scatter-hoard seeds of J. regia as compared to those of J. mandshurica. Seeds of J. regia were removed and scatter-hoarded faster than those of J. mandshurica. Caches of J. regia were more likely to be rediscovered by rodents than those of J. mandshurica. These results suggest that J. regia showed earlier dispersal fitness but not the ultimate dispersal fitness over J. mandshurica in seeding regeneration under rodent mediation, implying that J. regia has little effect on seeding regeneration of J. mandshurica in the field. The effects of seed traits on seed dispersal fitness may vary at different dispersal stages under animal mediation.
Jagielski, K.D.; O'Brien, R.J.
1994-07-01
This report serves as a guidance manual for Bioenvironmental Engineering personnel or other, responsible environmentally-related office in the development of installation-level criteria air pollutant emission inventories. Emission inventories are used to assess and document compliance with federal, state, and local environmental statutes and regulations and can serve as a useful pollution management tool. This report may be used in a stand-alone fashion or in conjunction with an Air Staff-approved emissions software database management program tailored for the Air Force community. Source-specific emissions software, available through the U.S. Environmental Protection Agency for some sources such as motor vehicles and fuel storage tanks, may also be used to assist in calculating and managing emissions data.
Egger, David A; Kronik, Leeor
2014-08-07
A microscopic picture of structure and bonding in organic-inorganic perovskites is imperative to understanding their remarkable semiconducting and photovoltaic properties. On the basis of a density functional theory treatment that includes both spin-orbit coupling and dispersive interactions, we provide detailed insight into the crystal binding of lead-halide perovskites and quantify the effect of different types of interactions on the structural properties. Our analysis reveals that cohesion in these materials is characterized by a variety of interactions that includes important contributions from both van der Waals interactions among the halide atoms and hydrogen bonding. We also assess the role of spin-orbit coupling and show that it causes slight changes in lead-halide bonding that do not significantly affect the lattice parameters. Our results establish that consideration of dispersive effects is essential for understanding the structure and bonding in organic-inorganic perovskites in general and for providing reliable theoretical predictions of structural parameters in particular.
NASA Astrophysics Data System (ADS)
Traino, Antonio C.; Di Martino, Fabio; Grosso, Mariano; Monzani, Fabio; Dardano, Angela; Caraccio, Nadia; Mariani, Giuliano; Lazzeri, Mauro
2005-05-01
Substantial reductions in thyroid volume (up to 70-80%) after radioiodine therapy of Graves' hyperthyroidism are common and have been reported in the literature. A relationship between thyroid volume reduction and outcome of 131I therapy of Graves' disease has been reported by some authors. This important result could be used to decide individually the optimal radioiodine activity A0 (MBq) to administer to the patient, but a predictive model relating the change in gland volume to A0 is required. Recently, a mathematical model of thyroid mass reduction during the clearance phase (30-35 days) after 131I administration to patients with Graves' disease has been published and used as the basis for prescribing the therapeutic thyroid absorbed dose. It is well known that the thyroid volume reduction goes on until 1 year after therapy. In this paper, a mathematical model to predict the final mass of Graves' diseased thyroids submitted to 131I therapy is presented. This model represents a tentative explanation of what occurs macroscopically after the end of the clearance phase of radioiodine in the gland (the so-called second-order effects). It is shown that the final thyroid mass depends on its basal mass, on the radiation dose absorbed by the gland and on a constant value α typical of thyroid tissue. α has been evaluated based on a set of measurements made in 15 reference patients affected by Graves' disease and submitted to 131I therapy. A predictive equation for the calculation of the final mass of thyroid is presented. It is based on macroscopic parameters measurable after a diagnostic 131I capsule administration (0.37-1.85 MBq), before giving the therapy. The final mass calculated using this equation is compared to the final mass of thyroid measured 1 year after therapy administration in 22 Graves' diseased patients. The final masses calculated and measured 1 year after therapy are in fairly good agreement (R = 0.81). The possibility, for the physician, to decide a
Final Report for "Design calculations for high-space-charge beam-to-RF conversion".
David N Smithe
2008-10-17
Accelerator facility upgrades, new accelerator applications, and future design efforts are leading to novel klystron and IOT device concepts, including multiple beam, high-order mode operation, and new geometry configurations of old concepts. At the same time, a new simulation capability, based upon finite-difference “cut-cell” boundaries, has emerged and is transforming the existing modeling and design capability with unparalleled realism, greater flexibility, and improved accuracy. This same new technology can also be brought to bear on a difficult-to-study aspect of the energy recovery linac (ERL), namely the accurate modeling of the exit beam, and design of the beam dump for optimum energy efficiency. We have developed new capability for design calculations and modeling of a broad class of devices which convert bunched beam kinetic energy to RF energy, including RF sources, as for example, klystrons, gyro-klystrons, IOT's, TWT’s, and other devices in which space-charge effects are important. Recent advances in geometry representation now permits very accurate representation of the curved metallic surfaces common to RF sources, resulting in unprecedented simulation accuracy. In the Phase I work, we evaluated and demonstrated the capabilities of the new geometry representation technology as applied to modeling and design of output cavity components of klystron, IOT's, and energy recovery srf cavities. We identified and prioritized which aspects of the design study process to pursue and improve in Phase II. The development and use of the new accurate geometry modeling technology on RF sources for DOE accelerators will help spark a new generational modeling and design capability, free from many of the constraints and inaccuracy associated with the previous generation of “stair-step” geometry modeling tools. This new capability is ultimately expected to impact all fields with high power RF sources, including DOE fusion research, communications, radar and
NASA Astrophysics Data System (ADS)
Cabria, I.; López, M. J.; Alonso, J. A.
2017-06-01
Simulations of the hydrogen storage capacities of nanoporous carbons require an accurate treatment of the interaction of the hydrogen molecule with the graphite-like surfaces of the carbon pores, which is dominated by the dispersion forces. These interactions are described accurately by high level quantum chemistry methods, like the Coupled Cluster method with single and double excitations and a non-iterative correction for triple excitations (CCSD(T)), but those methods are computationally very expensive for large systems and for massive simulations. Density functional theory (DFT)-based methods that include dispersion interactions at different levels of complexity are less accurate, but computationally less expensive. In order to find DFT-methods that include dispersion interactions to calculate the physisorption of H2 on benzene and graphene, with a reasonable compromise between accuracy and computational cost, CCSD(T), Møller-Plesset second-order perturbation theory method, and several DFT-methods have been used to calculate the interaction energy curves of H2 on benzene and graphene. DFT calculations are compared with CCSD(T) calculations, in the case of H2 on benzene, and with experimental data, in the case of H2 on graphene. Among the DFT methods studied, the B97D, RVV10, and PBE+DCACP methods yield interaction energy curves of H2-benzene in remarkable agreement with the interaction energy curve obtained with the CCSD(T) method. With regards to graphene, the rev-vdW-DF2, PBE-XDM, PBE-D2, and RVV10 methods yield adsorption energies of the lowest level of H2 on graphene, very close to the experimental data.
Havens, J.A.; Spicer, T.O.
1985-05-01
Laboratory experimental instantaneous releases of right-circular-cylindrical volumes of heavy gas (Freon-12/air) with initial volumes ranging from 0.034 to 0.531 cu m and specific gravities ranging from 2.2 to 4.2 are described. Releases with initial height-to-diameter ratios of 0.4, 1.0, and 1.57 are reported. The heavy-gas flow field surrounding the release is described by time series of gas concentration at various radial and vertical coordinates with respect to release center. Measurements of the gravity-current velocities are determined from time-of-onset of measured gas concentration. Calm-air instantaneous heavy-gas releases are demonstrated to scale with a characteristic length cube root of V/sub i/ where V/sub i/ is the initial volume, and a characteristic time (V/sub i/ to the 1/6 power)/(sq root of the reduced gravitational acceleration). The scaled laboratory releases predict the gravity-spreading and dilution process occurring during the buoyancy-dominated flow phase of the 2000 cu/m Freon/air instantaneous releases conducted by the British Health and Safety Executive at Thorney Island, UK. The gravity spread and dilution data are used to validate the buoyancy-dominated flow submodel which is incorporated in DEGADIS, the general-purpose heavy-gas dispersion model developed for the Coast Guard.
NASA Technical Reports Server (NTRS)
Douglass, Anne R.; Rood, Richard B.; Jackman, Charles H.; Weaver, Clark J.
1994-01-01
Two-dimensional (zonally averaged) photochemical models are commonly used for calculations of ozone changes due to various perturbations. These include calculating the ozone change expected as a result of change in the lower stratospheric composition due to the exhaust of a fleet of supersonic aircraft flying in the lower stratosphere. However, zonal asymmetries are anticipated to be important to this sort of calculation. The aircraft are expected to be restricted from flying over land at supersonic speed due to sonic booms, thus the pollutant source will not be zonally symmetric. There is loss of pollutant through stratosphere/troposphere exchange, but these processes are spatially and temporally inhomogeneous. Asymmetry in the pollutant distribution contributes to the uncertainty in the ozone changes calculated with two dimensional models. Pollutant distributions for integrations of at least 1 year of continuous pollutant emissions along flight corridors are calculated using a three dimensional chemistry and transport model. These distributions indicate the importance of asymmetry in the pollutant distributions to evaluation of the impact of stratospheric aircraft on ozone. The implications of such pollutant asymmetries to assessment calculations are discussed, considering both homogeneous and heterogeneous reactions.
Sun, X.; Pratt, A.; Li, Z. Y.; Ohtomo, M.; Sakai, S.; Yamauchi, Y.
2014-05-07
The geometric and spin-resolved electronic structure of a h-BN adsorbed Ni(111) surface has been investigated by density functional theory calculations. Two energy minima (physisorption and chemisorption) are obtained when the dispersive van der Waals correction is included. The geometry of N atom on top site and B atom on fcc site is the most energetically favorable. Strong hybridization with the ferromagnetic Ni substrate induces considerable gap states in the h-BN monolayer. The induced π* states are spin-polarized.
Smith, P.J.
1993-12-31
Many practical combustion processes which use solid particles, liquid droplets, or slurries as fuels introduce these fuels into turbulent environments. Examples include spray combustion, pulverized coal and coal slurry combustion, fluidized beds, sorbent injection, and hazardous waste incineration. The interactions of the condensed phases with turbulent environments in such applications have not been well described. Such a description is complicated by the difficulty of describing turbulence in general, even in the absence of particles or droplets. But the complications in describing the dispersion and reaction of the condensed phases in turbulent environments do not stem entirely, or even primarily, from the uncertainties in the description of the turbulence. Even when the turbulence characteristics are known, computational methods for coupling the dynamics of the particulate phase with the continuous phase have not been well established. Several new theoretical descriptions of the turbulent dispersion of particles and droplets have been proposed over the past few years. It has been the purpose of this project to explore the potential of these theories for coupling with the other aspects of three-dimensional, reacting, turbulent, particle-laden systems, to provide computational simulations that could be useful for addressing industrial problems. Two different approaches were explored in this project. The major thrust of this project was on identifying a suitable dispersion submodel for dilute dispersed flows, implementing it in a comprehensive three-dimensional CFD code framework for combustion simulation and evaluating its performance rigorously. In another effort the potential of a dispersion submodel for densely loaded systems was analyzed. This report discusses the main issues that were resolved as part of this project.
NASA Astrophysics Data System (ADS)
Kurihara, Osamu; Kim, Eunjoo; Kunishima, Naoaki; Tani, Kotaro; Ishikawa, Tetsuo; Furuyama, Kazuo; Hashimoto, Shozo; Akashi, Makoto
2017-09-01
A tool was developed to facilitate the calculation of the early internal doses to residents involved in the Fukushima Nuclear Disaster based on atmospheric transport and dispersion model (ATDM) simulations performed using Worldwide version of System for Prediction of Environmental Emergency Information 2nd version (WSPEEDI-II) together with personal behavior data containing the history of the whereabouts of individul's after the accident. The tool generates hourly-averaged air concentration data for the simulation grids nearest to an individual's whereabouts using WSPEEDI-II datasets for the subsequent calculation of internal doses due to inhalation. This paper presents an overview of the developed tool and provides tentative comparisons between direct measurement-based and ATDM-based results regarding the internal doses received by 421 persons from whom personal behavior data available.
2009-03-01
mixes the cream in your coffee and the clouds in the sky, is governed by the Navier-Stokes equations… (Bradshaw, 1996).” The highly complex...water vapor and moist air in the atmospheric window at 10μm”, showing refractivity versus wavelength with absorption lines for eight molecules taken...Mathar, R. J. (2004). Calculated refractivity of water vapor and moist air in the atmospheric window at 10 micrometers. Applied Optics, 43(4), 928
Andrea Prosperetti
2006-03-24
The report briefly describes the activities carried out in the course of the project. A first line of research was the development of systematic closure relations for averaged equations for disperse multiphase flow. A second line was the development of efficient numerical methods for the simulation of Navier-Stokes flows with many suspended particles. The report also lists the 21 journal articles in which this work is more fully decsribed.
Fan, L.S.; Abou-Zeida, E.; Liang, S.C.; Luo, Xukun
1995-02-01
The focus of this project is on sorbent injection technologies using dry, calcium-based sorbents for high-sulfur coal flue gas desulfurization. The goal is to provide research findings on handling, transport and dispersion of sorbent powder, aimed at improving SO{sub 2} (to at least 90%) removal and increasing sorbent utilization in a cost-effective fashion. The purpose of this project is to investigate the fundamental aspects of powder technology relevant to the fine sorbent powders, and to provide means of improving sorbent performance through superior dispersion and reduced dispersed particle size. This project is in two phases, Phase 1 ``Powder Characterization`` and Phase 2 ``Powder Mechanical Properties``. Phase 1 involves characterization of the sorbents in terms of their electrostatic properties. The triboelectric charging of powders are studied in detail by measuring sorbent charging as a function of material properties as well as transport conditions. A variety of sorbents are tested, including laboratory-made lignohydrates, calcite, dolomite, dolomitic hydrate and hydrated lime. The effects of transport tube material and gas properties, specifically humidity and velocity on the extent of sorbent charging are also investigated. A population balance model is developed to account for the particle size distribution for powder dispersion through gas-solid injection nozzles. The variations of the transition probability with the booster air velocities is examined. Simulation of particle size distributions under some operating conditions is conducted. Phase 2 investigates the flow properties of several calcium-based sorbents under different handling and transporting conditions. Effect of moisture content, as an important handling condition, on these properties is examined. Determined properties has been analyzed to study their effect on the transport and handling processes.
Giese, Timothy J; York, Darrin M
2007-11-21
This work explores a new charge-dependent energy model consisting of van der Waals and polarization interactions between the quantum mechanical (QM) and molecular mechanical (MM) regions in a combined QMMM calculation. van der Waals interactions are commonly treated using empirical Lennard-Jones potentials, whose parameters are often chosen based on the QM atom type (e.g., based on hybridization or specific covalent bonding environment). This strategy for determination of QMMM nonbonding interactions becomes tedious to parametrize and lacks robust transferability. Problems occur in the study of chemical reactions where the "atom type" is a complex function of the reaction coordinate. This is particularly problematic for reactions, where atoms or localized functional groups undergo changes in charge state and hybridization. In the present work we propose a new model for nonelectrostatic nonbonded interactions in QMMM calculations that overcomes many of these problems. The model is based on a scaled overlap model for repulsive exchange and attractive dispersion interactions that is a function of atomic charge. The model is chemically significant since it properly correlates atomic size, softness, polarizability, and dispersion terms with minimal one-body parameters that are functions of the atomic charge. Tests of the model are examined for rare-gas interactions with neutral and charged atoms in order to demonstrate improved transferability. The present work provides a new framework for modeling QMMM interactions with improved accuracy and transferability.
Barbee, T.W. Jr.
1983-11-01
This final report concerns research performed at Stanford University on a program sponsored by the Department of Energy through Lawrence Livermore National Laboratory and the Regents of the University of California (Subcontract No. 2695501) entitled Synthetic Multilayer X-ray Dispersion Elements for 200 A (62 eV) to 0.62 A (20 keV) Radiation. The thrust of the research was to investigate the synthesis process parameter dependence of the nature of the interfaces between constituent adjacent layers, the uniformity of layers, and the reflectivity for light of wavelengths 0.62 A to 200 A of synthetic multilayer crystals. Additionally, device development was to be undertaken with emphasis on spectrum analyzing dispersion elements, high energy Kirkpatrick-Baez X-ray microscope mirrors, multi-keV (1 to 5 keV) X-ray applications, X-ray beam splitters and synthetic multilayers fabricated from adjoining elements in the periodic table.
McKimpson, Marvin G.
2006-04-06
This project was undertaken by Michigan Technological University and Special Metals Corporation to develop creep-resistant, coking-resistant oxide-dispersion-strengthened (ODS) tubes for use in industrial-scale ethylene pyrolysis and steam methane reforming operations. Ethylene pyrolysis tubes are exposed to some of the most severe service conditions for metallic materials found anywhere in the chemical process industries, including elevated temperatures, oxidizing atmospheres and high carbon potentials. During service, hard deposits of carbon (coke) build up on the inner wall of the tube, reducing heat transfer and restricting the flow of the hydrocarbon feedstocks. About every 20 to 60 days, the reactor must be taken off-line and decoked by burning out the accumulated carbon. This decoking costs on the order of $9 million per year per ethylene plant, accelerates tube degradation, and requires that tubes be replaced about every 5 years. The technology developed under this program seeks to reduce the energy and economic cost of coking by creating novel bimetallic tubes offering a combination of improved coking resistance, creep resistance and fabricability not available in current single-alloy tubes. The inner core of this tube consists of Incoloy(R) MA956, a commercial ferritic Fe-Cr-Al alloy offering a 50% reduction in coke buildup combined with improved carburization resistance. The outer sheath consists of a new material - oxide dispersion strengthened (ODS) Alloy 803(R) developed under the program. This new alloy retains the good fireside environmental resistance of Alloy 803, a commercial wrought alloy currently used for ethylene production, and provides an austenitic casing to alleviate the inherently-limited fabricability of the ferritic Incoloy(R) MA956 core. To provide mechanical compatibility between the two alloys and maximize creep resistance of the bimetallic tube, both the inner Incoloy(R) MA956 and the outer ODS Alloy 803 are oxide dispersion
2017-04-03
This final rule addresses the hospital-specific limitation on Medicaid disproportionate share hospital (DSH) payments under section 1923(g)(1)(A) of the Social Security Act (Act), and the application of such limitation in the annual DSH audits required under section 1923(j) of the Act, by clarifying that the hospital-specific DSH limit is based only on uncompensated care costs. Specifically, this rule makes explicit in the text of the regulation, an existing interpretation that uncompensated care costs include only those costs for Medicaid eligible individuals that remain after accounting for payments made to hospitals by or on behalf of Medicaid eligible individuals, including Medicare and other third party payments that compensate the hospitals for care furnished to such individuals. As a result, the hospital-specific limit calculation will reflect only the costs for Medicaid eligible individuals for which the hospital has not received payment from any source.
Allwine, K Jerry; Rutz, Frederick C.; Shaw, William J.; Rishel, Jeremy P.; Fritz, Brad G.; Chapman, Elaine G.; Hoopes, Bonnie L.; Seiple, Timothy E.
2007-05-01
Activities at U.S. Department of Defense (DoD) training and testing ranges can be sources of dust in local and regional airsheds governed by air-quality regulations. The U.S. Department of Energy’s Pacific Northwest National Laboratory just completed a multi-year project to develop a fully tested and documented atmospheric dispersion modeling system (DUST TRANsport or DUSTRAN) to assist the DoD in addressing particulate air-quality issues at military training and testing ranges.
Kocman, Mikuláš; Jurečka, Petr; Dubecký, Matúš; Otyepka, Michal; Cho, Yeonchoo; Kim, Kwang S
2015-03-07
Hydrogen storage in carbonaceous materials and their derivatives is currently a widely investigated topic. The rational design of novel adsorptive materials is often attempted with the help of computational chemistry tools, in particular density functional theory (DFT). However, different exchange-correlation functionals provide a very wide range of hydrogen binding energies. The aim of this article is to offer high level QM reference data based on coupled-cluster singles and doubles calculations with perturbative triple excitations, CCSD(T), and a complete basis set limit estimate that can be used to assess the accuracy of various DFT-based predictions. For one complex, the CCSD(T) result is verified against diffusion quantum Monte Carlo calculations. Reference binding curves are calculated for two model compounds representing weak and strong hydrogen adsorption: coronene (-4.7 kJ mol(-1) per H2), and coronene modified with boron and lithium (-14.3 kJ mol(-1)). The reference data are compared to results obtained with widely used density functionals including pure DFT, M06, DFT-D3, PBE-TS, PBE + MBD, optB88-vdW, vdW-DF, vdW-DF2 and VV10. We find that whereas DFT-D3 shows excellent results for weak hydrogen adsorption on coronene, most of the less empirical density based dispersion functionals except VV10 overestimate this interaction. On the other hand, some of the less empirical density based dispersion functionals better describe stronger binding in the more polar coroB2Li22H2 complex which is one of realistic models for high-capacity hydrogen storage materials. Our results may serve as a guide for choosing suitable DFT methods for quickly evaluating hydrogen binding potential and as a reference for assessing the accuracy of the previously published DFT results.
Leach, M J
2005-10-12
The Joint Urban 2003 (JU2003) field study was designed to collect meteorological and tracer data resolving atmospheric dispersion at scales-of-motion ranging from flows in and around a single city block, in and around several blocks in the downtown Central Business District (CBD), and into the suburban Oklahoma City area a few km from the CBD. Indoor tracer and flow measurements within four downtown study buildings were also made in conjunction with detailed outdoor measurements investigating the outdoor-indoor exchange rates and mechanisms. The movement of tracer within the study buildings was also studied. The data from the field experiment is being used to evaluate models that are being developed for predicting dispersion of contaminants in urban areas. These models may be fast-response models based on semi-empirical algorithms that are used in real-time emergencies, or highly sophisticated computational fluid dynamics models that resolve individual building faces and crevices. The data from the field experiment, together with the models, can then be used to develop other advanced tools that are especially valuable in the efforts to thwart terrorists. These include tools for finding location and characteristics of a contaminant source; tools that can be used for real-time response or for forensic investigation. The tools will make use of monitoring networks for biological agents that are being established in several sensitive cities throughout the nation. This major urban study was conducted beginning June 28 and ending July 31, 2003. It included several integrated scientific components necessary to describe and understand the physical processes governing dispersion within and surrounding an urban area and into and within building environments. The components included characterizing: (1) the urban boundary layer and the development of the urban boundary layer within the atmospheric boundary layer, (2) the flows within and downwind of the tall-building core, (3
Zhang, Feng; Hayashi, Michitoshi; Wang, Houng-Wei; Tominaga, Keisuke; Kambara, Ohki; Nishizawa, Jun-ichi; Sasaki, Tetsuo
2014-05-07
The phonon modes of molecular crystals in the terahertz frequency region often feature delicately coupled inter- and intra-molecular vibrations. Recent advances in density functional theory such as DFT-D(*) have enabled accurate frequency calculation. However, the nature of normal modes has not been quantitatively discussed against experimental criteria such as isotope shift (IS) and correlation field splitting (CFS). Here, we report an analytical mode-decoupling method that allows for the decomposition of a normal mode of interest into intermolecular translation, libration, and intramolecular vibrational motions. We show an application of this method using the crystalline anthracene system as an example. The relationship between the experimentally obtained IS and the IS obtained by PBE-D(*) simulation indicates that two distinctive regions exist. Region I is associated with a pure intermolecular translation, whereas region II features coupled intramolecular vibrations that are further coupled by a weak intermolecular translation. We find that the PBE-D(*) data show excellent agreement with the experimental data in terms of IS and CFS in region II; however, PBE-D(*) produces significant deviations in IS in region I where strong coupling between inter- and intra-molecular vibrations contributes to normal modes. The result of this analysis is expected to facilitate future improvement of DFT-D(*).
NASA Astrophysics Data System (ADS)
Zhang, Feng; Hayashi, Michitoshi; Wang, Houng-Wei; Tominaga, Keisuke; Kambara, Ohki; Nishizawa, Jun-ichi; Sasaki, Tetsuo
2014-05-01
The phonon modes of molecular crystals in the terahertz frequency region often feature delicately coupled inter- and intra-molecular vibrations. Recent advances in density functional theory such as DFT-D* have enabled accurate frequency calculation. However, the nature of normal modes has not been quantitatively discussed against experimental criteria such as isotope shift (IS) and correlation field splitting (CFS). Here, we report an analytical mode-decoupling method that allows for the decomposition of a normal mode of interest into intermolecular translation, libration, and intramolecular vibrational motions. We show an application of this method using the crystalline anthracene system as an example. The relationship between the experimentally obtained IS and the IS obtained by PBE-D* simulation indicates that two distinctive regions exist. Region I is associated with a pure intermolecular translation, whereas region II features coupled intramolecular vibrations that are further coupled by a weak intermolecular translation. We find that the PBE-D* data show excellent agreement with the experimental data in terms of IS and CFS in region II; however, PBE-D* produces significant deviations in IS in region I where strong coupling between inter- and intra-molecular vibrations contributes to normal modes. The result of this analysis is expected to facilitate future improvement of DFT-D*.
Wang, Weiguo; Shaw, William J.
2009-12-01
This paper compares the wind field from a diagnostic model (CALMET) over complex terrain in the Phoenix region in the USA with observations that are gridded by a state-of-the-art Four-Dimensional Data Assimilation (FDDA) system. The wind difference between the CALMET and FDDA wind fields is larger at night than in the day. The magnitude of the wind difference can be smaller than 5% of the mean wind speed at low levels in areas with dense observational stations, while it can be larger than 80% in areas without observational stations or at high altitudes. The vector-mean wind direction difference over the domain is 15 deg on the surface level and 25 deg between 10 and 1500 m. To evaluate the effects of the wind difference on dispersion calculations, dispersion of a hypothetical passive tracer released from surface point sources is simulated by the second-order closure integrated puff (SCIPUFF) model driven by the CALMET and FDDA wind fields, respectively. Differences in the two simulated tracer concentration fields increase with time due to accumulation of effects of the wind differences both near the surface and at higher altitudes. Even for the release in the area with the densest distribution of surface stations, the relative difference in the peak surface concentration from CALMET-SCIPUFF and from FDDA-SCIPUFF is less than 10% only within 0.5 hr after the release in the afternoon, and increases to 70% at 1.5 hr; this is because of large differences in wind above the surface. For the release in the area with few stations, the difference can be larger than 100% or even larger after 1.5 hr from the release. To improve dispersion simulations driven by the CALMET wind in the region, observations at upper-air stations are needed and the current surface observation network needs to be reorganized or more stations are needed to account for the influence of terrain.
NASA Astrophysics Data System (ADS)
Hurst, Tony; Davis, Cory; Deligne, Natalia
2016-04-01
GNS Science currently produces twice-daily forecasts of the likely ash deposition if any of the active or recently active volcanoes in New Zealand was to erupt, with a number of alternative possible eruptions for each volcano. These use our ASHFALL program for calculating ash thickness, which uses 1-D wind profiles at the location of each volcano derived from Numerical Weather Prediction (NWP) model output supplied by MetService. HYSPLIT is a hybrid Lagrangian dispersion model, developed by NOAA/ARL, which is used by MetService in its role as a Volcanic Ash Advisory Centre, to model airborne volcanic ash, with meteorological data provided by external and in-house NWP models. A by-product of the HYSPLIT volcanic ash dispersion simulations is the deposition rate at the ground surface. Comparison of HYSPLIT with ASHFALL showed that alterations to the standard fall velocity model were required to deal with ash particles larger than about 50 microns, which make up the bulk of ash deposits near a volcano. It also required the ash injected into the dispersion model to have a concentration based on a typical umbrella-shaped eruption column, rather than uniform across all levels. The different parameters used in HYSPLIT also caused us to revisit what possible combinations of eruption size and column height were appropriate to model as a likely eruption. We are now running HYSPLIT to produce alternative ash forecasts. It is apparent that there are many times at which the 3-D wind model used in HYSPLIT gives a substantially different ash deposition pattern to the 1-D wind model of ASHFALL, and the use of HYSPLIT will give more accurate predictions. ASHFALL is likely still to be used for probabilistic hazard forecasting, in which very large numbers of runs are required, as HYSPLIT takes much more computer time.
Rishel, Jeremy P.; Chapman, Elaine G.; Rutz, Frederick C.; Allwine, K Jerry
2006-12-29
Smokes and obscurants (S&O) are important screening agents used during military training exercises on many military installations. Although the use of S&O is subject to environmental laws, the fate and effects of S&O on natural habitats are not well documented. One particular concern is the impact S&O may have on local insect populations, which can be important components of terrestrial food chains of endangered species. Fog-oil (FO) is an S&O that is of particular concern. An important part of assessing potential ecosystem impacts is the ability to predict downwind FO concentrations. This report documents the use of the comprehensive atmospheric dispersion modeling system DUST TRANsport (DUSTRAN) to simulate the downwind transport and diffusion of a hypothetical FO release on the U.S. Army installation at Ft. Hood, TX.
Pitelka, L. F.
2002-11-04
Global environmental change is causing shifts in the geographical locations of habitats suitable for particular plant species. While it is established that the future distributions of plant species will be strongly influenced by the ability of plants to migrate to sites of suitable habitat, our ability to predict potential and actual migration rates is rudimentary. This workshop organized by the Global Change and Terrestrial Ecosystems (GCTE) core project of the International Geosphere-Biosphere Program provided scientists with interests and expertise in global change and plant migration with a forum for developing a new collaborative synthesis of understanding on long distance dispersal and migration modeling. This grant from the U.S. Department of Energy, Office of Biological and Environmental Research, provided partial support for the workshop by supporting the participation of U.S. scientists.
Chen, P.S.; Stevens, W.C.
1993-11-07
Improving the oxidation resistance of carbon-carbon composites is key to extending the applications of this material system into higher temperature regimes. While molecularly dispersed boron, through addition of carborane, helps to provide oxidation protection to phenolic derived carbon, the moisture affinity of the boria seriously affects composite performance. Substitution of furfuryl and pitch as the resin precursors significantly improved the moisture resistance of the carbon matrix material by stabilizing the boron at low temperatures and minimizing premature boria formation. Carborane addition to a commercial furfuryl/pitch blend (Kaiser Code88A) yielded a carbon char with reduced moisture affinity and improved oxidation resistance. Mechanical properties of the Code88A matrix composites were not significantly affected by the addition of carborane. Although sample size limitations in testing detracted from the demonstration of success, data suggests that the oxidation resistance of carbon-carbons can be significantly enhanced via this approach without detriment to the physical attributes and moisture resistance of the composite.
Ekler, R.G.; Needham, C.E.; Kennedy, L.W.
1995-07-01
An extended calculation of the nonideal airblast environment resulting from a PRISCILLA-like nuclear detonation has been completed. This calculation used the results of the S-CUBED THRML code to determine the structure of the preshock turbulence, surface roughness, and material lofted during the burning process in determining the near surface blast environment. No dust sweep up was used. The argument is that the roots of the grass will remain intact and prevent the erosion and entrainment of large amounts of dust. Full hydrodynamic definition of the precursor environment is now available from ground zero to a distance of nearly 2 km. Information includes full spatial definition at about 25 selected times and full time resolved waveforms at over 1,000 locations. The results of the calculation are compared to experimental data from the PRISCILLA shot and show the influence of the more intense thermal layer created by the burning grassland. An accompanying calculation without a thermal layer was also extended over a 2-km range. This calculation served as the ideal case. The ideal calculation included the effects of surface roughness and turbulence but not an interaction with a thermal layer or dust sweep up. Results of this calculation are used to quantify the differences specifically caused by thermal interactions. The enhancement and extent of the precursor effects of this calculation relative to the experiment demonstrate that precursors over desert surfaces do not result in the worst-case environments for detonations over real surfaces. The definition and understanding of the free-field environment is the necessary first step to predicting loads and response of vehicles or other targets subjected to such an environment.
Fekete, Attila; Komáromi, István
2016-12-07
A proteolytic reaction of papain with a simple peptide model substrate N-methylacetamide has been studied. Our aim was twofold: (i) we proposed a plausible reaction mechanism with the aid of potential energy surface scans and second geometrical derivatives calculated at the stationary points, and (ii) we investigated the applicability of the dispersion corrected density functional methods in comparison with the popular hybrid generalized gradient approximations (GGA) method (B3LYP) without such a correction in the QM/MM calculations for this particular problem. In the resting state of papain the ion pair and neutral forms of the Cys-His catalytic dyad have approximately the same energy and they are separated by only a small barrier. Zero point vibrational energy correction shifted this equilibrium slightly to the neutral form. On the other hand, the electrostatic solvation free energy corrections, calculated using the Poisson-Boltzmann method for the structures sampled from molecular dynamics simulation trajectories, resulted in a more stable ion-pair form. All methods we applied predicted at least a two elementary step acylation process via a zwitterionic tetrahedral intermediate. Using dispersion corrected DFT methods the thioester S-C bond formation and the proton transfer from histidine occur in the same elementary step, although not synchronously. The proton transfer lags behind (or at least does not precede) the S-C bond formation. The predicted transition state corresponds mainly to the S-C bond formation while the proton is still on the histidine Nδ atom. In contrast, the B3LYP method using larger basis sets predicts a transition state in which the S-C bond is almost fully formed and the transition state can be mainly featured by the Nδ(histidine) to N(amid) proton transfer. Considerably lower activation energy was predicted (especially by the B3LYP method) for the next amide bond breaking elementary step of acyl-enzyme formation. Deacylation appeared to
NASA Astrophysics Data System (ADS)
da Silva, M. B.; Francisco, T. S.; Maia, F. F.; Caetano, E. W. S.; Fulco, U. L.; Albuquerque, E. L.; Freire, V. N.
2017-08-01
The development of low cost and environmentally friendly organic electronic/optoelectronic devices has attracted a lot of interest. The integration of DNA and RNA nucleobases to improve the performance of organic light-emitting diodes has been proposed recently [Gomez et al., Sci. Rep. 4, 7105 (2014), 10.1038/srep07105], notwithstanding limited experimental and theoretical information on the optoelectronic properties of DNA/RNA thin films. As a contribution to an improved understanding of DNA/RNA-based devices in the solid state, we have performed in this paper dispersion corrected density functional theory (DFT) and time-dependent DFT (TDDFT) calculations to obtain the optimized geometries, Kohn-Sham band structures and orbitals, charge distribution, optical absorption, Frenkel exciton binding energies, and complex dielectric functions of the five DNA/RNA nucleobase anhydrous crystals, namely cytosine, guanine, adenine, thymine, and uracil. Optical absorption measurements on DNA/RNA nucleobase powders were also performed for comparison with the simulations. An improvement on the local density approximation (LDA) description of the lattice parameter estimates was achieved considering the generalized gradient approach (GGA) with a semiempirical dispersion correction scheme in comparison with structural x-ray data found in the literature. Energy gap correction using the Δ-sol methodology provided a good agreement between theory and experimental estimates from our optical absorption data, greatly surpassing the quality of previous simulations. Effective masses for the carriers were also found, indicating that the guanine crystal as well as the cytosine one (although with some drawbacks) has potential applications in optoelectronics as a direct gap semiconductor, with the other nucleobases presenting either a semiconductor or an insulator character depending on the carrier type. The complex dielectric function exhibits a high degree of anisotropy for different states
Mehlhorn, Thomas Alan; Kurecka, Christopher J.; McClarren, Ryan; Brunner, Thomas A.; Holloway, James Paul
2005-11-01
The original LDRD proposal was to use a nonlinear diffusion solver to compute estimates for the material temperature that could then be used in a Implicit Monte Carlo (IMC) calculation. At the end of the first year of the project, it was determined that this was not going to be effective, partially due to the concept, and partially due to the fact that the radiation diffusion package was not as efficient as it could be. The second, and final year, of the project focused on improving the robustness and computational efficiency of the radiation diffusion package in ALEGRA. To this end, several new multigroup diffusion methods have been developed and implemented in ALEGRA. While these methods have been implemented, their effectiveness of reducing overall simulation run time has not been fully tested. Additionally a comprehensive suite of verification problems has been developed for the diffusion package to ensure that it has been implemented correctly. This process took considerable time, but exposed significant bugs in both the previous and new diffusion packages, the linear solve packages, and even the NEVADA Framework's parser. In order to manage this large suite of problem, a new tool called Tampa has been developed. It is a general tool for automating the process of running and analyzing many simulations. Ryan McClarren, at the University of Michigan has been developing a Spherical Harmonics capability for unstructured meshes. While still in the early phases of development, this promises to bridge the gap in accuracy between a full transport solution using IMC and the diffusion approximation.
Dr. David Whitfield; Dr. Daniel Hyams
2009-09-14
In Year 1 of this project, items 1.1 and 1.2 were addressed, as well as item 2.2. The baseline parallel computational simulation tool has been refined significantly over the timeline of this project for the purpose of atmospheric dispersion and transport problems; some of these refinements are documented in Chapter 3. The addition of a concentration transport capability (item 1.2) was completed, along with validation and usage in a highly complex urban environment. Multigrid capability (item 2.2) was a primary focus of Year 1 as well, regardless of the fact that it was scheduled for Year 2. It was determined by the authors that due to the very large nature of the meshes required for atmospheric simulations at mesoscale, multigrid was a key enabling technology for the rest of the project to be successful. Therefore, it was addressed early according to the schedule laid out in the original proposal. The technology behind the multigrid capability is discussed in detail in Chapter 5. Also in Year 1, the issue of ground topography specification is addressed. For simulations of pollutant transport in a given region, a key prerequisite is the specification of the detailed ground topography. The local topography must be placed into a form suitable for generating an unstructured grid both on the topography itself and the atmospheric volume above it; this effort is documented in Chapter 6. In Year 2 of this project, items 1.3 and 2.1 were addressed. Weather data in the form of wind speeds, relative humidity, and baseline pollution levels may be input into the code in order to improve the real-world fidelity of the solutions. Of course, the computational atmospheric boundary layer (ABL) boundary condition developed in Year 1 may still be used when necessary. Cloud cover may be simulated via the levels of actinic flux allowed in photochemical reactions in the atmospheric chemistry model. The primary focus of Year 2 was the formulation of a multispecies capability with included
1995-09-01
Volume one contains calculations for: embankment design--embankment material properties; Union Carbide site--bedrock contours; vicinity properties--origin of contamination; North Continent and Union Carbide sites contaminated materials--excavation quantities; and demolition debris--quantity estimate.
1995-09-01
Volume two contains calculations for: embankment design--slope stability analysis; embankment design--excavation stability; embankment design--settlement and cover cracking analysis; radon barrier design--statistical analysis of ra-226 concentrations for North Continent and Union Carbide sites; radon barrier design--RAECOM input data; radon barrier design--design thickness; and cover design--frost penetration depth.
1995-09-01
Volume four contains calculations for: Borrow areas--site evaluation; temporary facilities--material quantities; embankment quantities--excavation and cover materials; Burro Canyon site excavation quantities--rippable and unrippable materials; site restoration--earthwork quantities and seeding; and bid schedule quantities and material balance.
Dresner, L.
1986-01-01
A rapid, semiempirical method is presented for calculating the stability margins of superconductors cooled with subcooled He-II. Based on a model of Seyfert, the method takes into account both time-dependent Gorter-Mellink heat transport and the effects of interfacial Kapitza resistance. The method has been compared favorably with heat transfer data of Seyfert, stability data of Meuris, and stability data of Pfotenhauer and van Sciver. 4 refs., 7 figs., 1 tab.
1995-09-01
Volume three contains calculations for: site hydrology--rainfall intensity, duration, and frequency relations; site hydrology-- probable maximum precipitation; erosion protection--rock quality evaluation; erosion protection--embankment top and side slope; erosion protection--embankment toe apron; erosion protection-- gradations and layer thicknesses; Union Carbide site--temporary drainage ditch design; Union Carbide site--retention basin sediment volume; Union Carbide site--retention basin sizing; Burro Canyon site temporary drainage--temporary drainage facilities; and Union Carbide site temporary drainage--water balance.
Given, P.H.; Weldon, D.; Zoeller, J.H.
1984-03-01
The various formulae for calculating calorific values for coals from ultimate analyses depend essentially on a propositon due to Dulong, that the heat of combustion of an organic compound is nearly equal to the heats of combustion of the elements in it, multiplied by their percentage content in the compound in question. This proposition assumes that the enthalpy of decomposition is negligible compared with the heat of combustion. The various published formulae, such as that due to Mott and Spooner, include empirical adjustments to allow for the fact that the enthalpy of formation or decomposition of no organic compound is zero (except rarely by chance). A new equation is proposed, which excludes empirical correction terms but includes a term explicitly related to the enthalpy of decomposition. As expected from the behavior of known compounds, this enthalpy varies with rank, but it also varies at the same level of rank with the geological history of the sample: rank is not the only source of variance in coal properties. The new equation is at least as effective in predicting calorific values for a set of 992 coals as equivalent equations derived for 6 subsets of the coals. On the whole, the distributions of differences between observed and calculated calorific values are skewed to only a small extent. About 86% of the differences lie between -300 and +300 Btu/lb (+- 700 kJ/kg). 10 references, 7 figures, 4 tables.
Lebel, Luke; Bourgouin, Pierre; Chouhan, Sohan; Ek, Nils; Korolevych, Volodymyr; Malo, Alain; Bensimon, Dov; Erhardt, Lorne
2016-05-01
Three radiological dispersal devices were detonated in 2012 under controlled conditions at Defence Research and Development Canada's Experimental Proving Grounds in Suffield, Alberta. Each device comprised a 35-GBq source of (140)La. The dataset obtained is used in this study to assess the MLCD, ADDAM, and RIMPUFF atmospheric dispersion models. As part one of a two-part study, this paper focuses on examining the capabilities of the above three models and evaluating how well their predictions of air concentration and ground deposition match observations from the full-scale RDD experiments.
NASA Technical Reports Server (NTRS)
Tassa, Y.; Anderson, B. H.; Reshotko, E.
1977-01-01
An interactive procedure was developed for supersonic viscous flows that can be used for either two-dimensional or axisymmetric configurations. The procedure is directed to supersonic internal flows as well as those supersonic external flows that require consideration of mutual interaction between the outer flow and the boundary layer flow. The flow field is divided into two regions: an inner region which is highly viscous and mostly subsonic and an outer region where the flow is supersonic and in which viscous effects are small but not negligible. For the outer region a numerical solution is obtained by applying the method of characteristics to a system of equations which includes viscous and conduction transport terms only normal to the streamlines. The inner region is treated by a system of equations of the boundary layer type that includes higher order effects such as longitudinal and transverse curvature and normal pressure gradients. These equations are coupled and solved simultaneously in the physical coordinates by using an implicit finite difference scheme. This system can also be used to calculate laminar and turbulent boundary layers using a scalar eddy viscosity concept.
Dorning, J.J.
1993-05-01
The report is divided into three parts. The main mathematical development of the new systematic simultaneous lattice-cell and fuel-assembly homogenization theory derived from the transport equation is summarized in Part I. Also included in Part I is the validation of this systematic homogenization theory and the resulting calculational procedures for coarse-mesh nodal diffusion methods that follow from it, in the form of their application to a simple one-dimensional test problem. The results of the application of this transport-equation-based systematic homogenization theory are summarized in Part II in which its superior accuracy over traditional flux and volume weighted homogenization procedures and over generalized equivalence theory is demonstrated for small and large practical two-dimensional PWR problems. The mathematical development of a second systematic homogenization theory -- this one derived starting from the diffusion equation -- is summarized in Part III where its application to a practical two-dimensional PWR model also is summarized and its superior accuracy over traditional homogenization methods and generalized equivalence theory is demonstrated for this problem.
Barbee, T.W. Jr.
1981-08-01
The opportunities offered by engineered synthetic multilayer dispersion elements for x-rays have been recognized since the earliest days of x-ray diffraction analysis. In this paper, application of sputter deposition technology to the synthesis of Layered Synthetic Microstructure (LSMs) of sufficient quality for use as x-ray dispersion elements is discussed. It will be shown that high efficiency, controllable bandwidth dispersion elements, with d spacings varying from 15 A to 180 A, may be synthesized onto both mechanically stiff and flexible substrates. Multilayer component materials include tungsten, niobium, molybdenum, titanium, vanadium, and silicon layers separated by carbon layers. Experimental observations of peak reflectivity in first order, integrated reflectivity in first order, and diffraction performance at selected photon energies in the range, 100 to 15,000 eV, will be reported and compared to theory.
NASA Technical Reports Server (NTRS)
Cahan, Boris D.
