NASA Technical Reports Server (NTRS)
Knox, James Clinton
2016-01-01
The 1-D axially dispersed plug flow model is a mathematical model widely used for the simulation of adsorption processes. Lumped mass transfer coefficients such as the Glueckauf linear driving force (LDF) term and the axial dispersion coefficient are generally obtained by fitting simulation results to the experimental breakthrough test data. An approach is introduced where these parameters, along with the only free parameter in the energy balance equations, are individually fit to specific test data that isolates the appropriate physics. It is shown that with this approach this model provides excellent simulation results for the C02 on zeolite SA sorbent/sorbate system; however, for the H20 on zeolite SA system, non-physical deviations from constant pattern behavior occur when fitting dispersive experimental results with a large axial dispersion coefficient. A method has also been developed that determines a priori what values of the LDF and axial dispersion terms will result in non-physical simulation results for a specific sorbent/sorbate system when using the one-dimensional axially dispersed plug flow model. A relationship between the steepness of the adsorption equilibrium isotherm as indicated by the distribution factor, the magnitude of the axial dispersion and mass transfer coefficient, and the resulting non-physical behavior is derived. This relationship is intended to provide a guide for avoiding non-physical behavior by limiting the magnitude of the axial dispersion term on the basis of the mass transfer coefficient and distribution factor.
NASA Astrophysics Data System (ADS)
Liu, Lei; Tian, Bo; Zhen, Hui-Ling; Liu, De-Yin; Xie, Xi-Yang
2018-04-01
Under investigation in this paper is a variable-coefficient generalized dispersive water-wave system, which can simulate the propagation of the long weakly non-linear and weakly dispersive surface waves of variable depth in the shallow water. Under certain variable-coefficient constraints, by virtue of the Bell polynomials, Hirota method and symbolic computation, the bilinear forms, one- and two-soliton solutions are obtained. Bäcklund transformations and new Lax pair are also obtained. Our Lax pair is different from that previously reported. Based on the asymptotic and graphic analysis, with different forms of the variable coefficients, we find that there exist the elastic interactions for u, while either the elastic or inelastic interactions for v, with u and v as the horizontal velocity field and deviation height from the equilibrium position of the water, respectively. When the interactions are inelastic, we see the fission and fusion phenomena.
NASA Astrophysics Data System (ADS)
Sanskrityayn, Abhishek; Suk, Heejun; Kumar, Naveen
2017-04-01
In this study, analytical solutions of one-dimensional pollutant transport originating from instantaneous and continuous point sources were developed in groundwater and riverine flow using both Green's Function Method (GFM) and pertinent coordinate transformation method. Dispersion coefficient and flow velocity are considered spatially and temporally dependent. The spatial dependence of the velocity is linear, non-homogeneous and that of dispersion coefficient is square of that of velocity, while the temporal dependence is considered linear, exponentially and asymptotically decelerating and accelerating. Our proposed analytical solutions are derived for three different situations depending on variations of dispersion coefficient and velocity, respectively which can represent real physical processes occurring in groundwater and riverine systems. First case refers to steady solute transport situation in steady flow in which dispersion coefficient and velocity are only spatially dependent. The second case represents transient solute transport in steady flow in which dispersion coefficient is spatially and temporally dependent while the velocity is spatially dependent. Finally, the third case indicates transient solute transport in unsteady flow in which both dispersion coefficient and velocity are spatially and temporally dependent. The present paper demonstrates the concentration distribution behavior from a point source in realistically occurring flow domains of hydrological systems including groundwater and riverine water in which the dispersivity of pollutant's mass is affected by heterogeneity of the medium as well as by other factors like velocity fluctuations, while velocity is influenced by water table slope and recharge rate. Such capabilities give the proposed method's superiority about application of various hydrological problems to be solved over other previously existing analytical solutions. Especially, to author's knowledge, any other solution doesn't exist for both spatially and temporally variations of dispersion coefficient and velocity. In this study, the existing analytical solutions from previous widely known studies are used for comparison as validation tools to verify the proposed analytical solution as well as the numerical code of the Two-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (2DFATMIC) code and the developed 1D finite difference code (FDM). All such solutions show perfect match with the respective proposed solutions.
The influence of initial conditions on dispersion and reactions
NASA Astrophysics Data System (ADS)
Wood, B. D.
2016-12-01
In various generalizations of the reaction-dispersion problem, researchers have developed frameworks in which the apparent dispersion coefficient can be negative. Such dispersion coefficients raise several difficult questions. Most importantly, the presence of a negative dispersion coefficient at the macroscale leads to a macroscale representation that illustrates an apparent decrease in entropy with increasing time; this, then, appears to be in violation of basic thermodynamic principles. In addition, the proposition of a negative dispersion coefficient leads to an inherently ill-posed mathematical transport equation. The ill-posedness of the problem arises because there is no unique initial condition that corresponds to a later-time concentration distribution (assuming that if discontinuous initial conditions are allowed). In this presentation, we explain how the phenomena of negative dispersion coefficients actually arise because the governing differential equation for early times should, when derived correctly, incorporate a term that depends upon the initial and boundary conditions. The process of reactions introduces a similar phenomena, where the structure of the initial and boundary condition influences the form of the macroscopic balance equations. When upscaling is done properly, new equations are developed that include source terms that are not present in the classical (late-time) reaction-dispersion equation. These source terms depend upon the structure of the initial condition of the reacting species, and they decrease exponentially in time (thus, they converge to the conventional equations at asymptotic times). With this formulation, the resulting dispersion tensor is always positive-semi-definite, and the reaction terms directly incorporate information about the state of mixedness of the system. This formulation avoids many of the problems that would be engendered by defining negative-definite dispersion tensors, and properly represents the effective rate of reaction at early times.
Cho, Kyung Hwa; Lee, Seungwon; Ham, Young Sik; Hwang, Jin Hwan; Cha, Sung Min; Park, Yongeun; Kim, Joon Ha
2009-01-01
The present study proposes a methodology for determining the effective dispersion coefficient based on the field measurements performed in Gwangju (GJ) Creek in South Korea which is environmentally degraded by the artificial interferences such as weirs and culverts. Many previous works determining the dispersion coefficient were limited in application due to the complexity and artificial interferences in natural stream. Therefore, the sequential combination of N-Tank-In-Series (NTIS) model and Advection-Dispersion-Reaction (ADR) model was proposed for evaluating dispersion process in complex stream channel in this study. The series of water quality data were intensively monitored in the field to determine the effective dispersion coefficient of E. coli in rainy day. As a result, the suggested methodology reasonably estimates the dispersion coefficient for GJ Creek with 1.25 m(2)/s. Also, the sequential combined method provided Number of tank-Velocity-Dispersion coefficient (NVD) curves for convenient evaluation of dispersion coefficient of other rivers or streams. Comparing the previous studies, the present methodology is quite general and simple for determining the effective dispersion coefficients which are applicable for other rivers and streams.
Dispersion controlled by permeable surfaces: surface properties and scaling
Ling, Bowen; Tartakovsky, Alexandre M.; Battiato, Ilenia
2016-08-25
Permeable and porous surfaces are common in natural and engineered systems. Flow and transport above such surfaces are significantly affected by the surface properties, e.g. matrix porosity and permeability. However, the relationship between such properties and macroscopic solute transport is largely unknown. In this work, we focus on mass transport in a two-dimensional channel with permeable porous walls under fully developed laminar flow conditions. By means of perturbation theory and asymptotic analysis, we derive the set of upscaled equations describing mass transport in the coupled channel–porous-matrix system and an analytical expression relating the dispersion coefficient with the properties of themore » surface, namely porosity and permeability. Our analysis shows that their impact on the dispersion coefficient strongly depends on the magnitude of the Péclet number, i.e. on the interplay between diffusive and advective mass transport. Additionally, we demonstrate different scaling behaviours of the dispersion coefficient for thin or thick porous matrices. Our analysis shows the possibility of controlling the dispersion coefficient, i.e. transverse mixing, by either active (i.e. changing the operating conditions) or passive mechanisms (i.e. controlling matrix effective properties) for a given Péclet number. By elucidating the impact of matrix porosity and permeability on solute transport, our upscaled model lays the foundation for the improved understanding, control and design of microporous coatings with targeted macroscopic transport features.« less
NASA Astrophysics Data System (ADS)
Nägele, G.; Heinen, M.; Banchio, A. J.; Contreras-Aburto, C.
2013-11-01
Dynamic processes in dispersions of charged spherical particles are of importance both in fundamental science, and in technical and bio-medical applications. There exists a large variety of charged-particles systems, ranging from nanometer-sized electrolyte ions to micron-sized charge-stabilized colloids. We review recent advances in theoretical methods for the calculation of linear transport coefficients in concentrated particulate systems, with the focus on hydrodynamic interactions and electrokinetic effects. Considered transport properties are the dispersion viscosity, self- and collective diffusion coefficients, sedimentation coefficients, and electrophoretic mobilities and conductivities of ionic particle species in an external electric field. Advances by our group are also discussed, including a novel mode-coupling-theory method for conduction-diffusion and viscoelastic properties of strong electrolyte solutions. Furthermore, results are presented for dispersions of solvent-permeable particles, and particles with non-zero hydrodynamic surface slip. The concentration-dependent swelling of ionic microgels is discussed, as well as a far-reaching dynamic scaling behavior relating colloidal long- to short-time dynamics.
Kubo formulas for dispersion in heterogeneous periodic nonequilibrium systems.
Guérin, T; Dean, D S
2015-12-01
We consider the dispersion properties of tracer particles moving in nonequilibrium heterogeneous periodic media. The tracer motion is described by a Fokker-Planck equation with arbitrary spatially periodic (but constant in time) local diffusion tensors and drifts, eventually with the presence of obstacles. We derive a Kubo-like formula for the time-dependent effective diffusion tensor valid in any dimension. From this general formula, we derive expressions for the late time effective diffusion tensor and drift in these systems. In addition, we find an explicit formula for the late finite-time corrections to these transport coefficients. In one dimension, we give a closed analytical formula for the transport coefficients. The formulas derived here are very general and provide a straightforward method to compute the dispersion properties in arbitrary nonequilibrium periodic advection-diffusion systems.
On the Limitations of Breakthrough Curve Analysis in Fixed-Bed Adsorption
NASA Technical Reports Server (NTRS)
Knox, James C.; Ebner, Armin D.; LeVan, M. Douglas; Coker, Robert F.; Ritter, James A.
2016-01-01
This work examined in detail the a priori prediction of the axial dispersion coefficient from available correlations versus obtaining it and also mass transfer information from experimental breakthrough data and the consequences that may arise when doing so based on using a 1-D axially dispersed plug flow model and its associated Danckwerts outlet boundary condition. These consequences mainly included determining the potential for erroneous extraction of the axial dispersion coefficient and/or the LDF mass transfer coefficient from experimental data, especially when non-plug flow conditions prevailed in the bed. Two adsorbent/adsorbate cases were considered, i.e., carbon dioxide and water vapor in zeolite 5A, because they both experimentally exhibited significant non-plug flow behavior, and the water-zeolite 5A system exhibited unusual concentration front sharpening that destroyed the expected constant pattern behavior (CPB) when modeled with the 1-D axially dispersed plug flow model. Overall, this work showed that it was possible to extract accurate mass transfer and dispersion information from experimental breakthrough curves using a 1-D axial dispersed plug flow model when they were measured both inside and outside the bed. To ensure the extracted information was accurate, the inside the bed breakthrough curves and their derivatives from the model were plotted to confirm whether or not the adsorbate/adsorbent system was exhibiting CPB or any concentration front sharpening near the bed exit. Even when concentration front sharpening was occurring with the water-zeolite 5A system, it was still possible to use the experimental inside and outside the bed breakthrough curves to extract fundamental mass transfer and dispersion information from the 1-D axial dispersed plug flow model based on the systematic methodology developed in this work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotoh, K.; Graduate School of Engineering, Kyushu University, Nishi-ku, Fukuoka; Kubo, K.
2015-03-15
Authors have been developing a cryogenic pressure swing adsorption system for hydrogen isotope separation. In the problem of its design and operation, it is necessary to predict the concentration profiles developing in packed beds of adsorbent pellets. The profiling is affected by the longitudinal dispersion of gas flowing in packed beds, in addition to the mass transfer resistance in porous media of adsorbent pellets. In this work, an equation is derived for estimating the packed-bed dispersion coefficient of hydrogen isotopes, by analyzing the breakthrough curves of trace D{sub 2} or HD replacing H{sub 2} adsorbed in synthetic zeolite particles packedmore » columns at the liquefied nitrogen temperature 77.4 K. Since specialized for hydrogen isotopes, this equation can be considered to estimate the dispersion coefficients more reliable for the cryogenic hydrogen isotope adsorption process, than the existing equations. (authors)« less
NASA Astrophysics Data System (ADS)
Cortinez, J. M.; Valocchi, A. J.; Herrera, P. A.
2013-12-01
Because of the finite size of numerical grids, it is very difficult to correctly account for processes that occur at different spatial scales to accurately simulate the migration of conservative and reactive compounds dissolved in groundwater. In one hand, transport processes in heterogeneous porous media are controlled by local-scale dispersion associated to transport processes at the pore-scale. On the other hand, variations of velocity at the continuum- or Darcy-scale produce spreading of the contaminant plume, which is referred to as macro-dispersion. Furthermore, under some conditions both effects interact, so that spreading may enhance the action of local-scale dispersion resulting in higher mixing, dilution and reaction rates. Traditionally, transport processes at different spatial scales have been included in numerical simulations by using a single dispersion coefficient. This approach implicitly assumes that the separate effects of local-dispersion and macro-dispersion can be added and represented by a unique effective dispersion coefficient. Moreover, the selection of the effective dispersion coefficient for numerical simulations usually do not consider the filtering effect of the grid size over the small-scale flow features. We have developed a multi-scale Lagragian numerical method that allows using two different dispersion coefficients to represent local- and macro-scale dispersion. This technique considers fluid particles that carry solute mass and whose locations evolve according to a deterministic component given by the grid-scale velocity and a stochastic component that corresponds to a block-effective macro-dispersion coefficient. Mass transfer between particles due to local-scale dispersion is approximated by a meshless method. We use our model to test under which transport conditions the combined effect of local- and macro-dispersion are additive and can be represented by a single effective dispersion coefficient. We also demonstrate that for the situations where both processes are additive, an effective grid-dependent dispersion coefficient can be derived based on the concept of block-effective dispersion. We show that the proposed effective dispersion coefficient is able to reproduce dilution, mixing and reaction rates for a wide range of transport conditions similar to the ones found in many practical applications.
Dispersion and thermal properties of lithium aluminum silicate glasses doped with Cr3+ ions
NASA Astrophysics Data System (ADS)
El-Diasty, Fouad; Abdel-Baki, Manal; Abdel Wahab, Fathy A.; Darwish, Hussein
2006-10-01
A series of new lithium aluminum silicate (LAS) glass systems doped with chromium ion is prepared. The reflectance and transmittance of the glass slabs are recorded. By means of an iteration procedure, the glass refractive index n and the extinction coefficient k and their dispersions are obtained. Across a wide spectral range of 0.2-1.6 μm, the dispersion curves are used to determine the atomic and quantum constants of the prepared glasses. These findings provide the average oscillator wavelength, the average oscillator strength, oscillator energy, dispersion energy, lattice energy, and material dispersion of the glass materials to be calculated. For optical waveguide applications, the wavelength for zero material dispersion is obtained. Dilatometric measurements are performed and the thermal expansion coefficient is calculated to throw some light on the thermo-optical properties of the present glasses correlating them with their structure and the presence of nonbridging oxygen ions.
Lateral mixing in the Mississippi River below the confluence with the Ohio River
Rathbun, R.E.; Rostad, C.E.
2004-01-01
Lateral dispersion coefficients for two dispersants were determined for three sections of the Mississippi River below the confluence with the Ohio River. The dispersants were the specific conductance and an industrial organic compound (trimethyltriazinetrione). Three models based on the stream tube concept were used, and lateral dispersion coefficients computed from these models were comparable. Coefficients for the two dispersants also were comparable. Lateral dispersion coefficients were consistent with expectations based on the characteristics of the river sections. Overall average values were 0.444 m2/s for a relatively straight section of river, 1.69 m2/s for a section containing two sharp bends, and 2.22 m2/s for a long section containing four sharp bends and several small islands. The lateral dispersion coefficients measured for the Mississippi River are consistent with literature data and a water discharge relation. Results of this study provide lateral dispersion coefficients for a water discharge not previously reported in the literature as well as new values for the Mississippi River.
NASA Astrophysics Data System (ADS)
Lee, Jonghyun; Rolle, Massimo; Kitanidis, Peter K.
2018-05-01
Most recent research on hydrodynamic dispersion in porous media has focused on whole-domain dispersion while other research is largely on laboratory-scale dispersion. This work focuses on the contribution of a single block in a numerical model to dispersion. Variability of fluid velocity and concentration within a block is not resolved and the combined spreading effect is approximated using resolved quantities and macroscopic parameters. This applies whether the formation is modeled as homogeneous or discretized into homogeneous blocks but the emphasis here being on the latter. The process of dispersion is typically described through the Fickian model, i.e., the dispersive flux is proportional to the gradient of the resolved concentration, commonly with the Scheidegger parameterization, which is a particular way to compute the dispersion coefficients utilizing dispersivity coefficients. Although such parameterization is by far the most commonly used in solute transport applications, its validity has been questioned. Here, our goal is to investigate the effects of heterogeneity and mass transfer limitations on block-scale longitudinal dispersion and to evaluate under which conditions the Scheidegger parameterization is valid. We compute the relaxation time or memory of the system; changes in time with periods larger than the relaxation time are gradually leading to a condition of local equilibrium under which dispersion is Fickian. The method we use requires the solution of a steady-state advection-dispersion equation, and thus is computationally efficient, and applicable to any heterogeneous hydraulic conductivity K field without requiring statistical or structural assumptions. The method was validated by comparing with other approaches such as the moment analysis and the first order perturbation method. We investigate the impact of heterogeneity, both in degree and structure, on the longitudinal dispersion coefficient and then discuss the role of local dispersion and mass transfer limitations, i.e., the exchange of mass between the permeable matrix and the low permeability inclusions. We illustrate the physical meaning of the method and we show how the block longitudinal dispersivity approaches, under certain conditions, the Scheidegger limit at large Péclet numbers. Lastly, we discuss the potential and limitations of the method to accurately describe dispersion in solute transport applications in heterogeneous aquifers.
UNSTEADY DISPERSION IN RANDOM INTERMITTENT FLOW
The longitudinal dispersion coefficient of a conservative tracer was calculated from flow tests in a dead-end pipe loop system. Flow conditions for these tests ranged from laminar to transitional flow, and from steady to intermittent and random. Two static mixers linked in series...
Evaluating Force-Field London Dispersion Coefficients Using the Exchange-Hole Dipole Moment Model.
Mohebifar, Mohamad; Johnson, Erin R; Rowley, Christopher N
2017-12-12
London dispersion interactions play an integral role in materials science and biophysics. Force fields for atomistic molecular simulations typically represent dispersion interactions by the 12-6 Lennard-Jones potential using empirically determined parameters. These parameters are generally underdetermined, and there is no straightforward way to test if they are physically realistic. Alternatively, the exchange-hole dipole moment (XDM) model from density-functional theory predicts atomic and molecular London dispersion coefficients from first principles, providing an innovative strategy to validate the dispersion terms of molecular-mechanical force fields. In this work, the XDM model was used to obtain the London dispersion coefficients of 88 organic molecules relevant to biochemistry and pharmaceutical chemistry and the values compared with those derived from the Lennard-Jones parameters of the CGenFF, GAFF, OPLS, and Drude polarizable force fields. The molecular dispersion coefficients for the CGenFF, GAFF, and OPLS models are systematically higher than the XDM-calculated values by a factor of roughly 1.5, likely due to neglect of higher order dispersion terms and premature truncation of the dispersion-energy summation. The XDM dispersion coefficients span a large range for some molecular-mechanical atom types, suggesting an unrecognized source of error in force-field models, which assume that atoms of the same type have the same dispersion interactions. Agreement with the XDM dispersion coefficients is even poorer for the Drude polarizable force field. Popular water models were also examined, and TIP3P was found to have dispersion coefficients similar to the experimental and XDM references, although other models employ anomalously high values. Finally, XDM-derived dispersion coefficients were used to parametrize molecular-mechanical force fields for five liquids-benzene, toluene, cyclohexane, n-pentane, and n-hexane-which resulted in improved accuracy in the computed enthalpies of vaporization despite only having to evaluate a much smaller section of the parameter space.
An exact solution for the Hawking effect in a dispersive fluid
NASA Astrophysics Data System (ADS)
Philbin, T. G.
2016-09-01
We consider the wave equation for sound in a moving fluid with a fourth-order anomalous dispersion relation. The velocity of the fluid is a linear function of position, giving two points in the flow where the fluid velocity matches the group velocity of low-frequency waves. We find the exact solution for wave propagation in the flow. The scattering shows amplification of classical waves, leading to spontaneous emission when the waves are quantized. In the dispersionless limit the system corresponds to a 1 +1 -dimensional black-hole or white-hole binary and there is a thermal spectrum of Hawking radiation from each horizon. Dispersion changes the scattering coefficients so that the quantum emission is no longer thermal. The scattering coefficients were previously obtained by Busch and Parentani in a study of dispersive fields in de Sitter space [Phys. Rev. D 86, 104033 (2012)]. Our results give further details of the wave propagation in this exactly solvable case, where our focus is on laboratory systems.
NASA Astrophysics Data System (ADS)
Du, Zhong; Tian, Bo; Wu, Xiao-Yu; Liu, Lei; Sun, Yan
2017-07-01
Subpicosecond or femtosecond optical pulse propagation in the inhomogeneous fiber can be described by a higher-order nonlinear Schrödinger equation with variable coefficients, which is investigated in the paper. Via the Ablowitz-Kaup-Newell-Segur system and symbolic computation, the Lax pair and infinitely-many conservation laws are deduced. Based on the Lax pair and a modified Darboux transformation technique, the first- and second-order rogue wave solutions are constructed. Effects of the groupvelocity dispersion and third-order dispersion on the properties of the first- and second-order rouge waves are graphically presented and analyzed: The groupvelocity dispersion and third-order dispersion both affect the ranges and shapes of the first- and second-order rogue waves: The third-order dispersion can produce a skew angle of the first-order rogue wave and the skew angle rotates counterclockwise with the increase of the groupvelocity dispersion, when the groupvelocity dispersion and third-order dispersion are chosen as the constants; When the groupvelocity dispersion and third-order dispersion are taken as the functions of the propagation distance, the linear, X-shaped and parabolic trajectories of the rogue waves are obtained.
On the methods for determining the transverse dispersion coefficient in river mixing
NASA Astrophysics Data System (ADS)
Baek, Kyong Oh; Seo, Il Won
2016-04-01
In this study, the strengths and weaknesses of existing methods for determining the dispersion coefficient in the two-dimensional river mixing model were assessed based on hydraulic and tracer data sets acquired from experiments conducted on either laboratory channels or natural rivers. From the results of this study, it can be concluded that, when the longitudinal dispersion coefficient as well as the transverse dispersion coefficients must be determined in the transient concentration situation, the two-dimensional routing procedures, 2D RP and 2D STRP, can be employed to calculate dispersion coefficients among the observation methods. For the steady concentration situation, the STRP can be applied to calculate the transverse dispersion coefficient. When the tracer data are not available, either theoretical or empirical equations by the estimation method can be used to calculate the dispersion coefficient using the geometric and hydraulic data sets. Application of the theoretical and empirical equations to the laboratory channel showed that equations by Baek and Seo [[3], 2011] predicted reasonable values while equations by Fischer [23] and Boxwall and Guymer (2003) overestimated by factors of ten to one hundred. Among existing empirical equations, those by Jeon et al. [28] and Baek and Seo [6] gave the agreeable values of the transverse dispersion coefficient for most cases of natural rivers. Further, the theoretical equation by Baek and Seo [5] has the potential to be broadly applied to both laboratory and natural channels.
Lee, Jonghyun; Rolle, Massimo; Kitanidis, Peter K
2017-09-15
Most recent research on hydrodynamic dispersion in porous media has focused on whole-domain dispersion while other research is largely on laboratory-scale dispersion. This work focuses on the contribution of a single block in a numerical model to dispersion. Variability of fluid velocity and concentration within a block is not resolved and the combined spreading effect is approximated using resolved quantities and macroscopic parameters. This applies whether the formation is modeled as homogeneous or discretized into homogeneous blocks but the emphasis here being on the latter. The process of dispersion is typically described through the Fickian model, i.e., the dispersive flux is proportional to the gradient of the resolved concentration, commonly with the Scheidegger parameterization, which is a particular way to compute the dispersion coefficients utilizing dispersivity coefficients. Although such parameterization is by far the most commonly used in solute transport applications, its validity has been questioned. Here, our goal is to investigate the effects of heterogeneity and mass transfer limitations on block-scale longitudinal dispersion and to evaluate under which conditions the Scheidegger parameterization is valid. We compute the relaxation time or memory of the system; changes in time with periods larger than the relaxation time are gradually leading to a condition of local equilibrium under which dispersion is Fickian. The method we use requires the solution of a steady-state advection-dispersion equation, and thus is computationally efficient, and applicable to any heterogeneous hydraulic conductivity K field without requiring statistical or structural assumptions. The method was validated by comparing with other approaches such as the moment analysis and the first order perturbation method. We investigate the impact of heterogeneity, both in degree and structure, on the longitudinal dispersion coefficient and then discuss the role of local dispersion and mass transfer limitations, i.e., the exchange of mass between the permeable matrix and the low permeability inclusions. We illustrate the physical meaning of the method and we show how the block longitudinal dispersivity approaches, under certain conditions, the Scheidegger limit at large Péclet numbers. Lastly, we discuss the potential and limitations of the method to accurately describe dispersion in solute transport applications in heterogeneous aquifers. Copyright © 2017. Published by Elsevier B.V.
Charalampidis, E G; Kevrekidis, P G; Frantzeskakis, D J; Malomed, B A
2016-08-01
We consider a two-component, two-dimensional nonlinear Schrödinger system with unequal dispersion coefficients and self-defocusing nonlinearities, chiefly with equal strengths of the self- and cross-interactions. In this setting, a natural waveform with a nonvanishing background in one component is a vortex, which induces an effective potential well in the second component, via the nonlinear coupling of the two components. We show that the potential well may support not only the fundamental bound state, but also multiring excited radial state complexes for suitable ranges of values of the dispersion coefficient of the second component. We systematically explore the existence, stability, and nonlinear dynamics of these states. The complexes involving the excited radial states are weakly unstable, with a growth rate depending on the dispersion of the second component. Their evolution leads to transformation of the multiring complexes into stable vortex-bright solitons ones with the fundamental state in the second component. The excited states may be stabilized by a harmonic-oscillator trapping potential, as well as by unequal strengths of the self- and cross-repulsive nonlinearities.
NASA Astrophysics Data System (ADS)
Li, Ming-Zhen; Tian, Bo; Qu, Qi-Xing; Chai, Han-Peng; Liu, Lei; Du, Zhong
2017-12-01
In this paper, under investigation is a coupled variable-coefficient higher-order nonlinear Schrödinger system, which describes the simultaneous propagation of optical pulses in an inhomogeneous optical fiber. Based on the Lax pair and binary Darboux transformation, we present the nondegenerate N-dark-dark soliton solutions. With the graphical simulation, soliton propagation and interaction are discussed with the group velocity dispersion and fourth-order dispersion effects, which affect the velocity but have no effect on the amplitude. Linear, parabolic and periodic one dark-dark solitons are displayed. Interactions between the two solitons are presented as well, which are all elastic.
The behavior of groundwater with dispersion in coastal aquifers
NASA Astrophysics Data System (ADS)
Kakinuma, Tadao; Kishi, Yosuke; Inouchi, Kunimitsu
1988-04-01
A three-dimensional steady-state hydrodynamic dispersion model is used to simulate seawater encroachment in the confined aquifers in the estuaries of the Naka and Kiki Rivers in Japan. Two expressions of the dispersion coefficient are considered; one is constant over the entire region of the aquifer and the other is dependent on the flow velocity of the groundwater. The magnitudes of the constant dispersion coefficients in the horizontal and vertical directions, Dxx and Dzz, as well as the longitudinal and lateral dispersivities, aL and aT, are determined so as to reproduce the regional distributions of salt concentration in the confined aquifers in both estuaries. It is found that Dxx = 5 cm 2s -1, Dzz = 5-0.5 cm 2s -1 and aL = 1000-1250 m, aT = 100-125 m in the estuary of the Naka River; and Dxx = 0.2 cm 2s -1, Dzz = 0.2-0.02 cm 2s -1 and aL = 200 m, aT = 200-20 m in the estuary of the Kiki River. Examining the local distributions of the dispersion coefficient computed from the dispersivity and velocity fields of groundwater in both estuaries, the same value as estimated in the analysis with the constant dispersion coefficient is located in the middle layer of the aquifer. In the estuary of the Naka River, the piezometric surface predicted with the dispersion model with the velocity-dependent dispersion coefficient is almost the same as that predicted with the dispersion model with the constant dispersion coefficient and they are 5 10% lower than that predicted with the interface model (Kakinuma et al., 1984). They are, however, about 1.3 times the observed one.
NASA Astrophysics Data System (ADS)
Chen, J. S.; Chiang, S. Y.; Liang, C. P.
2017-12-01
It is essential to develop multispecies transport analytical models based on a set of advection-dispersion equations (ADEs) coupled with sequential first-order decay reactions for the synchronous prediction of plume migrations of both parent and its daughter species of decaying contaminants such as radionuclides, dissolved chlorinated organic compounds, pesticides and nitrogen. Although several analytical models for multispecies transport have already been reported, those currently available in the literature have primarily been derived based on ADEs with constant dispersion coefficients. However, there have been a number of studies demonstrating that the dispersion coefficients increase with the solute travel distance as a consequence of variation in the hydraulic properties of the porous media. This study presents novel analytical models for multispecies transport with distance-dependent dispersion coefficients. The correctness of the derived analytical models is confirmed by comparing them against the numerical models. Results show perfect agreement between the analytical and numerical models. Comparison of our new analytical model for multispecies transport with scale-dependent dispersion to an analytical model with constant dispersion is made to illustrate the effects of the dispersion coefficients on the multispecies transport of decaying contaminants.
MIMO signal progressing with RLSCMA algorithm for multi-mode multi-core optical transmission system
NASA Astrophysics Data System (ADS)
Bi, Yuan; Liu, Bo; Zhang, Li-jia; Xin, Xiang-jun; Zhang, Qi; Wang, Yong-jun; Tian, Qing-hua; Tian, Feng; Mao, Ya-ya
2018-01-01
In the process of transmitting signals of multi-mode multi-core fiber, there will be mode coupling between modes. The mode dispersion will also occur because each mode has different transmission speed in the link. Mode coupling and mode dispersion will cause damage to the useful signal in the transmission link, so the receiver needs to deal received signal with digital signal processing, and compensate the damage in the link. We first analyzes the influence of mode coupling and mode dispersion in the process of transmitting signals of multi-mode multi-core fiber, then presents the relationship between the coupling coefficient and dispersion coefficient. Then we carry out adaptive signal processing with MIMO equalizers based on recursive least squares constant modulus algorithm (RLSCMA). The MIMO equalization algorithm offers adaptive equalization taps according to the degree of crosstalk in cores or modes, which eliminates the interference among different modes and cores in space division multiplexing(SDM) transmission system. The simulation results show that the distorted signals are restored efficiently with fast convergence speed.
Communication: Charge-population based dispersion interactions for molecules and materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stöhr, Martin; Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85748 Garching; Michelitsch, Georg S.
2016-04-21
We introduce a system-independent method to derive effective atomic C{sub 6} coefficients and polarizabilities in molecules and materials purely from charge population analysis. This enables the use of dispersion-correction schemes in electronic structure calculations without recourse to electron-density partitioning schemes and expands their applicability to semi-empirical methods and tight-binding Hamiltonians. We show that the accuracy of our method is en par with established electron-density partitioning based approaches in describing intermolecular C{sub 6} coefficients as well as dispersion energies of weakly bound molecular dimers, organic crystals, and supramolecular complexes. We showcase the utility of our approach by incorporation of the recentlymore » developed many-body dispersion method [Tkatchenko et al., Phys. Rev. Lett. 108, 236402 (2012)] into the semi-empirical density functional tight-binding method and propose the latter as a viable technique to study hybrid organic-inorganic interfaces.« less
Gritti, Fabrice; McDonald, Thomas; Gilar, Martin
2015-09-04
An original method is proposed for the accurate and reproducible measurement of the time-based dispersion properties of short L< 50cm and narrow rc< 50μm tubes at mobile phase flow rates typically used in very high-pressure liquid chromatography (vHPLC). Such tubes are used to minimize sample dispersion in vHPLC; however, their dispersion characteristics cannot be accurately measured at such flow rates due to system dispersion contribution of vHPLC injector and detector. It is shown that using longer and wider tubes (>10μL) enables a reliable measurement of the dispersion data. We confirmed that the dimensionless plot of the reduced dispersion coefficient versus the reduced linear velocity (Peclet number) depends on the aspect ratio, L/rc, of the tube, and unexpectedly also on the diffusion coefficient of the analyte. This dimensionless plot could be easily obtained for a large volume tube, which has the same aspect ratio as that of the short and narrow tube, and for the same diffusion coefficient. The dispersion data for the small volume tube are then directly extrapolated from this plot. For instance, it is found that the maximum volume variances of 75μm×30.5cm and 100μm×30.5cm prototype finger-tightened connecting tubes are 0.10 and 0.30μL(2), respectively, with an accuracy of a few percent and a precision smaller than seven percent. Copyright © 2015 Elsevier B.V. All rights reserved.
Turbulent Plume Dispersion over Two-dimensional Idealized Urban Street Canyons
NASA Astrophysics Data System (ADS)
Wong, C. C. C.; Liu, C. H.
2012-04-01
Human activities are the primary pollutant sources which degrade the living quality in the current era of dense and compact cities. A simple and reasonably accurate pollutant dispersion model is helpful to reduce pollutant concentrations in city or neighborhood scales by refining architectural design or urban planning. The conventional method to estimate the pollutant concentration from point/line sources is the Gaussian plume model using empirical dispersion coefficients. Its accuracy is pretty well for applying to rural areas. However, the dispersion coefficients only account for the atmospheric stability and streamwise distance that often overlook the roughness of urban surfaces. Large-scale buildings erected in urban areas significantly modify the surface roughness that in turn affects the pollutant transport in the urban canopy layer (UCL). We hypothesize that the aerodynamic resistance is another factor governing the dispersion coefficient in the UCL. This study is thus conceived to study the effects of urban roughness on pollutant dispersion coefficients and the plume behaviors. Large-eddy simulations (LESs) are carried out to examine the plume dispersion from a ground-level pollutant source over idealized 2D street canyons in neutral stratification. Computations with a wide range of aspect ratios (ARs), including skimming flow to isolated flow regimes, are conducted. The vertical profiles of pollutant distribution for different values of friction factor are compared that all reach a self-similar Gaussian shape. Preliminary results show that the pollutant dispersion is closely related to the friction factor. For relatively small roughness, the factors of dispersion coefficient vary linearly with the friction factor until the roughness is over a certain level. When the friction factor is large, its effect on the dispersion coefficient is less significant. Since the linear region covers at least one-third of the full range of friction factor in our empirical analysis, urban roughness is a major factor for dispersion coefficient. The downstream air quality could then be a function of both atmospheric stability and urban roughness.
Effect of morphology and solvent on two-photon absorption of nano zinc oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kavitha, M.K.; Haripadmam, P.C.; Gopinath, Pramod
Highlights: ► ZnO nanospheres and triangular structures synthesis by novel precipitation technique. ► The effect of precursor concentration on the size and shape of nano ZnO. ► Open aperture Z-scan measurements of the ZnO nanoparticle dispersions. ► Nanospheres exhibit higher two photon absorption coefficient than triangular nanostructures. ► Nanospheres dispersed in water exhibit higher two photon absorption coefficient than its dispersion in 2-propanol. - Abstract: In this paper, we report the effect of morphology and solvent on the two-photon absorption of nano zinc oxide. Zinc oxide nanoparticles in two different morphologies like nanospheres and triangular nanostructures are synthesized by novelmore » precipitation technique and their two-photon absorption coefficient is measured using open aperture Z-scan technique. Experimental results show that the zinc oxide nanospheres exhibit higher two-photon absorption coefficient than the zinc oxide triangular nanostructures. The zinc oxide nanospheres dispersed in water exhibit higher two-photon absorption coefficient than that of its dispersion in 2-propanol. The zinc oxide nanospheres dispersed in water shows a decrease in two-photon absorption coefficient with an increase in on-axis irradiance. The result confirms the dependence of shape and solvent on the two-photon absorption of nano zinc oxide.« less
Fredlake, Christopher P.; Hert, Daniel G.; Niedringhaus, Thomas P.; Lin, Jennifer S.; Barron, Annelise E.
2015-01-01
Resolution of DNA fragments separated by electrophoresis in polymer solutions (“matrices”) is determined by both the spacing between peaks and the width of the peaks. Prior research on the development of high-performance separation matrices has been focused primarily on optimizing DNA mobility and matrix selectivity, and gave less attention to peak broadening. Quantitative data are rare for peak broadening in systems in which high electric field strengths are used (> 150 V/cm), which is surprising since capillary and microchip-based systems commonly run at these field strengths. Here, we report results for a study of band broadening behavior for ssDNA fragments on a glass microfluidic chip, for electric field strengths up to 320 V/cm. We compare dispersion coefficients obtained in a poly(N,N-dimethylacrylamide) (pDMA) separation matrix that was developed for chip-based DNA sequencing with a commercially available linear polyacrylamide (LPA) matrix commonly used in capillaries. Much larger DNA dispersion coefficients were measured in the LPA matrix as compared to the pDMA matrix, and the dependences of dispersion coefficient on DNA size and electric field strength were found to differ quite starkly in the two matrices. These observations lead us to propose that DNA migration mechanisms differ substantially in our custom pDMA matrix compared to the commercially available LPA matrix. We discuss the implications of these results in terms of developing optimal matrices for specific separation (microchip or capillary) platforms. PMID:22648809
Dispersion in tidally averaged transport equation
Cheng, R.T.; Casulli, V.
1992-01-01
A general governing inter-tidal transport equation for conservative solutes has been derived without invoking the weakly nonlinear approximation. The governing inter-tidal transport equation is a convection-dispersion equation in which the convective velocity is a mean Lagrangian residual current, and the inter-tidal dispersion coefficient is defined by a dispersion patch. When the weakly nonlinear condition is violated, the physical significance of the Stokes' drift, as used in tidal dynamics, becomes questionable. For nonlinear problems, analytical solutions for the mean Lagrangian residual current and for the inter-tidal dispersion coefficient do not exist, they must be determined numerically. A rectangular tidal inlet with a constriction is used in the first example. The solutions of the residual currents and the computed properties of the inter-tidal dispersion coefficient are used to illuminate the mechanisms of the inter-tidal transport processes. Then, the present formulation is tested in a geometrically complex tidal estuary – San Francisco Bay, California. The computed inter-tidal dispersion coefficients are in the range between 5×104 and 5×106 cm2/sec., which are consistent with the values reported in the literature
NASA Astrophysics Data System (ADS)
Lee, S.; Yeo, I.; Lee, K.
2012-12-01
Understanding detailed solute transport mechanism in a single fracture is required to expand it to the complex fractured medium. Dispersion in the variable-aperture fractures occurs by combined effects of molecular diffusion, macro dispersion and Taylor dispersion. It has been reported that Taylor dispersion which is proportional to the square of the velocity dominates for the high velocity, while macro dispersion is proportional to the velocity. Contributions of each scheme are different as the velocity changes. To investigate relationship between Reynolds number and dispersion coefficient, single acrylic rough-walled fracture which has 20 cm length and 1.03 mm average aperture was designed. In this experiment, dispersion coefficient was calculated at the middle of the fracture and at the edge of the fracture via moment analysis using breakthrough curve (BTC) of fluorescent solute under the Reynolds number 0.08, 0.28, 2.78, 8.2 and 16.4. In the results, distinct dispersion regime was observed at the highly rough-walled fracture, which is inconsistent with the model that was suggested by previous research. In the range of Re < 2.78, the dispersion coefficient was proportional to the power of n (1
NASA Astrophysics Data System (ADS)
Wang, Lei; Li, Xiao; Zhang, Lu Lu; Li, Min; Qi, Feng-Hua
2015-09-01
Under investigation in this paper is a amplifier nonlinear Schrödinger Maxwell-Bloch (NLS-MB) system which describes the propagation of optical pulses in an inhomogeneous erbium doped fiber. Nonautonomous breather and rogue wave (RW) solutions of the amplifier NLS-MB system are constructed via the modified Darboux transformation with the inhomogeneous parameters. By suitably choosing the dispersion coefficient function, several types of inhomogeneous nonlinear waves are obtained in: (1) periodically fluctuating dispersion profile; (2) exponentially increasing (or decreasing) dispersion profile; and (3) linearly decreasing (increasing) dispersion profile. The nonautonomous characteristics of the breathers and RWs are graphically investigated, including the breather accelerating and decelerating motions, boomerang breather, breather compression, breather evolution, periodic RW, boomerang RW and stationary RW. Such novel patterns as the periodic breathers and rogue-wave fission of the amplifier NLS-MB system are exhibited by properly adjusting the group velocity dispersion function and interaction parameter between silica and doped atoms.
The modelling of dispersion in 2-D tidal flow over an uneven bed
NASA Astrophysics Data System (ADS)
Kalkwijk, Jan P. Th.
This paper deals with the effective mixing by topographic induced velocity variations in 2-D tidal flow. This type of mixing is characterized by tidally-averaged dispersion coefficients, which depend on the magnitude of the depth variations with respect to a mean depth, the velocity variations and the basic dispersion coefficients. The analysis is principally based on a Taylor type approximation (large clouds, small concentration variations) of the 2-D advection diffusion equation and a 2-D velocity field that behaves harmonically both in time and in space. Neglecting transient phenomena and applying time and space averaging the effective dispersion coefficients can be derived. Under certain circumstances it is possible to relate the velocity variations to the depth variations, so that finally effective dispersion coefficients can be determined using the power spectrum of the depth variations. In a special paragraph attention is paid to the modelling of sub-grid mixing in case of numerical integration of the advection-diffusion equation. It appears that the dispersion coefficients taking account of the sub-grid mixing are not only determined by the velocity variations within a certain grid cell, but also by the velocity variations at a larger scale.
Dynamics of Peregrine combs and Peregrine walls in an inhomogeneous Hirota and Maxwell-Bloch system
NASA Astrophysics Data System (ADS)
Wang, Lei; Wang, Zi-Qi; Sun, Wen-Rong; Shi, Yu-Ying; Li, Min; Xu, Min
2017-06-01
Under investigation in this paper is an inhomogeneous Hirota-Maxwell-Bloch (IHMB) system which can describe the propagation of optical solitons in an erbium-doped optical fiber. The breather multiple births (BMBs) are derived with periodically varying group velocity dispersion (GVD) coefficients. Under large periodic modulations in the GVD coefficient of IHMB system, the Peregrine comb (PC) solution is produced, which can be viewed as the limiting case of the BMBs. When the amplitude of the modulation satisfies a special condition, the Peregrine wall (PW) that can be regarded as an intermediate state between rogue wave and PC is obtained. The effects of the third-order dispersion on the spatiotemporal characteristics of PCs and PWs are studied. Our results may be useful for the experimental control and manipulation of the formation of generalized Peregrine rogue waves in inhomogeneous erbium-doped optical fiber.
Empirical correlations for axial dispersion coefficient and Peclet number in fixed-bed columns.
Rastegar, Seyed Omid; Gu, Tingyue
2017-03-24
In this work, a new correlation for the axial dispersion coefficient was obtained using experimental data in the literature for axial dispersion in fixed-bed columns packed with particles. The Chung and Wen correlation, the De Ligny correlation are two popular empirical correlations. However, the former lacks the molecular diffusion term and the latter does not consider bed voidage. The new axial dispersion coefficient correlation in this work was based on additional experimental data in the literature by considering both molecular diffusion and bed voidage. It is more comprehensive and accurate. The Peclet number correlation from the new axial dispersion coefficient correlation on the average leads to 12% lower Peclet number values compared to the values from the Chung and Wen correlation, and in many cases much smaller than those from the De Ligny correlation. Copyright © 2017 Elsevier B.V. All rights reserved.
Dispersion-convolution model for simulating peaks in a flow injection system.
Pai, Su-Cheng; Lai, Yee-Hwong; Chiao, Ling-Yun; Yu, Tiing
2007-01-12
A dispersion-convolution model is proposed for simulating peak shapes in a single-line flow injection system. It is based on the assumption that an injected sample plug is expanded due to a "bulk" dispersion mechanism along the length coordinate, and that after traveling over a distance or a period of time, the sample zone will develop into a Gaussian-like distribution. This spatial pattern is further transformed to a temporal coordinate by a convolution process, and finally a temporal peak image is generated. The feasibility of the proposed model has been examined by experiments with various coil lengths, sample sizes and pumping rates. An empirical dispersion coefficient (D*) can be estimated by using the observed peak position, height and area (tp*, h* and At*) from a recorder. An empirical temporal shift (Phi*) can be further approximated by Phi*=D*/u2, which becomes an important parameter in the restoration of experimental peaks. Also, the dispersion coefficient can be expressed as a second-order polynomial function of the pumping rate Q, for which D*(Q)=delta0+delta1Q+delta2Q2. The optimal dispersion occurs at a pumping rate of Qopt=sqrt[delta0/delta2]. This explains the interesting "Nike-swoosh" relationship between the peak height and pumping rate. The excellent coherence of theoretical and experimental peak shapes confirms that the temporal distortion effect is the dominating reason to explain the peak asymmetry in flow injection analysis.
Freville, Laurence; Moulut, Jean-Claude; Grzebyk, Michel; Kauffer, Edmond
2010-08-01
This article describes two atmosphere generation systems used for the production of replicas. The first, the Sputnic system, is based on the Sputnic air sampler developed by the National Institute of Occupational Health in Oslo (Norway). It is used to generate asbestos fibres or silica particles and allows the simultaneous production, by means of sampling on filters, of up to 114 replicas. The second is a multipurpose system that allows dust sampling on foams used with the CIP 10-R device. Twenty samples can be taken simultaneously. In total, 120 series of samples allowed characterization of the variability of the two generation systems used for the production of replicas loaded with asbestos fibres or silica dust. The coefficients of variation characterizing the dispersion of the filter loading in the Sputnic system are <10% for high densities asbestos fibre or silica dust samples. The coefficient of dispersion is on average higher when the asbestos fibre density is lower. The differences observed between the measurements taken on the different crowns of the Sputnic system are low and <2%. The results obtained with the multipurpose system show that replica dispersion is on average equal to 4%, which will allow proposal in the near future of a proficiency test dedicated to the quantitative analysis of crystalline silica on foams sampled with the CIP 10-R device.
Xu, Suxin; Chen, Jiangang; Wang, Bijia; Yang, Yiqi
2015-11-15
Two predictive models were presented for the adsorption affinities and diffusion coefficients of disperse dyes in polylactic acid matrix. Quantitative structure-sorption behavior relationship would not only provide insights into sorption process, but also enable rational engineering for desired properties. The thermodynamic and kinetic parameters for three disperse dyes were measured. The predictive model for adsorption affinity was based on two linear relationships derived by interpreting the experimental measurements with molecular structural parameters and compensation effect: ΔH° vs. dye size and ΔS° vs. ΔH°. Similarly, the predictive model for diffusion coefficient was based on two derived linear relationships: activation energy of diffusion vs. dye size and logarithm of pre-exponential factor vs. activation energy of diffusion. The only required parameters for both models are temperature and solvent accessible surface area of the dye molecule. These two predictive models were validated by testing the adsorption and diffusion properties of new disperse dyes. The models offer fairly good predictive ability. The linkage between structural parameter of disperse dyes and sorption behaviors might be generalized and extended to other similar polymer-penetrant systems. Copyright © 2015 Elsevier Inc. All rights reserved.
Štamberg, K; Palágyi, Š; Videnská, K; Havlová, V
The transport of 3 H + (as HTO) and 36 Cl - (as Na 36 Cl) was investigated in the dynamic system, i.e., in the columns filled with crushed pure granite and fracture infill of various grain sizes. The aim of column experiments was to determine important transport parameter, such as the retardation, respectively distribution coefficients, Peclet numbers and hydrodynamic dispersion coefficients. Furthermore, the research was focused to quantification of the effect of grain size on migration of studied radionuclides. The experimental breakthrough curves were fitted by a model based on the erfc-function, assuming a linear reversible equilibrium sorption/desorption isotherm, and the above mentioned transport parameters were determined. The results showed that influence of grain size on sorption of 3 H + and 36 Cl - was negligible. Retardation and distribution coefficients of both tracers converged to one and zero, respectively, in case of all fractions of crushed granite and infill material. Generally, the presumed ion exclusion of 36 Cl in anionic form was proved under given conditions, only very weak one seems to exist in a case of infill material. In principal, both radionuclides behaved as non-sorbing, conservative tracers. On the other hand, the influence of grain size on Peclet numbers value and on dispersion coefficient was observed for both crystalline materials, namely in agreement with theoretical suppositions that the values of Peclet numbers decrease with increasing grain size and values of dispersion coefficient increase.
Dispersion in 2D network: Effects of mixing rule at nodes and molecular diffusion
NASA Astrophysics Data System (ADS)
Wang, Y.; Tao, Q.; Li, M.
2017-12-01
We simulate solute transport in 2D network backbone characterized by pore connectivity and pore heterogeneity by particle-tracking method. In order to ensure the dispersion coefficient reaching an asymptotic value, we upscale dispersion from pore-scale to meter-scale by using periodic boundary condition. As comparison, two different flow mechanisms without or with dispersion in a capillary tube, namely mean flow and Taylor-Aris dispersion, are introduced to investigate the evolution of solute spreading. The longitudinal dispersion coefficient DLM without dispersion in a pipe can roughly be regarded as a parameter to quantify the impact of microscopic structure of porous media on solute spreading, which is smaller than that value DL of Taylor-Aris dispersion. The difference between them decreases with the enhancement of the disorder. The mixing rule at nodes has a minor effect on longitudinal spreading, but has a significant effect on transverse spreading, especially for the nearly homogeneous media. An increase of the disorder in network achieved by increasing pore size heterogeneity or/and decreasing pore connectivity diminishes the difference between two mixing rules. Besides, the evolution of longitudinal dispersion coefficient over diffusion presents three different patterns at different velocities for homogenous media, such as monotonically increasing trend, decreasing first and then increasing trend and monotonically decreasing trend. But all are replaced by power law for a high disorder. The simulation results also accurately predict the experimental dependence of the longitudinal coefficient on Peclet number Pe.
Use of the routing procedure to study dye and gas transport in the West Fork Trinity River, Texas
Jobson, Harvey E.; Rathbun, R.E.
1984-01-01
Rhodamine-WT dye, ethylene, and propane were injected at three sites along a 21.6-kilometer reach of the West Fork Trinity River below Fort Worth, Texas. Complete dye concentration versus time curves and peak gas concentrations were measured at three cross sections below each injection. The peak dye concentrations were located and samples were collected at about three-hour intervals for as many as six additional cross sections. These data were analyzed to determine the longitudinal dispersion coefficients as well as the gas desorption coefficients using both standard techniques and a numerical routing procedure. The routing procedure, using a Lagrangian transport model to minimize numerical dispersion, provided better estimates of the dispersion coefficient than did the method of moments. At a steady flow of about 0.76 m2/s, the dispersion coefficient varied from about 0.7 m2/s in a reach contained within a single deep pool to about 2.0 m2/s in a reach containing riffles and small pools. The bulk desorption coefficients computed using the routing procedure and the standard peak method were essentially the same. The liquid film coefficient could also be obtained using the routing procedure. Both the bulk desorption coefficient and the liquid film coefficient were much smaller in the pooled reach than in the reaches containing riffles.
Wagner, Brian J.; Gorelick, Steven M.
1986-01-01
A simulation nonlinear multiple-regression methodology for estimating parameters that characterize the transport of contaminants is developed and demonstrated. Finite difference contaminant transport simulation is combined with a nonlinear weighted least squares multiple-regression procedure. The technique provides optimal parameter estimates and gives statistics for assessing the reliability of these estimates under certain general assumptions about the distributions of the random measurement errors. Monte Carlo analysis is used to estimate parameter reliability for a hypothetical homogeneous soil column for which concentration data contain large random measurement errors. The value of data collected spatially versus data collected temporally was investigated for estimation of velocity, dispersion coefficient, effective porosity, first-order decay rate, and zero-order production. The use of spatial data gave estimates that were 2–3 times more reliable than estimates based on temporal data for all parameters except velocity. Comparison of estimated linear and nonlinear confidence intervals based upon Monte Carlo analysis showed that the linear approximation is poor for dispersion coefficient and zero-order production coefficient when data are collected over time. In addition, examples demonstrate transport parameter estimation for two real one-dimensional systems. First, the longitudinal dispersivity and effective porosity of an unsaturated soil are estimated using laboratory column data. We compare the reliability of estimates based upon data from individual laboratory experiments versus estimates based upon pooled data from several experiments. Second, the simulation nonlinear regression procedure is extended to include an additional governing equation that describes delayed storage during contaminant transport. The model is applied to analyze the trends, variability, and interrelationship of parameters in a mourtain stream in northern California.
NASA Astrophysics Data System (ADS)
Naveed, M.; Kawamoto, K.; Hamamoto, S.; Sakaki, T.; Moldrup, P.; Komatsu, T.
2010-12-01
The transport and fate of gases in the soil are governed by gas advection, diffusion and dispersion phenomena. Among three gas transport phenomena, gas dispersion is least understood. Main objective of this study is to investigate the gas dispersion phenomena, emphasising on the effect of moisture content, sand particle shape, particle size, particle size distribution, and scale dependency on gas dispersion. One dimensional laboratory column experiments, in an apparatus consisting of an acrylic column attached to inlet and outlet chambers (Hamamoto et al., SSAJ, 2009), were conducted for the measurements of gas dispersion coefficient (DH). Various types of sands (Narita and Toyoura sands from Japan, and Granusils and Accusands from United States) and glass beads with variable moisture contents were used as porous media. Shape of the sand particles were characterized in terms of sphericity and roundness. The changes in the oxygen concentration within the soil column and in the inlet and outlet chambers were monitored. In addition the air pressure at inlet and middle of the soil column was also monitored to ensure the uniform density of porous media along the column. The measured breakthrough curves were fitted with the analytical solution of the advection dispersion equation to determine dispersion coefficients. The measured dispersion coefficient (DH) showed linear increase with pore velocity (u0). Measured dispersivity (λ= DH/u0) increases with decrease in air filled porosity induced by adding moisture contents in sands. Its values varies from 0 to 3 cm on decreasing air filled porosity from 0.50 (air dry) to 0.25 (field capacity). Shape of the sand particles has no significant effect on gas dispersion. When gas dispersion phenomena was studied on different shape of the sand particles at various air filled porosities, it was found that for angular sand particles initially gas dispersivity increases more rapidly as compared to rounded sand particles and finally both attains nearly same values at field capacity. Particle size has no significant effect on gas dispersion but particle size distribution has considerable effect on it. For the same sand when a coefficient of uniformity (Uc) increases from 1 to 4, gas dispersivity increases by 1.5 times. Gas dispersion coefficient was measured with two different sized columns and it was found that there is no effect of diameter and length of the column on gas dispersion for sandy soils. Therefore it can be concluded that only air filled porosity and particle size distribution should be considered for modeling the gas dispersivity in porous media.