1991-01-01
The shape equations for an HMRD in static and rotating configurations are developed and solved numerically. A rationale for the applicability of the standard Levich equations to the rotating case is given. The region of stability of the HMRD is examined, and the observed small negative intercept for a Levich plot is explained. The iterative boundary integral equation method is applied to the problem of frequency dispersion at an HMRD electrode. It is shown that a range of disk sizes and heights can be chosen to give almost uniform primary and secondary current distribution and minimal frequency disperison.
Siefken, L.J.
1999-05-01
Final designs are described for models of hydrogen and oxygen uptake in fuel rod cladding during severe accidents. Calculation of the uptake involves the modeling of seven processes: (1) diffusion of oxygen from the bulk gas into the boundary layer at the external cladding surface, (2) diffusion from the boundary layer into the oxide layer, (3) diffusion from the inner surface of the oxide layer into the metallic part of the cladding, (4) uptake of hydrogen in the event that the cladding oxide layer is dissolved in a steam-starved region, (5) embrittlement of cladding due to hydrogen uptake, (6) cracking of cladding during quenching due to its embrittlement and (7) release of hydrogen from the cladding after cracking of the cladding. An integral diffusion method is described for calculating the diffusion processes in the cladding. Experimental results are presented that show a rapid uptake of hydrogen in the event of dissolution of the oxide layer and a rapid release of hydrogen in the event of cracking of the oxide layer. These experimental results are used as a basis for calculating the rate of hydrogen uptake and the rate of hydrogen release. A description is given of the implementation of the models for hydrogen and oxygen uptake and cladding embrittlement into the programming framework of the SCDAP/RELAP5/MOD3.3 code.
Siefken, Larry James
1999-06-01
Final designs are described for models of hydrogen and oxygen uptake in fuel rod cladding during severe accidents. Calculation of the uptake involves the modeling of seven processes: (1) diffusion of oxygen from the bulk gas into the boundary layer at the external cladding surface, (2) diffusion from the boundary layer into the oxide layer, (3) diffusion from the inner surface of the oxide layer into the metallic part of the cladding, (4) uptake of hydrogen in the event that the cladding oxide layer is dissolved in a steam-starved region, (5) embrittlement of cladding due to hydrogen uptake, (6) cracking of cladding during quenching due to its embrittlement and (7) release of hydrogen from the cladding after cracking of the cladding. An integral diffusion method is described for calculating the diffusion processes in the cladding. Experimental results are presented that show a rapid uptake of hydrogen in the event of dissolution of the oxide layer and a rapid release of hydrogen in the event of cracking of the oxide layer. These experimental results are used as a basis for calculating the rate of hydrogen uptake and the rate of hydrogen release. A description is given of the implementation of the models for hydrogen and oxygen uptake and cladding embrittlement into the programming framework of the SCDAP/RELAP5/MOD3.3 code.
Sheng, Y.P.
1983-09-01
A comprehensive model of Coastal currents and sediment dispersion has been formulated and applied to the Mississippi Sound and adjacent continental shelf waters. The study combines mathematical modeling of various hydrodynamic and sedimentary processes with laboratory and field experiments. Of primary importance is the development of an efficient and comprehensive three-dimensional, finite-difference model of coastal, estuarine, and lake currents (CELC3D). The model resolves currents driven by tide, wind, and density gradient. It has been applied to the Mississippi Sound, and results agree well with measured surface displacements and currents during two episodes. Rates of entrainment and deposition of the Mississippi Sound sediments have been studied in a laboratory flume. Effects of (1) bottom shear stress, (2) bed properties, (3) salinity of water, and (4) sediment type on the erodability of sediments have been examined. Results of the laboratory study have been incorporated into the bottom boundary conditions for a three-dimensional sediment dispersion model. Gravitational settling and particle size distribution of the Mississippi Sound sediments were also studied in laboratories. Bottom boundary layer dynamics and wave effect on sediment dispersion have been studied by means of a turbulent transport model and a wave model. Model simulations of sediment dispersion in the Mississippi Sound agree well available data from ship surveys.
2016-06-10
Under the Medicare Shared Savings Program (Shared Savings Program), providers of services and suppliers that participate in an Accountable Care Organization (ACO) continue to receive traditional Medicare fee-for-service (FFS) payments under Parts A and B, but the ACO may be eligible to receive a shared savings payment if it meets specified quality and savings requirements. This final rule addresses changes to the Shared Savings Program, including: Modifications to the program's benchmarking methodology, when resetting (rebasing) the ACO's benchmark for a second or subsequent agreement period, to encourage ACOs' continued investment in care coordination and quality improvement; an alternative participation option to encourage ACOs to enter performance-based risk arrangements earlier in their participation under the program; and policies for reopening of payment determinations to make corrections after financial calculations have been performed and ACO shared savings and shared losses for a performance year have been determined.
Not Available
1980-10-01
A major aim of the US National Energy Policy, as well as that of the New York State Energy Research and Development Authority, is to conserve energy and to shift from oil to more abundant domestic fuels and renewable energy sources. Dispersed Storage and Generation (DSG) is the term that characterizes the present and future dispersed, relatively small (<30 MW) energy systems, such as solar thermal electric, photovoltaic, wind, fuel cell, storage battery, hydro, and cogeneration, which can help achieve these national energy goals and can be dispersed throughout the distribution portion of an electric utility system. The purpose of this survey and identification of DSG technologies is to present an understanding of the special characteristics of each of these technologies in sufficient detail so that the physical principles of their operation and the internal control of each technology are evident. In this way, a better appreciation can be obtained of the monitoring and control requirements for these DSGs from a remote distribution dispatch center. A consistent approach is being sought for both hardware and software which will handle the monitoring and control necessary to integrate a number of different DSG technologies into a common distribution dispatch network. From this study it appears that the control of each of the DSG technologies is compatible with a supervisory control method of operation that lends itself to remote control from a distribution dispatch center.
Bartholomew, C.H.
1990-09-29
An investigation of the effects of surface structure, dispersion, and support on the adsorption, catalytic, and electronic properties of cobalt/alumina is described, the objectives of which were to determine (1) the effects of surface structure and metal dispersion on the adsorption and catalytic properties of cobalt and (2) the effects of direct electronic interactions between metal clusters and support, on the adsorption, catalytic and electronic properties of cobalt supported on alumina. Effects of surface structure and dispersion on the adsorption, activity/selectivity, and electronic properties of Co/W single crystal surfaces and alumina-supported cobalt were investigated in a surface investigation, lab reactor studies, TPD/TPSR studies, and a Moessbauer spectroscopy study. The structure, stability, surface electronic properties, and chemisorptive properties of vapor-deposited cobalt overlayers (0-4 ML) on W(110) and W(100) were studied by Auger electron spectroscopy, low energy electron diffraction, work function changes, and temperature programmed desorption (TPD) of cobalt, hydrogen, and carbon monoxide. The CO chemisorptive properties of the two cobalt overlayers are quite different, CO adsorption being dissociative on the W(100) surface and nondissociative on the W(110) surface; comparison of the results with those for Ni/W(100) indicate that Co/W(100) dissociates CO as a result of electronic interaction with the tungsten substrate.
Three-Dimensional Oil Dispersion Model in Campos basin, Brazil.
Oliveira, Bernardo Lopes Almeida de; Netto, Theodoro Antoun; Assad, Luiz Paulo de Freitas
2017-02-22
This paper presents the physical and mathematical formulation of a three-dimensional oil dispersion model that calculates the trajectory from the seafloor to the sea surface, its assumptions and constraints. It was developed by researchers that are familiar with oil spill dispersion and mathematical analysis. Oil dispersion is calculated through two computational routines. The first calculates the vertical dispersion along the water column and resamples the droplets when the oil reaches the surface. The second calculates the surface displacement of the spill. This model is based on the Eulerian Approach, and it uses numerical solution schemes in time and in space to solve the equation for advective-diffusive transport. A case study based on an actual accident that happened in the Campos Basin, in Rio de Janeiro State, considering the instant spill of 1.000 m(3) was used to evaluate the proposed model. After calculating the vertical transport, it was estimated that the area covered by the oil spill on the surface was about 35.685 m². After calculating the dispersion at the surface, the plume area was estimated as 20% of the initial area, resulting in a final area of 28.548 m².
Singh, Akansha; Sen, Prasenjit; Majumder, Chiranjib
2014-04-28
Adsorption of pre-formed Ag{sub n} clusters for n = 1 − 8 on a graphite substrate is studied within the density functional theory employing the vdW-DF2 functional to treat dispersion interactions. Top sites above surface layer carbon atoms turn out to be most favorable for a Ag adatom, in agreement with experimental observations. The same feature is observed for clusters of almost all sizes which have the lowest energies when the Ag atoms are positioned over top sites. Most gas phase isomers retain their structures over the substrate, though a couple of them undergo significant distortions. Energetics of the adsorption can be understood in terms of a competition between energy cost of disturbing Ag–Ag bonds in the cluster and energy gain from Ag–C interactions at the surface. Ag{sub 3} turns out to be an exceptional candidate in this regard that undergoes significant structural distortion and has only two of the Ag atoms close to surface C atoms in its lowest energy structure.
Mars Exploration Rovers Landing Dispersion Analysis
NASA Technical Reports Server (NTRS)
Knocke, Philip C.; Wawrzyniak, Geoffrey G.; Kennedy, Brian M.; Desai, Prasun N.; Parker, TImothy J.; Golombek, Matthew P.; Duxbury, Thomas C.; Kass, David M.
2004-01-01
Landing dispersion estimates for the Mars Exploration Rover missions were key elements in the site targeting process and in the evaluation of landing risk. This paper addresses the process and results of the landing dispersion analyses performed for both Spirit and Opportunity. The several contributors to landing dispersions (navigation and atmospheric uncertainties, spacecraft modeling, winds, and margins) are discussed, as are the analysis tools used. JPL's MarsLS program, a MATLAB-based landing dispersion visualization and statistical analysis tool, was used to calculate the probability of landing within hazardous areas. By convolving this with the probability of landing within flight system limits (in-spec landing) for each hazard area, a single overall measure of landing risk was calculated for each landing ellipse. In-spec probability contours were also generated, allowing a more synoptic view of site risks, illustrating the sensitivity to changes in landing location, and quantifying the possible consequences of anomalies such as incomplete maneuvers. Data and products required to support these analyses are described, including the landing footprints calculated by NASA Langley's POST program and JPL's AEPL program, cartographically registered base maps and hazard maps, and flight system estimates of in-spec landing probabilities for each hazard terrain type. Various factors encountered during operations, including evolving navigation estimates and changing atmospheric models, are discussed and final landing points are compared with approach estimates.
NASA Astrophysics Data System (ADS)
Ä; rrälä, Minna; Hafiz, Hasnain; Mou, Daixiang; Wu, Yun; Jiang, Rui; Riedemann, Trevor; Lograsso, Thomas A.; Barbiellini, Bernardo; Kaminski, Adam; Bansil, Arun; Lindroos, Matti
2016-10-01
We have obtained angle-resolved photoemission spectroscopy (ARPES) spectra from single crystals of the topological insulator material Bi2Te3 using a tunable laser spectrometer. The spectra were collected for 11 different photon energies ranging from 5.57 to 6.70 eV for incident light polarized linearly along two different in-plane directions. Parallel first-principles, fully relativistic computations of photointensities were carried out using the experimental geometry within the framework of the one-step model of photoemission. A reasonable overall accord between theory and experiment is used to gain insight into how properties of the initial- and final-state band structures as well as those of the topological surface states and their spin textures are reflected in the laser-ARPES spectra. Our analysis reveals that laser-ARPES is sensitive to both the initial-state kz dispersion and the presence of delicate gaps in the final-state electronic spectrum.
Neff, J.M.; Hillman, R.E.; Boehm, P.D.
1984-02-01
Infaunal bivalve molluscs from four bays at the BIOS experimental oil-spill site became contaiminated with petroleum hydrocarbons. A Lagomedio crude oil and the dispersant, Corexit 9527, were used in these field experiments. Based on chemical data, both Mya and Serripes depurated oil during the two-week post-spill period, in part through an in vivo biodegradation presumably by microbial activity in the guts of the animals. However, Serripes pregerentially retained the high-molucular-weight saturated hydrocarbon assemblage as well as the higher alkylated naphthalene, phenanthrene and dibenzothiophene compounds, whereas Mya depurated all hydrocarbon components although the water-soluble alkyl benzenes and naphthalenes were depurated somewhat faster. However, the deposit feeders continued to accumulate oil from the sediments, at least for the two weeks after the spill.
NASA Astrophysics Data System (ADS)
Hammer, Daniel X.; Noojin, Gary D.; Thomas, Robert J.; Stolarski, David J.; Rockwell, Benjamin A.; Welch, Ashley J.
1999-06-01
Spectrally resolved white-light interferometry (SRWLI) was used to measure the wavelength dependence of refractive index (i.e., dispersion) for various ocular components. The accuracy of the technique was assessed by measurement of fused silica and water, the refractive indices of which have been measured at several different wavelengths. The dispersion of bovine and rabbit aqueous and vitreous humor was measured from 400 to 1100 nm. Also, the dispersion was measured from 400 to 700 nm for aqueous and vitreous humor extracted from goat and rhesus monkey eyes. For the humors, the dispersion did not deviate significantly from water. In an additional experiment, the dispersion of aqueous and vitreous humor that had aged up to a month was compared to freshly harvested material. No difference was found between the fresh and aged media. An unsuccessful attempt was also made to use the technique for dispersion measurement of bovine cornea and lens. Future refinement may allow measurement of the dispersion of cornea and lens across the entire visible and near-infrared wavelength band. The principles of white- light interferometry including image analysis, measurement accuracy, and limitations of the technique, are discussed. In addition, alternate techniques and previous measurements of ocular dispersion are reviewed.
Dispersions in semiclassical dynamics
NASA Astrophysics Data System (ADS)
Zielinska-Pfabé, M.; Grégoire, C.
1988-06-01
Dispersions around mean values of one-body observables are obtained by restoring classical many-body correlations in Vlasov and Landau-Vlasov dynamics. This method is applied to the calculation of fluctuations in mass, charge, and linear momentum in heavy-ion collisions. Results are compared with those obtained by the Balian-Veneroni variational principle in semiclassical approximation.
Keiser, Jr., Dennis D.; Jue, Jan -Fong; Gan, Jian; ...
2017-02-27
The Material Management and Minimization (M3) Reactor Conversion Program, in the past called the Reduced Enrichment for Research and Test Reactor (RERTR) Program, is developing low-enriched uranium (LEU) fuels for application in research reactors. U–Mo alloy dispersion fuel is one type being developed. Blister testing has been performed on different fuel plate samples to determine the margin to failure for fuel plates irradiated to different fission densities. Microstructural characterization was performed using scanning electron microscopy and transmission electron microscopy on a sample taken from a U-7Mo/AA4043 matrix dispersion fuel plate irradiated in the RERTR-6 experiment that was blister-tested up tomore » a final temperature of 500°C. The results indicated that two types of grain/cell boundaries were observed in the U- 7Mo fuel particles, one with a relatively low Mo content and fission gas bubbles and a second type enriched in Si, due to interdiffusion from the Si-containing matrix, with little evidence of fission gas bubbles. With respect to the behavior of the major fission gas Xe, a significant amount of the Xe was still observed within the U-7Mo fuel particle, along with microns into the AA4043 matrix. For the fuel/matrix interaction layers that form during fabrication and then grow during irradiation, they change from the as-irradiated amorphous structure to one that is crystalline after blister testing. In the AA4043 matrix, the original Si-rich precipitates, which are typically observed in as-irradiated U-Mo dispersion fuel, get consumed due to interdiffusion with the U-7Mo fuel particles during the blister test. Lastly, the fission gas bubbles that were originally around 2 nm in diameter and resided on a fission gas superlattice in the intragranular regions of as-irradiated U-7Mo fuel grew in size (up to ~20 nm diameter) during blister testing.« less
Also called dispersants, these chemicals used in spill cleanups contain surfactants and/or solvent compounds that act to break petroleum oil into small droplets, which can then break down further in the water.
Ludwig, Ralf
2015-06-07
We could show by means of dispersion-corrected DFT calculations that the interaction energy in protic ionic liquids can be dissected into Coulomb interaction, hydrogen bonding and dispersion interaction. The H-bond energy as well as the dispersion energy can be quantified to be 50 kJ mol(-1) each representing ten percent of the overall interaction energy. The dispersion interaction could be dissected into two portions. One third could be related to the dispersion interaction within an ion-pair enhancing the H-bond strength, two thirds stem from dispersion interaction between the ion-pairs. This distribution of dispersion interaction is reflected in the far infrared (FIR) spectra. The H-bond band is shifted weaker than the low frequency band where the latter indicates diffuse cation-anion interaction and H-bond bending motions. Finally, we can dissect the different types of interaction energies indicating their characteristic influence on vibrational modes in the FIR.
Fickian dispersion is anomalous
Cushman, John H.; O’Malley, Dan
2015-06-22
The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion wemore » illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Finally, power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.« less
Fickian dispersion is anomalous
Cushman, John H.; O’Malley, Dan
2015-06-22
The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion we illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Finally, power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.
NASA Astrophysics Data System (ADS)
Lennon, Daniel
2009-07-01
Wavelength dispersion solutions will be determined on a yearly basis as part of a long-term monitoring program. Deep engineering wavecals for each MAMA grating will be obtained at common cenwaves. Intermediate settings will also be taken to check the reliability of derived dispersion solutions. Final selection was determined on basis of past monitoring and C17 requirements. The internal wavelength calibrations will be taken using the LINE line lamp. Extra-deep wavecals are included for some echelle modes and first order modes to ensure detection of weak lines.
NASA Astrophysics Data System (ADS)
Keiser, Dennis D.; Jue, Jan-Fong; Gan, Jian; Miller, Brandon D.; Robinson, Adam B.; Madden, James W.; Ross Finlay, M.; Moore, Glenn; Medvedev, Pavel; Meyer, Mitch
2017-05-01
The Material Management and Minimization (M3) Reactor Conversion Program, in the past called the Reduced Enrichment for Research and Test Reactor (RERTR) Program, is developing low-enriched uranium (LEU) fuels for application in research and test reactors. U-Mo alloy dispersion fuel is one type being developed. Blister testing has been performed on different fuel plate samples to determine the margin to failure for fuel plates irradiated to different fission densities. Microstructural characterization was performed using scanning electron microscopy and transmission electron microscopy on a sample taken from a U-7Mo/AA4043 matrix dispersion fuel plate irradiated in the RERTR-6 experiment that was blister-tested up to a final temperature of 500 °C. The results indicated that two types of grain/cell boundaries were observed in the U-7Mo fuel particles, one with a relatively low Mo content and fission gas bubbles and a second type enriched in Si, due to interdiffusion from the Si-containing matrix, with little evidence of fission gas bubbles. With respect to the behavior of the major fission gas Xe, a significant amount of the Xe was still observed within the U-7Mo fuel particle, along with microns into the AA4043 matrix. For the fuel/matrix interaction layers that form during fabrication and then grow during irradiation, they change from the as-irradiated amorphous structure to one that is crystalline after blister testing. In the AA4043 matrix, the original Si-rich precipitates, which are typically observed in as-irradiated U-Mo dispersion fuel, get consumed due to interdiffusion with the U-7Mo fuel particles during the blister test. Finally, the fission gas bubbles that were originally around 3 nm in diameter and resided on a fission gas superlattice (FGS) in the intragranular regions of as-irradiated U-7Mo fuel grew in size (up to ∼20 nm diameter) during blister testing and, in many areas, are no longer organized as a superlattice.
Hicks, H.
1984-12-01
This report presents data on calculated gamma radiation exposure rates and local surface deposition of related radionuclides resulting from two hypothetical 1-Mt nuclear bursts. Calculations are made of the debris from two types of bombs: one containing /sup 235/U as a fissionable material (designated oralloy), the other containing /sup 238/U (designated tuballoy). 4 references.
Ärrälä, Minna; Hafiz, Hasnain; Mou, Daixiang; ...
2016-10-27
Here, we have obtained angle-resolved photoemission (ARPES) spectra from single crystals of the topological insulator material Bi2Te3 using tunable laser spectrometer. The spectra were collected for eleven different photon energies ranging from 5.57 to 6.70 eV for incident light polarized linearly along two different in-plane directions. Parallel first-principles, fully relativistic computations of photo-intensities were carried out using the experimental geometry within the framework of the one-step model of photoemission. Good overall accord between theory and experiment is used to gain insight into how properties of the initial and final state band structures as well as those of the topological surfacemore » states and their spin-textures are reflected in the laser-ARPES spectra. In conclusion, our analysis reveals that laser-ARPES is sensitive to both the initial state kz dispersion and the presence of delicate gaps in the final state electronic spectrum.« less
Lebel, Luke; Bourgouin, Pierre; Chouhan, Sohan; Ek, Nils; Korolevych, Volodymyr; Malo, Alain; Bensimon, Dov; Erhardt, Lorne
2016-05-01
Three radiological dispersal devices were detonated in 2012 under controlled conditions at Defence Research and Development Canada's Experimental Proving Grounds in Suffield, Alberta. Each device comprised a 35-GBq source of (140)La. The dataset obtained is used in this study to assess the MLCD, ADDAM, and RIMPUFF atmospheric dispersion models. As a continuation of Lebel et al. (2016), this paper examines different methodologies for making dose estimates with atmospheric dispersion models.
ERIC Educational Resources Information Center
Budiansky, Stephen
1980-01-01
This article discusses the need for more accurate and complete input data and field verification of the various models of air pollutant dispension. Consideration should be given to changing the form of air quality standards based on enhanced dispersion modeling techniques. (Author/RE)
ERIC Educational Resources Information Center
Budiansky, Stephen
1980-01-01
This article discusses the need for more accurate and complete input data and field verification of the various models of air pollutant dispension. Consideration should be given to changing the form of air quality standards based on enhanced dispersion modeling techniques. (Author/RE)
1995-09-01
This volume contains calculations for: Slick Rock processing sites background ground water quality; Slick Rock processing sites lysimeter water quality; Slick Rock processing sites on-site and downgradient ground water quality; Slick Rock disposal site background water quality; Burro Canyon disposal site, Slick Rock, Colorado, average hydraulic gradients and average liner ground water velocities in the upper, middle, and lower sandstone units of the Burro Canyon formation; Slick Rock--Burro Canyon disposal site, Burro Canyon pumping and slug tests--analyses; water balance and surface contours--Burro Canyon disposal cell; and analytical calculation of drawdown in a hypothetical well completed in the upper sandstone unit of the Burro Canyon formation.
NASA Technical Reports Server (NTRS)
Frost, W.; Christensen, L. S.; Collins, F. G.; Camp, D. W.
1980-01-01
A study of economically viable techniques for dispersing warm fog at commercial airports is presented. Five fog dispersion techniques are examined: evaporation suppression, downwash, mixing, seeding with hygroscopic material, thermal techniques, and charged particle techniques. Thermal techniques, although effective, were found to be too expensive for routine airport operations, and detrimental to the environment. Seeding or helicopter downwash are practical for small-scale or temporary fog clearing, but are probably not useful for airport operations on a routine basis. Considerable disagreement exists on the capability of charged particle techniques, which stems from the fact that different assumptions and parameter values are used in the analytical models. Recommendations resulting from the review of this technique are listed, and include: experimental measurements of the parameters in question; a study to ascertain possible safety hazards, such as increased electrical activity or fuel ignition during refueling operations which could render charged particle techniques impractical; and a study of a single charged particle generator.
NASA Technical Reports Server (NTRS)
Frost, W.; Christensen, L. S.; Collins, F. G.; Camp, D. W.
1980-01-01
A study of economically viable techniques for dispersing warm fog at commercial airports is presented. Five fog dispersion techniques are examined: evaporation suppression, downwash, mixing, seeding with hygroscopic material, thermal techniques, and charged particle techniques. Thermal techniques, although effective, were found to be too expensive for routine airport operations, and detrimental to the environment. Seeding or helicopter downwash are practical for small-scale or temporary fog clearing, but are probably not useful for airport operations on a routine basis. Considerable disagreement exists on the capability of charged particle techniques, which stems from the fact that different assumptions and parameter values are used in the analytical models. Recommendations resulting from the review of this technique are listed, and include: experimental measurements of the parameters in question; a study to ascertain possible safety hazards, such as increased electrical activity or fuel ignition during refueling operations which could render charged particle techniques impractical; and a study of a single charged particle generator.
Reece, W.D.; Poston, J.W.; Xu, X.G.
1993-02-01
Beginning in January 1994, US nuclear power plants must change the way that they determine the radiation exposure to their workforce. At that time, revisions to Title 10 Part 20 of the Code of Federal Regulations will be in force requiring licensees to evaluate worker radiation exposure using a risk-based methodology termed the ``effective dose equivalent.`` A research project was undertaken to improve upon the conservative method presently used for assessing effective dose equivalent. In this project effective dose equivalent was calculated using a mathematical model of the human body, and tracking photon interactions for a wide variety of radiation source geometries using Monte Carlo computer code simulations. Algorithms were then developed to relate measurements of the photon flux on the surface of the body (as measured by dosimeters) to effective dose equivalent. This report (Volume I of a two-part study) describes: the concept of effective dose equivalent, the evolution of the concept and its incorporation into regulations, the variations in human organ susceptibility to radiation, the mathematical modeling and calculational techniques used, the results of effective dose equivalent calculations for a broad range of photon energiesand radiation source geometries. The study determined that for beam radiation sources the highest effective dose equivalent occurs for beams striking the front of the torso. Beams striking the rear of the torsoproduce the next highest effective dose equivalent, with effective dose equivalent falling significantly as one departs from these two orientations. For point sources, the highest effective dose equivalent occurs when the sources are in contact with the body on the front of the torso. For females the highest effective dose equivalent occurs when the source is on the sternum, for males when it is on the gonads.
Esfandyari-Kalejahi, A.; Ebrahimi, V.
2014-03-15
We have derived generalized dispersion relations for longitudinal waves in collisionless thermal plasma using linear Vlasov-Poisson kinetic model and nonextensive distributions for electrons. The Maxwellian limit of the dispersion relations, where the q-nonextensive parameter tends to one, is calculated. The generalized dispersion relations are reduced to polynomials for some specific values of q. The well-known modes of oscillations such as the Langmuir and electron acoustic waves have been obtained by solving the dispersion relations. Some new modes of oscillation are also found. Finally, the dependence of the oscillation modes and damps on q is discussed.
NASA Technical Reports Server (NTRS)
Wanser, K. H.
1981-01-01
Silicon has interesting harmonic and anharmonic properties such as the low lying transverse acoustic modes at the X and L points of the Brillouin zone, negative Gruneisen parameters, negative thermal expansion and anomalous acoustic attenuation. In an attempt to understand these properties, a lattice dynamical model employing long range, nonlocal, dipole-dipole interactions was developed. Analytic expression for the Gruneisen parameters of several modes are presented. These expressions explain how the negative Gruneisen parameters arise. This model is applied to the calculation of the thermal expansion of silicon from 5K to 1700K. The thermoelastic contribution to the acoustic attenuation of silicon is computed from 1 to 300 K. Strong attenuation anomalies associated with negative thermal expansion are found in the vicinity of 17K and 125K.
Not Available
1994-03-01
This report contains calculations for: hydraulic gradients for Alluvial Aquifer and Salt Wash Aquifer; slug test analysis to determine hydraulic conductivity for Alluvial Aquifer and Salt Wash Aquifer; average linear groundwater velocity for Alluvial Aquifer and Salt Wash Aquifer; statistical analysis of the extent of existing groundwater contamination; hydraulic gradients for Dakota/Burro Canyon Formation and Salt Wash Aquifer; slug test analysis to determine hydraulic conductivity for Dakota/Burro Canyon Formation and Perched Salt Wash Aquifer; determination of hydraulic conductivity of the Dakota/Burro Canyon Formation from Packer Tests; average linear groundwater velocity for Dakota/Burro Canyon and Salt Wash Aquifer; chemical and mineralogical characterization of core samples from the Dry Flats Disposal Site; and demonstration of low groundwater yield from Uppermost Aquifer.
Optical properties of fly ash. Volume 2, Final report
Self, S.A.
1994-12-01
Research performed under this contract was divided into four tasks under the following headings: Task 1, Characterization of fly ash; Task 2, Measurements of the optical constants of slags; Task 3, Calculations of the radiant properties of fly ash dispersions; and Task 4, Measurements of the radiant properties of fly ash dispersions. Tasks 1 and 4 constituted the Ph.D. research topic of Sarbajit Ghosal, while Tasks 2 and 3 constituted the Ph.D. research topic of Jon Ebert. Together their doctoral dissertations give a complete account of the work performed. This final report, issued in two volumes consists of an executive summary of the whole program followed by the dissertation of Ghosal and Ebert. Volume 2 contains the dissertation of Ebert which covers the measurements of the optical constants of slags, and calculations of the radiant properties of fly ash dispersions. A list of publications and conference presentations resulting from the work is also included.
Asymptotic dispersion energies from distributed polarizabilities
NASA Astrophysics Data System (ADS)
Rob, Fazle; Szalewicz, Krzysztof
2013-05-01
A new algorithm is proposed for calculations of distributed molecular polarizabilities. In contrast to published algorithms, it virtually eliminates the charge-flow terms that result in a slower than inverse sixth power decay of dispersion energy whereas the remaining terms have unique and physically reasonable values. Dispersion energies computed from these polarizabilities are very close to unexpanded dispersion energies in the region of small charge overlap. The method is expected to provide reference data for development of dispersion functions used in simulations of biomolecules and in dispersion-supplemented density-functional approaches.
Taylor dispersion of nanoparticles
NASA Astrophysics Data System (ADS)
Balog, Sandor; Urban, Dominic A.; Milosevic, Ana M.; Crippa, Federica; Rothen-Rutishauser, Barbara; Petri-Fink, Alke
2017-08-01
The ability to detect and accurately characterize particles is required by many fields of nanotechnology, including materials science, nanotoxicology, and nanomedicine. Among the most relevant physicochemical properties of nanoparticles, size and the related surface-to-volume ratio are fundamental ones. Taylor dispersion combines three independent phenomena to determine particle size: optical extinction, translational diffusion, and sheer-enhanced dispersion of nanoparticles subjected to a steady laminar flow. The interplay of these defines the apparent size. Considering that particles in fact are never truly uniform nor monodisperse, we rigorously address particle polydispersity and calculate the apparent particle size measured by Taylor dispersion analysis. We conducted case studies addressing aqueous suspensions of model particles and large-scale-produced "industrial" particles of both academic and commercial interest of various core materials and sizes, ranging from 15 to 100 nm. A comparison with particle sizes determined by transmission electron microscopy confirms that our approach is model-independent, non-parametric, and of general validity that provides an accurate account of size polydispersity—independently on the shape of the size distribution and without any assumption required a priori.
Phonon dispersion and heat capacity in polyfuran.
Ali, Parvej; Srivastava, Seema; Ali Khan, Irfan; Gupta, V D; Ansari, Saif-Ul-Islam
2012-07-01
A study of the normal modes of vibration and their dispersion in polyfuran (Pfu) based on the Urey-Bradley force field is reported. It provides a detailed interpretation of IR and Raman spectra. Characteristic features of dispersion curves such as regions of high density-of-states, repulsion and character mixing of dispersive modes are discussed. Predictive values of heat capacity as a function of temperature are calculated. Copyright © 2012 Elsevier B.V. All rights reserved.
Phonon dispersion and heat capacity in polyfuran
NASA Astrophysics Data System (ADS)
Ali, Parvej; Srivastava, Seema; Ali Khan, Irfan; Gupta, V. D.; Ansari, Saif-ul-Islam
A study of the normal modes of vibration and their dispersion in polyfuran (Pfu) based on the Urey-Bradley force field is reported. It provides a detailed interpretation of IR and Raman spectra. Characteristic features of dispersion curves such as regions of high density-of-states, repulsion and character mixing of dispersive modes are discussed. Predictive values of heat capacity as a function of temperature are calculated.
On the dispersion of geodesic acoustic modes
Smolyakov, A. I.; Bashir, M. F.; Elfimov, A. G.; Yagi, M.; Miyato, N.
2016-05-15
The problem of dispersion of geodesic acoustic modes is revisited with two different methods for the solution of the kinetic equation. The dispersive corrections to the mode frequency are calculated by including the m = 2 poloidal harmonics. Our obtained results agree with some earlier results but differ in various ways with other previous works. Limitations and advantages of different approaches are discussed.
Normal-stress coefficients and rod climbing in colloidal dispersions
NASA Astrophysics Data System (ADS)
Farage, T. F. F.; Reinhardt, J.; Brader, J. M.
2013-10-01
We calculate tractable microscopic expressions for the low-shear normal-stress coefficients of colloidal dispersions. Although restricted to the low rate regime, the presented formulas are valid for all volume fractions below the glass transition and for any interaction potential. Numerical results are presented for a system of colloids interacting via a hard-core attractive Yukawa potential, for which we explore the interplay between attraction strength and volume fraction. We show that the normal-stress coefficients exhibit nontrivial features close to the critical point and at high volume fractions in the vicinity of the reentrant glass transition. Finally, we exploit our formulas to make predictions about rod-climbing effects in attractive colloidal dispersions.
Dispersion in alluvial convergent estuaries
NASA Astrophysics Data System (ADS)
Zhang, Zhilin; Savenije, Hubert H. G.
2016-04-01
The Van der Burgh's equation for longitudinal effective dispersion is a purely empirical method with practical implications. Its application to the effective tidal average dispersion under equilibrium conditions appears to have excellent performance in a wide range of alluvial estuaries. In this research, we try to find out the physical meaning of Van der Burgh's coefficient. Researchers like MacCready, Fischer, Kuijper, Hansen and Rattray have tried to split up dispersion into its constituents which did not do much to explain overall behaviour. In addition, traditional literature on dispersion is mostly related to flumes with constant cross-section. This research is about understanding the Van der Burgh's coefficient facing the fact that natural estuaries have exponentially varying cross-section. The objective is to derive a simple 1-D model considering both longitudinal and lateral mixing processes based on field observations (theoretical derivation). To that effect, we connect dispersion with salinity using the salt balance equation. Then we calculate the salinity along the longitudinal direction and compare it to the observed salinity. Calibrated dispersion coefficients in a range of estuaries are then compared with new expressions for the Van der Burgh's coefficient K and it is analysed if K varies from estuary to estuary. The set of reliable data used will be from estuaries: Kurau, Perak, Bernam, Selangor, Muar, Endau, Maputo, Thames, Corantijn, Sinnamary, Mae Klong, Lalang, Limpopo, Tha Chin, Chao Phraya, Edisto and Elbe.
Piston Dispersive Shock Wave Problem
Hoefer, M. A.; Ablowitz, M. J.; Engels, P.
2008-02-29
The piston shock problem is a classical result of shock wave theory. In this work, the analogous dispersive shock wave (DSW) problem for a fluid described by the nonlinear Schroedinger equation is analyzed. Asymptotic solutions are calculated for a piston (step potential) moving with uniform speed into a dispersive fluid at rest. In contrast to the classical case, there is a bifurcation of shock behavior where, for large enough piston velocities, the DSW develops a periodic wave train in its wake with vacuum points and a maximum density that remains fixed as the piston velocity is increased further. These results have application to Bose-Einstein condensates and nonlinear optics.
Faraday anomalous dispersion optical filters
NASA Technical Reports Server (NTRS)
Shay, T. M.; Yin, B.
1992-01-01
The present calculations of the performance of Faraday anomalous dispersion optical filters (FADOF) on IR transitions indicate that such filters may furnish high transmission, narrow-pass bandwidth, and low equivalent noise bandwidth under optimum operating conditions. A FADOF consists of an atomic vapor cell between crossed polarizers that are subject to a dc magnetic field along the optical path; when linearly polarized light travels along the direction of the magnetic field through the dispersive atomic vapor, a polarization rotation occurs. If FADOF conditions are suitably adjusted, a maximum transmission with very narrow bandwidth is obtained.
Two-point derivative dispersion relations
NASA Astrophysics Data System (ADS)
Ferreira, Erasmo; Sesma, Javier
2013-03-01
A new derivation is given for the representation, under certain conditions, of the integral dispersion relations of scattering theory through local forms. The resulting expressions have been obtained through an independent procedure to construct the real part and consist of new mathematical structures of double infinite summations of derivatives. In this new form the derivatives are calculated at the generic value of the energy E and separately at the reference point E = m that is the lower limit of the integration. This new form may be more interesting in certain circumstances and directly shows the origin of the difficulties in convergence that were present in the old truncated forms called standard-derivative dispersion relations (DDR). For all cases in which the reductions of the double to single sums were obtained in our previous work, leading to explicit demonstration of convergence, these new expressions are seen to be identical to the previous ones. We present, as a glossary, the most simplified explicit results for the DDR's in the cases of imaginary amplitudes of forms (E/m)λ[ln (E/m)]n that cover the cases of practical interest in particle physics phenomenology at high energies. We explicitly study the expressions for the cases with λ negative odd integers, that require identification of cancelation of singularities, and provide the corresponding final results.
The Importance of Seed Characteristics in the Dispersal of Splash-Cup Plants
NASA Astrophysics Data System (ADS)
Eklof, Joel; Pepper, Rachel Pepper; Echternach, Juliana
2016-11-01
Splash-cup plants disperse their seeds by exploiting the kinetic energy of raindrops. When raindrops impact the splash-cup, a 3-5 mm vessel that holds seeds, the seeds are projected up to 1 m away from the parent plant. It has been established, using 3D printed models, that a 40°cone angle maximizes dispersal distance when seeds are not present in the cup. We therefore use 40°cups with the addition of different types of seeds to determine the effect that seeds of varying characteristics have on the dispersal and splash dynamics of splash-cup plants. Splash characteristics and dispersal distances of seeds with differing characteristics such as size, shape, texture, density, and hydrophobicity were compared to one another, as well as to the case of having no seeds present. We found that the presence of seeds dramatically decreased dispersal distance and changed splash characteristics (are measured by the angle and velocity of the resulting splash). In addition, different types of seeds yielded splashes with differing dispersal distance and splash characteristics. Splash characteristics and dispersal distances of glass beads of differing hydrophobicity were compared to determine the effect hydrophobicity has on dispersal and splash dynamics. These beads yielded some differences in dispersal distance, but no notable difference in splash dynamics. Models of the conical fruit bodies of the splash-cups were 3D printed and high-speed video was used to find splash characteristics, and dispersal distance was calculated by measuring the distance from the model to the final resting position of the seeds and droplets.
Controlling Au Nanorod Dispersion in Thin Film Polymer Blends
NASA Astrophysics Data System (ADS)
Hore, Michael J. A.; Composto, Russell J.
2012-02-01
Dispersion of Au nanorods (Au NRs) in polymer thin films is studied using a combination of experimental and theoretical techniques. Here, we incorporate small volume fractions of polystyrene-functionalized Au NRs (φrod 0.05) into polystyrene (PS) thin films. By controlling the ratio of the brush length (N) to that of the matrix polymers (P), we can selectively obtain dispersed or aggregated Au NR structures in the PS-Au(N):PS(P) films. A dispersion map of these structures allows one to choose N and P to obtain either uniformly dispersed Au NRs or aggregates of closely packed, side-by-side aligned Au NRs. Furthermore, by blending poly(2,6-dimethyl-p-phenylene oxide) (PPO) into the PS films, we demonstrate that the Au nanorod morphology can be further tuned by reducing depletion-attraction forces and promoting miscibility of the Au NRs. These predictable structures ultimately give rise to tunable optical absorption in the films resulting from surface plasmon resonance coupling between the Au NRs. Finally, self-consistent field theoretic (SCFT) calculations for both the PS-Au(N):PS(P) and PS-Au(N):PS(P):PPO systems provide insight into the PS brush structure, and allow us to interpret morphology and optical property results in terms of wet and dry PS brush states.
Atomically dispersed Pd catalysts in graphyne nanopore: formation and reactivity
NASA Astrophysics Data System (ADS)
Gu, Yongbing; Chen, Xianlang; Cao, Yongyong; Zhuang, Guilin; Zhong, Xing; Wang, Jianguo
2017-07-01
The formation of single-atom noble metal catalysts on carbon materials remains a challenge due to the weak interaction between metals and pristine carbon. By means of density functional theory (DFT) calculations, it is found that the atomically dispersed Pd in graphyne nanopore is much more stable than that of relative Pd clusters. The large diffusion barrier of Pd from the most stable hollow site to the bridge site confirms the kinetic stability of such structures. While CO adsorption causes the pulling of Pd from graphyne nanopore due to the low diffusion barrier, based on DFT calculations, which can be further confirmed by ab initio molecular dynamic simulations. Finally, CO oxidation on the reconstruction of Pd@graphyne exhibits an energy barrier of 0.62 eV in the rate-limiting step through the Langmuir-Hinshelwood mechanism. After the reaction, the catalyst can be restored to the original atomically dispersed state again. This study shows graphyne is an excellent support for an atomically dispersed or single-metal catalyst.
Optical properties of fly ash. Volume 1, Final report
Self, S.A.
1994-12-01
Research performed under this contract was divided into four tasks under the following headings: Task 1, Characterization of fly ash; Task 2, Measurements of the optical constants of slags; Task 3, Calculations of the radiant properties of fly ash dispersions; and Task 4, Measurements of the radiant properties of fly ash dispersions. Tasks 1 and 4 constituted the Ph.D. research topic of Sarbajit Ghosal, while Tasks 2 and 3 constituted the Ph.D. research topic of Jon Ebert. Together their doctoral dissertations give a complete account of the work performed. This final report, issued in two volumes consists of an executive summary of the whole program followed by the dissertation of Ghosal. Volume 1 contains the dissertation of Ghosal which covers the characterization of fly ash and the measurements of the radiant properties of fly ash dispersions. A list of publications and conference presentations resulting from the work is also included.
Pandey, Krishna K
2015-11-16
(119)Sn Mössbauer isomer shift (IS) and quadrupole splitting (ΔEQ) for M≡SnR bonding in metal-stannylidyne complexes trans-[Cl(PMe3)4Mo≡Sn-R] (1), trans-[Cl(PMe3)4W≡Sn-R] (2), trans-[Cl(dppe)2Mo≡Sn-R] (3), trans-[Cl(dppe)2W≡Sn-R] (4), [(dppe)2Mo≡Sn-R](+) (5), [(dppe)2W≡Sn-R](+) (6) (R = C6H3-2,6-Mes2) have been investigated for the first time. Calculations of optimized structures and (119)Sn Mössbauer parameters were carried out at the DFT/TPSS-D3(BJ)/TZVPP/ZORA level of theory. The calculated geometry parameters of stannylidyne complexes of molybdenum and tungsten (1-6) are in good agreement with experimental values of W-Sn and Sn-C bond distances. The calculated values of the isomer shift for the complexes (1-6) are almost same to the experimental values (within ±0.1 mm/s). Experimental values (ISexptl, 2.38-2.50 mm/s) and calculated values (IScalcd, 2.37-2.49 mm/s) of isomer shifts indicate that the oxidation state of tin in the studied complexes with M≡Sn-R bonding is Sn(II). The variations of ISexptl, as a function of Sn s electrons (Ns(Sn)), also exhibit a linear trend. (IS = 0.477Ns(Sn) - 1.888, R(2) = 0.9973). Calculated values of isomer shift (IScalcd) using the linear regression with the Ns(Sn) electron density are in excellent concord with the ISexptl.The calculated values of nuclear quadrupole splitting parameters (ΔEQ(calcd)) of (119)Sn using the relation ΔEQ(calcd) = (0.540 + 0.28) V are in agreement with the experimental values.
Not Available
1980-10-01
A major aim of the US National Energy Policy, as well as that of the New York State Energy Research and Development Authority, is to conserve energy and to shift from oil to more abundant domestic fuels and renewable energy sources. Dispersed Storage and Generation (DSG) is the term that characterizes the present and future dispersed, relatively small (<30 MW) energy systems, such as solar thermal electric, photovoltaic, wind, fuel cell, storage battery, hydro, and cogeneration, which can help achieve these national energy goals and can be dispersed throughout the distribution portion of an electric utility system. As a result of visits to four utilities concerned with the use of DSG power sources on their distribution networks, some useful impressions of present and future approaches to the integration of DSGs into electrical distribution network have been obtained. A more extensive communications and control network will be developed by utilities for control of such sources for future use. Different approaches to future utility systems with DSG are beginning to take shape. The new DSG sources will be in decentralized locations with some measure of centralized control. The utilities have yet to establish firmly the communication and control means or their organization. For the present, the means for integrating the DSGs and their associated monitoring and control equipment into a unified system have not been decided.
Modeling the dispersion in electromechanically coupled myocardium
Eriksson, Thomas S. E.; Prassl, Anton J.; Plank, Gernot; Holzapfel, Gerhard A.
2014-01-01
SUMMARY We present an approach to model the dispersion of fiber and sheet orientations in the myocardium. By utilizing structure parameters, an existing orthotropic and invariant-based constitutive model developed to describe the passive behavior of the myocardium is augmented. Two dispersion parameters are fitted to experimentally observed angular dispersion data of the myocardial tissue. Computations are performed on a unit myocardium tissue cube and on a slice of the left ventricle indicating that the dispersion parameter has an effect on the myocardial deformation and stress development. The use of fiber dispersions relating to a pathological myocardium had a rather big effect. The final example represents an ellipsoidal model of the left ventricle indicating the influence of fiber and sheet dispersions upon contraction over a cardiac cycle. Although only a minor shift in the pressure–volume (PV) loops between the cases with no dispersions and with fiber and sheet dispersions for a healthy myocardium was observed, a remarkably different behavior is obtained with a fiber dispersion relating to a diseased myocardium. In future simulations, this dispersion model for myocardial tissue may advantageously be used together with models of, for example, growth and remodeling of various cardiac diseases. PMID:23868817
Saastamoinen, Marjo; Bocedi, Greta; Cote, Julien; Legrand, Delphine; Guillaume, Frédéric; Wheat, Christopher W; Fronhofer, Emanuel A; Garcia, Cristina; Henry, Roslyn; Husby, Arild; Baguette, Michel; Bonte, Dries; Coulon, Aurélie; Kokko, Hanna; Matthysen, Erik; Niitepõld, Kristjan; Nonaka, Etsuko; Stevens, Virginie M; Travis, Justin M J; Donohue, Kathleen; Bullock, James M; Del Mar Delgado, Maria
2017-08-03
Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal-related phenotypes or evidence for the micro-evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment-dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non-additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non-equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in
Highly dispersive slot waveguides.
Zhang, Lin; Yue, Yang; Xiao-Li, Yinying; Beausoleil, Raymond G; Willner, Alan E
2009-04-27
We propose a slot-waveguide with high dispersion, in which a slot waveguide is coupled to a strip waveguide. A negative dispersion of up to -181520 ps/nm/km is obtained due to a strong interaction of the slot and strip modes. A flat and large dispersion is achievable by cascading the dispersive slot-waveguides with varied waveguide thickness or width for dispersion compensation and signal processing applications. We show - 31300 ps/nm/km dispersion over 147-nm bandwidth with <1% variance.
Faraday anomalous dispersion optical filters
NASA Technical Reports Server (NTRS)
Shay, T. M.; Yin, B.; Alvarez, L. S.
1993-01-01
The effect of Faraday anomalous dispersion optical filters on infrared and blue transitions of some alkali atoms is calculated. A composite system is designed to further increase the background noise rejection. The measured results of the solar background rejection and image quality through the filter are presented. The results show that the filter may provide high transmission and high background noise rejection with excellent image quality.
Li, Pu; Weng, Linlu; Niu, Haibo; Robinson, Brian; King, Thomas; Conmy, Robyn; Lee, Kenneth; Liu, Lei
2016-12-15
This study was aimed at testing the applicability of modified Weber number scaling with Alaska North Slope (ANS) crude oil, and developing a Reynolds number scaling approach for oil droplet size prediction for high viscosity oils. Dispersant to oil ratio and empirical coefficients were also quantified. Finally, a two-step Rosin-Rammler scheme was introduced for the determination of droplet size distribution. This new approach appeared more advantageous in avoiding the inconsistency in interfacial tension measurements, and consequently delivered concise droplet size prediction. Calculated and observed data correlated well based on Reynolds number scaling. The relation indicated that chemical dispersant played an important role in reducing the droplet size of ANS under different seasonal conditions. The proposed Reynolds number scaling and two-step Rosin-Rammler approaches provide a concise, reliable way to predict droplet size distribution, supporting decision making in chemical dispersant application during an offshore oil spill.
NASA Astrophysics Data System (ADS)
Skaltsas, T.; Pispas, S.; Tagmatarchis, N.
2015-11-01
Nanodiamonds (NDs) lack efficient dispersion, not only in solvents but also in aqueous media. The latter is of great importance, considering the inherent biocompatibility of NDs and the plethora of suitable strategies for immobilizing functional biomolecules. In this work, a series of polymers was non-covalently interacted with NDs, forming ND-polymer ensembles, and their dispersibility and stability was examined. Dynamic light scattering gave valuable information regarding the size of the ensembles in liquid phase, while their morphology was further examined by high-resolution transmission electron microscopy imaging. In addition, thermal analysis measurements were applied to collect information on the thermal behavior of NDs and their ensembles and to calculate the amount of polymer interacting with the NDs, as well as the dispersibility values of the ND-polymer ensembles. Finally, the bovine serum albumin protein was electrostatically bound to a ND-polymer ensemble in which the polymeric moiety was carrying quaternized pyridine units.
Tasinato, Nicola; Grimme, Stefan
2015-02-28
Thermodynamic and spectroscopic properties of molecular complexes featuring non-covalent interactions, such as van der Waals forces and hydrogen bonds, are of fundamental interest in many fields, ranging from chemistry and biology to nanotechnology. In the present work the homodimers of difluoromethane (CH2F2) and sulfur dioxide (SO2) are investigated theoretically using dispersion-corrected density functional theory (DFT-D3) and experimentally by tunable diode laser (TDL) infrared (IR) spectroscopy. The dissociation energies of (CH2F2)2 and (SO2)2 are determined experimentally from the broadening of the ro-vibrational transitions of the corresponding monomers collisionally perturbed by a range of damping gases. The resulting dissociation energies are 2.79 ± 0.32 and 2.62 ± 0.16 kcal mol(-1) for the CH2F2 and SO2 dimers, respectively. Six to nine different stationary points on the PES of the two complexes are investigated theoretically at the DFT-D3 level, retrieving the corresponding dissociation energies, structures and rotational constants. Computations are carried out by employing six different density functionals (BLYP, TPSS, B3LYP, PBE0, TPSSh, and PW6B95) in conjunction with def2-TZVP and in a few cases def2-QZVP basis sets. DFT-D3 dissociation energies are benchmarked against reference values from CCSD(T)/CBS computations, and furthermore compared to experimental ones. A very good agreement between theory and experiment is attained, showing that DFT-D3 provides a significant improvement over standard DFT. This work shows that dissociation energies of homodimers can be consistently derived from collisional broadening cross sections and that interaction energies at various DFT-D3 levels (nearly) reach the accuracy of highly correlated wavefunction methods.
NASA Astrophysics Data System (ADS)
Holmes, N. S.; Morawska, L.
This paper provides the first review of the application of atmospheric models for particle dispersion. The different types of dispersion models available, from simple box type models to complex fluid dynamics models are outlined and the suitability of the different approaches to dispersion modelling within different environments, in regards to scale, complexity of the environment and concentration parameters is assessed. Finally, several major commercial and non-commercial particle dispersion packages are reviewed, detailing which processes are included and advantages and limitations of their use to modelling particle dispersion. The models reviewed included: Box models (AURORA, CPB and PBM), Gaussian models (CALINE4, HIWAY2, CAR-FMI, OSPM, CALPUFF, AEROPOL, AERMOD, UK-ADMS and SCREEN3), Lagrangian/Eulerian Models (GRAL, TAPM, ARIA Regional), CFD models (ARIA Local, MISKAM, MICRO-CALGRID) and models which include aerosol dynamics (GATOR, MONO32, UHMA, CIT, AERO, RPM, AEROFOR2, URM-1ATM, MADRID, CALGRID and UNI-AERO).
DOE R&D Accomplishments Database
Salam, A.
1956-04-01
Lectures with mathematical analysis are given on Dispersion Theory and Causality and Dispersion Relations for Pion-nucleon Scattering. The appendix includes the S-matrix in terms of Heisenberg Operators. (F. S.)
Poly(3-methylpyrrole): vibrational dynamics, phonon dispersion and heat capacity.
Ali, Parvej; Srivastava, Seema; Ansari, Saif-ul-Islam; Gupta, V D
2013-07-01
Normal modes of vibration and their dispersions in poly(3-methylpyrrole) (P3MPy) based on the Urey-Bradley force field are reported. It provides a detailed interpretation of previously reported I.R. spectra. Characteristic features of dispersion curves, such as regions of high density-of-states, repulsion, and character mixing of dispersive modes are discussed. Predictive values of heat capacity as a function of temperature are calculated from dispersion curves via density-of-states.
Measurements and predictions of multipath dispersion for troposcatter links
NASA Astrophysics Data System (ADS)
Larsen, R.
1984-10-01
Multipath dispersion measurements made on several 4.5 GHz paths in the United Kingdom are presented. Beamwidth and scatter angle dependence and several features of dispersion in angle and space diversity are discussed. These measurements and other from the literature are compared with predictions of dispersion. The predictions considerably underestimated the measured dispersion, but the inclusion of a beam broadening factor in the calculations gave a significant improvement in accuracy.
Poly(3-methylpyrrole): Vibrational dynamics, phonon dispersion and heat capacity
NASA Astrophysics Data System (ADS)
Ali, Parvej; Srivastava, Seema; Ansari, Saif-ul-Islam; Gupta, V. D.
2013-07-01
Normal modes of vibration and their dispersions in poly(3-methylpyrrole) (P3MPy) based on the Urey-Bradley force field are reported. It provides a detailed interpretation of previously reported I.R. spectra. Characteristic features of dispersion curves, such as regions of high density-of-states, repulsion, and character mixing of dispersive modes are discussed. Predictive values of heat capacity as a function of temperature are calculated from dispersion curves via density-of-states.
Dispersion corrections in the boron buckyball and nanotubes
NASA Astrophysics Data System (ADS)
Gunasinghe, Rosi N.; Kah, Cherno B.; Quarles, Kregg D.; Wang, Xiao-Qian
2011-06-01
We have investigated structural and electronic properties of the B80 buckyball and boron nanotubes by means of dispersion-corrected density-functional calculations. Our analysis reveals the vibrational stability for the icosahedral B80 with the inclusion of dispersion corrections, in contrast to the instability to a tetrahedral B80 with puckered capping atoms from preceding density-functional theory calculations. Similarly, the dispersion-corrected density-functional calculations yield non-puckered boron nanotube conformations and an associated metallic state for zigzag tubes. Our study indicates that the incorporation of long-range dispersive interactions is particularly important to the structural and electronic properties of boron fullerenes and nanotubes.
Dispersion of tsunamis: does it really matter?
NASA Astrophysics Data System (ADS)
Glimsdal, S.; Pedersen, G. K.; Harbitz, C. B.; Løvholt, F.
2013-06-01
This article focuses on the effect of dispersion in the field of tsunami modeling. Frequency dispersion in the linear long-wave limit is first briefly discussed from a theoretical point of view. A single parameter, denoted as "dispersion time", for the integrated effect of frequency dispersion is identified. This parameter depends on the wavelength, the water depth during propagation, and the propagation distance or time. Also the role of long-time asymptotes is discussed in this context. The wave generation by the two main tsunami sources, namely earthquakes and landslides, are briefly discussed with formulas for the surface response to the bottom sources. Dispersive effects are then exemplified through a semi-idealized study of a moderate-strength inverse thrust fault. Emphasis is put on the directivity, the role of the "dispersion time", the significance of the Boussinesq model employed (dispersive effect), and the effects of the transfer from bottom sources to initial surface elevation. Finally, the experience from a series of case studies, including earthquake- and landslide-generated tsunamis, is presented. The examples are taken from both historical (e.g. the 2011 Japan tsunami and the 2004 Indian Ocean tsunami) and potential tsunamis (e.g. the tsunami after the potential La Palma volcanic flank collapse). Attention is mainly given to the role of dispersion during propagation in the deep ocean and the way the accumulation of this effect relates to the "dispersion time". It turns out that this parameter is useful as a first indication as to when frequency dispersion is important, even though ambiguity with respect to the definition of the wavelength may be a problem for complex cases. Tsunamis from most landslides and moderate earthquakes tend to display dispersive behavior, at least in some directions. On the other hand, for the mega events of the last decade dispersion during deep water propagation is mostly noticeable for transoceanic propagation.
Dispersion y dinamica poblacional
USDA-ARS?s Scientific Manuscript database
Dispersal behavior of fruit flies is appetitive. Measures of dispersion involve two different parameter: the maximum distance and the standard distance. Standard distance is a parameter that describes the probalility of dispersion and is mathematically equivalent to the standard deviation around ...
Pay Dispersion and Performance in Teams
Bucciol, Alessandro; Foss, Nicolai J.; Piovesan, Marco
2014-01-01
Extant research offers conflicting predictions about the effect of pay dispersion on team performance. We collected a unique dataset from the Italian soccer league to study the effect of intra-firm pay dispersion on team performance, under different definitions of what constitutes a “team”. This peculiarity of our dataset can explain the conflicting evidence. Indeed, we also find positive, null, and negative effects of pay dispersion on team performance, using the same data but different definitions of team. Our results show that when the team is considered to consist of only the members who directly contribute to the outcome, high pay dispersion has a detrimental impact on team performance. Enlarging the definition of the team causes this effect to disappear or even change direction. Finally, we find that the detrimental effect of pay dispersion is due to worse individual performance, rather than a reduction of team cooperation. PMID:25397615
Calculation of Counterrotating Propellers
NASA Technical Reports Server (NTRS)
Ginzel, F.
1949-01-01
A method for calculation of a counterrotating propeller which is similar to Walchner's method for calculation of the single propeller in the free air stream is developed and compared with measurements. Several dimensions which are important for the design are given end simple formulas for the gain in efficiency derived. Finally a survey of the behavior of the propeller for various operating conditions is presented.
ERIC Educational Resources Information Center
Humphreys, Casey; And Others
This valuable collection of materials was developed to incorporate the calculator as an instructional aid in ninth- and tenth-grade general and basic mathematics classes. The materials are also appropriate for grades 7 and 8. After an introductory section which teaches the use of the calculator, four games and activities are described. For these…
Dispersion in the Surfzone: Tracer Dispersion Studies
2011-09-30
objective is to improve understanding and modeling of dispersion of tracers (pol lution, fecal indicator bacteria, fine sediments) within the...discussed further here. Stochastic Particle Simulation for Surfzone Dispersion Drifter-derived diffusivities are time-dependent. In an unbounded...diffusion. Here HB06 particle trajectories are stochastically simulated with the Langevin equations with a shoreline boundary to explain the observed
Stability, electronic and thermodynamic properties of aluminene from first-principles calculations
NASA Astrophysics Data System (ADS)
Yuan, Junhui; Yu, Niannian; Xue, Kanhao; Miao, Xiangshui
2017-07-01
Using first-principles calculations based on density functional theory (DFT), we have investigated the structure stability and electronic properties of both buckled and 8-Pmmn phase aluminene. Phonon dispersion analysis reveals that the buckled and 8-Pmmn aluminene are dynamically stable. The band structure shows that both the buckled and 8-Pmmn aluminene exhibit metallic behavior. Finally, the thermodynamic properties are investigated based on phonon properties.
Theory of dispersive microlenses
NASA Technical Reports Server (NTRS)
Herman, B.; Gal, George
1993-01-01
A dispersive microlens is a miniature optical element which simultaneously focuses and disperses light. Arrays of dispersive mircolenses have potential applications in multicolor focal planes. They have a 100 percent optical fill factor and can focus light down to detectors of diffraction spot size, freeing up areas on the focal plane for on-chip analog signal processing. Use of dispersive microlenses allows inband color separation within a pixel and perfect scene registration. A dual-color separation has the potential for temperature discrimination. We discuss the design of dispersive microlenses and present sample results for efficient designs.
Dispersants displace hot oiling
Wash, R.
1984-02-01
Laboratory experiments and field testing of dispersants in producing wells have resulted in development of 2 inexpensive paraffin dispersant packages with a broad application range, potential for significant savings over hot oiling, and that can be applied effectively by both continuous and batch treating techniques. The 2 dispersants are soluble in the carrier solvent (one soluble in oil, one in water); are able to readily disperse the wax during a hot flask test conducted in a laboratory; and leave the producing interval water wet. Field data on the 2 dispersants are tabulated, demonstrating their efficacy.
NASA Astrophysics Data System (ADS)
Burdin, Vladimir A.; Delmukhametov, Oleg R.
2012-01-01
A simple semi-empirical model for chromatic dispersion estimation of dispersion compensating photonic-crystal fibers in a limited range of wavelengths is presented in this paper. The proposed approach is widely used in the field of electromagnetic waves of the microwave range, for instance, for calculation of approximate estimates of the effectiveness of electromagnetic shields and here in this paper we adopted it for the estimation of chromatic dispersion of photonic-crystal fibers. It worth to note that this approach provides the possibility to evaluate approximate magnitude of the chromatic dispersion of dispersion compensating photonic-crystal fibers without extensive numerical calculations, but the main drawback of this method is that the validity of it is restricted only for the certain range of the wavelengths.
Molecular mobility in glassy dispersions.
Mehta, Mehak; McKenna, Gregory B; Suryanarayanan, Raj
2016-05-28
Dielectric spectroscopy was used to characterize the structural relaxation in pharmaceutical dispersions containing nifedipine (NIF) and either poly(vinyl) pyrrolidone (PVP) or hydroxypropyl methylcellulose acetate succinate (HPMCAS). The shape of the dielectric response (permittivity versus log time) curve was observed to be independent of temperature. Thus, for the pure NIF as well as the dispersions, the validity of the time-temperature superposition principle was established. Furthermore, though the shape of the full dielectric response varied with polymer concentration, the regime related to the α- or structural relaxation was found to superimpose for the dispersions, though not with the response of the NIF itself. Hence, there is a limited time-temperature-concentration superposition for these systems as well. Therefore, in this polymer concentration range, calculation of long relaxation times in these glass-forming systems becomes possible. We found that strong drug-polymer hydrogen bonding interactions improved the physical stability (i.e., delayed crystallization) by reducing the molecular mobility. The strength of hydrogen bonding, structural relaxation time, and crystallization followed the order: NIF-PV P>NIF-HPMCAS>NIF. With an increase in polymer concentration, the relaxation times were longer indicating a decrease in molecular mobility. The temperature dependence of relaxation time, in other words fragility, was independent of polymer concentration. This is the first application of the superposition principle to characterize structural relaxation in glassy pharmaceutical dispersions.
Molecular mobility in glassy dispersions
Mehta, Mehak; McKenna, Gregory B.; Suryanarayanan, Raj
2016-05-27
Dielectric spectroscopy was used to characterize the structural relaxation in pharmaceutical dispersions containing nifedipine (NIF) and either poly(vinyl) pyrrolidone (PVP) or hydroxypropyl methylcellulose acetate succinate (HPMCAS). The shape of the dielectric response (permittivity versus log time) curve was observed to be independent of temperature. Thus, for the pure NIF as well as the dispersions, the validity of the time-temperature superposition principle was established. Furthermore, though the shape of the full dielectric response varied with polymer concentration, the regime related to the α- or structural relaxation was found to superimpose for the dispersions, though not with the response of the NIF itself. Hence, there is a limited time-temperature-concentration superposition for these systems as well. Therefore, in this polymer concentration range, calculation of long relaxation times in these glass-forming systems becomes possible. We found that strong drug-polymer hydrogen bonding interactions improved the physical stability (i.e., delayed crystallization) by reducing the molecular mobility. The strength of hydrogen bonding, structural relaxation time, and crystallization followed the order: NIF$-$PV P>NIF$-$HPMCAS>NIF. With an increase in polymer concentration, the relaxation times were longer indicating a decrease in molecular mobility. The temperature dependence of relaxation time, in other words fragility, was independent of polymer concentration. This is the first application of the superposition principle to characterize structural relaxation in glassy pharmaceutical dispersions.
Molecular mobility in glassy dispersions
NASA Astrophysics Data System (ADS)
Mehta, Mehak; McKenna, Gregory B.; Suryanarayanan, Raj
2016-05-01
Dielectric spectroscopy was used to characterize the structural relaxation in pharmaceutical dispersions containing nifedipine (NIF) and either poly(vinyl) pyrrolidone (PVP) or hydroxypropyl methylcellulose acetate succinate (HPMCAS). The shape of the dielectric response (permittivity versus log time) curve was observed to be independent of temperature. Thus, for the pure NIF as well as the dispersions, the validity of the time-temperature superposition principle was established. Furthermore, though the shape of the full dielectric response varied with polymer concentration, the regime related to the α- or structural relaxation was found to superimpose for the dispersions, though not with the response of the NIF itself. Hence, there is a limited time-temperature-concentration superposition for these systems as well. Therefore, in this polymer concentration range, calculation of long relaxation times in these glass-forming systems becomes possible. We found that strong drug-polymer hydrogen bonding interactions improved the physical stability (i.e., delayed crystallization) by reducing the molecular mobility. The strength of hydrogen bonding, structural relaxation time, and crystallization followed the order: NIF-PV P>NIF-HPMCAS>NIF. With an increase in polymer concentration, the relaxation times were longer indicating a decrease in molecular mobility. The temperature dependence of relaxation time, in other words fragility, was independent of polymer concentration. This is the first application of the superposition principle to characterize structural relaxation in glassy pharmaceutical dispersions.
National Institute of Standards and Technology Data Gateway
SRD 166 MEMS Calculator (Web, free access) This MEMS Calculator determines the following thin film properties from data taken with an optical interferometer or comparable instrument: a) residual strain from fixed-fixed beams, b) strain gradient from cantilevers, c) step heights or thicknesses from step-height test structures, and d) in-plane lengths or deflections. Then, residual stress and stress gradient calculations can be made after an optical vibrometer or comparable instrument is used to obtain Young's modulus from resonating cantilevers or fixed-fixed beams. In addition, wafer bond strength is determined from micro-chevron test structures using a material test machine.
Anomalous dispersion enhanced Cerenkov phase-matching
Kowalczyk, T.C.; Singer, K.D.; Cahill, P.A.
1993-11-01
The authors report on a scheme for phase-matching second harmonic generation in polymer waveguides based on the use of anomalous dispersion to optimize Cerenkov phase matching. They have used the theoretical results of Hashizume et al. and Onda and Ito to design an optimum structure for phase-matched conversion. They have found that the use of anomalous dispersion in the design results in a 100-fold enhancement in the calculated conversion efficiency. This technique also overcomes the limitation of anomalous dispersion phase-matching which results from absorption at the second harmonic. Experiments are in progress to demonstrate these results.
Long-Distance Dispersal of Fungi.
Golan, Jacob J; Pringle, Anne
2017-07-01
Dispersal is a fundamental biological process, operating at multiple temporal and spatial scales. Despite an increasing understanding of fungal biodiversity, most research on fungal dispersal focuses on only a small fraction of species. Thus, any discussion of the dispersal dynamics of fungi as a whole is problematic. While abundant morphological and biogeographic data are available for hundreds of species, researchers have yet to integrate this information into a unifying paradigm of fungal dispersal, especially in the context of long-distance dispersal (LDD). Fungal LDD is mediated by multiple vectors, including meteorological phenomena (e.g., wind and precipitation), plants (e.g., seeds and senesced leaves), animals (e.g., fur, feathers, and gut microbiomes), and in many cases humans. In addition, fungal LDD is shaped by both physical constraints on travel and the ability of spores to survive harsh environments. Finally, fungal LDD is commonly measured in different ways, including by direct capture of spores, genetic comparisons of disconnected populations, and statistical modeling and simulations of dispersal data. To unify perspectives on fungal LDD, we propose a synthetic three-part definition that includes (i) an identification of the source population and a measure of the concentration of source inoculum and (ii) a measured and/or modeled dispersal kernel. With this information, LDD is defined as (iii) the distance found within the dispersal kernel beyond which only 1% of spores travel.
Faraday anomalous dispersion optical tuners
NASA Technical Reports Server (NTRS)
Wanninger, P.; Valdez, E. C.; Shay, T. M.
1992-01-01
Common methods for frequency stabilizing diode lasers systems employ gratings, etalons, optical electric double feedback, atomic resonance, and a Faraday cell with low magnetic field. Our method, the Faraday Anomalous Dispersion Optical Transmitter (FADOT) laser locking, is much simpler than other schemes. The FADOT uses commercial laser diodes with no antireflection coatings, an atomic Faraday cell with a single polarizer, and an output coupler to form a compound cavity. This method is vibration insensitive, thermal expansion effects are minimal, and the system has a frequency pull in range of 443.2 GHz (9A). Our technique is based on the Faraday anomalous dispersion optical filter. This method has potential applications in optical communication, remote sensing, and pumping laser excited optical filters. We present the first theoretical model for the FADOT and compare the calculations to our experimental results.
Faraday anomalous dispersion optical tuners
NASA Technical Reports Server (NTRS)
Wanninger, P.; Valdez, E. C.; Shay, T. M.
1992-01-01
Common methods for frequency stabilizing diode lasers systems employ gratings, etalons, optical electric double feedback, atomic resonance, and a Faraday cell with low magnetic field. Our method, the Faraday Anomalous Dispersion Optical Transmitter (FADOT) laser locking, is much simpler than other schemes. The FADOT uses commercial laser diodes with no antireflection coatings, an atomic Faraday cell with a single polarizer, and an output coupler to form a compound cavity. This method is vibration insensitive, thermal expansion effects are minimal, and the system has a frequency pull in range of 443.2 GHz (9A). Our technique is based on the Faraday anomalous dispersion optical filter. This method has potential applications in optical communication, remote sensing, and pumping laser excited optical filters. We present the first theoretical model for the FADOT and compare the calculations to our experimental results.
Natal dispersal and senescence.
Ronce, O; Clobert, J; Massot, M
1998-01-20
The potential existence of natal dispersal strategies depending on parental age has been suggested by Hamilton and May [Hamilton, W. D. & May, R. M. (1977) Nature 269, 578-581] for organisms whose survival rates decline with age. When competition between parent and offspring is strong, any individual should disperse a smaller fraction of its offspring when it ages. Here, we verify their verbal prediction. First, we determine the evolutionarily stable dispersal strategy conditional on parental age, associated with a particular senescence curve. We show that such a conditional dispersal strategy should evolve independently from the genotype controlling the offspring dispersal behavior. Second, studying a population of common lizards, we provide empirical evidence of a relation between dispersal of female offspring and maternal senescence, in agreement with our theoretical predictions.
Dispersion management with metamaterials
Tassin, Philippe; Koschny, Thomas; Soukoulis, Costas M.
2017-03-07
An apparatus, system, and method to counteract group velocity dispersion in fibers, or any other propagation of electromagnetic signals at any wavelength (microwave, terahertz, optical, etc.) in any other medium. A dispersion compensation step or device based on dispersion-engineered metamaterials is included and avoids the need of a long section of specialty fiber or the need for Bragg gratings (which have insertion loss).
A potassium Faraday anomalous dispersion optical filter
NASA Technical Reports Server (NTRS)
Yin, B.; Shay, T. M.
1992-01-01
The characteristics of a potassium Faraday anomalous dispersion optical filter operating on the blue and near infrared transitions are calculated. The results show that the filter can be designed to provide high transmission, very narrow pass bandwidth, and low equivalent noise bandwidth. The Faraday anomalous dispersion optical filter (FADOF) provides a narrow pass bandwidth (about GHz) optical filter for laser communications, remote sensing, and lidar. The general theoretical model for the FADOF has been established in our previous paper. In this paper, we have identified the optimum operational conditions for a potassium FADOF operating on the blue and infrared transitions. The signal transmission, bandwidth, and equivalent noise bandwidth (ENBW) are also calculated.
Extraction apparatus with pulsed columns for monitoring dispersed phase
NASA Astrophysics Data System (ADS)
Aiba, Koji; Ouchi, Katsunori; Okuma, Takahiro
The invention pertains to a method and extraction apparatus with pulsed columns for monitoring the dispersed phase that calculates by means of using ultrasonic waves the dispersion that forms on the boundary between the light liquid phase and the heavy liquid phase in the pulsed columns. With the invention, the outer wall of the pulsed column of an extraction tower is irradiated with ultrasonic waves, the radioactive waves or the transmitted waves are received, and the dispersion of the dispersed phase in the pulsed columns is calculated on the basis of the level of radioactive or transmitted waves.
Hameed, Nishar; Salim, Nisa V; Hanley, Tracey L; Sona, Mrunali; Fox, Bronwyn L; Guo, Qipeng
2013-07-28
The effective dispersion of carbon nanotubes (CNTs) in a thermoset was achieved using ionic liquid as the dispersion-curing agent. We preferentially dispersed multiwalled carbon nanotubes (MWCNTs) down to individual tube levels in epoxy resin. Here the dispersion is ruled by the depletion of physical bundles within the MWCNT networks, for which molecular ordering of ionic liquids is considered responsible. The quantitative analyses using ultra small angle X-ray scattering (USAXS) confirmed the dispersion of individual MWCNTs in the matrix. The distance between the dispersed nanotubes was calculated at different nanotube loadings using the power law fitting of the USAXS data. The fine dispersion and subsequent curing, both controlled by ionic liquid, lead to composites with substantially enhanced fracture mechanical and thermomechanical properties with no reduction in thermal properties. Merging processing techniques of nanocomposites with ionic liquid for efficient dispersion of nanotubes and preferential curing of thermosets facilitates the development of new, high performance materials.
Direct numerical simulations for non-Newtonian rheology of concentrated particle dispersions.
Iwashita, Takuya; Yamamoto, Ryoichi
2009-12-01
The non-Newtonian behavior of a monodisperse concentrated dispersion of spherical particles was investigated using a direct numerical simulation method, which takes into account hydrodynamic interactions and thermal fluctuations accurately. Simulations were performed under steady shear flow with periodic boundary conditions in the three directions. The apparent shear viscosity of the dispersions was calculated at volume fractions ranging from 0.31 to 0.56. Shear-thinning behavior was clearly observed at high volume fractions. The low- and high-limiting viscosities were then estimated from the apparent viscosity by fitting these data into a semiempirical formula. Furthermore, the short-time motions were examined for Brownian particles fluctuating in concentrated dispersions, for which the fluid inertia plays an important role. The mean square displacement was monitored in the vorticity direction at several different Peclet numbers and volume fractions so that the particle diffusion coefficient is determined from the long-time behavior of the mean square displacement. Finally, the relationship between the non-Newtonian viscosity of the dispersions and the structural relaxation of the dispersed Brownian particles is examined.
Electron beam dose calculations.
Hogstrom, K R; Mills, M D; Almond, P R
1981-05-01
Electron beam dose distributions in the presence of inhomogeneous tissue are calculated by an algorithm that sums the dose distribution of individual pencil beams. The off-axis dependence of the pencil beam dose distribution is described by the Fermi-Eyges theory of thick-target multiple Coulomb scattering. Measured square-field depth-dose data serve as input for the calculations. Air gap corrections are incorporated and use data from'in-air' measurements in the penumbra of the beam. The effective depth, used to evaluate depth-dose, and the sigma of the off-axis Gaussian spread against depth are calculated by recursion relations from a CT data matrix for the material underlying individual pencil beams. The correlation of CT number with relative linear stopping power and relative linear scattering power for various tissues is shown. The results of calculations are verified by comparison with measurements in a 17 MeV electron beam from the Therac 20 linear accelerator. Calculated isodose lines agree nominally to within 2 mm of measurements in a water phantom. Similar agreement is observed in cork slabs simulating lung. Calculations beneath a bone substitute illustrate a weakness in the calculation. Finally a case of carcinoma in the maxillary antrum is studied. The theory suggests an alternative method for the calculation of depth-dose of rectangular fields.
Clark, A.; Curtis, A.B.; Darwin, W.N.
1981-01-01
Rotating cardboard discs are used to read off total tree or topwood firewood volume (tons or cords) that can be expected from trees of d.b.h. 6 to 24 inches and tree height 10 to 90 feet. One side of the calculator is used for broadleaved species with deliquescent crowns and the other side for braodleaves with excurrent crowns.
Cellular basis for QT dispersion.
Antzelevitch, C; Shimizu, W; Yan, G X; Sicouri, S
1998-01-01
The cellular basis for the dispersion of the QT interval recorded at the body surface is incompletely understood. Contributing to QT dispersion are heterogeneities of repolarization time in the three-dimensional structure of the ventricular myocardium, which are secondary to regional differences in action potential duration (APD) and activation time. While differences in APD occur along the apicobasal and anteroposterior axes in both epicardium and endocardium of many species, transitions are usually gradual. Recent studies have also demonstrated important APD gradients along the transmural axis. Because transmural heterogeneities in repolarization time are more abrupt than those recorded along the surfaces of the heart, they may represent a more onerous substrate for the development of arrhythmias, and their quantitation may provide a valuable tool for evaluation of arrhythmia risk. Our data, derived from the arterially perfused canine left ventricular wedge preparation, suggest that transmural gradients of voltage during repolarization contribute importantly to the inscription of the T wave. The start of the T wave is caused by a more rapid decline of the plateau, or phase 2 of the epicardial action potential, creating a voltage gradient across the wall. The gradient increases as the epicardial action potential continues to repolarize, reaching a maximum with full repolarization of epicardium; this juncture marks the peak of the T wave. The next region to repolarize is endocardium, giving rise to the initial descending limb of the upright T wave. The last region to repolarize is the M region, contributing to the final segment of the T wave. Full repolarization of the M region marks the end of the T wave. The time interval between the peak and the end of the T wave therefore represents the transmural dispersion of repolarization. Conditions known to augment QTc dispersion, including acquired long QT syndrome (class IA or III antiarrhythmics) lead to augmentation
Creep deformation of dispersion-strengthened copper
Broyles, S.E.; Anderson, K.R.; Groza, J.R.; Gibeling, J.C.
1996-05-01
The creep behavior of an internally oxidized, Al{sub 2}O{sub 3} dispersion-strengthened copper alloy, GlidCop Al-15, has been investigated in the temperature range of 745 to 994 K. The results exhibit a high apparent stress exponent (10 to 21) and a high apparent activation energy for creep (253.3 kJ/mole). To describe the creep behavior of this alloy, the Roesler-Arzt model for attractive particle/dislocation interaction is applied. The results are in good agreement with the model when account is taken of the effects of the fine elongated grains and heavily dislocated structures revealed through transmission electron microscopy. The analysis demonstrates that the dislocation/particle interaction is of moderate strength in this alloy, consistent with the observation that the particle/matrix interface is partially coherent. In addition, the analysis reveals that the choice of mechanism and corresponding activation energy for vacancy diffusion has only a small effect on the calculated model parameters. It is argued that the weak dependence of subgrain size on stress demonstrates that creep deformation is particle controlled, rather than subgrain size controlled. In addition, the poorly developed subgrain structure and high dislocation densities are attributed to the presence of the fine oxide particles. Finally, the dependence of rupture time on stress is shown to be consistent with a description of creep fracture based on diffusive cavity growth with continuous nucleation.
Zeinstra-Helfrich, Marieke; Koops, Wierd; Murk, Albertinka J
2015-11-15
Application of chemical dispersants or mechanical dispersion on surface oil is a trade-off between surface effects (impact of floating oil) and sub-surface effects (impact of suspended oil). Making an informed decision regarding such response, requires insight in the induced change in fate and transport of the oil. We aim to identify how natural, chemical and mechanical dispersion could be quantified in oil spill models. For each step in the dispersion process, we review available experimental data in order to identify overall trends and propose an algorithm or calculation method. Additionally, the conditions for successful mechanical and chemical dispersion are defined. Two commonly identified key parameters in surface oil dispersion are: oil properties (viscosity and presence of dispersants) and mixing energy (often wind speed). Strikingly, these parameters play a different role in several of the dispersion sub-processes. This may explain difficulties in simply relating overall dispersion effectiveness to the individual parameters. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hiremath, Anand; Aluckal, Eby
2015-01-01
Start with end in mind’ is a popular cliché in orthodontics. This aptly applies to the therapeutic occlusion the orthodontist strives to achieve. Predicting the post treatment occlusion is an essential component of treatment planning. When no extractions or symmetric extractions are done predicting the final occlusion is somewhat easy. Prediction is challenging when we do unconventional and/or asymmetric extractions. To aid this decision Kesling proposed the ‘Kesling Setup’. Though it serves the purpose acceptably; it is time, energy and money consuming. We have developed a model which can help us visualize the final occlusion in matter of seconds. Although this model is primarily intended for orthodontic postgraduate teaching, it can be of considerable use even to a seasoned orthodontist. The regular use of “Orthodontic Calculator” in our department is a testimony to its usefulness. PMID:25738101
David A. Benson
2012-09-24
This project combines outcrop-scale heterogeneity characterization, laboratory experiments, and numerical simulations. The study is designed to test whether established dispersion theory accurately predicts the behavior of solute transport through heterogeneous media and to investigate the relationship between heterogeneity and the parameters that populate these models. The dispersion theory tested by this work is based upon the fractional advection-dispersion equation (fADE) model. Unlike most dispersion studies that develop a solute transport model by fitting the solute transport breakthrough curve, this project will explore the nature of the heterogeneous media to better understand the connection between the model parameters and the aquifer heterogeneity. Our work at the Colorado School of Mines was focused on the following questions: 1) What are the effects of multi-scale geologic variability on transport of conservative and reactive solutes? 2) Can those transport effects be accounted for by classical methods, and if not, can the nonlocal fractional-order equations provide better predictions? 3) Can the fractional-order equations be parameterized through a link to some simple observable geologic features? 4) Are the classical equations of transport and reaction sufficient? 5) What is the effect of anomalous transport on chemical reaction in groundwater systems? The work is predicated on the observation that upscaled transport is defined by loss of information, or spatio-temporal averaging. This averaging tends to make the transport laws such as Fick's 2nd-order diffusion equation similar to central limit theory. The fractional-order advection-dispersion equations rely on limit theory for heavy-tailed random motion that has some diverging moments. The equations predict larger tails of a plume in space and/or time than those predicted by the classical 2nd-order advection-dispersion equation. The heavy tails are often seen in plumes at field sites.
Middleton, B.; Van Diggelen, R.; Jensen, K.
2006-01-01
Question: How does seed dispersal reduce fen isolation and contribute to biodiversity? Location: European and North American fens. Methods: This paper reviews the literature on seed dispersal to fens. Results: Landscape fragmentation may reduce dispersal opportunities thereby isolating fens and reducing genetic exchange. Species in fragmented wetlands may have lower reproductive success, which can lead to biodiversity loss. While fens may have always been relatively isolated from each other, they have become increasingly fragmented in modern times within agricultural and urban landscapes in both Europe and North America. Dispersal by water, animals and wind has been hampered by changes related to development in landscapes surrounding fens. Because the seeds of certain species are long-lived in the seed bank, frequent episodes of dispersal are not always necessary to maintain the biodiversity of fens. However, of particular concern to restoration is that some dominant species, such as the tussock sedge Carex stricta, may not disperse readily between fens. Conclusions: Knowledge of seed dispersal can be used to maintain and restore the biodiversity of fens in fragmented landscapes. Given that development has fragmented landscapes and that this situation is not likely to change, the dispersal of seeds might be enhanced by moving hay or cattle from fens to damaged sites, or by reestablishing lost hydrological connections. ?? IAVS; Opulus Press.
NASA Technical Reports Server (NTRS)
Mcmanus, M. L.
1979-01-01
Dispersal flights of selected species of forest insects which are associated with periodic outbreaks of pests that occur over large contiguous forested areas are discussed. Gypsy moths, spruce budworms, and forest tent caterpillars were studied for their massive migrations in forested areas. Results indicate that large dispersals into forested areas are due to the females, except in the case of the gypsy moth.
NASA Technical Reports Server (NTRS)
Mcmanus, M. L.
1979-01-01
Dispersal flights of selected species of forest insects which are associated with periodic outbreaks of pests that occur over large contiguous forested areas are discussed. Gypsy moths, spruce budworms, and forest tent caterpillars were studied for their massive migrations in forested areas. Results indicate that large dispersals into forested areas are due to the females, except in the case of the gypsy moth.
Visualizing Dispersion Interactions
ERIC Educational Resources Information Center
Gottschalk, Elinor; Venkataraman, Bhawani
2014-01-01
An animation and accompanying activity has been developed to help students visualize how dispersion interactions arise. The animation uses the gecko's ability to walk on vertical surfaces to illustrate how dispersion interactions play a role in macroscale outcomes. Assessment of student learning reveals that students were able to develop…
Dispersion strengthened copper
Sheinberg, H.; Meek, T.T.; Blake, R.D.
1990-01-09
A composition of matter is described which is comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide. A method for making this composition of matter is also described. This invention relates to the art of powder metallurgy and, more particularly, it relates to dispersion strengthened metals.
Visualizing Dispersion Interactions
ERIC Educational Resources Information Center
Gottschalk, Elinor; Venkataraman, Bhawani
2014-01-01
An animation and accompanying activity has been developed to help students visualize how dispersion interactions arise. The animation uses the gecko's ability to walk on vertical surfaces to illustrate how dispersion interactions play a role in macroscale outcomes. Assessment of student learning reveals that students were able to develop…
ERIC Educational Resources Information Center
Schumann, Donna N.
1981-01-01
Suggests the use of spores and spore-producing structures to show adaptations facilitating spore dispersal and dispersal to favorable environments. Describes several activities using horsetails, ferns, and mosses. Lists five safety factors related to use of mold spores in the classroom. (DS)
ERIC Educational Resources Information Center
Schumann, Donna N.
1981-01-01
Suggests the use of spores and spore-producing structures to show adaptations facilitating spore dispersal and dispersal to favorable environments. Describes several activities using horsetails, ferns, and mosses. Lists five safety factors related to use of mold spores in the classroom. (DS)
Dispersive suspended microextraction.
Yang, Zhong-Hua; Liu, Yu; Lu, Yue-Le; Wu, Tong; Zhou, Zhi-Qiang; Liu, Dong-Hui
2011-11-14
A novel sample pre-treatment technique termed dispersive suspended microextraction (DSME) coupled with gas chromatography-flame photometric detection (GC-FPD) has been developed for the determination of eight organophosphorus pesticides (ethoprophos, malathion, chlorpyrifos, isocarbophos, methidathion, fenamiphos, profenofos, triazophos) in aqueous samples. In this method, both extraction and two phases' separation process were performed by the assistance of magnetic stirring. After separating the two phases, 1 μL of the suspended phase was injected into GC for further instrument analysis. Varieties of experiment factors which could affect the experiment results were optimized and the following were selected: 12.0 μL p-xylene was selected as extraction solvent, extraction speed was 1200 rpm, extraction time was 30 s, the restoration speed was 800 rpm, the restoration time was 8 min, and no salt was added. Under the optimum conditions, limits of detections (LODs) varied between 0.01 and 0.05 μg L(-1). The relative standard deviation (RSDs, n=6) ranged from 4.6% to 12.1%. The linearity was obtained by five points in the concentration range of 0.1-100.0 μg L(-1). Correlation coefficients (r) varied from 0.9964 to 0.9995. The enrichment factors (EFs) were between 206 and 243. In the final experiment, the developed method has been successfully applied to the determination of organophosphorus pesticides in wine and tap water samples and the obtained recoveries were between 83.8% and 101.3%. Compared with other pre-treatment methods, DSME has its own features and could achieve satisfied results for the analysis of trace components in complicated matrices.
Raman Based Dispersive Systems for Short Pulse Generation and Optical Signal Processing
NASA Astrophysics Data System (ADS)
Kalyoncu, Salih Kagan
corresponding to ˜2.5 bit higher resolution. The last part of the thesis introduces a novel technique of using MEMS based digital micro mirror technology as a digital spatial light modulator for fast programmable all-optical RF arbitrary waveform generation. In particular, the detailed procedure is described and the analytical modeling that discusses the limits of the proposed technique in terms achievable temporal resolution, repetition rate, modulation index and the rise/fall times of the final waveform is calculated as figure of merit. Experimental generation of square and sawtooth waveforms is demonstrated as a proof-of concept. By using the state of the art MEMS technology arbitrary waveforms up to 1GHz rate and reconfigurable in ˜30micros are achievable.
Venturini, Marco; Kishek, Rami A.; Reiser, Martin
1998-11-05
The presence of space charge affects the value of the dispersion function. On the other hand dispersion has a role in shaping the beam distribution and therefore in determining the resulting forces due to space charge. In this paper we present a framework where the interplay between space charge and dispersion for a continuous beam can be simultaneously treated. We revise the derivation of a new set of rms envelope-dispersion equations we have recently proposed. The new equations generalize the standard rms envelope equations currently used for matching to the case where bends and a longitudinal momentum spread are present. We report a comparison between the solutions of the rms envelope-dispersion equations and the results obtained using WARP, a Particle in Cell (PIC) code, in the modeling of the Maryland Electron Ring.
Venturini, M.; Kishek, R.A.; Reiser, M.