NASA Astrophysics Data System (ADS)
Vargas, C.; Arcos, J.; Bautista, O.; Méndez, F.
2017-09-01
The effective dispersion coefficient of a neutral solute in the combined electroosmotic (EO) and magnetohydrodynamic (MHD)-driven flow of a Newtonian fluid through a parallel flat plate microchannel is studied. The walls of the microchannel are assumed to have modulated and low zeta potentials that vary slowly in the axial direction in a sinusoidal manner. The flow field required to obtain the dispersion coefficient is solved using the lubrication approximation theory. The solution of the electrical potential is based on the Debye-Hückel approximation for a symmetric (Z :Z ) electrolyte solution. The EO and MHD effects, together with the variations in the zeta potentials of the walls, are observed to notably modify the axial distribution of the effective dispersion coefficient. The problem is formulated for two cases of the zeta potential function. Note that the dispersion coefficient primarily depends on the Hartmann number, on the ratio of the half height of the microchannel to the Debye length, and on the assumed variation in the zeta potentials of the walls.
Wesolowski, E.A.; Nelson, R.A.
1987-01-01
As part of the Sour is River water-quality assessment, traveltime, longitudinal-dispersion, and reaeration measurements were made during September 1983 on segments of the 186-mile reach of the Sour is River from Lake Darling Dam to the J. Clark Salyer National Wildlife Refuge. The primary objective was to determine traveltime, longitudinal-dispersion, and reaeration coefficients during low flow. Streamflow in the reach ranged from 10.5 to 47.0 cubic feet per second during the measurement period.On the basis of channel and hydraulic characteristics, the 186-mile reach was subdivided into five subreaches that ranged from 18 to 55 river miles in length. Within each subreach, representative test reaches that ranged from 5.0 to 9.1 river miles in length were selected for tracer injection and sample collection. Standard fluorometric techniques were used to measure traveltime and longitudinal dispersion, and a modified tracer technique that used ethylene and propane gas was used to measure reaeration. Mean test-reach velocities ranged from 0.05 to 0.30 foot per second, longitudinal-dispersion coefficients ranged from 4.2 to 61 square feet per second, and reaeration coefficients based on propane ranged from 0.39 to 1.66 per day. Predictive reaeration coefficients obtained from 18 equations (8 semiempirical and 10 empirical) were compared with each measured reaeration coefficient by use of an error-of-estimate analysis. The predictive reaeration coefficients ranged from 0.0008 to 3.4 per day. A semiempirical equation that produced coefficients most similar to the measured coefficients had the smallest absolute error of estimate (0.35). The smallest absolute error of estimate for the empirical equations was 0.41.
Effective Stochastic Model for Reactive Transport
NASA Astrophysics Data System (ADS)
Tartakovsky, A. M.; Zheng, B.; Barajas-Solano, D. A.
2017-12-01
We propose an effective stochastic advection-diffusion-reaction (SADR) model. Unlike traditional advection-dispersion-reaction models, the SADR model describes mechanical and diffusive mixing as two separate processes. In the SADR model, the mechanical mixing is driven by random advective velocity with the variance given by the coefficient of mechanical dispersion. The diffusive mixing is modeled as a fickian diffusion with the effective diffusion coefficient. Both coefficients are given in terms of Peclet number (Pe) and the coefficient of molecular diffusion. We use the experimental results of to demonstrate that for transport and bimolecular reactions in porous media the SADR model is significantly more accurate than the traditional dispersion model, which overestimates the mass of the reaction product by as much as 25%.
NASA Astrophysics Data System (ADS)
Camacho Suarez, V. V.; Shucksmith, J.; Schellart, A.
2016-12-01
Analytical and numerical models can be used to represent the advection-dispersion processes governing the transport of pollutants in rivers (Fan et al., 2015; Van Genuchten et al., 2013). Simplifications, assumptions and parameter estimations in these models result in various uncertainties within the modelling process and estimations of pollutant concentrations. In this study, we explore both: 1) the structural uncertainty due to the one dimensional simplification of the Advection Dispersion Equation (ADE) and 2) the parameter uncertainty due to the semi empirical estimation of the longitudinal dispersion coefficient. The relative significance of these uncertainties has not previously been examined. By analysing both the relative structural uncertainty of analytical solutions of the ADE, and the parameter uncertainty due to the longitudinal dispersion coefficient via a Monte Carlo analysis, an evaluation of the dominant uncertainties for a case study in the river Chillan, Chile is presented over a range of spatial scales.
Generalized Boltzmann-Type Equations for Aggregation in Gases
NASA Astrophysics Data System (ADS)
Adzhiev, S. Z.; Vedenyapin, V. V.; Volkov, Yu. A.; Melikhov, I. V.
2017-12-01
The coalescence and fragmentation of particles in a dispersion system are investigated by applying kinetic theory methods, namely, by generalizing the Boltzmann kinetic equation to coalescence and fragmentation processes. Dynamic equations for the particle concentrations in the system are derived using the kinetic equations of motion. For particle coalescence and fragmentation, equations for the particle momentum, coordinate, and mass distribution functions are obtained and the coalescence and fragmentation coefficients are calculated. The equilibrium mass and velocity distribution functions of the particles in the dispersion system are found in the approximation of an active terminal group (Becker-Döring-type equation). The transition to a continuum description is performed.
Computation of turbulence and dispersion of cork in the NETL riser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiradilok, Veeraya; Gidaspow, Dimitri; Breault, R.W.
The knowledge of dispersion coefficients is essential for reliable design of gasifiers. However, a literature review had shown that dispersion coefficients in fluidized beds differ by more than five orders of magnitude. This study presents a comparison of the computed axial solids dispersion coefficients for cork particles to the NETL riser cork data. The turbulence properties, the Reynolds stresses, the granular temperature spectra and the radial and axial gas and solids dispersion coefficients are computed. The standard kinetic theory model described in Gidaspow’s 1994 book, Multiphase Flow and Fluidization, Academic Press and the IIT and Fluent codes were used tomore » compute the measured axial solids volume fraction profiles for flow of cork particles in the NETL riser. The Johnson–Jackson boundary conditions were used. Standard drag correlations were used. This study shows that the computed solids volume fractions for the low flux flow are within the experimental error of those measured, using a two-dimensional model. At higher solids fluxes the simulated solids volume fractions are close to the experimental measurements, but deviate significantly at the top of the riser. This disagreement is due to use of simplified geometry in the two-dimensional simulation. There is a good agreement between the experiment and the three-dimensional simulation for a high flux condition. This study concludes that the axial and radial gas and solids dispersion coefficients in risers operating in the turbulent flow regime can be computed using a multiphase computational fluid dynamics model.« less
NASA Astrophysics Data System (ADS)
Sun, Yan; Tian, Bo; Wu, Xiao-Yu; Liu, Lei; Yuan, Yu-Qiang
2017-04-01
Under investigation in this paper is a variable-coefficient higher-order nonlinear Schrödinger equation, which has certain applications in the inhomogeneous optical fiber communication. Through the Hirota method, bilinear forms, dark one- and two-soliton solutions for such an equation are obtained. We graphically study the solitons with d1(z), d2(z) and d3(z), which represent the variable coefficients of the group-velocity dispersion, third-order dispersion and fourth-order dispersion, respectively. With the different choices of the variable coefficients, we obtain the parabolic, periodic and V-shaped dark solitons. Head-on and overtaking collisions are depicted via the dark two soliton solutions. Velocities of the dark solitons are linearly related to d1(z), d2(z) and d3(z), respectively, while the amplitudes of the dark solitons are not related to such variable coefficients.
Development of Nanofluids as Lubricant to Study Friction and Wear Behavior of Stainless Steels
NASA Astrophysics Data System (ADS)
Sahoo, Rashmi Ranjan; Bhattacharjee, Santu; Das, Tuhin
A number of nanofluids have been prepared to study the effect of lubrication properties of nanofluids on stainless steels taking Kaolin and Boron Nitride (BN) as the lubricant particles and Sodium Dodecyl Sulfate (SDS), Cetyl Trimethyl Ammonium Bromide (CTAB), Sodium Hexa Meta Phosphate (SHMP) as dispersants in the same liquid medium i.e. water. A pin on disc tribometer is being used to access the tribological behaviour of the prepared nanofluids. The particle size of these particle dispersions are examined with a nanoparticle size analyzer. It has been found that the use of dispersants significantly control the particle size and tribological behavior of the nanofluids as for Boron Nitride particle with Sodium Dodecyl Sulfate (SDS) as dispersant has got a very low value of coefficient of friction being equal to 0.142 while without dispersant the value is 0.498. Similarly, in case of Kaolin water with SDS as dispersant the value of coefficient of friction obtained is 0.161 and without dispersant it is 0.333. Sodium Dodecyl Sulfate (SDS) as dispersant has resulted a very low coefficient of friction compared to other dispersants tested even though it doesn’t always assure a least particle size. The role of SDS in yielding the lowest friction has pursued significant attention for further investigation.
Pegi, Ahlin; Julijana, Kristl; Slavko, Pecar; Janez, Strancar; Marjeta, Sentjurc
2003-01-01
Solid lipid nanoparticles (SLN) constitute an attractive drug carrier system. The aim of this study was to investigate the influence of lipophilicity and structure of different model molecules on their distribution in SLN dispersions. SLN composed of glyceryl tripalmitate as lipid and soybean lecithin and poloxamer 188 as stabilizers were prepared by a melt-emulsification process. PC(10,3), MeFASL(10,3), C(14)-Tempo, and Tempol were incorporated into SLN as spin-labeled compounds. The partition of SP between triglyceride and water was determined experimentally by electron paramagnetic resonance (EPR) and compared with calculated partition coefficients. The distribution of molecules in SLN dispersions was determined from the parameters of EPR spectra, from the reduction kinetics of the spin-labeled compounds with sodium ascorbate, and by computer simulation of EPR spectral line shapes. The experimentally obtained partition coefficients increase in the order Tempol < MeFASL(10,3) < C(14)-Tempo, showing the same trend as the partition coefficients calculated according to Rekker. In SLN dispersions, it was estimated that the ratio of SP between solid lipid core, phospholipid layers (deeper in SLN layer or in liposomes and closer to the surface of SLN), and water is for Tempol 0:0:100, for C(14)-Tempo 46:54(20:34):0, for MeFASL(10,3) 34:65(38:27):1, and for PC(10,3) 10:89(26:3:60):1. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association
NASA Astrophysics Data System (ADS)
Guérin, T.; Dean, D. S.
2017-01-01
We consider the time-dependent dispersion properties of overdamped tracer particles diffusing in a one-dimensional periodic potential under the influence of an additional constant tilting force F . The system is studied in the region where the force is close to the critical value Fc at which the barriers separating neighboring potential wells disappear. We show that, when F crosses the critical value, the shape of the mean-square displacement (MSD) curves is strongly modified. We identify a diffusive regime at intermediate-time scales with an effective diffusion coefficient which is much larger than the late-time diffusion coefficient for F >Fc , whereas for F
Liu, Xiao Hui; Yue, Ling Fen; Wang, Da Wei; Li, Ning; Cong, Lin
2013-01-01
Inbreeding depression is a major evolutionary and ecological force influencing population dynamics and the evolution of inbreeding-avoidance traits such as mating systems and dispersal. Mating systems and dispersal are fundamental determinants of population genetic structure. Resolving the relationships among genetic structure, seasonal breeding-related mating systems and dispersal will facilitate our understanding of the evolution of inbreeding avoidance. The goals of this study were as follows: (i) to determine whether females actively avoided mating with relatives in a group-living rodent species, Brandt’s voles (Lasiopodomys brandtii), by combined analysis of their mating system, dispersal and genetic structure; and (ii) to analyze the relationships among the variation in fine-genetic structure, inbreeding avoidance, season-dependent mating strategies and individual dispersal. Using both individual- and population-level analyses, we found that the majority of Brandt’s vole groups consisted of close relatives. However, both group-specific FISs, an inbreeding coefficient that expresses the expected percentage rate of homozygosity arising from a given breeding system, and relatedness of mates showed no sign of inbreeding. Using group pedigrees and paternity analysis, we show that the mating system of Brandt’s voles consists of a type of polygyny for males and extra-group polyandry for females, which may decrease inbreeding by increasing the frequency of mating among distantly-related individuals. The consistent variation in within-group relatedness, among-group relatedness and fine-scale genetic structures was mostly due to dispersal, which primarily occurred during the breeding season. Biologically relevant variation in the fine-scale genetic structure suggests that dispersal during the mating season may be a strategy to avoid inbreeding and drive the polygynous and extra-group polyandrous mating system of this species. PMID:23516435
NASA Technical Reports Server (NTRS)
Ansell, G. S.
1972-01-01
An analytical rationale for the sensitivity-insensitivity of dispersion-strengthened systems to process history is provided. In particular, the research was focussed upon the influence of the particle-matrix interface bond in TD-Nickel and TD-Nichrome, and the manner in which the differences in both elastic constants and thermal expansion coefficients between these phases stress this interface when these alloys are subjected to mechanical and thermal loads upon the mechanical properties of these alloys.
Guérin, T; Dean, D S
2017-01-01
We consider the time-dependent dispersion properties of overdamped tracer particles diffusing in a one-dimensional periodic potential under the influence of an additional constant tilting force F. The system is studied in the region where the force is close to the critical value F_{c} at which the barriers separating neighboring potential wells disappear. We show that, when F crosses the critical value, the shape of the mean-square displacement (MSD) curves is strongly modified. We identify a diffusive regime at intermediate-time scales with an effective diffusion coefficient which is much larger than the late-time diffusion coefficient for F>F_{c}, whereas for F
Magnetic orientation of nontronite clay in aqueous dispersions and its effect on water diffusion.
Abrahamsson, Christoffer; Nordstierna, Lars; Nordin, Matias; Dvinskikh, Sergey V; Nydén, Magnus
2015-01-01
The diffusion rate of water in dilute clay dispersions depends on particle concentration, size, shape, aggregation and water-particle interactions. As nontronite clay particles magnetically align parallel to the magnetic field, directional self-diffusion anisotropy can be created within such dispersion. Here we study water diffusion in exfoliated nontronite clay dispersions by diffusion NMR and time-dependant 1H-NMR-imaging profiles. The dispersion clay concentration was varied between 0.3 and 0.7 vol%. After magnetic alignment of the clay particles in these dispersions a maximum difference of 20% was measured between the parallel and perpendicular self-diffusion coefficients in the dispersion with 0.7 vol% clay. A method was developed to measure water diffusion within the dispersion in the absence of a magnetic field (random clay orientation) as this is not possible with standard diffusion NMR. However, no significant difference in self-diffusion coefficient between random and aligned dispersions could be observed. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Krasnovsky, A. A.; Rоumbal, Ya. V.; Strizhakov, A. A.
2008-06-01
The oxygenation rates of the 1O2 trap, 1,3-diphenylisobenzofuran were measured in air-saturated H2O-sodium dodecyl sulfate dispersions, ethanol, methanol and benzene upon direct excitation of dissolved oxygen by infrared (1269 ± 1 nm) laser radiation. In aqueous dispersions, variation of the detergent concentration from 0.1 to 1 M resulted in the 2.5-time increase of the photooxygenation rate. The absorbance and molar absorption coefficients of oxygen were estimated in all tested systems, water and the micellar phase of detergent dispersions and compared with the rate constants of 1O2 radiative deactivation obtained from the measurement of the quantum yields of photosensitized 1O2 phosphorescence.
NASA Astrophysics Data System (ADS)
Bijeljic, B.
2008-05-01
This talk will describe and highlight the advantages offered by a methodology that unifies pore network modeling, CTRW theory and experiment in description of solute dispersion in porous media. Solute transport in a porous medium is characterized by the interplay of advection and diffusion (described by Peclet number, Pe) that cause spreading of solute particles. This spreading is traditionally described by dispersion coefficients, D, defined by σ 2 = 2Dt, where σ 2 is the variance of the solute position and t is the time. Using a pore-scale network model based on particle tracking, the rich Peclet- number dependence of dispersion coefficient is predicted from first principles and is shown to compare well with experimental data for restricted diffusion, transition, power-law and mechanical dispersion regimes in the asymptotic limit. In the asymptotic limit D is constant and can be used in an averaged advection-dispersion equation. However, it is highly important to recognize that, until the velocity field is fully sampled, the particle transport is non-Gaussian and D possesses temporal or spatial variation. Furthermore, temporal probability density functions (PDF) of tracer particles are studied in pore networks and an excellent agreement for the spectrum of transition times for particles from pore to pore is obtained between network model results and CTRW theory. Based on the truncated power-law interpretation of PDF-s, the physical origin of the power-law scaling of dispersion coefficient vs. Peclet number has been explained for unconsolidated porous media, sands and a number of sandstones, arriving at the same conclusion from numerical network modelling, analytic CTRW theory and experiment. Future directions for further applications of the methodology presented are discussed in relation to the scale- dependent solute dispersion and reactive transport. Significance of pre-asymptotic dispersion in porous media is addressed from pore-scale upwards and the impact of heterogeneity is discussed. The length traveled by solute plumes before Gaussian behaviour is reached increases with an increase in heterogeneity and/or Pe. This opens up the question on the nature of dispersion in natural systems where the heterogeneities at the larger scales will profoundly increase the range of velocities in the aquifer, thus considerably delaying the asymptotic approach to Gaussian behaviour. As a consequence, the asymptotic behaviour might not be reached at the field scale.
A numerical study on flow and pollutant transport in Singapore coastal waters.
Xu, Ming; Chua, Vivien P
2016-10-15
Intensive economic and shipping activities in Singapore Strait have caused Singapore coastal waters to be under high risk of water pollution. A nested three-dimensional unstructured-grid SUNTANS model is applied to Singapore coastal waters to simulate flow and pollutant transport. The small domain (~50m resolution) Singapore coastal model is nested within a large domain (~200m resolution) regional model. The nested model is able to predict water surface elevations and velocities with high R(2) values of 0.96 and 0.91, respectively. Model results delineate the characteristics of circulation pattern in Singapore coastal waters during the Northeast and Southwest monsoons. The pollutants are modeled as passive tracers, and are released at six key sailing locations Points 1-6 in Singapore coastal waters and are named as Passive Tracers 1-6, respectively. Our results show that the rate of dispersion is twice as large for the Northeast monsoon compared to the Southwest monsoon due to differences in large-scale monsoons and small-scale local winds. The volume averaged concentration (VAC) diminishes faster and the local flushing time is shorter during the Northeast monsoon than the Southwest monsoon. Dispersion coefficients K and the VAC decreasing rate are maximum for Tracers 2 and 3 with shortest local flushing time due to the strong surrounding currents and abrupt bathymetry changes near Senang and St. John Islands. Dispersion coefficients K and the VAC decreasing rate are minimum for Tracer 1 due to weak currents induced by the semi-enclosed coastline near Tuas. It is found that both the lateral dispersion coefficient Ky and the compound dispersion coefficient K obey a "4/3-law", which defines a linear correlation between dispersion coefficients and 4/3-power of selected length scale. Copyright © 2016 Elsevier Ltd. All rights reserved.
Charalampidis, E G; Kevrekidis, P G; Frantzeskakis, D J; Malomed, B A
2015-01-01
We study a two-component nonlinear Schrödinger system with equal, repulsive cubic interactions and different dispersion coefficients in the two components. We consider states that have a dark solitary wave in one component. Treating it as a frozen one, we explore the possibility of the formation of bright-solitonic structures in the other component. We identify bifurcation points at which such states emerge in the bright component in the linear limit and explore their continuation into the nonlinear regime. An additional analytically tractable limit is found to be that of vanishing dispersion of the bright component. We numerically identify regimes of potential stability, not only of the single-peak ground state (the dark-bright soliton), but also of excited states with one or more zero crossings in the bright component. When the states are identified as unstable, direct numerical simulations are used to investigate the outcome of the instability development. Although our principal focus is on the homogeneous setting, we also briefly touch upon the counterintuitive impact of the potential presence of a parabolic trap on the states of interest.
NASA Astrophysics Data System (ADS)
Li, Jin Hua; Xu, Hui; Sun, Ting Ting; Pei, Shi Xin; Ren, Hai Dong
2018-05-01
We analyze in detail the effects of the intermode nonlinearity (IEMN) and intramode nonlinearity (IRMN) on modulation instability (MI) in randomly birefringent two-mode optical fibers (RB-TMFs). In the anomalous dispersion regime, the MI gain enhances significantly as the IEMN and IRMN coefficients increases. In the normal dispersion regime, MI can be generated without the differential mode group delay (DMGD) effect, as long as the IEMN coefficient between two distinct modes is above a critical value, or the IRMN coefficient inside a mode is below a critical value. This critical IEMN (IRMN) coefficient depends strongly on the given IRMN (IEMN) coefficient and DMGD for a given nonlinear RB-TMF structure, and is independent on the input total power, the power ratio distribution and the group velocity dispersion (GVD) ratio between the two modes. On the other hand, in contrast to the MI band arising from the pure effect of DMGD in the normal dispersion regime, where MI vanishes after a critical total power, the generated MI band under the combined effects of IEMN and IRMN without DMGD exists for any total power and enhances with the total power. The MI analysis is verified numerically by launching perturbed continuous waves (CWs) with wave propagation method.
NASA Astrophysics Data System (ADS)
Zhao, X.; Chang, Y.; Peng, F.; Wu, J.
2016-12-01
Study of solute transport in karst conduit is of great significance for prediction and prevention of groundwater pollution in southwest karst region. Solute transport in karst conduit is strongly influenced by pools which often develop along karst conduit. In order to investigate the effect of transient storage within pools on solute transport in the conduit, a pool-pipe system was built in the laboratory and some tracer tests were performed in various flow conditions to characterize the solute transport in different pool-pipe structures. The Qtracer2 program was used to obtain solute transport parameters. We used retardation coefficient R to characterize the difference between the 1-D analytical solution of the classical advection-dispersion equation and experimental results. The experimental results reveal that the concentration peak decreases with the number of pools whereas the dispersion coefficient and dispersivity increase gradually. Adding transient storage increases retardation as tailing of the breakthrough curve(BTC) is growing with the number of pools. This demonstrates that transient storage within pools is transformed to retardation. The symmetrical pool has longer tails compared to the asymmetrical pool. The concentration peak lag behind significantly due to the asymmetrical pool. A decrease in dispersivity and tailing of the BTC is observed in all pipes with the increase of flow velocities. The 1-D analytical solution of the classical advection-dispersion equation is well fitted to BTC of a single pipe in maximum flow velocity but is poorly fitted to other BTCs with appreciable tails. Therefore, it requires an appropriate model to explain tailing of the BTC. The conclusion has important significance for understanding of solute transport process in karst conduit. Future work will focus on using the appropriate model to explain tailing of the BTC.
NASA Astrophysics Data System (ADS)
Jones, Andrew P.; Crain, Jason; Sokhan, Vlad P.; Whitfield, Troy W.; Martyna, Glenn J.
2013-04-01
Treating both many-body polarization and dispersion interactions is now recognized as a key element in achieving the level of atomistic modeling required to reveal novel physics in complex systems. The quantum Drude oscillator (QDO), a Gaussian-based, coarse grained electronic structure model, captures both many-body polarization and dispersion and has linear scale computational complexity with system size, hence it is a leading candidate next-generation simulation method. Here, we investigate the extent to which the QDO treatment reproduces the desired long-range atomic and molecular properties. We present closed form expressions for leading order polarizabilities and dispersion coefficients and derive invariant (parameter-free) scaling relationships among multipole polarizability and many-body dispersion coefficients that arise due to the Gaussian nature of the model. We show that these “combining rules” hold to within a few percent for noble gas atoms, alkali metals, and simple (first-row hydride) molecules such as water; this is consistent with the surprising success that models with underlying Gaussian statistics often exhibit in physics. We present a diagrammatic Jastrow-type perturbation theory tailored to the QDO model that serves to illustrate the rich types of responses that the QDO approach engenders. QDO models for neon, argon, krypton, and xenon, designed to reproduce gas phase properties, are constructed and their condensed phase properties explored via linear scale diffusion Monte Carlo (DMC) and path integral molecular dynamics (PIMD) simulations. Good agreement with experimental data for structure, cohesive energy, and bulk modulus is found, demonstrating a degree of transferability that cannot be achieved using current empirical models or fully ab initio descriptions.
NASA Astrophysics Data System (ADS)
Ghosh, Dipankar; Basu, Mousumi
2010-11-01
The parabolic similariton pulse formation by alternate arrangements of passive and active dispersion compensating fibers (DCFs) is presented here. These combinations of passive and active DCFs with constant core radii and constant nonlinearities are suggested as equivalent profiles of a dispersion tailored fiber amplifier in normal dispersion regime. The dispersion tailored fibers, usually known as dispersion decreasing fibers (DDFs) in normal dispersion regime, are capable of producing linearly chirped parabolic self-similar pulses. The DDF is designed and optimized with proper choice of fiber parameters so that considerable variation of nonlinearity can be achieved, which in turn enhances the effective gain coefficient of the fiber. Inclusion of this nonlinear variation along the DDF amplifier length leads to obtain the simulated output pulses with very small misfit parameters with respect to perfect parabolic pulse at sufficiently reduced optimum length. At the same time to avoid the fabrication difficulties of the DDF, the alternately arranged passive and active DCFs are suggested as suitable alternatives of the DDF. The performances of the cascaded systems for generation of self-similar parabolic pulses are compared with that of the DDF amplifier as well as combined systems consisting of DCFs with equal gain. The results show that the proposed alternately arranged cascaded system with less pumping requirements, are efficient enough to produce similar parabolic pulses as compared to the previously designed DDF, even when considerable amount of splice loss at each joint is included.
Gene expression models for prediction of longitudinal dispersion coefficient in streams
NASA Astrophysics Data System (ADS)
Sattar, Ahmed M. A.; Gharabaghi, Bahram
2015-05-01
Longitudinal dispersion is the key hydrologic process that governs transport of pollutants in natural streams. It is critical for spill action centers to be able to predict the pollutant travel time and break-through curves accurately following accidental spills in urban streams. This study presents a novel gene expression model for longitudinal dispersion developed using 150 published data sets of geometric and hydraulic parameters in natural streams in the United States, Canada, Europe, and New Zealand. The training and testing of the model were accomplished using randomly-selected 67% (100 data sets) and 33% (50 data sets) of the data sets, respectively. Gene expression programming (GEP) is used to develop empirical relations between the longitudinal dispersion coefficient and various control variables, including the Froude number which reflects the effect of reach slope, aspect ratio, and the bed material roughness on the dispersion coefficient. Two GEP models have been developed, and the prediction uncertainties of the developed GEP models are quantified and compared with those of existing models, showing improved prediction accuracy in favor of GEP models. Finally, a parametric analysis is performed for further verification of the developed GEP models. The main reason for the higher accuracy of the GEP models compared to the existing regression models is that exponents of the key variables (aspect ratio and bed material roughness) are not constants but a function of the Froude number. The proposed relations are both simple and accurate and can be effectively used to predict the longitudinal dispersion coefficients in natural streams.
Directed electromagnetic wave propagation in 1D metamaterial: Projecting operators method
NASA Astrophysics Data System (ADS)
Ampilogov, Dmitrii; Leble, Sergey
2016-07-01
We consider a boundary problem for 1D electrodynamics modeling of a pulse propagation in a metamaterial medium. We build and apply projecting operators to a Maxwell system in time domain that allows to split the linear propagation problem to directed waves for a material relations with general dispersion. Matrix elements of the projectors act as convolution integral operators. For a weak nonlinearity we generalize the linear results still for arbitrary dispersion and derive the system of interacting right/left waves with combined (hybrid) amplitudes. The result is specified for the popular metamaterial model with Drude formula for both permittivity and permeability coefficients. We also discuss and investigate stationary solutions of the system related to some boundary regimes.
NASA Astrophysics Data System (ADS)
Bijeljic, B.; Blunt, M. J.; Rhodes, M. E.
2009-04-01
This talk will describe and highlight the advantages offered by a novel methodology that unifies pore network modeling, CTRW theory and experiment in description of solute dispersion in porous media. Solute transport in a porous medium is characterized by the interplay of advection and diffusion (described by Peclet number, Pe) that cause dispersion of solute particles. Dispersion is traditionally described by dispersion coefficients, D, that are commonly calculated from the spatial moments of the plume. Using a pore-scale network model based on particle tracking, the rich Peclet-number dependence of dispersion coefficient is predicted from first principles and is shown to compare well with experimental data for restricted diffusion, transition, power-law and mechanical dispersion regimes in the asymptotic limit. In the asymptotic limit D is constant and can be used in an averaged advection-dispersion equation. However, it is highly important to recognize that, until the velocity field is fully sampled, the particle transport is non-Gaussian and D possesses temporal or spatial variation. Furthermore, temporal probability density functions (PDF) of tracer particles are studied in pore networks and an excellent agreement for the spectrum of transition times for particles from pore to pore is obtained between network model results and CTRW theory. Based on the truncated power-law interpretation of PDF-s, the physical origin of the power-law scaling of dispersion coefficient vs. Peclet number has been explained for unconsolidated porous media, sands and a number of sandstones, arriving at the same conclusion from numerical network modelling, analytic CTRW theory and experiment. The length traveled by solute plumes before Gaussian behaviour is reached increases with an increase in heterogeneity and/or Pe. This opens up the question on the nature of dispersion in natural systems where the heterogeneities at the larger scales will significantly increase the range of velocities in the reservoir, thus significantly delaying the asymptotic approach to Gaussian behaviour. As a consequence, the asymptotic behaviour might not be reached at the field scale. This is illustrated by the multi-scale approach in which transport at core, gridblock and field scale is viewed as a series of particle transitions between discrete nodes governed by probability distributions. At each scale of interest a distribution that represents transport physics (and the heterogeneity) is used as an input to model a subsequent reservoir scale. The extensions to reactive transport are discussed.
Bhadra, S.; Hertzberg, B. J.; Croft, M.; ...
2015-03-13
The coefficient of restitution of alkaline batteries had been shown to increase as a function of depth of discharge. In this work, using non-destructive mechanical testing, the change in coefficient of restitution is compared to in situ energy-dispersive x-ray diffraction data to determine the cause of the macroscopic change in coefficient of restitution. The increase in coefficient of restitution correlates to the formation of a percolation pathway of ZnO within the anode of the cell, and that the coefficient of restitution saturates at a value of 0.63 ± .05 at 50% state if charge when the anode has densified intomore » porous ZnO solid. Of note is the sensitivity of coefficient of restitution to the amount of ZnO formation that rivals the sensitivity on in situ energy-dispersive x-ray diffraction spectroscopy.« less
Quantum treatment of field propagation in a fiber near the zero dispersion wavelength
NASA Astrophysics Data System (ADS)
Safaei, A.; Bassi, A.; Bolorizadeh, M. A.
2018-05-01
In this report, we present a quantum theory describing the propagation of the electromagnetic radiation in a fiber in the presence of the third order dispersion coefficient. We obtained the quantum photon-polariton field, hence, we provide herein a coupled set of operator forms for the corresponding nonlinear Schrödinger equations when the third order dispersion coefficient is included. Coupled stochastic nonlinear Schrödinger equations were obtained by applying a positive P-representation that governs the propagation and interaction of quantum solitons in the presence of the third-order dispersion term. Finally, to reduce the fluctuations near solitons in the first approximation, we developed coupled stochastic linear equations.
NASA Astrophysics Data System (ADS)
Sharma, Vandna; Kumar, Pankaj
2017-11-01
Absorption coefficient of doped polymer dispersed liquid crystals (PDLCs) is a critical factor for their device performance and depends on dopants parameters like solubility, order parameter and extinction coefficients, in addition to configuration and orientation of the droplets. In this study, a fixed amount (0.125% wt/wt) of multiwall carbon nanotubes (CNTs) and orange azo dichroic dye was doped in PDLC and measured the OFF state absorption coefficient. Considering the theory based on Beer's law and followed by extinction coefficients of CNT and dye, the OFF state transmission for dye doped PDLC was found lower compared to CNT doped PDLC. As a result, absorption coefficient for dye doped PDLC was higher and resulted in the superior contrast ratio. The experimental results were found be consistent with the theoretical results.
Quantitative Electron Probe Microanalysis: State of the Art
NASA Technical Reports Server (NTRS)
Carpernter, P. K.
2005-01-01
Quantitative electron-probe microanalysis (EPMA) has improved due to better instrument design and X-ray correction methods. Design improvement of the electron column and X-ray spectrometer has resulted in measurement precision that exceeds analytical accuracy. Wavelength-dispersive spectrometer (WDS) have layered-dispersive diffraction crystals with improved light-element sensitivity. Newer energy-dispersive spectrometers (EDS) have Si-drift detector elements, thin window designs, and digital processing electronics with X-ray throughput approaching that of WDS Systems. Using these systems, digital X-ray mapping coupled with spectrum imaging is a powerful compositional mapping tool. Improvements in analytical accuracy are due to better X-ray correction algorithms, mass absorption coefficient data sets,and analysis method for complex geometries. ZAF algorithms have ban superceded by Phi(pz) algorithms that better model the depth distribution of primary X-ray production. Complex thin film and particle geometries are treated using Phi(pz) algorithms, end results agree well with Monte Carlo simulations. For geological materials, X-ray absorption dominates the corretions end depends on the accuracy of mass absorption coefficient (MAC) data sets. However, few MACs have been experimentally measured, and the use of fitted coefficients continues due to general success of the analytical technique. A polynomial formulation of the Bence-Albec alpha-factor technique, calibrated using Phi(pz) algorithms, is used to critically evaluate accuracy issues and can be also be used for high 2% relative and is limited by measurement precision for ideal cases, but for many elements the analytical accuracy is unproven. The EPMA technique has improved to the point where it is frequently used instead of the petrogaphic microscope for reconnaissance work. Examples of stagnant research areas are: WDS detector design characterization of calibration standards, and the need for more complete treatment of the continuum X-ray fluorescence correction.
2012-09-01
bandwidth of the pulse. Using the standard laboratory and analysis methods of Sheik- Bahae et al., we obtain a two-photon absorption coefficient, β, of...organic thin-film materials deposited on various substrates. 15 6. References 1. Sheik- Bahae , M.; Said, A. A.; Van Stryland, E. W. High...sensitivity, Single-beam n2 Measurements. Optics Letters 1989, 14 (17). 2. Sheik- Bahae , M.; Said, A. A.; Van Stryland, E. W.; Wei, T-H; Hagan, D. J
Treeby, Bradley E; Zhang, Edward Z; Thomas, Alison S; Cox, Ben T
2011-02-01
The ultrasound attenuation coefficient and dispersion from 0-70 MHz in whole human blood and its components (red blood cells and plasma) at 37°C is reported. The measurements are made using a fixed path substitution technique that exploits optical mechanisms for the generation and detection of ultrasound. This allows the measurements to cover a broad frequency range with a single source and receiver. The measured attenuation coefficient and dispersion in solutions of red blood cells and physiological saline for total haemoglobin concentrations of 10, 15 and 20 g/dL are presented. The attenuation coefficient and dispersion in whole human blood taken from four healthy volunteers by venipuncture is also reported. The power law dependence of the attenuation coefficient is shown to vary across the measured frequency range. This is due to the varying frequency dependence of the different mechanisms responsible for the attenuation. The attenuation coefficient measured at high frequencies is found to be significantly higher than that predicted by historical power law parameters. A review of the attenuation mechanisms in blood along with previously reported experimental measurements is given. Values for the sound speed and density in the tested samples are also presented. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
FIBER AND INTEGRATED OPTICS: Excitation of leaky modes in a system of coupled waveguides
NASA Astrophysics Data System (ADS)
Usievich, B. A.; Nurligareev, J. Kh; Sychugov, V. A.; Golant, K. M.
2007-06-01
A system of coupled single-mode waveguides with the number M of guided modes lower than the number N of single-mode waveguides is studied. Leaky modes in this system are investigated in detail. It is shown, in particular, that these modes can be excited by light incident on the side surface of the system when the reflection coefficient vanishes. It is found that the angular dependence of the coefficient of reflection from the side surface of the system can be used to refine the dispersion curve for leaky modes. It is shown that light incident at a grazing angle can propagate in the system in the direction considerably different from the propagation direction of a beam incident from a substrate, even in the case of a small difference in the refractive indices.
Mechanisms for the Crystallization of Zblan
NASA Technical Reports Server (NTRS)
Ethridge, Edwin C.; Tucker, Dennis S.
2001-01-01
The heavy metal fluoride glasses represent a class of reasonably good glass forming compositions with very unique infrared optical properties that have been of interest to researchers for 20 years. The most extensively studied glass with the most potential for practical applications is ZBLAN which contains the fluorides of zirconium, barium, lanthanum, aluminum, and sodium. It has a broad transmission range (0.3-6 um), low index of refraction (about 1.43), low dispersion, low Raleigh scattering, ultra-low thermal 2 dispersion, and potential ultra-low signal attenuation. Potential applications include fiber amplifiers, fiber optic gyroscopes, delivery systems for laser cutting, drilling and surgery, radiation resistant data links, nonlinear optical systems, and ultra-low-loss repeater-less transcontinental and transoceanic optical fiber. Potential markets for these materials are in the tens of billions of dollars per year. Optical fiber from this system possess excellent transmission characteristics in the IR, but the glass is somewhat susceptible to nucleation and crystallization. The theoretical intrinsic loss coefficient for ZBLAN at 2 microns is 0.00 1 dB/Km. Extrinsic losses, however, cause significant attenuation. The lowest loss coefficient measured is 0.7 dB/Km. This compares with the loss coefficient for fiber optic grade fused silica glass of 0.2 dB/Km. The extrinsic losses in ZBLAN have been attributed to 1) impurities which might be lowered by containerless processing and 2) to scattering from micro-crystallites that form during glass preform production or during fiber drawing.
NASA Astrophysics Data System (ADS)
Wu, Zedong; Alkhalifah, Tariq
2018-07-01
Numerical simulation of the acoustic wave equation in either isotropic or anisotropic media is crucial to seismic modeling, imaging and inversion. Actually, it represents the core computation cost of these highly advanced seismic processing methods. However, the conventional finite-difference method suffers from severe numerical dispersion errors and S-wave artifacts when solving the acoustic wave equation for anisotropic media. We propose a method to obtain the finite-difference coefficients by comparing its numerical dispersion with the exact form. We find the optimal finite difference coefficients that share the dispersion characteristics of the exact equation with minimal dispersion error. The method is extended to solve the acoustic wave equation in transversely isotropic (TI) media without S-wave artifacts. Numerical examples show that the method is highly accurate and efficient.
Ultrasound-contrast-agent dispersion and velocity imaging for prostate cancer localization.
van Sloun, Ruud Jg; Demi, Libertario; Postema, Arnoud W; de la Rosette, Jean Jmch; Wijkstra, Hessel; Mischi, Massimo
2017-01-01
Prostate cancer (PCa) is the second-leading cause of cancer death in men; however, reliable tools for detection and localization are still lacking. Dynamic Contrast Enhanced UltraSound (DCE-US) is a diagnostic tool that is suitable for analysis of vascularization, by imaging an intravenously injected microbubble bolus. The localization of angiogenic vascularization associated with the development of tumors is of particular interest. Recently, methods for the analysis of the bolus convective dispersion process have shown promise to localize angiogenesis. However, independent estimation of dispersion was not possible due to the ambiguity between convection and dispersion. Therefore, in this study we propose a new method that considers the vascular network as a dynamic linear system, whose impulse response can be locally identified. To this end, model-based parameter estimation is employed, that permits extraction of the apparent dispersion coefficient (D), velocity (v), and Péclet number (Pe) of the system. Clinical evaluation using data recorded from 25 patients shows that the proposed method can be applied effectively to DCE-US, and is able to locally characterize the hemodynamics, yielding promising results (receiver-operating-characteristic curve area of 0.84) for prostate cancer localization. Copyright © 2016 Elsevier B.V. All rights reserved.
A model for dispersion from area sources in convective turbulence. [for air pollution
NASA Technical Reports Server (NTRS)
Crane, G.; Panofsky, H. A.; Zeman, O.
1977-01-01
Four independent estimates of the vertical distribution of the eddy coefficient for dispersion of a passive contaminant from an extensive area source in a convective layer have been presented. The estimates were based on the following methods: (1) a second-order closure prediction, (2) field data of pollutant concentrations over Los Angeles, (3) lab measurements of particle dispersion, and (4) assumption of equality between momentum and mass transfer coefficients in the free convective limit. It is suggested that K-values estimated both from second-order closure theory and from Los Angeles measurements are systematically underestimated.
Diffraction of a plane wave on two-dimensional conductive structures and a surface wave
NASA Astrophysics Data System (ADS)
Davidovich, Mikhael V.
2018-04-01
We consider the structures type of two-dimensional electron gas in the form of a thin conductive, in particular, graphene films described by tensor conductivity, which are isolated or located on the dielectric layers. The dispersion equation for hybrid modes, as well as scattering parameters. We show that free wave (eigenwaves) problem follow from the problem of diffraction when linking the amplitude of the current of the linear equations are unsolvable, i.e., the determinant of this system is zero. As a particular case the dispersion equation follow from the conditions of matching (with zero reflection coefficient).
Chi 3 dispersion in planar tantalum pentoxide waveguides in the telecommunications window.
Chen, Ruiqi Y; Charlton, Martin D B; Lagoudakis, Pavlos G
2009-04-01
We report on the dispersion of the third-order nonlinear susceptibility (chi(3) or "Chi 3") in planar Ta2O5 waveguides in the telecommunications spectral window. We utilize the observation of third-harmonic generation under ultrashort pulsed excitation as a reference-free characterization method of chi(3) and obtain a large nonlinear coefficient, 2x10(-13) esu, at 1550 nm. Our observation of efficient third-harmonic generation in Ta2O5 waveguides in the telecoms window reveals the potential of this material system in high-speed integrated nonlinear optical switches.
Saturation-dependent solute dispersivity in porous media: Pore-scale processes
NASA Astrophysics Data System (ADS)
Raoof, A.; Hassanizadeh, S. M.
2013-04-01
It is known that in variably saturated porous media, dispersion coefficient depends on Darcy velocity and water saturation. In one-dimensional flow, it is commonly assumed that the dispersion coefficient is a linear function of velocity. The coefficient of proportionality, called the dispersivity, is considered to depend on saturation. However, there is not much known about its dependence on saturation. In this study, we investigate, using a pore network model, how the longitudinal dispersivity varies nonlinearly with saturation. We schematize the porous medium as a network of pore bodies and pore throats with finite volumes. The pore space is modeled using the multidirectional pore-network concept, which allows for a distribution of pore coordination numbers. This topological property together with the distribution of pore sizes are used to mimic the microstructure of real porous media. The dispersivity is calculated by solving the mass balance equations for solute concentration in all network elements and averaging the concentrations over a large number of pores. We have introduced a new formulation of solute transport within pore space, where we account for different compartments of residual water within drained pores. This formulation makes it possible to capture the effect of limited mixing due to partial filling of the pores under variably saturated conditions. We found that dispersivity increases with the decrease in saturation, it reaches a maximum value, and then decreases with further decrease in saturation. To show the capability of our formulation to properly capture the effect of saturation on solute dispersion, we applied it to model the results of a reported experimental study.
Physical and mathematical modeling of pollutant emissions when burning peat
NASA Astrophysics Data System (ADS)
Vasilyev, A.; Lozhkin, V.; Tarkhov, D.; Lozhkina, O.; Timofeev, V.
2017-11-01
The article presents an original neural network model of CO dispersion around the experimentally simulated peat fire. It is a self-learning model considering both the measured CO concentrations in the smoke cloud and the refined coefficients of the main equation. The method is recommended for the development of air quality control and forecasting systems.
Slow Auger Relaxation in HgTe Colloidal Quantum Dots.
Melnychuk, Christopher; Guyot-Sionnest, Philippe
2018-05-03
The biexciton lifetimes in HgTe colloidal quantum dots are measured as a function of particle size. Samples produced by two synthetic methods, leading to partially aggregated or well-dispersed particles, exhibit markedly different dynamics. The relaxation characteristics of partially aggregated HgTe inhibit reliable determinations of the Auger lifetime. In well-dispersed HgTe quantum dots, the biexciton lifetime increases approximately linearly with particle volume, confirming trends observed in other systems. The extracted Auger coefficient is three orders of magnitude smaller than that for bulk HgCdTe materials with similar energy gaps. We discuss these findings in the context of understanding Auger relaxation in quantum-confined systems and their relevance to mid-infrared optoelectronic devices based on HgTe colloidal quantum dots.
Observability of discretized partial differential equations
NASA Technical Reports Server (NTRS)
Cohn, Stephen E.; Dee, Dick P.
1988-01-01
It is shown that complete observability of the discrete model used to assimilate data from a linear partial differential equation (PDE) system is necessary and sufficient for asymptotic stability of the data assimilation process. The observability theory for discrete systems is reviewed and applied to obtain simple observability tests for discretized constant-coefficient PDEs. Examples are used to show how numerical dispersion can result in discrete dynamics with multiple eigenvalues, thereby detracting from observability.
NASA Technical Reports Server (NTRS)
Kohl, R. H.; Flaherty, M. I.; Partin, R. L.
1977-01-01
The optical properties of a wide variety of atmospheric dispersions were studied using a 0.9-micron lidar system which included a GaAs laser stack transmitter emitting a horizontally polarized beam of 4 milliradians vertical divergence and 1.5 milliradians horizontal divergence. A principal means for assessing optical properties was the polarization ratio, that is, the backscattered radiation power perpendicular to the transmitter beam divided by the backscattered radiation power parallel to the beam polarization. The ratio of the backscattered fraction to the attenuation coefficient was also determined. Data on the dispersion properties of black carbon smoke, road dust, fog, fair-weather cumulus clouds, snow and rain were obtained; the adverse effects of sunlight-induced background noise on the readings is also discussed.
NASA Astrophysics Data System (ADS)
Belov, A. V.; Kurkov, Andrei S.; Musatov, A. G.; Semenov, V. A.
1990-12-01
Experimental and theoretical investigations were made of the influence of external thermal effects on the dispersive characteristics of single-mode fiber waveguides with different shapes and parameters of the refractive index profile. The temperature coefficients of the group delay were determined. The temperature dependences of the dispersion coefficient (dD/dT = 1.6 × 10-3 and 4.3 × 10-3 ps.nm-1 km-1 K-1, respectively) and of the zero-dispersion wavelength (dλ0/dT = 1.9 × 10-2 and 8.5 × 10-2 nm/K, respectively) were determined at two working wavelengths of 1.3 and 1.55 μm for single-mode fiber waveguides with typical parameters.
Van der Waals potential and vibrational energy levels of the ground state radon dimer
NASA Astrophysics Data System (ADS)
Sheng, Xiaowei; Qian, Shifeng; Hu, Fengfei
2017-08-01
In the present paper, the ground state van der Waals potential of the Radon dimer is described by the Tang-Toennies potential model, which requires five essential parameters. Among them, the two dispersion coefficients C6 and C8 are estimated from the well determined dispersion coefficients C6 and C8 of Xe2. C10 is estimated by using the approximation equation that C6C10/C82 has an average value of 1.221 for all the rare gas dimers. With these estimated dispersion coefficients and the well determined well depth De and Re the Born-Mayer parameters A and b are derived. Then the vibrational energy levels of the ground state radon dimer are calculated. 40 vibrational energy levels are observed in the ground state of Rn2 dimer. The last vibrational energy level is bound by only 0.0012 cm-1.
NASA Astrophysics Data System (ADS)
Inc, Mustafa; Isa Aliyu, Aliyu; Yusuf, Abdullahi; Baleanu, Dumitru
2017-12-01
This paper obtains the dark, bright, dark-bright or combined optical and singular solitons to the nonlinear Schrödinger equation (NLSE) with group velocity dispersion coefficient and second-order spatio-temporal dispersion coefficient, which arises in photonics and waveguide optics and in optical fibers. The integration algorithm is the sine-Gordon equation method (SGEM). Furthermore, the explicit solutions of the equation are derived by considering the power series solutions (PSS) theory and the convergence of the solutions is guaranteed. Lastly, the modulation instability analysis (MI) is studied based on the standard linear-stability analysis and the MI gain spectrum is obtained.
NASA Astrophysics Data System (ADS)
Wong, Thiam
In vapor compression cycles, a small portion of the oil circulates with the refrigerant throughout the system components, while most of the oil stays in the compressors. In heat exchangers, the lubricant in excess penalizes the heat transfer and increases the pressure losses: both effects are highly undesired but yet unavoidable. Nanoparticles dispersed in the excess lubricant are expected to provide enhancements in heat transfer. While solubility and miscibility of refrigerants in polyolesters (POE) lubricant are well established knowledge, there is a lack of information regarding if and how nanoparticles dispersed in the lubricant affect these properties. This thesis presents experimental data of solubility of two types of Al2O3 nanolubricants with refrigerant R-410A. The nanoparticles were dispersed in POE lubricant by using different surfactants and dispersion methods. The nanolubricants appeared to have slightly lower solubility than that of R-410A but actually the solid nanoparticles did not really interfere with the POE oil solubility characteristics. A test facility and experimental methodology was developed for the investigation of heat transfer coefficient and pressure drop. The pressure drop of the refrigerant lubricant mixtures during flow boiling depended on the mass flux of the refrigerant. Greater augmentation was seen in the pressure drop results with decreasing mass flow rate. Pure refrigerant R410A showed the lowest pressure drop, addition of nanolubricants to the refrigerant showed a slightly higher pressure drop and POE-refrigerant mixture showed the highest pressure drop in the tests conducted. Enhancement or degradation in heat transfer coefficient during flow boiling depended on the nanoparticle concentration in the lubricant as well as the lubricant concentration in refrigerant. R410A showed the highest heat transfer coefficient for all conditions tested. For a concentration of 1% nanolubricant in refrigerant, the heat transfer coefficient showed more enhancement with increase in nanoparticle concentration compared to POE refrigerant mixtures. For a concentration of 3% nanolubricant in refrigerant mixtures there was little to no enhancement for tests conducted.
Zhou, Quanlin; Liu, Hui-Hai; Molz, Fred J; Zhang, Yingqi; Bodvarsson, Gudmundur S
2007-08-15
Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D(m)(e), a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D(m)(e) values were calculated, either directly using data reported in the literature, or by reanalyzing the corresponding field tracer tests. The reanalysis was conducted for the selected tracer tests using analytic or semi-analytic solutions for tracer transport in linear, radial, or interwell flow fields. Surveyed data show that the scale factor of the effective matrix diffusion coefficient (defined as the ratio of D(m)(e) to the lab-scale matrix diffusion coefficient, D(m), of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate, on average trend toward systematic increase in the scale factor with observation scale. This trend suggests that the effective matrix diffusion coefficient is likely to be statistically scale-dependent. The scale-factor value ranges from 0.5 to 884 for observation scales from 5 to 2000 m. At a given scale, the scale factor varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different geologic sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal and contaminant remediation.
D'Agostino, M F; Sanz, J; Martínez-Castro, I; Giuffrè, A M; Sicari, V; Soria, A C
2014-07-01
Statistical analysis has been used for the first time to evaluate the dispersion of quantitative data in the solid-phase microextraction (SPME) followed by gas chromatography-mass spectrometry (GC-MS) analysis of blackberry (Rubus ulmifolius Schott) volatiles with the aim of improving their precision. Experimental and randomly simulated data were compared using different statistical parameters (correlation coefficients, Principal Component Analysis loadings and eigenvalues). Non-random factors were shown to significantly contribute to total dispersion; groups of volatile compounds could be associated with these factors. A significant improvement of precision was achieved when considering percent concentration ratios, rather than percent values, among those blackberry volatiles with a similar dispersion behavior. As novelty over previous references, and to complement this main objective, the presence of non-random dispersion trends in data from simple blackberry model systems was evidenced. Although the influence of the type of matrix on data precision was proved, the possibility of a better understanding of the dispersion patterns in real samples was not possible from model systems. The approach here used was validated for the first time through the multicomponent characterization of Italian blackberries from different harvest years. Copyright © 2014 Elsevier B.V. All rights reserved.
Merritt, M.L.
1993-01-01
The simulation of the transport of injected freshwater in a thin brackish aquifer, overlain and underlain by confining layers containing more saline water, is shown to be influenced by the choice of the finite-difference approximation method, the algorithm for representing vertical advective and dispersive fluxes, and the values assigned to parametric coefficients that specify the degree of vertical dispersion and molecular diffusion that occurs. Computed potable water recovery efficiencies will differ depending upon the choice of algorithm and approximation method, as will dispersion coefficients estimated based on the calibration of simulations to match measured data. A comparison of centered and backward finite-difference approximation methods shows that substantially different transition zones between injected and native waters are depicted by the different methods, and computed recovery efficiencies vary greatly. Standard and experimental algorithms and a variety of values for molecular diffusivity, transverse dispersivity, and vertical scaling factor were compared in simulations of freshwater storage in a thin brackish aquifer. Computed recovery efficiencies vary considerably, and appreciable differences are observed in the distribution of injected freshwater in the various cases tested. The results demonstrate both a qualitatively different description of transport using the experimental algorithms and the interrelated influences of molecular diffusion and transverse dispersion on simulated recovery efficiency. When simulating natural aquifer flow in cross-section, flushing of the aquifer occurred for all tested coefficient choices using both standard and experimental algorithms. ?? 1993.
NASA Astrophysics Data System (ADS)
Zeyada, H. M.; Makhlouf, M. M.
2016-04-01
The powder of as synthesized lead dioxide (PbO2) has polycrystalline structure β-PbO2 phase of tetragonal crystal system. It becomes nanocrystallites α-PbO2 phase with orthorhombic crystal system upon thermal deposition to form thin films. Annealing temperatures increase nanocrystallites size from 28 to 46 nm. The optical properties of α-PbO2 phase were calculated from absolute values of transmittance and reflectance at nearly normal incidence of light by spectrophotometer measurements. The refractive and extinction indices were determined and showed a response to annealing temperatures. The absorption coefficient of α-PbO2 films is >106 cm-1 in UV region of spectra. Analysis of the absorption coefficient spectra near optical edge showed indirect allowed transition. Annealing temperature decreases the value of indirect energy gap for α-PbO2 films. The dispersion parameters such as single oscillator energy, dispersion energy, dielectric constant at high frequency and lattice dielectric constant were calculated and its variations with annealing temperatures are reported. The nonlinear refractive index (n2), third-order nonlinear susceptibility (χ(3)) and nonlinear absorption coefficient (βc) were determined. It was found that χ(3), n2 and β increase with increasing photon energy and decrease with increasing annealing temperature. The pristine film of α-PbO2 has higher values of nonlinear optical constants than for annealed films; therefore it is suitable for applications in manufacturing nonlinear optical devices.
Statistical Physics of Colloidal Dispersions.
NASA Astrophysics Data System (ADS)
Canessa, E.