1998-11-01
The presence of space charge affects the value of the dispersion function. On the other hand dispersion has a role in shaping the beam distribution and therefore in determining the resulting forces due to space charge. In this paper we present a framework where the interplay between space charge and dispersion for a continuous beam can be simultaneously treated. We revise the derivation of a new set of rms envelope-dispersion equations we have recently proposed in [1]. The new equations generalize the standard rms envelope equations currently used for matching to the case where bends and a longitudinal momentum spread are present. We report a comparison between the solutions of the rms envelope-dispersion equations and the results obtained using WARP, a Particle in Cell (PIC) code, in the modeling of the Maryland Electron Ring. {copyright} {ital 1998 American Institute of Physics.}
Wiencek, T.C.; Domagala, R.F.
1987-06-01
Studying the effects of annealing of scaled-down dispersion fuel plates is an important part of the data base for fuel performance. One of the most critical aspects of fuel performance is the stability of a fuel/matrix dispersion which is usually measured by volumetric changes of the fuel zone. A correlation has been proposed that fission-induced amorphization is responsible for the instability of the fuel and that such transformations can be predicted by the thermodynamic properties of the fuel. It is proposed that annealing studies may be used as a screening test for new fuels for which no thermodynamic properties have been measured and/or no irradiation data are available. Estimations of irradiation performance could be obtained faster and without the expense of irradiating the fuels under investigation. Miniature fuel plates were fabricated by standard procedures and annealed at 400/sup 0/C for up to 1981 hrs in a resistance wound furnace. At periodic intervals the plates were removed and the fuel zone volumes were calculated based on immersion density measurement data. 7 refs., 1 tab.
Dispersion properties of x-ray waveguides
Pelliccia, D.; Bukreeva, I.; Cedola, A.; Lagomarsino, S
2006-04-20
We study the propagation of ultrashort pulses in x-ray waveguides (WGs) by addressing the problem of the temporal dispersion. Starting from basic equations, by means of numerical calculation we demonstrate that far from the absorption edges of the WGs the cladding's material dispersion is negligible. However, close to the absorption edge significant dispersion can take place. This behavior could in principle be exploited to manipulate incoming chirped beams. Moreover, using the two coherent beams produced by the WG in the second (and higher) order of resonance suggests the use of the WC as a dispersion-free beam splitter, which can facilitate x-ray pump-probe experiments in the femtosecond temporal range without the need for external sources.
NASA Technical Reports Server (NTRS)
1994-01-01
MathSoft Plus 5.0 is a calculation software package for electrical engineers and computer scientists who need advanced math functionality. It incorporates SmartMath, an expert system that determines a strategy for solving difficult mathematical problems. SmartMath was the result of the integration into Mathcad of CLIPS, a NASA-developed shell for creating expert systems. By using CLIPS, MathSoft, Inc. was able to save the time and money involved in writing the original program.
Dispersion Interactions in Calculations of Properties of Energetic Materials
2010-01-01
Phys., 71, 4993, 1979. 10. Hesselmann, A., G. Jansen, and M. Schültz, J. Chem. Phys., 122, 014103, 2005. 11. Bukowski , R., R. Podeszwa, and K...Szalewicz, Chem. Phys. Lett., 414, 111, 2005. 12. Podeszwa, R., R. Bukowski , and K. Szalewicz, J. Chem. Theory Comput., 2, 400, 2006. 13...Podeszwa, R., R. Bukowski , and K. Szalewicz, J. Phys. Chem. A, 110, 10345, 2006. 14. Podeszwa, R. and K. Szalewicz, Phys. Chem. Chem. Phys., 10, 2735
Simple Methods of Calculating Dispersion from Urban Area Sources.
ERIC Educational Resources Information Center
Hanna, Steven R.
A simple but physically realistic model is shown to be adequate for estimating long-term average pollutant concentrations due to area sources in cities. In this model, the surface concentration is directly proportional to the local area source strength and inversely proportional to the wind speed. The model performs nearly as well as much more…
Counterintuitive dispersion violating Kramers-Kronig relations in gain slabs.
Wang, Li-Gang; Wang, Lin; Al-Amri, M; Zhu, Shi-Yao; Zubairy, M Suhail
2014-06-13
We demonstrate the counterintuitive dispersion effect that the peaks (dips) in the gain spectrum correspond to abnormal (normal) dispersion, contrary to the usual Kramers-Kronig point of view. This effect may also lead to two unique features: a broadband abnormal dispersion region and an observable Hartman effect. These results are explained in terms of interference and boundary effects. Finally, two experiments are proposed for the potential experimental verification.
Individual dispersal, landscape connectivity and ecological networks.
Baguette, Michel; Blanchet, Simon; Legrand, Delphine; Stevens, Virginie M; Turlure, Camille
2013-05-01
Connectivity is classically considered an emergent property of landscapes encapsulating individuals' flows across space. However, its operational use requires a precise understanding of why and how organisms disperse. Such movements, and hence landscape connectivity, will obviously vary according to both organism properties and landscape features. We review whether landscape connectivity estimates could gain in both precision and generality by incorporating three fundamental outcomes of dispersal theory. Firstly, dispersal is a multi-causal process; its restriction to an 'escape reaction' to environmental unsuitability is an oversimplification, as dispersing individuals can leave excellent quality habitat patches or stay in poor-quality habitats according to the relative costs and benefits of dispersal and philopatry. Secondly, species, populations and individuals do not always react similarly to those cues that trigger dispersal, which sometimes results in contrasting dispersal strategies. Finally, dispersal is a major component of fitness and is thus under strong selective pressures, which could generate rapid adaptations of dispersal strategies. Such evolutionary responses will entail spatiotemporal variation in landscape connectivity. We thus strongly recommend the use of genetic tools to: (i) assess gene flow intensity and direction among populations in a given landscape; and (ii) accurately estimate landscape features impacting gene flow, and hence landscape connectivity. Such approaches will provide the basic data for planning corridors or stepping stones aiming at (re)connecting local populations of a given species in a given landscape. This strategy is clearly species- and landscape-specific. But we suggest that the ecological network in a given landscape could be designed by stacking up such linkages designed for several species living in different ecosystems. This procedure relies on the use of umbrella species that are representative of other species
Gautschi, Nicolas; Van Hoogevest, Peter; Kuentz, Martin
2015-08-01
There is a growing interest in drug-phospholipid complexes and similar formulations that are mostly solid dispersions with high drug load. This study aims to explore the feasibility of such phospholipid-based solid dispersions as well as to characterize them. A particular aim was to compare monoacyl phosphatidylcholine (PC) with the diacyl excipient. The solid dispersions were manufactured using a solvent evaporation technique and characterized by means of differential scanning calorimetry and X-ray diffractometry. Density functional theory was used to calculate molecular frontier orbitals of the different compounds. Finally, the dissolution properties were analyzed in a flow-through cell by means of UV imaging. It was found that the ability to form solid dispersions with the phospholipids containing amorphous or solubilized drug (at equimolar ratio with the lipid) was dependent on the drug's frontier orbital energy, the enthalpy of fusion, as well as the log P value. In a subsequent dissolution study, UV imaging revealed pronounced surface swelling of the solid dispersions. Only the monoacyl PC was found to substantially enhance in vitro dissolution compared to pure drug. The gained understanding will support a future development of solid drug dispersions using phospholipids as matrix components.
Anspaugh, L. R.; Napier, Bruce A.
2009-10-23
This brief report documents the selection of parameters needed to support individual-dose calculations from 131I released into the environment with gaseous effluents from the Mayak Production Association.
Dispersion in isotachophoresis
NASA Astrophysics Data System (ADS)
Bercovici, Moran; Santiago, Juan G.
2008-11-01
Isotachophoresis (ITP) is a widely used separation and preconcentration technique, which has been utilized in numerous applications including drug discovery, toxin detection, and food analysis. In ITP, analytes are segregated and focused between relatively high mobility leading ions and relatively low mobility trailing ions. These electromigration dynamics couple with advective processes associated with non-uniform electroosmotic flow (EOF). The latter generates internal pressure gradients leading to strong dispersive fluxes. This dispersion is nearly ubiquitous and currently limits the sensitivity and resolution of typical ITP assays. Despite this, there has been little work studying these coupled mechanisms. We performed an analytical and experimental study of dispersion dynamics in ITP. To achieve controlled pressure gradients, we suppressed EOF and applied an external pressure head to balance electromigration. Under these conditions, we show that radial electromigration (as opposed to radial diffusion as in Taylor dispersion) balances axial electromigration. To validate the analysis, we monitored the shape of a focusing fluorescent zone as a function of applied electric field. These experiments show that ITP dispersion may result in analyte widths an order of magnitude larger than predicted by the typical non-dispersive theory. Our goal is to develop a simplified dispersion model to capture this phenomenon, and to implement it in a numerical solver for general ITP problems.
Hunter, Charles H.
2000-05-22
This software calculates a Wet Bulb Globe Temperature (WBGT) using standard measurements from a meteorological station. WBGT is used by Industrial Hygenists (IH) to determine heat stress potential to outdoor workers. Through the mid 1990''s, SRS technicians were dispatched several times daily to measure WBGT with a custom hand held instrument and results were dessiminated via telephone. Due to workforce reductions, the WSRC IH Department asked for the development of an automated method to simulate the WBGT measurement using existing real time data from the Atmospheric Technologies Group''s meteorological monitoring network.
NASA Astrophysics Data System (ADS)
Haschenburger, J. K.
2010-12-01
Sediment transfers in gravel-bed rivers involve the three-dimensional dispersion of mixed size sediment. From a kinematics standpoint, few studies are available to inform on the streamwise and vertical rates of sediment dispersion in natural channels. This research uses a gravel tracing program to quantify dispersion rates over 19 flood seasons. Empirical observations come from Carnation Creek, a small gravel-bed river with large woody debris located on the west coast of Vancouver Island, Canada. Frequent floods and the relatively limited armor layer facilitate streambed activity and relatively high bedload transport rates, typically under partial sediment transport conditions. Over 2500 magnetically tagged stones, ranging in size from 16 to 180 mm, were deployed on the bed surface between 1989 and 1992 in four generations. To quantify gravel dispersion over distances up to 2.6 km, observations are taken from 11 recoveries. Over 280 floods capable of moving bedload occurred during this period, with five exceeding the estimated bankfull discharge. Streamwise dispersion is quantified by virtual velocity, while dispersion into the streambed is quantified by a vertical burial rate. The temporal trend in streamwise dispersion rates is described by a power function. Initial virtual velocities decline rapidly from around 1.4 m/hr to approach an asymptote value of about 0.2 m/hr. The rapid change corresponds to a significant increase in the proportion of buried tracers due to vertical mixing. Initial burial rates reflect the magnitude of the first flood after tracer deployment and range from 0.07 to 0.46 cm/hr depending on tracer generation. Burial rates converge to about 0.06 cm/hr after the fourth flood season and then gradually decline to about 0.01 cm/hr. Thus, the rate of streamwise dispersion exceeds that of vertical dispersion by three orders of magnitude when the movement of sediment routinely activated by floods is considered.
Polymer-grafted gold nanorods in polymer thin films: Dispersion and plasmonic coupling
NASA Astrophysics Data System (ADS)
Hore, Michael-Jon Ainsley
This dissertation describes complementary experimental and theoretical studies to deter- mine the thermodynamic factors that affect the dispersion of polymer-grafted Au nanorods within polymer thin films. Au nanorods exhibit a uniform dispersion with a regular spacing for favorable brush / matrix interactions, such as poly(ethylene glycol) (PEG)-Au / poly(methyl methacrylate) (PMMA) and polystyrene (PS)-Au / poly(2,6-dimethyl-p-phenylene oxide) (PPO). For PEG-Au / PMMA, the nanorods are locally oriented and their dispersion is independent of the ratio of the degree of polymerization of the matrix (P) to that of the brush (N), α = P/N, whereas for chemically similar brush / matrix combinations, such as PS-Au / PS and PEG-Au / poly(ethylene oxide) (PEO), nanorods are randomly dispersed for α 2. For aggregated systems (α > 2), nanorods are found primarily within aggregates containing side-by-side aligned nanorods with a spacing that scales with N. UV-visible spectroscopy and discrete dipole approximation (DDA) calculations demonstrate that coupling between surface plasmons within the aggregates leads to a blue shift in the optical absorption as α increases, indicating the sensitivity of spectroscopy for determining nanorod dispersion in polymer nanocomposite films. Self-consistent field theory (SCFT) calculations and Monte Carlo (MC) simulations show that the aggregation of nanorods for α > 2 can be attributed to depletion-attraction forces caused by autophobic dewetting of the brush and matrix. Finally, miscible blends of PS and PPO are investigated as a route to control depletion-attraction interactions between PS-Au nanorods. Initially, nanorods aggregate in matrices having 50 vol. % PPO and then gradually disperse as PPO becomes the majority component. The brush and matrix density profiles, determined by SCFT, show that PPO segregates into the PS brush, and acts as a compatibilizer, which improves dispersion. As dispersion improves, coupling between surface
Angular radiation transfer in inhomogeneous dispersive media
NASA Astrophysics Data System (ADS)
Saad, E. A.; El Ghazaly, A. A.; Krim, M. S. Abdel
1988-10-01
The equation of radiative transfer for an inhomogeneous dispersive finite medium subject to general boundary conditions is solved. The Padé approximation technique is used to calculate the angular distribution of radiation. Numerical results for the [0/1] Padé approximant lead to numerical results that compare with the exact results.
Nonturbulent dispersion processes in complex terrain
Michael A. Fosberg; Douglas G. Fox; E.A. Howard; Jack D. Cohen
1976-01-01
Mass divergence influences on plume dispersion modify classic Gaussian calculations by as much as a factor of two in complex terrain. The Gaussian plume was derived in flux form to include this process.Authors' response to comments and criticism received following this publication:
UNSTEADY DISPERSION IN RANDOM INTERMITTENT FLOW
The longitudinal dispersion coefficient of a conservative tracer was calculated from flow tests in a dead-end pipe loop system. Flow conditions for these tests ranged from laminar to transitional flow, and from steady to intermittent and random. Two static mixers linked in series...
Understanding dispersive charge-transport in crystalline organic-semiconductors.
Yavuz, Ilhan; Lopez, Steven A
2016-12-21
The effect of short-range order and dispersivity on charge-transport for organic crystalline semiconductors are important and unresolved questions. This exploration is the first to discern the role of short-range order on charge-transport for crystalline organic semiconductors. A multimode computational approach (including Molecular Dynamics and kinetic Monte Carlo simulations) is employed to understand the hole mobility dispersivity of crystalline organic semiconductors. Crystalline organic solids feature a mesoscale region where dispersive charge-transport dominates; our calculations show a clear transition of charge-mobility from non-dispersive to dispersive. An empirical relationship between the dispersive and non-dispersive transport transition region and ideal simulation box thickness is put forth. The dispersive to non-dispersive transition region occurs when energetic disorder approaches 72 meV. Non-dispersive transport is observed for simulation box sizes greater than 3.7 nm, which corresponds to approximately 12 π-stacked layers in typical π-stacked organic solids. A qualitative relationship is deduced between the variability of measured dispersive hole and variability of computed dispersive hole mobilities and system size. This relationship will guide future charge-transport investigations of condensed-phase organic systems.
Ärrälä, Minna; Hafiz, Hasnain; Mou, Daixiang; Wu, Yun; Jiang, Rui; Riedemann, Trevor; Lograsso, Thomas A.; Barbiellini, Bernardo; Kaminski, Adam; Bansil, Arun; Lindroos, Matti
2016-10-27
Here, we have obtained angle-resolved photoemission (ARPES) spectra from single crystals of the topological insulator material Bi_{2}Te_{3} using tunable laser spectrometer. The spectra were collected for eleven different photon energies ranging from 5.57 to 6.70 eV for incident light polarized linearly along two different in-plane directions. Parallel first-principles, fully relativistic computations of photo-intensities were carried out using the experimental geometry within the framework of the one-step model of photoemission. Good overall accord between theory and experiment is used to gain insight into how properties of the initial and final state band structures as well as those of the topological surface states and their spin-textures are reflected in the laser-ARPES spectra. In conclusion, our analysis reveals that laser-ARPES is sensitive to both the initial state k_{z} dispersion and the presence of delicate gaps in the final state electronic spectrum.
Dispersion strengthened copper
Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.
1990-01-01
A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.
Dispersion strengthened copper
Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.
1989-01-01
A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.
Nanocrystal dispersed amorphous alloys
NASA Technical Reports Server (NTRS)
Perepezko, John H. (Inventor); Allen, Donald R. (Inventor); Foley, James C. (Inventor)
2001-01-01
Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.
Imaging Through Random Discrete-Scatterer Dispersive Media
2015-08-27
AFRL-AFOSR-VA-TR-2015-0255 Imaging through random discrete-scatterer dispersive media Elizabeth Bleszynski MONOPOLE RESEARCH THOUSAND OAKS CA Final...DATES COVERED Final report 15 April 2012 – 14 April 2015 4. TITLE AND SUBTITLE Imaging Through Random Discrete-Scatterer Dispersive Media 5. FUNDING...and/or target detection through optically obscuring, dilute, discrete-scatterer media such as clouds, fog, dust and other aerosols. (A) Properties of
Dispersive shock waves and modulation theory
NASA Astrophysics Data System (ADS)
El, G. A.; Hoefer, M. A.
2016-10-01
There is growing physical and mathematical interest in the hydrodynamics of dissipationless/dispersive media. Since G.B. Whitham's seminal publication fifty years ago that ushered in the mathematical study of dispersive hydrodynamics, there has been a significant body of work in this area. However, there has been no comprehensive survey of the field of dispersive hydrodynamics. Utilizing Whitham's averaging theory as the primary mathematical tool, we review the rich mathematical developments over the past fifty years with an emphasis on physical applications. The fundamental, large scale, coherent excitation in dispersive hydrodynamic systems is an expanding, oscillatory dispersive shock wave or DSW. Both the macroscopic and microscopic properties of DSWs are analyzed in detail within the context of the universal, integrable, and foundational models for uni-directional (Korteweg-de Vries equation) and bi-directional (Nonlinear Schrödinger equation) dispersive hydrodynamics. A DSW fitting procedure that does not rely upon integrable structure yet reveals important macroscopic DSW properties is described. DSW theory is then applied to a number of physical applications: superfluids, nonlinear optics, geophysics, and fluid dynamics. Finally, we survey some of the more recent developments including non-classical DSWs, DSW interactions, DSWs in perturbed and inhomogeneous environments, and two-dimensional, oblique DSWs.
Uncertainty in spatially explicit animal dispersal models
Mooij, Wolf M.; DeAngelis, Donald L.
2003-01-01
Uncertainty in estimates of survival of dispersing animals is a vexing difficulty in conservation biology. The current notion is that this uncertainty decreases the usefulness of spatially explicit population models in particular. We examined this problem by comparing dispersal models of three levels of complexity: (1) an event-based binomial model that considers only the occurrence of mortality or arrival, (2) a temporally explicit exponential model that employs mortality and arrival rates, and (3) a spatially explicit grid-walk model that simulates the movement of animals through an artificial landscape. Each model was fitted to the same set of field data. A first objective of the paper is to illustrate how the maximum-likelihood method can be used in all three cases to estimate the means and confidence limits for the relevant model parameters, given a particular set of data on dispersal survival. Using this framework we show that the structure of the uncertainty for all three models is strikingly similar. In fact, the results of our unified approach imply that spatially explicit dispersal models, which take advantage of information on landscape details, suffer less from uncertainly than do simpler models. Moreover, we show that the proposed strategy of model development safeguards one from error propagation in these more complex models. Finally, our approach shows that all models related to animal dispersal, ranging from simple to complex, can be related in a hierarchical fashion, so that the various approaches to modeling such dispersal can be viewed from a unified perspective.
Fickian dispersion is anomalous
NASA Astrophysics Data System (ADS)
Cushman, John H.; O'Malley, Dan
2015-12-01
The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion we illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.
Dispersive analysis of KS → γγ and KS → γl+l‑
NASA Astrophysics Data System (ADS)
Tunstall, Lewis C.; Colangelo, Gilberto; Stucki, Ramon
2017-01-01
We calculate the decay rates for KS → γγ and KS → γl + l ‑ (l = e or μ)within a dispersive framework in which the weak Hamiltonian carries momentum. Given input from KS → ππ and γγ (*)→ππ, we solve the once-subtracted dispersion relations numerically and find that final-state ππ interactions generate sizeable corrections to the predictions from 3-flavour chiral perturbation theory. Our analysis predicts BR(KS → γγ) = (2.34 ± 0.31) × 10‑6, BR(KS → γe + e ‑) = (4.38 ± 0.57) × 10‑8, and BR(KS → γμ + μ ‑) = (1.45 ± 0.27) × 10‑9.
Quantification of statistical phenomena in turbulent dispersions
NASA Astrophysics Data System (ADS)
Yates, Matthew; Hann, David; Hewakandamby, Buddhika
2015-11-01
Understanding of turbulent dispersions is of great importance for environmental and industrial applications. This includes developing a greater understanding of particle movement in atmospheric flows, and providing data that can be used to validate CFD models aimed at producing more accurate simulations of dispersed turbulent flows, aiding design of many industrial components. Statistical phenomena in turbulent dispersions were investigated using Particle Image Velocimetry. Experiments were carried out in a two dimensional channel over a Reynolds number range of 10000-30000, using water and 500 micron hydrogel particles. Particles were injected at the channel entrance, and dispersion properties were characterised at different distances downstream from the injection point. Probability density functions were compiled for the velocity components of the hydrogels for differing flow conditions. Higher order PDFs were constructed to investigate the behaviour of particle pairs. Dispersed phase data was also used to investigate the mechanics of collisions between hydrogel particles, allowing for calculation of the co-efficient of restitution. PIV algorithms were used to create velocity maps for the continuous phase for varying dispersed phase fractions. Thanks to support of Chevron grant as part of TMF consortium.
Can non-breeding be a cost of breeding dispersal?
Danchin, E.; Cam, E.
2002-01-01
Breeding habitat selection and dispersal are crucial processes that affect many components of fitness. Breeding dispersal entails costs, one of which has been neglected: dispersing animals may miss breeding opportunities because breeding dispersal requires finding a new nesting site and mate, two time- and energy-consuming activities. Dispersers are expected to be prone to non-breeding. We used the kittiwake (Rissa tridactyla) to test whether breeding dispersal influences breeding probability. Breeding probability was associated with dispersal, in that both were negatively influenced by private information (previous individual reproductive success) and public information (average reproductive success of conspecifics) about patch quality. Furthermore, the probability of skipping breeding was 1.7 times higher in birds that settled in a new patch relative to those that remained on the same patch. Finally, non-breeders that resumed breeding were 4.4 times more likely to disperse than birds that bred in successive years. Although private information may influence breeding probability directly, the link between breeding probability and public information may be indirect, through the influence of public information on breeding dispersal, non-breeding thus being a cost of dispersal. These results support the hypothesis that dispersal may result in not being able to breed. More generally, non-breeding (which can be interpreted as an extreme form of breeding failure) may reveal costs of various previous activities. Because monitoring the non-breeding portion of a population is difficult, non-breeders have been neglected in many studies of reproduction trade-offs.
Polymer Nanocomposite Films: Dispersion of Polymer Grafted Nanorods and Optical Properties
NASA Astrophysics Data System (ADS)
Composto, Russell
2013-03-01
The thermodynamic factors that affect the dispersion of polymer-brush grafted gold nanorods (NR) in polymer matrix films have been studied by experiment and theory. When brush and matrix have a favorable interaction, such as poly(ethylene oxide) (PEO)-NR/ poly(methyl methacrylate) (PMMA) and polystyrene (PS)-NR / poly(2,6-dimethyl-p-phenylene oxide) (PPO), nanorods are uniformly dispersed. For PEO-NRs in PMMA, the NRs are regularly spaced and well dispersed, independent of the ratio of the degree of polymerization of the matrix (P) to that of the brush (N), namely P/N. As the NR volume fraction increases, the local orientation of the nanorods increases, whereas the macroscopic orientation remains isotropic. When the brush and matrix are similar (i.e., PS-NR / PS and PEO-NR / PEO), the nanorods randomly disperse for P/N < 2 (i.e., wet brush), but align side-by-side in aggregates for P/N > 2. UV-visible spectroscopy and discrete dipole approximation (DDA) calculations demonstrate that surface plasmon coupling leads to a blue shift in the longitudinal surface plasmon resonance (LSPR) as P/N increases. For P/N > 2, self-consistent field theory (SCFT) calculations and Monte Carlo (MC) simulations indicate that nanorod aggregation is caused by depletion-attraction forces. Starting with a dry brush system, namely, a PS matrix where P/N = 30, these attractive forces can be mediated by adding a compatibilizing agent (e.g., PPO) that drives the NRs to disperse. Finally, dry and wet brush behavior is observed for NR aspect ratios varying from 2.5 to 7. However, compared at the same volume fraction, long rods for the dry case exhibit much better local order than lower aspect ratio nanorods, suggesting that long rods may exhibit nematic-like ordering at higher loadings. NSF Polymer and CEMRI Programs.
Particle filtering for dispersion curve tracking in ocean acoustics.
Zorych, Ivan; Michalopoulou, Zoi-Heleni
2008-08-01
A particle filtering method is developed for dispersion curve extraction from spectrograms of broadband acoustic signals propagating in underwater media. The goal is to obtain accurate representation of modal dispersion which can be employed for source localization and geoacoustic inversion. Results are presented from the application of the method to synthetic data, demonstrating the potential of the approach for accurate estimation of waveguide dispersion characteristics. The method outperforms simple time-frequency analysis providing estimates that are very close to numerically calculated dispersion curves. The method also provides uncertainty information on modal arrival time estimates, typically unavailable when traditional methods are used.
Fluorescence photobleaching to evaluate flow velocity and hydrodynamic dispersion in nanoslits.
Cuenca, Amandine; Bodiguel, Hugues
2012-05-07
Velocity measurement is a key issue when studying flows below the micron scale, due to the lack of sensitivity of conventional detection techniques. We present an approach based on fluorescence photobleaching to evaluate flow velocity at the nanoscale by direct visualization. Solutions containing a fluorescent dye are injected into nanoslits. A photobleached line, created through laser beam illumination, moves through the channel due to the fluid flow. The velocity and effective diffusion coefficient are calculated from the temporal data of the line position and width respectively. The measurable velocity range is only limited by the diffusion rate of the fluorescent dye for low velocities and by the apparition of Taylor dispersion for high velocities. By controlling the pressure drop and measuring the velocity, we determine the fluid viscosity. The photobleached line spreads in time due to molecular diffusion and Taylor hydrodynamic dispersion. By taking into account the finite spatial and temporal extensions of the bleaching under flow, we determine the effective diffusion coefficient, which we find to be in good agreement with the expression of the two dimensional Taylor-Aris dispersion coefficient. Finally we analyze and discuss the role of the finite width of the rectangular slit on hydrodynamic dispersion.
Exciton dispersion in molecular solids.
Cudazzo, Pierluigi; Sottile, Francesco; Rubio, Angel; Gatti, Matteo
2015-03-25
The investigation of the exciton dispersion (i.e. the exciton energy dependence as a function of the momentum carried by the electron-hole pair) is a powerful approach to identify the exciton character, ranging from the strongly localised Frenkel to the delocalised Wannier-Mott limiting cases. We illustrate this possibility at the example of four prototypical molecular solids (picene, pentacene, tetracene and coronene) on the basis of the parameter-free solution of the many-body Bethe-Salpeter equation. We discuss the mixing between Frenkel and charge-transfer excitons and the origin of their Davydov splitting in the framework of many-body perturbation theory and establish a link with model approaches based on molecular states. Finally, we show how the interplay between the electronic band dispersion and the exchange electron-hole interaction plays a fundamental role in setting the nature of the exciton. This analysis has a general validity holding also for other systems in which the electron wavefunctions are strongly localized, as in strongly correlated insulators.
Exciton dispersion in molecular solids
NASA Astrophysics Data System (ADS)
Cudazzo, Pierluigi; Sottile, Francesco; Rubio, Angel; Gatti, Matteo
2015-03-01
The investigation of the exciton dispersion (i.e. the exciton energy dependence as a function of the momentum carried by the electron-hole pair) is a powerful approach to identify the exciton character, ranging from the strongly localised Frenkel to the delocalised Wannier-Mott limiting cases. We illustrate this possibility at the example of four prototypical molecular solids (picene, pentacene, tetracene and coronene) on the basis of the parameter-free solution of the many-body Bethe-Salpeter equation. We discuss the mixing between Frenkel and charge-transfer excitons and the origin of their Davydov splitting in the framework of many-body perturbation theory and establish a link with model approaches based on molecular states. Finally, we show how the interplay between the electronic band dispersion and the exchange electron-hole interaction plays a fundamental role in setting the nature of the exciton. This analysis has a general validity holding also for other systems in which the electron wavefunctions are strongly localized, as in strongly correlated insulators.
Gurney, Kevin R.
2015-01-12
This document constitutes the final report under DOE grant DE-FG-08ER64649. The organization of this document is as follows: first, I will review the original scope of the proposed research. Second, I will present the current draft of a paper nearing submission to Nature Climate Change on the initial results of this funded effort. Finally, I will present the last phase of the research under this grant which has supported a Ph.D. student. To that end, I will present the graduate student’s proposed research, a portion of which is completed and reflected in the paper nearing submission. This final work phase will be completed in the next 12 months. This final workphase will likely result in 1-2 additional publications and we consider the results (as exemplified by the current paper) high quality. The continuing results will acknowledge the funding provided by DOE grant DE-FG-08ER64649.
DeTar, Carleton
2012-12-10
This document constitutes the Final Report for award DE-FC02-06ER41446 as required by the Office of Science. It summarizes accomplishments and provides copies of scientific publications with significant contribution from this award.
Tieszen, S.R.
1997-03-01
This paper is a brief overview of work over the last several decades in understanding what occurs to jet fuel stored in aircraft fuel tanks on impact with the ground. Fuel dispersal is discussed in terms of the overall crash dynamics process and impact regimes are identified. In a generic sense, the types of flow regimes which can occur are identified and general descriptions of the processes are given. Examples of engineering level tools, both computational and experimental, which have applicability to analyzing the complex environments are presented. Finally, risk based decision is discussed as a quick means of identifying requirements for development of preventative or mitigation strategies, such as further work on the development of an anti-misting agent.
Evaluation of dense gas dispersion test results. Final report
Sheesley, D.
1997-03-01
A national Spill Test Facility (STF) program dedicated to public safety in the use and transport of fuels and other chemicals was established by Congress. The program is charged with developing technology for spill prediction, prevention, and mitigation. The Spill Test Facility, located northeast of Mercury, Nevada, is to be used for research leading to the development of tools for the protection of workers, the public, and the environment in response to accidental spills of hazardous materials. Public laws, including the Clean Air Act Amendments (CAAA) of 1990, also require that the Secretary of Energy make the STF and STF test data available to industry, academia, and other government agencies. The objective of this subtask is to produce a data base allowing the chemical and fuel accident responder to access emergency management information quickly and efficiently. The work has involved (1) archiving spill test facility results from the US Department of Energy (DOE) Liquefied Gaseous Fuels Spill Test Facility (LGFSTF) at the Nevada National Test Site, (2) updating the data base on spill control technology documents and data, and (3) transferring this information to the public.
KISMET tungsten dispersal experiment
Wohletz, K.; Kunkle, T.; Hawkins, W.
1996-12-01
Results of the KISMET tungsten dispersal experiment indicate a relatively small degree of wall-rock contamination caused by this underground explosive experiment. Designed as an add-on to the KISMET test, which was performed in the U-1a.02 drift of the LYNER facility at Nevada Test Site on 1 March 1995, this experiment involved recovery and analysis of wall-rock samples affected by the high- explosive test. The chemical, high-explosive blast drove tungsten powder, placed around the test package as a plutonium analog, into the surrounding wall- rock alluvium. Sample analyses by an analytical digital electron microscope (ADEM) show tungsten dispersed in the rock as tiny (<10 {mu}m) particles, agglomerates, and coatings on alluvial clasts. Tungsten concentrations, measured by energy dispersive spectral analysis on the ADEM, indicate penetration depths less than 0.1 m and maximum concentrations of 1.5 wt % in the alluvium.
Dobbs, Fred C.
2003-01-15
In July of 2000, we performed another field bacterial injection experiment at the DOE study site in South Oyster, Virginia. This year the injection was performed at the site named SOFA. In parallel fashion to the previous year's experiment at the NC site, we collected samples to quantify protists before and after injection of bacteria. Two bacterial strains, DA001 and iron-reducing bacterium OY107, were co-injected with a bromide tracer (100 mg per liter) into the suboxic site flow cell during a 12-hour pulse. The bacteria were marked with two different viable fluorescent stains (50% green OY107 and 50% red DA001), and the concentration of each strain in the injectate was approximately 5.0 x 10{sup 7} cells per ml. Prior to the injection, a forced gradient had been established. As the concentration of DA001 decreased following breakthrough, the predator populations increased in number (maximum concentration of 3 x 10{sup 3} protists per ml). The response of the protists was qualitatively similar to the response we observed in the previous year's experiment at the NC site. Unfortunately, post-injection coring at the SOFA site forced relocation of sampling wells and the resultant data set is less complete than for the NC site. Calculations of bacteria lost to predation are ongoing. Application of molecular tools to detect microorganisms has become increasingly important and widely adopted because of its sensitivity and specificity, both of which can be much greater than that resolved by conventional microscopy. To this end, we have endeavored to incorporate these methods into our research. First, we designed polymerase chain reaction (PCR) primers specific for flagellates by examining small subunit ribosomal DNA (SSrDNA) of more than 20 strains of flagellates. Conservative regions of base sequences were selected and primers were synthesized at Gibbco Inc. In addition, we have had additional primer sets synthesized, ones conservative for eukaryotes. Second, two
A Physical Molecular Mechanics Method for Damped Dispersion.
Verma, Pragya; Wang, Bo; Fernandez, Laura E; Truhlar, Donald G
2017-03-22
Damped dispersion can be a significant component of the interaction energy in many physical and chemical processes, for example, physisorption and noncovalent complexation. For physically interpreting and modeling such processes, it is convenient to have an analytic method to calculate damped dispersion that is readily applicable across the entire periodic table. Of the available methods to calculate damped dispersion energy for interacting systems with overlapping charge distributions, we select symmetry-adapted perturbation theory (SAPT) as providing a reasonable definition, and of the possible analytic forms, we choose the D3(BJ) method. However, the available parameterizations of D3(BJ) include not only damped dispersion energy but also corrections for errors in specific exchange-correlation functionals. Here we present a parameterization that provides a physical measure of damped dispersion without such density functional corrections. The method generalizes an earlier method of Pernal and coworkers to all elements from hydrogen to plutonium.
Dispersion penalty analysis for VSR —1 optical links
NASA Astrophysics Data System (ADS)
Jia, Jiu-Chun; Chen, Hong-Da; Xiong-Bin, Chen; Zhou, Yi
2006-05-01
This paper presents and approach to calculate dispersion penalty for VSR-1 optical links. Based on parameters of a specific VSR-1 link, dispersion penalties are computed for various modal dispersion bandwidths respectively. The worst-case eye closure is expressed numerically by using the signal waveform at time 0, and the signal waveform is obtained in frequency domain through FFT algorithm. By this approach, the dispersion penalty is determined by the shape of transfer functions of the various components in the links. To simplify the derivation of multimode fiber link transfer function, a Gaussian form of normalized impulse response is used. This calculation approach can be used to estimate the worst-case dispersion penalty of VSR-1 links in the link budget analysis.
Uranium Dispersion & Dosimetry Model.
MICHAEL,; MOMENI, H.
2002-03-22
The Uranium Dispersion and Dosimetry (UDAD) program provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility such as a uranium mine or mill. Only transport through the air is considered. Exposure results from inhalation, external irradiation from airborne and ground-deposited activity, and ingestion of foodstuffs. Individual dose commitments, population dose commitments, and environmental dose commitments are computed. The program was developed for application to uranium mining and milling; however, it may be applied to dispersion of any other pollutant.
Surface Adsorption from the Exchange-Hole Dipole Moment Dispersion Model.
Christian, Matthew S; Otero-de-la-Roza, Alberto; Johnson, Erin R
2016-07-12
The accurate calculation of intermolecular interaction energies with density functional theory requires methods that include a treatment of long-range, nonlocal dispersion correlation. In this work, we explore the ability of the exchange-hole dipole moment (XDM) dispersion correction to model molecular surface adsorption. Adsorption energies are calculated for six small aromatic molecules (benzene, furan, pyridine, thiophene, thiophenol, and benzenediamine) and the four DNA nucleobases (adenine, thymine, guanine, and cytosine) on the (111) surfaces of the three coinage metals (copper, silver, and gold). For benzene, where the experimental reference data is most precise, the mean absolute error in the computed absorption energies is 0.04 eV. For the other aromatic molecules, the computed binding energies are found to be within 0.09 eV of the available reference data, on average, which is well below the expected experimental uncertainties for temperature-programmed desorption measurements. Unlike other dispersion-corrected functionals, adequate performance does not require changes to the canonical XDM implementation, and the good performance of XDM is explained in terms of the behavior of the exchange hole. Additionally, the base functional employed (B86bPBE) is also optimal for molecular studies, making B86bPBE-XDM an excellent candidate for studying chemistry on material surfaces. Finally, the noncovalent interaction (NCI) plot technique is shown to detect adsorption effects in real space on the order of tenths of an eV.
The permeability of poly-disperse porous media and effective particle size
NASA Astrophysics Data System (ADS)
Markicevic, B. I.; Preston, C.; Osterroth, S.; Iliev, O.; Hurwitz, M.
2015-11-01
The interactions between the fluid and solid phases in porous media account for the openness and length of the flow path that the fluid needs to travel within. The same reasoning applies for both mono- and poly-disperse media, and is reflected in the adoption of the same permeability models. The only difference is that an effective particle size diameter has to be used for the poly-disperse samples. A filtration experiment is used to form a particle layer, filter cake, consisting of particles of different sizes. Both inflow and outflow particle size distribution are measured by particle counting method, and from their difference, the particle size distribution in the cake is determined. In a set of experiments, the filtration history is altered by changing (i) filtration medium; (ii) suspension flow rate; and (iii) particle concentration, where in all cases investigated the cake permeability remains constant. In order to predict the permeability of poly-disperse cake from the analytical models, the particle size distribution moments are calculated, and the permeability is found for each moment. Comparing the experimental to the analytical permeability values the effective particle size is found, where the permeability calculated by using the harmonic mean of the particle size distribution reproduces the permeability experimental value best. Finally, in the parametric study, reducing the cake porosity and/or lowering the particle retention shifts effective particle size used in the permeability model toward higher moments of the particle size distribution function.
Black hole radiation with modified dispersion relation in tunneling paradigm: free-fall frame
NASA Astrophysics Data System (ADS)
Wang, Peng; Yang, Haitang; Ying, Shuxuan
2016-01-01
Due to the exponential high gravitational red shift near the event horizon of a black hole, it might appear that the Hawking radiation would be highly sensitive to some unknown high energy physics. To study the effects of any unknown physics at the Planck scale on the Hawking radiation, the dispersive field theory models have been proposed, which are variations of Unruh's sonic black hole analogy. In this paper, we use the Hamilton-Jacobi method to investigate the dispersive field theory models. The preferred frame is the free-fall frame of the black hole. The dispersion relation adopted agrees with the relativistic one at low energy but is modified near the Planck mass mp. The corrections to the Hawking temperature are calculated for massive and charged particles to {O}( mp^{-2}) and neutral and massless particles with λ =0 to all orders. The Hawking temperature of radiation agrees with the standard one at the leading order. After the spectrum of radiation near the horizon is obtained, we use the brick wall model to compute the thermal entropy of a massless scalar field near the horizon of a 4D spherically symmetric black hole and a 2D one. Finally, the luminosity of a Schwarzschild black hole is calculated by using the geometric optics approximation.
Dispersion of Acoustic Phonons in Quasiperiodic Superlattices
NASA Astrophysics Data System (ADS)
Mishra, R. K.; Misra, K. D.; Tiwari, R. P.
The aim of this work is to present an up-to-date study of acoustic phonon excitations that can propagate in multilayered structure with constituents arranged in quasiperiodic fashion. In this paper, the dispersion relation of acoustic phonons for the quasiperiodic superlattice using different semiconducting materials, with the help of transfer matrix method, is derived at normal angle of incidence. Calculation is presented for (a) Ge/Si and (b) Nb/Cu semiconductor superlattices from 5th to 9th generations and dispersion diagrams are plotted using the famous Kronning-Penny model obtained from the transfer matrix of the structure. The concept of allowed and forbidden bands with the help of these dispersion curves in various generations of Fibonacci superlattices and the relation between imaginary value of propagation vector and the existence of forbidden bands is demonstrated.
Hamiltonian description of composite fermions: Magnetoexciton dispersions
NASA Astrophysics Data System (ADS)
Murthy, Ganpathy
1999-11-01
A microscopic Hamiltonian theory of the FQHE, developed by Shankar and myself based on the fermionic Chern-Simons approach, has recently been quite successful in calculating gaps in fractional quantum hall states, and in predicting approximate scaling relations between the gaps of different fractions. I now apply this formalism towards computing magnetoexciton dispersions (including spin-flip dispersions) in the ν=13, 25, and 37 gapped fractions, and find approximate agreement with numerical results. I also analyze the evolution of these dispersions with increasing sample thickness, modelled by a potential soft at high momenta. New results are obtained for instabilities as a function of thickness for 25 and 37, and it is shown that the spin-polarized 25 state, in contrast to the spin-polarized 13 state, cannot be described as a simple quantum ferromagnet.
Amplitude-dependent Lamb wave dispersion in nonlinear plates.
Packo, Pawel; Uhl, Tadeusz; Staszewski, Wieslaw J; Leamy, Michael J
2016-08-01
The paper presents a perturbation approach for calculating amplitude-dependent Lamb wave dispersion in nonlinear plates. Nonlinear dispersion relationships are derived in closed form using a hyperelastic stress-strain constitutive relationship, the Green-Lagrange strain measure, and the partial wave technique integrated with a Lindstedt-Poincaré perturbation approach. Solvability conditions are derived using an operator formalism with inner product projections applied against solutions to the adjoint problem. When applied to the first- and second-order problems, these solvability conditions lead to amplitude-dependent, nonlinear dispersion corrections for frequency as a function of wavenumber. Numerical simulations verify the predicted dispersion shifts for an example nonlinear plate. The analysis and identification of amplitude-dependent, nonlinear Lamb wave dispersion complements recent research focusing on higher harmonic generation and internally resonant waves, which require precise dispersion relationships for frequency-wavenumber matching.
Origin of Toughness in Dispersion-Cast Nafion Membranes
Kim, Yu Seung; Welch, Cynthia F.; Hjelm, Rex Paul; ...
2015-03-23
In this study, the gelation behavior of Nafion dispersions was investigated using small-angle neutron scattering to better understand the mechanical toughness of dispersion-cast Nafion membranes. Three types of gelation were observed, depending on dispersing fluids: (i) homogeneous, thermally reversible gelation that was present in most aprotic polar dispersing fluids; (ii) inhomogeneous, thermally irreversible gelation as films, found in alcohols; and (iii) inhomogeneous, thermally irreversible gelation which precipitates in water/monohydric alcohol mixtures. The mechanical toughness of dispersion-cast Nafion membranes depends on the dispersing fluid, varying by more than 4 orders of magnitude. Excellent correlation between the critical gelation concentration and mechanicalmore » toughness was demonstrated with the Nafion membranes cast at 140 °C. Additional thermal effects among Nafion membranes cast at 190 °C were qualitatively related to the boiling point of dispersing fluids. Little correlation between mechanical toughness and percent crystalline area of Nafion was observed, suggesting that the origin of mechanical toughness of dispersion-cast Nafion membranes is due to chain entanglements rather than crystallinity. Finally, the correlation between critical gelation concentration and mechanical toughness is a new way of predicting mechanical behavior in dispersion-cast polymer systems in which both polymer-dispersing fluid and polymer–polymer interactions play a significant role in the formation of polymer chain entanglements.« less
Golmohammadi, Saeed; Moravvej-Farshi, Mohammad Kazem; Rostami, Ali; Zarifkar, Abbas
2008-12-10
Chromatic dispersion compensation is an essential feature of high speed dense wavelength-division multiplexing (DWDM) systems. We propose a dispersion compensator structure whose characteristics meet the optical DWDM system requirements. The proposed structure is based on Fibonacci quasi-periodic multilayer structures composed of layers with large index differences. Studying the dispersive properties of Fibonacci structures with generation numbers j=3 and 4, and calculating group delay (GD) and group velocity dispersion (GVD) of their reflection bands, we have demonstrated that to have a smooth GD and almost a constant GVD in each band of a DWDM system, one needs not only to suitably chirp the structure refractive index profile, but also must properly apodize it. We also demonstrate the possibility of achieving high slope GDs and large GVDs by means of high order Fibonacci structures with thicker layers. Finally, by varying the layer dimensions and refractive indices as well as Fibonacci's order, one can design DWDM dispersion compensators suitable for distances as long as 220 km.
NASA Technical Reports Server (NTRS)
Frost, W.
1983-01-01
The charged particle generator was further tested after some design modification. The generator performance was measured with additional instrumentation and found to confirm previous measurements. Plans for a field testing were than developed. The overall status of the program and the field test plans were presented to a group of atmospheric scientists and electrostatic experts at the NASA/MSFC sponsored USRA Workshop on Electrostatic Fog Dispersal at NCAR, Boulder, Colorado discussed in previous sections. The recommendations from this workshop are being evaluated as to whether NASA should proceed with the field test or whether further theoretical research on the phenomenon of electrostatic fog dispersal and additional development of the charged particle generator should be carried out. Information obtained from the USRA Workshop clearly identified three physical mechanisms that could possibly influence the fog dispersal process, which heretofore have not been considered, and which may provide additional insight to the direction of further fog dispersal work. These mechanisms are: the effect of corona discharge on the electric field strength at the surface, the influx of fog into the cleared volume by turbulent diffusion, and the increase in supersaturation as liquid water is removed, activating haze particles, and thus generating more fog. Plans are being formulated to investigate these mechanisms.
Oxide dispersion strengthened superalloy
NASA Technical Reports Server (NTRS)
Glasgow, T. K.; Kim, Y. G.; Curwick, L. R.; Merrick, H. F.
1981-01-01
MA6000E alloy is strengthened at high temperatures by dispersion of yttrium oxide. Strength properties are about twice those of conventional nickel base alloys. Good thermal fatigue, intermediate temperature strength, and good oxidation resistance give alloy unique combination of benefits. Application in aircraft gas turbine is improved.
William D. Boyer
1963-01-01
Production and dispersal of longleaf pine (Pinus palustris Mill.) seeds were sampled in 1955, 1957, and 1958 on the Escambia Experimental Forest in southwest Alabama.Two transects of seed traps were established at right angles to each of four forest walls enclosing a rectangular 80-acre clearing. Walls were oriented in the cardinal...
NASA Astrophysics Data System (ADS)
Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.
2016-01-01
The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz–1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium.
Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R
2016-01-07
The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz-1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium.
Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.
2016-01-01
The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz–1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium. PMID:26739504
Oxide dispersion strengthened superalloy
NASA Technical Reports Server (NTRS)
Glasgow, T. K.; Kim, Y. G.; Curwick, L. R.; Merrick, H. F.
1981-01-01
MA6000E alloy is strengthened at high temperatures by dispersion of yttrium oxide. Strength properties are about twice those of conventional nickel base alloys. Good thermal fatigue, intermediate temperature strength, and good oxidation resistance give alloy unique combination of benefits. Application in aircraft gas turbine is improved.
Dispersion corrections in the boron buckyball and nanotubes
NASA Astrophysics Data System (ADS)
Gunasinghe, Rosi; Kah, Cherno; Quarles, Kregg; Wang, Xiao-Qian
2012-03-01
We have investigated structural and electronic properties of the B80 buckyball and boron nan-otubes by means of dispersion-corrected density-functional calculations. Our analysis reveals the vibrational stability for the icosahedral B80 with the inclusion of dispersion corrections, in contrast to the instability to a tetrahedral B80 with puckered capping atoms from preceding density-functional theory calculations. Similarly, the dispersion-corrected density-functional calculations yield non-puckered boron nanotube conformations and an associated metallic state for zigzag tubes. Our study indicates that the incorporation of long-range dispersive interactions is particularly important to the structural and electronic properties of boron fullerenes and nanotubes.
The Pigmentary Dispersion Disorder in USAF Aviators
1992-12-01
blocker ) and/ or laser trabeculoplasty; they suffer no visual or The initial and final diagnoses, for the 34 aviators with systemic side- effects from...1049-53. to us over a 10-year period. The pigmentary dispersion syndrome (PDS) can have serious ocular consequences. Visual changes due to glaucoma and...due to glaucoma . Initial intraocular pres- sures, cup-to-disc ratios, and refractions were not statistically dition or disease. Accordingly, we
Impact of Land Surface Heterogeneity on Mesoscale Atmospheric Dispersion
NASA Technical Reports Server (NTRS)
Wu, Yuling; Nair, Udaysankar S.; Pielke, Roger A., Sr.; McNider, Richard T.; Christopher, Sundar A.; Anantharaj, Valentine G.
2009-01-01
Prior numerical modelling studies show that atmospheric dispersion is sensitive to surface heterogeneities, but past studies do not consider the impact of a realistic distribution of surface heterogeneities on mesoscale atmospheric dispersion. While these focussed on dispersion in the convective boundary layer, the present work also considers dispersion in the nocturnal boundary layer and above. Using a Lagrangian particle dispersion model (LPDM) coupled to the Eulerian Regional Atmospheric Modeling System (RAMS), the impact of topographic, vegetation, and soil moisture heterogeneities on daytime and nighttime atmospheric dispersion is examined. In addition, the sensitivity to the use of Moderate Resolution Imaging Spectroradiometer (MODIS)-derived spatial distributions of vegetation characteristics on atmospheric dispersion is also studied. The impact of vegetation and terrain heterogeneities on atmospheric dispersion is strongly modulated by soil moisture, with the nature of dispersion switching from non-Gaussian to near- Gaussian behaviour for wetter soils (fraction of saturation soil moisture content exceeding 40%). For drier soil moisture conditions, vegetation heterogeneity produces differential heating and the formation of mesoscale circulation patterns that are primarily responsible for non-Gaussian dispersion patterns. Nighttime dispersion is very sensitive to topographic, vegetation, soil moisture, and soil type heterogeneity and is distinctly non-Gaussian for heterogeneous land-surface conditions. Sensitivity studies show that soil type and vegetation heterogeneities have the most dramatic impact on atmospheric dispersion. To provide more skillful dispersion calculations, we recommend the utilisation of satellite-derived vegetation characteristics coupled with data assimilation techniques that constrain soil-vegetation-atmosphere transfer (SVAT) models to generate realistic spatial distributions of surface energy fluxes.
Dispersion Distance and the Matter Distribution of the Universe in Dispersion Space.
Masui, Kiyoshi Wesley; Sigurdson, Kris
2015-09-18
We propose that "standard pings," brief broadband radio impulses, can be used to study the three-dimensional clustering of matter in the Universe even in the absence of redshift information. The dispersion of radio waves as they travel through the intervening plasma can, like redshift, be used as a cosmological distance measure. Because of inhomogeneities in the electron density along the line of sight, dispersion is an imperfect proxy for radial distance and we show that this leads to calculable dispersion-space distortions in the apparent clustering of sources. Fast radio bursts (FRBs) are a new class of radio transients that are the prototypical standard ping and, due to their high observed dispersion, have been interpreted as originating at cosmological distances. The rate of fast radio bursts has been estimated to be several thousand over the whole sky per day and, if cosmological, the sources of these events should trace the large-scale structure of the Universe. We calculate the dispersion-space power spectra for a simple model where electrons and FRBs are biased tracers of the large-scale structure of the Universe, and we show that the clustering signal could be measured using as few as 10 000 events. Such a survey is in line with what may be achieved with upcoming wide-field radio telescopes.
Semiemprical calculation of gf values
NASA Astrophysics Data System (ADS)
Kurucz, Robert L.
1980-11-01
Because of the large scatter in my gf values in comparison to laboratory values which was well demonstrated by Wiese in his presentation, I am going to spend most of my time explaining the reasons for the scatter so that you will not worry unduly about using my calculations. Then I will mention my spectrum synthesis programs in passing and finally I will talk about future calculations that will provide oscillator strength data for Ni, Co, and Fe in supernova spectra.
Dispersion suppressors with bending
Garren, A.
1985-10-01
Dispersion suppressors of two main types are usually used. In one the cell quadrupole focussing structure is the same as in normal cells but some of the dipoles are replaced by drifts. In the other, the quadrupole strengths and/or spacings are different from those of the normal cells, but the bending is about the same as it is in the cells. In SSC designs to date, dispersion suppressors of the former type have been used, consisting of two cells with bending equivalent to one. In this note a suppressor design with normal bending and altered focussing is presented. The advantage of this scheme is that circumference is reduced. The disadvantages are that additional special quadrupoles must be provided (however, they need not be adjustable), and the maximum beta values within them are about 30% higher than the cell maxima.
Analytic Coulomb approximations for dynamic multipole polarizabilities and dispersion forces
NASA Astrophysics Data System (ADS)
Lamm, Gene; Szabo, Attila
1980-03-01
ECA allows a wide variety of dispersion force coefficients to be easily calculated. Extensive, but not exhaustive, tabulations of C6, C8, C10, and D9 (three-body) coefficients are given. C6 coefficients involving the He 11S, 21S, 23S systems are compared with the accurate results of GW and, except for interactions of He 12S, excellent agreement is obtained. The discrepancies for He 11S are removed by a simple scaling procedure utilizing the static polarizability. To facilitate scaling of dispersion coefficients, normalized dispersion coefficients are defined. Normalized dipole and quadrupole dispersion coefficients are given for all alkaline earth-alkaline earth pairs. Accurate results for C6 and C8 coefficients are presented for all alkali-alkali pairs and C6 coefficients for alkali-alkaline earth interactions given. Sample C10 and D9 coefficients are listed for the alkalis and hydrogen. Coupling the ECA dynamic dipole polarizability to available discrete oscillator strength distribution data allows C6 coefficients to be obtained for the interaction of alkali, alkaline earth, and metastable helium atoms with the following systems: He, Ne, Ar, Kr, Xe, N, O, H2, N2, O2, NO, N2O, H2O, NH3, and CH4. Finally, C8 coefficients for He-alkali interactions are presented. A significant number of the dispersion coefficients obtained here are not available in the literature. Based on the success of ECA static multipole polarizability predictions, we feel the results presented here are generally the most reliable to date.
Wong, G K; Chen, A Y; Ha, S; Kruhlak, R; Murdoch, S; Leonhardt, R; Harvey, J; Joly, N
2005-10-17
A simple and accurate method is proposed for characterizing the chromatic dispersion of high air-filling fraction photonic crystal fibers. The method is based upon scalar modulation instability generated by a strong pump wave propagating near the zero-dispersion wavelength. Measuring the modulation instability sideband frequency shifts as a function of wavelength gives a direct measurement of the fiber's chromatic dispersion over a wide wavelength range. To simplify the dispersion calculation we introduce a simple analytical model of the fiber's dispersion, and verify its accuracy via a full numerical simulation. Measurements of the chromatic dispersion of two different types of high air-filling fraction photonic crystal fibers are presented.
Particle dispersion in confined turbulent swirling flows
NASA Astrophysics Data System (ADS)
Chen, C. P.
1986-06-01
This paper reports a numerical investigation of confined swirling flows of gas-particle mixtures. A recently developed two-fluid, multiple-scale mixing model is applied to study the influence of particles on the intensity of the reverse flows of the gas phase and the effects of swirl on the particle dispersion in an annular expanding chamber under isothermal condition. The calculations were made for different swirl strength of injection of the annular jet into the mixing chamber. Results agree well qualitatively with experimental information available. It is also found that the calculated flow fields depend heavily on the prescription of the inlet flow conditions.
Disabling Radiological Dispersal Terror
Hart, M
2002-11-08
Terror resulting from the use of a radiological dispersal device (RDD) relies upon an individual's lack of knowledge and understanding regarding its significance. Disabling this terror will depend upon realistic reviews of the current conservative radiation protection regulatory standards. It will also depend upon individuals being able to make their own informed decisions merging perceived risks with reality. Preparation in these areas will reduce the effectiveness of the RDD and may even reduce the possibility of its use.
Ascent trajectory dispersion analysis
NASA Technical Reports Server (NTRS)
1982-01-01
The results of a Space Transportation System ascent trajectory dispersion analysis are documented. Critical trajectory parameter values useful for the definition of lightweight external tank insulation requirements are provided. This analysis was conducted using two of the critical missions specified for the Space Transportation System: a 28.5 deg inclination trajectory launched from the Eastern Test Range (ETR) and a Western Test Range (WTR) trajectory launched into a 104 deg orbital inclination.
NASA Astrophysics Data System (ADS)
Barbosa, L. C.
2015-09-01
Considering an idea of F. Arago in 1853 regarding light dispersion through the light ether in the interstellar space, this paper presents a new idea on an alternative interpretation of the cosmological red shift of the galaxies in the universe. The model is based on an analogy with the temporal material dispersion that occurs with light in the optical fiber core. Since intergalactic space is transparent, according to the model, this phenomenon is related to the gravitational potential existing in the whole space. Thus, it is possible to find a new interpretation to Hubble's constant. In space, light undergoes a dispersion process in its path, which is interpreted by a red shift equation of the type Δz = HL, since H = (d2n/dλ2 Δv Δλ), where H means the Hubble constant, n is the refractive index of the intergalactic space, Δλ is the spectral width of the extragalactic source, and Δv is the variation of the speed of light caused by the gravitational potential. We observe that this "constant" is governed by three new parameters. Light traveling the intergalactic space undergoes red shift due to this mechanism, while light amplitude decreases with time, and the wavelength always increases, thus producing the same type of behavior given by Hubble's Law. It can be demonstrated that the dark matter phenomenon is produced by the apparent speed of light of the stars on the periphery of the galaxies, without the existence of dark energy. Based on this new idea, the model of the universe is static, lacking expansion. Other phenomena may be interpreted based on this new model of the universe. We have what we call temporal gravitational dispersion of light in space produced by the variations of the speed of light, due to the presence of the gravitational potential in the whole space.
Stinis, Panos
2016-08-07
This is the final report for the work conducted at the University of Minnesota (during the period 12/01/12-09/18/14) by PI Panos Stinis as part of the "Collaboratory on Mathematics for Mesoscopic Modeling of Materials" (CM4). CM4 is a multi-institution DOE-funded project whose aim is to conduct basic and applied research in the emerging field of mesoscopic modeling of materials.
Marchant, Gary E.
2013-04-23
This is the final report of a two year project entitled "Governing Nanotechnology Risks and Benefits in the Transition to Regulation: Innovative Public and Private Approaches." This project examined the role of new governance or "soft law" mechanisms such as codes of conduct, voluntary programs and partnership agreements to manage the risks of emerging technologies such as nanotechnology. A series of published or in publication papers and book chapters are attached.
R. Paul Drake
2001-11-30
This final report describes work involving 22 investigators from 11 institutions to explore the dynamics present in supernova explosions by means of experiments on the Omega laser. The specific experiments emphasized involved the unstable expansion of a spherical capsule and the coupling of perturbations at a first interface to a second interface by means of a strong shock. Both effects are present in supernovae. The experiments were performed at Omega and the computer simulations were undertaken at several institutions. B139
Hemmer, Michael J; Barron, Mace G; Greene, Richard M
2011-10-01
The present study describes the acute toxicity of eight commercial oil dispersants, South Louisiana sweet crude oil (LSC), and chemically dispersed LSC. The approach used consistent test methodologies within a single laboratory in assessing the relative acute toxicity of the eight dispersants, including Corexit 9500A, the predominant dispersant applied during the DeepWater Horizon spill in the Gulf of Mexico. Static acute toxicity tests were performed using two Gulf of Mexico estuarine test species, the mysid shrimp (Americamysis bahia) and the inland silversides (Menidia beryllina). Dispersant-only test solutions were prepared with high-energy mixing, whereas water-accommodated fractions of LSC and chemically dispersed LSC were prepared with moderate energy followed by settling and testing of the aqueous phase. The median lethal concentration (LC50) values for the dispersant-only tests were calculated using nominal concentrations, whereas tests conducted with LSC alone and dispersed LSC were based on measured total petroleum hydrocarbon (TPH) concentrations. For all eight dispersants in both test species, the dispersants alone were less toxic (LC50s: 2.9 to >5,600 µl/L) than the dispersant-LSC mixtures (0.4-13 mg TPH/L). Louisiana sweet crude oil alone had generally similar toxicity to A. bahia (LC50: 2.7 mg TPH/L) and M. beryllina (LC50: 3.5 mg TPH/L) as the dispersant-LSC mixtures. The results of the present study indicate that Corexit 9500A had generally similar toxicity to other available dispersants when tested alone but was generally less toxic as a mixture with LSC.
Hierarchical mechanisms of spatially contagious seed dispersal in complex seed-disperser networks.
Fedriani, José M; Wiegand, Thorsten
2014-02-01
Intra- and interspecific spatially contagious seed dispersal has far-reaching implications for plant recruitment, distribution, and community assemblage. However, logistical and analytical limitations have curtailed our understanding concerning the mechanisms and resulting spatial patterns of contagious seed dispersal in most systems and, especially, in complex seed-disperser networks. We investigated mechanisms of seed aggregation using techniques of spatial point pattern analysis and extensive data sets on mutispecific endozoochorous seed rain generated by five frugivorous mammals in three Mediterranean shrublands over two seasons. Our novel analytical approach revealed three hierarchical and complementary mechanisms of seed aggregation acting at different levels (fecal samples, seeds, pairs of seed species) and spatial scales. First, the three local guilds of frugivores tended to deliver their feces highly aggregated at small and intermediate spatial scales, and the overall pattern of fecal delivery could be described well by a nested double-cluster Thomas process. Second, once the strong observed fecal aggregation was accounted for, the distribution of mammal feces containing seeds was clustered within the pattern of all feces (i.e., with and without seeds), and the density of fecal samples containing seeds was higher than expected around other feces containing seeds in two out of the three studied seed-disperser networks. Finally, at a finer level, mark correlation analyses revealed that for some plant species pairs, the number of dispersed seeds was positively associated either at small or large spatial scales. Despite the relatively invariant patterning of nested double-clustering, some attributes of endozoochorous seed rain (e.g., intensity, scales of aggregation) were variable among study sites due to changes in the ecological context in which seeds and their dispersers interact. Our investigation disentangles for the first time the hierarchy of synergic
Scale-Dependent Solute Dispersion in Variably Saturated Porous Media
Rockhold, Mark L.; Zhang, Z. F.; Bott, Yi-Ju
2016-03-29
This work was performed to support performance assessment (PA) calculations for the Integrated Disposal Facility (IDF) at the Hanford Site. PA calculations require defensible estimates of physical, hydraulic, and transport parameters to simulate subsurface water flow and contaminant transport in both the near- and far-field environments. Dispersivity is one of the required transport parameters.
DNA-Assisted Dispersion of Carbon Nanotubes and Comparison with Other Dispersing Agents.
Pramanik, Debabrata; Maiti, Prabal K
2017-10-11
Separation and sorting of pristine carbon nanotubes (CNTs) from bundle geometry is a very challenging task due to the insoluble and nondispersive nature of CNTs in aqueous medium. Recently, many studies have been performed to address this problem using various organic and inorganic solutions, surfactant molecules, and biomolecules as dispersing agents. Recent experimental studies have reported the DNA to be highly efficient in dispersing CNTs from bundle geometry. However, there is no microscopic study and also quantitative estimation of the dispersion efficiency of the DNA. Using all-atom molecular dynamics simulation, we study the structure and stability of single-stranded DNA (ssDNA)-single-walled carbon nanotube (SWNT) (6,5) complex. To quantify the dispersion efficiency of various DNA sequences, we perform potential of mean forces (PMF) calculation between two bare SWNTs as well ssDNA-wrapped CNTs for different base sequences. From the PMF calculation, we find the PMF between two bare (6,5) SWNTs to be approximately -29 kcal/mol. For the ssDNA-wrapped SWNTs, the PMF reduces significantly and becomes repulsive. In the presence of ssDNA of different polynucleotide bases (A, T, G, and C), we present a microscopic picture of the ssDNA-SWNT (6,5) complex and also a quantitative estimate of the interaction strength between nanotubes from PMF calculation. From PMF, we show the sequence of dispersion efficiency for four different nucleic bases to be T > A > C > G. We have also presented a comparison of the dispersion efficiencies of ssDNA, flavin mononucleotide surfactant, and poly(amidoamine) (PAMAM) dendrimer by comparing their respective PMF values.
Alarcón, J. M.; Hiller Blin, A. N.; Vicente Vacas, M. J.; ...
2017-05-08
The baryon electromagnetic form factors are expressed in terms of two-dimensional densities describing the distribution of charge and magnetization in transverse space at fixed light-front time. In this paper, we calculate the transverse densities of the spin-1/2 flavor-octet baryons at peripheral distances b=O(Mmore » $$-1\\atop{π}$$) using methods of relativistic chiral effective field theory (χ EFT) and dispersion analysis. The densities are represented as dispersive integrals over the imaginary parts of the form factors in the timelike region (spectral functions). The isovector spectral functions on the two-pion cut t > 4 M$$2\\atop{π}$$ are calculated using relativistic χEFT including octet and decuplet baryons. The χEFT calculations are extended into the ρ meson mass region using an N/D method that incorporates the pion electromagnetic form factor data. The isoscalar spectral functions are modeled by vector meson poles. We compute the peripheral charge and magnetization densities in the octet baryon states, estimate the uncertainties, and determine the quark flavor decomposition. Finally, the approach can be extended to baryon form factors of other operators and the moments of generalized parton distributions.« less
Polarisability and dispersion properties of SF 6
NASA Astrophysics Data System (ADS)
Fowler, P. W.; Kelly, H. M.; Steiner, E.
1993-02-01
Electric properties of the SF 6 molecule are surveyed. Coupled Hartree—Fock calculations of the dipole, dipole—octopole and quadrupole polarisabilities of SF 6 in a polarised basis given values of α = 27, E = 107, C = 229 and Δ C = 113 (all in au). Allowing for the large vibrational contribution to the experimental static polarisability, agreement is good, with CHF theory underestimating α by about 10%. The calculated hexadecapole moment of -25.7 e a40 is within the range of experimental estimates, but the calculated dipole—octopole polarisability E is smaller than previous model and estimated experimental values by an order of magnitude. A large vibrational contribution to E is predicted. Dispersion coefficients C6, C8 and Δ C8 are calculated for SF 6 paired with itself and rare gas atoms, and comparison is made with the sparse experimental data.
The magnitude of local adaptation under genotype-dependent dispersal
Bolnick, Daniel I; Otto, Sarah P
2013-01-01
Dispersal moves individuals from patches where their immediate ancestors were successful to sites where their genotypes are untested. As a result, dispersal generally reduces fitness, a phenomenon known as “migration load.” The strength of migration load depends on the pattern of dispersal and can be dramatically lessened or reversed when individuals move preferentially toward patches conferring higher fitness. Evolutionary ecologists have long modeled nonrandom dispersal, focusing primarily on its effects on population density over space, the maintenance of genetic variation, and reproductive isolation. Here, we build upon previous work by calculating how the extent of local adaptation and the migration load are affected when individuals differ in their dispersal rate in a genotype-dependent manner that alters their match to their environment. Examining a one-locus, two-patch model, we show that local adaptation occurs through a combination of natural selection and adaptive dispersal. For a substantial portion of parameter space, adaptive dispersal can be the predominant force generating local adaptation. Furthermore, genetic load may be largely averted with adaptive dispersal whenever individuals move before selective deaths occur. Thus, to understand the mechanisms driving local adaptation, biologists must account for the extent and nature of nonrandom, genotype-dependent dispersal, and the potential for adaptation via spatial sorting of genotypes. PMID:24363900
Dispersion of flagellated swimming microorganisms in planar Poiseuille flow
NASA Astrophysics Data System (ADS)
Chilukuri, Sandeep; Collins, Cynthia H.; Underhill, Patrick T.
2015-03-01
The presence of an external fluid flow significantly impacts the properties of swimming microorganisms between two surfaces. By performing computer simulations of dilute populations of flagellated swimming microorganisms, we calculate the dispersivity of the microorganisms at different flow rates by tracking each individual organism in the direction of the flow. Our results show how the dispersion of swimming microorganisms is different from passive particles. For low flow rates, the dispersivity is higher than that of non-motile organisms because of their swimming motion. As the flow rate increases, the dispersivity drops, reaching a minimum before increasing at high flow rates. The minimum occurs approximately when the swimming speed of the organism equals the mean velocity of the external flow. A scaling analysis is used to qualitatively capture the dispersion at both low and high flow rates. Closed-form expressions for the dispersivity were derived at low and high flow rates using an analytical theory. This analysis showed that at low flow rates, the alignment of the organisms by the flow is responsible for the reduction of the dispersion in comparison to the dispersion without any external flow. At high flow rates, the distribution and dynamics across the channel produce a dispersivity that is lower than that of passive particles.
NASA Astrophysics Data System (ADS)
Annamalai, Subramanian; Balachandar, S.; Sridharan, P.; Jackson, T. L.
2017-02-01
An analytical expression describing the unsteady pressure evolution of the dispersed phase driven by variations in the carrier phase is presented. In this article, the term "dispersed phase" represents rigid particles, droplets, or bubbles. Letting both the dispersed and continuous phases be inhomogeneous, unsteady, and compressible, the developed pressure equation describes the particle response and its eventual equilibration with that of the carrier fluid. The study involves impingement of a plane traveling wave of a given frequency and subsequent volume-averaged particle pressure calculation due to a single wave. The ambient or continuous fluid's pressure and density-weighted normal velocity are identified as the source terms governing the particle pressure. Analogous to the generalized Faxén theorem, which is applicable to the particle equation of motion, the pressure expression is also written in terms of the surface average of time-varying incoming flow properties. The surface average allows the current formulation to be generalized for any complex incident flow, including situations where the particle size is comparable to that of the incoming flow. Further, the particle pressure is also found to depend on the dispersed-to-continuous fluid density ratio and speed of sound ratio in addition to dynamic viscosities of both fluids. The model is applied to predict the unsteady pressure variation inside an aluminum particle subjected to normal shock waves. The results are compared against numerical simulations and found to be in good agreement. Furthermore, it is shown that, although the analysis is conducted in the limit of negligible flow Reynolds and Mach numbers, it can be used to compute the density and volume of the dispersed phase to reasonable accuracy. Finally, analogous to the pressure evolution expression, an equation describing the time-dependent particle radius is deduced and is shown to reduce to the Rayleigh-Plesset equation in the linear limit.
Nozzle for electric dispersion reactor
Sisson, W.G.; Harris, M.T.; Scott, T.C.; Basaran, O.A.
1996-04-02
A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 5 figs.
Nozzle for electric dispersion reactor
Sisson, W.G.; Basaran, O.A.; Harris, M.T.
1995-11-07
A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 4 figs.
Nozzle for electric dispersion reactor
Sisson, W.G.; Basaran, O.A.; Harris, M.T.
1998-04-14
A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 4 figs.
Nozzle for electric dispersion reactor
Sisson, Warren G.; Basaran, Osman A.; Harris, Michael T.
1998-01-01
A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.
Nozzle for electric dispersion reactor
Sisson, W.G.; Harris, M.T.; Scott, T.C.; Basaran, O.A.
1998-06-02
A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 5 figs.
Nozzle for electric dispersion reactor
Sisson, Warren G.; Harris, Michael T.; Scott, Timothy C.; Basaran, Osman A.
1996-01-01
A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.
Nozzle for electric dispersion reactor
Sisson, Warren G.; Basaran, Osman A.; Harris, Michael T.
1995-01-01
A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.
Nozzle for electric dispersion reactor
Sisson, Warren G.; Harris, Michael T.; Scott, Timothy C.; Basaran, Osman A.
1998-01-01
A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.
R Paul Drake
2004-01-12
OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves.
NASA Astrophysics Data System (ADS)
Thole, B. T.; Van Duijnen, P. Th.
1982-10-01
The induction and dispersion terms obtained from quantum-mechanical calculations with a direct reaction field hamiltonian are compared to second order perturbation theory expressions. The dispersion term is shown to give an upper bound which is a generalization of Alexander's upper bound. The model is illustrated by a calculation on the interactions in the water dimer. The long range Coulomb, induction and dispersion interactions are reasonably reproduced.
A general formalism for phase space calculations
NASA Technical Reports Server (NTRS)
Norbury, John W.; Deutchman, Philip A.; Townsend, Lawrence W.; Cucinotta, Francis A.
1988-01-01
General formulas for calculating the interactions of galactic cosmic rays with target nuclei are presented. Methods for calculating the appropriate normalization volume elements and phase space factors are presented. Particular emphasis is placed on obtaining correct phase space factors for 2-, and 3-body final states. Calculations for both Lorentz-invariant and noninvariant phase space are presented.
Influence of the refractive index and dispersion of spectacle lens on its imaging properties
NASA Astrophysics Data System (ADS)
Miks, Antonin; Novak, Jiri; Novak, Pavel
2007-12-01
The paper shows an influence of the refractive index and dispersion of the spectacle lens on its imaging properties. Relations are presented for calculation of radii of curvature of anastigmatic spectacle lenses and their chromatic aberration. Moreover, the formulas are derived for calculation of the change of astigmatism of spectacle lens due to dispersion of spectacle lens material.
Sujit Banerjee
2005-12-15
Contaminants present in paper recycling mills can degrade product properties and can also lead to substantial downtime. Of these, adhesive material such as hot melts and pressure sensitive adhesives are especially troublesome. These are known as ÃÂ¢ÃÂÃÂ stickies ÃÂ¢ÃÂÃÂ and their handling and re- moval requires process equipment such as screens and cleaners as well as chemical additives. In the preceding phase of the project we demonstrated that firing an underwater spark in a tank of stock reduces the tack of the stickies and reduces their impact. The present phase was to demon- strate the technology in full-scale trials, address any issues that might arise, and commercialize the process. Trials were run at the Appleton papers mill in West Carrollton, OH, the Graphics Packag- ing mill at Kalamazoo, MI, Stora Enso mills at Duluth, MN, and Wisconsin Rapids, WI, and the Jackson Paper mill at Sylva, NC. It was shown that the sparker not only detackified stickies but also increased the efficiency of their removal by centrifugal cleaners, improved the effectiveness of dissolved air flotation, and increased the efficiency of flotation deinking. It is estimated that the sparker improves the efficiency of hydrocyclone cleaner, deinking cells and dissolved and dispersed air flotation units by 10-15%. This translates to a corresponding energy benefit in operating these units. The technology has been licensed to Eka Chemicals, a division of Akzo Nobel.
Wideband dispersion reversal of lamb waves.
Xu, Kailiang; Ta, Dean; Hu, Bo; Laugier, Pascal; Wang, Weiqi
2014-06-01
Ultrasonic guided waves have been widely acknowledged as the most promising tools for nondestructive evaluation (NDE). However, because of the multimodal dispersion, the received guided modes usually overlap in both time and frequency, which highly complicates the mode separation and signal interpretation. The time-reversal technique can be used to realize the time recompression of the Lamb waves, but because of the multimode excitation and reception, it still may not be able to remove the mode ambiguity and achieve the pure pulse compression. With the goal of overcoming this limitation, a wideband dispersion reversal (WDR) technique is proposed. The technique makes use of a priori knowledge of the guided dispersion characteristics to synthesize the corresponding dispersion reversal excitations, which are able to selectively excite the self-compensation pure mode pulse. The theoretical basis of the technique is thoroughly described. A two-dimensional finite-difference time-domain (2D-FDTD) method is employed to simulate the propagation of two fundamental Lamb modes, the symmetrical S0 and antisymmetrical A0 modes in a steel plate. The proposed method was verified through experimental investigation. Finally, the advantages and potential applications of the method are briefly discussed.
Dispersal dynamics in food webs.
Melián, Carlos J; Křivan, Vlastimil; Altermatt, Florian; Starý, Petr; Pellissier, Loïc; De Laender, Frederik
2015-02-01
Studies of food webs suggest that limited nonrandom dispersal can play an important role in structuring food webs. It is not clear, however, whether density-dependent dispersal fits empirical patterns of food webs better than density-independent dispersal. Here, we study a spatially distributed food web, using a series of population-dispersal models that contrast density-independent and density-dependent dispersal in landscapes where sampled sites are either homogeneously or heterogeneously distributed. These models are fitted to empirical data, allowing us to infer mechanisms that are consistent with the data. Our results show that models with density-dependent dispersal fit the α, β, and γ tritrophic richness observed in empirical data best. Our results also show that density-dependent dispersal leads to a critical distance threshold beyond which site similarity (i.e., β tritrophic richness) starts to decrease much faster. Such a threshold can also be detected in the empirical data. In contrast, models with density-independent dispersal do not predict such a threshold. Moreover, preferential dispersal from more centrally located sites to peripheral sites does not provide a better fit to empirical data when compared with symmetric dispersal between sites. Our results suggest that nonrandom dispersal in heterogeneous landscapes is an important driver that shapes local and regional richness (i.e., α and γ tritrophic richness, respectively) as well as the distance-decay relationship (i.e., β tritrophic richness) in food webs.
NASA Astrophysics Data System (ADS)
Quiroga, J. E.; Mujica, L.; Villamizar, R.; Ruiz, M.; Camacho, J.
2017-05-01
This paper presents an approach to calculate dispersion curves for homogeneous and isotropic plates subject to stress, via Semi-Analytical Finite Element and the Effective Elastic Constants, since stresses in the waveguide modify the phase and group velocities of the lamb waves. In the proposed methodology an isotropic specimen subjected to anisotropic loading is emulated by proposing an equivalent stress-free anisotropic specimen. This approximation facilitates determining the dispersion curves by using the well-studied numerical solution for the stress-free cases. The lamb wave in anisotropic materials can be studied by means of the Effective Elastic Constants, which reduces the complexity of the numerical implementation. Finally, numerical data available in literature were used to validate the proposed methodology, where it could be demonstrated its effectiveness as approximated method.
Bauzá, Antonio; Frontera, Antonio
2015-10-05
In this study several σ- and π-hole complexes between IF and pnicogen ZO2 F (Z=P, As), chalcogen ChO3 (Ch=S, Se) and tetrel TrOF2 (Tr=Si, Ge) -bearing compounds were optimized at the RI-MP2/def2-TZVPD level of theory. All complexes were characterized as minima by frequency analysis calculations. In addition, a comparative CCSD(T) and DFT (with and without dispersion correction) study using the BP86, B3LYP and M06-2X method was done in order to analyze the role of dispersion effects in the σ-/π-hole binding. Finally the Bader's AIM analysis of several complexes was performed to further characterize the interactions discussed herein.
Localized overlap algorithm for unexpanded dispersion energies
NASA Astrophysics Data System (ADS)
Rob, Fazle; Misquitta, Alston J.; Podeszwa, Rafał; Szalewicz, Krzysztof
2014-03-01
First-principles-based, linearly scaling algorithm has been developed for calculations of dispersion energies from frequency-dependent density susceptibility (FDDS) functions with account of charge-overlap effects. The transition densities in FDDSs are fitted by a set of auxiliary atom-centered functions. The terms in the dispersion energy expression involving products of such functions are computed using either the unexpanded (exact) formula or from inexpensive asymptotic expansions, depending on the location of these functions relative to the dimer configuration. This approach leads to significant savings of computational resources. In particular, for a dimer consisting of two elongated monomers with 81 atoms each in a head-to-head configuration, the most favorable case for our algorithm, a 43-fold speedup has been achieved while the approximate dispersion energy differs by less than 1% from that computed using the standard unexpanded approach. In contrast, the dispersion energy computed from the distributed asymptotic expansion differs by dozens of percent in the van der Waals minimum region. A further increase of the size of each monomer would result in only small increased costs since all the additional terms would be computed from the asymptotic expansion.
Zero Temperature Hope Calculations
Rozsnyai, B F
2002-07-26
The primary purpose of the HOPE code is to calculate opacities over a wide temperature and density range. It can also produce equation of state (EOS) data. Since the experimental data at the high temperature region are scarce, comparisons of predictions with the ample zero temperature data provide a valuable physics check of the code. In this report we show a selected few examples across the periodic table. Below we give a brief general information about the physics of the HOPE code. The HOPE code is an ''average atom'' (AA) Dirac-Slater self-consistent code. The AA label in the case of finite temperature means that the one-electron levels are populated according to the Fermi statistics, at zero temperature it means that the ''aufbau'' principle works, i.e. no a priory electronic configuration is set, although it can be done. As such, it is a one-particle model (any Hartree-Fock model is a one particle model). The code is an ''ion-sphere'' model, meaning that the atom under investigation is neutral within the ion-sphere radius. Furthermore, the boundary conditions for the bound states are also set at the ion-sphere radius, which distinguishes the code from the INFERNO, OPAL and STA codes. Once the self-consistent AA state is obtained, the code proceeds to generate many-electron configurations and proceeds to calculate photoabsorption in the ''detailed configuration accounting'' (DCA) scheme. However, this last feature is meaningless at zero temperature. There is one important feature in the HOPE code which should be noted; any self-consistent model is self-consistent in the space of the occupied orbitals. The unoccupied orbitals, where electrons are lifted via photoexcitation, are unphysical. The rigorous way to deal with that problem is to carry out complete self-consistent calculations both in the initial and final states connecting photoexcitations, an enormous computational task. The Amaldi correction is an attempt to address this problem by distorting the
Dispersion Interactions in Water Clusters.
Guidez, Emilie B; Gordon, Mark S
2017-05-18
The importance of dispersion forces in water clusters is examined using the effective fragment potential (EFP) method. Since the original EFP1 water potential does not include dispersion, a dispersion correction to the EFP1 potential (EFP1-D) was derived and implemented. The addition of dispersion to the EFP1 potential yields improved geometries for water clusters that contain 2-6 molecules. The importance of the odd E7 contribution to the dispersion energy is investigated. The E7 dispersion term is repulsive for all of the water clusters studied here and can have a magnitude that is as large as half of the E6 value. The E7 term therefore contributes to larger intermolecular distances for the optimized geometries. Inclusion of many-body effects and/or higher order terms may be necessary to further improve dispersion energies and optimized geometries.
QT dispersion and P wave dispersion in patients with fibromyalgia
Yolbaş, Servet; Yıldırım, Ahmet; Düzenci, Deccane; Karakaya, Bülent; Dağlı, Mustafa Necati; Koca, Süleyman Serdar
2016-01-01
Objective Fibromyalgia (FM) is a chronic disease characterized by widespread pain. Somatic complaints associated with the cardiovascular system, such as chest pain and palpitations, are frequently seen in FM patients. P and QT dispersions are simple and inexpensive measurements reflecting the regional heterogeneity of atrial and ventricular repolarization, respectively. QT dispersion can cause serious ventricular arrhythmias. The aim of the present study was to evaluate QT dispersion and P wave dispersion in patients with FM. Material and Methods The study involved 48 FM patients who fulfilled the established criteria and 32 healthy controls (HC). A standard 12-lead electrocardiogram was performed on all participants. QT dispersion was defined as the difference between the longest and the shortest QT intervals. Similarly, the differences between the shortest and longest P waves were defined as P wave dispersion. Results The QT dispersion and corrected QT dispersion were shorter in the FM group compared with the HC group (p<0.001 for both). In terms of the P wave dispersion value, there was no significant difference between the FM and HC groups (p=0.088). Conclusion Longer QT and P wave dispersions are not problems in patients with FM. Therefore, it may be concluded that fibromyalgia does not include an increased risk of atrial and/or ventricular arrhythmias. PMID:28149660
QT dispersion and P wave dispersion in patients with fibromyalgia.
Yolbaş, Servet; Yıldırım, Ahmet; Düzenci, Deccane; Karakaya, Bülent; Dağlı, Mustafa Necati; Koca, Süleyman Serdar
2016-12-01
Fibromyalgia (FM) is a chronic disease characterized by widespread pain. Somatic complaints associated with the cardiovascular system, such as chest pain and palpitations, are frequently seen in FM patients. P and QT dispersions are simple and inexpensive measurements reflecting the regional heterogeneity of atrial and ventricular repolarization, respectively. QT dispersion can cause serious ventricular arrhythmias. The aim of the present study was to evaluate QT dispersion and P wave dispersion in patients with FM. The study involved 48 FM patients who fulfilled the established criteria and 32 healthy controls (HC). A standard 12-lead electrocardiogram was performed on all participants. QT dispersion was defined as the difference between the longest and the shortest QT intervals. Similarly, the differences between the shortest and longest P waves were defined as P wave dispersion. The QT dispersion and corrected QT dispersion were shorter in the FM group compared with the HC group (p<0.001 for both). In terms of the P wave dispersion value, there was no significant difference between the FM and HC groups (p=0.088). Longer QT and P wave dispersions are not problems in patients with FM. Therefore, it may be concluded that fibromyalgia does not include an increased risk of atrial and/or ventricular arrhythmias.
[A two-dimensional double dispersed hadamard transform spectrometer].
Liu, Jia; Shi, Lei; Li, Kai; Zheng, Xin-Wen; Zeng, Li-Bo; Wu, Qiong-Shui
2012-06-01
A kind of two-dimensional hadamard transform spectrometer was developed. A grating was used for chromatic dispersion of orders and a prism was used for spectral dispersion. Quite different from traditional CCD detection method, a digital micromirror device (DMD) was applied for optical modulation, and a simple point detector was used as the sensor. Compared with traditional two-dimensional spectrometer, it has the advantage of high resolution and signal-noise-ratio, which was proved by theoretical calculation and computer simulation.
Hybrid functional calculation of electronic and phonon structure of BaSnO{sub 3}
Kim, Bog G.; Jo, J.Y.; Cheong, S.W.
2013-01-15
Barium stannate, BaSnO{sub 3} (BSO), with a cubic perovskite structure, has been highlighted as a promising host material for the next generation transparent oxide electrodes. This study examined theoretically the electronic structure and phonon structure of BSO using hybrid density functional theory based on the HSE06 functional. The electronic structure results of BSO were corrected by extending the phonon calculations based on the hybrid density functional. The fundamental thermal properties were also predicted based on a hybrid functional calculation. Overall, a detailed understanding of the electronic structure, phonon modes and phonon dispersion of BSO will provide a theoretical starting-point for engineering applications of this material. - Graphical Abstract: (a) Crystal structure of BaSnO{sub 3}. The center ball is Ba and small (red) ball on edge is oxygen and SnO{sub 6} octahedrons are plotted as polyhedron. (b) Electronic band structure along the high symmetry point in the Brillouin zone using the HSE06 hybrid functional. (c) The phonon dispersion curve calculated using the HSE06 hybrid functional (d) Zone center lowest energy F{sub 1u} phonon mode. Highlights: Black-Right-Pointing-Pointer We report the full hybrid functional calculation of not only the electronic structure but also the phonon structure for BaSnO{sub 3}. Black-Right-Pointing-Pointer The band gap calculation of HSE06 revealed an indirect gap with 2.48 eV. Black-Right-Pointing-Pointer The effective mass at the conduction band minimum and valence band maximum was calculated. Black-Right-Pointing-Pointer In addition, the phonon structure of BSO was calculated using the HSE06 functional. Black-Right-Pointing-Pointer Finally, the heat capacity was calculated and compared with the recent experimental result.
AIR DISPERSION MODELING AT THE WASTE ISOLATION PILOT PLANT
Rucker, D.F.
2000-08-01
One concern at the Waste Isolation Pilot Plant (WIPP) is the amount of alpha-emitting radionuclides or hazardous chemicals that can become airborne at the facility and reach the Exclusive Use Area boundary as the result of a release from the Waste Handling Building (WHB) or from the underground during waste emplacement operations. The WIPP Safety Analysis Report (SAR), WIPP RCRA Permit, and WIPP Emergency Preparedness Hazards Assessments include air dispersion calculations to address this issue. Meteorological conditions at the WIPP facility will dictate direction, speed, and dilution of a contaminant plume of respirable material due to chronic releases or during an accident. Due to the paucity of meteorological information at the WIPP site prior to September 1996, the Department of Energy (DOE) reports had to rely largely on unqualified climatic data from the site and neighboring Carlsbad, which is situated approximately 40 km (26 miles) to the west of the site. This report examines the validity of the DOE air dispersion calculations using new meteorological data measured and collected at the WIPP site since September 1996. The air dispersion calculations in this report include both chronic and acute releases. Chronic release calculations were conducted with the EPA-approved code, CAP88PC and the calculations showed that in order for a violation of 40 CFR61 (NESHAPS) to occur, approximately 15 mCi/yr of 239Pu would have to be released from the exhaust stack or from the WHB. This is an extremely high value. Hence, it is unlikely that NESHAPS would be violated. A site-specific air dispersion coefficient was evaluated for comparison with that used in acute dose calculations. The calculations presented in Section 3.2 and 3.3 show that one could expect a slightly less dispersive plume (larger air dispersion coefficient) given greater confidence in the meteorological data, i.e. 95% worst case meteorological conditions. Calculations show that dispersion will decrease
Refractive phenomena in the shock wave dispersion with variable gradients
Markhotok, A.; Popovic, S.