Available from UMI in association with The British Library. Requires signed TDF. This thesis is concerned with the equilibrium statistical mechanics of colloidal dispersions which represent useful model systems for the study of condensed matter physics; namely, charge stabilized colloidal dispersions and polymer stabilized colloidal dispersions. A one-component macroparticle approach is adopted in order to treat the macroscopic and microscopic properties of these systems in a simple and comprehensive manner. The thesis opens with the description of the nature of the colloidal state before reviewing some basic definitions and theory in Chapter II. In Chapter III a variational theory of phase equilibria based on the Gibbs-Bogolyobov inequality is applied to sterically stabilized colloidal dispersions. Hard spheres are chosen as the reference system for the disordered phases while an Einstein model is used for the ordered phases. The new choice of pair potential, taken for mathematical convenience, is a superposition of two Yukawa functions. By matching a double Yukawa potential to the van der Waals attractive potential at different temperatures and introducing a purely temperature dependent coefficient to the repulsive part, a rich variety of observed phase separation phenomena is qualitatively described. The behaviour of the potential is found to be consistent with a small decrease of the polymer layer thickness with increasing temperature. Using the same concept of a collapse transition the non-monotonic second virial coefficient is also explained and quantified. It is shown that a reduction of the effective macroparticle diameter with increasing temperature can only be partially examined from the point of view of a (binary-) polymer solution theory. This chapter concludes with the description of the observed, reversible, depletion flocculation behaviour. This is accomplished by using the variational formalism and by invoking the double Yukawa potential to allow changes of the depletion attraction with free polymer concentration. Chapter IV deals with the contributions of pairwise additive and volume dependent forces to the free energy of charge stabilized colloidal dispersions. To a first approximation the extra volume dependent contributions due to the chemical equilibrium and counterion-macroion coupling are treated in a one-component plasma approach. Added salt is treated as an ionized gas within the Debye-Huckel theory of electrolytes. In order to set this approach on a quantitative basis the existence of an equilibrium lattice with a small shear modulus is examined. Structural phase transitions in these systems are also analysed theoretically as a function of added electrolyte.
Positive solutions for nonlocal dispersal equation with spatial degeneracy
NASA Astrophysics Data System (ADS)
Sun, Jian-Wen
2018-02-01
In this paper, we consider the positive solutions of the nonlocal dispersal equation \\int \\limits _{Ω }J(x,y)[u(y)-u(x)]dy=-λ m(x)u(x)+[c(x)+ɛ ]u^p(x) \\quad { in }\\bar{Ω }, where Ω \\subset R^N is a bounded domain, λ ,ɛ and p>1 are positive constants. The dispersal kernel J and the coefficient c( x) are nonnegative, but c( x) has a degeneracy in some subdomain of Ω . In order to study the influence of heterogeneous environment on the nonlocal system, we study the sharp spatial patterns of positive solutions as ɛ → 0. We obtain that the positive solutions always have blow-up asymptotic profiles in \\bar{Ω }. Meanwhile, we find that the profiles in degeneracy domain are different from the domain without degeneracy.
Getting super-excited with modified dispersion relations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashoorioon, Amjad; Casadio, Roberto; Geshnizjani, Ghazal
We demonstrate that in some regions of parameter space, modified dispersion relations can lead to highly populated excited states, which we dub as 'super-excited' states. In order to prepare such super-excited states, we invoke dispersion relations that have negative slope in an interim sub-horizon phase at high momenta. This behaviour of quantum fluctuations can lead to large corrections relative to the Bunch-Davies power spectrum, which mimics highly excited initial conditions. We identify the Bogolyubov coefficients that can yield these power spectra. In the course of this computation, we also point out the shortcomings of the gluing method for evaluating themore » power spectrum and the Bogolyubov coefficients. As we discuss, there are other regions of parameter space, where the power spectrum does not get modified. Therefore, modified dispersion relations can also lead to so-called 'calm excited states'. We conclude by commenting on the possibility of obtaining these modified dispersion relations within the Effective Field Theory of Inflation.« less
NASA Astrophysics Data System (ADS)
Abril, J. M.; Abdel-Aal, M. M.; Al-Gamal, S. A.; Abdel-Hay, F. A.; Zahar, H. M.
2000-04-01
In this paper we take advantage of the two field tracing experiments carried out under the IAEA project EGY/07/002, to develop a modelling study on the dispersion of radioactive pollution in the Suez Canal. The experiments were accomplished by using rhodamine B as a tracer, and water samples were measured by luminescence spectrometry. The presence of natural luminescent particles in the canal waters limited the use of some field data. During experiments, water levels, velocities, wind and other physical parameters were recorded to supply appropriate information for the modelling work. From this data set, the hydrodynamics of the studied area has been reasonably described. We apply a 1-D-Gaussian and 2-D modelling approaches to predict the position and the spatial shape of the plume. The use of different formulations for dispersion coefficients is studied. These dispersion coefficients are then applied in a 2-D-hydrodynamic and dispersion model for the Bitter Lake to investigate different scenarios of accidental discharges.
Accelerated Physical Stability Testing of Amorphous Dispersions.
Mehta, Mehak; Suryanarayanan, Raj
2016-08-01
The goal was to develop an accelerated physical stability testing method of amorphous dispersions. Water sorption is known to cause plasticization and may accelerate drug crystallization. In an earlier investigation, it was observed that both the increase in mobility and decrease in stability in amorphous dispersions was explained by the "plasticization" effect of water (Mehta et al. Mol. Pharmaceutics 2016, 13 (4), 1339-1346). In this work, the influence of water concentration (up to 1.8% w/w) on the correlation between mobility and crystallization in felodipine dispersions was investigated. With an increase in water content, the α-relaxation time as well as the time for 1% w/w felodipine crystallization decreased. The relaxation times of the systems, obtained with different water concentration, overlapped when the temperature was scaled (Tg/T). The temperature dependencies of the α-relaxation time as well as the crystallization time were unaffected by the water concentration. Thus, the value of the coupling coefficient, up to a water concentration of 1.8% w/w, was approximately constant. Based on these findings, the use of "water sorption" is proposed to build predictive models for crystallization in slow crystallizing dispersions.
NASA Astrophysics Data System (ADS)
Garbovskiy, Yuriy
2016-05-01
The ion capturing effect in liquid crystal nanocolloids was quantified by means of the ion trapping coefficient. The dependence of the ion trapping coefficient on the concentration of nano-dopants and their ionic purity was calculated for a variety of nanosolids dispersed in liquid crystals: carbon nanotubes, graphene nano-flakes, diamond nanoparticles, anatase nanoparticles, and ferroelectric nanoparticles. The proposed method perfectly fits existing experimental data and can be useful in the design of highly efficient ion capturing nanomaterials.
NASA Astrophysics Data System (ADS)
Avendaño, Carlos G.; Reyes, Arturo
2017-03-01
We theoretically study the dispersion relation for axially propagating electromagnetic waves throughout a one-dimensional helical structure whose pitch and dielectric and magnetic properties are spatial random functions with specific statistical characteristics. In the system of coordinates rotating with the helix, by using a matrix formalism, we write the set of differential equations that governs the expected value of the electromagnetic field amplitudes and we obtain the corresponding dispersion relation. We show that the dispersion relation depends strongly on the noise intensity introduced in the system and the autocorrelation length. When the autocorrelation length increases at fixed fluctuation and when the fluctuation augments at fixed autocorrelation length, the band gap widens and the attenuation coefficient of electromagnetic waves propagating in the random medium gets larger. By virtue of the degeneracy in the imaginary part of the eigenvalues associated with the propagating modes, the random medium acts as a filter for circularly polarized electromagnetic waves, in which only the propagating backward circularly polarized wave can propagate with no attenuation. Our results are valid for any kind of dielectric and magnetic structures which possess a helical-like symmetry such as cholesteric and chiral smectic-C liquid crystals, structurally chiral materials, and stressed cholesteric elastomers.
The effect of solute size on diffusive-dispersive transport in porous media
NASA Astrophysics Data System (ADS)
Hu, Qinhong; Brusseau, Mark L.
1994-06-01
The purpose of this work was to investigate the effect of solute size on diffusive-dispersive transport in porous media. Miscible displacement experiments were performed with tracers of various sizes (i.e. tritiated water ( 3H 2O), pentafluorobenzoate (PFBA), and 2,4-dichlorophenoxyacetic acid (2,4-D)) and a homogeneous, nonreactive sand for pore-water velocities varying by three orders of magnitude (70, 7, 0.66, and 0.06 cm h -1). Hydrodynamic dispersion is the predominant source of dispersion for higher pore-water velocities (exceeding 1 cm h -1), and dispersivity is, therefore, essentially independent of solute size. In this case, the practice of using a small-sized tracer, such as 3H 2O, to characterize the dispersive properties of a soil is valid. The contribution of axial diffusion becomes significant at pore-water velocities lower than 0.1 cm h -1. At a given velocity below this value, the contribution of axial diffusion is larger for 3H 2O, with its larger coefficient of molecular diffusion, than it is for PFBA and 2,4-D. The apparent dispersivities are, therefore, a function of solute size. The use of a tracer-derived dispersivity for solutes of different sizes would not be valid in this case. For systems where diffusion is important, compounds such as PFBA are the preferred tracers for representing advective-dispersive transport of many organic contaminants of interest.
Shuvalov, A L
2008-05-01
For an arbitrary anisotropic half-space with continuous vertical variation of material properties, an explicit closed-form expression for the coefficient B of high-frequency dispersion of the Rayleigh velocity v(R)(omega) approximately v(R)(0)(1+B/omega) is derived. The result involves two matrices, one consisting of the surface-traction derivatives in velocity and the other of its Wentzel-Kramers-Brillouin coefficients, which are contracted with an amplitude vector of the Rayleigh wave in the reference homogeneous half-space. The "ingredients" are routinely defined through the fundamental elasticity matrix and its first derivative, both taken at v=v(R)(0) and referred to the surface.
NASA Astrophysics Data System (ADS)
Lamorgese, A.; Mauri, R.
2017-04-01
We simulate the mixing (demixing) process of a quiescent binary liquid mixture with a composition-dependent viscosity which is instantaneously brought from the two-phase (one-phase) to the one-phase (two-phase) region of its phase diagram. Our theoretical approach follows a standard diffuse-interface model of partially miscible regular binary mixtures wherein convection and diffusion are coupled via a nonequilibrium capillary force, expressing the tendency of the phase-separating system to minimize its free energy. Based on 2D simulation results, we discuss the influence of viscosity ratio on basic statistics of the mixing (segregation) process triggered by a rapid heating (quench), assuming that the ratio of capillary to viscous forces (a.k.a. the fluidity coefficient) is large. We show that, for a phase-separating system, at a fixed value of the fluidity coefficient (with the continuous phase viscosity taken as a reference), the separation depth and the characteristic length of single-phase microdomains decrease monotonically for increasing values of the viscosity of the dispersed phase. This variation, however, is quite small, in agreement with experimental results. On the other hand, as one might expect, at a fixed viscosity of the dispersed phase both of the above statistics increase monotonically as the viscosity of the continuous phase decreases. Finally, we show that for a mixing system the attainment of a single-phase equilibrium state by coalescence and diffusion is retarded by an increase in the viscosity ratio at a fixed fluidity for the dispersed phase. In fact, for large enough values of the viscosity ratio, a thin film of the continuous phase becomes apparent when two drops of the minority phase approach each other, which further retards coalescence.
Many-body dispersion interactions from the exchange-hole dipole moment model
NASA Astrophysics Data System (ADS)
Otero-de-la-Roza, A.; Johnson, Erin R.
2013-02-01
In this article, we present the extension of the exchange-hole dipole moment model (XDM) of dispersion interactions to the calculation of two-body and three-body dispersion energy terms to any order, 2l-pole oscillator strengths, and polarizabilities. By using the newly-formulated coefficients, we study the relative importance of the higher-order two-body and the leading non-additive three-body (triple-dipole) interactions in gas-phase as well as in condensed systems. We show that the two-body terms up to R-10, but not the terms of higher-order, are essential in the correct description of the dispersion energy, while there are a number of difficulties related to the choice of the damping function, which precludes the use three-body triple-dipole contributions in XDM. We conclude that further study is required before the three-body term can be used in production XDM density-functional calculations and point out the salient problems regarding its use.
NASA Astrophysics Data System (ADS)
Guz, A. N.; Bagno, A. M.
2017-07-01
The dispersion curves are constructed and propagation of quasi-Lamb waves are studied for wide range of frequencies based on the Navier -Stokes three-dimensional linearized equations for a viscous liquid and linear equations of the classical theory of elasticity for an elastic layer. For a thick liquid layer, the effect of the viscosity of the liquid and the thickness of elastic and liquid layers on the phase velocities and attenuation coefficients of quasi-Lamb modes is analyzed. It is shown that in the case of a thick liquid layer for all modes, there are elastic layers of certain thickness with minimal effect of liquid viscosity on the phase velocities and attenuation coefficients of modes. It is also discovered that for some modes, there are both certain thicknesses and certain ranges of thickness where the effect of liquid viscosity on the phase velocities and attenuation coefficients of these modes is considerable. We ascertain that liquid viscosity promotes decrease of the penetration depth of the lowest quasi-Lamb mode into the liquid. The developed approach and the obtained results make it possible to ascertain for wave processes the limits of applicability of the model of ideal compressible fluid. Numerical results in the form of graphs are adduced and analyzed.
Evaluation of dispersivity coefficients by means of a laboratory image analysis.
Citarella, Donato; Cupola, Fausto; Tanda, Maria Giovanna; Zanini, Andrea
2015-01-01
This paper describes the application of an innovative procedure that allows the estimation of longitudinal and transverse dispersivities in an experimental plume devised in a laboratory sandbox. The phenomenon of transport in porous media is studied using sodium fluorescein as tracer. The fluorescent excitation was achieved by using blue light and the concentration data were obtained through the processing of side wall images collected with a high resolution color digital camera. After a calibration process, the relationship between the luminosity of the emitted fluorescence and the fluorescein concentration was determined at each point of the sandbox. The relationships were used to describe the evolution of the transport process quantitatively throughout the entire domain. Some check tests were performed in order to verify the reliability of the experimental device. Numerical flow and transport models of the sandbox were developed and calibrated comparing computed and observed flow rates and breakthrough curves. The estimation of the dispersivity coefficients was carried out by analyzing the concentration field deduced from the images collected during the experiments; the dispersivity coefficients were evaluated in the domain zones where the tracer affected the porous medium under the hypothesis that the transport phenomenon is described by advection-dispersion equation (ADE) and by computing the differential components of the concentration by means of a numerical leap-frog scheme. The values determined agree with the ones referred in literature for similar media and with the coefficients obtained by calibrating the numerical model. Very interesting considerations have been made from the analysis of the performance of the methodology at different locations in the flow domain and phases of the plume evolution. Copyright © 2014 Elsevier B.V. All rights reserved.
A systematic approach to numerical dispersion in Maxwell solvers
NASA Astrophysics Data System (ADS)
Blinne, Alexander; Schinkel, David; Kuschel, Stephan; Elkina, Nina; Rykovanov, Sergey G.; Zepf, Matt
2018-03-01
The finite-difference time-domain (FDTD) method is a well established method for solving the time evolution of Maxwell's equations. Unfortunately the scheme introduces numerical dispersion and therefore phase and group velocities which deviate from the correct values. The solution to Maxwell's equations in more than one dimension results in non-physical predictions such as numerical dispersion or numerical Cherenkov radiation emitted by a relativistic electron beam propagating in vacuum. Improved solvers, which keep the staggered Yee-type grid for electric and magnetic fields, generally modify the spatial derivative operator in the Maxwell-Faraday equation by increasing the computational stencil. These modified solvers can be characterized by different sets of coefficients, leading to different dispersion properties. In this work we introduce a norm function to rewrite the choice of coefficients into a minimization problem. We solve this problem numerically and show that the minimization procedure leads to phase and group velocities that are considerably closer to c as compared to schemes with manually set coefficients available in the literature. Depending on a specific problem at hand (e.g. electron beam propagation in plasma, high-order harmonic generation from plasma surfaces, etc.), the norm function can be chosen accordingly, for example, to minimize the numerical dispersion in a certain given propagation direction. Particle-in-cell simulations of an electron beam propagating in vacuum using our solver are provided.
Pollutant Plume Dispersion in the Atmospheric Boundary Layer over Idealized Urban Roughness
NASA Astrophysics Data System (ADS)
Wong, Colman C. C.; Liu, Chun-Ho
2013-05-01
The Gaussian model of plume dispersion is commonly used for pollutant concentration estimates. However, its major parameters, dispersion coefficients, barely account for terrain configuration and surface roughness. Large-scale roughness elements (e.g. buildings in urban areas) can substantially modify the ground features together with the pollutant transport in the atmospheric boundary layer over urban roughness (also known as the urban boundary layer, UBL). This study is thus conceived to investigate how urban roughness affects the flow structure and vertical dispersion coefficient in the UBL. Large-eddy simulation (LES) is carried out to examine the plume dispersion from a ground-level pollutant (area) source over idealized street canyons for cross flows in neutral stratification. A range of building-height-to-street-width (aspect) ratios, covering the regimes of skimming flow, wake interference, and isolated roughness, is employed to control the surface roughness. Apart from the widely used aerodynamic resistance or roughness function, the friction factor is another suitable parameter that measures the drag imposed by urban roughness quantitatively. Previous results from laboratory experiments and mathematical modelling also support the aforementioned approach for both two- and three-dimensional roughness elements. Comparing the UBL plume behaviour, the LES results show that the pollutant dispersion strongly depends on the friction factor. Empirical studies reveal that the vertical dispersion coefficient increases with increasing friction factor in the skimming flow regime (lower resistance) but is more uniform in the regimes of wake interference and isolated roughness (higher resistance). Hence, it is proposed that the friction factor and flow regimes could be adopted concurrently for pollutant concentration estimate in the UBL over urban street canyons of different roughness.
A methodology based on reduced complexity algorithm for system applications using microprocessors
NASA Technical Reports Server (NTRS)
Yan, T. Y.; Yao, K.
1988-01-01
The paper considers a methodology on the analysis and design of a minimum mean-square error criterion linear system incorporating a tapped delay line (TDL) where all the full-precision multiplications in the TDL are constrained to be powers of two. A linear equalizer based on the dispersive and additive noise channel is presented. This microprocessor implementation with optimized power of two TDL coefficients achieves a system performance comparable to the optimum linear equalization with full-precision multiplications for an input data rate of 300 baud.
NASA Astrophysics Data System (ADS)
Tang, Li-Yan; Yan, Zong-Chao; Shi, Ting-Yun; Babb, James F.; Mitroy, J.
2012-03-01
The long-range non-additive three-body dispersion interaction coefficients Z111, Z112, Z113, and Z122 are computed for many atomic combinations using standard expressions. The atoms considered include hydrogen, the rare gases, the alkali atoms (up to Rb), and the alkaline-earth atoms (up to Sr). The term Z111 arising from three mutual dipole interactions is known as the Axilrod-Teller-Muto coefficient or the DDD (dipole-dipole-dipole) coefficient. Similarly, the terms Z112, Z113, and Z122 arise from the mutual combinations of dipole (1), quadrupole (2), and octupole (3) interactions between atoms and they are sometimes known, respectively, as dipole-dipole-quadrupole, dipole-dipole-octupole, and dipole-quadrupole-quadrupole coefficients. Results for the four Z coefficients are given for the homonuclear trimers, for the trimers involving two like-rare-gas atoms, and for the trimers with all combinations of the H, He, and Li atoms. An exhaustive compilation of all coefficients between all possible atomic combinations is presented as supplementary data.
Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber.
Ta'eed, Vahid G; Fu, Libin; Pelusi, Mark; Rochette, Martin; Littler, Ian C; Moss, David J; Eggleton, Benjamin J
2006-10-30
We present the first demonstration of all optical wavelength conversion in chalcogenide glass fiber including system penalty measurements at 10 Gb/s. Our device is based on As2Se3 chalcogenide glass fiber which has the highest Kerr nonlinearity (n(2)) of any fiber to date for which either advanced all optical signal processing functions or system penalty measurements have been demonstrated. We achieve wavelength conversion via cross phase modulation over a 10 nm wavelength range near 1550 nm with 7 ps pulses at 2.1 W peak pump power in 1 meter of fiber, achieving only 1.4 dB excess system penalty. Analysis and comparison of the fundamental fiber parameters, including nonlinear coefficient, two-photon absorption coefficient and dispersion parameter with other nonlinear glasses shows that As(2)Se(3) based devices show considerable promise for radically integrated nonlinear signal processing devices.
Kucza, Witold
2013-07-25
Stochastic and deterministic simulations of dispersion in cylindrical channels on the Poiseuille flow have been presented. The random walk (stochastic) and the uniform dispersion (deterministic) models have been used for computations of flow injection analysis responses. These methods coupled with the genetic algorithm and the Levenberg-Marquardt optimization methods, respectively, have been applied for determination of diffusion coefficients. The diffusion coefficients of fluorescein sodium, potassium hexacyanoferrate and potassium dichromate have been determined by means of the presented methods and FIA responses that are available in literature. The best-fit results agree with each other and with experimental data thus validating both presented approaches. Copyright © 2013 The Author. Published by Elsevier B.V. All rights reserved.
Upscaling of Solute Transport in Heterogeneous Media with Non-uniform Flow and Dispersion Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhijie; Meakin, Paul
2013-10-01
An analytical and computational model for non-reactive solute transport in periodic heterogeneous media with arbitrary non-uniform flow and dispersion fields within the unit cell of length ε is described. The model lumps the effect of non-uniform flow and dispersion into an effective advection velocity Ve and an effective dispersion coefficient De. It is shown that both Ve and De are scale-dependent (dependent on the length scale of the microscopic heterogeneity, ε), dependent on the Péclet number Pe, and on a dimensionless parameter α that represents the effects of microscopic heterogeneity. The parameter α, confined to the range of [-0.5, 0.5]more » for the numerical example presented, depends on the flow direction and non-uniform flow and dispersion fields. Effective advection velocity Ve and dispersion coefficient De can be derived for any given flow and dispersion fields, and . Homogenized solutions describing the macroscopic variations can be obtained from the effective model. Solutions with sub-unit-cell accuracy can be constructed by homogenized solutions and its spatial derivatives. A numerical implementation of the model compared with direct numerical solutions using a fine grid, demonstrated that the new method was in good agreement with direct solutions, but with significant computational savings.« less
Temporal behavior of a solute cloud in a fractal heterogeneous porous medium at different scales
NASA Astrophysics Data System (ADS)
Ross, Katharina; Attinger, Sabine
2010-05-01
Water pollution is still a very real problem and the need for efficient models for flow and solute transport in heterogeneous porous or fractured media is evident. In our study we focus on solute transport in heterogeneous fractured media. In heterogeneous fractured media the shape of the pores and fractures in the subsurface might be modeled as a fractal network or a heterogeneous structure with infinite correlation length. To derive explicit results for larger scale or effective transport parameters in such structures is the aim of this work. To describe flow and transport we investigate the temporal behavior of transport coefficients of solute movement through a spatially heterogeneous medium. It is necessary to distinguish between two fundamentally different quantities characterizing the solute dispersion: The effective dispersion coefficient Deff(t) represents the physical (observable) dispersion in one given realization of the medium. It is conceptually different from the mathematically simpler ensemble dispersion coefficient Dens(t) which characterizes the (abstract) dispersion with respect to the set of all possible realizations of the medium. In the framework of a stochastic approach DENTZ ET AL. (2000 I[2] & II[3]) derive explicit expressions for the temporal behavior of the center-of-mass velocity and the dispersion of the concentration distribution, using a second order perturbation expansion. In their model the authors assume a finite correlation length of the heterogeneities and use a GAUSSIAN correlation function. In a first step, we model the fractured medium as a heterogeneous porous medium with infinite correlation length and neglect single fractures. ZHAN & WHEATCRAFT (1996[4]) analyze the macrodispersivity tensor in fractal porous media using a non-integer exponent which consists of the HURST coefficient and the fractal dimension D. To avoid this non-integer exponent for numerical reasons we extend the study of DENTZ ET AL. (2000 I[2] & II[3]) and derive explicit expressions for the center-of-mass velocity and the longitudinal dispersion coefficient for isotropic and anisotropic media as well as for point-like (where the extent of the source distribution is small compared to the correlation lengths of the heterogeneities) and spatially extended injections. Our results clearly show that the difference between Deff and Dens persists for all times. In other words, ensemble mixing and effective mixing coefficients do not approach the same asymptotic limit. The center-of-mass fluctuations between different flow paths for a plume traveling through the medium never become irrelevant and ergodicity breaks down in such media. Our ongoing work concerns the investigation of the transversal dispersion coefficient and the extension of the upscaling method coarse graining[1] to heterogeneous fractal porous media with embedded single fractures. References [1]ATTINGER, S. (2003): Generalized coarse graining procedures for flow in porous media, Computational Geosciences, 7 (4), pp. 253-273. [2]DENTZ, M. / KINZELBACH, H. / ATTINGER, S. and W. KINZELBACH (2000): Temporal behavior of a solute cloud in a heterogeneous porous medium: 1. Point-like injection, Water Resources Research, 36 (12), pp. 3591-3604. [3]DENTZ, M. / KINZELBACH, H. / ATTINGER, S. and W. KINZELBACH (2000): Temporal behavior of a solute cloud in a heterogeneous porous medium: 2. Spatially extended injection, Water Resources Research, 36 (12), pp. 3605-3614. [4]ZHAN, H. and S. W. WHEATCRAFT (1996): Macrodispersivity tensor for nonreactive solute transport in isotropic and anisotropic fractal porous media: Analytical solutions, Water Resources Research, 32 (12), pp. 3461-3474.
Shahmohammadi Beni, Mehrdad; Ng, C Y P; Krstic, D; Nikezic, D; Yu, K N
2017-01-01
Radiotherapy is a common cancer treatment module, where a certain amount of dose will be delivered to the targeted organ. This is achieved usually by photons generated by linear accelerator units. However, radiation scattering within the patient's body and the surrounding environment will lead to dose dispersion to healthy tissues which are not targets of the primary radiation. Determination of the dispersed dose would be important for assessing the risk and biological consequences in different organs or tissues. In the present work, the concept of conversion coefficient (F) of the dispersed dose was developed, in which F = (Dd/Dt), where Dd was the dispersed dose in a non-targeted tissue and Dt is the absorbed dose in the targeted tissue. To quantify Dd and Dt, a comprehensive model was developed using the Monte Carlo N-Particle (MCNP) package to simulate the linear accelerator head, the human phantom, the treatment couch and the radiotherapy treatment room. The present work also demonstrated the feasibility and power of parallel computing through the use of the Message Passing Interface (MPI) version of MCNP5.
Krstic, D.; Nikezic, D.
2017-01-01
Radiotherapy is a common cancer treatment module, where a certain amount of dose will be delivered to the targeted organ. This is achieved usually by photons generated by linear accelerator units. However, radiation scattering within the patient’s body and the surrounding environment will lead to dose dispersion to healthy tissues which are not targets of the primary radiation. Determination of the dispersed dose would be important for assessing the risk and biological consequences in different organs or tissues. In the present work, the concept of conversion coefficient (F) of the dispersed dose was developed, in which F = (Dd/Dt), where Dd was the dispersed dose in a non-targeted tissue and Dt is the absorbed dose in the targeted tissue. To quantify Dd and Dt, a comprehensive model was developed using the Monte Carlo N-Particle (MCNP) package to simulate the linear accelerator head, the human phantom, the treatment couch and the radiotherapy treatment room. The present work also demonstrated the feasibility and power of parallel computing through the use of the Message Passing Interface (MPI) version of MCNP5. PMID:28362837
Soltanian, Mohamad Reza; Ritzi, Robert W; Dai, Zhenxue; Huang, Chao Cheng
2015-03-01
Physical and chemical heterogeneities have a large impact on reactive transport in porous media. Examples of heterogeneous attributes affecting reactive mass transport are the hydraulic conductivity (K), and the equilibrium sorption distribution coefficient (Kd). This paper uses the Deng et al. (2013) conceptual model for multimodal reactive mineral facies and a Lagrangian-based stochastic theory in order to analyze the reactive solute dispersion in three-dimensional anisotropic heterogeneous porous media with hierarchical organization of reactive minerals. An example based on real field data is used to illustrate the time evolution trends of reactive solute dispersion. The results show that the correlation between the hydraulic conductivity and the equilibrium sorption distribution coefficient does have a significant effect on reactive solute dispersion. The anisotropy ratio does not have a significant effect on reactive solute dispersion. Furthermore, through a sensitivity analysis we investigate the impact of changing the mean, variance, and integral scale of K and Kd on reactive solute dispersion. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Nan; Zhang, Xuedian; Nie, Fukun; Lu, Xinglian; Chang, Min
2018-07-01
We present a 5-layer air-hole dispersion-compensating photonic crystal fiber (PCF) with a modified dual concentric core structure, based on central rod doping. The finite element method (FEM) was used to investigate the structure numerically. If the structural parameters remain unchanged, a high degree of linear correlation between the central rod refractive index and the operating wavelength can be achieved in the wavelength range of 1.5457-1.5857 μm, which suggests that the operating wavelength can be determined by the refractive index of the centre rod. A negative dispersion coefficient between -5765.2 ps/km/nm and -6115.8 ps/km/nm was obtained by calculation and within the bandwidth of 108 nm (1.515-1.623 μm) around 1.55 μm, a dispersion coefficient of -3000 ps/km/nm can be ensured for compensation. In addition, this proposed PCF also has the advantage of low confinement loss, between 0.00011 and 0.00012 dB/m, and ease of fabrication with existing technology. The proposed PCF has good prospects in dispersion-compensating applications.
Modified sedimentation-dispersion model for solids in a three-phase slurry column
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D.N.; Ruether, J.A.; Shah, Y.T.
1986-03-01
Solids distribution data for a three-phase, batch-fluidized slurry bubble column (SBC) are presented, using air as the gas phase, pure liquids and solutions as the liquid phase, and glass beads and carborundum catalyst powder as the solid phase. Solids distribution data for the three-phase SBC operated in a continuous mode of operation are also presented, using nitrogen as the gas phase, water as the liquid phase, and glass beads as the solid phase. A new model to provide a reasonable approach to predict solids concentration distributions for systems containing polydispersed solids is presented. The model is a modification of standardmore » sedimentation-dispersion model published earlier. Empirical correlations for prediction of hindered settling velocity and solids dispersion coefficient for systems containing polydispersed solids are presented. A new method of evaluating critical gas velocity (CGV) from concentrations of the sample withdrawn at the same port of the SBC is presented. Also presented is a new mapping for CGV which separates the two regimes in the SBC, namely, incomplete fluidization and complete fluidization.« less
NASA Astrophysics Data System (ADS)
Stoyanov, Stiliyan; Mardirossian, Garo
2012-10-01
The light diffraction is for telescope apparatuses an especially important characteristic which has an influence on the record image contrast from the eye observer. The task of the investigation is to determine to what degree the coefficient of light diffraction influences the record image brightness. The object of the theoretical research are experimental results provided from a telescope system experiment in the process of observation of remote objects with different brightness of the background in the fixed light diffraction coefficients and permanent contrast of the background in respect to the object. The received values and the ratio of the image contrast to the light diffraction coefficient is shown in a graphic view. It's settled that with increasing of the value of background brightness in permanent background contrast in respect to the object, the image contrast sharply decrease. The relationship between the increase of the light diffraction coefficient and the decrease of the brightness of the project image from telescope apparatuses can be observed.
Dipole oscillator strength properties and dispersion energies for SiH 4
NASA Astrophysics Data System (ADS)
Kumar, Ashok; Kumar, Mukesh; Meath, William J.
2003-01-01
A recommended isotropic dipole oscillator strength distribution (DOSD) has been constructed for the silane (SiH 4) molecule through the use of quantum mechanical constraint techniques and experimental dipole oscillator strength data. The constraints are furnished by experimental molar refractivity data and the Thomas-Reiche-Kuhn sum rule. The DOSD is used to evaluate a variety of isotropic dipole oscillator strength sums, logarithmic dipole oscillator strength sums, and mean excitation energies for the molecule. A pseudo-DOSD for SiH 4 is also presented which is used to obtain reliable results for the isotropic dipole-dipole dispersion energy coefficients C 6, for the interaction of silane with itself and with forty-four other species, and the triple-dipole dispersion energy coefficient C 9 for (SiH 4) 3.
Dipole oscillator strengths, dipole properties and dispersion energies for SiF4
NASA Astrophysics Data System (ADS)
Kumar, Ashok; Kumar, Mukesh; Meath, William J.
2003-01-01
A recommended isotropic dipole oscillator strength distribution (DOSD) has been constructed for the silicon tetrafluoride (SiF4) molecule through the use of quantum mechanical constraint techniques and experimental dipole oscillator strength data. The constraints are furnished by experimental molar refractivity data and the Thomas-Reiche-Kuhn sum rule. The DOSD is used to evaluate a variety of isotropic dipole oscillator strength sums, logarithmic dipole oscillator strength sums and mean excitation energies for the molecule. A pseudo-DOSD for SiF4 is also presented which is used to obtain reliable results for the isotropic dipole-dipole dispersion energy coefficients C6, for the interaction of SiF4 with itself and with 43 other species and the triple-dipole dispersion energy coefficient C9 for (SiF4)3.
Saraji, Mohammad; Ghambari, Hoda
2018-06-21
In this work we seek clues to select the appropriate dispersive liquid-liquid microextraction mode for extracting three categories of compounds. For this purpose, three common dispersive liquid-liquid microextraction modes were compared under optimized conditions. Traditional dispersive liquid-liquid microextraction, in situ ionic liquid dispersive liquid-liquid microextraction and conventional ionic liquid dispersive liquid-liquid microextraction using chloroform, 1-butyl-3-methylimidazolium tetrafluoroborate, and 1-hexyl-3-methylimidazolium hexafluorophosphate as the extraction solvent, respectively, were considered in this work. Phenolic, neutral aromatic and amino compounds (each category included six members) were studied as analytes. The analytes in the extracts were determined by high-performance liquid chromatography with UV detection. For the analytes with polar functionalities, the in situ ionic liquid dispersive liquid-liquid microextraction mode mostly led to better results. In contrast, for neutral hydrocarbons without polar functionalities, traditional dispersive liquid-liquid microextraction using chloroform produced better results. In this case, where dispersion forces were the dominant interactions in the extraction, the refractive index of solvent and analyte predicted the extraction performance better than the octanol-water partition coefficient. It was also revealed that none of the methods were successful in extracting very hydrophilic analytes (compounds with the log octanol-water partition coefficient < 2). The results of this study could be helpful in selecting a dispersive liquid-liquid microextraction mode for the extraction of various groups of compounds. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Li, Shujuan; Wang, Xiaoyu; Wang, Yingying; Zhao, Qianqian; Zhang, Lina; Yang, Xinggang; Liu, Dandan; Pan, Weisan
2015-01-01
In this study, a novel controlled release osmotic pump capsule consisting of pH-modulated solid dispersion for poorly soluble drug flurbiprofen (FP) was developed to improve the solubility and oral bioavailability of FP and to minimize the fluctuation of plasma concentration. The pH-modulated solid dispersion containing FP, Kollidon® 12 PF and Na2CO3 at a weight ratio of 1/4.5/0.02 was prepared using the solvent evaporation method. The osmotic pump capsule was assembled by semi-permeable capsule shell of cellulose acetate (CA) prepared by the perfusion method. Then, the solid dispersion, penetration enhancer, and suspending agents were tableted and filled into the capsule. Central composite design-response surface methodology was used to evaluate the influence of factors on the responses. A second-order polynomial model and a multiple linear model were fitted to correlation coefficient of drug release profile and ultimate cumulative release in 12 h, respectively. The actual response values were in good accordance with the predicted ones. The optimized formulation showed a complete drug delivery and zero-order release rate. Beagle dogs were used to be conducted in the pharmacokinetic study. The in vivo study indicated that the relative bioavailability of the novel osmotic pump system was 133.99% compared with the commercial preparation. The novel controlled delivery system with combination of pH-modulated solid dispersion and osmotic pump system is not only a promising strategy to improve the solubility and oral bioavailability of poorly soluble ionizable drugs but also an effective way to reduce dosing frequency and minimize the plasma fluctuation.
Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements
NASA Astrophysics Data System (ADS)
Ding, Shurong; Huo, Yongzhong; Yan, XiaoQing
2009-08-01
Considering the mutual actions between fuel particles and the metal matrix, the three-dimensional finite element models are developed to simulate the heat transfer behaviors of dispersion nuclear fuel plates. The research results indicate that the temperatures of the fuel plate might rise more distinctly with considering the particle swelling and the degraded surface heat transfer coefficients with increasing burnup; the local heating phenomenon within the particles appears when their thermal conductivities are too low. With rise of the surface heat transfer coefficients, the temperatures within the fuel plate decrease; the temperatures of the fuel plate are sensitive to the variations of the heat transfer coefficients whose values are lower, but their effects are weakened and slight when the heat transfer coefficients increase and reach a certain extent. Increasing the heat generation rate leads to elevating the internal temperatures. The temperatures and the maximum temperature differences within the plate increase along with the particle volume fractions. The surface thermal flux goes up along with particle volume fractions and heat generation rates, but the effects of surface heat transfer coefficients are not evident.
Modeling cesium ion exchange on fixed-bed columns of crystalline silicotitanate granules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latheef, I.M.; Huckman, M.E.; Anthony, R.G.
2000-05-01
A mathematical model is presented to simulate Cs exchange in fixed-bed columns of a novel crystalline silicotitanate (CST) material, UOP IONSIV IE-911. A local equilibrium is assumed between the macropores and the solid crystals for the particle material balance. Axial dispersed flow and film mass-transfer resistance are incorporated into the column model. Cs equilibrium isotherms and diffusion coefficients were measured experimentally, and dispersion and film mass-transfer coefficients were estimated from correlations. Cs exchange column experiments were conducted in 5--5.7 M Na solutions and simulated using the proposed model. Best-fit diffusion coefficients from column simulations were compared with previously reported batchmore » values of Gu et al. and Huckman. Cs diffusion coefficients for the column were between 2.5 and 5.0 x 10{sup {minus}11} m{sup 2}/s for 5--5.7 M Na solutions. The effect of the isotherm shape on the Cs diffusion coefficient was investigated. The proposed model provides good fits to experimental data and may be utilized in designing commercial-scale units.« less
NASA Technical Reports Server (NTRS)
Voronov, Oleg A (Inventor); Street, Kenneth (Inventor); Kear, Bernard H (Inventor)
2017-01-01
Systems, methods, and articles of manufacture related to composite materials are discussed herein. These materials can be based on a mixture of diamond particles with a matrix and fibers or fabrics. The matrix can be formed into the composite material through optional pressurization and via heat treatment. These materials display exceptionally low friction coefficient and superior wear resistance in extreme environments.
Acoustic waves in polydispersed bubbly liquids
NASA Astrophysics Data System (ADS)
Gubaidullin, D. A.; Gubaidullina, D. D.; Fedorov, Yu V.
2014-11-01
The propagation of acoustic waves in polydispersed mixtures of liquid with two sorts of gas bubbles each of which has its own bubble size distribution function is studied. The system of the differential equations of the perturbed motion of a mixture is presented, the dispersion relation is obtained. Equilibrium speed of sound, low-frequency and high-frequency asymptotes of the attenuation coefficient are found. Comparison of the developed theory with known experimental data is presented.
NASA Astrophysics Data System (ADS)
Karaaslan, Y.; Gisi, B.; Sakiroglu, S.; Kasapoglu, E.; Sari, H.; Sokmen, I.
2018-02-01
We study the influence of electric field on the electronic energy band structure, zero-temperature ballistic conductivity and optical properties of double quantum wire. System described by double-well anharmonic confinement potential is exposed to a perpendicular magnetic field and Rashba and Dresselhaus spin-orbit interactions. Numerical results show up that the combined effects of internal and external agents cause the formation of crossing, anticrossing, camel-back/anomaly structures and the lateral, downward/upward shifts in the energy dispersion. The anomalies in the energy subbands give rise to the oscillation patterns in the ballistic conductance, and the energy shifts bring about the shift in the peak positions of optical absorption coefficients and refractive index changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varank, Gamze, E-mail: gvarank@yildiz.edu.tr; Demir, Ahmet, E-mail: ahmetd@yildiz.edu.tr; Yetilmezsoy, Kaan, E-mail: yetilmez@yildiz.edu.tr
2011-11-15
Highlights: > We conduct 1D advection-dispersion modeling to estimate transport parameters. > We examine fourteen phenolic compounds and three inorganic contaminants. > 2-MP, 2,4-DCP, 2,6-DCP, 2,4,5-TCP, 2,3,4,6-TeCP have the highest coefficients. > Dispersion coefficients of Cu are determined to be higher than Zn and Fe. > Transport of phenolics can be prevented by zeolite and bentonite in landfill liners. - Abstract: One-dimensional (1D) advection-dispersion transport modeling was conducted as a conceptual approach for the estimation of the transport parameters of fourteen different phenolic compounds (phenol, 2-CP, 2-MP, 3-MP, 4-MP, 2-NP, 4-NP, 2,4-DNP, 2,4-DCP, 2,6-DCP, 2,4,5-TCP, 2,4,6-TCP, 2,3,4,6-TeCP, PCP) and threemore » different inorganic contaminants (Cu, Zn, Fe) migrating downward through the several liner systems. Four identical pilot-scale landfill reactors (0.25 m{sup 3}) with different composite liners (R1: 0.10 + 0.10 m of compacted clay liner (CCL), L{sub e} = 0.20 m, k{sub e} = 1 x 10{sup -8} m/s, R2: 0.002-m-thick damaged high-density polyethylene (HDPE) geomembrane overlying 0.10 + 0.10 m of CCL, L{sub e} = 0.20 m, k{sub e} = 1 x 10{sup -8} m/s, R3: 0.002-m-thick damaged HDPE geomembrane overlying a 0.02-m-thick bentonite layer encapsulated between 0.10 + 0.10 m CCL, L{sub e} = 0.22 m, k{sub e} = 1 x 10{sup -8} m/s, R4: 0.002-m-thick damaged HDPE geomembrane overlying a 0.02-m-thick zeolite layer encapsulated between 0.10 + 0.10 m CCL, L{sub e} = 0.22 m, k{sub e} = 4.24 x 10{sup -7} m/s) were simultaneously run for a period of about 540 days to investigate the nature of diffusive and advective transport of the selected organic and inorganic contaminants. The results of 1D transport model showed that the highest molecular diffusion coefficients, ranging from 4.77 x 10{sup -10} to 10.67 x 10{sup -10} m{sup 2}/s, were estimated for phenol (R4), 2-MP (R1), 2,4-DNP (R2), 2,4-DCP (R1), 2,6-DCP (R2), 2,4,5-TCP (R2) and 2,3,4,6-TeCP (R1). For all reactors, dispersion coefficients of Cu, ranging from 3.47 x 10{sup -6} m{sup 2}/s to 5.37 x 10{sup -2} m{sup 2}/s, was determined to be higher than others obtained for Zn and Fe. Average molecular diffusion coefficients of phenolic compounds were estimated to be about 5.64 x 10{sup -10} m{sup 2}/s, 5.37 x 10{sup -10} m{sup 2}/s, 2.69 x 10{sup -10} m{sup 2}/s and 3.29 x 10{sup -10} m{sup 2}/s for R1, R2, R3 and R4 systems, respectively. The findings of this study clearly indicated that about 35-50% of transport of phenolic compounds to the groundwater is believed to be prevented with the use of zeolite and bentonite materials in landfill liner systems.« less
NASA Astrophysics Data System (ADS)
Kitanidis, P. K.
2017-08-01
The process of dispersion in porous media is the effect of combined variability in fluid velocity and concentration at scales smaller than the ones resolved that contributes to spreading and mixing. It is usually introduced in textbooks and taught in classes through the Fick-Scheidegger parameterization, which is introduced as a scientific law of universal validity. This parameterization is based on observations in bench-scale laboratory experiments using homogeneous media. Fickian means that dispersive flux is proportional to the gradient of the resolved concentration while the Scheidegger parameterization is a particular way to compute the dispersion coefficients. The unresolved scales are thus associated with the pore-grain geometry that is ignored when the composite pore-grain medium is replaced by a homogeneous continuum. However, the challenge faced in practice is how to account for dispersion in numerical models that discretize the domain into blocks, often cubic meters in size, that contain multiple geologic facies. Although the Fick-Scheidegger parameterization is by far the one most commonly used, its validity has been questioned. This work presents a method of teaching dispersion that emphasizes the physical basis of dispersion and highlights the conditions under which a Fickian dispersion model is justified. In particular, we show that Fickian dispersion has a solid physical basis provided that an equilibrium condition is met. The issue of the Scheidegger parameterization is more complex but it is shown that the approximation that the dispersion coefficients should scale linearly with the mean velocity is often reasonable, at least as a practical approximation, but may not necessarily be always appropriate. Generally in Hydrogeology, the Scheidegger feature of constant dispersivity is considered as a physical law and inseparable from the Fickian model, but both perceptions are wrong. We also explain why Fickian dispersion fails under certain conditions, such as dispersion inside and directly upstream of a contaminant source. Other issues discussed are the relevance of column tests and confusion regarding the meaning of terms dispersion and Fickian.
Antenna systems for base station diversity in urban small and micro cells
NASA Astrophysics Data System (ADS)
Eggers, Patrick C. F.; Toftgard, Jorn; Oprea, Alex M.
1993-09-01
This paper describes cross-correlation properties for compact urban base station antenna configurations, nearly all resulting in very low envelope cross-correlation coefficients of about 0.1 to 0.3. A focus is set on polarization diversity systems for their potential in improving link quality when hand-held terminals are involved. An expression is given for the correlation function of compound space and polarization diversity systems. Dispersion and envelope dynamic statistics are presented for the measured environments. For microcell applications, it is found that systems such as GSM having a bandwidth of 200 MHz or less can use narrowband cross-correlation analysis directly.
Determination of dispersive optical constants of nanocrystalline CdSe (nc-CdSe) thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Kriti; Al-Kabbi, Alaa S.; Saini, G.S.S.
2012-06-15
Highlights: ► nc-CdSe thin films are prepared by thermal vacuum evaporation technique. ► TEM analysis shows NCs are spherical in shape. ► XRD reveals the hexagonal (wurtzite) crystal structure of nc-CdSe thin films. ► The direct optical bandgap of nc-CdSe is 2.25 eV in contrast to bulk (1.7 eV). ► Dispersion of refractive index is discussed in terms of Wemple–DiDomenico single oscillator model. -- Abstract: The nanocrystalline thin films of CdSe are prepared by thermal evaporation technique at room temperature. These thin films are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-raymore » diffraction (XRD) and photoluminescence spectroscopy (PL). The transmission spectra are recorded in the transmission range 400–3300 nm for nc-CdSe thin films. Transmittance measurements are used to calculate the refractive index (n) and absorption coefficient (α) using Swanepoel's method. The optical band gap (E{sub g}{sup opt}) has been determined from the absorption coefficient values using Tauc's procedure. The optical constants such as extinction coefficient (k), real (ε{sub 1}) and imaginary (ε{sub 2}) dielectric constants, dielectric loss (tan δ), optical conductivity (σ{sub opt}), Urbach energy (E{sub u}) and steepness parameter (σ) are also calculated for nc-CdSe thin films. The normal dispersion of refractive index is described using Wemple–DiDomenico single-oscillator model. Refractive index dispersion is further analysed to calculate lattice dielectric constant (ε{sub L}).« less
Two- and three-body interatomic dispersion energy contributions to binding in molecules and solids
NASA Astrophysics Data System (ADS)
Anatole von Lilienfeld, O.; Tkatchenko, Alexandre
2010-06-01
We present numerical estimates of the leading two- and three-body dispersion energy terms in van der Waals interactions for a broad variety of molecules and solids. The calculations are based on London and Axilrod-Teller-Muto expressions where the required interatomic dispersion energy coefficients, C6 and C9, are computed "on the fly" from the electron density. Inter- and intramolecular energy contributions are obtained using the Tang-Toennies (TT) damping function for short interatomic distances. The TT range parameters are equally extracted on the fly from the electron density using their linear relationship to van der Waals radii. This relationship is empiricially determined for all the combinations of He-Xe rare gas dimers, as well as for the He and Ar trimers. The investigated systems include the S22 database of noncovalent interactions, Ar, benzene and ice crystals, bilayer graphene, C60 dimer, a peptide (Ala10), an intercalated drug-DNA model [ellipticine-d(CG)2], 42 DNA base pairs, a protein (DHFR, 2616 atoms), double stranded DNA (1905 atoms), and 12 molecular crystal polymorphs from crystal structure prediction blind test studies. The two- and three-body interatomic dispersion energies are found to contribute significantly to binding and cohesive energies, for bilayer graphene the latter reaches 50% of experimentally derived binding energy. These results suggest that interatomic three-body dispersion potentials should be accounted for in atomistic simulations when modeling bulky molecules or condensed phase systems.
Two and three-body interatomic dispersion energy contributions to binding in molecules and solids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
von Lilienfeld-Toal, Otto Anatole; Tkatchenko, Alexandre
We present numerical estimates of the leading two- and three-body dispersion energy terms in van der Waals interactions for a broad variety of molecules and solids. The calculations are based on London and Axilrod-Teller-Muto expressions where the required interatomic dispersion energy coefficients, C{sub 6} and C{sub 9}, are computed 'on the fly' from the electron density. Inter- and intramolecular energy contributions are obtained using the Tang-Toennies (TT) damping function for short interatomic distances. The TT range parameters are equally extracted on the fly from the electron density using their linear relationship to van der Waals radii. This relationship is empiriciallymore » determined for all the combinations of He-Xe rare gas dimers, as well as for the He and Ar trimers. The investigated systems include the S22 database of noncovalent interactions, Ar, benzene and ice crystals, bilayer graphene, C{sub 60} dimer, a peptide (Ala{sub 10}), an intercalated drug-DNA model [ellipticine-d(CG){sub 2}], 42 DNA base pairs, a protein (DHFR, 2616 atoms), double stranded DNA (1905 atoms), and 12 molecular crystal polymorphs from crystal structure prediction blind test studies. The two- and three-body interatomic dispersion energies are found to contribute significantly to binding and cohesive energies, for bilayer graphene the latter reaches 50% of experimentally derived binding energy. These results suggest that interatomic three-body dispersion potentials should be accounted for in atomistic simulations when modeling bulky molecules or condensed phase systems.« less
Ruffino, Barbara
2015-07-01
The water treatment plant (WTP) of the city of Torino (NW Italy), which treats about 40 · 10(6) m(3)/year of raw water from Po river, has a 15-ha basin used as a lagooning pre-treatment facility. Since the efficiency of the lagooning process in the removal of pollutants from raw water depends on the internal hydrodynamics of the basin, the hydraulic performance of the basin was studied by combining the results of a stimulus-response tracer test with the monitoring of the tracer (fluoride) concentration throughout the basin at different times. The outcomes of the test demonstrated that the system was efficiently mixed and could be assimilated to a continuous stirred reactor presenting no flow anomalies, with an actual mean residence time (RT) of 12.7 days, compared with a nominal RT of 18 days. This assured that dissolved contaminants (such as fluoride) coming from the river were efficiently diluted before entering the WTP. The axial dispersion coefficient calculated from the RT distribution was approximately 47,300 m(2)/day. Three of the most popular formulae developed for the calculation of the axial dispersion coefficient provided results spreading over three orders of magnitude, thus showing their limitations. Finally, because of the width extent of the basin and the characteristics of its inflow, the 1-D advection-dispersion model failed in predicting the tracer concentration values in time at the outlet channel. On the contrary, the analytical solution of the 2-D advection-dispersion model proved to be suitable to fit the tracer concentration data over time at the outlet channel but it failed in describing the tracer distribution throughout the basin on the monitoring dates.
NASA Astrophysics Data System (ADS)
Sanchez-Vila, X.; Rodriguez-Escales, P.
2017-12-01
It has been widely reported that biofilm growth changes the hydraulic parameters in porous media. While the impact upon reduction of hydraulic conductivity has been widely explained and modeled, this has not been the case for the reported order(s) of magnitude increase in dispersion coefficient even when a minute percentage of biofilm is formed, and despite the effect of biofilm growth is to reduce specific discharge, producing a somewhat counterintuitive result. We develop here a simple yet practical expression for the evaluation of an effective dispersion coefficient caused by biomass colonization, based on the modification of the breakthrough curves (in terms of temporal moments) with respect to the biofilm-free porous media. The advantage of the expression is that it is written in terms of observables that are relatively easy to measure in the lab or the field, contrarily to existing expressions that relate the effect to channelization resulting in tortuosity being the driving term of effective dispersion. We have tested our simplified expression in a number of reported sites, where enhanced dispersion of 1-2 orders of magnitude has been reported, indirectly showing the relative importance of the terms included in the expression.
NASA Astrophysics Data System (ADS)
Zhou, BeiBei; Wang, QuanJiu
2017-09-01
Studies on solute transport under different pore water velocity and solute input methods in undisturbed soil could play instructive roles for crop production. Based on the experiments in the laboratory, the effect of solute input methods with small pulse input and large pulse input, as well as four pore water velocities, on chloride transport in the undisturbed soil columns obtained from the Loess Plateau under controlled condition was studied. Chloride breakthrough curves (BTCs) were generated using the miscible displacement method under water-saturated, steady flow conditions. Using the 0.15 mol L-1 CaCl2 solution as a tracer, a small pulse (0.1 pore volumes) was first induced, and then, after all the solution was wash off, a large pulse (0.5 pore volumes) was conducted. The convection-dispersion equation (CDE) and the two-region model (T-R) were used to describe the BTCs, and their prediction accuracies and fitted parameters were compared as well. All the BTCs obtained for the different input methods and the four pore water velocities were all smooth. However, the shapes of the BTCs varied greatly; small pulse inputs resulted in more rapid attainment of peak values that appeared earlier with increases in pore water velocity, whereas large pulse inputs resulted in an opposite trend. Both models could fit the experimental data well, but the prediction accuracy of the T-R was better. The values of the dispersivity, λ, calculated from the dispersion coefficient obtained from the CDE were about one order of magnitude larger than those calculated from the dispersion coefficient given by the T-R, but the calculated Peclet number, Pe, was lower. The mobile-immobile partition coefficient, β, decreased, while the mass exchange coefficient increased with increases in pore water velocity.
Dispersion of Sound in Dilute Suspensions with Nonlinear Particle Relaxation
NASA Technical Reports Server (NTRS)
Kandula, Max
2010-01-01
The theory accounting for nonlinear particle relaxation (viscous and thermal) has been applied to the prediction of dispersion of sound in dilute suspensions. The results suggest that significant deviations exist for sound dispersion between the linear and nonlinear theories at large values of Omega(Tau)(sub d), where Omega is the circular frequency, and Tau(sub d) is the Stokesian particle relaxation time. It is revealed that the nonlinear effect on the dispersion coefficient due to viscous contribution is larger relative to that of thermal conduction
NASA Astrophysics Data System (ADS)
Chai, Han-Peng; Tian, Bo; Zhen, Hui-Ling; Chai, Jun; Guan, Yue-Yang
2017-08-01
Korteweg-de Vries (KdV)-type equations are seen to describe the shallow-water waves, lattice structures and ion-acoustic waves in plasmas. Hereby, we consider an extension of the KdV-type equations called the generalized (2+1)-dimensional Nizhnik-Novikov-Veselov equations with variable coefficients in an inhomogeneous medium. Via the Hirota bilinear method and symbolic computation, we derive the bilinear forms, N-soliton solutions and Bäcklund transformation. Effects of the first- and higher-order dispersion terms are investigated. Soliton evolution and interaction are graphically presented and analyzed: Both the propagation velocity and direction of the soliton change when the dispersion terms are time-dependent; The interactions between/among the solitons are elastic, independent of the forms of the coefficients in the equations.
Characterization of metal adsorption kinetic properties in batch and fixed-bed reactors.
Chen, J Paul; Wang, Lin
2004-01-01
Copper adsorption kinetic properties in batch and fixed-bed reactors were studied in this paper. The isothermal adsorption experiments showed that the copper adsorption capacity of a granular activated carbon (Filtrasorb 200) increased when ionic strength was higher. The presence of EDTA diminished the adsorption. An intraparticle diffusion model and a fixed-bed model were successfully used to describe the batch kinetic and fixed-bed operation behaviors. The kinetics became faster when the solution pH was not controlled, implying that the surface precipitation caused some metal uptake. The external mass transfer coefficient, the diffusivity and the dispersion coefficient were obtained from the modeling. It was found that both external mass transfer and dispersion coefficients increased when the flow rate was higher. Finally effects of kinetic parameters on simulation of fixed-bed operation were conducted.
Ellipsometry study of optical parameters of AgIn5S8 crystals
NASA Astrophysics Data System (ADS)
Isik, Mehmet; Gasanly, Nizami
2015-12-01
AgIn5S8 crystals grown by Bridgman method were characterized for optical properties by ellipsometry measurements. Spectral dependence of optical parameters; real and imaginary parts of the pseudodielectric function, pseudorefractive index, pseudoextinction coefficient, reflectivity and absorption coefficient were obtained from ellipsometry experiments carried out in the 1.2-6.2 eV range. Direct band gap energy of 1.84 eV was found from the analysis of absorption coefficient vs. photon energy. The oscillator energy, dispersion energy and zero-frequency refractive index, high-frequency dielectric constant values were found from the analysis of the experimental data using Wemple-DiDomenico and Spitzer-Fan models. Crystal structure and atomic composition ratio of the constituent elements in the AgIn5S8 crystal were revealed from structural characterization techniques of X-ray diffraction and energy dispersive spectroscopy.
NASA Astrophysics Data System (ADS)
Chiogna, G.; Cirpka, O. A.; Grathwohl, P.; Rolle, M.
2010-12-01
The correct quantification of mixing is of utmost importance for modeling reactive transport in porous media and, thereby assessing the fate and transport of contaminants in the subsurface. An appropriate measure of mixing in heterogeneous porous formations should correctly capture the effects on mixing intensity of various processes at different scales, such as local dispersion and the effect of mixing enhancement due to heterogeneities. In this work, we use the concept of the flux-related dilution index as a measure of transverse mixing. This quantity expresses the dilution of the mass flux of a tracer solution over the total discharge of the system and is particularly suited to address problems where a compound is continuously injected into the domain. We focus our attention on two-dimensional systems under steady-state flow conditions and investigate both conservative and reactive transport in both homogeneous and heterogeneous porous media at different scales. For mixing-controlled reactive systems, we introduce and illustrate the concept of the critical dilution index, which represents the amount of mixing required for complete degradation of a continuously emitted plume undergoing decay upon mixing with ambient water. We perform two-dimensional numerical experiments at bench and field scales in homogeneous and heterogeneous conductivity fields. These numerical simulations show that the flux-related dilution index quantifies mixing and that the concept of the critical dilution index is a useful measure to relate the mixing of conservative tracers to mixing-controlled turnover of reactive compounds. In the end we define an effective transverse dispersion coefficient which is able to capture the main characteristics of the physical mechanisms controlling reactive transport at the field scale. Furthermore we investigated the influence of compound specific local transverse dispersion coefficients on the flux related dilution index and on the critical dilution index.
A Semi-Analytical Model for Dispersion Modelling Studies in the Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Gupta, A.; Sharan, M.
2017-12-01
The severe impact of harmful air pollutants has always been a cause of concern for a wide variety of air quality analysis. The analytical models based on the solution of the advection-diffusion equation have been the first and remain the convenient way for modeling air pollutant dispersion as it is easy to handle the dispersion parameters and related physics in it. A mathematical model describing the crosswind integrated concentration is presented. The analytical solution to the resulting advection-diffusion equation is limited to a constant and simple profiles of eddy diffusivity and wind speed. In practice, the wind speed depends on the vertical height above the ground and eddy diffusivity profiles on the downwind distance from the source as well as the vertical height. In the present model, a method of eigen-function expansion is used to solve the resulting partial differential equation with the appropriate boundary conditions. This leads to a system of first order ordinary differential equations with a coefficient matrix depending on the downwind distance. The solution of this system, in general, can be expressed in terms of Peano-baker series which is not easy to compute, particularly when the coefficient matrix becomes non-commutative (Martin et al., 1967). An approach based on Taylor's series expansion is introduced to find the numerical solution of first order system. The method is applied to various profiles of wind speed and eddy diffusivities. The solution computed from the proposed methodology is found to be efficient and accurate in comparison to those available in the literature. The performance of the model is evaluated with the diffusion datasets from Copenhagen (Gryning et al., 1987) and Hanford (Doran et al., 1985). In addition, the proposed method is used to deduce three dimensional concentrations by considering the Gaussian distribution in crosswind direction, which is also evaluated with diffusion data corresponding to a continuous point source.
NASA Astrophysics Data System (ADS)
Dikandé, Alain M.; Voma Titafan, J.; Essimbi, B. Z.
2017-10-01
The transition dynamics from continuous-wave to pulse regimes of operation for a generic model of passively mode-locked lasers with saturable absorbers, characterized by an active medium with non-Kerr nonlinearity, are investigated analytically and numerically. The system is described by a complex Ginzburg-Landau equation with a general m:n saturable nonlinearity (i.e {I}m/{(1+{{Γ }}I)}n, where I is the field intensity and m and n are two positive numbers), coupled to a two-level gain equation. An analysis of stability of continuous waves, following the modulational instability approach, provides a global picture of the self-starting dynamics in the system. The analysis reveals two distinct routes depending on values of the couple (m, n), and on the dispersion regime: in the normal dispersion regime, when m = 2 and n is arbitrary, the self-starting requires positive values of the fast saturable absorber and nonlinearity coefficients, but negative values of these two parameters for the family with m = 0. However, when the spectral filter is negative, the laser can self-start for certain values of the input field and the nonlinearity saturation coefficient Γ. The present work provides a general map for the self-starting mechanisms of rare-earth doped figure-eight fiber lasers, as well as Kerr-lens mode-locked solid-state lasers.
Triple tailored nonlinear dispersion of dressed four- and six-wave mixing
NASA Astrophysics Data System (ADS)
Sun, Yanyong; Wang, Zhiguo; Zhang, Zhaoyang; Gu, Bingling; Wang, Kun; Yang, Gaoguo; Zhang, Yanpeng
2018-06-01
We investigate the spectral signals and spatial images of a probe transmission signal, four-wave mixing (FWM), and six-wave mixing (SWM) under double dressing effects in an inverted Y-type system. Especially, we get the triple tailored nonlinear dispersion (about 60 MHz) of the dressed FWM and SWM through the interaction between electromagnetically induced transparency (EIT) windows and the Kerr nonlinearity. Moreover, SWM and dressed FWM with narrow linewidth are obtained through the tailoring of the three EIT windows, which is much narrower than the EIT. In addition, we first elaborate the modulation effect from the self-Kerr coefficient of FWM on the spot. We also investigate the spatial characteristics (defocusing, shifting, and splitting) of FWM and SWM induced by tailored self-Kerr and cross-Kerr effects among the relative fields. Such spatial shifting, splitting induced by the tailored nonlinear dispersion can be used for a higher contrast and high speed switch as well as a high resolution router.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prakash, Deo; Shaaban, E.R., E-mail: esam_ramadan2008@yahoo.com; Shapaan, M.
Highlights: • Combined experimental and theoretical researches on ZnSe Thin Films. • The film thickness and refractive index were determined using envelope method. • The absorption coefficient and the energy gap were calculated. • Dispersion parameters were determined using Wemple-DiDomenico relation. • The third order susceptibility and nonlinear refractive index were calculated. - Abstract: Zinc selenide (ZnSe) thin films with different thicknesses were evaporated onto glass substrates using the thermal evaporation technique. X-ray diffraction analysis confirmed that both the film and powder have cubic zinc-blende structure. The fundamental optical parameters like absorption coefficient, extinction coefficient and band gap were evaluatedmore » in transparent region of transmittance and reflectance spectrum. The optical transition of the films was found to be allowed, where the energy gap increased from 2.576 to 2.702 eV with increasing film thickness. Also, the refractive index value increase with increasing film thickness. The refractive indices evaluated through envelope method were extrapolated by Cauchy dispersion relationship over the whole spectra range. Additionally, the dispersion of refractive index was determined in terms of Wemple-DiDomenico single oscillator model. Third order susceptibility and nonlinear refractive index were determined for different thickness of ZnSe thin films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bučko, Tomáš, E-mail: bucko@fns.uniba.sk; Department of Computational Materials Physics, Fakultät für Physik and Center for Computational Materials Science, Universität Wien, Sensengasse, Wien 1090; Lebègue, Sébastien, E-mail: sebastien.lebegue@univ-lorraine.fr
2014-07-21
Recently we have demonstrated that the applicability of the Tkatchenko-Scheffler (TS) method for calculating dispersion corrections to density-functional theory can be extended to ionic systems if the Hirshfeld method for estimating effective volumes and charges of atoms in molecules or solids (AIM’s) is replaced by its iterative variant [T. Bučko, S. Lebègue, J. Hafner, and J. Ángyán, J. Chem. Theory Comput. 9, 4293 (2013)]. The standard Hirshfeld method uses neutral atoms as a reference, whereas in the iterative Hirshfeld (HI) scheme the fractionally charged atomic reference states are determined self-consistently. We show that the HI method predicts more realistic AIMmore » charges and that the TS/HI approach leads to polarizabilities and C{sub 6} dispersion coefficients in ionic or partially ionic systems which are, as expected, larger for anions than for cations (in contrast to the conventional TS method). For crystalline materials, the new algorithm predicts polarizabilities per unit cell in better agreement with the values derived from the Clausius-Mosotti equation. The applicability of the TS/HI method has been tested for a wide variety of molecular and solid-state systems. It is demonstrated that for systems dominated by covalent interactions and/or dispersion forces the TS/HI method leads to the same results as the conventional TS approach. The difference between the TS/HI and TS approaches increases with increasing ionicity. A detailed comparison is presented for isoelectronic series of octet compounds, layered crystals, complex intermetallic compounds, and hydrides, and for crystals built of molecules or containing molecular anions. It is demonstrated that only the TS/HI method leads to accurate results for systems where both electrostatic and dispersion interactions are important, as illustrated for Li-intercalated graphite and for molecular adsorption on the surfaces in ionic solids and in the cavities of zeolites.« less
An analytical study of the effect of airplane wake on the lateral dispersion of aerial sprays
NASA Technical Reports Server (NTRS)
Reed, Wilmer H , III
1954-01-01
Calculations are made to determine the trajectories of liquid droplets introduced into the air disturbances generated by an airplane engaged in aerial spraying. The effects of such factors as the positions at which droplets are ejected into the disturbances, airplane lift coefficient, and altitude are investigated. The distribution of deposit on the ground is computed for several droplet-size spectra, variations in the rate at which mass is ejected along the span, and lateral flight-path spacings. Consideration is then given to the problem of adjusting these factors with the aim of improving the uniformity and increasing the effective width of the deposit. The results indicate that the lateral dispersion of droplets is increased when the spanwise position at which particles are ejected is moved toward the wing tip. Greater dispersion also results when the airplane lift coefficient or altitude is increased.
Fresnel coefficients and Fabry-Perot formula for spatially dispersive metallic layers
NASA Astrophysics Data System (ADS)
Pitelet, Armel; Mallet, Émilien; Centeno, Emmanuel; Moreau, Antoine
2017-07-01
The repulsion between free electrons inside a metal makes its optical response spatially dispersive, so that it is not described by Drude's model but by a hydrodynamic model. We give here fully analytic results for a metallic slab in this framework, thanks to a two-mode cavity formalism leading to a Fabry-Perot formula, and show that a simplification can be made that preserves the accuracy of the results while allowing much simpler analytic expressions. For metallic layers thicker than 2.7 nm modified Fresnel coefficients can actually be used to accurately predict the response of any multilayer with spatially dispersive metals (for reflection, transmission, or the guided modes). Finally, this explains why adding a small dielectric layer [Y. Luo et al., Phys. Rev. Lett. 111, 093901 (2013), 10.1103/PhysRevLett.111.093901] allows one to reproduce the effects of nonlocality in many cases, and especially for multilayers.
Taylor Dispersion Analysis as a promising tool for assessment of peptide-peptide interactions.
Høgstedt, Ulrich B; Schwach, Grégoire; van de Weert, Marco; Østergaard, Jesper
2016-10-10
Protein-protein and peptide-peptide (self-)interactions are of key importance in understanding the physiochemical behavior of proteins and peptides in solution. However, due to the small size of peptide molecules, characterization of these interactions is more challenging than for proteins. In this work, we show that protein-protein and peptide-peptide interactions can advantageously be investigated by measurement of the diffusion coefficient using Taylor Dispersion Analysis. Through comparison to Dynamic Light Scattering it was shown that Taylor Dispersion Analysis is well suited for the characterization of protein-protein interactions of solutions of α-lactalbumin and human serum albumin. The peptide-peptide interactions of three selected peptides were then investigated in a concentration range spanning from 0.5mg/ml up to 80mg/ml using Taylor Dispersion Analysis. The peptide-peptide interactions determination indicated that multibody interactions significantly affect the PPIs at concentration levels above 25mg/ml for the two charged peptides. Relative viscosity measurements, performed using the capillary based setup applied for Taylor Dispersion Analysis, showed that the viscosity of the peptide solutions increased with concentration. Our results indicate that a viscosity difference between run buffer and sample in Taylor Dispersion Analysis may result in overestimation of the measured diffusion coefficient. Thus, Taylor Dispersion Analysis provides a practical, but as yet primarily qualitative, approach to assessment of the colloidal stability of both peptide and protein formulations. Copyright © 2016 Elsevier B.V. All rights reserved.
Differential dynamic microscopy to characterize Brownian motion and bacteria motility
NASA Astrophysics Data System (ADS)
Germain, David; Leocmach, Mathieu; Gibaud, Thomas
2016-03-01
We have developed a lab module for undergraduate students, which involves the process of quantifying the dynamics of a suspension of microscopic particles using Differential Dynamic Microscopy (DDM). DDM is a relatively new technique that constitutes an alternative method to more classical techniques such as dynamic light scattering (DLS) or video particle tracking (VPT). The technique consists of imaging a particle dispersion with a standard light microscope and a camera and analyzing the images using a digital Fourier transform to obtain the intermediate scattering function, an autocorrelation function that characterizes the dynamics of the dispersion. We first illustrate DDM in the textbook case of colloids under Brownian motion, where we measure the diffusion coefficient. Then we show that DDM is a pertinent tool to characterize biological systems such as motile bacteria.
Experimental and AI-based numerical modeling of contaminant transport in porous media
NASA Astrophysics Data System (ADS)
Nourani, Vahid; Mousavi, Shahram; Sadikoglu, Fahreddin; Singh, Vijay P.
2017-10-01
This study developed a new hybrid artificial intelligence (AI)-meshless approach for modeling contaminant transport in porous media. The key innovation of the proposed approach is that both black box and physically-based models are combined for modeling contaminant transport. The effectiveness of the approach was evaluated using experimental and real world data. Artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) were calibrated to predict temporal contaminant concentrations (CCs), and the effect of noisy and de-noised data on the model performance was evaluated. Then, considering the predicted CCs at test points (TPs, in experimental study) and piezometers (in Myandoab plain) as interior conditions, the multiquadric radial basis function (MQ-RBF), as a meshless approach which solves partial differential equation (PDE) of contaminant transport in porous media, was employed to estimate the CC values at any point within the study area where there was no TP or piezometer. Optimal values of the dispersion coefficient in the advection-dispersion PDE and shape coefficient of MQ-RBF were determined using the imperialist competitive algorithm. In temporal contaminant transport modeling, de-noised data enhanced the performance of ANN and ANFIS methods in terms of the determination coefficient, up to 6 and 5%, respectively, in the experimental study and up to 39 and 18%, respectively, in the field study. Results showed that the efficiency of ANFIS-meshless model was more than ANN-meshless model up to 2 and 13% in the experimental and field studies, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, P.G.; Abernethy, S.; Mackay, D.
1982-01-01
The toxicity of seawater dispersions of a chemical dispersant to two marine crustaceans was investigated in the presence and absence of various quantities of a non-toxic mineral oil. From the results and a physical-chemical partitioning analysis, a limiting value of the oil-water partition coefficient of the toxic compounds is deduced suggesting that essentially all of the toxic compounds in the dispersant will partition into solution in water following dispersant application to an oil spill. This conclusion simplifies interpretation and prediction of the toxic effects of a dispersed oil spill. The combined bioassay-partitioning procedure may have applications to the study ofmore » the toxicity of other complex mixtures such as industrial effluents.« less
A wavelet-based Gaussian method for energy dispersive X-ray fluorescence spectrum.
Liu, Pan; Deng, Xiaoyan; Tang, Xin; Shen, Shijian
2017-05-01
This paper presents a wavelet-based Gaussian method (WGM) for the peak intensity estimation of energy dispersive X-ray fluorescence (EDXRF). The relationship between the parameters of Gaussian curve and the wavelet coefficients of Gaussian peak point is firstly established based on the Mexican hat wavelet. It is found that the Gaussian parameters can be accurately calculated by any two wavelet coefficients at the peak point which has to be known. This fact leads to a local Gaussian estimation method for spectral peaks, which estimates the Gaussian parameters based on the detail wavelet coefficients of Gaussian peak point. The proposed method is tested via simulated and measured spectra from an energy X-ray spectrometer, and compared with some existing methods. The results prove that the proposed method can directly estimate the peak intensity of EDXRF free from the background information, and also effectively distinguish overlap peaks in EDXRF spectrum.
NASA Astrophysics Data System (ADS)
Gupta, Anubhav; Banerjee, Tanmoy; Dutta, Partha Sharathi
2017-10-01
Understanding the influence of the structure of a dispersal network on the species persistence and modeling a realistic species dispersal in nature are two central issues in spatial ecology. A realistic dispersal structure which favors the persistence of interacting ecological systems was studied [M. D. Holland and A. Hastings, Nature (London) 456, 792 (2008), 10.1038/nature07395], where it was shown that a randomization of the structure of a dispersal network in a metapopulation model of prey and predator increases the species persistence via clustering, prolonged transient dynamics, and amplitudes of population fluctuations. In this paper, by contrast, we show that a deterministic network topology in a metapopulation can also favor asynchrony and prolonged transient dynamics if species dispersal obeys a long-range interaction governed by a distance-dependent power law. To explore the effects of power-law coupling, we take a realistic ecological model, namely, the Rosenzweig-MacArthur model in each patch (node) of the network of oscillators, and show that the coupled system is driven from synchrony to asynchrony with an increase in the power-law exponent. Moreover, to understand the relationship between species persistence and variations in power-law exponent, we compute a correlation coefficient to characterize cluster formation, a synchrony order parameter, and median predator amplitude. We further show that smaller metapopulations with fewer patches are more vulnerable to extinction as compared to larger metapopulations with a higher number of patches. We believe that the present work improves our understanding of the interconnection between the random network and the deterministic network in theoretical ecology.
A time-space domain stereo finite difference method for 3D scalar wave propagation
NASA Astrophysics Data System (ADS)
Chen, Yushu; Yang, Guangwen; Ma, Xiao; He, Conghui; Song, Guojie
2016-11-01
The time-space domain finite difference methods reduce numerical dispersion effectively by minimizing the error in the joint time-space domain. However, their interpolating coefficients are related with the Courant numbers, leading to significantly extra time costs for loading the coefficients consecutively according to velocity in heterogeneous models. In the present study, we develop a time-space domain stereo finite difference (TSSFD) method for 3D scalar wave equation. The method propagates both the displacements and their gradients simultaneously to keep more information of the wavefields, and minimizes the maximum phase velocity error directly using constant interpolation coefficients for different Courant numbers. We obtain the optimal constant coefficients by combining the truncated Taylor series approximation and the time-space domain optimization, and adjust the coefficients to improve the stability condition. Subsequent investigation shows that the TSSFD can suppress numerical dispersion effectively with high computational efficiency. The maximum phase velocity error of the TSSFD is just 3.09% even with only 2 sampling points per minimum wavelength when the Courant number is 0.4. Numerical experiments show that to generate wavefields with no visible numerical dispersion, the computational efficiency of the TSSFD is 576.9%, 193.5%, 699.0%, and 191.6% of those of the 4th-order and 8th-order Lax-Wendroff correction (LWC) method, the 4th-order staggered grid method (SG), and the 8th-order optimal finite difference method (OFD), respectively. Meanwhile, the TSSFD is compatible to the unsplit convolutional perfectly matched layer (CPML) boundary condition for absorbing artificial boundaries. The efficiency and capability to handle complex velocity models make it an attractive tool in imaging methods such as acoustic reverse time migration (RTM).
Numerical study on the maximum small-signal gain coefficient in passively mode-locked fiber lasers
NASA Astrophysics Data System (ADS)
Tang, Xin; Wang, Jian; Chen, Zhaoyang; Lin, Chengyou; Ding, Yingchun
2017-06-01
Ultrashort pulses have been found to have important applications in many fields, such as ultrafast diagnosis, biomedical engineering, and optical imaging. Passively mode-locked fiber lasers have become a tool for generating picosecond and femtosecond pulses. In this paper, the evolution of a picosecond laser pulse in different stable passively mode-locked fiber laser is analyzed using nonlinear Schrödinger equation. Firstly, different mode-locked regimes are calculated with different net cavity dispersion (from -0.3 ps2 to +0.3 ps2 ). Then we calculate the maximum small-signal gain on the different net cavity dispersion conditions, and estimate the pulse width, 3 dB bandwidth and time bandwidth product (TBP) when the small-signal gain coefficient is selected as the maximum value. The results show that the small signal gain coefficient is approximately proportional to the net cavity. Moreover, when the small signal gain coefficient reaches the maximum value, the pulse width of the output pulse and their corresponding TBP show a trend of increase gradually, and 3dB bandwidth shows a trend of increase firstly and then decrease. In addition, in the case that the net dispersion is positive, because of the pulse with quite large frequency chirp, the revolution to dechirp the pulse is researched and the output of the pulse is compressed and its compression ratio reached more than 10 times. The results provide a reference for the optimization of passively mode-locked fiber lasers.
Laboratory investigation and simulation of breakthrough curves in karst conduits with pools
NASA Astrophysics Data System (ADS)
Zhao, Xiaoer; Chang, Yong; Wu, Jichun; Peng, Fu
2017-12-01
A series of laboratory experiments are performed under various hydrological conditions to analyze the effect of pools in pipes on breakthrough curves (BTCs). The BTCs are generated after instantaneous injections of NaCl tracer solution. In order to test the feasibility of reproducing the BTCs and obtain transport parameters, three modeling approaches have been applied: the equilibrium model, the linear graphical method and the two-region nonequilibrium model. The investigation results show that pools induce tailing of the BTCs, and the shapes of BTCs depend on pool geometries and hydrological conditions. The simulations reveal that the two-region nonequilibrium model yields the best fits to experimental BTCs because the model can describe the transient storage in pools by the partition coefficient and the mass transfer coefficient. The model parameters indicate that pools produce high dispersion. The increased tailing occurs mainly because the partition coefficient decreases, as the number of pools increases. When comparing the tracer BTCs obtained using the two types of pools with the same size, the more appreciable BTC tails that occur for symmetrical pools likely result mainly from the less intense exchange between the water in the pools and the water in the pipe, because the partition coefficients for the two types of pools are virtually identical. Dispersivity values decrease as flow rates increase; however, the trend in dispersion is not clear. The reduced tailing is attributed to a decrease in immobile water with increasing flow rate. It provides evidence for hydrodynamically controlled tailing effects.
NASA Astrophysics Data System (ADS)
Moorthy, Chellapilla V. K. N. S. N.; Srinivas, Vadapalli
2016-10-01
This paper summarizes a recent work on anti-corrosive properties and enhanced heat transfer properties of carboxylated water based nanofluids. Water mixed with sebacic acid as carboxylate additive found to be resistant to corrosion and suitable for automotive environment. The carboxylated water is dispersed with very low mass concentration of carbon nano tubes at 0.025, 0.05 and 0.1 %. The stability of nanofluids in terms of zeta potential is found to be good with carboxylated water compared to normal water. The heat transfer performance of nanofluids is carried out on an air cooled heat exchanger similar to an automotive radiator with incoming air velocities across radiator at 5, 10 and 15 m/s. The flow Reynolds number of water is in the range of 2500-6000 indicating developing flow regime. The corrosion resistance of nanofluids is found to be good indicating its suitability to automotive environment. There is a slight increase in viscosity and marginal decrease in the specific heat of nanofluids with addition of carboxylate as well as CNTs. Significant improvement is observed in the thermal conductivity of nanofluids dispersed with CNTs. During heat transfer experimentation, the inside heat transfer coefficient and overall heat transfer coefficient has also improved markedly. It is also found that the velocity of air and flow rate of coolant plays an important role in enhancement of the heat transfer coefficient and overall heat transfer coefficient.
NASA Astrophysics Data System (ADS)
Esrael, D.; Kacem, M.; Benadda, B.
2017-07-01
We investigate how the simulation of the venting/soil vapour extraction (SVE) process is affected by the mass transfer coefficient, using a model comprising five partial differential equations describing gas flow and mass conservation of phases and including an expression accounting for soil saturation conditions. In doing so, we test five previously reported quations for estimating the non-aqueous phase liquid (NAPL)/gas initial mass transfer coefficient and evaluate an expression that uses a reference NAPL saturation. Four venting/SVE experiments utilizing a sand column are performed with dry and non-saturated sand at low and high flow rates, and the obtained experimental results are subsequently simulated, revealing that hydrodynamic dispersion cannot be neglected in the estimation of the mass transfer coefficient, particularly in the case of low velocities. Among the tested models, only the analytical solution of a convection-dispersion equation and the equation proposed herein are suitable for correctly modelling the experimental results, with the developed model representing the best choice for correctly simulating the experimental results and the tailing part of the extracted gas concentration curve.
Photon dispersion associated with optic-vibrations
NASA Astrophysics Data System (ADS)
Feng, P. X.
1999-05-01
In this communication, an effect of the damping coefficient on the dielectric function and dispersion is discussed. We recalculate Li's result [Li Xin-Qi, Yasuhiko Arakawa, Solid State Commun., 108 (1998) 211] and present a more general dielectric function associated with optic-vibrations. The relation between the phonon wavevector and the dispersion has also been obtained. The theoretical results show that the wavevector will obviously affect the profile of the dielectric function and result in the peak of the profile shift and increasing.
The Dispersion Tensor and Its Unique Minimizer in Hashin-Shtrikman Micro-structures
NASA Astrophysics Data System (ADS)
Bălilescu, Loredana; Conca, Carlos; Ghosh, Tuhin; San Martín, Jorge; Vanninathan, Muthusamy
2018-05-01
In this paper, we introduce a macroscopic quantity, namely the dispersion tensor or the Burnett coefficients in the class of generalized Hashin-Shtrikman micro-structures (Tartar in The general theory of homogenization, volume 7 of Lecture notes of the Unione Matematica Italiana, Springer, Berlin, p 281, 2009). In the case of two-phase materials associated with the periodic Hashin-Shtrikman structures, we settle the issue that the dispersion tensor has a unique minimizer, which is the so called Apollonian-Hashin-Shtrikman micro-structure.
Xu, Bruce S; Lollar, Barbara Sherwood; Passeport, Elodie; Sleep, Brent E
2016-04-15
Aqueous phase diffusion-related isotope fractionation (DRIF) for carbon isotopes was investigated for common groundwater contaminants in systems in which transport could be considered to be one-dimensional. This paper focuses not only on theoretically observable DRIF effects in these systems but introduces the important concept of constraining "observable" DRIF based on constraints imposed by the scale of measurements in the field, and on standard limits of detection and analytical uncertainty. Specifically, constraints for the detection of DRIF were determined in terms of the diffusive fractionation factor, the initial concentration of contaminants (C0), the method detection limit (MDL) for isotopic analysis, the transport time, and the ratio of the longitudinal mechanical dispersion coefficient to effective molecular diffusion coefficient (Dmech/Deff). The results allow a determination of field conditions under which DRIF may be an important factor in the use of stable carbon isotope measurements for evaluation of contaminant transport and transformation for one-dimensional advective-dispersive transport. This study demonstrates that for diffusion-dominated transport of BTEX, MTBE, and chlorinated ethenes, DRIF effects are only detectable for the smaller molar mass compounds such as vinyl chloride for C0/MDL ratios of 50 or higher. Much larger C0/MDL ratios, corresponding to higher source concentrations or lower detection limits, are necessary for DRIF to be detectable for the higher molar mass compounds. The distance over which DRIF is observable for VC is small (less than 1m) for a relatively young diffusive plume (<100years), and DRIF will not easily be detected by using the conventional sampling approach with "typical" well spacing (at least several meters). With contaminant transport by advection, mechanical dispersion, and molecular diffusion this study suggests that in field sites where Dmech/Deff is larger than 10, DRIF effects will likely not be observable for common groundwater contaminants. Importantly, under most field conditions, Dmech/Deff≥10 is usually satisfied in the longitudinal direction, suggesting that DRIF is not likely to be observable in most groundwater systems in which contaminant transport is predominantly one-dimensional. Given the importance in the MDL it is recommended that MDL should always be explicitly reported in both modeling and field studies. Copyright © 2016. Published by Elsevier B.V.
Kelvin-Voigt model of wave propagation in fragmented geomaterials with impact damping
NASA Astrophysics Data System (ADS)
Khudyakov, Maxim; Pasternak, Elena; Dyskin, Arcady
2017-04-01
When a wave propagates through real materials, energy dissipation occurs. The effect of loss of energy in homogeneous materials can be accounted for by using simple viscous models. However, a reliable model representing the effect in fragmented geomaterials has not been established yet. The main reason for that is a mechanism how vibrations are transmitted between the elements (fragments) in these materials. It is hypothesised that the fragments strike against each other, in the process of oscillation, and the impacts lead to the energy loss. We assume that the energy loss is well represented by the restitution coefficient. The principal element of this concept is the interaction of two adjacent blocks. We model it by a simple linear oscillator (a mass on an elastic spring) with an additional condition: each time the system travels through the neutral point, where the displacement is equal to zero, the velocity reduces by multiplying itself by the restitution coefficient, which characterises an impact of the fragments. This additional condition renders the system non-linear. We show that the behaviour of such a model averaged over times much larger than the system period can approximately be represented by a conventional linear oscillator with linear damping characterised by a damping coefficient expressible through the restitution coefficient. Based on this the wave propagation at times considerably greater than the resonance period of oscillations of the neighbouring blocks can be modelled using the Kelvin-Voigt model. The wave velocities and the dispersion relations are obtained.
Phase matching in RT KTP crystal for down-conversion into the THz range
NASA Astrophysics Data System (ADS)
Huang, J.-G.; Huang, Z.-M.; Nikolaev, N. A.; Mamrashev, A. A.; Antsygin, V. D.; Potaturkin, O. I.; Meshalkin, A. B.; Kaplun, A. B.; Lanskii, G. V.; Andreev, Yu M.; Ezhov, D. M.; Svetlichnyi, V. A.
2018-07-01
Dispersion of refractive index and absorption coefficients in flux-grown high-resistivity KTiOPO4 crystals between 0.2–2.5 THz are verified at room temperature by a THz-TDS. Measured dispersion components n x , n y and n z are approximated for the first time in the form of Sellmeier equations. Phase matching for down-conversion into the THz range under a visible and near IR pump is found possible only in the principle plane by and types of three-wave interactions. Low frequency THz generation is favorable due to the low absorption coefficient down to 0.2 cm‑1, below 0.5 THz.
NASA Technical Reports Server (NTRS)
Kandula, Max
2012-01-01
The Sound attenuation and dispersion in saturated gas-vapor-droplet mixture in the presence of evaporation has been investigated theoretically. The theory is based on an extension of the work of Davidson to accommodate the effects of nonlinear particle relaxation processes of mass, momentum and energy transfer on sound attenuation and dispersion. The results indicate the existence of a spectral broadening effect in the attenuation coefficient (scaled with respect to the peak value) with a decrease in droplet mass concentration. It is further shown that for large values of the droplet concentration the scaled attenuation coefficient is characterized by a universal spectrum independent of droplet mass concentration.
Modelling radionuclide transport in fractured media with a dynamic update of K d values
Trinchero, Paolo; Painter, Scott L.; Ebrahimi, Hedieh; ...
2015-10-13
Radionuclide transport in fractured crystalline rocks is a process of interest in evaluating long term safety of potential disposal systems for radioactive wastes. Given their numerical efficiency and the absence of numerical dispersion, Lagrangian methods (e.g. particle tracking algorithms) are appealing approaches that are often used in safety assessment (SA) analyses. In these approaches, many complex geochemical retention processes are typically lumped into a single parameter: the distribution coefficient (Kd). Usually, the distribution coefficient is assumed to be constant over the time frame of interest. However, this assumption could be critical under long-term geochemical changes as it is demonstrated thatmore » the distribution coefficient depends on the background chemical conditions (e.g. pH, Eh, and major chemistry). In this study, we provide a computational framework that combines the efficiency of Lagrangian methods with a sound and explicit description of the geochemical changes of the site and their influence on the radionuclide retention properties.« less
Al-Hamdani, Yasmine S; Rossi, Mariana; Alfè, Dario; Tsatsoulis, Theodoros; Ramberger, Benjamin; Brandenburg, Jan Gerit; Zen, Andrea; Kresse, Georg; Grüneis, Andreas; Tkatchenko, Alexandre; Michaelides, Angelos
2017-07-28
Molecular adsorption on surfaces plays an important part in catalysis, corrosion, desalination, and various other processes that are relevant to industry and in nature. As a complement to experiments, accurate adsorption energies can be obtained using various sophisticated electronic structure methods that can now be applied to periodic systems. The adsorption energy of water on boron nitride substrates, going from zero to 2-dimensional periodicity, is particularly interesting as it calls for an accurate treatment of polarizable electrostatics and dispersion interactions, as well as posing a practical challenge to experiments and electronic structure methods. Here, we present reference adsorption energies, static polarizabilities, and dynamic polarizabilities, for water on BN substrates of varying size and dimension. Adsorption energies are computed with coupled cluster theory, fixed-node quantum Monte Carlo (FNQMC), the random phase approximation, and second order Møller-Plesset theory. These wavefunction based correlated methods are found to agree in molecular as well as periodic systems. The best estimate of the water/h-BN adsorption energy is -107±7 meV from FNQMC. In addition, the water adsorption energy on the BN substrates could be expected to grow monotonically with the size of the substrate due to increased dispersion interactions, but interestingly, this is not the case here. This peculiar finding is explained using the static polarizabilities and molecular dispersion coefficients of the systems, as computed from time-dependent density functional theory (DFT). Dynamic as well as static polarizabilities are found to be highly anisotropic in these systems. In addition, the many-body dispersion method in DFT emerges as a particularly useful estimation of finite size effects for other expensive, many-body wavefunction based methods.
Krueger-Hadfield, S A; Roze, D; Correa, J A; Destombe, C; Valero, M
2015-02-01
The link between life history traits and mating systems in diploid organisms has been extensively addressed in the literature, whereas the degree of selfing and/or inbreeding in natural populations of haploid-diploid organisms, in which haploid gametophytes alternate with diploid sporophytes, has been rarely measured. Dioecy has often been used as a proxy for the mating system in these organisms. Yet, dioecy does not prevent the fusion of gametes from male and female gametophytes originating from the same sporophyte. This is likely a common occurrence when spores from the same parent are dispersed in clumps and recruit together. This pattern of clumped spore dispersal has been hypothesized to explain significant heterozygote deficiency in the dioecious haploid-diploid seaweed Chondrus crispus. Fronds and cystocarps (structures in which zygotes are mitotically amplified) were sampled in two 25 m(2) plots located within a high and a low intertidal zone and genotyped at 5 polymorphic microsatellite loci in order to explore the mating system directly using paternity analyses. Multiple males sired cystocarps on each female, but only one of the 423 paternal genotypes corresponded to a field-sampled gametophyte. Nevertheless, larger kinship coefficients were detected between males siring cystocarps on the same female in comparison with males in the entire population, confirming restricted spermatial and clumped spore dispersal. Such dispersal mechanisms may be a mode of reproductive assurance due to nonmotile gametes associated with putatively reduced effects of inbreeding depression because of the free-living haploid stage in C. crispus.
Effective potentials for H2O-He and H2O-Ar systems. Isotropic induction-dispersion potentials
NASA Astrophysics Data System (ADS)
Starikov, Vitali I.; Petrova, Tatiana M.; Solodov, Alexander M.; Solodov, Alexander A.; Deichuli, Vladimir M.
2017-05-01
The vibrational and rotational dependence of the effective isotropic interaction potential of H2O-He and H2O-Ar systems, taken in the form of Lennard-Jones 6-12 potential has been analyzed. The analysis is based on the experimental line broadening (γ) and line shift (δ) coefficients obtained for different vibrational bands of H2O molecule perturbed by He and Ar. The first and second derivatives of the function C(1)(q) for the long-range part of the induction-dispersion potential with respect to the dimensionless normal coordinates q were calculated using literature information for the dipole moment and mean polarizability functions μ(q) and α(q), respectively. These derivatives have been used in the calculations of the quantities which determine the vibrational and rotational dependence of the long-range part of the effective isotropic potential. The optimal set of the derivatives for the function C(1)(q) is proposed. The comparison with the experimental data has been performed.
Plume Dispersion over Idealized Urban-liked Roughness with Height Variation: an LES Approach
NASA Astrophysics Data System (ADS)
Wong, Colman Ching Chi; Liu, Chun-Ho
2013-04-01
Human activities (e.g. vehicular emission) are the primary pollutant sources affecting the health and living quality of stakeholders in modern compact cities. Gaussian plume dispersion model is commonly used for pollutant distribution estimate that works well over rural areas with flat terrain. However, its major parameters, dispersion coefficients, exclude the effect of surface roughness that unavoidably prone to error handling the pollutant transport in the urban boundary layer (UBL) over building roughness. Our recent large-eddy simulation (LES) has shown that urban surfaces affect significantly the pollutant dispersion over idealized, identical two-dimensional (2D) street canyons of uniform height. As an extension to our on-going effort, this study is conceived to investigate how rough urban surfaces, which are constructed by 2D street canyons of non-uniform height, modify the UBL pollutant dispersion . A series of LESs with idealized roughness elements of non-uniform heights were performed in neutral stratification. Building models with two different heights were placed alternatively in the computational domain to construct 2D street canyons in cross flows. The plume dispersion from a ground-level passive pollutant source over more realistic urban areas was then examined. Along with the existing building-height-to-street-width (aspect) ratio (AR), a new parameter, building-height variability (BHV), is used to measure the building height unevenness. Four ARs (1, 0.5, 0.25 and 0.125) and three BHVs (20%, 40% and 60%) were considered in this study. Preliminary results show that BHV greatly increases the aerodynamic roughness of the hypothetical urban surfaces for narrow street canyons. Analogous to our previous findings, the air exchange rate (ACH) of street canyons increases with increasing friction factor, implying that street-level ventilation could be improved by increasing building roughness via BHV. In addition, the parameters used in dispersion coefficient estimates are related to the friction factor in the way similar to that of uniform street canyons, i.e. they are linear functions of friction factor when the roughness is small and become insensitive to friction factor thereafter over very rough surfaces. It is thus suggested that aerodynamic resistance is the key factor affecting the air quality in urban areas. Moreover, the friction factor could be used to parameterize the dispersion coefficients over different roughness elements.
Hollingsworth, John M; Funk, Russell J; Garrison, Spencer A; Owen-Smith, Jason; Kaufman, Samuel A; Pagani, Francis D; Nallamothu, Brahmajee K
2016-11-01
Patients undergoing coronary artery bypass grafting (CABG) must often see multiple providers dispersed across many care locations. To test whether teamwork (assessed with the bipartite clustering coefficient) among these physicians is a determinant of surgical outcomes, we examined national Medicare data from patients undergoing CABG. Among Medicare beneficiaries who underwent CABG between 2008 and 2011, we mapped relationships between all physicians who treated them during their surgical episodes, including both surgeons and nonsurgeons. After aggregating across CABG episodes in a year to construct the physician social networks serving each health system, we then assessed the level of physician teamwork in these networks with the bipartite clustering coefficient. Finally, we fit a series of multivariable regression models to evaluate associations between a health system's teamwork level and its 60-day surgical outcomes. We observed substantial variation in the level of teamwork between health systems performing CABG (SD for the bipartite clustering coefficient was 0.09). Although health systems with high and low teamwork levels treated beneficiaries with comparable comorbidity scores, these health systems differed over several sociocultural and healthcare capacity factors (eg, physician staff size and surgical caseload). After controlling for these differences, health systems with higher teamwork levels had significantly lower 60-day rates of emergency department visit, readmission, and mortality. Health systems with physicians who tend to work together in tightly-knit groups during CABG episodes realize better surgical outcomes. As such, delivery system reforms focused on building teamwork may have positive effects on surgical care. © 2016 American Heart Association, Inc.
NASA Astrophysics Data System (ADS)
Kaba, M.; Zhou, F. C.; Lim, A.; Decoster, D.; Huignard, J.-P.; Tonda, S.; Dolfi, D.; Chazelas, J.
2007-11-01
The applications of microwave optoelectronics are extremely large since they extend from the Radio-over-Fibre to the Homeland security and defence systems. Then, the improved maturity of the optoelectronic components operating up to 40GHz permit to consider new optical processing functions (filtering, beamforming, ...) which can operate over very wideband microwave analogue signals. Specific performances are required which imply optical delay lines able to exhibit large Time-Bandwidth product values. It is proposed to evaluate slow light approach through highly dispersive structures based on either uniform or chirped Bragg Gratings. Therefore, we highlight the impact of the major parameters of such structures: index modulation depth, grating length, grating period, chirp coefficient and demonstrate the high potentiality of Bragg Grating for Large RF signals bandwidth processing under slow-light propagation.
Longitudinal dispersion in model of central airways during high-frequency ventilation.
van der Kooij, A M; Luijendijk, S C
1991-04-01
We have measured the longitudinal dispersion of boluses of helium, acetylene and sulphur hexafluoride in a plastic model of the human airways--generations zero through six--during high frequency ventilation (HFV). HFV was maintained by a piston pump. Frequency f and tidal volume VT ranged from 2.5 to 25 Hz and from 5 to 20 ml, respectively. Boluses were injected near the entrance of the zeroth generation (trachea), and the dispersion curves were measured by mass spectrometry at the end of the sixth airway generation. The shapes of the bolus dispersion curves could be well described with Gaussian distribution functions. With the exception of the HFV-conditions with VT = 5 ml, the effective dispersion coefficient DDISP appeared to be independent of the molecular diffusion coefficient. This independency was also found by other investigators in studies with dogs and human subjects. The measured results for DDISP for different f and VT could be satisfactorily described with the empirical equation DDISP = 0.0617 f0.8VT1.38 [cm2S-1]. Application of this equation to f and VT values normally applied in man resulted in DDISP values which should be considered to be too small for maintaining eucapnic ventilation in vivo. On the basis of this result we believe that during HFV in intubated subjects gas transport by longitudinal dispersion will be limited to the instrumental dead space--the endotracheal tube inclusive--and a few generations of large bronchi.
NASA Astrophysics Data System (ADS)
Boon, Maartje; Niu, Ben; Krevor, Sam
2015-04-01
Transverse dispersion, the lateral spread of chemical components in an aqueous solution caused by small heterogeneities in a rock, plays an important role in spreading, mixing and reaction during flow through porous media. Conventionally, transverse dispersion has been determined with the use of an annular core device and concentration measurements of the effluent (Blackwell, 1962; Hassinger and Von Rosenberg, 1968) or concentration measurements at probe locations along the core (Han et al, 1985; Harleman and Rumer, 1963). Both methods were designed around an analytical model of the transport equations assuming a single constant for the transverse dispersion coefficient, which is used to analyse the experimental data. We have developed a new core flood test with the aim of characterising chemical transport and dispersion directly in three dimensions to (1) produce higher precision observations of transverse dispersion than has been possible before and (2) so that the effects of rock heterogeneity on transport can also be observed and summarised using statistical descriptions allowing for a more nuanced picture of transport than allowed by description with a single transverse dispersion coefficient. The dispersion of a NaI aqueous solution injected into a Berea sandstone rock core was visualised in 3D with the use of a medical x-ray CT scanner. A device consisting out of three annular regions was used for injection. Water was injected into the centre and outer annular region and a NaI aqueous solution was injected in the middle annular region. An analytical solution to the flow and transport equations for this new inlet configuration was derived to design the tests. The Berea sandstone core was 20 cm long and had a diameter of 7.62cm. The core flood experiments were carried out for Peclet nr 0.5 and Peclet nr 2. At steady state, x-ray images were taken every 0.2 cm along the core. This resulted in a high quality 3D digital data set of the concentration distribution of the NaI aqueous solution at steady state for the different Peclet numbers. The average transverse dispersion coefficient (Dt) was calculated from the change in variance of the transverse distance travelled by the NaI solution along the core. A Dt of 2.396e-04 cm2/min was obtained for Peclet nr 0.5 and a Dt of 4.771e-04 cm2/min for Peclet nr 2. These values coincide precisely with the Dt calculated from the pore scale modelling on Berea sandstone of Bijeljic and Blunt, 2007, and serves as a benchmark demonstrating the utility and repeatability of the technique. This new technique shows promise for use in characterising average transport characteristics and analysing the impacts of natural rock heterogeneity. Acknowledgement: This work was carried out as part of the Qatar Carbonates and Carbon Storage Research Centre (QCCSRC). The authors gratefully acknowledge the funding of QCCSRC provided jointly by Qatar Petroleum, Shell, and the Qatar Science & Technology Park and for supporting the present project and the permission to present this research. References: 1. Blackwell, 1962 - Laboratory studies of microscopic dispersion phenomena. Society of Petroleum Engineers Journal 2, no.1:1-8 2. Bijeljic, B., and M. J. Blunt (2007), Pore-scale modeling of transverse dispersion in porous media, Water Resour. Res., 43, W12S11, doi:10.1029/2006WR005700. 3. Han, N.W., Bhakta, J and Carbonell, R.G., 1985 - Longitudinal and lateral dispersion in packed beds: Effect of column length and particle size distribution. AIChE Journal31, no.2:277-288. 4. Harleman, D.R., and R.R. Rumer. 1963. Longitudinal and lateral dispersion in an isotropic porous medium. Journal of Fluid Mechanics16, no. 2:385-394. 5. Hassinger, R.C. and Von Rosenberg, D.U., 1968 - A mathematical and experimental examination of transverse dispersion coefficients. Society of Petroleum Engineers Journal 8, no.1:195-204.
van Turnhout, J.
2016-01-01
The dielectric spectra of colloidal systems often contain a typical low frequency dispersion, which usually remains unnoticed, because of the presence of strong conduction losses. The KK relations offer a means for converting ε′ into ε″ data. This allows us to calculate conduction free ε″ spectra in which the l.f. dispersion will show up undisturbed. This interconversion can be done on line with a moving frame of logarithmically spaced ε′ data. The coefficients of the conversion frames were obtained by kernel matching and by using symbolic differential operators. Logarithmic derivatives and differences of ε′ and ε″ provide another option for conduction free data analysis. These difference-based functions actually derived from approximations to the distribution function, have the additional advantage of improving the resolution power of dielectric studies. A high resolution is important because of the rich relaxation structure of colloidal suspensions. The development of all-in-1 modeling facilitates the conduction free and high resolution data analysis. This mathematical tool allows the apart-together fitting of multiple data and multiple model functions. It proved also useful to go around the KK conversion altogether. This was achieved by the combined approximating ε′ and ε″ data with a complex rational fractional power function. The all-in-1 minimization turned out to be also highly useful for the dielectric modeling of a suspension with the complex dipolar coefficient. It guarantees a secure correction for the electrode polarization, so that the modeling with the help of the differences ε′ and ε″ can zoom in on the genuine colloidal relaxations. PMID:27242997
Spectrum of spin waves in cold polarized gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreeva, T. L., E-mail: phdocandreeva@yandex.ru
2017-02-15
The spin dynamics of cold polarized gases are investigated using the Boltzmann equation. The dispersion relation for spin waves (transverse component of the magnetic moment) and the spin diffusion coefficient of the longitudinal component of the magnetic moment are calculated without using fitting parameters. The spin wave frequency and the diffusion coefficient for rubidium atoms are estimated numerically.
Designing mid-wave infrared (MWIR) thermo-optic coefficient (dn/dT) in chalcogenide glasses
NASA Astrophysics Data System (ADS)
Gleason, Benn; Sisken, Laura; Smith, Charmayne; Richardson, Kathleen
2016-05-01
Seventeen infrared-transmitting GeAsSe chalcogenide glasses were fabricated to determine the role of chemistry and structure on mid-wave infrared (MWIR) optical properties. The refractive index and thermoptic coefficients of samples were measured at λ = 4.515 μm using an IR-modified Metricon prism coupler, located at University of Central Florida. Thermo-optic coefficient (dn/dT) values were shown to range from approximately -40 ppm/°C to +65 ppm/°C, and refractive index was shown to vary between approximately 2.5000 and 2.8000. Trends in refractive index and dn/dT were found to be related to the atomic structures present within the glassy network, as opposed to the atomic percentage of any individual constituent. A linear correlation was found between the quantity (n-3•dn/dT) and the coefficient of thermal expansion (CTE) of the glass, suggesting the ability to compositionally design chalcogenide glass compositions with zero dn/dT, regardless of refractive index or dispersion performance. The tunability of these novel glasses offer increased thermal and mechanical stability as compared to the current commercial zero dn/dT options such as AMTIR-5 from Amorphous Materials Inc. For IR imaging systems designed to achieve passive athermalization, utilizing chalcogenide glasses with their tunable ranges of dn/dT (including zero) can be key to addressing system size, weight, and power (SWaP) limitations.
Zhu, Zhenduo; Motta, Davide; Jackson, P. Ryan; Garcia, Marcelo H.
2017-01-01
In December 2009, during a piscicide treatment targeting the invasive Asian carp in the Chicago Sanitary and Ship Canal, Rhodamine WT dye was released to track and document the transport and dispersion of the piscicide. In this study, two modeling approaches are presented to reproduce the advection and dispersion of the dye tracer (and piscicide), a one-dimensional analytical solution and a three-dimensional numerical model. The two approaches were compared with field measurements of concentration and their applicability is discussed. Acoustic Doppler current profiler measurements were used to estimate the longitudinal dispersion coefficients at ten cross sections, which were taken as reference for calibrating the longitudinal dispersion coefficient in the one-dimensional analytical solution. While the analytical solution is fast, relatively simple, and can fairly accurately predict the core of the observed concentration time series at points downstream, it does not capture the tail of the breakthrough curves. These tails are well reproduced by the three-dimensional model, because it accounts for the effects of dead zones and a power plant which withdraws nearly 80 % of the water from the canal for cooling purposes before returning it back to the canal.
Ultrathin forward-imaging short multimode fiber probe for full-field optical coherence microscopy
NASA Astrophysics Data System (ADS)
Sato, Manabu; Saito, Daisuke; Shouji, Kou; Kurotani, Reiko; Abe, Hiroyuki; Nishidate, Izumi
2016-12-01
To extend the applications of optical coherence tomography (OCT) to the fields of physiology and clinical medicine, less invasive, robust, and reliable optical probes are required. Thus, we demonstrate an ultrathin forward-imaging short multimode fiber (SMMF) optical coherence microscopy (OCM) probe with a 50 μm core diameter, 125 μm total diameter, and 5.12 mm length. Imaging conditions and magnification were analyzed, and they correspond closely to the measured results. The dispersion of the SMMF was investigated, and the modal dispersion coefficient was found to be 2.3% of the material dispersion coefficient. The axial resolution was minimized at 2.15 μm using a 0.885-mm-thick dispersion compensator. The lateral resolution was evaluated to be 4.38 μm using a test pattern. The contrast of the OCM images was 5.7 times higher than that of the signal images owing to the coherence gate. The depth of focus and diameter of the field of view were measured to be 60 μm and 40-50 μm, respectively. OCM images of the dried fins of small fish (Medaka) were measured and internal structures could be recognized.
Iodine insertion and dispersion of refractive index in organic single crystal semiconductor.
Kwon, Seonho; Bae, Junwan; Lee, I J
2018-02-20
Insertion of halogens such as bromine or iodine affects the electronic polarizability of ions and the local field inside the medium, and thus modifies the refractive index. Acquiring precise knowledge of the dispersion of refractive index and ultimately tailoring conventional semiconductors for wide-range refractive index control have been a vital issue to resolve before realizing advanced organic optoelectronic devices. In this report, dispersions of the refractive index of a single crystal tetramethyltetraselenafulvalene [C 10 H 12 Se 4 ] (TMTSF) are thoroughly studied from broadband interference modulations of photoluminescence (PL) spectra at various temperatures and doping levels. A large enhancement of the refractive index, more than 20% of the intrinsic value, is achieved with inclusion of a small composition of iodide ions, while the structural and optical properties remain mostly intact. Nearly temperature independent dispersion of the refractive index suggests that, unlike most polymers in which the thermal expansion coefficient dominates over the change of polarizability with temperature, the latter enhances significantly and may become more or less comparable to the thermal expansion coefficient given by 1.71 × 10 -4 /K, when single crystal TMTSF is doped by iodine.
Wave-induced fluid flow in random porous media: Attenuation and dispersion of elastic waves
NASA Astrophysics Data System (ADS)
Müller, Tobias M.; Gurevich, Boris
2005-05-01
A detailed analysis of the relationship between elastic waves in inhomogeneous, porous media and the effect of wave-induced fluid flow is presented. Based on the results of the poroelastic first-order statistical smoothing approximation applied to Biot's equations of poroelasticity, a model for elastic wave attenuation and dispersion due to wave-induced fluid flow in 3-D randomly inhomogeneous poroelastic media is developed. Attenuation and dispersion depend on linear combinations of the spatial correlations of the fluctuating poroelastic parameters. The observed frequency dependence is typical for a relaxation phenomenon. Further, the analytic properties of attenuation and dispersion are analyzed. It is shown that the low-frequency asymptote of the attenuation coefficient of a plane compressional wave is proportional to the square of frequency. At high frequencies the attenuation coefficient becomes proportional to the square root of frequency. A comparison with the 1-D theory shows that attenuation is of the same order but slightly larger in 3-D random media. Several modeling choices of the approach including the effect of cross correlations between fluid and solid phase properties are demonstrated. The potential application of the results to real porous materials is discussed. .