2010-06-15
In this article the refraction effects in the weak shock wave (SW) dispersion on an interface with a temperature variation between two mediums are described. In the case of a finite-gradient boundary, the effect of the SW dispersion is remarkably stronger than in the case of a step change in parameters. In the former case the vertical component of velocity for the transmitted SW (the refraction effect) must be taken into account. Results of comparative calculations based on the two-dimensional model corrected for the refraction effect show significant differences in the shapes of the dispersed SW fronts.
Probing nonlocal tracer dispersion in flows through random porous media
NASA Astrophysics Data System (ADS)
Ding, A.; Candela, D.
1996-07-01
Pulsed-field-gradient NMR is used to measure tracer dispersion in flow through a porous medium. Data are presented for water flowing through packs of plastic beads at Péclet numbers 0<=Pe<=150, using strong, fast gradient pulses to measure pore-scale molecular displacements. The transition at Pe~1 from tortuosity-reduced diffusion to dispersion is observed. The data are Fourier transformed to provide a measurement of the wave-number- and frequency-dependent nonlocal dispersion coefficient. The experimental results compare favorably with an approximate calculation of Koch and Brady [J. Fluid Mech. 180, 387 (1987); Chem. Eng. Sci. 42, 1377 (1987)].
Black hole radiation with modified dispersion relation in tunneling paradigm: Static frame
NASA Astrophysics Data System (ADS)
Tao, Jun; Wang, Peng; Yang, Haitang
2017-09-01
To study possible deviations from the Hawking's prediction, we assume that the dispersion relations of matter fields are modified at high energies and use the Hamilton-Jacobi method to investigate the corresponding effects on the Hawking radiation in this paper. The preferred frame is the static frame of the black hole. The dispersion relation adopted agrees with the relativistic one at low energies but is modified near the Planck mass mp. We calculate the corrections to the Hawking temperature for massive and charged particles to O (mp-2) and massless and neutral particles to all orders. Our results suggest that the thermal spectrum of radiations near horizon is robust, e.g. corrections to the Hawking temperature are suppressed by mp. After the spectrum of radiations near the horizon is obtained, we use the brick wall model to compute the thermal entropy of a massless scalar field near the horizon of a 4D spherically symmetric black hole. We find that the subleading logarithmic term of the entropy does not depend on how the dispersion relations of matter fields are modified. Finally, the luminosities of black holes are computed by using the geometric optics approximation.
Dispersion-enhanced phase noise effects on reduced-guard-interval CO-OFDM transmission.
Zhuge, Qunbi; Chen, Chen; Plant, David V
2011-02-28
Unlike conventional CO-OFDM systems, we show in this paper that reduced-guard-interval (RGI) CO-OFDM systems experience subcarrier-dependent phase noise (PN) from the local oscillator laser. This phenomenon manifests in RGI-CO-COFM systems because the chromatic dispersion (CD) induced walk-off becomes comparable to the OFDM symbol length. We term this phenomenon the dispersion enhanced PN (DEPN). In this work an analytical study of the impact of DEPN on CO-OFDM transmission is conducted. We develop a system-level analytical model and calculate the variance of the dispersion-induced subcarrier-dependent phase rotation term (PRT) using two different distribution patterns of pilot subcarriers (PS). Moreover, we present a bit error rate (BER) estimator to quantify the system performance degradation due to PRT. Numerical simulations are then performed to verify the analytical model. Finally, we propose a grouped maximum-likelihood (GML) phase estimation approach to mitigate the DEPN impairment, and demonstrate a 0.7-1.7 dB SNR improvement at BER=10⁻³ for typical 100 Gb/s RGI CO-OFDM systems.
Snall, T; Fogelqvist, J; Ribeiro, P J; Lascoux, M
2004-08-01
Three different approaches were used to assess the kinship structure of two epiphytic bryophytes, Orthotrichum speciosum and O. obtusifolium, that have different dispersal strategies. The two species were sampled in a 200 ha landscape where species occurrence and host trees had been mapped previously. Local environmental conditions at sampled trees were recorded and kinship between individuals was calculated based on amplified fragment length polymorphism (AFLP)-marker data. We did not detect any association between AFLP-markers and investigated environmental conditions. In both species, significant kinship coefficients were found between individuals up to 300-350 m apart which shows that both species have a restricted dispersal range. The spatial kinship structure was detected with both autocorrelation analysis and generalized additive models (GAMs), but linear regression failed to detect any structure in O. speciosum. Although the dioecious O. obtusifolium is currently the more common species it may, none the less, due to its restricted dispersal range and reproduction mode, become threatened in the future by current silvicultural practices which enhance the distance between host trees and decrease their life span. Finally, GAMs seem most appropriate for analysing spatial genetic structure because the effects of local environmental conditions and spatial structure can be analysed simultaneously, no assumption of a parametric form between kinship coefficient and distance is required, and spatial data resolution is not lost in the arbitrary choice of distance classes characterizing autocorrelation analysis.
Sánchez, C; Ortega, B; Wei, J L; Tang, J; Capmany, J
2013-03-25
We provide an analytical study on the propagation effects of a directly modulated OOFDM signal through a dispersive fiber and subsequent photo-detection. The analysis includes the effects of the laser operation point and the interplay between chromatic dispersion and laser chirp. The final expression allows to understand the physics behind the transmission of a multi-carrier signal in the presence of residual frequency modulation and the description of the induced intermodulation distortion gives us a detailed insight into the diferent intermodulation products which impair the recovered signal at the receiver-end side. Numerical comparisons between transmission simulations results and those provided by evaluating the expression obtained are carried out for different laser operation points. Results obtained by changing the fiber length, laser parameters and using single mode fiber with negative and positive dispersion are calculated in order to demonstrate the validity and versatility of the theory provided in this paper. Therefore, a novel analytical formulation is presented as a versatile tool for the description and study of IM/DD OOFDM systems with variable design parameters.
Slow light in mass-produced, dispersion-engineered photonic crystal ring resonators.
McGarvey-Lechable, Kathleen; Hamidfar, Tabassom; Patel, David; Xu, Luhua; Plant, David V; Bianucci, Pablo
2017-02-20
We present experimental results of photonic crystal ring resonators (PhCRRs) fabricated on the CMOS-compatible, silicon-on-insulator platform via 193-nm deep-UV lithography. Our dispersion-engineering design approach is compared to experimental results, showing very good agreement between theory and measurements. Specifically, we report a mean photonic band-edge wavelength of 1546.2 ± 5.8 nm, a 0.2% variation from our targeted band-edge wavelength of 1550 nm. Methods for the direct calculation of the experimental, discrete dispersion relation and extraction of intrinsic quality factors for a highly-dispersive resonator are discussed. A maximum intrinsic quality factor of ≈83,800 is reported, substantiating our design method and indicating that high-throughput optical lithography is a viable candidate for PhCRR fabrication. Finally, through comparison of the mean intrinsic quality and slowdown factors of the PhCRRs and standard ring resonators, we present evidence of an increase in light-matter interaction strength with simultaneous preservation of microcavity lifetimes.
Viscosity scaling in concentrated dispersions and its impact on colloidal aggregation.
Nicoud, Lucrèce; Lattuada, Marco; Lazzari, Stefano; Morbidelli, Massimo
2015-10-07
Gaining fundamental knowledge about diffusion in crowded environments is of great relevance in a variety of research fields, including reaction engineering, biology, pharmacy and colloid science. In this work, we determine the effective viscosity experienced by a spherical tracer particle immersed in a concentrated colloidal dispersion by means of Brownian dynamics simulations. We characterize how the effective viscosity increases from the solvent viscosity for small tracer particles to the macroscopic viscosity of the dispersion when large tracer particles are employed. Our results show that the crossover between these two regimes occurs at a tracer particle size comparable to the host particle size. In addition, it is found that data points obtained in various host dispersions collapse on one master curve when the normalized effective viscosity is plotted as a function of the ratio between the tracer particle size and the mean host particle size. In particular, this master curve was obtained by varying the volume fraction, the average size and the polydispersity of the host particle distribution. Finally, we extend these results to determine the size dependent effective viscosity experienced by a fractal cluster in a concentrated colloidal system undergoing aggregation. We include this scaling of the effective viscosity in classical aggregation kernels, and we quantify its impact on the kinetics of aggregate growth as well as on the shape of the aggregate distribution by means of population balance equation calculations.
Increasing accuracy of dispersal kernels in grid-based population models
Slone, D.H.
2011-01-01
Dispersal kernels in grid-based population models specify the proportion, distance and direction of movements within the model landscape. Spatial errors in dispersal kernels can have large compounding effects on model accuracy. Circular Gaussian and Laplacian dispersal kernels at a range of spatial resolutions were investigated, and methods for minimizing errors caused by the discretizing process were explored. Kernels of progressively smaller sizes relative to the landscape grid size were calculated using cell-integration and cell-center methods. These kernels were convolved repeatedly, and the final distribution was compared with a reference analytical solution. For large Gaussian kernels (σ > 10 cells), the total kernel error was <10 &sup-11; compared to analytical results. Using an invasion model that tracked the time a population took to reach a defined goal, the discrete model results were comparable to the analytical reference. With Gaussian kernels that had σ ≤ 0.12 using the cell integration method, or σ ≤ 0.22 using the cell center method, the kernel error was greater than 10%, which resulted in invasion times that were orders of magnitude different than theoretical results. A goal-seeking routine was developed to adjust the kernels to minimize overall error. With this, corrections for small kernels were found that decreased overall kernel error to <10-11 and invasion time error to <5%.
Quantum optical rotatory dispersion
Tischler, Nora; Krenn, Mario; Fickler, Robert; Vidal, Xavier; Zeilinger, Anton; Molina-Terriza, Gabriel
2016-01-01
The phenomenon of molecular optical activity manifests itself as the rotation of the plane of linear polarization when light passes through chiral media. Measurements of optical activity and its wavelength dependence, that is, optical rotatory dispersion, can reveal information about intricate properties of molecules, such as the three-dimensional arrangement of atoms comprising a molecule. Given a limited probe power, quantum metrology offers the possibility of outperforming classical measurements. This has particular appeal when samples may be damaged by high power, which is a potential concern for chiroptical studies. We present the first experiment in which multiwavelength polarization-entangled photon pairs are used to measure the optical activity and optical rotatory dispersion exhibited by a solution of chiral molecules. Our work paves the way for quantum-enhanced measurements of chirality, with potential applications in chemistry, biology, materials science, and the pharmaceutical industry. The scheme that we use for probing wavelength dependence not only allows one to surpass the information extracted per photon in a classical measurement but also can be used for more general differential measurements. PMID:27713928
Quantum optical rotatory dispersion.
Tischler, Nora; Krenn, Mario; Fickler, Robert; Vidal, Xavier; Zeilinger, Anton; Molina-Terriza, Gabriel
2016-10-01
The phenomenon of molecular optical activity manifests itself as the rotation of the plane of linear polarization when light passes through chiral media. Measurements of optical activity and its wavelength dependence, that is, optical rotatory dispersion, can reveal information about intricate properties of molecules, such as the three-dimensional arrangement of atoms comprising a molecule. Given a limited probe power, quantum metrology offers the possibility of outperforming classical measurements. This has particular appeal when samples may be damaged by high power, which is a potential concern for chiroptical studies. We present the first experiment in which multiwavelength polarization-entangled photon pairs are used to measure the optical activity and optical rotatory dispersion exhibited by a solution of chiral molecules. Our work paves the way for quantum-enhanced measurements of chirality, with potential applications in chemistry, biology, materials science, and the pharmaceutical industry. The scheme that we use for probing wavelength dependence not only allows one to surpass the information extracted per photon in a classical measurement but also can be used for more general differential measurements.
Gyrotactic swimmer dispersion in pipe flow: testing the theory
NASA Astrophysics Data System (ADS)
Croze, Ottavio A.; Bearon, Rachel N.; Bees, Martin A.
2017-04-01
Suspensions of microswimmers are a rich source of fascinating new fluid mechanics. Recently we predicted the active pipe flow dispersion of gyrotactic microalgae, whose orientation is biased by gravity and flow shear. Analytical theory predicts that these active swimmers disperse in a markedly distinct manner from passive tracers (Taylor dispersion). Dispersing swimmers display nonzero drift and effective diffusivity that is non-monotonic with P$\\'e$clet number. Such predictions agree with numerical simulations, but hitherto have not been tested experimentally. Here, to facilitate comparison, we obtain new solutions of the axial dispersion theory accounting both for swimmer negative buoyancy and a local nonlinear response of swimmers to shear, provided by two alternative microscopic stochastic descriptions. We obtain new predictions for suspensions of the model swimming alga $\\it Dunaliella\\,salina$, whose motility and buoyant mass we parametrise using tracking video microscopy. We then present a new experimental method to measure gyrotactic dispersion using fluorescently stained $\\it D. salina$ and provide a preliminary comparison with predictions of a nonzero drift above the mean flow for each microscopic stochastic description. Finally, we propose further experiments for a full experimental characterisation of gyrotactic dispersion measures and discuss implications of our results for algal dispersion in industrial photobioreactors.
Broadening our approaches to studying dispersal in raptors
Morrison, J.L.; Wood, P.B.
2009-01-01
Dispersal is a behavioral process having consequences for individual fitness and population dynamics. Recent advances in technology have spawned new theoretical examinations and empirical studies of the dispersal process in birds, providing opportunities for examining how this information may be applied to studies of the dispersal process in raptors. Many raptors are the focus of conservation efforts; thus, reliable data on all aspects of a species' population dynamics, including dispersal distances, movement rates, and mortality rates of dispersers, are required for population viability analyses that are increasingly used to inform management. Here, we address emerging issues and novel approaches used in the study of avian dispersal, and provide suggestions to consider when developing and implementing studies of dispersal in raptors. Clarifying study objectives is essential for selection of an appropriate methodology and sample size needed to obtain accurate estimates of movement distances and rates. Identifying an appropriate study-area size will allow investigators to avoid underestimating population connectivity and important population parameters. Because nomadic individuals of some species use temporary settling areas or home ranges before breeding, identification of these areas is critical for conservation efforts focusing on habitats other than breeding sites. Study designs for investigating raptor dispersal also should include analysis of environmental and social factors influencing dispersal, to improve our understanding of condition-dependent dispersal strategies. Finally, we propose a terminology for use in describing the variety of movements associated with dispersal behavior in raptors, and we suggest this terminology could be used consistently to facilitate comparisons among studies. ?? 2009 The Raptor Research Foundation, Inc.
Density Wave Dispersion Behavior in Saturn's A Ring
NASA Astrophysics Data System (ADS)
Spilker, L. J.
1999-09-01
Wave dispersion profiles were generated for approximately 30 spiral density waves observed in the Voyager photopolarimeter stellar occultation data of Saturn's A ring. The majority of these density waves disperse linearly over the bulk of the wave. Some of the strongest density waves, however, do not begin to disperse linearly until well past the resonance location. An algorithm based on an autoregressive power spectral technique, Burg 2, generated the dispersion profiles. The dispersion behavior was then used to calculate local surface mass densities in the vicinity of each wave. Surface mass densities for the strongest density waves, when calculated using the region where the waves begin to disperse linearly, are in good agreement with surface mass densities calculated for nearby, weaker density waves. Some of the Prometheus density waves external to the Encke gap exhibit unusual spectral structure in the first part of the wave as the frequency increases by 60-70 radial interval. The nearby, related second-order resonances may produce density waves that distort the beginning of the first-order density waves. The separation distance between these first- and second-order resonances is only 0.4 to 1.5 km in this region of the rings. When the early part of each wave is systematically omitted in the surface mass density estimates, lower surface mass densities result for all of these density waves. This work was done at JPL/Caltech under contract with NASA.
Dispersive internal long wave models
Camassa, R.; Choi, W.; Holm, D.D.; Levermore, C.D.; Lvov, Y.
1998-11-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). This work is a joint analytical and numerical study of internal dispersive water wave propagation in a stratified two-layer fluid, a problem that has important geophysical fluid dynamics applications. Two-layer models can capture the main density-dependent effects because they can support, unlike homogeneous fluid models, the observed large amplitude internal wave motion at the interface between layers. The authors have derived new model equations using multiscale asymptotics in combination with the method they have developed for vertically averaging velocity and vorticity fields across fluid layers within the original Euler equations. The authors have found new exact conservation laws for layer-mean vorticity that have exact counterparts in the models. With this approach, they have derived a class of equations that retain the full nonlinearity of the original Euler equations while preserving the simplicity of known weakly nonlinear models, thus providing the theoretical foundation for experimental results so far unexplained.
NASA Technical Reports Server (NTRS)
Ahrens, Thomas J.
2001-01-01
We examined the von Mises and Mohr-Coulomb strength models with and without damage effects and developed a model for dilatancy. The models and results are given in O'Keefe et al. We found that by incorporating damage into the models that we could in a single integrated impact calculation, starting with the bolide in the atmosphere produce final crater profiles having the major features found in the field measurements. These features included a central uplift, an inner ring, circular terracing and faulting. This was accomplished with undamaged surface strengths of approximately 0.1 GPa and at depth strengths of approximately 1.0 GPa. We modeled the damage in geologic materials using a phenomenological approach, which coupled the Johnson-Cook damage model with the CTH code geologic strength model. The objective here was not to determine the distribution of fragment sizes, but rather to determine the effect of brecciated and comminuted material on the crater evolution, fault production, ejecta distribution, and final crater morphology.
On-Site was developed to provide modelers and model reviewers with prepackaged tools ("calculators") for performing site assessment calculations. The philosophy behind OnSite is that the convenience of the prepackaged calculators helps provide consistency for simple calculations,...
On-Site was developed to provide modelers and model reviewers with prepackaged tools ("calculators") for performing site assessment calculations. The philosophy behind OnSite is that the convenience of the prepackaged calculators helps provide consistency for simple calculations,...
Chirped Laser Dispersion Spectroscopy: Fundamentals and Applications
NASA Astrophysics Data System (ADS)
Plant, Genevieve B.
The subject of this thesis is the fundamentals, implementation, and applications of Chirped Laser Dispersion Spectroscopy (CLaDS), an alternative dispersion spectroscopy technique that aims to overcome some limitations of absorption-based sensing. CLaDS preserves many of the benefits of dispersion sensing, namely baseline-free operation, immunity to received intensity, and linearity with sample concentration, and is fairly easy to implement without the need for stabilized interferometers, mode-locked lasers, and complex optical configurations required by many other dispersion-based sensors. First an introduction to CLaDS and a derivation of the spectroscopic signals are provided, highlighting fundamental similarities and differences to absorption-based sensing. Next the fundamental limit of CLaDS is investigated through analysis of the shot-noise limited performance under ideal operating conditions. This in turn allows for a theoretical and direct comparison to the shot-noise-limited performance of direct laser absorption spectroscopy (DLAS). This investigation shows that when full spectral scan fitting of realistic unknown parameters for each technique is used, both techniques demonstrate the same efficiency of parameter extraction. Following this theoretical investigation of ideal CLaDS performance, the technical details, methods of implementation, and component-introduced limitations of real-world CLaDS systems are discussed. Also included is a discussion of the first demonstration of an optical heterodyne enhanced CLaDS technique (HE-CLaDS). To overcome some of the technical limitations imposed by system instability, a modulation based technique (CM-CLaDS) was developed; the theory, optimization and noise characteristics of which are detailed. Finally, several applications of CLaDS are provided. These include atmospheric sensing, distributed sensor networks, and fiber dispersion characterization, all of which aim at demonstrating the technical advantages of the
Dispersion analysis of velocity and attenuation in Berea sandstone
NASA Astrophysics Data System (ADS)
Winkler, Kenneth W.
1985-07-01
Ultrasonic velocity and attenuation measurements were made on dry, brine- and oil-saturated Berea sandstone and fused glass beads. The results for fused glass beads are consistent with the predictions of Biot theory. They indicate that as predicted, the Biot absorption/dispersion mechanism shifts to higher frequencies as the fluid viscosity increases. Similar data for Berea sandstone are not consistent with Biot theory, since observed velocities are generally higher than predicted. Using the Biot theory, we calculate low- and high-frequency velocities for the liquid-saturated samples. "Biot dispersion" is then defined as the percent difference between the low- and high-frequency limits. "Apparent dispersion" is defined as the percent difference between the measured ultrasonic velocity and the low-frequency Biot limit. Comparison of these two measures of dispersion gives insight into the presence of a non-Biot absorption/dispersion mechanism. Whenever the apparent dispersion is larger than the Biot dispersion, the extra dispersion is interpreted as being caused by a local flow relaxation. To be consistent with attenuation data, this relaxation must be distributed over at least five to six decades in frequency.
Air parcel trajectory dispersion near the tropical tropopause
NASA Astrophysics Data System (ADS)
Bergman, John W.; Jensen, Eric J.; Pfister, Leonhard; Bui, Thaopaul V.
2016-04-01
Dispersion of backward air parcel trajectories that are initially tightly grouped near the tropical tropopause is examined using three ensemble approaches: "RANWIND," in which different ensemble members use identical resolved wind fluctuations but different realizations of stochastic, multifractal simulations of unresolved winds; "PERTLOC," in which members use identical resolved wind fields but initial locations are perturbed 2° in latitude and longitude; and a multimodel ensemble ("MULTIMODEL") that uses identical initial conditions but different resolved wind fields and/or trajectory formulations. Comparisons among the approaches distinguish, to some degree, physical dispersion from that due to data uncertainty and the impacts of unresolved wind fluctuations from those of resolved variability. Dispersion rates are robust properties of trajectories near the tropical tropopause. Horizontal dispersion rates are typically ~3°/d, which is large enough to spread parcels throughout the tropics within typical tropical tropopause layer transport times (30-60 days) and underscores the importance of averaging large collections of trajectories to obtain reliable parcel source and pathway distributions. Vertical dispersion rates away from convection are ~2-3 hPa/d. Dispersion is primarily carried out by the resolved flow, and the RANWIND approach provides a plausible representation of actual trajectory dispersion rates, while PERTLOC provides a reasonable and inexpensive alternative to RANWIND. In contrast, dispersion from the MULTIMODEL calculations is important because it reflects systematic differences in resolved wind fields from different reanalysis data sets.
Configuration space Faddeev calculations
Payne, G.L.; Klink, W.H.; Polyzou, W.N.
1989-01-01
The detailed study of few-body systems provides one of the most effective means for studying nuclear physics at subnucleon distance scales. For few-body systems the model equations can be solved numerically with errors less than the experimental uncertainties. We have used such systems to investigate the size of relativistic effects, the role of meson-exchange currents, and the importance of quark degrees of freedom in the nucleus. Complete calculations for momentum-dependent potentials have been performed, and the properties of the three-body bound state for these potentials have been studied. Few-body calculations of the electromagnetic form factors of the deuteron and pion have been carried out using a front-form formulation of relativistic quantum mechanics. The decomposition of the operators transforming convariantly under the Poincare group into kinematical and dynamical parts has been studies. New ways for constructing interactions between particles, as well as interactions which lead to the production of particles, have been constructed in the context of a relativistic quantum mechanics. To compute scattering amplitudes in a nonperturbative way, classes of operators have been generated out of which the phase operator may be constructed. Finally, we have worked out procedures for computing Clebsch-Gordan and Racah coefficients on a computer, as well as giving procedures for dealing with the multiplicity problem.
The Lagrangian particle dispersion model FLEXPART version 10
NASA Astrophysics Data System (ADS)
Pisso, Ignacio; Sollum, Espen; Grythe, Henrik; Kristiansen, Nina; Cassiani, Massimo; Eckhardt, Sabine; Thompson, Rona; Groot Zwaaftnik, Christine; Evangeliou, Nikolaos; Hamburger, Thomas; Sodemann, Harald; Haimberger, Leopold; Henne, Stephan; Brunner, Dominik; Burkhart, John; Fouilloux, Anne; Fang, Xuekun; Phillip, Anne; Seibert, Petra; Stohl, Andreas
2017-04-01
The Lagrangian particle dispersion model FLEXPART was in its first original release in 1998 designed for calculating the long-range and mesoscale dispersion of air pollutants from point sources, such as after an accident in a nuclear power plant. The model has now evolved into a comprehensive tool for atmospheric transport modelling and analysis. Its application fields are extended to a range of atmospheric transport processes for both atmospheric gases and aerosols, e.g. greenhouse gases, short-lived climate forces like black carbon, volcanic ash and gases as well as studies of the water cycle. We present the newest release, FLEXPART version 10. Since the last publication fully describing FLEXPART (version 6.2), the model code has been parallelised in order to allow for the possibility to speed up computation. A new, more detailed gravitational settling parametrisation for aerosols was implemented, and the wet deposition scheme for aerosols has been heavily modified and updated to provide a more accurate representation of this physical process. In addition, an optional new turbulence scheme for the convective boundary layer is available, that considers the skewness in the vertical velocity distribution. Also, temporal variation and temperature dependence of the OH-reaction are included. Finally, user input files are updated to a more convenient and user-friendly namelist format, and the option to produce the output-files in netCDF-format instead of binary format is implemented. We present these new developments and show recent model applications. Moreover, we also introduce some tools for the preparation of the meteorological input data, as well as for the processing of FLEXPART output data.
Faraday Dispersion Functions of Galaxies
NASA Astrophysics Data System (ADS)
Ideguchi, Shinsuke; Tashiro, Yuichi; Akahori, Takuya; Takahashi, Keitaro; Ryu, Dongsu
2014-09-01
The Faraday dispersion function (FDF), which can be derived from an observed polarization spectrum by Faraday rotation measure synthesis, is a profile of polarized emissions as a function of Faraday depth. We study intrinsic FDFs along sight lines through face-on Milky Way like galaxies by means of a sophisticated galactic model incorporating three-dimensional MHD turbulence, and investigate how much information the FDF intrinsically contains. Since the FDF reflects distributions of thermal and cosmic-ray electrons as well as magnetic fields, it has been expected that the FDF could be a new probe to examine internal structures of galaxies. We, however, find that an intrinsic FDF along a sight line through a galaxy is very complicated, depending significantly on actual configurations of turbulence. We perform 800 realizations of turbulence and find no universal shape of the FDF even if we fix the global parameters of the model. We calculate the probability distribution functions of the standard deviation, skewness, and kurtosis of FDFs and compare them for models with different global parameters. Our models predict that the presence of vertical magnetic fields and the large-scale height of cosmic-ray electrons tend to make the standard deviation relatively large. In contrast, the differences in skewness and kurtosis are relatively less significant.
QT Dispersion after Thrombolytic Therapy
Oni Heris, Saeed; Rahimi, Behzad; Faridaalaee, Gholamreza; Hajahmadi, Mojgan; Sayyadi, Hojjat; Naghipour, Bahman
2014-01-01
Background: QT dispersion (QTd) is equal to longer QTc minus shorter QTc measured by 12-lead electrocardiogram (ECG). QTd reflects inhomogeneity in repolarization of ventricular myocardium and because of easy and fast measurement of QTd, it can be used to predict high-risk patients for dysrhythmia after Acute Myocardial Infarction (AMI). Objectives: This study aimed to assess the effect of thrombolytic therapy on QTd before and 1 hour and 4 days after beginning of thrombolytic therapy. Patients and Methods: The patients with chest pain and ST Elevated Myocardial Infarction (STEMI) that underwent thrombolytic therapy were enrolled into this study. Streptokinase was the thrombolytic agent in all the patients. Standard 12-lead (ECG) was evaluated before beginning of thrombolytic therapy (QTd 1) and 1 hour (QTd2) and 4 days (QTd3) after thrombolytic therapy. First, ECG was magnified × 10 for exact calculation of QT and QTd. After all, the variables were compared using one–way analysis of variance (ANOVA). Besides, P ≤ 0.05 was considered as statistically significant. Results: This study was conducted on 160 patients. The results revealed no significant differences among QTd 1, QTd 2, and QTd 3 (P > 0.05). At inferior AMI, however, a significant difference was observed among QTd1, QTd2, and QTd3 (P = 0.031). Conclusions: Thrombolytic therapy had no significant effects on QTd. Thus, thrombolytic therapy does not increase the risk of arrhythmia. PMID:25614860
General relationships between consumer dispersal, resource dispersal and metacommunity diversity.
Haegeman, Bart; Loreau, Michel
2014-02-01
One of the central questions of metacommunity theory is how dispersal of organisms affects species diversity. Here, we show that the diversity-dispersal relationship should not be studied in isolation of other abiotic and biotic flows in the metacommunity. We study a mechanistic metacommunity model in which consumer species compete for an abiotic or biotic resource. We consider both consumer species specialised to a habitat patch, and generalist species capable of using the resource throughout the metacommunity. We present analytical results for different limiting values of consumer dispersal and resource dispersal, and complement these results with simulations for intermediate dispersal values. Our analysis reveals generic patterns for the combined effects of consumer and resource dispersal on the metacommunity diversity of consumer species, and shows that hump-shaped relationships between local diversity and dispersal are not universal. Diversity-dispersal relationships can also be monotonically increasing or multimodal. Our work is a new step towards a general theory of metacommunity diversity integrating dispersal at multiple trophic levels. © 2013 John Wiley & Sons Ltd/CNRS.
SMED - Sulphur MEditerranean Dispersion
NASA Astrophysics Data System (ADS)
Salerno, Giuseppe G.; Sellitto, Pasquale; Corradini, Stefano; Di Sarra, Alcide Giorgio; Merucci, Luca; Caltabiano, Tommaso; La Spina, Alessandro
2016-04-01
Emissions of volcanic gases and particles can have profound impacts on terrestrial environment, atmospheric composition, climate forcing, and then on human health at various temporal and spatial scales. Volcanic emissions have been identified as one of the largest sources of uncertainty in our understanding of recent climate change trends. In particular, a primary role is acted by sulphur dioxide emission due to its conversion to volcanic sulphate aerosol via atmospheric oxidation. Aerosols may play a key role in the radiative budget and then in photochemistry and tropospheric composition. Mt. Etna is one of the most prodigious and persistent emitters of gasses and particles on Earth, accounting for about 10% of global average volcanic emission of CO2 and SO2. Its sulphur emissions stand for 0.7 × 106 t S/yr9 and then about 10 times bigger than anthropogenic sulphur emissions in the Mediterranean area. Centrepiece of the SMED project is to advance the understanding of volcanogenic sulphur dioxide and sulphate aerosol particles dispersion and radiative impact on the downwind Mediterranean region by an integrated approach between ground- and space-based observations and modelling. Research is addressed by exploring the potential relationship between proximal SO2 flux and aerosol measured remotely in the volcanic plume of Mt. Etna between 2000 and 2014 and distal aerosol ground-based measurements in Lampedusa, Greece, and Malta from AERONET network. Ground data are combined with satellite multispectral polar and geostationary imagers able to detect and retrieve volcanic ash and SO2. The high repetition time of SEVIRI (15 minutes) will ensure the potential opportunity to follow the entire evolution of the volcanic cloud, while, the higher spatial resolution of MODIS (1x1 km2), are exploited for investigating the probability to retrieve volcanic SO2 abundances from passive degassing. Ground and space observations are complemented with atmospheric Lagrangian model
Webb, Robert C.; Kamon, Teruki; Toback, David; Safonov, Alexei; Dutta, Bhaskar; Dimitri, Nanopoulos; Pope, Christopher; White, James
2013-11-18
Overview The High Energy Physics Group at Texas A&M University is submitting this final report for our grant number DE-FG02-95ER40917. This grant has supported our wide range of research activities for over a decade. The reports contained here summarize the latest work done by our research team. Task A (Collider Physics Program): CMS & CDF Profs. T. Kamon, A. Safonov, and D. Toback co-lead the Texas A&M (TAMU) collider program focusing on CDF and CMS experiments. Task D: Particle Physics Theory Our particle physics theory task is the combined effort of Profs. B. Dutta, D. Nanopoulos, and C. Pope. Task E (Underground Physics): LUX & NEXT Profs. R. Webb and J. White(deceased) lead the Xenon-based underground research program consisting of two main thrusts: the first, participation in the LUX two-phase xenon dark matter search experiment and the second, detector R&D primarily aimed at developing future detectors for underground physics (e.g. NEXT and LZ).
Johansen, Øistein; Reed, Mark; Bodsberg, Nils Rune
2015-04-15
This paper presents a new semi-empirical model for oil droplet size distributions generated by single breaking wave events. Empirical data was obtained from laboratory experiments with different crude oils at different stages of weathering. The paper starts with a review of the most commonly used model for natural dispersion, which is followed by a presentation of the laboratory study on oil droplet size distributions formed by breaking waves conducted by SINTEF on behalf of the NOAA/UNH Coastal Response Research Center. The next section presents the theoretical and empirical foundation for the new model. The model is based on dimensional analysis and contains two non-dimensional groups; the Weber and Reynolds number. The model was validated with data from a full scale experimental oil spill conducted in the Haltenbanken area offshore Norway in July 1982, as described in the last section of the paper.
The Evolution of Stellar Velocity Dispersion in Galaxy Mergers
NASA Astrophysics Data System (ADS)
Stickley, Nathaniel Roland
Stellar velocity dispersion is a key measurable quantity in galactic astronomy, yet its variation during galaxy mergers is not well-understood theoretically. Thus, while it is fairly common to measure velocity dispersion in galaxies that are in the process of merging, it is unclear how these measurements should be interpreted. In this dissertation, I provide a theoretical analysis of the evolution of stellar velocity dispersion during galaxy mergers. This is done using a set of numerical simulations. The temporal and directional evolution of velocity dispersion are examined in detail for a variety of merger simulations. I also examine the effects that dust attenuation and star formation have on measurements of velocity dispersion by creating detailed, Doppler broadened galaxy spectra. Velocity dispersions are measured from the synthetic spectra using the same technique that is employed for observations of real galaxies. I find that velocity dispersion increases rapidly and significantly as two galaxies pass through one another. As galaxies recede from a collision, their velocity dispersions rapidly decrease and nearly return to their pre-collision values. Velocity dispersion increases in all directions during collisions, however the enhancement is most significant along the collision axis. After the nuclei of the progenitor system coalesce, the velocity dispersion oscillates slightly of the coalesced system oscillated around its final equilibrium value for up to several dynamical timescales. I also find that the mean velocity dispersion of young stars tends to be lower than the velocity dispersion of the galaxy as a whole. The young stars become dynamically heated with time. In most cases, the youngest stars are found in dusty environments. Thus, dust preferen- tially obscures young stars, partially removing them from the flux-weighted velocity dispersion measurement. This causes flux-weighted velocity dispersion measurements to be elevated with respect to mass
Natal dispersal and senescence
Ronce, Ophélie; Clobert, Jean; Massot, Manuel
1998-01-01
The potential existence of natal dispersal strategies depending on parental age has been suggested by Hamilton and May [Hamilton, W. D. & May, R. M. (1977) Nature 269, 578–581] for organisms whose survival rates decline with age. When competition between parent and offspring is strong, any individual should disperse a smaller fraction of its offspring when it ages. Here, we verify their verbal prediction. First, we determine the evolutionarily stable dispersal strategy conditional on parental age, associated with a particular senescence curve. We show that such a conditional dispersal strategy should evolve independently from the genotype controlling the offspring dispersal behavior. Second, studying a population of common lizards, we provide empirical evidence of a relation between dispersal of female offspring and maternal senescence, in agreement with our theoretical predictions. PMID:9435238
Plasma confinement calculations for TIBER-II: Final report
Ibrahim, E.
1987-10-14
This paper compares the empirically based TIBER II design parameters against the reactor parameters of a tokamak based on a theoretical model of heat transport. The motivation behind this project is the following. The present TIBER-II design is based on an empirical scaling of confinement time tau/sub E/ known as Kaye-Goldston scaling. This empirical scaling is based on data from tokamak plasmas whose temperatures did not exceed a few keV, while the TIBER-II requires electron temperatures of 25 keV. The question, then, is whether the Kaye Goldston scaling is valid at temperatures above the range of empirical data. For this we must turn to theory. If a theoretical transport model is available that shows favorable correlation with the Kaye-Goldston scaling in the range of a few keV, then this scaling could be extrapolated to the 25 keV range required for TIBER-II. The project is divided into two parts. Part one of the project concerns the development of a transport model from plasma theory that has empirical support. Part two of the project consists of applying the transport model to the TIBER-II design. 8 refs., 3 tabs.
Kumar, Shobhit; Gupta, Satish K
2013-08-01
Oral bioavailability is the major problem when a poorly water-soluble active agent is delivered via oral route. To overcome such problems, solid dispersion systems have been demonstrated in literature to enhance the dissolution property of poorly water-soluble drugs. In the present review, the important aspects to be considered during preparation of solid dispersion systems viz., properties of polymer and preparation techniques of solid dispersion which affect the dissolution rate are discussed. Formulation and evaluation techniques for solid dispersions have been described. The final section of article highlights the recent patents and studies related to solid dispersion systems.
A Practical Map-Analysis Tool for Detecting Potential Dispersal Corridors
Hargrove, William Walter; Hoffman, Forrest M; Efroymson, Rebecca Ann
2005-01-01
We describe the Pathway Analysis Through Habitat (PATH) tool, which can predict the location of potential corridors of animal movement between patches of habitat within any map. The algorithm works by launching virtual entities that we call 'walkers' from each patch of habitat in the map, simulating their travel as they journey through land cover types in the intervening matrix, and finally arrive at a different habitat 'island.' Each walker is imbued with a set of user-specified habitat preferences that make its walking behavior resemble a particular animal species. Because the tool operates in parallel on a supercomputer, large numbers of walkers can be efficiently simulated. The importance of each habitat patch as a source or a sink for a species is calculated, consistent with existing concepts in the metapopulation literature. The manipulation of a series of contrived artificial landscapes demonstrates that the location of potential dispersal corridors and relative source and sink importance among patches can be purposefully altered in expected ways. Finally, potential dispersal corridors are predicted among remnant woodlots within three actual landscape maps.
Acoustic Rectification in Dispersive Media
NASA Technical Reports Server (NTRS)
Cantrell, John H.
2008-01-01
It is shown that the shapes of acoustic radiation-induced static strain and displacement pulses (rectified acoustic pulses) are defined locally by the energy density of the generating waveform. Dispersive properties are introduced analytically by assuming that the rectified pulses are functionally dependent on a phase factor that includes both dispersive and nonlinear terms. The dispersion causes an evolutionary change in the shape of the energy density profile that leads to the generation of solitons experimentally observed in fused silica.
ACOUSTIC RECTIFICATION IN DISPERSIVE MEDIA
Cantrell, John H.
2009-03-03
It is shown that the shapes of acoustic radiation-induced static strain and displacement pulses (rectified acoustic pulses) are defined locally by the energy density of the generating waveform. Dispersive properties are introduced analytically by assuming that the rectified pulses are functionally dependent on a phase factor that includes both dispersive and nonlinear terms. The dispersion causes an evolutionary change in the shape of the energy density profile that leads to the generation of solitons experimentally observed in fused silica.
COVE 2A benchmarking calculations using LLUVIA
Hopkins, P.L.
1990-07-01
Benchmarking calculations using the code LLUVIA have been performed in support of the code verification activity (COVE 2A) for the Yucca Mountain Project (YMP). LLUVIA is a program designed for the efficient solution of one-dimensional, steady flow through multiple layers of saturated or partially saturated, fractured, porous media. The benchmarking calculations involve six steady-state and six time-dependent infiltration problems. For the time-dependent analyses, LLUVIA reported only the final steady-state results. This report documents preliminary calculations, resulting code modifications and final calculations for the COVE 2A study. 7 refs., 79 figs., 3 tabs.
Seed dispersal of desert annuals.
Venable, D Lawrence; Flores-Martinez, Arturo; Muller-Landau, Helene C; Barron-Gafford, Greg; Becerra, Judith X
2008-08-01
We quantified seed dispersal in a guild of Sonoran Desert winter desert annuals at a protected natural field site in Tucson, Arizona, USA. Seed production was suppressed under shrub canopies, in the open areas between shrubs, or both by applying an herbicide prior to seed set in large, randomly assigned removal plots (10-30 m diameter). Seedlings were censused along transects crossing the reproductive suppression borders shortly after germination. Dispersal kernels were estimated for Pectocarya recurvata and Schismus barbatus from the change in seedling densities with distance from these borders via inverse modeling. Estimated dispersal distances were short, with most seeds traveling less than a meter. The adhesive seeds of P. recurvata went farther than the small S. barbatus seeds, which have no obvious dispersal adaptation. Seeds dispersed farther downslope than upslope and farther when dispersing into open areas than when dispersing into shrubs. Dispersal distances were short relative to the pattern of spatial heterogeneity created by the shrub and open space mosaic. This suggests that dispersal could contribute to local population buildup, possibly facilitating species coexistence. Overall, these results support the hypothesis that escape in time via delayed germination is likely to be more important for desert annuals than escape in space.
Geometry of physical dispersion relations
NASA Astrophysics Data System (ADS)
Rätzel, Dennis; Rivera, Sergio; Schuller, Frederic P.
2011-02-01
To serve as a dispersion relation, a cotangent bundle function must satisfy three simple algebraic properties. These conditions are derived from the inescapable physical requirements that local matter field dynamics must be predictive and allow for an observer-independent notion of positive energy. Possible modifications of the standard relativistic dispersion relation are thereby severely restricted. For instance, the dispersion relations associated with popular deformations of Maxwell theory by Gambini-Pullin or Myers-Pospelov are not admissible. Dispersion relations passing the simple algebraic checks derived here correspond to physically admissible Finslerian refinements of Lorentzian geometry.
Absorbing Boundary Conditions For Optical Pulses In Dispersive, Nonlinear Materials
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.; Kwak, Dochan (Technical Monitor)
1995-01-01
This paper will present results in computational nonlinear optics. An algorithm will be described that provides absorbing boundary conditions for optical pulses in dispersive, nonlinear materials. A new numerical absorber at the boundaries has been developed that is responsive to the spectral content of the pulse. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of "light bullet" like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. Comparisons will be shown of calculations that use the standard boundary conditions and the new ones.
Applicability of Gaussian plume dispersion parameters to acute radionuclide releases
Miller, C.W.; Fields, D.E.
1980-01-01
The Gaussian plume atmospheric dispersion model is one of the most widely used models for assessing the impact of radionuclides released to the atmosphere. This model is a statistical solution to the basic atmospheric diffusion equation. As a result, the Gaussian model should give more accurate results when used to calculate average air concentrations from long-term releases rather than for short-term concentrations from acute releases. However, the Gaussian model is routinely applied to such short-term radionuclide releases. The purpose of this paper is to examine the applicability of standard plume dispersion parameters for calculations of air concentrations resulting from such acute releases.
Martin-Synge algorithm for the solution of equilibrium-dispersive model of liquid chromatography.
Horváth, Krisztián; Fairchild, Jacob N; Kaczmarski, Krzysztof; Guiochon, Georges
2010-12-24
An alternative method, called the Martin-Synge algorithm, is introduced to calculate numerical solutions of the equilibrium-dispersive (ED) model. The developed algorithm is based on the earlier work of Friday and Levan and on the continuous plate model of Martin and Synge. The column is divided evenly into a series of virtual vessels in which a simplified mass balance equation is solved accurately by the Runge-Kutta-Fehlberg method and the elution profile is given by the numerical solution for the last vessel. The dispersion of the compound during the elution process is controlled by adjusting the number of virtual vessels into which the column is divided. Solving the ED model under linear conditions with this method gives exactly the same profile as the analytical solution of the Martin-Synge plate model. The Martin-Synge method gives better results than the Rouchon method (1) when the isotherms involved are sigmoidal or anti-Langmuir; and, more importantly, (2) in the case of multi-component problems. Finally, the Martin-Synge method proves to be more robust and faster than the OCFE method that, until now, was considered to be one of the most robust and accurate algorithms. The developed algorithm was used for the calculation of the coefficients of the isotherm of butyl benzoate by the inverse method, using a simplex optimization algorithm. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Weber, Eric E.