AIR DISPERSION MODELING AT THE WASTE ISOLATION PILOT PLANT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rucker, D.F.
2000-08-01
One concern at the Waste Isolation Pilot Plant (WIPP) is the amount of alpha-emitting radionuclides or hazardous chemicals that can become airborne at the facility and reach the Exclusive Use Area boundary as the result of a release from the Waste Handling Building (WHB) or from the underground during waste emplacement operations. The WIPP Safety Analysis Report (SAR), WIPP RCRA Permit, and WIPP Emergency Preparedness Hazards Assessments include air dispersion calculations to address this issue. Meteorological conditions at the WIPP facility will dictate direction, speed, and dilution of a contaminant plume of respirable material due to chronic releases or duringmore » an accident. Due to the paucity of meteorological information at the WIPP site prior to September 1996, the Department of Energy (DOE) reports had to rely largely on unqualified climatic data from the site and neighboring Carlsbad, which is situated approximately 40 km (26 miles) to the west of the site. This report examines the validity of the DOE air dispersion calculations using new meteorological data measured and collected at the WIPP site since September 1996. The air dispersion calculations in this report include both chronic and acute releases. Chronic release calculations were conducted with the EPA-approved code, CAP88PC and the calculations showed that in order for a violation of 40 CFR61 (NESHAPS) to occur, approximately 15 mCi/yr of 239Pu would have to be released from the exhaust stack or from the WHB. This is an extremely high value. Hence, it is unlikely that NESHAPS would be violated. A site-specific air dispersion coefficient was evaluated for comparison with that used in acute dose calculations. The calculations presented in Section 3.2 and 3.3 show that one could expect a slightly less dispersive plume (larger air dispersion coefficient) given greater confidence in the meteorological data, i.e. 95% worst case meteorological conditions. Calculations show that dispersion will decrease slightly if a more stable wind class is assumed, where very little vertical mixing occurs. It is recommended that previous reports which used fixed values for calculating the air dispersion coefficient be updated to reflect the new meteorological data, such as the WIPP Safety Analysis Report and the WIPP Emergency Preparedness Hazards Assessment. It is also recommended that uncertainty be incorporated into the calculations so that a more meaningful assessment of risk during accidents can be achieved.« less
NASA Astrophysics Data System (ADS)
Zhang, Wei
2011-07-01
The longitudinal dispersion coefficient, DL, is a fundamental parameter of longitudinal solute transport models: the advection-dispersion (AD) model and various deadzone models. Since DL cannot be measured directly, and since its calibration using tracer test data is quite expensive and not always available, researchers have developed various methods, theoretical or empirical, for estimating DL by easier available cross-sectional hydraulic measurements (i.e., the transverse velocity profile, etc.). However, for known and unknown reasons, DL cannot be satisfactorily predicted using these theoretical/empirical formulae. Either there is very large prediction error for theoretical methods, or there is a lack of generality for the empirical formulae. Here, numerical experiments using Mike21, a software package that implements one of the most rigorous two-dimensional hydrodynamic and solute transport equations, for longitudinal solute transport in hypothetical streams, are presented. An analysis of the evolution of simulated solute clouds indicates that the two fundamental assumptions in Fischer's longitudinal transport analysis may be not reasonable. The transverse solute concentration distribution, and hence the longitudinal transport appears to be controlled by a dimensionless number ?, where Q is the average volumetric flowrate, Dt is a cross-sectional average transverse dispersion coefficient, and W is channel flow width. A simple empirical ? relationship may be established. Analysis and a revision of Fischer's theoretical formula suggest that ɛ influences the efficiency of transverse mixing and hence has restraining effect on longitudinal spreading. The findings presented here would improve and expand our understanding of longitudinal solute transport in open channel flow.
Exploratory laboratory study of lateral turbulent diffusion at the surface of an alluvial channel
Sayre, William W.; Chamberlain, A.R.
1964-01-01
In natural streams turbulent diffusion is one of the principal mechanisms by which liquid and suspended-particulate contaminants are dispersed in the flow. A knowledge of turbulence characteristics is therefore essential in predicting the dispersal rates of contaminants in streams. In this study the theory of diffusion by continuous movements for homogeneous turbulence is applied to lateral diffusion at the surface of an open channel in which there is uniform flow. An exploratory-laboratory investigation was conducted in which the lateral dispersion at the water surface of a sand-Led flume was studied by measuring the lateral spread from a point source of small floating polyethylene articles. The experiment was restricted to a single set of low and channel geometry conditions. The results of the study indicate that with certain restrictions lateral dispersion in alluvial channels may be successfully described by the theory of diffusion by continuous movements. The experiment demonstrates a means for evaluating the lateral diffusion coefficient and also methods for quantitatively estimating fundamental turbulence properties, such as the intensity and the Lagrangian integral scale of turbulence in an alluvial channel. The experimental results show that with increasing distance from the source the coefficient of lateral turbulent diffusion increases initially but tends toward a constant limiting value. This result is in accordance with turbulent diffusion theory. Indications are that the distance downstream from the source required for the diffusion coefficient to reach its limiting value is actually very small when compared to the length scale of most diffusion phenomena in natural streams which are of practical interest.
Hollingsworth, John M.; Funk, Russell J.; Garrison, Spencer A.; Owen-Smith, Jason; Kaufman, Samuel A.; Pagani, Francis D.; Nallamothu, Brahmajee K.
2017-01-01
Background Patients undergoing coronary artery bypass grafting (CABG) must often see multiple providers dispersed across many care locations. To test whether “teamwork” (assessed with the bipartite clustering coefficient) among these physicians is a determinant of surgical outcomes, we examined national Medicare data from patients undergoing CABG. Methods and Results Among Medicare beneficiaries who underwent CABG between 2008 and 2011, we mapped relationships between all physicians who treated them during their surgical episodes, including both surgeons and nonsurgeons. After aggregating across CABG episodes in a year to construct the physician social networks serving each health system, we then assessed the level of physician teamwork in these networks with the bipartite clustering coefficient. Finally, we fit a series of multivariable regression models to evaluate associations between a health system’s teamwork level and its 60-day surgical outcomes. We observed substantial variation in the level of teamwork between health systems performing CABG (standard deviation for the bipartite clustering coefficient was 0.09). While health systems with high and low teamwork levels treated beneficiaries with comparable comorbidity scores, these health systems differed over several sociocultural and healthcare capacity factors (e.g., physician staff size, surgical caseload). After controlling for these differences, health systems with higher teamwork levels had significantly lower 60-day rates of emergency department visit, readmission, and mortality. Conclusions Health systems with physicians who tend to work together in tightly knit groups during CABG episodes realize better surgical outcomes. As such, delivery system reforms focused on building teamwork may have positive effects on surgical care. PMID:28263939
Selection of Optical Glasses Using Buchdahl's Chromatic Coordinate
NASA Technical Reports Server (NTRS)
Griffin, DeVon W.
1999-01-01
This investigation attempted to extend the method of reducing the size of glass catalogs to a global glass selection technique with the hope of guiding glass catalog offerings. Buchdahl's development of optical aberration coefficients included a transformation of the variable in the dispersion equation from wavelength to a chromatic coordinate omega defined as omega = (lambda - lambda(sub 0))/ 1 + 2.5(lambda - lambda(sub 0)) where lambda is the wavelength at which the wavelength is calculated and lambda(sub 0) is a base wavelength about which the expansion is performed. The advantage of this approach is that the dispersion equation may be written in terms of a simple power series and permits direct calculation of dispersion coefficients. While several promising examples were given, a systematic application of the technique to an entire glass catalog and analysis of the subsequent predictions was not performed. The goal of this work was to apply the technique in a systematic fashion to glasses in the Schoft catalog and assess the quality of the predictions.
CFD simulation of copper(II) extraction with TFA in non-dispersive hollow fiber membrane contactors.
Muhammad, Amir; Younas, Mohammad; Rezakazemi, Mashallah
2018-04-01
This study presents computational fluid dynamics (CFD) simulation of dispersion-free liquid-liquid extraction of copper(II) with trifluoroacetylacetone (TFA) in hollow fiber membrane contactor (HFMC). Mass and momentum balance Navier-Stokes equations were coupled to address the transport of copper(II) solute across membrane contactor. Model equations were simulated using COMSOL Multiphysics™. The simulation was run to study the detailed concentration distribution of copper(II) and to investigate the effects of various parameters like membrane characteristics, partition coefficient, and flow configuration on extraction efficiency. Once-through extraction was found to be increased from 10 to 100% when partition coefficient was raised from 1 to 10. Similarly, the extraction efficiency was almost doubled when porosity to tortuosity ratio of membrane was increased from 0.05 to 0.81. Furthermore, the study revealed that CFD can be used as an effective optimization tool for the development of economical membrane-based dispersion-free extraction processes.
Homogenization of a Directed Dispersal Model for Animal Movement in a Heterogeneous Environment.
Yurk, Brian P
2016-10-01
The dispersal patterns of animals moving through heterogeneous environments have important ecological and epidemiological consequences. In this work, we apply the method of homogenization to analyze an advection-diffusion (AD) model of directed movement in a one-dimensional environment in which the scale of the heterogeneity is small relative to the spatial scale of interest. We show that the large (slow) scale behavior is described by a constant-coefficient diffusion equation under certain assumptions about the fast-scale advection velocity, and we determine a formula for the slow-scale diffusion coefficient in terms of the fast-scale parameters. We extend the homogenization result to predict invasion speeds for an advection-diffusion-reaction (ADR) model with directed dispersal. For periodic environments, the homogenization approximation of the solution of the AD model compares favorably with numerical simulations. Invasion speed approximations for the ADR model also compare favorably with numerical simulations when the spatial period is sufficiently small.
An implicit spatial and high-order temporal finite difference scheme for 2D acoustic modelling
NASA Astrophysics Data System (ADS)
Wang, Enjiang; Liu, Yang
2018-01-01
The finite difference (FD) method exhibits great superiority over other numerical methods due to its easy implementation and small computational requirement. We propose an effective FD method, characterised by implicit spatial and high-order temporal schemes, to reduce both the temporal and spatial dispersions simultaneously. For the temporal derivative, apart from the conventional second-order FD approximation, a special rhombus FD scheme is included to reach high-order accuracy in time. Compared with the Lax-Wendroff FD scheme, this scheme can achieve nearly the same temporal accuracy but requires less floating-point operation times and thus less computational cost when the same operator length is adopted. For the spatial derivatives, we adopt the implicit FD scheme to improve the spatial accuracy. Apart from the existing Taylor series expansion-based FD coefficients, we derive the least square optimisation based implicit spatial FD coefficients. Dispersion analysis and modelling examples demonstrate that, our proposed method can effectively decrease both the temporal and spatial dispersions, thus can provide more accurate wavefields.
A modified symplectic PRK scheme for seismic wave modeling
NASA Astrophysics Data System (ADS)
Liu, Shaolin; Yang, Dinghui; Ma, Jian
2017-02-01
A new scheme for the temporal discretization of the seismic wave equation is constructed based on symplectic geometric theory and a modified strategy. The ordinary differential equation in terms of time, which is obtained after spatial discretization via the spectral-element method, is transformed into a Hamiltonian system. A symplectic partitioned Runge-Kutta (PRK) scheme is used to solve the Hamiltonian system. A term related to the multiplication of the spatial discretization operator with the seismic wave velocity vector is added into the symplectic PRK scheme to create a modified symplectic PRK scheme. The symplectic coefficients of the new scheme are determined via Taylor series expansion. The positive coefficients of the scheme indicate that its long-term computational capability is more powerful than that of conventional symplectic schemes. An exhaustive theoretical analysis reveals that the new scheme is highly stable and has low numerical dispersion. The results of three numerical experiments demonstrate the high efficiency of this method for seismic wave modeling.
Braze system and method for reducing strain in a braze joint
Cadden, Charles H.; Goods, Steven H.; Prantil, Vincent C.
2004-05-11
A system for joining a pair of structural members having widely differing coefficients of thermal expansion is disclosed. A mechanically "thick" foil is made by dispersing a refractory metal powder, such as molybdenum, niobium, tantalum, or tungsten into a quantity of a liquid, high expansion metal such as copper, silver, or gold, casting an ingot of the mixture, and then cutting sections of the ingot about 1 mm thick to provide the foil member. These foil members are shaped, and assembled between surfaces of structural members for joining, together with a layer of a braze alloy on either side of the foil member capable of wetting both the surfaces of the structural members and the foil. The assembled body is then heated to melt the braze alloy and join the assembled structure. The foil member subsequently absorbs the mechanical strain generated by the differential contraction of the cooling members that results from the difference in the coefficients of thermal expansion of the members.
NASA Astrophysics Data System (ADS)
Leviton, Douglas B.; Miller, Kevin H.; Quijada, Manuel A.; Groff, Tyler D.
2015-09-01
Using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we have made the first cryogenic measurements of absolute refractive index for Ohara L-BBH2 glass to enable the design of a prism for the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) at the Subaru telescope. L-BBH2 is employed in CHARIS's prism design for improving the spectrograph's dispersion uniformity. Index measurements were made at temperatures from 110 to 305 K at wavelengths from 0.46 to 3.16 μm. We report absolute refractive index (n), dispersion (dn/dλ), and thermo-optic coefficient (dn/dT) for this material along with estimated single measurement uncertainties as a function of wavelength and temperature. We provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures within applicable ranges. This paper also speaks of the challenges in measuring index for a material which is not available in sufficient thickness to fabricate a typical prism for measurement in CHARMS, the tailoring of the index prism design that allowed these index measurements to be made, and the remarkable results obtained from that prism for this practical infrared material.
NASA Technical Reports Server (NTRS)
Leviton, Douglas B.; Miller, Kevin H.; Quijada, Manuel A.; Groff, Tyler D.
2015-01-01
Using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we have made the first cryogenic measurements of absolute refractive index for Ohara L-BBH2 glass to enable the design of a prism for the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) at the Subaru telescope. L-BBH2 is employed in CHARIS's prism design for improving the spectrograph's dispersion uniformity. Index measurements were made at temperatures from 110 to 305 K at wavelengths from 0.46 to 3.16 micron. We report absolute refractive index (n), dispersion (dn/d(lambda), and thermo-optic coefficient (dn/dT) for this material along with estimated single measurement uncertainties as a function of wavelength and temperature. We provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures within applicable ranges. This paper also speaks of the challenges in measuring index for a material which is not available in sufficient thickness to fabricate a typical prism for measurement in CHARMS, the tailoring of the index prism design that allowed these index measurements to be made, and the remarkable results obtained from that prism for this practical infrared material.
Experimental approaches to assessing the impact of a cesium chloride radiological dispersal device
Lee, S.; Gibb, Snyder E.; Barzyk, J.; McGee, J.; Koenig, A.
2008-01-01
The US EPA, as a part of the Chemical, Biological, Radiological-Nuclear, and Explosives (CBRNE) Research and Technology Initiative (CRTI) project team, is currently working to assess the impacts of an urban radiological dispersion device (RDD) and to develop containment and decontamination strategies. Three efforts in this area are currently underway: development of a laboratory-scale cesium chloride deposition method to mimic a RDD; assessment of cesium (Cs) penetration depth and pathways in urban materials using two dimensional (2-D) mapping laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS); and experimental determination of distribution coefficients (kd) for Cs in water-building material systems. It is critical that, when performing laboratory-scale experiments to assess the fate of Cs from an RDD, the Cs particle deposition method mimics the RDD deposition. Once Cs particles are deposited onto urban surfaces, 2-D mapping of Cs concentrations using LA-ICP-MS is a critical tool for determining Cs transport pathways through these materials. Lastly, distribution coefficients are critical for understanding the transport of Cs in urban settings when direct measurements of its penetration depth are unavailable. An assessment of the newly developed deposition method along with preliminary results from the penetration experiments are presented in this paper.
Experimental and AI-based numerical modeling of contaminant transport in porous media.
Nourani, Vahid; Mousavi, Shahram; Sadikoglu, Fahreddin; Singh, Vijay P
2017-10-01
This study developed a new hybrid artificial intelligence (AI)-meshless approach for modeling contaminant transport in porous media. The key innovation of the proposed approach is that both black box and physically-based models are combined for modeling contaminant transport. The effectiveness of the approach was evaluated using experimental and real world data. Artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) were calibrated to predict temporal contaminant concentrations (CCs), and the effect of noisy and de-noised data on the model performance was evaluated. Then, considering the predicted CCs at test points (TPs, in experimental study) and piezometers (in Myandoab plain) as interior conditions, the multiquadric radial basis function (MQ-RBF), as a meshless approach which solves partial differential equation (PDE) of contaminant transport in porous media, was employed to estimate the CC values at any point within the study area where there was no TP or piezometer. Optimal values of the dispersion coefficient in the advection-dispersion PDE and shape coefficient of MQ-RBF were determined using the imperialist competitive algorithm. In temporal contaminant transport modeling, de-noised data enhanced the performance of ANN and ANFIS methods in terms of the determination coefficient, up to 6 and 5%, respectively, in the experimental study and up to 39 and 18%, respectively, in the field study. Results showed that the efficiency of ANFIS-meshless model was more than ANN-meshless model up to 2 and 13% in the experimental and field studies, respectively. Copyright © 2017. Published by Elsevier B.V.
Bush, M L; Zhang, W; Ben-Jebria, A; Ultman, J S
2001-06-15
In the single-path model of the respiratory system, gas transport occurs within a conduit of progressively increasing cross-sectional and surface areas by a combination of flow, longitudinal dispersion, and lateral absorption. The purpose of this study was to use bolus inhalation data previously obtained for chlorine (Cl(2)) and for ozone (O(3)) to test the predictive capability of the single-path model and to adjust input parameters for applying the model to other exposure conditions. The data, consisting of uptake fraction as a function of bolus penetration volume, were recorded on 10 healthy nonsmokers breathing orally as well as nasally at alternative air flows of 150, 250, and 1000 ml/s. By employing published data for airway anatomy, gas-phase dispersion coefficients, and gas-phase mass transfer coefficients while neglecting diffusion limitations in the mucus phase, the single-path model was capable of predicting the uptake distribution for O(3) but not the steeper distribution that was observed for Cl(2). To simultaneously explain the data for these two gases, it was necessary to increase gas-phase mass transfer coefficients and to include a finite diffusion resistance of O(3) within the mucous layer. The O(3) reaction rate constants that accounted for this diffusion resistance, 2 x 10(6) s(-1) in the mouth and 8 x 10(6) s(-1) in the nose and lower airways, were much greater than previously reported reactivities of individual substrates found in mucus. Copyright 2001 Academic Press.
NASA Astrophysics Data System (ADS)
Yamaguchi, T.; Koda, S.
2010-03-01
The mode-coupling theory for molecular liquids based on the interaction-site model is applied to a representative molecular ionic liquid, dimethylimidazolium chloride, and dynamic properties such as shear viscosity, self-diffusion coefficients, reorientational relaxation time, electric conductivity, and dielectric relaxation spectrum are analyzed. Molecular dynamics (MD) simulation is also performed on the same system for comparison. The theory captures the characteristics of the dynamics of the ionic liquid qualitatively, although theoretical relaxation times are several times larger than those from the MD simulation. Large relaxations are found in the 100 MHz region in the dispersion of the shear viscosity and the dielectric relaxation, in harmony with various experiments. The relaxations of the self-diffusion coefficients are also found in the same frequency region. The dielectric relaxation spectrum is divided into the contributions of the translational and reorientational modes, and it is demonstrated that the relaxation in the 100 MHz region mainly stems from the translational modes. The zero-frequency electric conductivity is close to the value predicted by the Nernst-Einstein equation in both MD simulation and theoretical calculation. However, the frequency dependence of the electric conductivity is different from those of self-diffusion coefficients in that the former is smaller than the latter in the gigahertz-terahertz region, which is compensated by the smaller dispersion of the former in the 100 MHz region. The analysis of the theoretical calculation shows that the difference in their frequency dependence is due to the different contribution of the short- and long-range liquid structures.
NASA Astrophysics Data System (ADS)
Korobko, Evguenia V.; Korobko, Yulia O.
2000-04-01
Fluid disperse systems, sensitive to the external electric field-electrorheological fluids, are finding increasing use in various areas of industry and technology. Their physicomechanical, electrophysical characteristics determine the valuable specific properties of the materials with assigned structure, obtainable with everwide use of electric fields, which makes it possible to substantially enhance efficiency and productiveness of technological processes and to improve the control of operational regimes of the equipment which employ fluid disperse media. The present investigations has been undertaken with the aim of studying thermophysical properties and rheophysical behavior of low-concentration ER- fluid (diatomite in transformer oil) at different temperatures. It was shown that the electric field, which changes considerably the structure of electrorheological fluid, influences effective thermal conductivity and diffusivity coefficients. Their increase with electric field intensity and the increase of the effective viscosity with temperature are connected with the increase of the conductive component of the overall heat transfer through the contact spots between the solid particles, and with intensification of electric convection in the spaces between the dispersed particles.
Taylor dispersion of colloidal particles in narrow channels
NASA Astrophysics Data System (ADS)
Sané, Jimaan; Padding, Johan T.; Louis, Ard A.
2015-09-01
We use a mesoscopic particle-based simulation technique to study the classic convection-diffusion problem of Taylor dispersion for colloidal discs in confined flow. When the disc diameter becomes non-negligible compared to the diameter of the pipe, there are important corrections to the original Taylor picture. For example, the colloids can flow more rapidly than the underlying fluid, and their Taylor dispersion coefficient is decreased. For narrow pipes, there are also further hydrodynamic wall effects. The long-time tails in the velocity autocorrelation functions are altered by the Poiseuille flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lei, E-mail: wanglei2239@126.com; Gao, Yi-Tian; State Key Laboratory of Software Development Environment, Beijing University of Aeronautics and Astronautics, Beijing 100191
2012-08-15
Under investigation in this paper is a variable-coefficient modified Kortweg-de Vries (vc-mKdV) model describing certain situations from the fluid mechanics, ocean dynamics and plasma physics. N-fold Darboux transformation (DT) of a variable-coefficient Ablowitz-Kaup-Newell-Segur spectral problem is constructed via a gauge transformation. Multi-solitonic solutions in terms of the double Wronskian for the vc-mKdV model are derived by the reduction of the N-fold DT. Three types of the solitonic interactions are discussed through figures: (1) Overtaking collision; (2) Head-on collision; (3) Parallel solitons. Nonlinear, dispersive and dissipative terms have the effects on the velocities of the solitonic waves while the amplitudes ofmore » the waves depend on the perturbation term. - Highlights: Black-Right-Pointing-Pointer N-fold DT is firstly applied to a vc-AKNS spectral problem. Black-Right-Pointing-Pointer Seeking a double Wronskian solution is changed into solving two systems. Black-Right-Pointing-Pointer Effects of the variable coefficients on the multi-solitonic waves are discussed in detail. Black-Right-Pointing-Pointer This work solves the problem from Yi Zhang [Ann. Phys. 323 (2008) 3059].« less
NASA Astrophysics Data System (ADS)
Anak Gisen, Jacqueline Isabella; Nijzink, Remko C.; Savenije, Hubert H. G.
2014-05-01
Dispersion mathematical representation of tidal mixing between sea water and fresh water in The definition of dispersion somehow remains unclear as it is not directly measurable. The role of dispersion is only meaningful if it is related to the appropriate temporal and spatial scale of mixing, which are identified as the tidal period, tidal excursion (longitudinal), width of estuary (lateral) and mixing depth (vertical). Moreover, the mixing pattern determines the salt intrusion length in an estuary. If a physically based description of the dispersion is defined, this would allow the analytical solution of the salt intrusion problem. The objective of this study is to develop a predictive equation for estimating the dispersion coefficient at tidal average (TA) condition, which can be applied in the salt intrusion model to predict the salinity profile for any estuary during different events. Utilizing available data of 72 measurements in 27 estuaries (including 6 recently studied estuaries in Malaysia), regressions analysis has been performed with various combinations of dimensionless parameters . The predictive dispersion equations have been developed for two different locations, at the mouth D0TA and at the inflection point D1TA (where the convergence length changes). Regressions have been carried out with two separated datasets: 1) more reliable data for calibration; and 2) less reliable data for validation. The combination of dimensionless ratios that give the best performance is selected as the final outcome which indicates that the dispersion coefficient is depending on the tidal excursion, tidal range, tidal velocity amplitude, friction and the Richardson Number. A limitation of the newly developed equation is that the friction is generally unknown. In order to compensate this problem, further analysis has been performed adopting the hydraulic model of Cai et. al. (2012) to estimate the friction and depth. Keywords: dispersion, alluvial estuaries, mixing, salt intrusion, predictive equation
Hnatkova, K; Malik, M; Kautzner, J; Gang, Y; Camm, A J
1994-01-01
OBJECTIVE--Normal electrocardiographic recordings were analysed to establish the influence of measurement of different numbers of electrocardiographic leads on the results of different formulas expressing QT dispersion and the effects of adjustment of QT dispersion obtained from a subset of an electrocardiogram to approximate to the true QT dispersion obtained from a complete electrocardiogram. SUBJECTS AND METHODS--Resting 12 lead electrocardiograms of 27 healthy people were investigated. In each lead, the QT interval was measured with a digitising board and QT dispersion was evaluated by three formulas: (A) the difference between the longest and the shortest QT interval among all leads; (B) the difference between the second longest and the second shortest QT interval; (C) SD of QT intervals in different leads. For each formula, the "true" dispersion was assessed from all measurable leads and then different combinations of leads were omitted. The mean relative differences between the QT dispersion with a given number of omitted leads and the "true" QT dispersion (mean relative errors) and the coefficients of variance of the results of QT dispersion obtained when omitting combinations of leads were compared for the different formulas. The procedure was repeated with an adjustment of each formula dividing its results by the square root of the number of measured leads. The same approach was used for the measurement of QT dispersion from the chest leads including a fourth formula (D) the SD of interlead differences weighted according to the distances between leads. For different formulas, the mean relative errors caused by omitting individual electrocardiographic leads were also assessed and the importance of individual leads for correct measurement of QT dispersion was investigated. RESULTS--The study found important differences between different formulas for assessment of QT dispersion with respect to compensation for missing measurements of QT interval. The standard max-min formula (A) performed poorly (mean relative errors of 6.1% to 18.5% for missing one to four leads) but was appropriately adjusted with the factor of 1/square root of n (n = number of measured leads). In a population of healthy people such an adjustment removed the systematic bias introduced by missing leads of the 12 lead electrocardiogram and significantly reduced the mean relative errors caused by the omission of several leads. The unadjusted SD was the optimum formula (C) for the analysis of 12 lead electrocardiograms, and the weighted standard deviation (D) was the optimum for the analysis of six lead chest electrocardiograms. The coefficients of variance of measurements of QT dispersion with different missing leads were very large (about 3 to 7 for one to four missing leads). Independently of the formula for measurement of QT dispersion, omission of different leads produced substantially different relative errors. In 12 lead electrocardiograms the largest relative errors (> 10%) were caused by omitting lead aVL or lead V1. CONCLUSIONS--Because of the large coefficients of variance, the concept of adjusting the QT dispersion for different numbers of electrocardiographic leads used in its assessment is difficult if not impossible to fulfil. Thus it is likely to be more appropriate to assess QT dispersion from standardised constant sets of electrocardiographic leads. PMID:7833200
Cifuentes, L.A.; Schemel, L.E.; Sharp, J.H.
1990-01-01
The effects of river inflow variations on alkalinity/salinity distributions in San Francisco Bay and nitrate/salinity distributions in Delaware Bay are described. One-dimensional, advective-dispersion equations for salinity and the dissolved constituents are solved numerically and are used to simulate mixing in the estuaries. These simulations account for time-varying river inflow, variations in estuarine cross-sectional area, and longitudinally varying dispersion coefficients. The model simulates field observations better than models that use constant hydrodynamic coefficients and uniform estuarine geometry. Furthermore, field observations and model simulations are consistent with theoretical 'predictions' that the curvature of propery-salinity distributions depends on the relation between the estuarine residence time and the period of river concentration variation. ?? 1990.
NASA Astrophysics Data System (ADS)
Magnasco, Valerio; Battezzati, Michele; Rapallo, Arnaldo; Costa, Camilla
2006-09-01
T-dependent long-range Keesom coefficients are evaluated up to the R-10 term for small values of the dimensionless parameter |a|. For large values of |a| corrections must be introduced mostly for the dipole-dipole term, the correct values of C6 being best obtained from a recently derived asymptotic formula. The corresponding attractive energies are the isotropic electrostatic contributions to the interaction energy and are temperature-dependent. Comparison with long-range induction and dispersion energy results for some simple polar axially symmetric molecules in the gas phase shows that at R = 10 a0 and T = 293 K the electrostatic dipole-dipole component is dominant for ∣ a11∣ > 0.5. For centrosymmetric molecules the corresponding electrostatic contribution is usually negligible with respect to dispersion.
Long-range interactions between metastable rare gases atoms
NASA Astrophysics Data System (ADS)
Vrinceanu, D.; Marinescu, M.; Flannery, M. R.
1998-10-01
Knowledge of the long-range interaction between atoms and molecules is of fundamental importance for low-energy and low-temperature collisions. The electronic interaction between the charge distributions of two metastable rare gases atoms can be expanded in inverse powers of R, the internuclear distance. The coefficients C_6, C_8, and C_10 of, respectively, the R-6, R-8, and R-10 terms are calculated by integrating the products of the dynamic electric polarizabilities of the individual atoms at imaginary frequencies, which are in turn obtained by solving a system of coupled inhomogeneous differential equations. The triplet state spectrum of the rare gases atoms is described by precise l-dependent one-electron model potentials. Numerical results for the C_6, C_8, and C_10 dispersion coefficients for homonuclear and heteronuclear metastable rare gases diatoms are presented.
Long-range interactions between metastable rare gases atoms
NASA Astrophysics Data System (ADS)
Vrinceanu, D.; Marinescu, M.; Flannery, M. R.
1998-05-01
Knowledge of the long-range interaction between atoms and molecules is of fundamental importance for low-energy and low-temperature collisions. The electronic interaction between the charge distributions of two metastable rare gases atoms can be expanded in inverse powers of R, the internuclear distance. The coefficients C_6, C_8, and C_10 of, respectively, the R-6, R-8, and R-10 terms are calculated by integrating the products of the dynamic electric polarizabilities of the individual atoms at imaginary frequencies, which are in turn obtained by solving a system of coupled inhomogeneous differential equations. The triplet state spectrum of the rare gases atoms is described by precise l-dependent one-electron model potentials. Numerical results for the C_6, C_8, and C_10 dispersion coefficients for homonuclear and heteronuclear metastable rare gases diatoms are presented.
A new formulation of the dispersion tensor in homogeneous porous media
NASA Astrophysics Data System (ADS)
Valdés-Parada, Francisco J.; Lasseux, Didier; Bellet, Fabien
2016-04-01
Dispersion is the result of two mass transport processes, namely molecular diffusion, which is a pure mixing effect and hydrodynamic dispersion, which combines mixing and spreading. The identification of each contribution is crucial and is often misinterpreted. Traditionally, under a volume averaging framework, a single closure problem is solved and the resulting fields are substituted into diffusive and dispersive filters. However the diffusive filter (that leads to the effective diffusivity) allows passing information from convection, which leads to an incorrect definition of the effective medium coefficients composing the total dispersion tensor. In this work, we revisit the definitions of the effective diffusivity and hydrodynamic dispersion tensors using the method of volume averaging. Our analysis shows that, in the context of laminar flow with or without inertial effects, two closure problems need to be computed in order to correctly define the corresponding effective medium coefficients. The first closure problem is associated to momentum transport and needs to be solved for a prescribed Reynolds number and flow orientation. The second closure problem is related to mass transport and it is solved first with a zero Péclet number and second with the required Péclet number and flow orientation. All the closure problems are written using closure variables only as required by the upscaling method. The total dispersion tensor is shown to depend on the microstructure, macroscopic flow angles, the cell (or pore) Péclet number and the cell (or pore) Reynolds number. It is non-symmetric in the general case. The condition for quasi-symmetry is highlighted. The functionality of the longitudinal and transverse components of this tensor with the flow angle is investigated for a 2D model porous structure obtaining consistent results with previous studies.
Determinates of clustering across America's national parks: An application of the Gini coefficients
R. Geoffrey Lacher; Matthew T.J. Brownlee
2012-01-01
The changes in the clustering of visitation across National Park Service (NPS) sites have not been well documented or widely studied. This paper investigates the changes in the dispersion of visitation across NPS sites with the Gini coefficient, a popular measure of inequality used primarily in the field of economics. To calculate the degree of clustering nationally,...
Daniele Tonina; Alberto Bellin
2008-01-01
Pore-scale dispersion (PSD), aquifer heterogeneity, sampling volume, and source size influence solute concentrations of conservative tracers transported in heterogeneous porous formations. In this work, we developed a new set of analytical solutions for the concentration ensemble mean, variance, and coefficient of variation (CV), which consider the effects of all these...
NASA Astrophysics Data System (ADS)
Xinying, Li; Yongfang, Zhao; Xiaogong, Jing; Fengli, Liu; Fengyou, Hao
2006-01-01
We present the rules of electron correlation energies for RgX (Rg = Kr, Xe, X = Br, I) van der Waals (vdW) complex systems at CCSD(T) theoretical level with SDB-cc-pVQZ basis set by the Gaussian 98 program. A new method to derive the dispersion coefficient C6 by fitting the intermonomer electron correlation energies to C6R-6 function is introduced. The present C6 values are compared with the corresponding theoretical ones.
High-performance 3D printing of hydrogels by water-dispersible photoinitiator nanoparticles
Pawar, Amol A.; Saada, Gabriel; Cooperstein, Ido; Larush, Liraz; Jackman, Joshua A.; Tabaei, Seyed R.; Cho, Nam-Joon; Magdassi, Shlomo
2016-01-01
In the absence of water-soluble photoinitiators with high absorbance in the ultraviolet (UV)–visible range, rapid three-dimensional (3D) printing of hydrogels for tissue engineering is challenging. A new approach enabling rapid 3D printing of hydrogels in aqueous solutions is presented on the basis of UV-curable inks containing nanoparticles of highly efficient but water-insoluble photoinitiators. The extinction coefficient of the new water-dispersible nanoparticles of 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (TPO) is more than 300 times larger than the best and most used commercially available water-soluble photoinitiator. The TPO nanoparticles absorb significantly in the range from 385 to 420 nm, making them suitable for use in commercially available, low-cost, light-emitting diode–based 3D printers using digital light processing. The polymerization rate at this range is very fast and enables 3D printing that otherwise is impossible to perform without adding solvents. The TPO nanoparticles were prepared by rapid conversion of volatile microemulsions into water-dispersible powder, a process that can be used for a variety of photoinitiators. Such water-dispersible photoinitiator nanoparticles open many opportunities to enable rapid 3D printing of structures prepared in aqueous solutions while bringing environmental advantages by using low-energy curing systems and avoiding the need for solvents. PMID:27051877
High-performance 3D printing of hydrogels by water-dispersible photoinitiator nanoparticles.
Pawar, Amol A; Saada, Gabriel; Cooperstein, Ido; Larush, Liraz; Jackman, Joshua A; Tabaei, Seyed R; Cho, Nam-Joon; Magdassi, Shlomo
2016-04-01
In the absence of water-soluble photoinitiators with high absorbance in the ultraviolet (UV)-visible range, rapid three-dimensional (3D) printing of hydrogels for tissue engineering is challenging. A new approach enabling rapid 3D printing of hydrogels in aqueous solutions is presented on the basis of UV-curable inks containing nanoparticles of highly efficient but water-insoluble photoinitiators. The extinction coefficient of the new water-dispersible nanoparticles of 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (TPO) is more than 300 times larger than the best and most used commercially available water-soluble photoinitiator. The TPO nanoparticles absorb significantly in the range from 385 to 420 nm, making them suitable for use in commercially available, low-cost, light-emitting diode-based 3D printers using digital light processing. The polymerization rate at this range is very fast and enables 3D printing that otherwise is impossible to perform without adding solvents. The TPO nanoparticles were prepared by rapid conversion of volatile microemulsions into water-dispersible powder, a process that can be used for a variety of photoinitiators. Such water-dispersible photoinitiator nanoparticles open many opportunities to enable rapid 3D printing of structures prepared in aqueous solutions while bringing environmental advantages by using low-energy curing systems and avoiding the need for solvents.
Upadhyay, Pratik; Trivedi, Jatin; Pundarikakshudu, Kilambi; Sheth, Navin
2016-05-01
Nasal route of drug administration is preferred more and more for the targeted delivery to the brain in current drug development scenario due to its ease of use, reliability, quick action, and lesser side effects. Those CNS drugs which have limited oral bioavailability due to pharmacokinetic consequences and brain barrier repulsion are getting onto this direction. Quetiapine fumarate, an analogous to above and an antischizophrenic agent, is tested for its diffusion property with and without lipophilic carrier through sheep nasal membrane. Being a BCS class II' and high permeable candidate, it tends to crossover easily, so made up in a simple dispersion. To improve its diffusion rate, it was embedded into liposomal dispersion, which has proven that it has advanced efficiency for diffusion. For this, both the formulations were checked and compared for their diffusion profile, as it is an essential property for bioavailability through nasal route. Comparison was made on the basis of % drug diffusion within 6 h, rate, mechanism, profile, and coefficient. Liposomal dispersion has been proved superior with greater percentage diffusion of 32.61 ± 1.70 and very high permeability with a coefficient value of 4.1334 ± 0.7321 (× 10 (-) (5 )cm/s). Diffusion profile comparison bearing dissimilarity of 18 and similarity of 74 indicated that the diffusion profiles of liposomal dispersions and simple dispersion were similar but not identical. Liposomal diffusion supremacy was further sustained by in vivo, ciliotoxicity, and gamma scintigraphy studies.
NASA Astrophysics Data System (ADS)
Chatterjee, Sudip K.; Khan, Saba N.; Chaudhuri, Partha Roy
2014-12-01
An ultra-wide 1646 nm (1084-2730 nm), continuous-wave single pump parametric amplification spanning from near-infrared to short-wave infrared band (NIR-SWIR) in a host lead-silicate based binary multi-clad microstructure fiber (BMMF) is analyzed and reported. This ultra-broad band (widest reported to date) parametric amplification with gain more than 10 dB is theoretically achieved by a combination of low input pump power source ~7 W and a short-length of ~70 cm of nonlinear-BMMF through accurately engineered multi-order dispersion coefficients. A highly efficient theoretical formulation based on four-wave-mixing (FWM) is worked out to determine fiber's chromatic dispersion (D) profile which is used to optimise the gain-bandwidth and ripple of the parametric gain profile. It is seen that by appropriately controlling the higher-order dispersion coefficient (up-to sixth order), a great enhancement in the gain-bandwidth (2-3 times) can be achieved when operated very close to zero-dispersion wavelength (ZDW) in the anomalous dispersion regime. Moreover, the proposed theoretical model can predict the maximum realizable spectral width and the required pump-detuning (w.r.t ZDW) of any advanced complex microstructured fiber. Our thorough investigation of the wide variety of broadband gain spectra obtained as an integral part of this research work opens up the way for realizing amplification in the region (SWIR) located far from the pump (NIR) where good amplifiers currently do not exist.
NASA Astrophysics Data System (ADS)
Liang, Ching-Ping; Hsu, Shao-Yiu; Chen, Jui-Sheng
2016-09-01
It is recommended that an in-situ infiltration tracer test is considered for simultaneously determining the longitudinal and transverse dispersion coefficients in soil. Analytical solutions have been derived for two-dimensional advective-dispersive transport in a radial geometry in the literature which can be used for interpreting the result of such a tracer test. However, these solutions were developed for a transport domain with an unbounded-radial extent and an infinite thickness of vadose zone which might not be realistically manifested in the actual solute transport during a field infiltration tracer test. Especially, the assumption of infinite thickness of vadose zone should be invalid for infiltration tracer tests conducted in soil with a shallow groundwater table. This paper describes an analytical model for interpreting the results of an infiltration tracer test based on improving the transport domain with a bounded-radial extent and a finite thickness of vadose zone. The analytical model is obtained with the successive application of appropriate integral transforms and their corresponding inverse transforms. A comparison of the newly derived analytical solution against the previous analytical solutions in which two distinct sets of radial extent and thickness of vadose zone are considered is conducted to determine the influence of the radial and exit boundary conditions on the solute transport. The results shows that both the radial and exit boundary conditions substantially affect the trailing segment of the breakthrough curves for a soil medium with large dispersion coefficients. Previous solutions derived for a transport domain with an unbounded-radial and an infinite thickness of vadose zone boundary conditions give lower concentration predictions compared with the proposed solution at late times. Moreover, the differences between two solutions are amplified when the observation positions are near the groundwater table. In addition, we compare our solution against the approximate solutions that derived from the previous analytical solution and has been suggested to serve as fast tools for simultaneously estimating the longitudinal and transverse dispersion coefficients. The results indicate that the approximate solutions offer predictions that are markedly distinct from our solution for the entire range of dispersion coefficient values. Thus, it is not appropriate to use the approximate solution for interpreting the results of an infiltration tracer test.
Khamitova, R Ya; Sabirzianova, A R; Ziatdinov, V B
2017-07-01
The analysis of data of 2000--2014 established a significant decreasing of total mortality of population of the Republic of Tatarstan. however, this occurrence concerns in a greater degree individuals of retirement age than able-bodied population. The percentage of mortality in connection with diseases of blood circulation diseases, diseases of respiratory system and neoplasms decreased in total mortality and elder age category but remained stable or even increased in population of able-bodied age. The anthropogenic load on objects of environment significantly effects mortality of population of able-bodied age (with wider spectrum of significant parameters) and elder age in the above listed classes of diseases. The values of generalized dispersion explain 95--98% of dispersion of intial indices of chemical pollution of the territory positively and/or negatively correlating with coefficients of mortality in main non-infectious diseases.
Transient cage formation around hot gold colloids dispersed in polymer solutions.
Schwaiger, F; Zimmermann, W; Köhler, W
2011-12-14
Gold colloids dispersed in dilute to concentrated polymer solutions can efficiently be heated by laser irradiation and act as almost pointlike heat sources. In systems with positive Soret coefficients S(T) of the polymer, such as solutions of polystyrene in toluene, the polymer can almost entirely be removed from the particle surface. The colloid attracts the solvent and a transient cage of low viscosity and dramatically enhanced mobility is formed, which follows the motion of the particle with a certain retardation. Based on a complete parameterization of S(T)(M, c, T), we analyze in detail the stationary temperature, concentration, and viscosity profiles. Depending on the polymer molar mass and concentration on the distance to the glass transition temperature, the negative or positive feedback-loops are established that lead to either attenuation or self-amplification of the polymer depletion. © 2011 American Institute of Physics
Garcia-Ratés, Miquel; de Hemptinne, Jean-Charles; Bonet Avalos, Josep; Nieto-Draghi, Carlos
2012-03-08
Mass diffusion coefficients of CO(2)/brine mixtures under thermodynamic conditions of deep saline aquifers have been investigated by molecular simulation. The objective of this work is to provide estimates of the diffusion coefficient of CO(2) in salty water to compensate the lack of experimental data on this property. We analyzed the influence of temperature, CO(2) concentration,and salinity on the diffusion coefficient, the rotational diffusion, as well as the electrical conductivity. We observe an increase of the mass diffusion coefficient with the temperature, but no clear dependence is identified with the salinity or with the CO(2) mole fraction, if the system is overall dilute. In this case, we notice an important dispersion on the values of the diffusion coefficient which impairs any conclusive statement about the effect of the gas concentration on the mobility of CO(2) molecules. Rotational relaxation times for water and CO(2) increase by decreasing temperature or increasing the salt concentration. We propose a correlation for the self-diffusion coefficient of CO(2) in terms of the rotational relaxation time which can ultimately be used to estimate the mutual diffusion coefficient of CO(2) in brine. The electrical conductivity of the CO(2)-brine mixtures was also calculated under different thermodynamic conditions. Electrical conductivity tends to increase with the temperature and salt concentration. However, we do not observe any influence of this property with the CO(2) concentration at the studied regimes. Our results give a first evaluation of the variation of the CO(2)-brine mass diffusion coefficient, rotational relaxation times, and electrical conductivity under the thermodynamic conditions typically encountered in deep saline aquifers.
Investigation on dispersion in the active optical waveguide resonator
NASA Astrophysics Data System (ADS)
Qiu, Zihan; Gao, Yining; Xie, Wei
2018-03-01
Introducing active gain in the optical waveguide resonator not only compensates the loss, but also can change the dispersion relationship in the ring resonator. It is demonstrated that the group delay time is negative when the resonator is in the undercoupled condition, which also means the resonator exhibits the fast light effect. Theoretical analysis indicates that fast light effect due to anomalous dispersion, would be manipulated by the gain coefficient controlled by the input pump light power and that fast light would enhance scale factor of the optical resonant gyroscope. Resonance optical gyroscope (ROG)'s scale factor for measuring rotation rate is enhanced by anomalous dispersion with superluminal light propagation. The sensitivity of ROG could be enhanced by anomalous dispersion by coupled resonators even considering the effect of anomalous dispersion and propagation gain on broadened linewidth, and this could result in at least two orders of magnitude enhancement in sensitivity.
An analytic description of electrodynamic dispersion in free-flow zone electrophoresis.
Dutta, Debashis
2015-07-24
The present work analyzes the electrodynamic dispersion of sample streams in a free-flow zone electrophoresis (FFZE) chamber resulting due to partial or complete blockage of electroosmotic flow (EOF) across the channel width by the sidewalls of the conduit. This blockage of EOF has been assumed to generate a pressure-driven backflow in the transverse direction for maintaining flow balance in the system. A parallel-plate based FFZE device with the analyte stream located far away from the channel side regions has been considered to simplify the current analysis. Applying a method-of-moments formulation, an analytic expression was derived for the variance of the sample zone at steady state as a function of its position in the separation chamber under these conditions. It has been shown that the increase in stream broadening due to the electrodynamic dispersion phenomenon is additive to the contributions from molecular diffusion and sample injection, and simply modifies the coefficient for the hydrodynamic dispersion term for a fixed lateral migration distance of the sample stream. Moreover, this dispersion mechanism can dominate the overall spatial variance of analyte zones when a significant fraction of the EOF is blocked by the channel sidewalls. The analysis also shows that analyte streams do not undergo any hydrodynamic broadening due to unwanted pressure-driven cross-flows in an FFZE chamber in the absence of a transverse electric field. The noted results have been validated using Monte Carlo simulations which further demonstrate that while the sample concentration profile at the channel outlet approaches a Gaussian distribution only in FFZE chambers substantially longer than the product of the axial pressure-driven velocity and the characteristic diffusion time in the system, the spatial variance of the exiting analyte stream is well described by the Taylor-Aris dispersion limit even in analysis ducts much shorter than this length scale. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhang, Y.; Xu, Y.; Xia, J.
2011-01-01
We analyse dispersion and attenuation of surface waves at free surfaces of possible vacuum/poroelastic media: permeable-'open pore', impermeable-'closed pore' and partially permeable boundaries, which have not been previously reported in detail by researchers, under different surface-permeable, viscous-damping, elastic and fluid-flowing conditions. Our discussion is focused on their characteristics in the exploration-seismic frequency band (a few through 200 Hz) for near-surface applications. We find two surface-wave modes exist, R1 waves for all conditions, and R2 waves for closed-pore and partially permeable conditions. For R1 waves, velocities disperse most under partially permeable conditions and least under the open-pore condition. High-coupling damping coefficients move the main dispersion frequency range to high frequencies. There is an f1 frequency dependence as a constant-Q model for attenuation at high frequencies. R1 waves for the open pore are most sensitive to elastic modulus variation, but least sensitive to tortuosities variation. R1 waves for partially permeable surface radiate as non-physical waves (Im(k) < 0) at low frequencies. For R2 waves, velocities are slightly lower than the bulk slow P2 waves. At low frequencies, both velocity and attenuation are diffusive of f1/2 frequency dependence, as P2 waves. It is found that for partially permeable surfaces, the attenuation displays -f1 frequency dependence as frequency increasing. High surface permeability, low-coupling damping coefficients, low Poisson's ratios, and low tortuosities increase the slope of the -f1 dependence. When the attenuation coefficients reach 0, R2 waves for partially permeable surface begin to radiate as non-physical waves. ?? 2011 The Authors Geophysical Journal International ?? 2011 RAS.
Viscothermal Coupling Effects on Sound Attenuation in Concentrated Colloidal Dispersions.
NASA Astrophysics Data System (ADS)
Han, Wei
1995-11-01
This thesis describes a Unified Coupled Phase Continuum (UCPC) model to analyze sound propagation through aerosols, emulsions and suspensions in terms of frequency dependent attenuation coefficient and sound speed. Expressions for the viscous and thermal coupling coefficients explicitly account for the effects of particle size, shape factor, orientation as well as concentration and the sound frequency. The UCPC model also takes into account the intrinsic acoustic absorption within the fluid medium due to its viscosity and heat conductivity. The effective complex wave number as a function of frequency is derived. A frequency- and concentration-dependent complex Nusselt number for the interfacial thermal coupling coefficient is derived using an approximate similarity between the 'viscous skin drag' and 'heat conduction flux' associated with the discontinuous suspended phase, on the basis of a cell model. The theoretical predictions of attenuation spectra provide satisfactory agreement with reported experimental data on two concentrated suspensions (polystyrene latex and kaolin pigment), two concentrated emulsions (toluene -in-water, n-hexadecane-in-water), and two aerosols (oleic acid droplets-in-nitrogen, alumina-in-air), covering a wide range of relative magnitudes (from 10^ {-3} to 10^{3}) of thermal versus viscous contributions, for dispersed phase volume fractions as high as 50%. The relative differences between the additive result of separate viscous and thermal loss estimates and combined viscothermal absorption results are also presented. Effects of particle shape on viscous attenuation of sound in concentrated suspensions of non-spherical clay particles are studied. Attenuation spectra for 18 frequencies from 3 to 100 MHz are measured and analyzed for eleven kaolin clay slurries with solid concentrations ranging from 0.6% to 35% (w/w). A modified viscous drag coefficient that considers frequency, concentration, particle size, shape and orientation of spheroids, is developed and applied to estimate the viscous attenuation coefficients. With incorporation of particle size and shape distributions (PSSD), predictions agree quantitatively with observed attenuation coefficients. The effects of particle aspect ratio and orientation become more evident as particle concentrations and frequencies are increased. The UCPC model combined with the ultrasonic spectroscopy techniques can provide for theoretical and experimental frameworks in characterization of concentrated colloidal dispersions.
NASA Astrophysics Data System (ADS)
Geisinger, Armin; Behrendt, Andreas; Wulfmeyer, Volker; Strohbach, Jens; Förstner, Jochen; Potthast, Roland
2017-12-01
A new backscatter lidar forward operator was developed which is based on the distinct calculation of the aerosols' backscatter and extinction properties. The forward operator was adapted to the COSMO-ART ash dispersion simulation of the Eyjafjallajökull eruption in 2010. While the particle number concentration was provided as a model output variable, the scattering properties of each individual particle type were determined by dedicated scattering calculations. Sensitivity studies were performed to estimate the uncertainties related to the assumed particle properties. Scattering calculations for several types of non-spherical particles required the usage of T-matrix routines. Due to the distinct calculation of the backscatter and extinction properties of the models' volcanic ash size classes, the sensitivity studies could be made for each size class individually, which is not the case for forward models based on a fixed lidar ratio. Finally, the forward-modeled lidar profiles have been compared to automated ceilometer lidar (ACL) measurements both qualitatively and quantitatively while the attenuated backscatter coefficient was chosen as a suitable physical quantity. As the ACL measurements were not calibrated automatically, their calibration had to be performed using satellite lidar and ground-based Raman lidar measurements. A slight overestimation of the model-predicted volcanic ash number density was observed. Major requirements for future data assimilation of data from ACL have been identified, namely, the availability of calibrated lidar measurement data, a scattering database for atmospheric aerosols, a better representation and coverage of aerosols by the ash dispersion model, and more investigation in backscatter lidar forward operators which calculate the backscatter coefficient directly for each individual aerosol type. The introduced forward operator offers the flexibility to be adapted to a multitude of model systems and measurement setups.
Bed-Load Dispersion: A Literature Review
2016-12-01
buried. The observed mean and variance of particle dis- placements from experimental measurements at specific time snap-shots can be used to determine...dispersion coefficient equation: . ( 8 ) For the range of experimental conditions tested within the Chang and Yen (2002) study, their equation... surveys , 51 exhibited thin-tail distri- butions and 8 more could have been considered thin-tail based on the definition of the ‘tail’. Liebault et al
Li, Min; Qi, Tao; Bernabé, Yves; Zhao, Jinzhou; Wang, Ying; Wang, Dong; Wang, Zheming
2018-02-28
We used a time domain random walk approach to simulate passive solute transport in networks. In individual pores, solute transport was modeled as a combination of Poiseuille flow and Taylor dispersion. The solute plume data were interpreted via the method of moments. Analysis of the first and second moments showed that the longitudinal dispersivity increased with increasing coefficient of variation of the pore radii CV and decreasing pore coordination number Z. The third moment was negative and its magnitude grew linearly with time, meaning that the simulated dispersion was intrinsically non-Fickian. The statistics of the Eulerian mean fluid velocities [Formula: see text], the Taylor dispersion coefficients [Formula: see text] and the transit times [Formula: see text] were very complex and strongly affected by CV and Z. In particular, the probability of occurrence of negative velocities grew with increasing CV and decreasing Z. Hence, backward and forward transit times had to be distinguished. The high-τ branch of the transit-times probability curves had a power law form associated to non-Fickian behavior. However, the exponent was insensitive to pore connectivity, although variations of Z affected the third moment growth. Thus, we conclude that both the low- and high-τ branches played a role in generating the observed non-Fickian behavior.
NASA Astrophysics Data System (ADS)
Krasnovsky, A. A., Jr.; Roumbal, Ya. V.; Ivanov, A. V.; Ambartzumian, R. V.
2006-10-01
The rates of oxygenation of the 1O 2 trap, 1,3-diphenylisobenzofuran were measured in air-saturated organic solvents and heterogeneous D 2O-sodium dodecyl sulfate dispersions upon infrared (1267 ± 4 nm) laser irradiation. The absorbance and molar absorption coefficients of oxygen corresponding to this wavelength were estimated from the observed oxygenation rates. The data suggest that 1O 2 was formed due to direct oxygen excitation without appreciable involvement of vibrationally excited solvent molecules. The minor 'pseudophase' of detergent micelles was shown to strongly enhance overall 1O 2 production in D 2O-detergent dispersions.
Processing of meteorological data with ultrasonic thermoanemometers
NASA Astrophysics Data System (ADS)
Telminov, A. E.; Bogushevich, A. Ya.; Korolkov, V. A.; Botygin, I. A.
2017-11-01
The article describes a software system intended for supporting scientific researches of the atmosphere during the processing of data gathered by multi-level ultrasonic complexes for automated monitoring of meteorological and turbulent parameters in the ground layer of the atmosphere. The system allows to process files containing data sets of temperature instantaneous values, three orthogonal components of wind speed, humidity and pressure. The processing task execution is done in multiple stages. During the first stage, the system executes researcher's query for meteorological parameters. At the second stage, the system computes series of standard statistical meteorological field properties, such as averages, dispersion, standard deviation, asymmetry coefficients, excess, correlation etc. The third stage is necessary to prepare for computing the parameters of atmospheric turbulence. The computation results are displayed to user and stored at hard drive.
NASA Astrophysics Data System (ADS)
Kruglov, Vladimir I.; Harvey, John D.
2006-12-01
We present exact asymptotic similariton solutions of the generalized nonlinear Schrödinger equation (NLSE) with gain or loss terms for a normal-dispersion fiber amplifier with dispersion, nonlinearity, and gain profiles that depend on the propagation distance. Our treatment is based on the mapping of the NLSE with varying parameters to the NLSE with constant dispersion and nonlinearity coefficients and an arbitrary varying gain function. We formulate an effective procedure that leads directly, under appropriate conditions, to a wide range of exact asymptotic similariton solutions of NLSE demonstrating self-similar propagating regimes with linear chirp.
Non-Parabolic Hydrodynamic Formulations for the Simulation of Inhomogeneous Semiconductor Devices
NASA Technical Reports Server (NTRS)
Smith, A. W.; Brennan, K. F.
1996-01-01
Hydrodynamic models are becoming prevalent design tools for small scale devices and other devices in which high energy effects can dominate transport. Most current hydrodynamic models use a parabolic band approximation to obtain fairly simple conservation equations. Interest in accounting for band structure effects in hydrodynamic device simulation has begun to grow since parabolic models cannot fully describe the transport in state of the art devices due to the distribution populating non-parabolic states within the band. This paper presents two different non-parabolic formulations or the hydrodynamic model suitable for the simulation of inhomogeneous semiconductor devices. The first formulation uses the Kane dispersion relationship ((hk)(exp 2)/2m = W(1 + alphaW). The second formulation makes use of a power law ((hk)(exp 2)/2m = xW(exp y)) for the dispersion relation. Hydrodynamic models which use the first formulation rely on the binomial expansion to obtain moment equations with closed form coefficients. This limits the energy range over which the model is valid. The power law formulation readily produces closed form coefficients similar to those obtained using the parabolic band approximation. However, the fitting parameters (x,y) are only valid over a limited energy range. The physical significance of the band non-parabolicity is discussed as well as the advantages/disadvantages and approximations of the two non-parabolic models. A companion paper describes device simulations based on the three dispersion relationships; parabolic, Kane dispersion and power law dispersion.
Non-parabolic hydrodynamic formulations for the simulation of inhomogeneous semiconductor devices
NASA Technical Reports Server (NTRS)
Smith, Arlynn W.; Brennan, Kevin F.
1995-01-01
Hydrodynamic models are becoming prevalent design tools for small scale devices and other devices in which high energy effects can dominate transport. Most current hydrodynamic models use a parabolic band approximation to obtain fairly simple conservation equations. Interest in accounting for band structure effects in hydrodynamic device simulation has begun to grow since parabolic models can not fully describe the transport in state of the art devices due to the distribution populating non-parabolic states within the band. This paper presents two different non-parabolic formulations of the hydrodynamic model suitable for the simulation of inhomogeneous semiconductor devices. The first formulation uses the Kane dispersion relationship (hk)(exp 2)/2m = W(1 + alpha(W)). The second formulation makes use of a power law ((hk)(exp 2)/2m = xW(sup y)) for the dispersion relation. Hydrodynamic models which use the first formulation rely on the binomial expansion to obtain moment equations with closed form coefficients. This limits the energy range over which the model is valid. The power law formulation readily produces closed form coefficients similar to those obtained using the parabolic band approximation. However, the fitting parameters (x,y) are only valid over a limited energy range. The physical significance of the band non-parabolicity is discussed as well as the advantages/disadvantages and approximations of the two non-parabolic models. A companion paper describes device simulations based on the three dispersion relationships: parabolic, Kane dispersion, and power low dispersion.
Concentration fluctuations and dilution in aquifers
NASA Astrophysics Data System (ADS)
Kapoor, Vivek; Kitanidis, Peter K.
1998-05-01
The concentration of solute undergoing advection and local dispersion in a random hydraulic conductivity field is analyzed to quantify its variability and dilution. Detailed numerical evaluations of the concentration variance σc2 are compared to an approximate analytical description, which is based on a characteristic variance residence time (VRT), over which local dispersion destroys concentration fluctuations, and effective dispersion coefficients that quantify solute spreading rates. Key features of the analytical description for a finite size impulse input of solute are (1) initially, the concentration fields become more irregular with time, i.e., coefficient of variation, CV=σc/
Hydrodynamic dispersion within porous biofilms
NASA Astrophysics Data System (ADS)
Davit, Y.; Byrne, H.; Osborne, J.; Pitt-Francis, J.; Gavaghan, D.; Quintard, M.
2013-01-01
Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate various aspects of cell behavior by controlling nutrient supply, evacuation of waste products, and permeation of antimicrobial agents. This study presents multiscale analysis of solute transport in these porous biofilms. We start our analysis with a channel-scale description of mass transport and use the method of volume averaging to derive a set of homogenized equations at the biofilm-scale in the case where the width of the channels is significantly smaller than the thickness of the biofilm. We show that solute transport may be described via two coupled partial differential equations or telegrapher's equations for the averaged concentrations. These models are particularly relevant for chemicals, such as some antimicrobial agents, that penetrate cell clusters very slowly. In most cases, especially for nutrients, solute penetration is faster, and transport can be described via an advection-dispersion equation. In this simpler case, the effective diffusion is characterized by a second-order tensor whose components depend on (1) the topology of the channels' network; (2) the solute's diffusion coefficients in the fluid and the cell clusters; (3) hydrodynamic dispersion effects; and (4) an additional dispersion term intrinsic to the two-phase configuration. Although solute transport in biofilms is commonly thought to be diffusion dominated, this analysis shows that hydrodynamic dispersion effects may significantly contribute to transport.
Erukhimovich, I Ya; Kudryavtsev, Ya V
2003-08-01
An extended generalization of the dynamic random phase approximation (DRPA) for L-component polymer systems is presented. Unlike the original version of the DRPA, which relates the (LxL) matrices of the collective density-density time correlation functions and the corresponding susceptibilities of concentrated polymer systems to those of the tracer macromolecules and so-called broken-links system (BLS), our generalized DRPA solves this problem for the (5xL) x (5xL) matrices of the coupled susceptibilities and time correlation functions of the component number, kinetic energy and flux densities. The presented technique is used to study propagation of sound and dynamic form-factor in disentangled (Rouse) monodisperse homopolymer melt. The calculated ultrasonic velocity and absorption coefficient reveal substantial frequency dispersion. The relaxation time tau is proportional to the degree of polymerization N, which is N times less than the Rouse time and evidences strong dynamic screening because of interchain interaction. We discuss also some peculiarities of the Brillouin scattering in polymer melts. Besides, a new convenient expression for the dynamic structure function of the single Rouse chain in (q,p) representation is found.
NASA Astrophysics Data System (ADS)
Watanabe, Norihiro; Kolditz, Olaf
2015-07-01
This work reports numerical stability conditions in two-dimensional solute transport simulations including discrete fractures surrounded by an impermeable rock matrix. We use an advective-dispersive problem described in Tang et al. (1981) and examine the stability of the Crank-Nicolson Galerkin finite element method (CN-GFEM). The stability conditions are analyzed in terms of the spatial discretization length perpendicular to the fracture, the flow velocity, the diffusion coefficient, the matrix porosity, the fracture aperture, and the fracture longitudinal dispersivity. In addition, we verify applicability of the recently developed finite element method-flux corrected transport (FEM-FCT) method by Kuzmin () to suppress oscillations in the hybrid system, with a comparison to the commonly utilized Streamline Upwinding/Petrov-Galerkin (SUPG) method. Major findings of this study are (1) the mesh von Neumann number (Fo) ≥ 0.373 must be satisfied to avoid undershooting in the matrix, (2) in addition to an upper bound, the Courant number also has a lower bound in the fracture in cases of low dispersivity, and (3) the FEM-FCT method can effectively suppress the oscillations in both the fracture and the matrix. The results imply that, in cases of low dispersivity, prerefinement of a numerical mesh is not sufficient to avoid the instability in the hybrid system if a problem involves evolutionary flow fields and dynamic material parameters. Applying the FEM-FCT method to such problems is recommended if negative concentrations cannot be tolerated and computing time is not a strong issue.
On the anisotropic advection-diffusion equation with time dependent coefficients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez-Coronado, Hector; Coronado, Manuel; Del-Castillo-Negrete, Diego B.
The advection-diffusion equation with time dependent velocity and anisotropic time dependent diffusion tensor is examined in regard to its non-classical transport features and to the use of a non-orthogonal coordinate system. Although this equation appears in diverse physical problems, particularly in particle transport in stochastic velocity fields and in underground porous media, a detailed analysis of its solutions is lacking. In order to study the effects of the time-dependent coefficients and the anisotropic diffusion on transport, we solve analytically the equation for an initial Dirac delta pulse. Here, we discuss the solutions to three cases: one based on power-law correlationmore » functions where the pulse diffuses faster than the classical rate ~t, a second case specically designed to display slower rate of diffusion than the classical one, and a third case to describe hydrodynamic dispersion in porous media« less
NASA Technical Reports Server (NTRS)
Leviton, Douglas; Frey, Bradley
2005-01-01
The current refractive optical design of the James Webb Space Telescope (JWST) Near Infrared Camera (NIRCam) uses three infrared materials in its lenses: LiF, BaF2, and ZnSe. In order to provide the instrument s optical designers with accurate, heretofore unavailable data for absolute refractive index based on actual cryogenic measurements, two prismatic samples of each material were measured using the cryogenic, high accuracy, refraction measuring system (CHARMS) at NASA GSFC, densely covering the temperature range from 15 to 320 K and wavelength range from 0.4 to 5.6 microns. Measurement methods are discussed and graphical and tabulated data for absolute refractive index, dispersion, and thermo-optic coefficient for these three materials are presented along with estimates of uncertainty. Coefficients for second order polynomial fits of measured index to temperature are provided for many wavelengths to allow accurate interpolation of index to other wavelengths and temperatures.
On the anisotropic advection-diffusion equation with time dependent coefficients
Hernandez-Coronado, Hector; Coronado, Manuel; Del-Castillo-Negrete, Diego B.
2017-02-01
The advection-diffusion equation with time dependent velocity and anisotropic time dependent diffusion tensor is examined in regard to its non-classical transport features and to the use of a non-orthogonal coordinate system. Although this equation appears in diverse physical problems, particularly in particle transport in stochastic velocity fields and in underground porous media, a detailed analysis of its solutions is lacking. In order to study the effects of the time-dependent coefficients and the anisotropic diffusion on transport, we solve analytically the equation for an initial Dirac delta pulse. Here, we discuss the solutions to three cases: one based on power-law correlationmore » functions where the pulse diffuses faster than the classical rate ~t, a second case specically designed to display slower rate of diffusion than the classical one, and a third case to describe hydrodynamic dispersion in porous media« less
Casini, R; Papari, G; Andreone, A; Marrazzo, D; Patti, A; Russo, P
2015-07-13
We investigate the use of Terahertz (THz) Time Domain Spectroscopy (TDS) as a tool for the measurement of the index dispersion of multi-walled carbon nanotubes (MWCNT) in polypropylene (PP) based composites. Samples containing 0.5% by volume concentration of non-functionalized and functionalized carbon nanotubes are prepared by melt compounding technology. Results indicate that the THz response of the investigated nanocomposites is strongly dependent on the kind of nanotube functionalization, which in turn impacts on the level of dispersion inside the polymer matrix. We show that specific dielectric parameters such as the refractive index and the absorption coefficient measured by THz spectroscopy can be both correlated to the index of dispersion as estimated using conventional optical microscopy.
ADE-FDTD Scattered-Field Formulation for Dispersive Materials
Kong, Soon-Cheol; Simpson, Jamesina J.; Backman, Vadim
2009-01-01
This Letter presents a scattered-field formulation for modeling dispersive media using the finite-difference time-domain (FDTD) method. Specifically, the auxiliary differential equation method is applied to Drude and Lorentz media for a scattered field FDTD model. The present technique can also be applied in a straightforward manner to Debye media. Excellent agreement is achieved between the FDTD-calculated and exact theoretical results for the reflection coefficient in half-space problems. PMID:19844602
ADE-FDTD Scattered-Field Formulation for Dispersive Materials.
Kong, Soon-Cheol; Simpson, Jamesina J; Backman, Vadim
2008-01-01
This Letter presents a scattered-field formulation for modeling dispersive media using the finite-difference time-domain (FDTD) method. Specifically, the auxiliary differential equation method is applied to Drude and Lorentz media for a scattered field FDTD model. The present technique can also be applied in a straightforward manner to Debye media. Excellent agreement is achieved between the FDTD-calculated and exact theoretical results for the reflection coefficient in half-space problems.
The 129Xe nuclear shielding surfaces for Xe interacting with linear molecules CO2, N2, and CO
NASA Astrophysics Data System (ADS)
de Dios, Angel C.; Jameson, Cynthia J.
1997-09-01
We have calculated the intermolecular nuclear magnetic shielding surfaces for 129Xe in the systems Xe-CO2, Xe-N2, and Xe-CO using a gauge-invariant ab initio method at the coupled Hartree-Fock level with gauge-including atomic orbitals (GIAO). Implementation of a large basis set (240 basis functions) on the Xe gives very small counterpoise corrections which indicates that the basis set superposition errors in the calculated shielding values are negligible. These are the first intermolecular shielding surfaces for Xe-molecule systems. The surfaces are highly anisotropic and can be described adequately by a sum of inverse even powers of the distance with explicit angle dependence in the coefficients expressed by Legendre polynomials P2n(cos θ), n=0-3, for Xe-CO2 and Xe-N2. The Xe-CO shielding surface is well described by a similar functional form, except that Pn(cos θ), n=0-4 were used. When averaged over the anisotropic potential function these shielding surfaces provide the second virial coefficient of the nuclear magnetic resonance (NMR) chemical shift observed in gas mixtures. The energies from the self-consistent field (SCF) calculations were used to construct potential surfaces, using a damped dispersion form. These potential functions are compared with existing potentials in their predictions of the second virial coefficients of NMR shielding, the pressure virial coefficients, the density coefficient of the mean-square torque from infrared absorption, and the rotational constants and other average properties of the van der Waals complexes. Average properties of the van der Waals complexes were obtained by quantum diffusion Monte Carlo solutions of the vibrational motion using the various potentials and compared with experiment.
Modification of Einstein A Coefficient in Dissipative Gas Medium
NASA Technical Reports Server (NTRS)
Cao, Chang-Qi; Cao, Hui; Qin, Ke-Cheng
1996-01-01
Spontaneous radiation in dissipative gas medium such as plasmas is investigated by Langevin equations and the modified Weisskopf-Wigner approximation. Since the refractive index of gas medium is expected to be nearly unity, we shall first neglect the medium polarization effect. We show that absorption in plasmas may in certain case modify the Einstein A coefficient significantly and cause a pit in the A coefficient-density curves for relatively low temperature plasmas and also a pit in the A coefficient-temperature curves. In the next, the effect of medium polarization is taken into account in addition. To our surprise, its effect in certain case is quite significant. The dispersive curves show different behaviors in different region of parameters.
Transport coefficients of a hot QCD medium and their relative significance in heavy-ion collisions
NASA Astrophysics Data System (ADS)
Mitra, Sukanya; Chandra, Vinod
2017-11-01
The main focus of this article is to obtain various transport coefficients for a hot QCD medium that is likely to be produced while colliding two heavy nuclei ultra-relativistically. The technical approach adopted here is the semiclassical transport theory. The away-from-equilibrium linearized transport equation has been set up by employing the Chapman-Enskog technique from the kinetic theory of a many-particle system with a collision term that includes the binary collisions of quarks/antiquarks and gluons. In order to include the effects of a strongly interacting, thermal medium, a quasi-particle description of a realistic hot QCD equation of state has been employed through the equilibrium modeling of the momentum distributions of gluons and quarks with nontrivial dispersion relations while extending the model for finite but small quark chemical potential. The effective coupling for strong interaction has been redefined following the charge renormalization under the scheme of the quasi-particle model. The consolidated effects on transport coefficients are seen to have a significant impact on their temperature dependence. Finally, the relative significances of momentum and heat transfer, as well as the charge diffusion processes in hot QCD, have been investigated by studying the ratios of the respective transport coefficients indicating different physical laws.
Yan, Hongyuan; Cheng, Xiaoling; Sun, Ning; Cai, Tianyu; Wu, Ruijun; Han, Kun
2012-11-01
A simple, convenient and high selective molecularly imprinted matrix solid-phase dispersion (MI-MSPD) using water-compatible cyromazine-imprinted polymer as adsorbent was proposed for the rapid screening of melamine from bovine milk coupled with liquid chromatography-ultraviolet detection. The molecularly imprinted polymers (MIPs) synthesized by cyromazine as dummy template and reformative methanol-water system as reaction medium showed higher affinity and selectivity to melamine, and so they were applied as the specific dispersant of MSPD to extraction of melamine and simultaneously eliminate the effect of template leakage on quantitative analysis. Under the optimized conditions, good linearity was obtained in a range of 0.24-60.0μgg(-1) with the correlation coefficient of 0.9994. The recoveries of melamine at three spiked levels were ranged from 86.0 to 96.2% with the relative standard deviation (RSD)≤4.0%. This proposed MI-MSPD method combined the advantages of MSPD and MIPs, and could be used as an alternative tool for analyzing the residues of melamine in complex milk samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Sea snakes rarely venture far from home
Lukoschek, Vimoksalehi; Shine, Richard
2012-01-01
The extent to which populations are connected by dispersal influences all aspects of their biology and informs the spatial scale of optimal conservation strategies. Obtaining direct estimates of dispersal is challenging, particularly in marine systems, with studies typically relying on indirect approaches to evaluate connectivity. To overcome this challenge, we combine information from an eight-year mark-recapture study with high-resolution genetic data to demonstrate extremely low dispersal and restricted gene flow at small spatial scales for a large, potentially mobile marine vertebrate, the turtleheaded sea snake (Emydocephalus annulatus). Our mark-recapture study indicated that adjacent bays in New Caledonia (<1.15 km apart) contain virtually separate sea snake populations. Sea snakes could easily swim between bays but rarely do so. Of 817 recaptures of marked snakes, only two snakes had moved between bays. We genotyped 136 snakes for 11 polymorphic microsatellite loci and found statistically significant genetic divergence between the two bays (FST= 0.008, P < 0.01). Bayesian clustering analyses detected low mixed ancestry within bays and genetic relatedness coefficients were higher, on average, within than between bays. Our results indicate that turtleheaded sea snakes rarely venture far from home, which has strong implications for their ecology, evolution, and conservation. PMID:22833788
Sea snakes rarely venture far from home.
Lukoschek, Vimoksalehi; Shine, Richard
2012-06-01
The extent to which populations are connected by dispersal influences all aspects of their biology and informs the spatial scale of optimal conservation strategies. Obtaining direct estimates of dispersal is challenging, particularly in marine systems, with studies typically relying on indirect approaches to evaluate connectivity. To overcome this challenge, we combine information from an eight-year mark-recapture study with high-resolution genetic data to demonstrate extremely low dispersal and restricted gene flow at small spatial scales for a large, potentially mobile marine vertebrate, the turtleheaded sea snake (Emydocephalus annulatus). Our mark-recapture study indicated that adjacent bays in New Caledonia (<1.15 km apart) contain virtually separate sea snake populations. Sea snakes could easily swim between bays but rarely do so. Of 817 recaptures of marked snakes, only two snakes had moved between bays. We genotyped 136 snakes for 11 polymorphic microsatellite loci and found statistically significant genetic divergence between the two bays (F(ST)= 0.008, P < 0.01). Bayesian clustering analyses detected low mixed ancestry within bays and genetic relatedness coefficients were higher, on average, within than between bays. Our results indicate that turtleheaded sea snakes rarely venture far from home, which has strong implications for their ecology, evolution, and conservation.
Asadollahi, Tahereh; Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji
2010-06-30
A novel dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) for separation/preconcentration of ultra trace amount of vanadium and its determination with the electrothermal atomic absorption spectrometry (ETAAS) was developed. The DLLME-SFO behavior of vanadium (V) using N-benzoyl-N-phenylhydroxylamine (BPHA) as complexing agent was systematically investigated. The factors influencing the complex formation and extraction by DLLME-SFO method were optimized. Under the optimized conditions: 100 microL, 200 microL and 25 mL of extraction solvent (1-undecanol), disperser solvent (acetone) and sample volume, respectively, an enrichment factor of 184, a detection limit (based on 3S(b)/m) of 7 ng L(-1) and a relative standard deviation of 4.6% (at 500 ng L(-1)) were obtained. The calibration graph using the preconcentration system for vanadium was linear from 20 to 1000 ng L(-1) with a correlation coefficient of 0.9996. The method was successfully applied for the determination of vanadium in water and parsley. Copyright 2010 Elsevier B.V. All rights reserved.
Dispersion of thermooptic coefficients of soda-lime-silica glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, G.
1995-01-01
The thermooptic coefficients, i.e., the variation of refractive index with temperature (dn/dT), are analyzed in a physically meaningful model for two series of soda-lime-silica glasses. 25Na{sub 2}O{center_dot}xCaO{center_dot}(75 {minus} x)SiO{sub 2} and (25 {minus} x)Na{sub 2}O{center_dot}xCaO {center_dot} 75SiO{sub 2}. This model is based on three physical parameters--the thermal expansion coefficient and excitonic and isentropic optical bands that are in the vacuum ultraviolet region--instead of on consideration of the temperature coefficient of electronic polarizability, as suggested in 1960. This model is capable of predicting and analyzing the thermooptic coefficients throughout the transmission region of the optical glasses at any operating temperature.
NASA Astrophysics Data System (ADS)
Rossi, Mariana; Ceriotti, Michele; Manolopoulos, David
Diffusion of H+ and OH- along water wires provides an efficient mechanism for charge transport that is exploited by biological systems and shows promise in technological applications. However, what is lacking for a better control and design of these systems is a thorough theoretical understanding of the diffusion process at the atomic scale. Here we consider H+ and OH- in finite water wires using density functional theory. We employ machine learning techniques to identify the charged species, thus obtaining an agnostic definition of the charge. We employ thermostated ring polymer molecular dynamics and extract a ``universal'' diffusion coefficient from simulations with different wire sizes by considering Langevin dynamics on the potential of mean force of the charged species. In the classical case, diffusion coefficients depend significantly on the potential energy surface, in particular on how dispersion forces modulate O-O distances. NQEs, however, make the diffusion less sensitive to the underlying potential and geometry of the wire, presumably making them more robust to environment fluctuations.
An exact solution of solute transport by one-dimensional random velocity fields
Cvetkovic, V.D.; Dagan, G.; Shapiro, A.M.
1991-01-01
The problem of one-dimensional transport of passive solute by a random steady velocity field is investigated. This problem is representative of solute movement in porous media, for example, in vertical flow through a horizontally stratified formation of variable porosity with a constant flux at the soil surface. Relating moments of particle travel time and displacement, exact expressions for the advection and dispersion coefficients in the Focker-Planck equation are compared with the perturbation results for large distances. The first- and second-order approximations for the dispersion coefficient are robust for a lognormal velocity field. The mean Lagrangian velocity is the harmonic mean of the Eulerian velocity for large distances. This is an artifact of one-dimensional flow where the continuity equation provides for a divergence free fluid flux, rather than a divergence free fluid velocity. ?? 1991 Springer-Verlag.
Some observations on the use of discriminant analysis in ecology
Williams, B.K.
1983-01-01
The application of discriminant analysis in ecological investigations is discussed. The appropriate statistical assumptions for discriminant analysis are illustrated, and both classification and group separation approaches are outlined. Three assumptions that are crucial in ecological studies are discussed at length, and the consequences of their violation are developed. These assumptions are: equality of dispersions, identifiability of prior probabilities, and precise and accurate estimation of means and dispersions. The use of discriminant functions for purposes of interpreting ecological relationships is also discussed. It is suggested that the common practice of imputing ecological 'meaning' to the signs and magnitudes of coefficients be replaced by an assessment of 'structure coefficients.' Finally, the potential and limitations of representation of data in canonical space are considered, and some cautionary points are made concerning ecological interpretation of patterns in canonical space.
Zhao, Yan; Ng, Hou T; Hanson, Eric; Dong, Jiannan; Corti, David S; Franses, Elias I
2010-02-09
A time-dependent density functional theory (TDDFT) scheme has been validated for predictions of the dispersion coefficients of five molecules (H2O, NH3, CO2, C6H6, and pentane) and for predictions of the static dipole polarizabilities of three organometallic compounds (TiCl4, OsO4, and Ge(CH3)4). The convergence of grid spacing has been examined, and two types of pseudopotentials and 13 density functionals have been tested. The nonretarded Hamaker constants A11 are calculated by employing a semiempirical parameter a along with the standard Hamaker constant equation. The parameter a is optimized against six accurate Hamaker constants obtained from the full Lifshitz theory. The dispersion coefficients of copper phthalocyanine CuPc and CuPc-SO3H are then computed. Using the theoretical densities of ρ1 = 1.63 and 1.62 g/cm(3), the Hamaker constants A11 of crystalline α-CuPc and β-CuPc are found to be 14.73 × 10(-20) and 14.66 × 10(-20) J, respectively. Using the experimentally derived density of ρ1 = 1.56 g/cm(3) for a commercially available β-CuPc (nanoparticles of ∼90 nm hydrodynamic diameter), A11 = 13.52 × 10(-20) J is found. Its corresponding effective Hamaker constant in water (A121) is calculated to be 3.07 × 10(-20) J. All computed A11 values for CuPc are noted to be higher than those reported previously.
Suárez, Inmaculada; Coto, Baudilio
2015-08-14
Average molecular weights and polydispersity indexes are some of the most important parameters considered in the polymer characterization. Usually, gel permeation chromatography (GPC) and multi angle light scattering (MALS) are used for this determination, but GPC values are overestimated due to the dispersion introduced by the column separation. Several procedures were proposed to correct such effect usually involving more complex calibration processes. In this work, a new method of calculation has been considered including diffusion effects. An equation for the concentration profile due to diffusion effects along the GPC column was considered to be a Fickian function and polystyrene narrow standards were used to determine effective diffusion coefficients. The molecular weight distribution function of mono and poly disperse polymers was interpreted as a sum of several Fickian functions representing a sample formed by only few kind of polymer chains with specific molecular weight and diffusion coefficient. Proposed model accurately fit the concentration profile along the whole elution time range as checked by the computed standard deviation. Molecular weights obtained by this new method are similar to those obtained by MALS or traditional GPC while polydispersity index values are intermediate between those obtained by the traditional GPC combined to Universal Calibration method and the MALS method. Values for Pearson and Lin coefficients shows improvement in the correlation of polydispersity index values determined by GPC and MALS methods when diffusion coefficients and new methods are used. Copyright © 2015 Elsevier B.V. All rights reserved.
A pseudo-thermodynamic description of dispersion for nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Yan; Beaucage, Gregory; Vogtt, Karsten
Dispersion in polymer nanocomposites is determined by the kinetics of mixing and chemical affinity. Compounds like reinforcing filler/elastomer blends display some similarity to colloidal solutions in that the filler particles are close to randomly dispersed through processing. It is attractive to apply a pseudo-thermodynamic approach taking advantage of this analogy between the kinetics of mixing for polymer compounds and thermally driven dispersion for colloids. In order to demonstrate this pseudo-thermodynamic approach, two polybutadienes and one polyisoprene were milled with three carbon blacks and two silicas. These samples were examined using small-angle x-ray scattering as a function of filler concentration tomore » determine a pseudo-second order virial coefficient, A2, which is used as an indicator for compatibility of the filler and polymer. It is found that A2 follows the expected behavior with lower values for smaller primary particles indicating that smaller particles are less compatible and more difficult to mix. The measured values of A2 can be used to specify repulsive interaction potentials for coarse grain DPD simulations of filler/elastomer systems. In addition, new methods to quantify the filler percolation threshold and filler mesh size as a function of filler concentration are obtained. Moreover, the results represent a new approach to understanding and predicting compatibility in polymer nanocomposites based on a pseudo-thermodynamic approach.« less
A pseudo-thermodynamic description of dispersion for nanocomposites
Jin, Yan; Beaucage, Gregory; Vogtt, Karsten; ...
2017-09-18
Dispersion in polymer nanocomposites is determined by the kinetics of mixing and chemical affinity. Compounds like reinforcing filler/elastomer blends display some similarity to colloidal solutions in that the filler particles are close to randomly dispersed through processing. It is attractive to apply a pseudo-thermodynamic approach taking advantage of this analogy between the kinetics of mixing for polymer compounds and thermally driven dispersion for colloids. In order to demonstrate this pseudo-thermodynamic approach, two polybutadienes and one polyisoprene were milled with three carbon blacks and two silicas. These samples were examined using small-angle x-ray scattering as a function of filler concentration tomore » determine a pseudo-second order virial coefficient, A2, which is used as an indicator for compatibility of the filler and polymer. It is found that A2 follows the expected behavior with lower values for smaller primary particles indicating that smaller particles are less compatible and more difficult to mix. The measured values of A2 can be used to specify repulsive interaction potentials for coarse grain DPD simulations of filler/elastomer systems. In addition, new methods to quantify the filler percolation threshold and filler mesh size as a function of filler concentration are obtained. Moreover, the results represent a new approach to understanding and predicting compatibility in polymer nanocomposites based on a pseudo-thermodynamic approach.« less
The serpentine optical waveguide: engineering the dispersion relations and the stopped light points.
Scheuer, Jacob; Weiss, Ori
2011-06-06
We present a study a new type of optical slow-light structure comprising a serpentine shaped waveguide were the loops are coupled. The dispersion relation, group velocity and GVD are studied analytically using a transfer matrix method and numerically using finite difference time domain simulations. The structure exhibits zero group velocity points at the ends of the Brillouin zone, but also within the zone. The position of mid-zone zero group velocity point can be tuned by modifying the coupling coefficient between adjacent loops. Closed-form analytic expressions for the dispersion relations, group velocity and the mid-zone zero v(g) points are found and presented.
Feng, Guang; Zhao, Wei; Cummings, Peter T.; ...
2016-03-29
Room temperature ionic liquids (RTILs) with dispersed carbon pieces exhibit distinctive physiochemical properties. In order to explore the molecular mechanism, RTILs/carbon pieces mixture we investigated it by molecular dynamics (MD) simulation in this work. Rigid and flexible carbon pieces in the form of graphene with different thicknesses and carbon nanotubes in different sizes were dispersed in a representative RTIL 1-butyl-3-methyl-imidazolium dicyanamide ([Bmim][DCA]). Our study demonstrated that the diffusion coefficients of RTILs in the presence of flexible carbons are similar to those of bulk RTILs at varying temperatures, which is in contrast to the decreased diffusion of RTILs in the presencemore » of rigid carbons. In addition, interfacial ion number density at rigid carbon surfaces was higher than that at flexible ones, which is correlated with the accessible external surface area of carbon pieces. The life time of cation-anion pair in the presence of carbon pieces also exhibited a dependence on carbon flexibility. RTILs with dispersed rigid carbon pieces showed longer ion pair life time than those with flexible ones, in consistence with the observation in diffusion coefficients. Furthermore, this work highlights the necessity of including the carbon flexibility when performing MD simulation of RTILs in the presence of dispersed carbon pieces in order to obtain the reliable dynamical and interfacial structural properties.« less
Wang, Yong; Ma, Xiaolei; Liu, Yong; Gong, Ke; Henricakson, Kristian C.; Xu, Maozeng; Wang, Yinhai
2016-01-01
This paper proposes a two-stage algorithm to simultaneously estimate origin-destination (OD) matrix, link choice proportion, and dispersion parameter using partial traffic counts in a congested network. A non-linear optimization model is developed which incorporates a dynamic dispersion parameter, followed by a two-stage algorithm in which Generalized Least Squares (GLS) estimation and a Stochastic User Equilibrium (SUE) assignment model are iteratively applied until the convergence is reached. To evaluate the performance of the algorithm, the proposed approach is implemented in a hypothetical network using input data with high error, and tested under a range of variation coefficients. The root mean squared error (RMSE) of the estimated OD demand and link flows are used to evaluate the model estimation results. The results indicate that the estimated dispersion parameter theta is insensitive to the choice of variation coefficients. The proposed approach is shown to outperform two established OD estimation methods and produce parameter estimates that are close to the ground truth. In addition, the proposed approach is applied to an empirical network in Seattle, WA to validate the robustness and practicality of this methodology. In summary, this study proposes and evaluates an innovative computational approach to accurately estimate OD matrices using link-level traffic flow data, and provides useful insight for optimal parameter selection in modeling travelers’ route choice behavior. PMID:26761209
Feng, Shizuo; Cheng, Ralph T.; Pangen, Xi
1986-01-01
The transports of solutes and other tracers are fundamental to estuarine processes. The apparent transport mechanisms are convection by tidal current and current-induced shear effect dispersion for processes which take place in a time period of the order of a tidal cycle. However, as emphasis is shifted toward the effects of intertidal processes, the net transport is mainly determined by tide-induced residual circulation and by residual circulation due to other processes. The commonly used intertidal conservation equation takes the form of a convection-dispersion equation in which the convective velocity is the Eulerian residual current, and the dispersion terms are often referred to as the phase effect dispersion or, sometimes, as the “tidal dispersion.” The presence of these dispersion terms is merely the result of a Fickian type hypothesis. Since the actual processes are not Fickian, thus a Fickian hypothesis obscures the physical significance of this equation. Recent research results on residual circulation have suggested that long-term transport phenomena are closely related to the Lagrangian residual current or the Lagrangian residual transport. In this paper a new formulation of an intertidal conservation equation is presented and examined in detail. In a weakly nonlinear tidal estuary the resultant intertidal transport equation also takes the form of a convection-dispersion equation without the ad hoc introduction of phase effect dispersion in a form of dispersion tensor. The convective velocity in the resultant equation is the first-order Lagrangian residual current (the sum of the Eulerian residual current and the Stokes drift). The remaining dispersion terms are important only in higher-order solutions; they are due to shear effect dispersion and turbulent mixing. There exists a dispersion boundary layer adjacent to shoreline boundaries. An order of magnitude estimate of the properties in the dispersion boundary layer is given. The present treatment of intertidal transport processes is illustrated by an analytical solution for an amphidromic system and by a numerical application in South San Francisco Bay, California. The present formulation reveals that the mechanism for long-term transport of solutes is mainly convection due to the Lagrangian residual current in the interior of a tidal estuary. This result also points out the weakness in the tidal dispersion formulation, and explains the large variability of the observed values for tidal dispersion coefficients. Further research on properties of the dispersion boundary layer is needed.
NASA Astrophysics Data System (ADS)
Abdel Wahab, F. A.; El-Diasty, Fouad; Abdel-Baki, Manal
2009-10-01
A method correlates Fresnel-based spectrophotometric measurements and Lorentz dispersion theory is presented to study the dispersion of nonlinear optical parameters in particularly oxide glasses in a very wide range of angular frequency. The second-order refractive index and third-order optical susceptibility of Cr-doped glasses are determined from linear refractive index. Furthermore, both real and imaginary components of the complex susceptibility are carried out. The study reveals the importance of determining the dispersion of nonlinear absorption (two-photon absorption coefficient) to find the maximum resonant and nonresonant susceptibilities of investigated glasses. The present method is applied on Cr-doped lithium aluminum silicate (LAS) glasses due to their semiconductor-like behavior and also to their application in laser industry.
NASA Astrophysics Data System (ADS)
Liao, Jianfei; Xie, Yingmao; Wang, Xinghua; Li, Dongbo; Huang, Tianye
2017-07-01
A slot silicon photonic crystal fiber (PCF) is proposed to simultaneously achieve ultrahigh birefringence, large nonlinearity and ultra-flattened nearly-zero dispersion over a wide wavelength range. By taking advantage on the slot effect, ultrahigh birefringence up to 0.0736 and ultrahigh nonlinear coefficient up to 211.48 W-1 m-1 for quasi-TE mode can be obtained at the wavelength of 1.55 μm. Moreover, ultra-flattened dispersion of 0.49 ps/(nm km) for quasi-TE mode can be achieved over a 180 nm wavelength range with low dispersion slope of 1.85 × 10-3 ps/(nm2 km) at 1.55 μm. Leveraging on these advantages, the proposed slot PCF has great potential for efficient all-optical signal processing applications.
Radiological Source Terms for Tank Farms Safety Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
COWLEY, W.L.
2000-06-27
This document provides Unit Liter Dose factors, atmospheric dispersion coefficients, breathing rates and instructions for using and customizing these factors for use in calculating radiological doses for accident analyses in the Hanford Tank Farms.
Wan, M P; Chao, C Y H
2007-06-01
Expiratory droplets and droplet nuclei can be pathogen carriers for airborne diseases. Their transport characteristics were studied in detail in two idealized floor-supply-type ventilation flow patterns: Unidirectional-upward and single-side-floor, using a multiphase numerical model. The model was validated by running interferometric Mie imaging experiments using test droplets with nonvolatile content, which formed droplet nuclei, ultimately, in a class-100 clean-room chamber. By comparing the droplet dispersion and removal characteristics with data of two other ceiling-supply ventilation systems collected from a previous work, deviations from the perfectly mixed ventilation condition were found to exist in various cases to different extent. The unidirectional-upward system was found to be more efficient in removing the smallest droplet nuclei (formed from 1.5 mum droplets) by air extraction, but it became less effective for larger droplets and droplet nuclei. Instead, the single-side-floor system was shown to be more favorable in removing these large droplets and droplet nuclei. In the single-side-floor system, the lateral overall dispersion coefficients for the small droplets and nuclei (initial size =45 mum) were about an order of magnitude higher than those in the unidirectional-upward system. It indicated that bulk lateral airflow transport in the single-side-floor system was much stronger than the lateral dispersion mechanism induced mainly by air turbulence in the unidirectional-upward system. The time required for the droplets and droplet nuclei to be transported to the exhaust vent or deposition surfaces for removal varied with different ventilation flow patterns. Possible underestimation of exposure level existed if the perfectly mixed condition was assumed. For example, the weak lateral dispersion in the unidirectional ventilation systems made expiratory droplets and droplet nuclei stay at close distance to the source leading to highly nonuniform spatial distributions. The distance between the source and susceptible patients became an additional concern in exposure analysis. Relative significance of the air-extraction removal mechanism was studied. This can have impact to the performance evaluation of filtration and disinfection systems installed in the indoor environment. These findings revealed the need for further development in a risk-assessment model incorporating the effect of different ventilation systems on distributing expiratory droplets and droplet nuclei nonuniformly in various indoor spaces, such as buildings, aircraft cabins, trains, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starchenko, S. V., E-mail: sstarchenko@mail.ru
The optimum (to my mind) scaling of the combined thermal and compositional convection in a rapidly rotating plane layer is proposed.This scaling follows from self-consistent estimates of typical physical quantities. Similarity coefficients are introduced for the ratio convection dissipation/convection generation (s) and the ratio thermal convection/compositional convection (r). The third new and most important coefficient δ is the ratio of the characteristic size normal to the axis of rotation to the layer thickness. The faster the rotation, the lower δ. In the case of the liquid Earth core, δ ~ 10{sup –3} substitutes for the generally accepted Ekman number (Emore » ~ 10{sup –15}) and s ~ 10{sup –6} substitutes for the inverse Rayleigh number 1/Ra ~ 10{sup –30}. It is found that, at turbulent transport coefficients, number s and the Prandtl number are on the order of unity for any objects and δ is independent of transport coefficients. As a result of expansion in powers of δ, an initially 3D system of six variables is simplified to an almost 2D system of four variables without δ. The problem of convection excitation in the main volume is algebraically solved and this problem for critical values is analytically solved. Dispersion relations and general expressions for critical wavenumbers, numbers s (which determine Rayleigh numbers), other critical parameters, and asymptotic solutions are derived. Numerical estimates are made for the liquid cores in the planets that resemble the Earth. Further possible applications of the results obtained are proposed for the interior of planets, moons, their oceans, stars, and experimental objects.« less
Eberle, Aaron P R; Castañeda-Priego, Ramón; Kim, Jung M; Wagner, Norman J
2012-01-24
We report an experimental study of the dynamical arrest transition for a model system consisting of octadecyl coated silica suspended in n-tetradecane from dilute to concentrated conditions spanning the state diagram. The dispersion's interparticle potential is tuned by temperature affecting the brush conformation leading to a thermoreversible model system. The critical temperature for dynamical arrest, T*, is determined as a function of dispersion volume fraction by small-amplitude dynamic oscillatory shear rheology. We corroborate this transition temperature by measuring a power-law decay of the autocorrelation function and a loss of ergodicity via fiber-optic quasi-elastic light scattering. The structure at T* is measured using small-angle neutron scattering. The scattering intensity is fit to extract the interparticle pair-potential using the Ornstein-Zernike equation with the Percus-Yevick closure approximation, assuming a square-well interaction potential with a short-range interaction (1% of particle diameter). (1) The strength of attraction is characterized using the Baxter temperature (2) and mapped onto the adhesive hard sphere state diagram. The experiments show a continuous dynamical arrest transition line that follows the predicted dynamical percolation line until ϕ ≈ 0.41 where it subtends the predictions toward the mode coupling theory attractive-driven glass line. An alternative analysis of the phase transition through the reduced second virial coefficient B(2)* shows a change in the functional dependence of B(2)* on particle concentration around ϕ ≈ 0.36. We propose this signifies the location of a gel-to-glass transition. The results presented herein differ from those observed for depletion flocculated dispersion of micrometer-sized particles in polymer solutions, where dynamical arrest is a consequence of multicomponent phase separation, suggesting dynamical arrest is sensitive to the physical mechanism of attraction.
NASA Astrophysics Data System (ADS)
Fang, Fang; Xiao, Yan
2006-12-01
We consider an inhomogeneous optical fiber system described by the generalized cubic complex Ginzburg-Landau (CGL) equation with varying dispersion, nonlinearity, gain (loss), nonlinear gain (absorption) and the effect of spectral limitation. Exact chirped bright and dark soliton-like solutions of the CGL equation were found by using a suitable ansatz. Furthermore, we analyze the features of the solitons and consider the problem of stability of these soliton-like solutions under finite initial perturbations. It is shown by extensive numerical simulations that both bright and dark soliton-like solutions are stable in an inhomogeneous fiber system. Finally, the interaction between two chirped bright and dark soliton-like pulses is investigated numerically.
NASA Astrophysics Data System (ADS)
Łepkowski, S. P.; Bardyszewski, W.
2017-02-01
Combining the k · p method with the third-order elasticity theory, we perform a theoretical study of the pressure-induced topological phase transition and the pressure evolution of topologically protected edge states in InN/GaN and In-rich InGaN/GaN quantum wells. We show that for a certain range of the quantum well parameters, thanks to a negative band gap pressure coefficient, it is possible to continuously drive the system from the normal insulator state through the topological insulator into the semimetal phase. The critical pressure for the topological phase transition depends not only on the quantum well thickness but also on the width of the Hall bar, which determines the coupling between the edge states localized at the opposite edges. We also find that in narrow Hall bar structures, near the topological phase transition, a significant Rashba-type spin splitting of the lower and upper branches of the edge state dispersion curve appears. This effect originates from the lack of the mirror symmetry of the quantum well potential caused by the built-in electric field, and can be suppressed by increasing the Hall bar width. When the pressure increases, the energy dispersion of the edge states becomes more parabolic-like and the spin splitting decreases. A further increase of pressure leads to the transition to a semimetal phase, which occurs due to the closure of the indirect 2D bulk band gap. The difference between the critical pressure at which the system becomes semimetallic, and the pressure for the topological phase transition, correlates with the variation of the pressure coefficient of the band gap in the normal insulator state.
Łepkowski, S P; Bardyszewski, W
2017-02-08
Combining the k · p method with the third-order elasticity theory, we perform a theoretical study of the pressure-induced topological phase transition and the pressure evolution of topologically protected edge states in InN/GaN and In-rich InGaN/GaN quantum wells. We show that for a certain range of the quantum well parameters, thanks to a negative band gap pressure coefficient, it is possible to continuously drive the system from the normal insulator state through the topological insulator into the semimetal phase. The critical pressure for the topological phase transition depends not only on the quantum well thickness but also on the width of the Hall bar, which determines the coupling between the edge states localized at the opposite edges. We also find that in narrow Hall bar structures, near the topological phase transition, a significant Rashba-type spin splitting of the lower and upper branches of the edge state dispersion curve appears. This effect originates from the lack of the mirror symmetry of the quantum well potential caused by the built-in electric field, and can be suppressed by increasing the Hall bar width. When the pressure increases, the energy dispersion of the edge states becomes more parabolic-like and the spin splitting decreases. A further increase of pressure leads to the transition to a semimetal phase, which occurs due to the closure of the indirect 2D bulk band gap. The difference between the critical pressure at which the system becomes semimetallic, and the pressure for the topological phase transition, correlates with the variation of the pressure coefficient of the band gap in the normal insulator state.
Reflection coefficient of qP, qS and SH at a plane boundary between viscoelastic TTI media
NASA Astrophysics Data System (ADS)
Wang, Hongwei; Peng, Suping
2016-01-01
This paper introduces a calculation method for the effective elastic stiffness tensor matrix of the viscous-elastic TTI medium based on the Chapman theory. We then obtain the phase velocity formula and seismic wave polarization formula of the viscous-elastic TTI medium, by solving the Christoffel equation; solve the phase angle of reflection and transmission wave through the numerical method in accordance with the wave slowness ellipsoid; on the basis of this assumption, and assuming that qP, qS and SH waves occurred simultaneously at the viscous-elastic anisotropic interface, establish the sixth-order Zoeppritz equation in accordance with the boundary conditions; establish the models for the upper and lower media which are viscous-elastic HTI, TTI, etc., on the basis of the sixth-order Zoeppritz equation; and study the impact of fracture dip angle, azimuth angle and frequency on the reflection coefficient. From this we obtain the following conclusions: the reflection coefficient can identify the fracture strike and dip when any information pertaining to the media is unknown; dispersion phenomenon is obvious on the axial plane of symmetry and weakened in the plane vertical to the axial plane of symmetry; the vertical-incidence longitudinal wave can stimulate the qS wave when the dip angle is not 0° or 90° under the condition of coincidence between the symmetry planes of the upper and lower media; when the symmetry planes of the upper and lower media do not coincide and the dip angle is not 0° or 90°, then the vertical-incidence qP will stimulate the qS and SH waves at the same time; the dip angle can cause the reflection coefficient curve to have a more obvious dispersion phenomenon, while the included angle between the symmetry planes of the upper and lower media will weaken the dispersion except SH; and the intercept of reflection coefficient is affected by the fracture dip and included angle between the symmetry planes of the upper and lower media.
An evaluation of tracer dilution techniques for gauging of rivers in flood
NASA Astrophysics Data System (ADS)
Airey, P. L.; Calf, G. E.; Davison, A.; Easey, J. F.; Morley, A. W.
1984-10-01
The use of the tracer dilution technique to gauge flow over broad shallow floodplains is examined. Because of the long mixing lengths, it sometimes takes several days for the passage of the laterally dispersed pulse. Tracer methods can be used if the flow rates vary linearly during the passage of the pulse. The measured flow rate is related to the time at which the first moment of the concentration profile (∫ tc( z, t)d t) is zero. An experimental verification is presented. By analysing the tracer pulse shapes before the establishment of complete mixing, it was demonstrated that the effective dispersion coefficients were independent of the scale of turbulence over the range 10 m to ˜1 km. This is consistent with the establishment of isotropic turbulence on the floodplain in contrast to oceanic surfaces. The velocity of the tracer is a factor of 2 less than that of an advancing wave front, which is in acceptable agreement with prediction. It is concluded that the transport of a non-interacting contaminant across the floodplain can be predicted from the wave front velocity and the dispersion coefficients measured close to the release point.
Characterization of Flow Dynamics and Reduced-Order Description of Experimental Two-Phase Pipe Flow
NASA Astrophysics Data System (ADS)
Viggiano, Bianca; SkjæRaasen, Olaf; Tutkun, Murat; Cal, Raul Bayoan
2017-11-01
Multiphase pipe flow is investigated using proper orthogonal decomposition for tomographic X-ray data, where holdup, cross sectional phase distributions and phase interface characteristics are obtained. Instantaneous phase fractions of dispersed flow and slug flow are analyzed and a reduced order dynamical description is generated. The dispersed flow displays coherent structures in the first few modes near the horizontal center of the pipe, representing the liquid-liquid interface location while the slug flow case shows coherent structures that correspond to the cyclical formation and breakup of the slug in the first 10 modes. The reconstruction of the fields indicate that main features are observed in the low order dynamical descriptions utilizing less than 1 % of the full order model. POD temporal coefficients a1, a2 and a3 show interdependence for the slug flow case. The coefficients also describe the phase fraction holdup as a function of time for both dispersed and slug flow. These flows are highly applicable to petroleum transport pipelines, hydroelectric power and heat exchanger tubes to name a few. The mathematical representations obtained via proper orthogonal decomposition will deepen the understanding of fundamental multiphase flow characteristics.
NASA Astrophysics Data System (ADS)
Subramaniam, Shankar; Sun, Bo
2015-11-01
The presence of solid particles in a steady laminar flow generates velocity fluctuations with respect to the mean fluid velocity that are termed pseudo-turbulence. The level of these pseudo-turbulent velocity fluctuations has been characterized in statistically homogeneous fixed particle assemblies and freely evolving suspensions using particle-resolved direct numerical simulation (PR-DNS) by Mehrabadi et al. (JFM, 2015), and it is found to be a significant contribution to the total kinetic energy associated with the flow. The correlation of these velocity fluctuations with temperature (or a passive scalar) generates a flux term that appears in the transport equation for the average fluid temperature (or average scalar concentration). The magnitude of this transport of temperature-velocity covariance is quantified using PR-DNS of thermally fully developed flow past a statistically homogeneous fixed assembly of particles, and the budget of the average fluid temperature equation is presented. The relation of this transport term to the axial dispersion coefficient (Brenner, Phil. Trans. Roy. Soc. A, 1980) is established. The simulation results are then interpreted in the context of our understanding of axial dispersion in gas-solid flow. NSF CBET 1336941.
Structural and optical properties of furfurylidenemalononitrile thin films
NASA Astrophysics Data System (ADS)
Ali, H. A. M.
2013-03-01
Thin films of furfurylidenemalononitrile (FMN) were deposited on different substrates at room temperature by thermal evaporation technique under a high vacuum. The structure of the powder was confirmed by Fourier transformation infrared (FTIR) technique. The unit cell dimensions were determined from X-ray diffraction (XRD) studies. The optical properties were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence of light in the wavelength range from 200 to 2500 nm. The refractive index (n), the absorption index (k) and the absorption coefficient (α) were calculated. The analysis of the spectral behavior of the absorption coefficient in the absorption region revealed an indirect allowed transition. The refractive index dispersion was analyzed using the single oscillator model. Some dispersion parameters were estimated. Complex dielectric function and optical conductivity were determined. The influence of the irradiation with high-energy X-rays (6 MeV) on the studied properties was also investigated.
NASA Astrophysics Data System (ADS)
Liu, Lei; Tian, Bo; Wu, Xiao-Yu; Sun, Yan
2018-02-01
Under investigation in this paper is the higher-order rogue wave-like solutions for a nonautonomous nonlinear Schrödinger equation with external potentials which can be applied in the nonlinear optics, hydrodynamics, plasma physics and Bose-Einstein condensation. Based on the Kadomtsev-Petviashvili hierarchy reduction, we construct the Nth order rogue wave-like solutions in terms of the Gramian under the integrable constraint. With the help of the analytic and graphic analysis, we exhibit the first-, second- and third-order rogue wave-like solutions through the different dispersion, nonlinearity and linear potential coefficients. We find that only if the dispersion and nonlinearity coefficients are proportional to each other, heights of the background of those rogue waves maintain unchanged with time increasing. Due to the existence of complex parameters, such nonautonomous rogue waves in the higher-order cases have more complex features than those in the lower.
Automatic pickup of arrival time of channel wave based on multi-channel constraints
NASA Astrophysics Data System (ADS)
Wang, Bao-Li
2018-03-01
Accurately detecting the arrival time of a channel wave in a coal seam is very important for in-seam seismic data processing. The arrival time greatly affects the accuracy of the channel wave inversion and the computed tomography (CT) result. However, because the signal-to-noise ratio of in-seam seismic data is reduced by the long wavelength and strong frequency dispersion, accurately timing the arrival of channel waves is extremely difficult. For this purpose, we propose a method that automatically picks up the arrival time of channel waves based on multi-channel constraints. We first estimate the Jaccard similarity coefficient of two ray paths, then apply it as a weight coefficient for stacking the multichannel dispersion spectra. The reasonableness and effectiveness of the proposed method is verified in an actual data application. Most importantly, the method increases the degree of automation and the pickup precision of the channel-wave arrival time.
Desmet, Gilles B; De Rybel, Nils; Van Steenberge, Paul H M; D'hooge, Dagmar R; Reyniers, Marie-Françoise; Marin, Guy B
2018-01-01
Ab-initio-calculated rate coefficients for addition and fragmentation in reversible-addition fragmentation chain transfer (RAFT) polymerization of styrene with 2-cyano-2-propyl dodecyl trithiocarbonate initiated by azobisisobutyronitrile allow the reliable simulation of the experimentally observed conversion, number average chain length, and dispersity. The rate coefficient for addition of a macroradical R i to the macroRAFT agent R i X at 333 K (6.8 10 4 L mol -1 s -1 ) is significantly lower than to the initial RAFT agent R 0 X (3.2 10 6 L mol -1 s -1 ), mainly due to a difference in activation energy (15.4 vs 3.0 kJ mol -1 ), which causes the dispersity to spike in the beginning of the polymerization. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hethnawi, Afif; Manasrah, Abdallah D; Vitale, Gerardo; Nassar, Nashaat N
2018-03-01
In this study, a fixed-bed column adsorption process was employed to remove organic pollutants from a real industrial wastewater effluent using polyethylenimine-functionalized pyroxene nanoparticles (PEI-PY) embedded into Diatomite at very low mass percentage. Various dynamic parameters (e.g., inlet concentration, inlet flow rate, bed height, and PEI-nanoparticle concentration in Diatomite, (%nps)) were investigated to determine the breakthrough behavior. The obtained breakthrough curves were fit with a convection-dispersion model to determine the characteristic parameters based on mass transfer phenomena. The axial dispersion coefficient (D L ) and group of dimensionless numbers; including Renold number (Re), Schmidt number (Sc), and Sherwood number (Sh) were all determined and correlated by Wilson-Geankoplis correlation that was used to estimate the external film diffusion coefficients (Kc) at 0.0015 < Re<55. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Street, Kenneth W., Jr.; Andraws, Rodney; Jacques, David; VanderWal, Randy L.; Sayir, Ali
2005-01-01
To evaluate recently developed aligned multiwalled carbon nanotubes (MWNTs) and dispersed MWNTs for solid lubrication applications, unidirectional sliding friction experiments were conducted with 440 C stainless steel balls and hemispherical alumina-yttria stabilized zirconia pins in sliding contact with the MWNTs deposited on quartz disks in air and in vacuum. The results indicate that MWNTs have superior solid lubrication friction properties and endurance lives in air and vacuum under dry conditions. The coefficient of friction of the dispersed MWNTs is close to 0.05 and 0.009 in air and in vacuum, respectively, showing good dry lubricating ability. The wear life of MWNTs exceeds 1 million passes in both air and vacuum showing good durability. In general, the low coefficient of friction can be attributed to the combination of the transferred, agglomerated patches of MWNTs on the counterpart ball or pin surfaces and the presence of tubular MWNTs at interfaces.