Concentrated animal feeding operations (CAFOs) have been experiencing increased resistance from surrounding residents making construction of new facilities or expansion of existing ones increasingly limited (Jacobson et al., 2002). Such concerns often include the impact of nuisance odor on peoples’ lives and on the environment (Huang and Miller, 2006). Vegetative environmental buffers (VEBs) have been suggested as a possible odor control technology. They have been found to impact odor plume dispersion and have shown the possibility of being an effective tool for odor abatement when used alone or in combination with other technologies (Lin et al., 2006). The main objective of this study was to use Gaussian-type dispersion modeling to determine the feasibility of use and the effectiveness of a VEB at controlling the spread of odor from a swine feeding operation. First, wind tunnel NH3 dispersion trends were compared to model generated dispersion trends to determine the accuracy of the model at handling VEB dispersion. Next, facility-scale (northern Missouri specific) model simulations with and without a VEB were run to determine its viability as an option for dispersion reduction. Finally, dispersion forecasts that integrated numerical weather forecasts were developed and compared to collected concentration data to determine forecast accuracy. The results of this study found that dispersion models can be used to simulate dispersion around a VEB. AERMOD-generated dispersion trends were found to follow similar patterns of decreasing downwind concentration to those of both wind tunnel simulations and previous research. This shows that a VEB can be incorporated into AERMOD and that the model can be used to determine its effectiveness as an odor control option. The results of this study also showed that a VEB has an effect on odor dispersion by reducing downwind concentrations. This was confirmed by both wind tunnel and AERMOD simulations of dispersion displaying
Adaptive Urban Dispersion Integrated Model
Wissink, A; Chand, K; Kosovic, B; Chan, S; Berger, M; Chow, F K
2005-11-03
will discuss details of the approach and present results for some example calculations performed in Manhattan in support of the DHS Urban Dispersion Program (UDP) using some of the tools developed as part of this new capability.
Wessels, B. W.
2002-08-02
Final report for program on the study of structure and properties of epitaxial oxide films. The defect structure of epitaxial oxide thin films was investigated. Both binary and complex oxides were studied. Epitaxial oxides were synthesized by organometallic chemical vapor deposition (OMCVD). This technique has been found to be highly versatile for the synthesis of a wide range of epitaxial oxide including dielectrics, ferroelectrics and high T{sub c} superconductors. Systems investigated include the binary oxides ZnO and TiO{sub 2} and ferroelectric oxides BaTiO{sub 3}, BaSrTiO{sub 3} and KNbO{sub 3}. Techniques used to evaluate the defect structure included deep level transient spectroscopy (DLTS), photocapacitance spectroscopy, and photoluminescence (PL) spectroscopy. High purity, stoichiometric oxide films were deposited and their defect structure evaluated. Epitaxial ZnO was deposited at temperatures as low as 250 C. PL indicated only near band edge ultraviolet emission showing that both extrinsic and intrinsic point defects could be significantly lowered in OMCVD derived thin films compared to that of the bulk. This presumably was a result of low deposition temperatures and high purity starting materials. Ferroelectric oxides epitaxial thin films of BaTiO{sub 3} and the solid solution BaSrTiO{sub 3} were synthesized and the defect structure determined. Photocapacitance spectroscopy was developed to quantify electrically active defects in the oxides. Defects with concentrations as low as 10{sup 14} cm{sup -3} were observed and their properties determined. A new model was developed for the electronic transport properties of intrinsic and extrinsic BaTiO{sub 3}. A transport model was proposed whereby conduction in La doped films occurs via hopping in localized states within a pseudogap formed between a lower Hubbard band and the conduction band edge. The influence of the size effect on the ferroelectric phase transition in the thin films was investigated. The
Axial dispersion in flowing red blood cell suspensions
NASA Astrophysics Data System (ADS)
Podgorski, Thomas; Losserand, Sylvain; Coupier, Gwennou
2016-11-01
A key parameter in blood microcirculation is the transit time of red blood cells (RBCs) through an organ, which can influence the efficiency of gas exchange and oxygen availability. A large dispersion of this transit time is observed in vivo and is partly due to the axial dispersion in the flowing suspension. In the classic Taylor-Aris example of a solute flowing in a tube, the combination of molecular diffusion and parabolic velocity profile leads to enhanced axial dispersion. In suspensions of non-Brownian deformable bodies such as RBCs, axial dispersion is governed by a combination of shear induced migration and shear-induced diffusion arising from hydrodynamic interactions. We revisit this problem in the case of RBC pulses flowing in a microchannel and show that the axial dispersion of the pulse eventually saturates with a final extension that depends directly on RBC mechanical properties. The result is especially interesting in the dilute limit since the final pulse length depends only on the channel width, exponent of the migration law and dimensionless migration velocity. In continuous flow, the dispersion of transit times is the result of complex cell-cell and cell-wall interactions and is strongy influenced by the polydispersity of the blood sample. The authors acknowledge support from LabEx TEC21 and CNES.
PETER, GARY F.
2014-07-16
Excellent progress was made in standardizing three complementary methods: Magnetic resonance imaging, x-ray micro CT, and MALDI imaging linear ion trap mass spectroscopy to image biomass and chemical, anatomical and functional changes that occur during pretreatment and hydrolysis. Magnetic resonance microscopy provides excellent images with as low as 5 uM resolution with hydrated biomass samples. We visualized dramatic changes in signal associated with the hydrolysis of the carbohydrates by strong acids. Quantitative diffusion approaches were used to probe more subtle structural changes in biomass. Diffusion tensor calculations reflect diffusion anisotropy and fractional anisotropy maps clearly show the longer range diffusion within the vessels compared to within the fiber cells. The diffusion is increased along the cell walls of the vessels. Suggesting that further research with NMR imaging should be pursued. X-ray CT provides excellent images at as low as 3.5 uM resolution from dried biomass. Small increases in surface area, and decreases in local density have been quantified in with wood after mild pretreatments; these changes are expected to be underestimates of the hydrated wood, due to the ~12% shrinkage that occurs upon drying untreated wood. MALDI-MS spectra show high ion intensities at most mass to charge ratios in untreated and pretreated woody material. MALDI-MSn is required to improve specificity and reduce background for imaging. MALDI-TOF is not specific enough for carbohydrate identification. Using MALDI-LIT/MSn we can readily identify oligomeric glucans and xylans and their fragmentation patterns as well as those of the glucuronic acid side chains of birch 4-O-methyl glucuronxylan. Imaging of glucan and xylan oligomers show that many contain isobaric ions with different distributions, indicating again that MSn is needed for accurate imaging of lignocellulosic materials. We are now starting to integrate the three imaging methods by using the same set
Michael C. Weinberg; Lori L. Burgner; Joseph H. Simmons
2003-05-23
OAK B135 The formation of metastable crystalline phases in lithium disilicate glass has been a subject of controversy for decades. Here, one aspect of this problem relating to the stability of these non-equilibrium phases when glasses are heated for extended time periods in the nucleation regime is addressed. The results of a systematic experimental investigation on the persistence of metastable phases and the factors that may influence the appearance of such phases, e.g., water content, impurities, glass composition, and glass preparation procedure are presented. Growth rates of lithium disilicate crystals in lithium disilicate glass are measured as a function water concentration in the glass and of temperature in the deeply undercooled regime. The growth rate data obtained in this work are combined with data reported in the literature and used to assess the applicability of standard models of crystal growth for the description of experimental results over a very broad temperature range. The reduced growth rate versus undercooling graph is found to consist of three regimes. For undercoolings less than 140°C, the reduced growth rate curve is suggestive of either 2-D surface nucleation or screw dislocation growth. For undercoolings greater than 400°C, the reduced growth rate plot suggests the operative crystal growth mechanism is 2-D surface nucleation, but detailed calculations cast doubt upon this conclusion. In the intermediate undercooling range, there appears to be some sort of transitional behavior for which none of the standard models appear to be applicable. Further, it is observed that small differences in the viscosity data employed can produce enormous differences in the predicted growth rates at larger undercoolings. Results of the kinetic analyses conducted herein seem to indicate that the nature of the kinetic rate coefficient used in the standard growth models may be incorrect. Nucleation rates of sodium metasilicate crystals in a sodium silicate
Dmitriy Y. Anistratov; Marvin L. Adams; Todd S. Palmer; Kord S. Smith; Kevin Clarno; Hikaru Hiruta; Razvan Nes
2003-08-04
OAK B202 Final Technical Report. The present generation of reactor analysis methods uses few-group nodal diffusion approximations to calculate full-core eigenvalues and power distributions. The cross sections, diffusion coefficients, and discontinuity factors (collectively called ''group constants'') in the nodal diffusion equations are parameterized as functions of many variables, ranging from the obvious (temperature, boron concentration, etc.) to the more obscure (spectral index, moderator temperature history, etc.). These group constants, and their variations as functions of the many variables, are calculated by assembly-level transport codes. The current methodology has two main weaknesses that this project addressed. The first weakness is the diffusion approximation in the full-core calculation; this can be significantly inaccurate at interfaces between different assemblies. This project used the nodal diffusion framework to implement nodal quasidiffusion equations, which can capture transport effects to an arbitrary degree of accuracy. The second weakness is in the parameterization of the group constants; current models do not always perform well, especially at interfaces between unlike assemblies. The project developed a theoretical foundation for parameterization and homogenization models and used that theory to devise improved models. The new models were extended to tabulate information that the nodal quasidiffusion equations can use to capture transport effects in full-core calculations.
Closure and Sealing Design Calculation
T. Lahnalampi; J. Case
2005-08-26
The purpose of the ''Closure and Sealing Design Calculation'' is to illustrate closure and sealing methods for sealing shafts, ramps, and identify boreholes that require sealing in order to limit the potential of water infiltration. In addition, this calculation will provide a description of the magma that can reduce the consequences of an igneous event intersecting the repository. This calculation will also include a listing of the project requirements related to closure and sealing. The scope of this calculation is to: summarize applicable project requirements and codes relating to backfilling nonemplacement openings, removal of uncommitted materials from the subsurface, installation of drip shields, and erecting monuments; compile an inventory of boreholes that are found in the area of the subsurface repository; describe the magma bulkhead feature and location; and include figures for the proposed shaft and ramp seals. The objective of this calculation is to: categorize the boreholes for sealing by depth and proximity to the subsurface repository; develop drawing figures which show the location and geometry for the magma bulkhead; include the shaft seal figures and a proposed construction sequence; and include the ramp seal figure and a proposed construction sequence. The intent of this closure and sealing calculation is to support the License Application by providing a description of the closure and sealing methods for the Safety Analysis Report. The closure and sealing calculation will also provide input for Post Closure Activities by describing the location of the magma bulkhead. This calculation is limited to describing the final configuration of the sealing and backfill systems for the underground area. The methods and procedures used to place the backfill and remove uncommitted materials (such as concrete) from the repository and detailed design of the magma bulkhead will be the subject of separate analyses or calculations. Post-closure monitoring will not
An investigation of dispersion characteristics in shallow coastal waters
NASA Astrophysics Data System (ADS)
Yu, Yingying; Zhang, Hong; Spencer, David; Dunn, Ryan J. K.; Lemckert, Charles
2016-10-01
Hydrodynamic dispersion has a significant impact on the mass transport of sediments and contaminants within coastal waters. In this study apparent horizontal dispersion in a tidally-dominated shallow estuary was investigated using field observations and a numerical model. A cluster of four Lagrangian drifters was released in two shallow regions inside Moreton Bay, Australia: between two small islands and in an open water area. During a 16-h tracking period, the drifters generally showed similar behaviour, initially moving with the dominant current and remaining together before spreading apart at the change of tide. Two dispersion regimes were identified, a slow dispersion during the earlier stage and a rapid dispersion during the latter stage of deployment. Such change in regime typically occurred during the succeeding ebb or flow tides, which may be attributable to residual eddies breaking down during reversal of tidal direction. In addition, a power function of the squared separation distance over the apparent dispersion coefficient produced an R2 exceeding 0.7, indicating a significant relationship between them. By applying a three-dimensional hydrodynamic model, the trajectories of artificial particles spreading in the bay were simulated, which allowed the calculation of dispersion coefficients throughout the entire bay. The study results demonstrate that the tidal effects on dispersion were dependent on the effect of tidal excursion and residual current. The tide was found to be the most dominant driver of dispersion in the bay when unobstructed by land; however, bathymetric and shoreline characteristics were also significant localised drivers of dispersion between the two islands as a result of island wake.
Signal dispersion within a hippocampal neural network
NASA Technical Reports Server (NTRS)
Horowitz, J. M.; Mates, J. W. B.
1975-01-01
A model network is described, representing two neural populations coupled so that one population is inhibited by activity it excites in the other. Parameters and operations within the model represent EPSPs, IPSPs, neural thresholds, conduction delays, background activity and spatial and temporal dispersion of signals passing from one population to the other. Simulations of single-shock and pulse-train driving of the network are presented for various parameter values. Neuronal events from 100 to 300 msec following stimulation are given special consideration in model calculations.
Modeling pollutant dispersion within a tornadic thunderstorm
Pepper, D.W.
1981-01-01
A three-dimensional numerical model was developed to calculate ground-level air concentration and deposition of particles entrained in a tornadic thunderstorm. The rotational characteristics of the tornadic storm are within the larger mesoscale flow of the storm system and transported with the vortex. Turbulence exchange coefficients are based on empirical values. The quasi-Lagrangian method of moments is used to model the transport of concentration within a grid cell volume. Results indicate that updrafts and downdrafts, coupled with scavenging of particles by precipitation, account for most of the material being deposited closer to the site than anticipated. Approximately 5% of the pollutant is dispersed into the stratosphere.
Robert D. Cess
2008-12-05
Paper number 1 addresses the fact that the procedure used in the Earth Radiation Budget Experiment for identifying the presence of clouds over snow/ice surfaces is known to have shortcomings, and this is corroborated through use of surface insolation measurements at the South Pole as an independent means of identifying clouds. These surface insolation measurements are then used to validate the more detailed cloud identification scheme used in the follow-up Clouds and the Earth's Radiant Energy System (CERES), and this validation is extended to the polar night through use of CERES measurements of the outgoing longwave radiation. General circulation models (GCMs) are highly sophisticated computer tools for modeling climate change, and they incorporate a large number of physical processes and variables. One of the most important challenges is to properly account for water vapor (clouds and humidity) in climate warming. In this Perspective, Cess discusses results reported in the same issue by Soden et al. in which water vapor feedback effects are tested by studying moistening trends in the upper troposphere. Satellite observations of atmospheric water vapor are found to agree well with moisture predictions generated by one of the key GCMs, showing that these feedback effects are being properly handled in the model, which eliminates a major potential source of uncertainty. Zhou and Cess [2001] developed an algorithm for retrieving surface downwelling longwave radiation (SDLW) based upon detailed studies using radiative transfer model calculations and surface radiometric measurements. Their algorithm linked clear sky SDLW with surface upwelling longwave flux and column precipitable water vapor. For cloudy sky cases, they used cloud liquid water path as an additional parameter to account for the effects of clouds. Despite the simplicity of their algorithm, it performed very well for most geographical regions except for those regions where the atmospheric conditions near
Dispersion relations for $$\\eta '\\rightarrow \\eta \\pi \\pi $$
Isken, Tobias; Kubis, Bastian; Schneider, Sebastian P.; ...
2017-07-21
Here, we present a dispersive analysis of the decay amplitude for η' → ηππ that is based on the fundamental principles of analyticity and unitarity. In this framework, final-state interactions are fully taken into account. Our dispersive representation relies only on input for the ππ and πη scattering phase shifts. Isospin symmetry allows us to describe both the charged and neutral decay channel in terms of the same function. The dispersion relation contains subtraction constants that cannot be fixed by unitarity.We determine these parameters by a fit to Dalitz-plot data from the VES and BES-III experiments. We study the predictionmore » of a low-energy theorem and compare the dispersive fit to variants of chiral perturbation theory.« less
Dispersion serial dilution methods using the gradient diluter device.
Walling, Leslie; Schulz, Craig; Johnson, Michael
2012-12-01
A solute aspirated into a prefilled tube of diluent undergoes a dilution effect known as dispersion. Traditionally the effects of dispersion have been considered a negative consequence of using liquid-filled fixed-tip liquid handlers. We present a novel device and technique that utilizes the effects of dispersion to the benefit of making dilutions. The device known as the Gradient Diluter extends the dilution range of practical serial dilutions to six orders of magnitude in final volumes as low as 10 μL. Presented are the device, dispersion methods, and validation tests using fluorescence detection of sulforhodamine and the high-performance liquid chromatography/ultraviolet detection of furosemide. In addition, a T-cell inhibition assay of a relevant downstream protein is used to demonstrate IC(50) curves made with the Gradient Diluter compare favorably with those generated by hand.
Prediction of three sigma maximum dispersed density for aerospace applications
NASA Technical Reports Server (NTRS)
Charles, Terri L.; Nitschke, Michael D.
1993-01-01
Free molecular heating (FMH) is caused by the transfer of energy during collisions between the upper atmosphere molecules and a space vehicle. The dispersed free molecular heating on a surface is an important constraint for space vehicle thermal analyses since it can be a significant source of heating. To reduce FMH to a spacecraft, the parking orbit is often designed to a higher altitude at the expense of payload capability. Dispersed FMH is a function of both space vehicle velocity and atmospheric density, however, the space vehicle velocity variations are insignificant when compared to the atmospheric density variations. The density of the upper atmosphere molecules is a function of altitude, but also varies with other environmental factors, such as solar activity, geomagnetic activity, location, and time. A method has been developed to predict three sigma maximum dispersed density for up to 15 years into the future. This method uses a state-of-the-art atmospheric density code, MSIS 86, along with 50 years of solar data, NASA and NOAA solar activity predictions for the next 15 years, and an Aerospace Corporation correlation to account for density code inaccuracies to generate dispersed maximum density ratios denoted as 'K-factors'. The calculated K-factors can be used on a mission unique basis to calculate dispersed density, and hence dispersed free molecular heating rates. These more accurate K-factors can allow lower parking orbit altitudes, resulting in increased payload capability.
Pollination fluctuations drive evolutionary syndromes linking dispersal and mating system.
Cheptou, Pierre-Olivier; Massol, François
2009-07-01
The existence of a syndrome linking dispersal rate and mating system has long been debated in evolutionary ecology, especially in plants. Some verbal models hypothesize that the ability to self-fertilize may be associated with high dispersal, since completely outcrossing species cannot reproduce when they disperse to an empty destination site. However, empirical observations fail to support a clear trend, and an association of high colonizing ability with high outcrossing has been reported. Here we develop a general metapopulation model for the joint evolution of seed dispersal and self-fertilization when local pollen limitation varies stochastically over time. Under these assumptions, we study how dispersal and mating system influence each other through selection. We predict the existence of two consistent syndromes of traits: dispersing outcrossers and nondispersing (partial) selfers. These theoretical expectations contradict the classical view and shed new light on an old problem, allowing us to reinterpret empirical data. Finally, our predictions are discussed in light of empirical data concerning the association of seed dispersal mechanism and breeding system.
Modelling non-symmetric collagen fibre dispersion in arterial walls
Holzapfel, Gerhard A.; Niestrawska, Justyna A.; Ogden, Ray W.; Reinisch, Andreas J.; Schriefl, Andreas J.
2015-01-01
New experimental results on collagen fibre dispersion in human arterial layers have shown that the dispersion in the tangential plane is more significant than that out of plane. A rotationally symmetric dispersion model is not able to capture this distinction. For this reason, we introduce a new non-symmetric dispersion model, based on the bivariate von Mises distribution, which is used to construct a new structure tensor. The latter is incorporated in a strain-energy function that accommodates both the mechanical and structural features of the material, extending our rotationally symmetric dispersion model (Gasser et al. 2006 J. R. Soc. Interface 3, 15–35. (doi:10.1098/rsif.2005.0073)). We provide specific ranges for the dispersion parameters and show how previous models can be deduced as special cases. We also provide explicit expressions for the stress and elasticity tensors in the Lagrangian description that are needed for a finite-element implementation. Material and structural parameters were obtained by fitting predictions of the model to experimental data obtained from human abdominal aortic adventitia. In a finite-element example, we analyse the influence of the fibre dispersion on the homogeneous biaxial mechanical response of aortic strips, and in a final example the non-homogeneous stress distribution is obtained for circumferential and axial strips under fixed extension. It has recently become apparent that this more general model is needed for describing the mechanical behaviour of a variety of fibrous tissues. PMID:25878125
Using directed phylogenetic networks to retrace species dispersal history.
Layeghifard, Mehdi; Peres-Neto, Pedro R; Makarenkov, Vladimir
2012-07-01
Methods designed for inferring phylogenetic trees have been widely applied to reconstruct biogeographic history. Because traditional phylogenetic methods used in biogeographic reconstruction are based on trees rather than networks, they follow the strict assumption in which dispersal among geographical units have occurred on the basis of single dispersal routes across regions and are, therefore, incapable of modelling multiple alternative dispersal scenarios. The goal of this study is to describe a new method that allows for retracing species dispersal by means of directed phylogenetic networks obtained using a horizontal gene transfer (HGT) detection method as well as to draw parallels between the processes of HGT and biogeographic reconstruction. In our case study, we reconstructed the biogeographic history of the postglacial dispersal of freshwater fishes in the Ontario province of Canada. This case study demonstrated the utility and robustness of the new method, indicating that the most important events were south-to-north dispersal patterns, as one would expect, with secondary faunal interchange among regions. Finally, we showed how our method can be used to explore additional questions regarding the commonalities in dispersal history patterns and phylogenetic similarities among species.
Mode separation of Lamb waves based on dispersion compensation method.
Xu, Kailiang; Ta, Dean; Moilanen, Petro; Wang, Weiqi
2012-04-01
Ultrasonic Lamb modes typically propagate as a combination of multiple dispersive wave packets. Frequency components of each mode distribute widely in time domain due to dispersion and it is very challenging to separate individual modes by traditional signal processing methods. In the present study, a method of dispersion compensation is proposed for the purpose of mode separation. This numerical method compensates, i.e., compresses, the individual dispersive waveforms into temporal pulses, which thereby become nearly un-overlapped in time and frequency and can thus be extracted individually by rectangular time windows. It was further illustrated that the dispersion compensation also provided a method for predicting the plate thickness. Finally, based on reversibility of the numerical compensation method, an artificial dispersion technique was used to restore the original waveform of each mode from the separated compensated pulse. Performances of the compensation separation techniques were evaluated by processing synthetic and experimental signals which consisted of multiple Lamb modes with high dispersion. Individual modes were extracted with good accordance with the original waveforms and theoretical predictions.
Application of particle swarm optimization to interpret Rayleigh wave dispersion curves
NASA Astrophysics Data System (ADS)
Song, Xianhai; Tang, Li; Lv, Xiaochun; Fang, Hongping; Gu, Hanming
2012-09-01
Rayleigh waves have been used increasingly as an appealing tool to obtain near-surface shear (S)-wave velocity profiles. However, inversion of Rayleigh wave dispersion curves is challenging for most local-search methods due to its high nonlinearity and to its multimodality. In this study, we proposed and tested a new Rayleigh wave dispersion curve inversion scheme based on particle swarm optimization (PSO). PSO is a global optimization strategy that simulates the social behavior observed in a flock (swarm) of birds searching for food. A simple search strategy in PSO guides the algorithm toward the best solution through constant updating of the cognitive knowledge and social behavior of the particles in the swarm. To evaluate calculation efficiency and stability of PSO to inversion of surface wave data, we first inverted three noise-free and three noise-corrupted synthetic data sets. Then, we made a comparative analysis with genetic algorithms (GA) and a Monte Carlo (MC) sampler and reconstructed a histogram of model parameters sampled on a low-misfit region less than 15% relative error to further investigate the performance of the proposed inverse procedure. Finally, we inverted a real-world example from a waste disposal site in NE Italy to examine the applicability of PSO on Rayleigh wave dispersion curves. Results from both synthetic and field data demonstrate that particle swarm optimization can be used for quantitative interpretation of Rayleigh wave dispersion curves. PSO seems superior to GA and MC in terms of both reliability and computational efforts. The great advantages of PSO are fast in locating the low misfit region and easy to implement. Also there are only three parameters to tune (inertia weight or constriction factor, local and global acceleration constants). Theoretical results exist to explain how to tune these parameters.
Non-Fickian dispersive transport of strontium in laboratory-scale columns: Modelling and evaluation
NASA Astrophysics Data System (ADS)
Liu, Dongxu; Jivkov, Andrey P.; Wang, Lichun; Si, Gaohua; Yu, Jing
2017-06-01
In the context of environmental remediation of contaminated sites and safety assessment of nuclear waste disposal in the near-surface zone, we investigate the leaching and non-Fickian dispersive migration with sorption of strontium (mocking strontium-90) through columns packed with sand and clay. Analysis is based on breakthrough curves (BTCs) from column experiments, which simulated rainfall infiltration and source term release scenario, rather than applying constant tracer solution at the inlet as commonly used. BTCs are re-evaluated and transport parameters are estimated by inverse modelling using two approaches: (1) equilibrium advection-dispersion equation (ADE); and (2) continuous time random walk (CTRW). Firstly, based on a method for calculating leach concentration, the inlet condition with an exponential decay input is identified. Secondly, the results show that approximately 39%-58% of Br- and 16%-49% of Sr2+ are eluted from the columns at the end of the breakthrough experiments. This suggests that trapping mechanisms, including diffusion into immobile zones and attachment of tracer on mineral surfaces, are more pronounced for Sr2+ than for Br-. Thirdly, we demonstrate robustness of CTRW-based truncated power-law (TPL) model in capturing non-Fickian reactive transport with 0 < β < 2, and Fickian transport with β > 2. The non-Fickian dispersion observed experimentally is explained by variations of local flow field from preferential flow paths due to physical heterogeneities. Particularly, the additional sorption process of strontium on clay minerals contributes to the delay of the peak concentration and the tailing features, which leads to an enhanced non-Fickian transport for strontium. Finally, the ADE and CTRW approaches to environmental modelling are evaluated. It is shown that CTRW with a sorption term can describe non-Fickian dispersive transport of strontium at laboratory scale by identifying appropriate parameters, while the traditional ADE with
Influence of surface roughness on dispersion forces.
Svetovoy, V B; Palasantzas, G
2015-02-01
Surface roughness occurs in a wide variety of processes where it is both difficult to avoid and control. When two bodies are separated by a small distance the roughness starts to play an important role in the interaction between the bodies, their adhesion, and friction. Control of this short-distance interaction is crucial for micro and nanoelectromechanical devices, microfluidics, and for micro and nanotechnology. An important short-distance interaction is the dispersion forces, which are omnipresent due to their quantum origin. These forces between flat bodies can be described by the Lifshitz theory that takes into account the actual optical properties of interacting materials. However, this theory cannot describe rough bodies. The problem is complicated by the nonadditivity of the dispersion forces. Evaluation of the roughness effect becomes extremely difficult when roughness is comparable with the distance between bodies. In this paper we review the current state of the problem. Introduction for non-experts to physical origin of the dispersion forces is given in the paper. Critical experiments demonstrating the nonadditivity of the forces and strong influence of roughness on the interaction between bodies are reviewed. We also describe existing theoretical approaches to the problem. Recent advances in understanding the role of high asperities on the forces at distances close to contact are emphasized. Finally, some opinions about currently unsolved problems are also presented. Copyright © 2014 Elsevier B.V. All rights reserved.
Large deviations in Taylor dispersion
NASA Astrophysics Data System (ADS)
Kahlen, Marcel; Engel, Andreas; Van den Broeck, Christian
2017-01-01
We establish a link between the phenomenon of Taylor dispersion and the theory of empirical distributions. Using this connection, we derive, upon applying the theory of large deviations, an alternative and much more precise description of the long-time regime for Taylor dispersion.
Procedure for dispersing fiber bundles
NASA Technical Reports Server (NTRS)
Padilla, D.
1974-01-01
Fiber bundles are dispersed and fibers are cleaned within enclosed container; therefore, safety clothing, masks, and eye protection are not required. Procedure also could be used wherever materials, such as fiberglass or insulation, require dispersion, fluffing, or cleaning. Process could be automated into continuous operation for handling large quantities of fiber.
Preparation of alkali metal dispersions
NASA Technical Reports Server (NTRS)
Rembaum, A.; Landel, R. F. (Inventor)
1968-01-01
A method is described for producing alkali metal dispersions of high purity. The dispersions are prepared by varying the equilibrium solubility of the alkali metal in a suitable organic solvent in the presence of aromatic hydrocarbons. The equilibrium variation is produced by temperature change. The size of the particles is controlled by controlling the rate of temperature change.
Modeling volcanic ash dispersal
None
2016-07-12
Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the EyjafjÃ¶ll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.
Hybrid Dispersion Laser Scanner
Goda, K.; Mahjoubfar, A.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.
2012-01-01
Laser scanning technology is one of the most integral parts of today's scientific research, manufacturing, defense, and biomedicine. In many applications, high-speed scanning capability is essential for scanning a large area in a short time and multi-dimensional sensing of moving objects and dynamical processes with fine temporal resolution. Unfortunately, conventional laser scanners are often too slow, resulting in limited precision and utility. Here we present a new type of laser scanner that offers ∼1,000 times higher scan rates than conventional state-of-the-art scanners. This method employs spatial dispersion of temporally stretched broadband optical pulses onto the target, enabling inertia-free laser scans at unprecedented scan rates of nearly 100 MHz at 800 nm. To show our scanner's broad utility, we use it to demonstrate unique and previously difficult-to-achieve capabilities in imaging, surface vibrometry, and flow cytometry at a record 2D raster scan rate of more than 100 kHz with 27,000 resolvable points. PMID:22685627
Modeling volcanic ash dispersal
2010-10-22
Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.
Johnston, R. T.
1981-06-02
A seal is described for a shaft of a disperser crusher, that pulverizes hot coal particles, maintains a higher than atmospheric pressure within a casing for the crusher, and is able to withstand elevated temperatures that are produced within the casing. The pressure and temperature result from hot gases that convey coal particles to the crusher. The seal includes self lubricating graphite packings that are urged in abutting relation with a smooth, ceramic sleeve on the shaft and are able to withstand the temperature on the shaft surface. A first, interior packing is on the inside of a wall of the casing while a second, exterior packing is outside of the wall. Superheated steam, a gas inert with the coal particles, is supplied to the interior packing with sufficient pressure to substantially prevent the migration of coal particles through the interior packing. The tendency of the coal particles to migrate from the container through the interior packing is further inhibited by providing a tortuous path from the casing to the interior packing.
Auroral electron time dispersion
Kletzing, C.A.
1989-01-01
A sounding rocket flight was launched from Greenland in 1985 to study high latitude, early morning auroral physics. The payload was instrumented with electron and ion detectors, AC and DC electric field experiments, a plasma density experiment, and a magnetometer to measure the ambient field. The rocket was launched during disturbed conditions, when the polar cap was in a contracted state with visible aurora overhead. The electron data contained numerous signatures indicative of time-of-flight energy dispersion characterized by a coherent structure in which lower energy electrons arrived at the rocket after higher energy electrons. A model was constructed to explain this phenomena by the sudden application of a region of parallel electric field along a length of magnetic field line above the rocket. The model incorporates detector response and uses an altitudinal density profile based on auroral zone measurements. Three types of potential structures were tried: linear, quadratic and cubic. Of the three it was found that the cubic (electric field growing in a quadratic manner moving up the field line) produced the best fit to the data. The potential region was found to be approximately 1-2 R{sub e} in extent with the lower edge 3000-4000 km away from the rocket. The background electron temperature in the model which produced the best fit to the data was of the order of 15 eV.
Hybrid dispersion laser scanner.
Goda, K; Mahjoubfar, A; Wang, C; Fard, A; Adam, J; Gossett, D R; Ayazi, A; Sollier, E; Malik, O; Chen, E; Liu, Y; Brown, R; Sarkhosh, N; Di Carlo, D; Jalali, B
2012-01-01
Laser scanning technology is one of the most integral parts of today's scientific research, manufacturing, defense, and biomedicine. In many applications, high-speed scanning capability is essential for scanning a large area in a short time and multi-dimensional sensing of moving objects and dynamical processes with fine temporal resolution. Unfortunately, conventional laser scanners are often too slow, resulting in limited precision and utility. Here we present a new type of laser scanner that offers ∼1,000 times higher scan rates than conventional state-of-the-art scanners. This method employs spatial dispersion of temporally stretched broadband optical pulses onto the target, enabling inertia-free laser scans at unprecedented scan rates of nearly 100 MHz at 800 nm. To show our scanner's broad utility, we use it to demonstrate unique and previously difficult-to-achieve capabilities in imaging, surface vibrometry, and flow cytometry at a record 2D raster scan rate of more than 100 kHz with 27,000 resolvable points.
Local decomposition of imaginary polarizabilities and dispersion coefficients.
Harczuk, Ignat; Nagy, Balazs; Jensen, Frank; Vahtras, Olav; Ågren, Hans
2017-08-02
We present a new way to compute the two-body contribution to the dispersion energy using ab initio theory. By combining the complex polarization propagator method and the LoProp transformation, local contributions to the Casimir-Polder interaction is obtained. The full dispersion energy in dimer systems consisting of pairs of molecules including H2, N2, CO, CH4, pyridine, and benzene is investigated, where anisotropic as well as isotropic models of dispersion are obtained using a decomposition scheme for the dipole-dipole polarizability. It is found that the local minima structure of the π-cloud stacking of the benzene dimer is underestimated by the total molecular dispersion, but is alleviated by the inclusion of atomic interactions via the decomposition scheme. The dispersion energy in the T-shaped benzene dimer system is greatly underestimated by all dispersion models, as compared to high-level quantum calculations. The generalization of the decomposition scheme to higher order multipole polarizability interactions, representing higher order dispersion coefficients, is briefly discussed. It is argued that the incorporation of atomic C6 coefficients in new atomic force fields may have important ramifications in molecular dynamics studies of biomolecular systems.
Urban dispersion : challenges for fast response modeling
Brown, M. J.
2004-01-01
There is renewed interest in urban dispersion modeling due to the need for tools that can be used for responding to, planning for, and assessing the consequences of an airborne release of toxic materials. Although not an everyday phenomenon, releases of hazardous gases and aerosols have occurred in populated urban environments and are potentially threatening to human life. These releases may stem from on-site accidents as in the case of industrial chemical releases, may result during transport of hazardous chemicals as in tanker truck or railroad spills, or may be premeditated as in a chemical, biological, or radiological (CBR) agent terrorist attack. Transport and dispersion in urban environments is extremely complicated. Buildings alter the flow fields and deflect the wind, causing updrafts and downdrafts, channeling between buildings, areas of calm winds adjacent to strong winds, and horizontally and vertically rotating-eddies between buildings, at street corners, and other places within the urban canopy (see review by Hosker, 1984). Trees, moving vehicles, and exhaust vents among other things further complicate matters. The distance over which chemical, biological, or radiological releases can be harmful varies from tens of meters to many kilometers depending on the amount released, the toxicity of the agent, and the atmospheric conditions. As we will show later, accounting for the impacts of buildings on the transport and dispersion is crucial in estimating the travel direction, the areal extent, and the toxicity levels of the contaminant plume, and ultimately for calculating exposures to the population.
Dispersion Resulting from Flow through Spatially Periodic Porous Media
NASA Astrophysics Data System (ADS)
Brenner, H.
1980-07-01
A rigorous theory of dispersion in both granular and sintered spatially-periodic porous media is presented, utilizing concepts originating from Brownian motion theory. A precise prescription is derived for calculating both the Darcy-scale interstitial velocity vector {v}* and dispersivity dyadic {D}* of a tracer particle. These are expressed in terms of the local fluid velocity vector field v at each point within the interstices of a unit cell of the spatially periodic array and, for the dispersivity, the molecular diffusivity D of the tracer particle through the fluid. Though the theory is complete, numerical results are not yet available owing to the complex structure of the local interstitial velocity field v. However, as an illustrative exercise, the theory is shown to correctly reduce in an appropriate limiting case to the well-known Taylor-Aris results for dispersion in circular capillaries.
Resonant-state-expansion Born approximation for waveguides with dispersion
NASA Astrophysics Data System (ADS)
Doost, M. B.
2016-02-01
The resonant-state-expansion (RSE) Born approximation, a rigorous perturbative method developed for electrodynamic and quantum mechanical open systems, is further developed to treat waveguides with a Sellmeier dispersion. For media that can be described by these types of dispersion over the relevant frequency range, such as optical glass, I show that the the perturbed RSE problem can be solved by diagonalizing a second-order eigenvalue problem. In the case of a single resonance at zero frequency, this is simplified to a generalized eigenvalue problem. Results are presented using analytically solvable planar waveguides and parameters of borosilicate BK7 glass, for a perturbation in the waveguide width. The efficiency of using either an exact dispersion over all frequencies or an approximate dispersion over a narrow frequency range is compared. I included a derivation of the RSE Born approximation for waveguides to make use of the resonances calculated by the RSE.
Dispersion analysis techniques within the space vehicle dynamics simulation program
NASA Technical Reports Server (NTRS)
Snow, L. S.; Kuhn, A. E.
1975-01-01
The Space Vehicle Dynamics Simulation (SVDS) program was evaluated as a dispersion analysis tool. The Linear Error Analysis (LEA) post processor was examined in detail and simulation techniques relative to conducting a dispersion analysis using the SVDS were considered. The LEA processor is a tool for correlating trajectory dispersion data developed by simulating 3 sigma uncertainties as single error source cases. The processor combines trajectory and performance deviations by a root-sum-square (RSS process) and develops a covariance matrix for the deviations. Results are used in dispersion analyses for the baseline reference and orbiter flight test missions. As a part of this study, LEA results were verified as follows: (A) Hand calculating the RSS data and the elements of the covariance matrix for comparison with the LEA processor computed data. (B) Comparing results with previous error analyses. The LEA comparisons and verification are made at main engine cutoff (MECO).
A dynamic model for the Lagrangian stochastic dispersion coefficient
Pesmazoglou, I.; Navarro-Martinez, S.; Kempf, A. M.
2013-12-15
A stochastic sub-grid model is often used to accurately represent particle dispersion in turbulent flows using large eddy simulations. Models of this type have a free parameter, the dispersion coefficient, which is not universal and is strongly grid-dependent. In the present paper, a dynamic model for the evaluation of the coefficient is proposed and validated in decaying homogeneous isotropic turbulence. The grid dependence of the static coefficient is investigated in a turbulent mixing layer and compared to the dynamic model. The dynamic model accurately predicts dispersion statistics and resolves the grid-dependence. Dispersion statistics of the dynamically calculated constant are more accurate than any static coefficient choice for a number of grid spacings. Furthermore, the dynamic model produces less numerical artefacts than a static model and exhibits smaller sensitivity in the results predicted for different particle relaxation times.
Distillation Calculations with a Programmable Calculator.
ERIC Educational Resources Information Center
Walker, Charles A.; Halpern, Bret L.
1983-01-01
Describes a three-step approach for teaching multicomponent distillation to undergraduates, emphasizing patterns of distribution as an aid to understanding the separation processes. Indicates that the second step can be carried out by programmable calculators. (A more complete set of programs for additional calculations is available from the…
Distillation Calculations with a Programmable Calculator.
ERIC Educational Resources Information Center
Walker, Charles A.; Halpern, Bret L.
1983-01-01
Describes a three-step approach for teaching multicomponent distillation to undergraduates, emphasizing patterns of distribution as an aid to understanding the separation processes. Indicates that the second step can be carried out by programmable calculators. (A more complete set of programs for additional calculations is available from the…
LES Modeling of Lateral Dispersion in the Ocean on Scales of 10 m to 10 km
2015-10-20
Report 3. DATES COVERED (From - To) 01/07/2010 – 06/06/2015 4. TITLE AND SUBTITLE LES Modeling of Lateral Dispersion in the Ocean on Scales of 10...Distribution approved for public release; distribution is unlimited. Final Report LES Modeling of Lateral Dispersion on Scales of 10 m to 10 km M.-Pascale...understanding the relationship between internal waves, internal-wave breaking, episodic diapycnal mixing and lateral dispersion on scales of 0.1-10km. The
The determination of longitudinal dispersion coefficients in rivers.
Palancar, María C; Aragón, José M; Sánchez, Fernando; Gil, Roberto
2003-01-01
The dispersion coefficient of several sections of two Spanish rivers (Tagus and Ebro) is calculated using different methods. The aim of the study is to accurately know the effects of accidental leaks from two nuclear power plants that are placed upstream. Experimental data from tracer injections as well as data from hydraulic parameters were used to calculate the dispersion coefficient. Two methods based on tracer curves fit the experimental data well. One method is based on the time at which the tracer concentration is half the maximum concentration; the other method is based on the variance of the tracer curve distribution. An alternative method based on governmental data of velocity profiles and correlations of hydraulic parameters was also used. The results of this method are strongly sensitive to small variations in the stream flowrate. A new correlation is proposed to predict the dispersion coefficient with an error smaller than the one provided by other correlations in the literature.
Zhang, Qian; Thompson, M Shane; Carmichael-Baranauskas, Anita Y; Caba, Beth L; Zalich, Michael A; Lin, Yin-Nian; Mefford, O Thompson; Davis, Richey M; Riffle, Judy S
2007-06-19
Magnetite (Fe3O4) nanoparticles have been synthesized and complexed with carboxylate-functional block copolymers, and then aqueous dispersions of the complexes were investigated as functions of their chemical and morphological structures. The block copolymer dispersants had either poly(ethylene oxide), poly(ethylene oxide-co-propylene oxide), or poly(ethylene oxide-b-propylene oxide) outer blocks, and all of them had a polyurethane center block that contained pendent carboxylate groups. The complexes were formed through interactions of the carboxylates with the surfaces of the magnetite nanoparticles. The magnetite cores of the magnetite-copolymer complexes were near 10 nm in diameter, and the particles were superparamagnetic. Complexes with mass ratios of polymer to magnetite varying from 50:50 to 85:15 were studied. One of our objectives is to design complexes that form stable dispersions of discrete particles in water, yet that can be actuated (moved together) upon exposure to a uniform magnetic field. DLVO calculations that accounted for magnetic attractive interparticle forces, as well as van der Waals, steric, and electrostatic forces are presented. Compositions were identified wherein a shallow, attractive interparticle potential minimum appears once the magnetic term is applied. This suggests that it may be possible to tune the structures of superparamagnetic nanoparticle shells to allow discrete dispersions without a field, yet weak flocculation could be induced upon exposure to a field.
Calculation of Rydberg interaction potentials
NASA Astrophysics Data System (ADS)
Weber, Sebastian; Tresp, Christoph; Menke, Henri; Urvoy, Alban; Firstenberg, Ofer; Büchler, Hans Peter; Hofferberth, Sebastian
2017-07-01
The strong interaction between individual Rydberg atoms provides a powerful tool exploited in an ever-growing range of applications in quantum information science, quantum simulation and ultracold chemistry. One hallmark of the Rydberg interaction is that both its strength and angular dependence can be fine-tuned with great flexibility by choosing appropriate Rydberg states and applying external electric and magnetic fields. More and more experiments are probing this interaction at short atomic distances or with such high precision that perturbative calculations as well as restrictions to the leading dipole-dipole interaction term are no longer sufficient. In this tutorial, we review all relevant aspects of the full calculation of Rydberg interaction potentials. We discuss the derivation of the interaction Hamiltonian from the electrostatic multipole expansion, numerical and analytical methods for calculating the required electric multipole moments and the inclusion of electromagnetic fields with arbitrary direction. We focus specifically on symmetry arguments and selection rules, which greatly reduce the size of the Hamiltonian matrix, enabling the direct diagonalization of the Hamiltonian up to higher multipole orders on a desktop computer. Finally, we present example calculations showing the relevance of the full interaction calculation to current experiments. Our software for calculating Rydberg potentials including all features discussed in this tutorial is available as open source.
Design of modern dispersion-managed lightwave systems
NASA Astrophysics Data System (ADS)
Poutrina, Ekaterina
derive approximate analytic expressions for the input pulse parameters and show the existence of a limiting bit rate, which depends only on the dispersion-map configuration. Finally, the design rules are proposed that allow the minimization of the intrachannel pulse interactions in a dispersion-managed soliton system.
el-Banna, H M
1978-08-01
The phase diagram of an aspirin-acetaminophen-urea system was constructed. The data obtained by the thermomicroscopic method showed that the binary systems of aspirin-acetaminophen, aspirin-urea, and acetaminophen-urea are simple eutectic mixtures with negligible formation of solid solutions or molecular compounds. The equilateral triangular phase diagram of the ternary system revealed that it forms, upon solidification, solid dispersions of the mechanical mixture type. The ternary eutectic corresponded to a composition of 60% aspirin, 20% acetaminophen, and 20% urea at 72 degrees. The method of calculating the composition finally solidified melts, lying within any area of the phase diagram, is presented. Use of the phase diagram in selecting the optimum ratio of components to enhance dissolution rates of these drugs may be possible.
Cote, J.; Clobert, J.; Brodin, T.; Fogarty, S.; Sih, A.