NASA Astrophysics Data System (ADS)
Ménesguen, Y.; Lépy, M.-C.
2010-08-01
This work presents new measurements of mass attenuation coefficients in the range 3.8⩽E⩽11 keV, K-absorption jump-ratios, Kα and Kβ fluorescence yields for Ti, V, Fe, Co, Ni, Cu and Zn. We use the experimental facility SOLEX, a tunable monochromatic X-ray source combined with an energy-dispersive high-purity germanium detector. The results are compared with theoretical values as well as with other experimental data and show a relatively good agreement. However, the derived K-jump-ratios appear larger than those widely used in the XCOM database. The Kα and Kβ fluorescence yields and the corresponding relative emission rates Kβ/Kα are also derived, which was made possible by the use of energy-dispersive detectors with good spectral resolution.
The numerical simulation of Lamb wave propagation in laser welding of stainless steel
NASA Astrophysics Data System (ADS)
Zhang, Bo; Liu, Fang; Liu, Chang; Li, Jingming; Zhang, Baojun; Zhou, Qingxiang; Han, Xiaohui; Zhao, Yang
2017-12-01
In order to explore the Lamb wave propagation in laser welding of stainless steel, the numerical simulation is used to show the feature of Lamb wave. In this paper, according to Lamb dispersion equation, excites the Lamb wave on the edge of thin stainless steel plate, and presents the reflection coefficient for quantizing the Lamb wave energy, the results show that the reflection coefficient is increased with the welding width increasing,
Moradkhani, Hamed; Izadkhah, Mir-Shahabeddin; Anarjan, Navideh
2017-02-01
In this work, gas dispersion in a two-phase partitioning bioreactor is analyzed by calculating volumetric oxygen mass transfer coefficient which is modeled using a commercial computational fluid dynamics (CFD), code FLUENT 6.2. Dispersed oxygen bubbles dynamics is based on standard "k-ε" Reynolds-averaged Navier-Stokes (RANS) model. This paper describes a three-dimensional CFD model coupled with population balance equations (PBE) in order to get more confirming results of experimental measurements. Values of k L a are obtained using dynamic gassing-out method. Using the CFD simulation, the volumetric mass transfer coefficient is calculated based on Higbie's penetration theory. Characteristics of mass transfer coefficient are investigated for five configurations of impeller and three different aeration flow rates. The pitched six blade type, due to the creation of downward flow direction, leads to higher dissolved oxygen (DO) concentrations, thereby, higher values of k L a compared with other impeller compositions. The magnitude of dissolved oxygen percentage in the aqueous phase has direct correlation with impeller speed and any increase of the aeration magnitude leads to faster saturation in shorter periods of time. Agitation speeds of 300 to 800 rpm are found to be the most effective rotational speeds for the mass transfer of oxygen in two-phase partitioning bioreactors (TPPB).
Nur Asshifa, M N; Zambry, Nor Syafirah; Salwa, M S; Yahya, Ahmad R M
2017-07-01
Water-immiscible substrate, diesel, was supplied as the main substrate in the fermentation of Pseudomonas aeruginosa USM-AR2 producing rhamnolipid biosurfactant, in a stirred tank bioreactor. In addition to the typical gas-aqueous system, this system includes gas-hydrocarbon-aqueous phases and the presence of surfactant (rhamnolipid) in the fermentation broth. The effect of diesel dispersion on volumetric oxygen transfer coefficient, k L a, and thus oxygen transfer, was evaluated at different agitations of 400, 500 and 600 rpm. The oxygen transfer in this oil-water-surfactant system was shown to be affected by different oil dispersion at those agitation rates. The highest diesel dispersion was obtained at 500 rpm or impeller tip speed of 1.31 m/s, compared to 400 and 600 rpm, which led to the highest k L a, growth and rhamnolipid production by P. aeruginosa USM-AR2. This showed the highest substrate mixing and homogenization at this agitation speed that led to the efficient substrate utilization by the cells. The oxygen uptake rate of P. aeruginosa USM-AR2 was 5.55 mmol/L/h, which showed that even the lowest k L a (48.21 h -1 ) and hence OTR (57.71 mmol/L/h) obtained at 400 rpm was sufficient to fulfill the oxygen demand of the cells. The effect of rhamnolipid concentration on k L a showed that k L a increased as rhamnolipid concentration increased to 0.6 g/L before reaching a plateau. This trend was similar for all agitation rates of 400, 500 and 600 rpm, which might be due to the increase in the resistance to oxygen transfer (k L decrease) and the increase in the specific interfacial area (a).
NASA Astrophysics Data System (ADS)
Hanasaki, Itsuo; Ooi, Yuto
2018-06-01
We propose a technique to evaluate the field of diffusion coefficient for particle dispersion where the Brownian motion is heterogeneous in space and single particle tracking (SPT) analysis is hindered by high concentration of the particles and/or their small size. We realize this "particle image diffusometry" by the principle of the differential dynamic microscopy (DDM). We extend the DDM by introducing the automated objective decision of the scaling regime itself. Label-free evaluation of spatially non-uniform diffusion coefficients without SPT is useful in the diverse applications including crystal nucleation and glass transition where non-invasive observation is desired.
Influence of sputtering pressure on optical constants of a-GaAs1-xNx thin films
NASA Astrophysics Data System (ADS)
Baoshan, Jia; Yunhua, Wang; Lu, Zhou; Duanyuan, Bai; Zhongliang, Qiao; Xin, Gao; Baoxue, Bo
2012-08-01
Amorphous GaAs1-xNx (a-GaAs1-xNx) thin films have been deposited at room temperature by a reactive magnetron sputtering technique on glass substrates with different sputtering pressures. The thickness, nitrogen content, carrier concentration and transmittance of the as-deposited films were determined experimentally. The influence of sputtering pressure on the optical band gap, refractive index and dispersion parameters (Eo, Ed) has been investigated. An analysis of the absorption coefficient revealed a direct optical transition characterizing the as-deposited films. The refractive index dispersions of the as-deposited a-GaAs1-xNx films fitted well to the Cauchy dispersion relation and the Wemple model.
A reassessment of the role of tidal dispersion in estuaries and bays
Geyer, W. Rockwell; Signell, Richard P.
1992-01-01
The role of tidal dispersion is reassessed, based on a consideration of the relevant physical mechanisms, particularly those elucidated by numerical simulations of tide-induced dispersion. It appears that the principal influence of tidal currents on dispersion occurs at length scales of the tidal excursion and smaller; thus the effectiveness of tidal dispersion depends on the relative scale of the tidal excursion to the spacing between major bathymetric and shoreline features. In estuaries where the typical spacing of topographic features is less than the tidal excursion, tidal dispersion may contribute significantly to the overall flushing. In estuaries and embayments in which the typical spacing between major features is larger than the tidal excursion, the influence of tidal dispersion will be localized, and it will not markedly contribute to overall flushing. Tidal dispersion is most pronounced in regions of abrupt topographic changes such as headlands and inlets, where flow separation occurs. The strong strain rate in the region of flow separation tends to stretch patches of fluid into long filaments, which are subsequently rolled up and distorted by the transient eddy field. The dispersion process accomplished by the tides varies strongly as a function of position and tidal phase and thus does not lend itself to parameterization by an eddy diffusion coefficient.
Kayen, Robert E.; Carkin, Brad A.; Corbett, Skye C.
2017-10-19
Vertical one-dimensional shear wave velocity (VS) profiles are presented for strong-motion sites in Arizona for a suite of stations surrounding the Palo Verde Nuclear Generating Station. The purpose of the study is to determine the detailed site velocity profile, the average velocity in the upper 30 meters of the profile (VS30), the average velocity for the entire profile (VSZ), and the National Earthquake Hazards Reduction Program (NEHRP) site classification. The VS profiles are estimated using a non-invasive continuous-sine-wave method for gathering the dispersion characteristics of surface waves. Shear wave velocity profiles were inverted from the averaged dispersion curves using three independent methods for comparison, and the root-mean-square combined coefficient of variation (COV) of the dispersion and inversion calculations are estimated for each site.
Nonlinear tunneling of optical soliton in 3 coupled NLS equation with symbolic computation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mani Rajan, M.S., E-mail: senthilmanirajanofc@gmail.com; Mahalingam, A.; Uthayakumar, A.
We investigated the soliton solution for N coupled nonlinear Schrödinger (CNLS) equations. These equations are coupled due to the cross-phase-modulation (CPM). Lax pair of this system is obtained via the Ablowitz–Kaup–Newell–Segur (AKNS) scheme and the corresponding Darboux transformation is constructed to derive the soliton solution. One and two soliton solutions are generated. Using two soliton solutions of 3 CNLS equation, nonlinear tunneling of soliton for both with and without exponential background has been discussed. Finally cascade compression of optical soliton through multi-nonlinear barrier has been discussed. The obtained results may have promising applications in all-optical devices based on optical solitons,more » study of soliton propagation in birefringence fiber systems and optical soliton with distributed dispersion and nonlinearity management. -- Highlights: •We consider the nonlinear tunneling of soliton in birefringence fiber. •3-coupled NLS (CNLS) equation with variable coefficients is considered. •Two soliton solutions are obtained via Darboux transformation using constructed Lax pair. •Soliton tunneling through dispersion barrier and well are investigated. •Finally, cascade compression of soliton has been achieved.« less
Vertical mass transfer in open channel flow
Jobson, Harvey E.
1968-01-01
The vertical mass transfer coefficient and particle fall velocity were determined in an open channel shear flow. Three dispersants, dye, fine sand and medium sand, were used with each of three flow conditions. The dispersant was injected as a continuous line source across the channel and downstream concentration profiles were measured. From these profiles along with the measured velocity distribution both the vertical mass transfer coefficient and the local particle fall velocity were determined.The effects of secondary currents on the vertical mixing process were discussed. Data was taken and analyzed in such a way as to largely eliminate the effects of these currents on the measured values. A procedure was developed by which the local value of the fall velocity of sand sized particles could be determined in an open channel flow. The fall velocity of the particles in the turbulent flow was always greater than their fall velocity in quiescent water. Reynolds analogy between the transfer of momentum and marked fluid particles was further substantiated. The turbulent Schmidt number was shown to be approximately 1.03 for an open channel flow with a rough boundary. Eulerian turbulence measurements were not sufficient to predict the vertical transfer coefficient. Vertical mixing of sediment is due to three semi-independent processes. These processes are: secondary currents, diffusion due to tangential velocity fluctuations and diffusion due to the curvature of the fluid particle path lines. The diffusion coefficient due to tangential velocity fluctuations is approximately proportional to the transfer coefficient of marked fluid particles. The proportionality constant is less than or equal to 1.0 and decreases with increasing particle size. The diffusion coefficient due to the curvature of the fluid particle path lines is not related to the diffusion coefficient for marked fluid particles and increases with particle size, at least for sediment particles in the sand size range. The total sediment transfer coefficient is equal to the sum of the coefficient due to tangential velocity fluctuations and the coefficient due to the curvature of the fluid particle path lines. A numerical solution to the conservation of mass equation is given. The effects of the transfer coefficient, fall velocity and bed conditions on the predicted concentration profiles are illustrated.
Determining the Viscosity Coefficient for Viscoelastic Wave Propagation in Rock Bars
NASA Astrophysics Data System (ADS)
Niu, Leilei; Zhu, Wancheng; Li, Shaohua; Guan, Kai
2018-05-01
Rocks with microdefects exhibit viscoelastic behavior during stress wave propagation. The viscosity coefficient of the wave can be used to characterize the attenuation as the wave propagates in rock. In this study, a long artificial bar with a readily adjustable viscosity coefficient was fabricated to investigate stress wave attenuation. The viscoelastic behavior of the artificial bar under dynamic loading was investigated, and the initial viscoelastic coefficient was obtained based on the amplitude attenuation of the incident harmonic wave. A one-dimensional wave propagation program was compiled to reproduce the time history of the stress wave measured during the experiments, and the program was well fitted to the Kelvin-Voigt model. The attenuation and dispersion of the stress wave in long artificial viscoelastic bars were quantified to accurately determine the viscoelastic coefficient. Finally, the method used to determine the viscoelastic coefficient of a long artificial bar based on the experiments and numerical simulations was extended to determine the viscoelastic coefficient of a short rock bar. This study provides a new method of determining the viscosity coefficient of rock.
Korosak, Dean; Cvikl, Bruno; Kramer, Janja; Jecl, Renata; Prapotnik, Anita
2007-06-16
The analysis of the low-frequency conductivity spectra of the clay-water mixtures is presented. The frequency dependence of the conductivity is shown to follow the power-law with the exponent n=0.67 before reaching the frequency-independent part. When scaled with the value of the frequency-independent part of the spectrum the conductivity spectra for samples at different water content values are shown to fit to a single master curve. It is argued that the observed conductivity dispersion is a consequence of the anomalously diffusing ions in the clay-water system. The fractional Langevin equation is then used to describe the stochastic dynamics of the single ion. The results indicate that the experimentally observed dielectric properties originate in anomalous ion transport in clay-water system characterized with time-dependent diffusion coefficient.
Analytic wave solution with helicon and Trivelpiece-Gould modes in an annular plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlsson, Johan; Pavarin, Daniele; Walker, Mitchell
2009-11-26
Helicon sources in an annular configuration have applications for plasma thrusters. The theory of Klozenberg et al.[J. P. Klozenberg B. McNamara and P. C. Thonemann, J. Fluid Mech. 21(1965) 545-563] for the propagation and absorption of helicon and Trivelpiece-Gould modes in a cylindrical plasma has been generalized for annular plasmas. Analytic solutions are found also in the annular case, but in the presence of both helicon and Trivelpiece-Gould modes, a heterogeneous linear system of equations must be solved to match the plasma and inner and outer vacuum solutions. The linear system can be ill-conditioned or even exactly singular, leading tomore » a dispersion relation with a discrete set of discontinuities. The coefficients for the analytic solution are calculated by solving the linear system with singular-value decomposition.« less
NASA Technical Reports Server (NTRS)
Copeland, Richard A.; Jeffries, Jay B.; Crosley, David R.
1986-01-01
Experimental results for relative vibrational band transition probabilities for v prime = 0 and 1, and v double prime = 0 to 4 in the A-X electronic system of OH are presented. The measurements, part of a larger set involving v prime = 0 to 4 and v double prime = 0 to 6, were made using spectrally dispersed laser-induced fluorescence (LIF) in the burnt gases of a flame. These Einstein coefficients will be useful in dynamics experiments for quantitative LIF determinations of OH radical concentrations in high v double prime.
Pore-scale and Continuum Simulations of Solute Transport Micromodel Benchmark Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oostrom, Martinus; Mehmani, Yashar; Romero Gomez, Pedro DJ
Four sets of micromodel nonreactive solute transport experiments were conducted with flow velocity, grain diameter, pore-aspect ratio, and flow focusing heterogeneity as the variables. The data sets were offered to pore-scale modeling groups to test their simulators. Each set consisted of two learning experiments, for which all results was made available, and a challenge experiment, for which only the experimental description and base input parameters were provided. The experimental results showed a nonlinear dependence of the dispersion coefficient on the Peclet number, a negligible effect of the pore-aspect ratio on transverse mixing, and considerably enhanced mixing due to flow focusing.more » Five pore-scale models and one continuum-scale model were used to simulate the experiments. Of the pore-scale models, two used a pore-network (PN) method, two others are based on a lattice-Boltzmann (LB) approach, and one employed a computational fluid dynamics (CFD) technique. The learning experiments were used by the PN models to modify the standard perfect mixing approach in pore bodies into approaches to simulate the observed incomplete mixing. The LB and CFD models used these experiments to appropriately discretize the grid representations. The continuum model use published non-linear relations between transverse dispersion coefficients and Peclet numbers to compute the required dispersivity input values. Comparisons between experimental and numerical results for the four challenge experiments show that all pore-scale models were all able to satisfactorily simulate the experiments. The continuum model underestimated the required dispersivity values and, resulting in less dispersion. The PN models were able to complete the simulations in a few minutes, whereas the direct models needed up to several days on supercomputers to resolve the more complex problems.« less
Pollutant Plume Dispersion over Hypothetical Urban Areas based on Wind Tunnel Measurements
NASA Astrophysics Data System (ADS)
Mo, Ziwei; Liu, Chun-Ho
2017-04-01
Gaussian plume model is commonly adopted for pollutant concentration prediction in the atmospheric boundary layer (ABL). However, it has a number of limitations being applied to pollutant dispersion over complex land-surface morphology. In this study, the friction factor (f), as a measure of aerodynamic resistance induced by rough surfaces in the engineering community, was proposed to parameterize the vertical dispersion coefficient (σz) in the Gaussian model. A series of wind tunnel experiments were carried out to verify the mathematical hypothesis and to characterize plume dispersion as a function of surface roughness as well. Hypothetical urban areas, which were assembled in the form of idealized street canyons of different aspect (building-height-to-street-width) ratios (AR = 1/2, 1/4, 1/8 and 1/12), were fabricated by aligning identical square aluminum bars at different separation apart in cross flows. Pollutant emitted from a ground-level line source into the turbulent boundary layer (TBL) was simulated using water vapour generated by ultrasonic atomizer. The humidity and the velocity (mean and fluctuating components) were measured, respectively, by humidity sensors and hot-wire anemometry (HWA) with X-wire probes in streamwise and vertical directions. Wind tunnel results showed that the pollutant concentration exhibits the conventional Gaussian distribution, suggesting the feasibility of using water vapour as a passive scalar in wind tunnel experiments. The friction factor increased with decreasing aspect ratios (widening the building separation). It was peaked at AR = 1/8 and decreased thereafter. Besides, a positive correlation between σz/xn (x is the distance from the pollutant source) and f1/4 (correlation coefficient r2 = 0.61) was observed, formulating the basic parameterization of plume dispersion over urban areas.
Ahfir, Nasre-Dine; Hammadi, Ahmed; Alem, Abdellah; Wang, HuaQing; Le Bras, Gilbert; Ouahbi, Tariq
2017-03-01
The effects of porous media grain size distribution on the transport and deposition of polydisperse suspended particles under different flow velocities were investigated. Selected Kaolinite particles (2-30μm) and Fluorescein (dissolved tracer) were injected in the porous media by step input injection technique. Three sands filled columns were used: Fine sand, Coarse sand, and a third sand (Mixture) obtained by mixing the two last sands in equal weight proportion. The porous media performance on the particle removal was evaluated by analysing particles breakthrough curves, hydro-dispersive parameters determined using the analytical solution of convection-dispersion equation with a first order deposition kinetics, particles deposition profiles, and particle-size distribution of the recovered and the deposited particles. The deposition kinetics and the longitudinal hydrodynamic dispersion coefficients are controlled by the porous media grain size distribution. Mixture sand is more dispersive than Fine and Coarse sands. More the uniformity coefficient of the porous medium is large, higher is the filtration efficiency. At low velocities, porous media capture all sizes of suspended particles injected with larger ones mainly captured at the entrance. A high flow velocity carries the particles deeper into the porous media, producing more gradual changes in the deposition profile. The median diameter of the deposited particles at different depth increases with flow velocity. The large grain size distribution leads to build narrow pores enhancing the deposition of the particles by straining. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Wang, Yong-Yan; Su, Chuan-Qi; Liu, Xue-Qing; Li, Jian-Guang
2018-07-01
Under investigation in this paper is an extended forced Korteweg-de Vries equation with variable coefficients in the fluid or plasma. Lax pair, bilinear forms, and bilinear Bäcklund transformations are derived. Based on the bilinear forms, the first-, second-, and third-order nonautonomous soliton solutions are derived. Propagation and interaction of the nonautonomous solitons are investigated and influence of the variable coefficients is also discussed: Amplitude of the first-order nonautonomous soliton is determined by the spectral parameter and perturbed factor; there exist two kinds of the solitons, namely the elevation and depression solitons, depending on the sign of the spectral parameter; the background where the nonautonomous soliton exists is influenced by the perturbed factor and external force coefficient; breather solutions can be constructed under the conjugate condition, and period of the breather is related to the dispersive and nonuniform coefficients.
Wang, Ruifeng; Qi, Xiujuan; Zhao, Lei; Liu, Shimin; Gao, Shuang; Ma, Xiangyuan; Deng, Youquan
2016-07-01
Determination of methamphetamine in forensic laboratories is a major issue due to its health and social harm. In this work, a simple, sensitive, and environmentally friendly method based on ionic liquid dispersive liquid-liquid microextraction combined with high-performance liquid chromatography was established for the analysis of methamphetamine in human urine. 1-Octyl-3-methylimidazolium hexafluorophosphate with the help of disperser solvent methanol was selected as the microextraction solvent in this process. Various parameters affecting the extraction efficiency of methamphetamine were investigated systemically, including extraction solvent and its volume, disperser solvent and its volume, sample pH, extraction temperature, and centrifugal time. Under the optimized conditions, a good linearity was obtained in the concentration range of 10-1000 ng/mL with determination coefficient >0.99. The limit of detection calculated at a signal-to-noise ratio of 3 was 1.7 ng/mL and the relative standard deviations for six replicate experiments at three different concentration levels of 100, 500, and 1000 ng/mL were 6.4, 4.5, and 4.7%, respectively. Meanwhile, up to 220-fold enrichment factor of methamphetamine and acceptable extraction recovery (>80.0%) could be achieved. Furthermore, this method has been successfully employed for the sensitive detection of a urine sample from a suspected drug abuser. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Soret motion in non-ionic binary molecular mixtures
NASA Astrophysics Data System (ADS)
Leroyer, Yves; Würger, Alois
2011-08-01
We study the Soret coefficient of binary molecular mixtures with dispersion forces. Relying on standard transport theory for liquids, we derive explicit expressions for the thermophoretic mobility and the Soret coefficient. Their sign depends on composition, the size ratio of the two species, and the ratio of Hamaker constants. Our results account for several features observed in experiment, such as a linear variation with the composition; they confirm the general rule that small molecules migrate to the warm, and large ones to the cold.
NASA Astrophysics Data System (ADS)
Kumar, Ashok; Thakkar, Ajit J.
2011-11-01
Experimental photoabsorption cross-sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule and the high-energy behavior of the dipole-oscillator-strength density are used to construct dipole oscillator strength distributions for buckminsterfullerene (C60). The distributions are used to predict dipole sum rules Sk, mean excitation energies Ik, the frequency dependent polarizability, and C6 coefficients for the long-range dipole-dipole interactions of C60 with a variety of atoms and molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bereau, Tristan, E-mail: bereau@mpip-mainz.mpg.de; Lilienfeld, O. Anatole von
We estimate polarizabilities of atoms in molecules without electron density, using a Voronoi tesselation approach instead of conventional density partitioning schemes. The resulting atomic dispersion coefficients are calculated, as well as many-body dispersion effects on intermolecular potential energies. We also estimate contributions from multipole electrostatics and compare them to dispersion. We assess the performance of the resulting intermolecular interaction model from dispersion and electrostatics for more than 1300 neutral and charged, small organic molecular dimers. Applications to water clusters, the benzene crystal, the anti-cancer drug ellipticine—intercalated between two Watson-Crick DNA base pairs, as well as six macro-molecular host-guest complexes highlightmore » the potential of this method and help to identify points of future improvement. The mean absolute error made by the combination of static electrostatics with many-body dispersion reduces at larger distances, while it plateaus for two-body dispersion, in conflict with the common assumption that the simple 1/R{sup 6} correction will yield proper dissociative tails. Overall, the method achieves an accuracy well within conventional molecular force fields while exhibiting a simple parametrization protocol.« less
Diffusion, Dispersion, and Uncertainty in Anisotropic Fractal Porous Media
NASA Astrophysics Data System (ADS)
Monnig, N. D.; Benson, D. A.
2007-12-01
Motivated by field measurements of aquifer hydraulic conductivity (K), recent techniques were developed to construct anisotropic fractal random fields, in which the scaling, or self-similarity parameter, varies with direction and is defined by a matrix. Ensemble numerical results are analyzed for solute transport through these 2-D "operator-scaling" fractional Brownian motion (fBm) ln(K) fields. Contrary to some analytic stochastic theories for monofractal K fields, the plume growth rates never exceed Mercado's (1967) purely stratified aquifer growth rate of plume apparent dispersivity proportional to mean distance. Apparent super-stratified growth must be the result of other demonstrable factors, such as initial plume size. The addition of large local dispersion and diffusion does not significantly change the effective longitudinal dispersivity of the plumes. In the presence of significant local dispersion or diffusion, the concentration coefficient of variation CV={σc}/{\\langle c \\rangle} remains large at the leading edge of the plumes. This indicates that even with considerable mixing due to dispersion or diffusion, there is still substantial uncertainty in the leading edge of a plume moving in fractal porous media.
NASA Astrophysics Data System (ADS)
Rees, D.; Fuller-Rowell, T. J.; Lyons, A.; Killeen, T. L.; Hays, P. B.
1982-11-01
The cemented etalons are shown to be rugged and highly stable for high-resolution spectroscopy and to be well suited to space applications. The etalons will be of considerable value as the tuning elements of dye laser systems and as the stable spectral disperser for pulse and CW laser spectroscopy. Even for etalons 15 cm in diameter, the strength of the cemented bond is greatly in excess of the maximum steady and impulsive forces experienced from the much larger etalon plate mass (2-4 kg rather than 200 g). It is thought that the small but systematic and significant positive increment in the thermal expansion coefficient which occurs when an etalon and its spacers are cemented may be linked to the cessation of the microscopic migration that occurs with an optically contacted bond under thermal or mechanical stress. The etalon comprises two flat plates of fused silica, with spacers constructed of Zerodur (a polycrystalline glass ceramic of extremely low expansion coefficient) which are cemented together using cyanoacrylic adhesives.
Temgoua, D D Estelle; Tchokonte, M B Tchoula; Kofane, T C
2018-04-01
The generalized nonparaxial nonlinear Schrödinger (NLS) equation in optical fibers filled with chiral materials is reduced to the higher-order integrable Hirota equation. Based on the modified Darboux transformation method, the nonparaxial chiral optical rogue waves are constructed from the scalar model with modulated coefficients. We show that the parameters of nonparaxiality, third-order dispersion, and differential gain or loss term are the main keys to control the amplitude, linear, and nonlinear effects in the model. Moreover, the influence of nonparaxiality, optical activity, and walk-off effect are also evidenced under the defocusing and focusing regimes of the vector nonparaxial NLS equations with constant and modulated coefficients. Through an algorithm scheme of wider applicability on nonparaxial beam propagation methods, the most influential effect and the simultaneous controllability of combined effects are underlined, showing their properties and their potential applications in optical fibers and in a variety of complex dynamical systems.
NASA Astrophysics Data System (ADS)
Temgoua, D. D. Estelle; Tchokonte, M. B. Tchoula; Kofane, T. C.
2018-04-01
The generalized nonparaxial nonlinear Schrödinger (NLS) equation in optical fibers filled with chiral materials is reduced to the higher-order integrable Hirota equation. Based on the modified Darboux transformation method, the nonparaxial chiral optical rogue waves are constructed from the scalar model with modulated coefficients. We show that the parameters of nonparaxiality, third-order dispersion, and differential gain or loss term are the main keys to control the amplitude, linear, and nonlinear effects in the model. Moreover, the influence of nonparaxiality, optical activity, and walk-off effect are also evidenced under the defocusing and focusing regimes of the vector nonparaxial NLS equations with constant and modulated coefficients. Through an algorithm scheme of wider applicability on nonparaxial beam propagation methods, the most influential effect and the simultaneous controllability of combined effects are underlined, showing their properties and their potential applications in optical fibers and in a variety of complex dynamical systems.
Román, Iván P; Mastromichali, Anna; Tyrovola, Konstantina; Canals, Antonio; Psillakis, Elefteria
2014-02-21
Vortex-assisted liquid-liquid microextraction (VALLME) coupled with high-performance liquid chromatography (HPLC) is proposed here for the rapid determination of octanol-water partitioning coefficients (Kow). VALLME uses vortex agitation, a mild emulsification procedure, to disperse microvolumes of octanol in the aqueous phase thus increasing the interfacial contact area and ensuring faster partitioning rates. With VALLME, 2min were enough to achieve equilibrium conditions between the octanolic and aqueous phases. Upon equilibration, separation was achieved using centrifugation and the octanolic microdrop was collected and analyzed in a HPLC system. Six model compounds with logKow values ranging between ∼0.5 and 3.5 were used during the present investigations. The proposed method produced logKow values that were consistent with previously published values and the recorded uncertainty was well within the acceptable log unit range. Overall, the key features of the proposed Kow determination procedure comprised speed, reliability, simplicity, low cost and minimal solvent consumption. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
McCreery, Glenn Ernest
An experimental and analytical investigation of dispersed and dispersed-annular (rivulet or thin film) flow phase separation in tees has been successfully completed. The research was directed at, but is not specific to, determining flow conditions, following a loss of coolant accident, in the large rectangular passageways leading to vacuum buildings in the containment envelope of some CANDU nuclear reactors. The primary objectives of the research were to: (1) obtain experimental data to help formulate and test mechanistic analytical models of phase separation, and (2) develop the analytical models in computer programs which predict phase separation from upstream flow and pressure conditions and downstream and side branch pressure boundary conditions. To meet these objectives an air-water experimental apparatus was constructed, and consists of large air blowers attached to a long rectangular duct leading to a tee in the horizontal plane. A variety of phenomena was investigated including, for comparison with computer predictions, air streamlines and eddy boundary geometry, drop size spectra, macroscopic mass balances, liquid rivulet pathlines, and trajectories of drops of known size and velocity. Four separate computer programs were developed to analyze phase separation. Three of the programs are used sequentially to calculate dispersed mist phase separation in a tee. The fourth is used to calculate rivulet or thin film pathlines. Macroscopic mass balances are calculated from a summation of mass balances for drops with representative sizes (and masses) spaced across the drop size spectrum. The programs are tested against experimental data, and accurately predict gas flow fields, drop trajectories, rivulet pathlines and macroscopic mass balances. In addition to development of the computer programs, analysis was performed to specify the scaling of dispersed mist and rivulet or thin film flow, to investigate pressure losses in tees, and the inter-relationship of loss coefficients, contraction coefficients, and eddy geometry. The important transient effects of liquid storage in eddies were also analyzed.
Erwin, Susannah O.; Jacobson, Robert B.
2015-01-01
The transition from drifting free embryo to exogenously feeding larvae has been identified as a potential life-stage bottleneck for the endangered Missouri River pallid sturgeon. Previous studies have indicated that river regulation and fragmentation may contribute to the mortality of larval pallid sturgeon by reducing the extent of free-flowing river available to free embryos to complete ontogenetic development. Calculations of total drift distance based on mean velocity, however, do not address the potential for complex channels and flow patterns to increase retention or longitudinal dispersion of free embryos. We use a one-dimensional advection–dispersion model to estimate total drift distance and employ the longitudinal dispersion coefficient as a metric to quantify the tendency towards dispersion or retention of passively drifting larvae. We describe the effects of different styles of channel morphology on larval dispersion and consider the implications of flow regime modifications on retention of free embryos within the Lower Missouri River. The results illustrate the complex interactions of local morphology, engineered structures, and hydraulics that determine patterns of dispersion in riverine environments and inform how changes to channel morphology and flow regime may alter dispersion of drifting organisms.
A robust method of computing finite difference coefficients based on Vandermonde matrix
NASA Astrophysics Data System (ADS)
Zhang, Yijie; Gao, Jinghuai; Peng, Jigen; Han, Weimin
2018-05-01
When the finite difference (FD) method is employed to simulate the wave propagation, high-order FD method is preferred in order to achieve better accuracy. However, if the order of FD scheme is high enough, the coefficient matrix of the formula for calculating finite difference coefficients is close to be singular. In this case, when the FD coefficients are computed by matrix inverse operator of MATLAB, inaccuracy can be produced. In order to overcome this problem, we have suggested an algorithm based on Vandermonde matrix in this paper. After specified mathematical transformation, the coefficient matrix is transformed into a Vandermonde matrix. Then the FD coefficients of high-order FD method can be computed by the algorithm of Vandermonde matrix, which prevents the inverse of the singular matrix. The dispersion analysis and numerical results of a homogeneous elastic model and a geophysical model of oil and gas reservoir demonstrate that the algorithm based on Vandermonde matrix has better accuracy compared with matrix inverse operator of MATLAB.
NASA Technical Reports Server (NTRS)
Coward, Adrian V.; Papageorgiou, Demetrios T.; Smyrlis, Yiorgos S.
1994-01-01
In this paper the nonlinear stability of two-phase core-annular flow in a pipe is examined when the acting pressure gradient is modulated by time harmonic oscillations and viscosity stratification and interfacial tension is present. An exact solution of the Navier-Stokes equations is used as the background state to develop an asymptotic theory valid for thin annular layers, which leads to a novel nonlinear evolution describing the spatio-temporal evolution of the interface. The evolution equation is an extension of the equation found for constant pressure gradients and generalizes the Kuramoto-Sivashinsky equation with dispersive effects found by Papageorgiou, Maldarelli & Rumschitzki, Phys. Fluids A 2(3), 1990, pp. 340-352, to a similar system with time periodic coefficients. The distinct regimes of slow and moderate flow are considered and the corresponding evolution is derived. Certain solutions are described analytically in the neighborhood of the first bifurcation point by use of multiple scales asymptotics. Extensive numerical experiments, using dynamical systems ideas, are carried out in order to evaluate the effect of the oscillatory pressure gradient on the solutions in the presence of a constant pressure gradient.
Plasmon dispersion in strongly correlated superlattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, D.; Golden, K.I.; Kalman, G.
The dielectric response function of a strongly correlated superlattice is calculated in the quasilocalized charge (QLC) approximation. The resulting QLC static local-field correction, which contains both intralayer and interlayer pair-correlational effects, is identical to the correlational part of the third-frequency-moment sum-rule coefficient. This approximation treats the interlayer and intralayer couplings on an equal footing. The resulting dispersion relation is first analyzed to determine the effect of intralayer coupling on the out-of-phase acoustic-mode dispersion; in this approximation the interlayer coupling is suppressed and the mutual interaction of the layers is taken into account only through the average random-phase approximation (RPA) field.more » In the resulting mode dispersion, the onset of a finite-{ital k} ({ital k} being the in-plane wave number) reentrant low-frequency excitation developing (with decreasing {ital d}/{ital a}) into a dynamical instability is indicated ({ital a} being the in-plane Wigner-Seitz radius and {ital d} the distance between adjacent lattice planes). This dynamical instability parallels a static structural instability reported earlier both for a bilayer electron system and a superlattice and presumably indicates a structural change in the electron liquid. If one takes account of interlayer correlations beyond the RPA, the acoustic excitation spectrum is dramatically modified by the appearance of an energy gap which also has a stabilizing effect on the instability. We extend a previous energy gap study at {ital k}=0 [G. Kalman, Y. Ren, and K. I. Golden, Phys Rev. B {bold 50}, 2031 (1994)] to a calculation of the dispersion of the gapped acoustic excitation spectrum in the long-wavelength domain. {copyright} {ital 1996 The American Physical Society.}« less
Knopman, Debra S.; Voss, Clifford I.
1987-01-01
The spatial and temporal variability of sensitivities has a significant impact on parameter estimation and sampling design for studies of solute transport in porous media. Physical insight into the behavior of sensitivities is offered through an analysis of analytically derived sensitivities for the one-dimensional form of the advection-dispersion equation. When parameters are estimated in regression models of one-dimensional transport, the spatial and temporal variability in sensitivities influences variance and covariance of parameter estimates. Several principles account for the observed influence of sensitivities on parameter uncertainty. (1) Information about a physical parameter may be most accurately gained at points in space and time with a high sensitivity to the parameter. (2) As the distance of observation points from the upstream boundary increases, maximum sensitivity to velocity during passage of the solute front increases and the consequent estimate of velocity tends to have lower variance. (3) The frequency of sampling must be “in phase” with the S shape of the dispersion sensitivity curve to yield the most information on dispersion. (4) The sensitivity to the dispersion coefficient is usually at least an order of magnitude less than the sensitivity to velocity. (5) The assumed probability distribution of random error in observations of solute concentration determines the form of the sensitivities. (6) If variance in random error in observations is large, trends in sensitivities of observation points may be obscured by noise and thus have limited value in predicting variance in parameter estimates among designs. (7) Designs that minimize the variance of one parameter may not necessarily minimize the variance of other parameters. (8) The time and space interval over which an observation point is sensitive to a given parameter depends on the actual values of the parameters in the underlying physical system.
Theory of the spin-1 bosonic liquid metal - Equilibrium properties of liquid metallic deuterium
NASA Technical Reports Server (NTRS)
Oliva, J.; Ashcroft, N. W.
1984-01-01
The theory of a two-component quantum fluid comprised of spin-1/2 fermions and nonzero spin bosons is examined. This system is of interest because it embodies a possible quantum liquid metallic phase of highly compressed deuterium. Bose condensation is assumed present and the two cases of nuclear-spin-polarized and -unpolarized systems are considered. A significant feature in the unpolarized case is the presence of a nonmagnetic mode with quadratic dispersion owing its existence to nonzero boson spin. The physical character of this mode is examined in detail within a Bogoliubov approach. The specific heat, bulk modulus, spin susceptibility, and thermal expansion are all determined. Striking contrasts in the specific heats and thermal-expansion coefficients of the liquid and corresponding normal solid metallic phase are predicted.
A developed nearly analytic discrete method for forward modeling in the frequency domain
NASA Astrophysics Data System (ADS)
Liu, Shaolin; Lang, Chao; Yang, Hui; Wang, Wenshuai
2018-02-01
High-efficiency forward modeling methods play a fundamental role in full waveform inversion (FWI). In this paper, the developed nearly analytic discrete (DNAD) method is proposed to accelerate frequency-domain forward modeling processes. We first derive the discretization of frequency-domain wave equations via numerical schemes based on the nearly analytic discrete (NAD) method to obtain a linear system. The coefficients of numerical stencils are optimized to make the linear system easier to solve and to minimize computing time. Wavefield simulation and numerical dispersion analysis are performed to compare the numerical behavior of DNAD method with that of the conventional NAD method. The results demonstrate the superiority of our proposed method. Finally, the DNAD method is implemented in frequency-domain FWI, and high-resolution inverse results are obtained.
On the nonintegrability of equations for long- and short-wave interactions
NASA Astrophysics Data System (ADS)
Deconinck, Bernard; Upsal, Jeremy
2018-07-01
We examine the integrability of two models used for the interaction of long and short waves in dispersive media. One is more classical but arguably cannot be derived from the underlying water wave equations, while the other one was recently derived. We use the method of Zakharov and Schulman to attempt to construct conserved quantities for these systems at different orders in the magnitude of the solutions. The coupled KdV-NLS model is shown to be nonintegrable, due to the presence of fourth-order resonances. A coupled real KdV-complex KdV system is shown to suffer the same fate, except for three special choices of the coefficients, where higher-order calculations or a different approach are necessary to conclude integrability or the absence thereof.
Anderson, Christian C.; Marutyan, Karen R.; Holland, Mark R.; Wear, Keith A.; Miller, James G.
2008-01-01
Previous work has shown that ultrasonic waves propagating through cancellous bone often exhibit a linear-with-frequency attenuation coefficient, but a decrease in phase velocity with frequency (negative dispersion) that is inconsistent with the causality-imposed Kramers–Kronig relations. In the current study, interfering wave modes similar to those observed in bone are shown to potentially contribute to the observed negative dispersion. Biot theory, the modified Biot–Attenborogh model, and experimental results are used to aid in simulating multiple-mode wave propagation through cancellous bone. Simulations entail constructing individual wave modes exhibiting a positive dispersion using plausible velocities and amplitudes, and then summing the individual modes to create mixed-mode output wave forms. Results of the simulations indicate that mixed-mode wave forms can exhibit negative dispersion when analyzed conventionally under the assumption that only one wave is present, even when the individual interfering waves exhibit positive dispersions in accordance with the Kramers–Kronig relations. Furthermore, negative dispersion is observed when little or no visual evidence of interference exists in the time-domain data. Understanding the mechanisms responsible for the observed negative dispersion could aid in determining the true material properties of cancellous bone, as opposed to the apparent properties measured using conventional data analysis techniques. PMID:19045668
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhijie; Tartakovsky, Alexandre M.
This work presents a hierarchical model for solute transport in bounded layered porous media with random permeability. The model generalizes the Taylor-Aris dispersion theory to stochastic transport in random layered porous media with a known velocity covariance function. In the hierarchical model, we represent (random) concentration in terms of its cross-sectional average and a variation function. We derive a one-dimensional stochastic advection-dispersion-type equation for the average concentration and a stochastic Poisson equation for the variation function, as well as expressions for the effective velocity and dispersion coefficient. We observe that velocity fluctuations enhance dispersion in a non-monotonic fashion: the dispersionmore » initially increases with correlation length λ, reaches a maximum, and decreases to zero at infinity. Maximum enhancement can be obtained at the correlation length about 0.25 the size of the porous media perpendicular to flow.« less
Dispersive effects on multicomponent transport through porous media
NASA Astrophysics Data System (ADS)
Dutta, Sourav; Daripa, Prabir
2017-11-01
We use a hybrid numerical method to solve a global pressure based porous media flow model of chemical enhanced oil recovery. This is an extension of our recent work. The numerical method is based on the use of a discontinuous finite element method and the modified method of characteristics. The impact of molecular diffusion and mechanical dispersion on the evolution of scalar concentration distributions are studied through numerical simulations of various flooding schemes. The relative importance of the advective, capillary diffusive and dispersive fluxes are compared over different flow regimes defined in the parameter space of Capillary number, Peclet number, longitudinal and transverse dispersion coefficients. Such studies are relevant for the design of effective injection policies and determining optimal combinations of chemical components for improving recovery. This work has been possible due to financial support from the U.S. National Science Foundation Grant DMS-1522782.
Stability and rheology of dilute TiO2-water nanofluids
2011-01-01
The apparent wall slip (AWS) effect, accompanying the flow of colloidal dispersions in confined geometries, can be an important factor for the applications of nanofluids in heat transfer and microfluidics. In this study, a series of dilute TiO2 aqueous dispersions were prepared and tested for the possible presence of the AWS effect by means of a novel viscometric technique. The nanofluids, prepared from TiO2 rutile or anatase nanopowders by ultrasonic dispersing in water, were stabilized by adjusting the pH to the maximum zeta potential. The resulting stable nanofluid samples were dilute, below 0.7 vol.%. All the samples manifest Newtonian behavior with the fluidities almost unaffected by the presence of the dispersed phase. No case of important slip contribution was detected: the Navier slip coefficient of approximately 2 mm Pa-1 s-1 would affect the apparent fluidity data in a 100-μm gap by less than 1%. PMID:21711783
Optical properties of Sulfur doped InP single crystals
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Youssef, S. B.; Ali, H. A. M.
2014-05-01
Optical properties of InP:S single crystals were investigated using spectrophotometric measurements in the spectral range of 200-2500 nm. The absorption coefficient and refractive index were calculated. It was found that InP:S crystals exhibit allowed and forbidden direct transitions with energy gaps of 1.578 and 1.528 eV, respectively. Analysis of the refractive index in the normal dispersion region was discussed in terms of the single oscillator model. Some optical dispersion parameters namely: the dispersion energy (Ed), single oscillator energy (Eo), high frequency dielectric constant (ɛ∞), and lattice dielectric constant (ɛL) were determined. The volume and the surface energy loss functions (VELF & SELF) were estimated. Also, the real and imaginary parts of the complex conductivity were calculated.
NASA Astrophysics Data System (ADS)
Sanes Molina, Jose
Room-temperature ionic liquids (ILs) are high performance fluids that stand out because of a wide range of functional properties and exhibit a great potential for engineering applications. Although they have been employed as lubricants in metal-metal, metal-ceramic and ceramic-ceramic contacts, in this thesis we present the first study about the use of ILs as pure lubricants in polymer/steel contacts. The tests have established the efficacy of the ILs to reduce friction coefficient and wear rates in a variety of kinds of contacts, and criogenic to high temperature performance. Novel dispersions of ILs in polymers have been obtained with epoxy resin and thermoplastics as matrix. Therefore, the thermal, mechanical and tribological properties of the materials have studied and are discussed in the present thesis. Furthermore, the contents of ILs in the polymer matrix have been studied in relation to the tribological properties using Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectrometry (EDS), the wear mechanisms that operated in the contacts were established. The novel dispersions showed a reduction in the friction coefficient and wear in comparison with neat polymers, reaching in some cases a decrease of 79%. In the case of thermoplastics such as polystyrene and polyamide 6, the new dispersions showed a reduction in friction coefficient and wear in the same range as that of the ILs when used as external lubricants in the steel/polymer contact. In addition nanoparticles of zinc oxide were used to obtain polycarbonate based nanohybrids with the purpose of improving the tribological properties. Novel nanohybrids of zinc oxide and modified zinc oxide were obtained. The mechanical, thermal and tribological properties were studied. The results of experiments clearly demonstrated that the use of ILs modifies the shape and size of the ZnO nanoparticles, increasing the tribological properties of the novel nanohybrids. Different techniques such as EDS, Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD) and X-Ray Photoelectron Spectrometry (XPS) were used to examine and establish the surface interactions and mechanism that operated between ILs and ZnO. In summary, the results reveal the importance of the processing parameters on the stability of the nature of the anion in the ILs.
Estimation of Temporally and Spatially Varying Coefficients in Models for Insect Dispersal.
1983-06-01
M-3). (We note that the orders of the approximation for aI and a2 need not be related; the form assumed here is only for ease in expostion .) For...experimental data from field studies . 12 ’" .. . ii H _ The numerical results reported below were generated using a state approxi- mation index of N-32 and...arrangements appear to promote out- breaks by altering pest movements (Risch et al. [13]). As part of our long-term study of insect dispersal, we have been
NASA Astrophysics Data System (ADS)
Yushkanov, A. A.; Zverev, N. V.
2018-03-01
An influence of quantum and spatial dispersion properties of the non-degenerate electron plasma on the interaction of electromagnetic P-waves with one-dimensional photonic crystal consisting of conductor with low carrier electron density and transparent dielectric matter, is studied numerically. It is shown that at the frequencies of order of the plasma frequency and at small widths of the conducting and dielectric layers of the photonic crystal, optical coefficients in the quantum non-degenerate plasma approach differ from the coefficients in the classical electron gas approach. And also, at these frequencies one observes a temperature dependence of the optical coefficients.
Thomas-Fermi model electron density with correct boundary conditions: Application to atoms and ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patil, S.H.
1999-01-01
The author proposes an electron density in atoms and ions, which has the Thomas-Fermi-Dirac form in the intermediate region of r, satisfies the Kato condition for small r, and has the correct asymptotic behavior at large values of r, where r is the distance from the nucleus. He also analyzes the perturbation in the density produced by multipolar fields. He uses these densities in the Poisson equation to deduce average values of r{sup m}, multipolar polarizabilities, and dispersion coefficients of atoms and ions. The predictions are in good agreement with experimental and other theoretical values, generally within about 20%. Hemore » tabulates here the coefficient A in the asymptotic density; radial expectation values (r{sup m}) for m = 2, 4, 6; multipolar polarizabilities {alpha}{sub 1}, {alpha}{sub 2}, {alpha}{sub 3}; expectation values {l_angle}r{sup 0}{r_angle} and {l_angle}r{sup 2}{r_angle} of the asymptotic electron density; and the van der Waals coefficient C{sub 6} for atoms and ions with 2 {le} Z {le} 92. Many of the results, particularly the multipolar polarizabilities and the higher order dispersion coefficients, are the only ones available in the literature. The variation of these properties also provides interesting insight into the shell structure of atoms and ions. Overall, the Thomas-Fermi-Dirac model with the correct boundary conditions provides a good global description of atoms and ions.« less
Benea, Lidia; Celis, Jean-Pierre
2016-04-06
This research work describes the effect of dispersed titanium carbide (TiC) nanoparticles into nickel plating bath on Ni/TiC nanostructured composite layers obtained by electro-codeposition. The surface morphology of Ni/TiC nanostructured composite layers was characterized by scanning electron microscopy (SEM). The composition of coatings and the incorporation percentage of TiC nanoparticles into Ni matrix were studied and estimated by using energy dispersive X-ray analysis (EDX). X-ray diffractometer (XRD) has been applied in order to investigate the phase structure as well as the corresponding relative texture coefficients of the composite layers. The results show that the concentration of nano-TiC particles added in the nickel electrolyte affects the inclusion percentage of TiC into Ni/TiC nano strucured layers, as well as the corresponding morphology, relative texture coefficients and thickness indicating an increasing tendency with the increasing concentration of nano-TiC concentration. By increasing the amount of TiC nanoparticles in the electrolyte, their incorporation into nickel matrix also increases. The hybrid Ni/nano-TiC composite layers obtained revealed a higher roughness and higher hardness; therefore, these layers are promising superhydrophobic surfaces for special application and could be more resistant to wear than the pure Ni layers.
Strength of Drug–Polymer Interactions: Implications for Crystallization in Dispersions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mistry, Pinal; Suryanarayanan, Raj
We investigated the influence of the strength of drug–polymer interactions on the crystallization behavior of a model drug in amorphous solid dispersions (ASDs). Ketoconazole ASDs were prepared with each poly(acrylic acid), poly(2-hydroxyethyl methacrylate), and polyvinylpyrrolidone. Over a wide temperature range in the supercooled region, the α-relaxation time was obtained, which provided a measure of molecular mobility. Isothermal crystallization studies were performed in the same temperature interval using either a synchrotron (for low levels of crystallinity) or a laboratory X-ray (for crystallization kinetics) source. The stronger the drug–polymer interaction, the longer was the delay in crystallization onset time, indicating an increasemore » in physical stability. Stronger drug–polymer interactions also translated to a decrease in the magnitude of the crystallization rate constant. In amorphous ketoconazole as well as in the dispersions, the coupling coefficient, a measure of the extent of coupling between relaxation and crystallization times was ~0.5. This value was unaffected by the strength of drug–polymer interactions. On the basis of these results, the crystallization times in ASDs were predicted at temperatures very close to Tg, using the coupling coefficient experimentally determined for amorphous ketoconazole. The predicted and experimental crystallization times were in good agreement, indicating the usefulness of the model.« less
Ashworth, Danielle C.; Fuller, Gary W.; Toledano, Mireille B.; Font, Anna; Elliott, Paul; Hansell, Anna L.; de Hoogh, Kees
2013-01-01
Background. Research to date on health effects associated with incineration has found limited evidence of health risks, but many previous studies have been constrained by poor exposure assessment. This paper provides a comparative assessment of atmospheric dispersion modelling and distance from source (a commonly used proxy for exposure) as exposure assessment methods for pollutants released from incinerators. Methods. Distance from source and the atmospheric dispersion model ADMS-Urban were used to characterise ambient exposures to particulates from two municipal solid waste incinerators (MSWIs) in the UK. Additionally an exploration of the sensitivity of the dispersion model simulations to input parameters was performed. Results. The model output indicated extremely low ground level concentrations of PM10, with maximum concentrations of <0.01 μg/m3. Proximity and modelled PM10 concentrations for both MSWIs at postcode level were highly correlated when using continuous measures (Spearman correlation coefficients ~ 0.7) but showed poor agreement for categorical measures (deciles or quintiles, Cohen's kappa coefficients ≤ 0.5). Conclusion. To provide the most appropriate estimate of ambient exposure from MSWIs, it is essential that incinerator characteristics, magnitude of emissions, and surrounding meteorological and topographical conditions are considered. Reducing exposure misclassification is particularly important in environmental epidemiology to aid detection of low-level risks. PMID:23935644
Tellurite microstructure fibers with small hexagonal core for supercontinuum generation.
Liao, Meisong; Chaudhari, Chitrarekha; Qin, Guanshi; Yan, Xin; Suzuki, Takenobu; Ohishi, Yasutake
2009-07-06
Tellurite glass microstructure fibers with a 1 microm hexagonal core were fabricated successfully by accurately controlling the temperature field in the fiber-drawing process. The diameter ratio of holey region to core (DRHC) for the fiber can be adjusted freely in the range of 1-20 by pumping a positive pressure into the holes when drawing fiber, which provides much freedom in engineering the chromatic dispersion. With the increase of DRHC from 3.5 to 20, the zero dispersion wavelengths were shifted several hundred nanometers, the cutoff wavelength due to confinement loss was increased from 1600 nm to 3800 nm, and the nonlinear coefficient gamma was increased from 3.9 to 5.7 W(-1)/m. Efficient visible emissions due to third harmonic generation were found for fibers with a DRHC of 10 and 20 under the 1557 nm pump of a femtosecond fiber laser. One octave flattened supercontinuum spectrum was generated from fibers with a DRHC of 3.5, 10 and 20 by the 1064 nm pump of a picosecond fiber laser. To the best of our knowledge, we have for the first time fabricated a hexagonal core fiber by soft glass with such a small core size, and have demonstrated a large influence of the holey region on the dispersion, nonlinear coefficient and supercontinuum generation for such fiber.
Dispersal of larval suckers at the Williamson River Delta, Upper Klamath Lake, Oregon, 2006-09
Wood, Tamara M.; Hendrixson, Heather A.; Markle, Douglas F.; Erdman, Charles S.; Burdick, Summer M.; Ellsworth, Craig M.; Buccola, Norman L.
2012-01-01
An advection/diffusion modeling approach was used to simulate the transport of larval suckers from spawning areas in the Williamson River, through the newly restored Williamson River Delta, to Upper Klamath Lake. The density simulations spanned the years of phased restoration, from 2006/2007 prior to any levee breaching, to 2008 when the northern part of the delta was reconnected to the lake, and 2009 when levees on both sides of the delta had been breached. Model simulation results from all four years were compared to field data using rank correlation. Spearman ρ correlation coefficients were usually significant and in the range 0.30 to 0.60, providing moderately strong validation of the model. The correlation coefficients varied with fish size class in a way that suggested that the model best described the distribution of smaller fish near the Williamson River channel, and larger fish away from the channel. When Lost River and shortnose/Klamath largescale suckers were simulated independently, the correlation results suggested that the model better described the transport and dispersal of the latter species. The incorporation of night-time-only drift behavior in the Williamson River channel neither improved nor degraded correlations with field data. The model showed that advection by currents is an important factor in larval dispersal.
Transport of dissolved organic matter in Boom Clay: Size effects
NASA Astrophysics Data System (ADS)
Durce, D.; Aertsens, M.; Jacques, D.; Maes, N.; Van Gompel, M.