2010-01-01
Dispersal is one of the most fundamental components of ecology, and affects processes as diverse as population growth, metapopulation dynamics, gene flow and adaptation. Although the act of moving from one habitat to another entails major costs to the disperser, empirical and theoretical studies suggest that these costs can be reduced by having morphological, physiological or behavioural specializations for dispersal. A few recent studies on different systems showed that individuals exhibit personality-dependent dispersal, meaning that dispersal tendency is associated with boldness, sociability or aggressiveness. Indeed, in several species, dispersers not only develop behavioural differences at the onset of dispersal, but display these behavioural characteristics through their life cycle. While personality-dependent dispersal has been demonstrated in only a few species, we believe that it is a widespread phenomenon with important ecological consequences. Here, we review the evidence for behavioural differences between dispersers and residents, to what extent they constitute personalities. We also examine how a link between personality traits and dispersal behaviours can be produced and how personality-dependent dispersal affects the dynamics of metapopulations and biological invasions. Finally, we suggest future research directions for population biologists, behavioural ecologists and conservation biologists such as how the direction and the strength of the relationship between personality traits and dispersal vary with ecological contexts. PMID:21078658
Migration of dispersive GPR data
Powers, M.H.; Oden, C.P.; ,
2004-01-01
Electrical conductivity and dielectric and magnetic relaxation phenomena cause electromagnetic propagation to be dispersive in earth materials. Both velocity and attenuation may vary with frequency, depending on the frequency content of the propagating energy and the nature of the relaxation phenomena. A minor amount of velocity dispersion is associated with high attenuation. For this reason, measuring effects of velocity dispersion in ground penetrating radar (GPR) data is difficult. With a dispersive forward model, GPR responses to propagation through materials with known frequency-dependent properties have been created. These responses are used as test data for migration algorithms that have been modified to handle specific aspects of dispersive media. When either Stolt or Gazdag migration methods are modified to correct for just velocity dispersion, the results are little changed from standard migration. For nondispersive propagating wavefield data, like deep seismic, ensuring correct phase summation in a migration algorithm is more important than correctly handling amplitude. However, the results of migrating model responses to dispersive media with modified algorithms indicate that, in this case, correcting for frequency-dependent amplitude loss has a much greater effect on the result than correcting for proper phase summation. A modified migration is only effective when it includes attenuation recovery, performing deconvolution and migration simultaneously.
Wave-equation dispersion inversion
NASA Astrophysics Data System (ADS)
Li, Jing; Feng, Zongcai; Schuster, Gerard
2017-03-01
We present the theory for wave-equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. The dispersion curves are obtained from Rayleigh waves recorded by vertical-component geophones. Similar to wave-equation traveltime tomography, the complicated surface wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the phase-velocity and frequency domains. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2-D or 3-D S-wave velocity models. This procedure, denoted as wave-equation dispersion inversion (WD), does not require the assumption of a layered model and is significantly less prone to the cycle-skipping problems of full waveform inversion. The synthetic and field data examples demonstrate that WD can approximately reconstruct the S-wave velocity distributions in laterally heterogeneous media if the dispersion curves can be identified and picked. The WD method is easily extended to anisotropic data and the inversion of dispersion curves associated with Love waves.
User's guide to the Texas climatological model. Final report
Not Available
1980-08-01
The Texas Climatological Model Version 2 (TCM-2) (Part of the UNAMAP version 4 collection) is a Fortran computer program designed to predict ground-level, long-term concentrations of atmospheric pollutants. The Model uses techniques that require much less computer time than most climatological models. Predictions are based upon the steady-state Gaussian plume hypothesis, Briggs plume rise formulations, Pasquill-Gifford dispersion coefficient approximations, and exponential pollutant decay. Long-term ground-level concentrations may be determined for one or two pollutants. Any number of point sources and area sources may be input to the model. Long-term meteorological conditions are input by a meteorological joint frequency function which gives the probability of occurrence for each of 576 different cases. Five scenarios of meteorological data and source emission inventories may be input to the model for one run. Plume rise is calculated by the most representative of six different methods and optionally can use only final rise. An option allows the simulation of dispersion found in urban areas. TCM-2 is well suited for, but not limited to, the following applications: Stack parameter design studies; Fuel conversion studies; Monitoring network design; Control strategy evaluation for SIP; Evaluation of the impact of new sources or source modifications for permit application review; Control technology evaluation; and Prevention of significant deterioration.
The Stark anomalous dispersion optical filter: The theory
NASA Technical Reports Server (NTRS)
Yin, B.; Shay, T. M.
1994-01-01
The Stark anomalous dispersion optical filter is a wide-frequency-tunable ultra-narrow-bandwidth optical filter. The first theoretical investigation of this filter matched to the wavelength of a doubled Nd:YAG laser is reported. The calculations show that such a filter may provide above 80 percent transmission, and a noise equivalent bandwidth of 3 GHz.
Dispersion of Mixed Brush Gold Nanorods in Polymer Matrices
NASA Astrophysics Data System (ADS)
Ferrier, Robert; Koski, Jason; Riggleman, Robert; Composto, Russell
In this work we investigate, both experimentally and through hybrid particle/self-consistent field theoretic (hSCFT) calculations, the dispersion state of gold nanorods (AuNRs) grafted with homopolymer, bidispersed, or mixed polymer brushes. AuNRs are grafted with 11.5 kg/mol PS (HNRs), 11.5 kg/mol PS and 5.3 kg/mol PS (BNRs), or 11.5 kg/mol PS and 5 kg/mol poly(methyl methacrylate) (PMMA) (MBNRs) and cast in PS or PMMA films consisting of short to very long chains compared to the grafted brush. We further investigated the MBNR systems by varying the length of the PS brush. Overall, we find that the MBNRs dispersed markedly better than the other brush types (HNRs or BNRs) in PS matrices. We utilize hSCFT calculations, in particular potential of mean force (PMF) and brush profile calculations, to elucidate the thermodynamics of these systems. The PMFs and brush profiles exhibit similar trends for the BNRs and MBNRs where the short grafted chain forces the longer grafted chain away from the AuNR surface and promotes wetting by the matrix chains. The hSCFT calculations demonstrated qualitative trends consistent with the aggregation observed for AuNRs in PMMA matrices. Therefore, we have demonstrated that MBNR dispersion in polymer matrices is enhanced compared to the HNR and BNR cases, which extends the dispersion window for new combinations of nanorods and polymers.
Exchange Coulomb interaction in nanotubes: Dispersion of Langmuir waves
Andreev, P. A. Ivanov, A. Yu.
2015-07-15
The microscopic derivation of the Coulomb exchange interaction for electrons located on the nanotubes is presented. The derivation is based on the many-particle quantum hydrodynamic method. We demonstrate the effect of curvature of the nanocylinders on the force of exchange interaction. We calculate corresponding dispersion dependencies for electron oscillations on the nanotubes.
Effect of Discharge Gap Dispersion on Ozone Generation Characteristics
NASA Astrophysics Data System (ADS)
Kitayama, Jiro; Kuzumoto, Masaki; Yoshikawa, Takao
In this paper, the effect of discharge gap dispersion on ozone generation characteristics of a tube type ozone generator is investigated quantitably by calculation and experiment. It is clarified that off-centered electrode layout seriously affects the ozone generation characteristics. Therefore, it is extremely important for efficient and high concentration ozone generation to shape a uniform discharge space.
Experimental Investigation of the Dispersion of Liquids by Ejection Atomizers
NASA Astrophysics Data System (ADS)
Arkhipov, V. A.; Bondarchuk, S. S.; Evsevleev, M. Ya.; Zharova, I. K.; Zhukov, A. S.; Zmanovskii, S. V.; Kozlov, E. A.; Konovalenko, A. I.; Trofimov, V. F.
2013-11-01
This paper presents the results of an experimental investigation of the dispersivity of liquid droplets in the spray cone of ejection atomizers. The calculational droplet size distribution function was measured by the method of low angles of the probe laser radiation scattering indicatrix on a pneumohydraulic bench under cold blow conditions. The efficiency of the proposed circuit designs of atomizers has been analyzed.
NASA Astrophysics Data System (ADS)
Flowe, Anita Coulter
1997-08-01
The objectives of this work were to show that a well- tested three dimensional turbulent kinetic energy/dissipation (k-ɛ) computational model, FLUENT, can be used to model the fluid flow fields and the dispersion effects in the flow fields generated by a variety of building shapes, and to use the data sets to develop parameterizations useful to air quality modeling needs. Once the appropriateness of the computational model was proven through comparisons with experimental results, and data generated for several ratios of building width to building heights, the flow field was examined to determine the length of the recirculation cavity as a function of the ratio of building width to building height both in front of and in the rear of the building. The dimensions of the recirculation cavity in the front of the building have previously not been included in regulatory models, so both the height and length of this front recirculation cavity was parameterized as a function of the ratio of building width to building height. The maximum downdraft was also parameterized as a function of the building width to building height ratio. The dispersive effects were then examined to determine useful parameters. The average concentration in the recirculation cavity was calculated and modeled as a function of ratio of the building width to building height. Finally, because Gaussian models are generally used for regulatory modeling of dispersion effects, the dispersive field was analyzed to find improved dispersion coefficients to use in Gaussian models. The vertical and horizontal dispersion coefficients were computed as a function of distance from the dispersive source for each of the ratios of building width to building height, and then these functions were made a function of the ratio of building width to building height. These new dispersion coefficients, which were a function of both the distance from the stack and the ratio of building width to building height, were then used
PFG NMR study of hydrodynamic dispersion in porous media
NASA Astrophysics Data System (ADS)
Ding, Aimin
We have studied hydrodynamic dispersion in plastic bead packs using the pulsed field gradient (PFG) NMR technique. The bead diameter was varied from 15 to 138 mum and the Peclet number Pe varied from 0 to 10sp3 (the Peclet number is a dimensionless measure of the flow velocity). We studied the time dependence of both the longitudinal dispersion coefficient Dsb{||} and the transverse dispersion coefficient Dsb{⊥}. We observed transitions from decreasing with time at low Pe to increasing with time at high Pe for both Dsb{||} and Dsb{⊥}. We used our data to find the transition time tsb0 the time required for dispersion coefficient to reach its long time value. For both Dsb{||} and Dsb{⊥}, we found a power-law dependence of tsb0 on Pe, as has been predicted by Koch and Brady. The Pe dependence of tsb0 provides information on the operative dispersion mechanisms. Our results show that both convection dispersion and boundary layer dispersion contribute to longitudinal dispersion in our experiments. However, the Pe dependence of tsb0 for transverse dispersion does not agree with the theoretical prediction of Koch and Brady. We measured Dsb{||} and Dsb{⊥} as a function of Pe. Our experimental results are consistent with previous results measured using conventional methods. We found that the results for longitudinal dispersion agree with Saffman's capillary tube model in our observation range. The results for transverse dispersion agree with Koch and Brady's fixed bed model to some extent, but at low Pe, the disagreement is significant. We obtained the wave-number and frequency dependent nonlocal dispersion coefficient {buildrel{≈}/{D}}sb{| |,⊥}(q,omega) from our PFG NMR data. In the local (long time and distance) limit, our results agree with previous results obtained with conventional methods and for no flow they agree with a simple model of restricted diffusion. Our results for nonlocal dispersion with flow are in reasonable agreement with Koch and Brady
Velocity Dispersions Across Bulge Types
Fabricius, Maximilian; Bender, Ralf; Hopp, Ulrich; Saglia, Roberto; Drory, Niv; Fisher, David
2010-06-08
We present first results from a long-slit spectroscopic survey of bulge kinematics in local spiral galaxies. Our optical spectra were obtained at the Hobby-Eberly Telescope with the LRS spectrograph and have a velocity resolution of 45 km/s (sigma*), which allows us to resolve the velocity dispersions in the bulge regions of most objects in our sample. We find that the velocity dispersion profiles in morphological classical bulge galaxies are always centrally peaked while the velocity dispersion of morphologically disk-like bulges stays relatively flat towards the center--once strongly barred galaxies are discarded.
Programmable calculator stress analysis
Van Gulick, L.A.
1983-01-01
Advanced programmable alphanumeric calculators are well suited for closed-form calculation of pressure-vessel stresses. They offer adequate computing power, portability, special programming features, and simple interactive execution procedures. Representative programs that demonstrate calculator capabilities are presented. Problems treated are stress and strength calculations in thick-walled pressure vessels and the computation of stresses near head/pressure-vessel junctures.
Dispersion limits in the design of small-mode-area photonic crystal fibers
NASA Astrophysics Data System (ADS)
Zeleny, Richard; Lucki, Michal
2014-10-01
The generally accepted view is that photonic crystal fibers (PCFs) with a small effective mode area allow the control of chromatic dispersion in the near-infrared region. For this purpose, a silica index guiding PCF with hexagonal cladding is investigated to find its dispersion limitation. In addition, chromatic dispersion is entirely controlled by only three structural parameters; the influence of each structural parameter is examined and described in detail. Understanding the mechanism governing chromatic dispersion is necessary not only for the fiber design and dispersion tailoring, but also to predict the potential manufacturing tolerances. In spite of the fact that the fiber with specific parameters matches its relative dispersion slope to that of standard single-mode fibers over a large range of operating wavelengths, the negative dispersion parameter is not higher than those in commercially available dispersion-compensating fibers. Therefore, the fiber parameters are modified to find the balance between the operating bandwidth and the high negative dispersion parameter. The limit value for the dispersion parameter is found to be -1600 ps.nm-1.km-1 at 1550 nm, where the dispersion slope is achieved for the 120-nm wide band. We predict that the negative dispersion parameter cannot be higher in small effective mode area PCFs operating over a bandwidth larger than the one considered here. The results are calculated by the full-vectorial finite difference frequency domain method. The simulation model is verified by convergence testing.
Dispersion of sound in a combustion duct by fuel droplets and soot particles
NASA Technical Reports Server (NTRS)
Miles, J. H.; Raftopoulos, D. D.
1979-01-01
Dispersion and attenuation of acoustic plane wave disturbances propagating in a ducted combustion system are studied. The dispersion and attenuation are caused by fuel droplet and soot emissions from a jet engine combustor. The attenuation and dispersion are due to heat transfer and mass transfer and viscous drag forces between the emissions and the ambient gas. Theoretical calculations show sound propagation at speeds below the isentropic speed of sound at low frequencies. Experimental results are in good agreement with the theory.
Dispersion of sound in a combustion duct by fuel droplets and soot particles
NASA Technical Reports Server (NTRS)
Miles, J. H.; Raftopoulos, D. D.
1979-01-01
Dispersion and attenuation of acoustic plane wave disturbances propagating in a ducted combustion system are studied. The dispersion and attenuation are caused by fuel droplet and soot emissions from a jet engine combustor. The attenuation and dispersion are due to heat transfer and mass transfer and viscous drag forces between the emissions and the ambient gas. Theoretical calculations show sound propagation at speeds below the isentropic speed of sound at low frequencies. Experimental results are in good agreement with the theory.
Dispersion in photonic crystals
NASA Astrophysics Data System (ADS)
Witzens, Jeremy
2005-11-01
Investigations on the dispersive properties of photonic crystals, modified scattering in ring-resonators, monolithic integration of vertical-cavity surface-emitting lasers and advanced data processing techniques for the finite-difference time-domain method are presented. Photonic crystals are periodic mesoscopic arrays of scatterers that modify the propagation properties of electromagnetic waves in a similar way as "natural" crystals modify the properties of electrons in solid-state physics. In this thesis photonic crystals are implemented as planar photonic crystals, i.e., optically thin semiconductor films with periodic arrays of holes etched into them, with a hole-to-hole spacing of the order of the wavelength of light in the dielectric media. Photonic crystals can feature forbidden frequency ranges (the band-gaps) in which light cannot propagate. Even though most work on photonic crystals has focused on these band-gaps for application such as confinement and guiding of light, this thesis focuses on the allowed frequency regions (the photonic bands) and investigates how the propagation of light is modified by the crystal lattice. In particular the guiding of light in bulk photonic crystals in the absence of lattice defects (the self-collimation effect) and the angular steering of light in photonic crystals (the superprism effect) are investigated. The latter is used to design a planar lightwave circuit for frequency domain demultiplexion. Difficulties such as efficient insertion of light into the crystal are resolved and previously predicted limitations on the resolution are circumvented. The demultiplexer is also fabricated and characterized. Monolithic integration of vertical-cavity surface-emitting lasers by means of resonantly enhanced grating couplers is investigated. The grating coupler is designed to bend light through a ninety-degree angle and is characterized with the finite-difference time-domain method. The vertical-cavity surface-emitting lasers are
Dispersion relation for hadronic light-by-light scattering: two-pion contributions
Colangelo, Gilberto; Hoferichter, Martin; Procura, Massimiliano; ...
2017-04-27
In our third paper of a series dedicated to a dispersive treatment of the hadronic light-by-light (HLbL) tensor, we derive a partial-wave formulation for two-pion intermediate states in the HLbL contribution to the anomalous magnetic moment of the muon (g - 2)μ, including a detailed discussion of the unitarity relation for arbitrary partial waves. We show that obtaining a final expression free from unphysical helicity partial waves is a subtle issue, which we thoroughly clarify. As a by-product, we obtain a set of sum rules that could be used to constrain future calculations of γ*γ* → ππ. We validate the formalism extensively using the pion-box contribution, defined by two-pion intermediate states with a pion-pole left-hand cut, and demonstrate how the full known result is reproduced when resumming the partial waves. Using dispersive fits to high-statistics data for the pion vector form factor, we provide an evaluation of the full pion box, amore » $$π-box\\atop{μ}$$ =-15.9(2) × 10-11. As an application of the partial-wave formalism, we present a first calculation of ππ-rescattering effects in HLbL scattering, with γ*γ* → ππ helicity partial waves constructed dispersively using ππ phase shifts derived from the inverse-amplitude method. In this way, the isospin-0 part of our calculation can be interpreted as the contribution of the f0(500) to HLbL scattering in (g - 2)μ. We also argue that the contribution due to charged-pion rescattering implements corrections related to the corresponding pion polarizability and show that these are moderate. Our final result for the sum of pion-box contribution and its S-wave rescattering corrections reads a$$π-box\\atop{μ}$$ + a$$ππ, π-pole LHC\\atop{μ, J=0}$$ = -24(1) × 10-11.« less
Rahar, Kailash Kumar; Pahadiya, Hans Raj; Barupal, Kishan Gopal; Mathur, C. P.; Lakhotia, Manoj
2016-01-01
Aims: To find out and investigate whether the QT dispersion and QTc dispersion is related to type and prognosis of the acute stroke in patients presenting within 24 h of the onset of stroke. Settings and Design: This was a observational study conducted at Mahatma Gandhi Hospital, Dr. SN. Medical College, Jodhpur, during January 2014 to January 2015. Subjects and Methods: The patients presented within 24 h of onset of acute stroke (hemorrhagic, infarction, or transient ischemic event) were included in the study. The stroke was confirmed by computed tomography scan and magnetic resonance imaging. Patients with (i) altered sensorium because of metabolic, infective, seizures, trauma, or tumor; (ii) prior history of cardiovascular disease, electrocardiographic abnormalities’ because of dyselectrolytemia; and (iii) and patients who were on drugs (antiarrhythmic drugs, antipsychotic drugs, erythromycin, theophylline, etc.,) which known to cause electrocardiogram changes, were excluded from the study. National Institute of Health Stroke Score (NIHSS) was calculated at the time of admission and Modified Rankin Scale (MRS) at the time of discharge. Fifty age- and sex-matched healthy controls included. Statistical Analysis Used: Student's t-test, ANOVA, and area under curve for sensitivity and specificity for the test. Results: We included 52 patients (male/female: 27/25) and 50 controls (26/24). The mean age of patients was 63.17 ± 08.90 years. Of total patients, infarct was found in 32 (61.53%), hemorrhage in 18 (34.61%), transient ischemic attack (TIA) in 1 (1.9%), and subarachnoid hemorrhage in 1 (1.9%) patient. The QT dispersion and QTc dispersion were significantly higher in cases as compare to controls. (87.30 ± 24.42 vs. 49.60 ± 08.79 ms; P < 0.001) and (97.53 ± 27.36 vs. 56.28 ± 09.86 ms; P < 0.001). Among various types of stroke, the mean QT dispersion and QTc dispersion were maximum and significantly higher in hemorrhagic stroke as compared to infarct and
Rahar, Kailash Kumar; Pahadiya, Hans Raj; Barupal, Kishan Gopal; Mathur, C P; Lakhotia, Manoj
2016-01-01
To find out and investigate whether the QT dispersion and QTc dispersion is related to type and prognosis of the acute stroke in patients presenting within 24 h of the onset of stroke. This was a observational study conducted at Mahatma Gandhi Hospital, Dr. SN. Medical College, Jodhpur, during January 2014 to January 2015. The patients presented within 24 h of onset of acute stroke (hemorrhagic, infarction, or transient ischemic event) were included in the study. The stroke was confirmed by computed tomography scan and magnetic resonance imaging. Patients with (i) altered sensorium because of metabolic, infective, seizures, trauma, or tumor; (ii) prior history of cardiovascular disease, electrocardiographic abnormalities' because of dyselectrolytemia; and (iii) and patients who were on drugs (antiarrhythmic drugs, antipsychotic drugs, erythromycin, theophylline, etc.,) which known to cause electrocardiogram changes, were excluded from the study. National Institute of Health Stroke Score (NIHSS) was calculated at the time of admission and Modified Rankin Scale (MRS) at the time of discharge. Fifty age- and sex-matched healthy controls included. Student's t-test, ANOVA, and area under curve for sensitivity and specificity for the test. We included 52 patients (male/female: 27/25) and 50 controls (26/24). The mean age of patients was 63.17 ± 08.90 years. Of total patients, infarct was found in 32 (61.53%), hemorrhage in 18 (34.61%), transient ischemic attack (TIA) in 1 (1.9%), and subarachnoid hemorrhage in 1 (1.9%) patient. The QT dispersion and QTc dispersion were significantly higher in cases as compare to controls. (87.30 ± 24.42 vs. 49.60 ± 08.79 ms; P < 0.001) and (97.53 ± 27.36 vs. 56.28 ± 09.86 ms; P < 0.001). Among various types of stroke, the mean QT dispersion and QTc dispersion were maximum and significantly higher in hemorrhagic stroke as compared to infarct and TIA (P < 0.001). The mean QT dispersion and QTc dispersion was found significantly high
2001-05-21
opponent. Moreover, dispersed tactics may be the only way to "kick in the door" for future forcible entry operations. 16 End Notes ____________________ 1...CURRENT SHORTCOMINGS 13 SUMMARY 15 END ... NOTES 16 BIBILIOGRAPHY 17 1 The student
Asphaltene dispersants as demulsification aids
Manek, M.B.
1995-11-01
Destabilization of petroleum asphaltenes may cause a multitude of problems in crude oil recovery and production. One major problem is their agglomeration at the water-oil interface of crude oil emulsions. Once agglomeration occurs, destabilized asphaltenes can form a thick pad in the dehydration equipment, which significantly reduces the demulsification rate. Certain polymeric dispersants increase asphaltene solubilization in hydrocarbon media, and when used in conjunction with emulsion breakers, facilitate the demulsification process. Two case studies are presented that demonstrate how asphaltene dispersants can efficiently inhibit pad formation and help reduce demulsifier dosage. Criteria for dispersant application and selection are discussed, which include the application of a novel laboratory technique to assess asphaltene stabilization in the crude oil. The technique monitors asphaltene agglomeration while undergoing titration with an incompatible solvent (precipitant). The method was used to evaluate stabilization of asphaltenes in the crude oil and to screen asphaltene dispersants.
Does Random Dispersion Help Survival?
NASA Astrophysics Data System (ADS)
Schinazi, Rinaldo B.
2015-04-01
Many species live in colonies that prosper for a while and then collapse. After the collapse the colony survivors disperse randomly and found new colonies that may or may not make it depending on the new environment they find. We use birth and death chains in random environments to model such a population and to argue that random dispersion is a superior strategy for survival.
Dispersion coefficients for coastal regions
MacRae, B.L.; Kaleel, R.J.; Shearer, D.L.
1983-03-01
The Nuclear Regulatory Commission (NRC) has undertaken an extensive atmospheric dispersion research and measurement program from which it is intended will emerge improved predictive techniques for employment in licensing decisions and for emergency planning and response. Through this program the NRC has conducted field measurement programs over a wide range of geographic and topographic locations, and are using the acquired tracer and meteorological measurements to evaluate existing dispersion models and prediction techniques, and to develop new techniques when necessary.
Concentrated dispersions of therapeutic proteins
NASA Astrophysics Data System (ADS)
Truskett, Thomas
2013-03-01
In this talk, recent experiments characterizing highly concentrated dispersions of therapeutic proteins, which are of interest for at-home treatment of disease via subcutaneous injection, are discussed. In particular, evidence for protein nanocluster formation in these systems is explored. The roles of dispersion composition, pH, and experimental pathway are elucidated for several protein systems. Observed correlations between nanocluster properties, solution viscosity, and protein stability/activity, as well as prospective theoretical explanations for these behaviors, are highlighted.
Polyol-assisted vermiculite dispersion in polyurethane nanocomposites.
Park, Yong Tae; Qian, Yuqiang; Lindsay, Chris I; Nijs, Conny; Camargo, Rafael E; Stein, Andreas; Macosko, Christopher W
2013-04-24
The largest use of polyurethane (PU) is as closed cell rigid foams for thermal insulation. One problem is loss of blowing gases, which leads to slow increase in thermal conductivity. PU composites with plate-like nanofillers create a diffusion barrier, reducing gas transport and slowing insulation aging. In this research, a new in situ intercalative polymerization is described to disperse vermiculite (VMT) in PU. When VMT was modified by cation exchange with long-chain quaternary ammonium, the dispersion in methylene diphenyl diisocyanate (MDI) was significantly improved. Dispersion of clay in MDI was further improved by combining high intensity dispersive mixing with a polyol-clay preblend (master-batch). The VMT dispersibility was characterized using rheology, microscopy, and X-ray scattering/diffraction. With the method of polyol-assisted VMT dispersion, electron microscopy revealed extensive intercalation and exfoliation of clay particles. In contrast, simple mixing of organoclay in MDI resulted in macroscopic localization and poor distribution of clay particles in PU. The final nanocomposites prepared by the master-batch method showed enhancement of mechanical properties (85% increase in elastic modulus) and reduction in permeability to CO2, as much as 40%, at a low clay concentration of 3.3 wt %.
Flying shells: historical dispersal of marine snails across Central America
Miura, Osamu; Torchin, Mark E.; Bermingham, Eldredge; Jacobs, David K.; Hechinger, Ryan F.
2012-01-01
The geological rise of the Central American Isthmus separated the Pacific and the Atlantic oceans about 3 Ma, creating a formidable barrier to dispersal for marine species. However, similar to Simpson's proposal that terrestrial species can ‘win sweepstakes routes’—whereby highly improbable dispersal events result in colonization across geographical barriers—marine species may also breach land barriers given enough time. To test this hypothesis, we asked whether intertidal marine snails have crossed Central America to successfully establish in new ocean basins. We used a mitochondrial DNA genetic comparison of sister snails (Cerithideopsis spp.) separated by the rise of the Isthmus. Genetic variation in these snails revealed evidence of at least two successful dispersal events between the Pacific and the Atlantic after the final closure of the Isthmus. A combination of ancestral area analyses and molecular dating techniques indicated that dispersal from the Pacific to the Atlantic occurred about 750 000 years ago and that dispersal in the opposite direction occurred about 72 000 years ago. The geographical distribution of haplotypes and published field evidence further suggest that migratory shorebirds transported the snails across Central America at the Isthmus of Tehuantepec in southern Mexico. Migratory birds could disperse other intertidal invertebrates this way, suggesting the Central American Isthmus may not be as impassable for marine species as previously assumed. PMID:21920976
Some improvements in DNA interaction calculations
NASA Technical Reports Server (NTRS)
Egan, J. T.; Swissler, T. J.; Rein, R.
1974-01-01
Calculations are made on specific DNA-type complexes using refined expressions for electrostatic and polarization energies. Dispersion and repulsive terms are included in the evaluation of the total interaction energy. It is shown that the expansion of the electrostatic potential to include multipole moments up to octopole is necessary to achieve convergence of first-order energies. Polarization energies are not as sensitive to this expansion. The calculations also support the usefulness of the hard sphere model for DNA hydrogen bonds and indicate how stacking interactions are influenced by second-order energies.
Determining ammonia emissions from a cattle feedlot with an inverse dispersion technique
USDA-ARS?s Scientific Manuscript database
An inverse-dispersion technique is used to calculate ammonia (NH3) gas emissions from a cattle feedlot. The technique relies on a simple backward Lagrangian stochastic (bLS) dispersion model to relate atmospheric NH3 concentration to the emission rate Qbls. Because the wind and the source configurat...
BALLISTIC DISPERSION OF MK 80 SERIES BOMBS DELIVERED IN STICKS BY THE A- 4 AIRCRAFT
The ballistic dispersion of low drag bombs dropped in sticks from the A-4 aircraft is calculated from test data. The data are inadeque to permit...determination of whether dispersion depends on slant range or time of fall, but an estimate can be made for delivery parameters of interest.
Precision measurements of pulsar dispersion
NASA Astrophysics Data System (ADS)
Phillips, J. A.; Wolszczan, A.
1992-01-01
Timing observations of eight pulsars over a frequency range from 25 MHz to 5 GHz are performed in order to investigate possible departures from the nu exp -2 dispersion law that applies to the propagation of radio waves through the tenuous interstellar plasma. Apparent deviations from a cold plasma law were found at high frequencies (2-5 GHz) for two pulsars: PSR 0525 + 21 and PSR 1237 + 25. The absence of LF deviations from a nu exp -2 dispersion law at the 1-ms level is consistent with a Kolmogorov spectrum of the interstellar plasma turbulence extending to scale sizes of about 10 exp 15 cm. Forms of the interstellar dispersion law which included nu exp -3 and nu exp -4 terms arising from clumping, magnetic fields, and temperature effects in the dispersing gas were examined. Pulsar dispersion was found to be an insensitive probe of gas temperature, even for a hot plasma. Dispersion delays varying as nu exp -4 could be detected at decameter wavelengths if the line of sight passes through a dense H II region.
Calculating Gravitational Wave Signature from Binary Black Hole Mergers
NASA Technical Reports Server (NTRS)
Centrella, Joan M.
2003-01-01
Calculations of the final merger stage of binary black hole evolution can only be carried out using full scale numerical relativity simulations. We review the status of these calculations, highlighting recent progress and current challenges.
Predation risk increases dispersal distance in prey
NASA Astrophysics Data System (ADS)
Otsuki, Hatsune; Yano, Shuichi
2014-06-01
Understanding the ecological factors that affect dispersal distances allows us to predict the consequences of dispersal. Although predator avoidance is an important cause of prey dispersal, its effects on dispersal distance have not been investigated. We used simple experimental setups to test dispersal distances of the ambulatory dispersing spider mite ( Tetranychus kanzawai) in the presence or absence of a predator ( Neoseiulus womersleyi). In the absence of predators, most spider mites settled in adjacent patches, whereas the majority of those dispersing in the presence of predators passed through adjacent patches and settled in distant ones. This is the first study to experimentally demonstrate that predators induce greater dispersal distance in prey.
Formation of metallic and metal hydrous oxide dispersions
NASA Technical Reports Server (NTRS)
Matijevic, E.; Sapieszko, R. S.
1979-01-01
The formation, via hydrothermally induced precipitation from homogeneous solution, of a variety of well-defined dispersions of metallic and hydrous metal in the conditions under which the particles are produced (e.g., pH and composition of the growth medium, aging temperature, rate of heating, or degree of agitation) can be readily discerned by following changes in the mass, composition, and morphology of the final solid phase. The generation of colloidal dispersions in the absence of gravity convection or sedimentation effects may result in the appearance of morphological modifications not previously observed in terrestrially formed hydrosols.
Linear dissipative soliton in an anomalous-dispersion fiber laser.
Wang, Ruixin; Dai, Yitang; Yin, Feifei; Xu, Kun; Li, Jianqiang; Lin, Jintong
2014-12-01
We report on the generation of linear dissipative soliton (LDS) from an erbium-doped actively mode-locked fiber laser. We show that depending on the down-chirping effect of quadratic phase modulation, instead of the fiber nonlinear Kerr effect in an all-normal-dispersion (ANDi) cavity, stable LDS can be realized in the linear dissipative system. The DS operation of ANDi laser and LDS operation of anomalous dispersion laser are experimentally investigated and compared, and the formation mechanisms of the DS and LDS are discussed. Finally, optical frequency comb generated by the LDS laser is demonstrated.
Sedlak, Robert; Řezáč, Jan
2017-04-11
In density functional theory-based symmetry-adapted perturbation theory (DFT-SAPT) interaction energy calculations, the most demanding step is the calculation of the London dispersion term. For this bottleneck to be avoided and DFT-SAPT to be made applicable to larger systems, the ab initio dispersion terms can be replaced by one calculated empirically at an almost negligible cost ( J. Phys. Chem. A 2011 ; 115 , 11321 - 11330 ). We present an update of this approach that improves accuracy and makes the method applicable to a wider range of systems. It is based on Grimme's D3 dispersion correction for DFT, where the damping function is changed to one suitable for the calculation of the complete dispersion energy. The best results have been achieved with the Tang-Toennies damping function. It has been parametrized on the S66×8 data set for which we report density fitting DFT-SAPT/aug-cc-pVTZ interaction energy decomposition. The method has been validated on a diverse set of noncovalent systems including difficult cases such as very compact noncovalent complexes of charge-transfer type. The root-mean-square errors in the complete test set are 0.73 and 0.42 kcal mol(-1) when charge-transfer complexes are excluded. The proposed empirical dispersion terms can also be used outside the DFT-SAPT framework, e.g., for the estimation of the amount of dispersion in a calculation where only the total interaction energy is known.
Electrokinetic induced solute dispersion in porous media; pore network modeling
NASA Astrophysics Data System (ADS)
Li, Shuai; Schotting, Ruud; Raoof, Amir
2013-04-01
Electrokinetic flow plays an important role in remediation process, separation technique, and chromatography. The solute dispersion is a key parameter to determine transport efficiency. In this study, we present the electrokinetic effects on solute dispersion in porous media at the pore scale, using a pore network model. The analytical solution of the electrokinetic coupling coefficient was obtained to quantity the fluid flow velocity in a cylinder capillary. The effect of electrical double layer on the electrokinetic coupling coefficient was investigated by applying different ionic concentration. By averaging the velocity over cross section within a single pore, the average flux was obtained. Applying such single pore relationships, in the thin electrical double layer limit, to each and every pore within the pore network, potential distribution and the induced fluid flow was calculated for the whole domain. The resulting pore velocities were used to simulate solute transport within the pore network. By averaging the results, we obtained the breakthrough curve (BTC) of the average concentration at the outlet of the pore network. Optimizing the solution of continuum scale advection-dispersion equation to such a BTC, solute dispersion coefficient was estimated. We have compared the dispersion caused by electrokinetic flow and pure pressure driven flow under different Peclet number values. In addition, the effect of microstructure and topological properties of porous media on fluid flow and solute dispersion is presented, mainly based on different pore coordination numbers.
NASA Technical Reports Server (NTRS)
Ahrens, Thomas J.
2002-01-01
Many Martian craters are surrounded by ejecta blankets which appear to have been fluidized forming lobate and layered deposits terminated by one or more continuous distal scarps, or ramparts. One of the first hypotheses for the formation of so-called rampart ejecta features was shock-melting of subsurface ice, entrainment of liquid water into the ejecta blanket, and subsequent fluidized flow. Our work quantifies this concept. Rampart ejecta found on all but the youngest volcanic and polar regions, and the different rampart ejecta morphologies are correlated with crater size and terrain. In addition, the minimum diameter of craters with rampart features decreases with increasing latitude indicating that ice laden crust resides closer to the surface as one goes poleward on Mars. Our second goal in was to determine what strength model(s) reproduce the faults and complex features found in large scale gravity driven craters. Collapse features found in large scale craters require that the rock strength weaken as a result of the shock processing of rock and the later cratering shear flows. In addition to the presence of molten silicate in the intensely shocked region, the presence of water, either ambient, or the result of shock melting of ice weakens rock. There are several other mechanisms for the reduction of strength in geologic materials including dynamic tensile and shear induced fracturing. Fracturing is a mechanism for large reductions in strength. We found that by incorporating damage into the models that we could in a single integrated impact calculation, starting in the atmosphere produce final crater profiles having the major features found in the field measurements (central uplifts, inner ring, terracing and faulting). This was accomplished with undamaged surface strengths (0.1 GPa) and in depth strengths (1.0 GPa).
Heymann, Eckhard W; Lüttmann, Kathrin; Michalczyk, Inga M; Saboya, Pedro Pablo Pinedo; Ziegenhagen, Birgit; Bialozyt, Ronald
2012-01-01
Determining the distances over which seeds are dispersed is a crucial component for examining spatial patterns of seed dispersal and their consequences for plant reproductive success and population structure. However, following the fate of individual seeds after removal from the source tree till deposition at a distant place is generally extremely difficult. Here we provide a comparison of observationally and genetically determined seed dispersal distances and dispersal curves in a Neotropical animal-plant system. In a field study on the dispersal of seeds of three Parkia (Fabaceae) species by two Neotropical primate species, Saguinus fuscicollis and Saguinus mystax, in Peruvian Amazonia, we observationally determined dispersal distances. These dispersal distances were then validated through DNA fingerprinting, by matching DNA from the maternally derived seed coat to DNA from potential source trees. We found that dispersal distances are strongly right-skewed, and that distributions obtained through observational and genetic methods and fitted distributions do not differ significantly from each other. Our study showed that seed dispersal distances can be reliably estimated through observational methods when a strict criterion for inclusion of seeds is observed. Furthermore, dispersal distances produced by the two primate species indicated that these primates fulfil one of the criteria for efficient seed dispersers. Finally, our study demonstrated that DNA extraction methods so far employed for temperate plant species can be successfully used for hard-seeded tropical plants.
Heymann, Eckhard W.; Lüttmann, Kathrin; Michalczyk, Inga M.; Saboya, Pedro Pablo Pinedo; Ziegenhagen, Birgit; Bialozyt, Ronald
2012-01-01
Background Determining the distances over which seeds are dispersed is a crucial component for examining spatial patterns of seed dispersal and their consequences for plant reproductive success and population structure. However, following the fate of individual seeds after removal from the source tree till deposition at a distant place is generally extremely difficult. Here we provide a comparison of observationally and genetically determined seed dispersal distances and dispersal curves in a Neotropical animal-plant system. Methodology/Principal Findings In a field study on the dispersal of seeds of three Parkia (Fabaceae) species by two Neotropical primate species, Saguinus fuscicollis and Saguinus mystax, in Peruvian Amazonia, we observationally determined dispersal distances. These dispersal distances were then validated through DNA fingerprinting, by matching DNA from the maternally derived seed coat to DNA from potential source trees. We found that dispersal distances are strongly right-skewed, and that distributions obtained through observational and genetic methods and fitted distributions do not differ significantly from each other. Conclusions/Significance Our study showed that seed dispersal distances can be reliably estimated through observational methods when a strict criterion for inclusion of seeds is observed. Furthermore, dispersal distances produced by the two primate species indicated that these primates fulfil one of the criteria for efficient seed dispersers. Finally, our study demonstrated that DNA extraction methods so far employed for temperate plant species can be successfully used for hard-seeded tropical plants. PMID:22514748
Liu, Jianguo; Xue, Lifang; Wang, Yingjian; Kai, Guiyun; Dong, Xiaoyi
2007-11-01
We numerically investigated the impacts of the imperfect geometry structure on the nonlinear and chromatic dispersion properties of a microstructure fiber (MF). The statistical results show that the imperfect geometry structure degrades the high nonlinearity and fluctuates the chromatic dispersion in a MF. Moreover, the smaller air holes and the larger pitch are more likely to maintain the properties of nonlinearity and chromatic dispersion. Finally, the nonlinearity and chromatic dispersion are more insensitive to air-hole nonuniformity than to air-hole disorder. All of these will provide references for designing and fabricating MF.
Personal Finance Calculations.
ERIC Educational Resources Information Center
Argo, Mark
1982-01-01
Contains explanations and examples of mathematical calculations for a secondary level course on personal finance. How to calculate total monetary cost of an item, monthly payments, different types of interest, annual percentage rates, and unit pricing is explained. (RM)
Jiménez-Soto, Juan Manuel; Cárdenas, Soledad; Valcárcel, Miguel
2012-07-06
This article evaluates the usefulness of dispersed single-walled carbon nanohorns as sorbent for the isolation and preconcentration of triazines from waters. For this purpose, the carbon nanoparticles were oxidized to increase their solubility in aqueous media in order to obtain a stable dispersion that can be used as extractant of the selected pollutants. Then, 1 mL of the dispersion containing the oxidized single-walled carbon nanohorns at a concentration of 0.2 g/L was added to 10 mL of sample and stirred for 2 min using a vortex. Then, the whole volume was passed through a disposable 0.45 μm Nylon filter which retained the nanoparticles enriched with the triazines. Further elution with methanol permitted the gas chromatographic analysis of the analytes and subsequent identification and quantification by mass spectrometry working under the selected ion monitoring mode (SIM). The limits of detection (LODs) were in low nanogram per liter level, which allowed the detection of the selected triazines at the concentration stated by legislation. The precision of the method, calculated as relative standard deviation, was acceptable in all instances. Finally, the recovery study carried out in different water samples provided average values between 87% and 94%. The results obtained revealed the applicability of oxidized single-walled carbon nanohorns for the proposed analytical problem.
A new mobile-immobile model for reactive solute transport with scale-dependent dispersion
NASA Astrophysics Data System (ADS)
Gao, Guangyao; Zhan, Hongbin; Feng, Shaoyuan; Fu, Bojie; Ma, Ying; Huang, Guanhua
2010-08-01
This study proposed a new mobile-immobile model (MIM) to describe reactive solute transport with scale-dependent dispersion in heterogeneous porous media. The model was derived from the conventional MIM but assumed the dispersivity to be a linear or exponential function of travel distance. The linear adsorption and the first-order degradation of solute were also considered in the model. The Laplace transform technique and the de Hoog numerical Laplace inversion method were applied to solve the developed model. Solute breakthrough curves (BTCs) obtained from MIM with scale-dependent and constant dispersions were compared, and a constant effective dispersivity was provided to reflect the lumped scale-dependent dispersion effect. The effective dispersivity was calculated by arithmetically averaging the distance-dependent dispersivity. With this effective dispersivity, MIM could produce similar BTC as that from MIM with scale-dependent dispersion in porous media with moderate heterogeneity. The applicability of the proposed new model was tested with concentration data from a 1,250-cm long and highly heterogeneous soil column. The simulation results indicated that MIM with constant and linear distance-dependent dispersivities were unable to adequately describe the measured BTCs in the column, while MIM with exponential distance-dependent dispersivity satisfactorily captured the evolution of BTCs.
Dispersion corrections to density functionals for water aromatic interactions.
Zimmerli, Urs; Parrinello, Michele; Koumoutsakos, Petros
2004-02-08
We investigate recently published methods for extending density functional theory to the description of long-range dispersive interactions. In all schemes an empirical correction consisting of a C6r(-6) term is introduced that is damped at short range. The coefficient C6 is calculated either from average molecular or atomic polarizabilities. We calculate geometry-dependent interaction energy profiles for the water benzene cluster and compare the results with second-order Møller-Plesset calculations. Our results indicate that the use of the B3LYP functional in combination with an appropriate mixing rule and damping function is recommended for the interaction of water with aromatics.
Dispersion relations for electromagnetic wave propagation in chiral plasmas
Gao, M. X.; Guo, B. Peng, L.; Cai, X.
2014-11-15
The dispersion relations for electromagnetic wave propagation in chiral plasmas are derived using a simplified method and investigated in detail. With the help of the dispersion relations for each eignwave, we explore how the chiral plasmas exhibit negative refraction and investigate the frequency region for negative refraction. The results show that chirality can induce negative refraction in plasmas. Moreover, both the degree of chirality and the external magnetic field have a significant effect on the critical frequency and the bandwidth of the frequency for negative refraction in chiral plasmas. The parameter dependence of the effects is calculated and discussed.
Alfven wave dispersion behavior in single- and multicomponent plasmas
Rahbarnia, K.; Grulke, O.; Klinger, T.; Ullrich, S.; Sauer, K.
2010-03-15
Dispersion relations of driven Alfven waves (AWs) are measured in single- and multicomponent plasmas consisting of mixtures of argon, helium, and oxygen in a magnetized linear cylindrical plasma device VINETA [C. Franck, O. Grulke, and T. Klinger, Phys. Plasmas 9, 3254 (2002)]. The decomposition of the measured three-dimensional magnetic field fluctuations and the corresponding parallel current pattern reveals that the wave field is a superposition of L- and R-wave components. The dispersion relation measurements agree well with calculations based on a multifluid Hall-magnetohydrodynamic model if the plasma resistivity is correctly taken into account.