2018-01-01
A coupled experimental-modelling approach was developed to evaluate the effects of molecular weight (MW) of dissolved organic matter (DOM) on its transport through intact Boom Clay (BC) samples. Natural DOM was sampled in-situ in the BC layer. Transport was investigated with percolation experiments on 1.5 cm BC samples by measuring the outflow MW distribution (MWD) by size exclusion chromatography (SEC). A one-dimensional reactive transport model was developed to account for retardation, diffusion and entrapment (attachment and/or straining) of DOM. These parameters were determined along the MWD by implementing a discretisation of DOM into several MW points and modelling the breakthrough of each point. The pore throat diameter of BC was determined as 6.6-7.6 nm. Below this critical size, transport of DOM is MW dependent and two major types of transport were identified. Below MW of 2 kDa, DOM was neither strongly trapped nor strongly retarded. This fraction had an averaged capacity factor of 1.19 ± 0.24 and an apparent dispersion coefficient ranging from 7.5 × 10- 11 to 1.7 × 10- 11 m2/s with increasing MW. DOM with MW > 2 kDa was affected by both retardation and straining that increased significantly with increasing MW while apparent dispersion coefficients decreased. Values ranging from 1.36 to 19.6 were determined for the capacity factor and 3.2 × 10- 11 to 1.0 × 10- 11 m2/s for the apparent dispersion coefficient for species with 2.2 kDa < MW < 9.3 kDa. Straining resulted in an immobilisation of in average 49 ± 6% of the injected 9.3 kDa species. Our findings show that an accurate description of DOM transport requires the consideration of the size effects.
Casseau, Vincent; De Croon, Guido; Izzo, Dario; Pandolfi, Camilla
2015-01-01
Tragopogon pratensis is a small herbaceous plant that uses wind as the dispersal vector for its seeds. The seeds are attached to parachutes that increase the aerodynamic drag force and increase the total distance travelled. Our hypothesis is that evolution has carefully tuned the air permeability of the seeds to operate in the most convenient fluid dynamic regime. To achieve final permeability, the primary and secondary fibres of the pappus have evolved with complex weaving; this maximises the drag force (i.e., the drag coefficient), and the pappus operates in an "optimal" state. We used computational fluid dynamics (CFD) simulations to compute the seed drag coefficient and compare it with data obtained from drop experiments. The permeability of the parachute was estimated from microscope images. Our simulations reveal three flow regimes in which the parachute can operate according to its permeability. These flow regimes impact the stability of the parachute and its drag coefficient. From the permeability measurements and drop experiments, we show how the seeds operate very close to the optimal case. The porosity of the textile appears to be an appropriate solution to achieve a lightweight structure that allows a low terminal velocity, a stable flight and a very efficient parachute for the velocity at which it operates.
Kinematic parameters of internal waves of the second mode in the South China Sea
NASA Astrophysics Data System (ADS)
Kurkina, Oxana; Talipova, Tatyana; Soomere, Tarmo; Giniyatullin, Ayrat; Kurkin, Andrey
2017-10-01
Spatial distributions of the main properties of the mode function and kinematic and non-linear parameters of internal waves of the second mode are derived for the South China Sea for typical summer conditions in July. The calculations are based on the Generalized Digital Environmental Model (GDEM) climatology of hydrological variables, from which the local stratification is evaluated. The focus is on the phase speed of long internal waves and the coefficients at the dispersive, quadratic and cubic terms of the weakly non-linear Gardner model. Spatial distributions of these parameters, except for the coefficient at the cubic term, are qualitatively similar for waves of both modes. The dispersive term of Gardner's equation and phase speed for internal waves of the second mode are about a quarter and half, respectively, of those for waves of the first mode. Similarly to the waves of the first mode, the coefficients at the quadratic and cubic terms of Gardner's equation are practically independent of water depth. In contrast to the waves of the first mode, for waves of the second mode the quadratic term is mostly negative. The results can serve as a basis for expressing estimates of the expected parameters of internal waves for the South China Sea.
2015-01-01
Tragopogon pratensis is a small herbaceous plant that uses wind as the dispersal vector for its seeds. The seeds are attached to parachutes that increase the aerodynamic drag force and increase the total distance travelled. Our hypothesis is that evolution has carefully tuned the air permeability of the seeds to operate in the most convenient fluid dynamic regime. To achieve final permeability, the primary and secondary fibres of the pappus have evolved with complex weaving; this maximises the drag force (i.e., the drag coefficient), and the pappus operates in an “optimal” state. We used computational fluid dynamics (CFD) simulations to compute the seed drag coefficient and compare it with data obtained from drop experiments. The permeability of the parachute was estimated from microscope images. Our simulations reveal three flow regimes in which the parachute can operate according to its permeability. These flow regimes impact the stability of the parachute and its drag coefficient. From the permeability measurements and drop experiments, we show how the seeds operate very close to the optimal case. The porosity of the textile appears to be an appropriate solution to achieve a lightweight structure that allows a low terminal velocity, a stable flight and a very efficient parachute for the velocity at which it operates. PMID:25938765
Thompson, Stacey Lee; Bérubé, Yanik; Bruneau, Anne; Ritland, Kermit
2008-10-01
Asexual reproduction has the potential to promote population structuring through matings between clones as well as through limited dispersal of related progeny. Here we present an application of three-gene identity coefficients that tests whether clonal reproduction promotes inbreeding and spatial relatedness within populations. With this method, the first two genes are sampled to estimate pairwise relatedness or inbreeding, whereas the third gene is sampled from either a clone or a sexually derived individual. If three-gene coefficients are significantly greater for clones than nonclones, then clonality contributes excessively to genetic structure. First, we describe an estimator of three-gene identity and briefly evaluate its properties. We then use this estimator to test the effect of clonality on the genetic structure within populations of yellow-cedar (Callitropsis nootkatensis) using a molecular marker survey. Five microsatellite loci were genotyped for 485 trees sampled from nine populations. Our three-gene analyses show that clonal ramets promote inbreeding and spatial structure in most populations. Among-population correlations between clonal extent and genetic structure generally support these trends, yet with less statistical significance. Clones appear to contribute to genetic structure through the limited dispersal of offspring from replicated ramets of the same clonal genet, whereas this structure is likely maintained by mating among these relatives.
On the interatomic potentials for noble gas mixtures
NASA Astrophysics Data System (ADS)
Watanabe, Kyoko; Allnatt, A. R.; Meath, William J.
1982-07-01
Recently, a relatively simple scheme for the construction of isotropic intermolecular potentials has been proposed and tested for the like species interactions involving He, Ne, Ar, Kr and H 2. The model potential has an adjustable parameter which controls the balance between its exchange and Coulomb energy components. The representation of the Coulomb energy contains a damped multipolar dispersion energy series (which is truncated through O( R-10) and provides additional flexibility through adjustment of the dispersion energy coefficients, particularly C8 and C10, within conservative error estimates. In this paper the scheme is tested further by application to interactions involving unlike noble gas atoms where the parameters in the potential model are determined by fitting mixed second virial coefficient data as a function of temperature. Generally the approach leads to potential of accuracy comparable to the best available literature potentials which are usually determined using a large base of experimental and theoretical input data. Our results also strongly indicate the need of high quality virial data.
NASA Astrophysics Data System (ADS)
Zhang, Qi-Xian; Wei, Wen-Sheng; Ruan, Fang-Ping
2011-04-01
Gallium phosphide (GaP) nanoparticulate thin films were easily fabricated by colloidal suspension deposition via GaP nanoparticles dispersed in N,N-dimethylformamide. The microstructure of the film was performed by x-ray diffraction, high resolution transmission electron microscopy and field emission scanning electron microscopy. The film was further investigated by spectroscopic ellipsometry. After the model GaP+void|SiO2 was built and an effective medium approximation was adopted, the values of the refractive index n and the extinction coefficient k were calculated for the energy range of 0.75 eV-4.0 eV using the dispersion formula in DeltaPsi2 software. The absorption coefficient of the film was calculated from its k and its energy gaps were further estimated according to the Tauc equation, which were further verified by its fluorescence spectrum measurement. The structure and optical absorption properties of the nanoparticulate films are promising for their potential applications in hybrid solar cells.
NASA Astrophysics Data System (ADS)
Chen, Jui-Sheng; Li, Loretta Y.; Lai, Keng-Hsin; Liang, Ching-Ping
2017-11-01
A novel solution method is presented which leads to an analytical model for the advective-dispersive transport in a semi-infinite domain involving a wide spectrum of boundary inputs, initial distributions, and zero-order productions. The novel solution method applies the Laplace transform in combination with the generalized integral transform technique (GITT) to obtain the generalized analytical solution. Based on this generalized analytical expression, we derive a comprehensive set of special-case solutions for some time-dependent boundary distributions and zero-order productions, described by the Dirac delta, constant, Heaviside, exponentially-decaying, or periodically sinusoidal functions as well as some position-dependent initial conditions and zero-order productions specified by the Dirac delta, constant, Heaviside, or exponentially-decaying functions. The developed solutions are tested against an analytical solution from the literature. The excellent agreement between the analytical solutions confirms that the new model can serve as an effective tool for investigating transport behaviors under different scenarios. Several examples of applications, are given to explore transport behaviors which are rarely noted in the literature. The results show that the concentration waves resulting from the periodically sinusoidal input are sensitive to dispersion coefficient. The implication of this new finding is that a tracer test with a periodic input may provide additional information when for identifying the dispersion coefficients. Moreover, the solution strategy presented in this study can be extended to derive analytical models for handling more complicated problems of solute transport in multi-dimensional media subjected to sequential decay chain reactions, for which analytical solutions are not currently available.
Webb, N J; Ibrahim, K M; Bell, D J; Hewitt, G M
1995-04-01
A combination of behavioural observation, DNA fingerprinting, and allozyme analysis were used to examine natal dispersal in a wild rabbit population. Rabbits lived in territorial, warren based social groups. Over a 6-year period, significantly more male than female rabbits moved to a new social group before the start of their first breeding season. This pattern of female philopatry and male dispersal was reflected in the genetic structure of the population. DNA fingerprint band-sharing coefficients were significantly higher for females within the same group than for females between groups, while this was not the case for males. Wright's inbreeding coefficients were calculated from fingerprint band-sharing values and compared to those obtained from allozyme data. There was little correlation between the relative magnitudes of the F-statistics calculated using the two techniques for comparisons between different social groups. In contrast, two alternative methods for calculating FST from DNA fingerprints gave reasonably concordant values although those based on band-sharing were consistently lower than those calculated by an 'allele' frequency approach. A negative FIS value was obtained from allozyme data. Such excess heterozygosity within social groups is expected even under random mating given the social structure and sex-biased dispersal but it is argued that the possibility of behavioural avoidance of inbreeding should not be discounted in this species. Estimates of genetic differentiation obtained from allozyme and DNA fingerprint data agreed closely with reported estimates for the yellow-bellied marmot, a species with a very similar social structure to the European rabbit.
Waves propagating over a two-layer porous barrier on a seabed
NASA Astrophysics Data System (ADS)
Lin, Qiang; Meng, Qing-rui; Lu, Dong-qiang
2018-05-01
A research of wave propagation over a two-layer porous barrier, each layer of which is with different values of porosity and friction, is conducted with a theoretical model in the frame of linear potential flow theory. The model is more appropriate when the seabed consists of two different properties, such as rocks and breakwaters. It is assumed that the fluid is inviscid and incompressible and the motion is irrotational. The wave numbers in the porous region are complex ones, which are related to the decaying and propagating behaviors of wave modes. With the aid of the eigenfunction expansions, a new inner product of the eigenfunctions in the two-layer porous region is proposed to simplify the calculation. The eigenfunctions, under this new definition, possess the orthogonality from which the expansion coefficients can be easily deduced. Selecting the optimum truncation of the series, we derive a closed system of simultaneous linear equations for the same number of the unknown reflection and transmission coefficients. The effects of several physical parameters, including the porosity, friction, width, and depth of the porous barrier, on the dispersion relation, reflection and transmission coefficients are discussed in detail through the graphical representations of the solutions. It is concluded that these parameters have certain impacts on the reflection and transmission energy.
Temperature-dependent Absolute Refractive Index Measurements of Synthetic Fused Silica
NASA Technical Reports Server (NTRS)
Leviton, Douglas B.; Frey, Bradley J.
2006-01-01
Using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we have measured the absolute refractive index of five specimens taken from a very large boule of Corning 7980 fused silica from temperatures ranging from 30 to 310 K at wavelengths from 0.4 to 2.6 microns with an absolute uncertainty of plus or minus 1 x 10 (exp -5). Statistical variations in derived values of the thermo-optic coefficient (dn/dT) are at the plus or minus 2 x 10 (exp -8)/K level. Graphical and tabulated data for absolute refractive index, dispersion, and thermo-optic coefficient are presented for selected wavelengths and temperatures along with estimates of uncertainty in index. Coefficients for temperature-dependent Sellmeier fits of measured refractive index are also presented to allow accurate interpolation of index to other wavelengths and temperatures. We compare our results to those from an independent investigation (which used an interferometric technique for measuring index changes as a function of temperature) whose samples were prepared from the same slugs of material from which our prisms were prepared in support of the Kepler mission. We also compare our results with sparse cryogenic index data from measurements of this material from the literature.
Optical band gap studies on lithium aluminum silicate glasses doped with Cr3+ ions
NASA Astrophysics Data System (ADS)
El-Diasty, Fouad; Abdel Wahab, Fathy A.; Abdel-Baki, Manal
2006-11-01
Lithium aluminum silicate glass system (LAS) implanted with chromium ions is prepared. The reflectance and transmittance measurements are used to determine the dispersion of absorption coefficient. The optical data are explained in terms of the different oxidation states adopted by the chromium ions into the glass network. It is found that the oxidation state of the chromium depends on its concentration. Across a wide spectral range, 0.2-1.6μm, analysis of the fundamental absorption edge provides values for the average energy band gaps for allowed direct and indirect transitions. The optical absorption coefficient just below the absorption edge varies exponentially with photon energy indicating the presence of Urbach's tail. Such tail is decreased with the increase of the chromium dopant. From the analysis of the optical absorption data, the absorption peak at ground state exciton energy, the absorption at band gap, and the free exciton binding energy are determined. The extinction coefficient data are used to determine the Fermi energy level of the studied glasses. The metallization criterion is obtained and discussed exploring the nature of the glasses. The measured IR spectra of the different glasses are used to throw some light on the optical properties of the present glasses correlating them with their structure and composition.
Micro-Fluidic Diffusion Coefficient Measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forster, F.K.; Galambos, P.
1998-10-06
A new method for diffusion coefficient measurement applicable to micro-fluidics is pre- sented. The method Iltilizes an analytical model describing laminar dispersion in rect- anglllar ~llicro_channe]s. The Illethod ~vas verified throllgh measllremen~ of fllloresceill diffusivity in water and aqueolls polymer solutions of differing concentration. The diffll- sivity of flllorescein was measlmed as 0.64 x 10-gm2/s in water, 0.49 x 10-gm2/s in the 4 gm/dl dextran solution and 0.38 x 10-9n12/s in the 8 gnl/dl dextran solution.
2010-02-19
attenuation is a function of the Hurst exponent which characterizes the fractal het- erogeneity. Muller and Gurevich15,16 used statistical smoothing of...modified Bessel function of the third kind, Γ denotes the gamma function, and ν is the Hurst coefficient which is assumed to be 0 < ν ≤ 1. The three...The Hurst coefficient, ν, is ν = 0.1 (long-dashed line), ν = 0.5 (short-dashed line), and ν = 0.9 (long-short dashed line). In (a) the sound speed
NASA Astrophysics Data System (ADS)
Cerbino, Roberto; Piotti, Davide; Buscaglia, Marco; Giavazzi, Fabio
2018-01-01
Micro- and nanoscale objects with anisotropic shape are key components of a variety of biological systems and inert complex materials, and represent fundamental building blocks of novel self-assembly strategies. The time scale of their thermal motion is set by their translational and rotational diffusion coefficients, whose measurement may become difficult for relatively large particles with small optical contrast. Here we show that dark field differential dynamic microscopy is the ideal tool for probing the roto-translational Brownian motion of anisotropic shaped particles. We demonstrate our approach by successful application to aqueous dispersions of non-motile bacteria and of colloidal aggregates of spherical particles.
Taming axial dispersion in hydrodynamic chromatography columns through wall patterning
NASA Astrophysics Data System (ADS)
Adrover, Alessandra; Cerbelli, Stefano; Giona, Massimiliano
2018-04-01
A well-known limitation of hydrodynamic chromatography arises from the synergistic interaction between transverse diffusion and streamwise convection, which enhances axial dispersion through the Taylor-Aris mechanism. We show that a periodic sequence of slip/no-slip conditions at the channel walls (e.g., representing wall indentations hosting stable air pockets) can significantly reduce axial dispersion, thus enhancing separation performance. The theoretical/numerical analysis is based on a generalization of Brenner's macrotransport approach to solute transport, here modified to account for the finite-size of the suspended particles. The most effective dispersion-taming outcome is observed when the alternating sequence of slip/no-slip conditions yields non-vanishing cross-sectional flow components. The combination of these components with the hindering interaction between the channel boundaries and the finite-sized particles gives rise to a non-trivial solution of Brenner's problem on the unit periodic cell, where the cross-sectional particle number density departs from the spatially homogeneous condition. In turn, this effect impacts upon the solution of the so-called b-field defining the large-scale dispersion tensor, with an overall decremental effect on the axial dispersion coefficient and on the Height Equivalent of a Theoretical Plate.
A novel structure photonic crystal fiber based on bismuth-oxide for optical parametric amplification
NASA Astrophysics Data System (ADS)
Jin, Cang; Yuan, Jinhui; Yu, Chongxiu
2010-11-01
The heavy metal oxide glasses containing bismuth such as bismuth sesquioxide show unique high refractive index. In addition, the bismuth-oxide based glass does not include toxic elements such as Pb, As, Se, Te, and exhibits well chemical, mechanical and thermal stability. Hence, it is used to fabricate high nonlinear fiber for nonlinear optical application. Although the bismuth-oxide based high nonlinear fiber can be fusion-spliced to conventional silica fibers and have above advantages, yet it suffers from large group velocity dispersion because of material chromatic dispersion which restricts its utility. In regard to this, the micro-structure was introduced to adjust the dispersion of bismuth-oxide high nonlinear fiber in the 1550nm wave-band. In this paper, a hexagonal solid-core micro-structure is developed to balance its dispersion and nonlinearity. Our simulation and calculation results show that the bismuth-oxide based photonic crystal fiber has near zero dispersion around 1550nm where the optical parametric amplification suitable wavelength is. Its dispersion slop in the communication wavelength range is also relatively flat. Moreover, both nonlinear coefficient and model filed distribution were simulated, respectively.
Cheng, Lizhen; Gai, Xiumei; Wen, Haoyang; Liu, Dandan; Tang, Xin; Wang, Yanyan; Wang, Tuanjie; Pan, Weisan; Yang, Xinggang
2018-01-01
The objective of this study was to investigate the fundamental properties of propranolol hydrochloride osmotic pump tablets coated by aqueous polymer dispersion, simultaneously exploring the in vitro and in vivo correlation of the tablet. The physicochemical properties and parameters of aqueous polymer dispersion membranes (SEM, water uptake, and water vapor transmission coefficient) were investigated. In addition, the release behavior and the in vitro release and in vivo absorption profiles of the tablets coated by aqueous polymer dispersion were investigated by comparing with propranolol hydrochloride osmotic pump tablets coated by an organic solvent. Results showed that the similarity factor (f 2 ) between cellulose acetate-coated tablet and Eudragit-coated tablet was 78.1, and f 2 between cellulose acetate-coated tablet and Kollicoat-coated tablet was 77.6. The linear IVIVC of Eudragit-coated and Kollicoat-coated osmotic pump tablets was determined, which confirmed excellent correlation between the absorption in vivo and the drug release in vitro. Consequently, the membrane coated by aqueous polymer dispersion or organic solvent has similar in vitro release rates of controlled release. Also, compared with organic solvent coating, aqueous polymer dispersion has numerous advantages, such as reduced toxicity and no environmental damage. Therefore, the aqueous polymer dispersion technology has enormous potential as a replacement of organic solvent coating.
The second virial coefficient of bounded Mie potentials
NASA Astrophysics Data System (ADS)
Heyes, D. M.; Pereira de Vasconcelos, T.
2017-12-01
The second virial coefficient (SVC) of bounded generalizations of the Mie m:n potential ϕ (r ) =λ [1 /(aq+rq ) m /q-1 /(aq+rq ) n /q ] , where λ, a, q, m, and n are constants (a ≥ 0), is explored. The particle separation distance is r. This potential could be used as an effective interaction between polymeric dispersed colloidal particles of various degrees of interpenetrability. The SVC is negative for all temperatures for a, greater than a critical value, ac, which coincides with the range of a, where the system is thermodynamically unstable. The Boyle temperature and the temperature at which the SVC is a maximum diverge to +∞ as a → ac from below. Various series expansion expressions for the SVC are derived following on from those derived for the Mie potential itself (i.e., a = 0) in the study of Heyes et al. [J. Chem. Phys. 145, 084505 (2016)]. Formulas based on an expansion of the exponential in the Mayer function definition of the SVC are formally convergent, but pose numerical problems for the useful range of a < 1. High temperature expansion (HTE) formulas extending those in the previous publication are derived, which in contrast converge rapidly for the full a range. The HTE formulas derived in this work could be useful in guiding the choice of nucleation and growth experimental conditions for dispersed soft polymeric particles. Inter alia, the SVC of the inverse power special case of the Bounded Mie potential, i .e ., ϕ (r ) =1 /(aq+rq ) m /q, are also derived.
The Role and Modeling of Dispersive Stresses
NASA Astrophysics Data System (ADS)
Shavit, U.; Moltchanov, S.
2012-12-01
Dispersive stresses represent momentum fluxes that are induced by the spatial heterogeneity of flow environments such as forest canopies, river vegetation and coral reefs. When deriving the average momentum equation for such flow environments, these dispersive stresses resemble the Reynolds stresses but instead of correlations of temporal fluctuations they represent correlations of spatial fluctuations. Surprisingly, these stresses are ignored in flow models and very few studies attempted to provide a physical interpretation, let alone a closure model. Typical arguments that justify such modeling are that these stresses are small and negligible; however, recent studies have shown that they may be important. In a recent study we showed that dispersive stresses at the inlet to obstructed region (made of glass cylinders) are larger than the Reynolds stresses and their contribution to the momentum balance is as important as the pressure and the drag forces. In this presentation we will try to explain what they are, provide some intuitive physical interoperation and show that closure models can be developed. Our results are based on highly detailed particle image velocimeter (PIV) measurements that were obtained inside a canopy model made of vertical thin glass plates. Forty nine vertical cross sections were obtained 1000 times generating a huge dataset of more than 250 million data points for each flow conditions. A careful spatial averaging procedure was developed and both temporal and spatial correlations were obtained. An order of magnitude analysis will be presented and the role of each of the terms in the momentum equation will be evaluated. It will be shown that the dispersive stresses are large and significant within the area of the canopy leading edge. Since dispersive stresses do not exist upstream from the canopy they are expected to grow once the flow enters the canopy. Our PIV data shows an initial fast growth up to about one length scale into the patch. Following this peak value the dispersive stresses decrease, reaching low and constant values further downstream. The actual distance of importance depends on the drag imposed by the canopy. The challenging task of studying dispersive stresses is the development of closure models. We will demonstrate a linear relationship between the normal dispersive stresses and the square of the double-average velocity. We will also show that the non-constant proportionality coefficient depends on the area of the wakes behind the obstacles. We will propose a simple formulation for this coefficient and will use our detailed PIV measurements to demonstrate the good agreement between the modeled and measured stresses, both at the entry region and in the fully-developed region.
Metal wires for terahertz wave guiding.
Wang, Kanglin; Mittleman, Daniel M
2004-11-18
Sources and systems for far-infrared or terahertz (1 THz = 10(12) Hz) radiation have received extensive attention in recent years, with applications in sensing, imaging and spectroscopy. Terahertz radiation bridges the gap between the microwave and optical regimes, and offers significant scientific and technological potential in many fields. However, waveguiding in this intermediate spectral region still remains a challenge. Neither conventional metal waveguides for microwave radiation, nor dielectric fibres for visible and near-infrared radiation can be used to guide terahertz waves over a long distance, owing to the high loss from the finite conductivity of metals or the high absorption coefficient of dielectric materials in this spectral range. Furthermore, the extensive use of broadband pulses in the terahertz regime imposes an additional constraint of low dispersion, which is necessary for compatibility with spectroscopic applications. Here we show how a simple waveguide, namely a bare metal wire, can be used to transport terahertz pulses with virtually no dispersion, low attenuation, and with remarkable structural simplicity. As an example of this new waveguiding structure, we demonstrate an endoscope for terahertz pulses.
Hambardzumyan, Arayik; Foulon, Laurence; Chabbert, Brigitte; Aguié-Béghin, Véronique
2012-12-10
Novel nanocomposite coatings composed of cellulose nanocrystals (CNCs) and lignin (either synthetic or fractionated from spruce and corn stalks) were prepared without chemical modification or functionalization (via covalent attachment) of one of the two biopolymers. The spectroscopic properties of these coatings were investigated by UV-visible spectrophotometry and spectroscopic ellipsometry. When using the appropriate weight ratio of CNC/lignin (R), these nanocomposite systems exhibited high-performance optical properties, high transmittance in the visible spectrum, and high blocking in the UV spectrum. Atomic force microscopy analysis demonstrated that these coatings were smooth and homogeneous, with visible dispersed lignin nodules in a cellulosic matrix. It was also demonstrated that the introduction of nanoparticles into the medium increases the weight ratio and the CNC-specific surface area, which allows better dispersion of the lignin molecules throughout the solid film. Consequently, the larger molecular expansion of these aromatic polymers on the surface of the cellulosic nanoparticles dislocates the π-π aromatic aggregates, which increases the extinction coefficient and decreases the transmittance in the UV region. These nanocomposite coatings were optically transparent at visible wavelengths.
Spatial dynamics of a population with stage-dependent diffusion
NASA Astrophysics Data System (ADS)
Azevedo, F.; Coutinho, R. M.; Kraenkel, R. A.
2015-05-01
We explore the spatial dynamics of a population whose individuals go through life stages with very different dispersal capacities. We model it through a system of partial differential equations of the reaction-diffusion kind, with nonlinear diffusion terms that may depend on population density and on the stage. This model includes a few key biological ingredients: growth and saturation, life stage structure, small population effects, and diffusion dependent on the stage. In particular, we consider that adults exhibit two distinct classes: one highly mobile and the other less mobile but with higher fecundity rate, and the development of juveniles into one or the other depends on population density. We parametrize the model with estimated parameters of an insect species, the brown planthopper. We focus on a situation akin to an invasion of the species in a new habitat and find that the front of invasion is led by the most mobile adult class. We also show that the trade-off between dispersal and fecundity leads to invasion speed attaining its maximum at an intermediate value of the diffusion coefficient of the most mobile class.
NASA Astrophysics Data System (ADS)
Alvarez-Chavez, J. A.; Sanchez-Lara, R.; Martinez-Piñon, F.; Mendez-Martinez, F.; de la Cruz-May, L.; Perez-Sanchez, G. G.
2015-04-01
Dense wavelength division multiplexing (DWDM) systems are normally limited by stimulated Brillouin scattering (SBS), stimulated Raman scattering (SRS), self-phase modulation (SPM), cross-phase modulation (XPM) and four-wave mixing (FWM) besides amplified spontaneous emission (ASE) noise from erbium-doped fiber amplifiers (EDFAs). In this paper, theoretical calculation of FWM-based limits and noise from EDFAs in the 1535-1565 nm region, are reported. Results show that FWM power per channel extended from -55 to -20 dBm for dispersion values of 0.0, 0.5, 1.0 and 1.5 ps (nmṡkm)-1. In a similar manner, for negative dispersion coefficient (D) values ranging from 0.0 to -1.5 ps (nmṡkm)-1, the FWM power per channel extended from -60 to -30 dBm. As for the maximum span length, the calculations demonstrated a rigorous limitation due to noise, suggesting error compensation techniques. A full set of results for the design of multi-span links is included.
Roosta, Mostafa; Ghaedi, Mehrorang; Daneshfar, Ali
2014-10-15
A novel approach, ultrasound-assisted reverse micelles dispersive liquid-liquid microextraction (USA-RM-DLLME) followed by high performance liquid chromatography (HPLC) was developed for selective determination of acetoin in butter. The melted butter sample was diluted and homogenised by n-hexane and Triton X-100, respectively. Subsequently, 400μL of distilled water was added and the microextraction was accelerated by 4min sonication. After 8.5min of centrifugation, sedimented phase (surfactant-rich phase) was withdrawn by microsyringe and injected into the HPLC system for analysis. The influence of effective variables was optimised using Box-Behnken design (BBD) combined with desirability function (DF). Under optimised experimental conditions, the calibration graph was linear over the range of 0.6-200mgL(-1). The detection limit of method was 0.2mgL(-1) and coefficient of determination was 0.9992. The relative standard deviations (RSDs) were less than 5% (n=5) while the recoveries were in the range of 93.9-107.8%. Copyright © 2014. Published by Elsevier Ltd.
Huguin, Maïlis; Arechiga-Ceballos, Nidia; Delaval, Marguerite; Guidez, Amandine; de Castro, Isaï Jorge; Lacoste, Vincent; Salmier, Arielle; Setién, Alvaro Aguilar; Silva, Claudia Regina; Lavergne, Anne; de Thoisy, Benoit
2018-05-11
Social systems are major drivers of population structure and gene flow, with important effects on dynamics and dispersal of associated populations of parasites. Among bats, the common vampire bat (Desmodus rotundus) has likely one of the most complex social structures. Using autosomal and mitochondrial markers on vampires from Mexico, French Guiana, and North Brazil, from both roosting and foraging areas, we observed an isolation by distance at the wider scale and lower but significant differentiation between closer populations (<50 km). All populations had a low level of relatedness and showed deviations from Hardy-Weinberg equilibrium and a low but significant inbreeding coefficient. The associated heterozygote deficiency was likely related to a Wahlund effect and to cryptic structures, reflecting social groups living in syntopy, both in roosting and foraging areas, with only limited admixture. Discrepancy between mitochondrial and nuclear markers suggests female philopatry and higher dispersal rates in males, associated with peripheral positions in the groups. Vampires are also the main neotropical reservoir for rabies virus, one of the main lethal pathogens for humans. Female social behaviors and trophallaxis may favor a rapid spread of virus to related and unrelated offspring and females. The high dispersal capacity of males may explain the wider circulation of viruses and the inefficacy of bat population controls. In such opportunistic species, gene connectivity should be considered for management decision making. Strategies such as culling could induce immigration of bats from neighboring colonies to fill vacant roosts and feeding areas, associated with the dispersal of viral strains.
NASA Astrophysics Data System (ADS)
Gillham, R. W.; Sudicky, E. A.; Cherry, J. A.; Frind, E. O.
1984-03-01
In layered permeable deposits with flow predominately parallel to the bedding, advection causes rapid solute transport in the more permeable layers. As the solute advances more rapidly in these layers, solute mass is continually transferred to the less permeable layers as a result of molecular diffusion due to the concentration gradient between the layers. The interlayer solute transfer causes the concentration to decline along the permeable layers at the expense of increasing the concentration in the less permeable layers, which produces strongly dispersed concentration profiles in the direction of flow. The key parameters affecting the dispersive capability of the layered system are the diffusion coefficients for the less permeable layers, the thicknesses of the layers, and the hydraulic conductivity contrasts between the layers. Because interlayer solute transfer by transverse molecular diffusion is a time-dependent process, the advection-diffusion concept predicts a rate of longitudinal spreading during the development of the dispersion process that is inconsistent with the classical Fickian dispersion model. A second consequence of the solute-storage effect offered by transverse diffusion into low-permeability layers is a rate of migration of the frontal portion of a contaminant in the permeable layers that is less than the groundwater velocity. Although various lines of evidence are presented in support of the advection-diffusion concept, more work is required to determine the range of geological materials for which it is applicable and to develop mathematical expressions that will make it useful as a predictive tool for application to field cases of contaminant migration.
Magnetic resonance dispersion imaging for localization of angiogenesis and cancer growth.
Mischi, Massimo; Turco, Simona; Lavini, Cristina; Kompatsiari, Kyveli; de la Rosette, Jean J M C H; Breeuwer, Marcel; Wijkstra, Hessel
2014-08-01
Cancer angiogenesis can be imaged by using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Pharmacokinetic modeling can be used to assess vascular perfusion and permeability, but the assessment of angiogenic changes in the microvascular architecture remains challenging. This article presents 2 models enabling the characterization of the microvascular architecture by DCE-MRI. The microvascular architecture is reflected in the dispersion coefficient according to the convective dispersion equation. A solution of this equation, combined with the Tofts model, permits defining a dispersion model for magnetic resonance imaging. A reduced dispersion model is also presented. The proposed models were evaluated for prostate cancer diagnosis. Dynamic contrast-enhanced magnetic resonance imaging was performed, and concentration-time curves were calculated in each voxel. The simultaneous generation of parametric maps related to permeability and dispersion was obtained through model fitting. A preliminary validation was carried out through comparison with the histology in 15 patients referred for radical prostatectomy. Cancer localization was accurate with both dispersion models, with an area under the receiver operating characteristic curve greater than 0.8. None of the compared parameters, aimed at assessing vascular permeability and perfusion, showed better results. A new DCE-MRI method is proposed to characterize the microvascular architecture through the assessment of intravascular dispersion, without the need for separate arterial-input-function estimation. The results are promising and encourage further research.
High-frequency sum rules for classical one-component plasma in a magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genga, R.O.
A high-frequency sum-rule expansion is derived for all elements of a classical plasma dielectric tensor in the presence of an external magnetic field. Omega/sub 4//sup 13/ is found to be the only coefficient of omega/sup -4/ that has no correlational and finite-radiation-temperature contributions. The finite-radiation-temperature effect results in an upward renormalization of the frequencies of the modes; it also leads to either reduction of the negative correlational effect on the positive thermal dispersion or, together with correlation, enhancement of the positive thermal dispersion for finite k, depending on the direction of propagation. Further, for the extraordinary mode, the finite-radiation-temperature effectmore » increases the positive refractive dispersion for finite k.« less
Guo, Xiao; Wei, Peijun; Lan, Man; Li, Li
2016-08-01
The effects of functionally graded interlayers on dispersion relations of elastic waves in a one-dimensional piezoelectric/piezomagnetic phononic crystal are studied in this paper. First, the state transfer equation of the functionally graded interlayer is derived from the motion equation by the reduction of order (from second order to first order). The transfer matrix of the functionally graded interlayer is obtained by solving the state transfer equation with the spatial-varying coefficient. Based on the transfer matrixes of the piezoelectric slab, the piezomagnetic slab and the functionally graded interlayers, the total transfer matrix of a single cell is obtained. Further, the Bloch theorem is used to obtain the resultant dispersion equations of in-plane and anti-plane Bloch waves. The dispersion equations are solved numerically and the numerical results are shown graphically. Five kinds of profiles of functionally graded interlayers between a piezoelectric slab and a piezomagnetic slab are considered. It is shown that the functionally graded interlayers have evident influences on the dispersion curves and the band gaps. Copyright © 2016 Elsevier B.V. All rights reserved.
Social Mating System and Sex-Biased Dispersal in Mammals and Birds: A Phylogenetic Analysis
Mabry, Karen E.; Shelley, Erin L.; Davis, Katie E.; Blumstein, Daniel T.; Van Vuren, Dirk H.
2013-01-01
The hypothesis that patterns of sex-biased dispersal are related to social mating system in mammals and birds has gained widespread acceptance over the past 30 years. However, two major complications have obscured the relationship between these two behaviors: 1) dispersal frequency and dispersal distance, which measure different aspects of the dispersal process, have often been confounded, and 2) the relationship between mating system and sex-biased dispersal in these vertebrate groups has not been examined using modern phylogenetic comparative methods. Here, we present a phylogenetic analysis of the relationship between mating system and sex-biased dispersal in mammals and birds. Results indicate that the evolution of female-biased dispersal in mammals may be more likely on monogamous branches of the phylogeny, and that females may disperse farther than males in socially monogamous mammalian species. However, we found no support for a relationship between social mating system and sex-biased dispersal in birds when the effects of phylogeny are taken into consideration. We caution that although there are larger-scale behavioral differences in mating system and sex-biased dispersal between mammals and birds, mating system and sex-biased dispersal are far from perfectly associated within these taxa. PMID:23483957
Optical phantoms with adjustable subdiffusive scattering parameters
NASA Astrophysics Data System (ADS)
Krauter, Philipp; Nothelfer, Steffen; Bodenschatz, Nico; Simon, Emanuel; Stocker, Sabrina; Foschum, Florian; Kienle, Alwin
2015-10-01
A new epoxy-resin-based optical phantom system with adjustable subdiffusive scattering parameters is presented along with measurements of the intrinsic absorption, scattering, fluorescence, and refractive index of the matrix material. Both an aluminium oxide powder and a titanium dioxide dispersion were used as scattering agents and we present measurements of their scattering and reduced scattering coefficients. A method is theoretically described for a mixture of both scattering agents to obtain continuously adjustable anisotropy values g between 0.65 and 0.9 and values of the phase function parameter γ in the range of 1.4 to 2.2. Furthermore, we show absorption spectra for a set of pigments that can be added to achieve particular absorption characteristics. By additional analysis of the aging, a fully characterized phantom system is obtained with the novelty of g and γ parameter adjustment.
NASA Astrophysics Data System (ADS)
Yang, Qin; Zhang, Jie-Fang
Optical quasi-soliton solutions for the cubic-quintic nonlinear Schrödinger equation (CQNLSE) with variable coefficients are considered. Based on the extended tanh-function method, we not only successfully obtained bright and dark quasi-soliton solutions, but also obtained the kink quasi-soliton solutions under certain parametric conditions. We conclude that the quasi-solitons induced by the combined effects of the group velocity dispersion (GVD) distribution, the nonlinearity distribution, higher-order nonlinearity distribution, and the amplification or absorption coefficient are quite different from those of the solitons induced only by the combined effects of the GVD, the nonlinearity distribution, and the amplification or absorption coefficient without considering the higher-order nonlinearity distribution (i.e. α(z)=0). Furthermore, we choose appropriate optical fiber parameters D(z) and R(z) to control the velocity of quasi-soliton and time shift, and discuss the evolution behavior of the special quasi-soliton.
Superdiffusive Dispersals Impart the Geometry of Underlying Random Walks
NASA Astrophysics Data System (ADS)
Zaburdaev, V.; Fouxon, I.; Denisov, S.; Barkai, E.
2016-12-01
It is recognized now that a variety of real-life phenomena ranging from diffusion of cold atoms to the motion of humans exhibit dispersal faster than normal diffusion. Lévy walks is a model that excelled in describing such superdiffusive behaviors albeit in one dimension. Here we show that, in contrast to standard random walks, the microscopic geometry of planar superdiffusive Lévy walks is imprinted in the asymptotic distribution of the walkers. The geometry of the underlying walk can be inferred from trajectories of the walkers by calculating the analogue of the Pearson coefficient.
Design considerations for multi component molecular-polymeric nonlinear optical materials
NASA Astrophysics Data System (ADS)
Singer, K. D.; Kuzyk, M. G.; Fang, T.; Holland, W. R.; Cahill, P. A.
1990-08-01
We review our work on multi component polymeric nonlinear optical materials. These materials consist of nonlinear optical molecules incorporated in a polymeric host. A cross-linked triazine polymer incorporating a dicyanovinyl terminated azo dye was found to be relatively stable at 85 deg and possess an electro-optic coefficient of 11pm/V. We have also observed the zero dispersion condition in a new anomalous dispersion dye for phase matched second harmonic generation, and expect efficient conversion to the blue. A squarylium dye, ISQ, has been found to possess a large third order nonlinearity, and may display two-level behavior.
Thermodynamics of saline and fresh water mixing in estuaries
NASA Astrophysics Data System (ADS)
Zhang, Zhilin; Savenije, Hubert H. G.
2018-03-01
The mixing of saline and fresh water is a process of energy dissipation. The freshwater flow that enters an estuary from the river contains potential energy with respect to the saline ocean water. This potential energy is able to perform work. Looking from the ocean to the river, there is a gradual transition from saline to fresh water and an associated rise in the water level in accordance with the increase in potential energy. Alluvial estuaries are systems that are free to adjust dissipation processes to the energy sources that drive them, primarily the kinetic energy of the tide and the potential energy of the river flow and to a minor extent the energy in wind and waves. Mixing is the process that dissipates the potential energy of the fresh water. The maximum power (MP) concept assumes that this dissipation takes place at maximum power, whereby the different mixing mechanisms of the estuary jointly perform the work. In this paper, the power is maximized with respect to the dispersion coefficient that reflects the combined mixing processes. The resulting equation is an additional differential equation that can be solved in combination with the advection-dispersion equation, requiring only two boundary conditions for the salinity and the dispersion. The new equation has been confronted with 52 salinity distributions observed in 23 estuaries in different parts of the world and performs very well.
Velocity ratio and its application to predicting velocities
Lee, Myung W.
2003-01-01
The velocity ratio of water-saturated sediment derived from the Biot-Gassmann theory depends mainly on the Biot coefficient?a property of dry rock?for consolidated sediments with porosity less than the critical porosity. With this theory, the shear moduli of dry sediments are the same as the shear moduli of water-saturated sediments. Because the velocity ratio depends on the Biot coefficient explicitly, Biot-Gassmann theory accurately predicts velocity ratios with respect to differential pressure for a given porosity. However, because the velocity ratio is weakly related to porosity, it is not appropriate to investigate the velocity ratio with respect to porosity (f). A new formulation based on the assumption that the velocity ratio is a function of (1?f)n yields a velocity ratio that depends on porosity, but not on the Biot coefficient explicitly. Unlike the Biot-Gassmann theory, the shear moduli of water-saturated sediments depend not only on the Biot coefficient but also on the pore fluid. This nonclassical behavior of the shear modulus of water-saturated sediment is speculated to be an effect of interaction between fluid and the solid matrix, resulting in softening or hardening of the rock frame and an effect of velocity dispersion owing to local fluid flow. The exponent n controls the degree of softening/hardening of the formation. Based on laboratory data measured near 1 MHz, this theory is extended to include the effect of differential pressure on the velocity ratio by making n a function of differential pressure and consolidation. However, the velocity dispersion and anisotropy are not included in the formulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, D.; Yang, L. J., E-mail: yanglj@mail.xjtu.edu.cn; Ma, J. B.
The paper has proposed a new triggering method for long spark gap based on capillary plasma ejection and conducted the experimental verification under the extremely low working coefficient, which represents that the ratio of the spark gap charging voltage to the breakdown voltage is particularly low. The quasi-neutral plasma is ejected from the capillary and develops through the axial direction of the spark gap. The electric field in the spark gap is thus changed and its breakdown is incurred. It is proved by the experiments that the capillary plasma ejection is effective in triggering the long spark gap under themore » extremely low working coefficient in air. The study also indicates that the breakdown probabilities, the breakdown delay, and the delay dispersion are all mainly determined by the characteristics of the ejected plasma, including the length of the plasma flow, the speed of the plasma ejection, and the ionization degree of the plasma. Moreover, the breakdown delay and the delay dispersion increase with the length of the long spark gap, and the polarity effect exists in the triggering process. Lastly, compared with the working patterns of the triggering device installed in the single electrode, the working pattern of the devices installed in both the two electrodes, though with the same breakdown process, achieves the ignition under longer gap distance. To be specific, at the gap length of 14 cm and the working coefficient of less than 2%, the spark gap is still ignited accurately.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cotte, F.P.; Doughty, C.; Birkholzer, J.
2010-11-01
The ability to reliably predict flow and transport in fractured porous rock is an essential condition for performance evaluation of geologic (underground) nuclear waste repositories. In this report, a suite of programs (TRIPOLY code) for calculating and analyzing flow and transport in two-dimensional fracture-matrix systems is used to model single-well injection-withdrawal (SWIW) tracer tests. The SWIW test, a tracer test using one well, is proposed as a useful means of collecting data for site characterization, as well as estimating parameters relevant to tracer diffusion and sorption. After some specific code adaptations, we numerically generated a complex fracture-matrix system for computationmore » of steady-state flow and tracer advection and dispersion in the fracture network, along with solute exchange processes between the fractures and the porous matrix. We then conducted simulations for a hypothetical but workable SWIW test design and completed parameter sensitivity studies on three physical parameters of the rock matrix - namely porosity, diffusion coefficient, and retardation coefficient - in order to investigate their impact on the fracture-matrix solute exchange process. Hydraulic fracturing, or hydrofracking, is also modeled in this study, in two different ways: (1) by increasing the hydraulic aperture for flow in existing fractures and (2) by adding a new set of fractures to the field. The results of all these different tests are analyzed by studying the population of matrix blocks, the tracer spatial distribution, and the breakthrough curves (BTCs) obtained, while performing mass-balance checks and being careful to avoid some numerical mistakes that could occur. This study clearly demonstrates the importance of matrix effects in the solute transport process, with the sensitivity studies illustrating the increased importance of the matrix in providing a retardation mechanism for radionuclides as matrix porosity, diffusion coefficient, or retardation coefficient increase. Interestingly, model results before and after hydrofracking are insensitive to adding more fractures, while slightly more sensitive to aperture increase, making SWIW tests a possible means of discriminating between these two potential hydrofracking effects. Finally, we investigate the possibility of inferring relevant information regarding the fracture-matrix system physical parameters from the BTCs obtained during SWIW testing.« less
Cavitation study of a pump-turbine at turbine mode with critical cavitation coefficient condition
NASA Astrophysics Data System (ADS)
Wang, J.; Yang, D.; Xu, J. W.; Liu, J. T.; Jiao, L.
2016-05-01
To study the cavitation phenomenon of a pump-turbine at turbine mode when it ran at the critical cavitation coefficient condition, a high-head model pump-turbine was disperse using hexahedron grid. Three dimensional, steady cavitating flow was numerically studied using SST k-ω model. It is confirmed that ZGB cavitation model and SST k-ω model are useful ways to study the two-phase cavitation flow in pump-turbine. Mass flow inlet and pressure outlet were specified at the casing inlet and draft tube outlet, respectively. The static pressure was set according to the cavitation coefficient. The steady cavitating flows at critical cavitation coefficient condition were analysed. The cavitation area in the runner was investigated. It was found that the pressure of the suction on the blade surface was decreasing gradually with the decrease of the cavitation coefficient. In addition, the vortex flow in the draft tube was observed at the critical cavitation coefficient. It was found that the vortex flow appeared at the center of the draft tube inlet with the decreasing of the cavitation coefficient. Compared with the experimental data, the simulation results show reasonable agreement with the experimental data.
Alfven wave cyclotron resonance heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, R.B.; Yosikawa, S.; Oberman, C.
1981-02-01
The resonance absorption of fast Alfven waves at the proton ctclotron resonance of a predominately deuterium plasma is investigated. An approximate dispersion relation is derived, valid in the vicinity of the resonance, which permits an exact calculation of transmission and reflection coefficients. For reasonable plasma parameters significant linear resonance absorption is found.
Teaching Students Not to Dismiss the Outermost Observations in Regressions
ERIC Educational Resources Information Center
Kasprowicz, Tomasz; Musumeci, Jim
2015-01-01
One econometric rule of thumb is that greater dispersion in observations of the independent variable improves estimates of regression coefficients and therefore produces better results, i.e., lower standard errors of the estimates. Nevertheless, students often seem to mistrust precisely the observations that contribute the most to this greater…
Interdiffusion and reaction between U and Zr
NASA Astrophysics Data System (ADS)
Park, Y.; Newell, R.; Mehta, A.; Keiser, D. D.; Sohn, Y. H.
2018-04-01
The microstructural development and diffusion kinetics were examined for the binary U vs. Zr system using solid-to-solid diffusion couples, U vs. Zr, annealed at 580 °C for 960 h, 650 °C for 480 h, 680 °C for 240 h, and 710 °C for 96 h. Scanning and transmission electron microscopies with X-ray energy dispersive spectroscopy were employed for detailed microstructural and compositional analyses. Interdiffusion and reaction in U vs. Zr diffusion couples primarily produced: δ-UZr2 solid solution (hP3) and α‧-U at 580 °C; and (γU,βZr) solid solution (cI2) and α‧-U at 650°, 680° and 710 °C. The α‧-phase was confirmed as a reduced variant of the α-U orthorhombic structure with lattice parameters, a × b × c = 2.65 × 5.40 × 4.75 (Å) with a negligible solubility for Zr at room temperature. Concentration profiles were examined to determine interdiffusion coefficients, integrated interdiffusion coefficients, and intrinsic diffusion coefficients using Boltzmann-Matano, Wagner, and Heumann analyses, respectively. Composition-dependence of interdiffusion coefficients were documented for α-U, δ-UZr2 (at 580 °C) and (γU,βZr) solid solution (at 650°, 680° and 710 °C). U was determined to intrinsically diffuse faster than Zr, approximately by an order of magnitude, in the δ-UZr2 at 580 °C, and (γU,βZr) phases at 650°, 680° and 710 °C. Based on Darken's approach, thermodynamic data available in literature were coupled to estimate the tracer diffusion coefficients and atomic mobilities of U and Zr.
Pore-scale and continuum simulations of solute transport micromodel benchmark experiments
Oostrom, M.; Mehmani, Y.; Romero-Gomez, P.; ...
2014-06-18
Four sets of nonreactive solute transport experiments were conducted with micromodels. Three experiments with one variable, i.e., flow velocity, grain diameter, pore-aspect ratio, and flow-focusing heterogeneity were in each set. The data sets were offered to pore-scale modeling groups to test their numerical simulators. Each set consisted of two learning experiments, for which our results were made available, and one challenge experiment, for which only the experimental description and base input parameters were provided. The experimental results showed a nonlinear dependence of the transverse dispersion coefficient on the Peclet number, a negligible effect of the pore-aspect ratio on transverse mixing,more » and considerably enhanced mixing due to flow focusing. Five pore-scale models and one continuum-scale model were used to simulate the experiments. Of the pore-scale models, two used a pore-network (PN) method, two others are based on a lattice Boltzmann (LB) approach, and one used a computational fluid dynamics (CFD) technique. Furthermore, we used the learning experiments, by the PN models, to modify the standard perfect mixing approach in pore bodies into approaches to simulate the observed incomplete mixing. The LB and CFD models used the learning experiments to appropriately discretize the spatial grid representations. For the continuum modeling, the required dispersivity input values were estimated based on published nonlinear relations between transverse dispersion coefficients and Peclet number. Comparisons between experimental and numerical results for the four challenge experiments show that all pore-scale models were all able to satisfactorily simulate the experiments. The continuum model underestimated the required dispersivity values, resulting in reduced dispersion. The PN models were able to complete the simulations in a few minutes, whereas the direct models, which account for the micromodel geometry and underlying flow and transport physics, needed up to several days on supercomputers to resolve the more complex problems.« less
Statistical aspects of the failure of organic-fiber-reinforced plastics
NASA Astrophysics Data System (ADS)
Bazhenov, S. L.; Kuperman, A. M.; Puchkov, L. V.; Zelenskii, É. S.; Berlin, Al. Al.; Kharchenko, E. F.; Kul'kov, A. A.
1985-11-01
Dispersion of the strength of filaments and of the Weibull coefficient β leads to a drop in strength of a strand compared with the strength of the components when the adhesion by gluing together does not amount to 2-5%. The drop in strength is determined by the dispersion of strength which depends on the length of the tested specimens. Gluing together of the fibers in filaments changes the nature of the load diagrams σ-ɛ of a filament when its length exceeds δ0. A consequence is that the mechanism of rupture of the strand changes, and this leads to an additional drop of its strength. When specimens are 500 mm long, the drop in strength of the strand compared with the mean strength of the filaments amounts to 10%. Because of the dispersion of the Weibull coefficient β, the strength of filaments does not correspond exactly to the strength of the microplastic obtained from these filaments. When there is dispersion of the strength of the filaments, failure of the plastic proceeds by failure of the microplastics as a whole. Gluing together of fibers has a double effect on the strength of the material: increased degree of gluing together of the fibers reduces the "noneffective length" from δ0 to 0.4-0.5 mm, and this leads to an increase of approximately 50% of the strength of the microplastic; increased gluing together leads to a change in the mechanism of failure of the strand and of the organic-fiber-plastic made from it if there is dispersion of the strength of the component filaments, and this reduces the strength of the material in accordance with (3) (by 12-14% in our case). The longitudinal instability of the properties of the filament leads to an additional drop in strength of the material by 4.5%.
Interactions of molecules and the properties of crystals
NASA Astrophysics Data System (ADS)
McConnell, Thomas Daniel Leigh
In this thesis the basic theory of the lattice dynamics of molecular crystals is considered, with particular reference to the specific case of linear molecules. The objective is to carry out a critical investigation of a number of empirical potentials as models for real systems. Suitable coordinates are introduced, in particular vibrational coordinates which are used to describe the translational and rotational modes of the free molecule. The Taylor expansion of the intermolecular potential is introduced and its terms considered, in particular the (first-order) equilibrium conditions for such a system and the (second-order) lattice vibrations. The elastic properties are also considered, in particular with reference to the specific case of rhombohedral crystals. The compressibility and a number of conditions for elastic stability are introduced. The total intermolecular interaction potential is divided into three components using perturbation methods, the electrostatic energy, the repulsion energy and the dispersion energy. A number of models are introduced for these various components. The induction energy is neglected. The electrostatic interaction is represented by atomic multipole and molecular multipole models. The repulsion and dispersion energies are modelled together in a central interaction potential, either the Lennard-Jones atom-atom potential or the anisotropic Berne-Pechukas molecule-molecule potential. In each case, the Taylor expansion coefficients, used to calculate the various molecular properties, are determined. An algorithm is described which provides a relatively simple method for calculating cartesian tensors, which are found in the Taylor expansion coefficients of the multipolar potentials. This proves to be particularly useful from a computational viewpoint, both in terms of programming and calculating efficiency. The model system carbonyl sulphide is introduced and its lattice properties are described. Suitable parameters for potentials used to model the system are discussed and the simplifications to the Taylor expansion coefficients due to crystal symmetry are detailed. Four potential parameters are chosen to be fitted to four lattice properties, representing zero, first and second order Taylor expansion coefficients. The supplementary tests of a given fitted potential are detailed. A number of forms for the electrostatic interaction of carbonyl sulphide are considered, each combined with a standard atom-atom potential. The success of the molecular octupole model is considered and the inability of more complex electrostatic potentials to improve on this simple model is noted. The anisotropic Berne-Pechukas potential, which provides an increased estimate of the compressibility is considered as being an improvement on the various atom-atom potentials. The effect of varying the exponents in the atom-atom (or molecule-molecule) potential, representing a systematic variation of the repulsion and dispersion energy models, is examined and a potential which is able to reproduce all of the given lattice properties for carbonyl sulphide is obtained. The molecular crystal of cyanogen iodide is investigated. Superficially it is similar to the crystal of carbonyl sulphide and the potentials used with success for the latter are applied to cyanogen iodide to determine whether they are equally as effective models for this molecule. These potentials are found to be far less successful, in all cases yielding a number of unrealistic results. Reasons for the failure of the model are considered, in particular the 3 differences between the electrostatic properties of the two molecules are discussed. It is concluded that some of the simplifications which proved satisfactory for carbonyl sulphide are invalid for simple extension to the case of cyanogen iodide. A first estimate of the differences in the electrostatic properties is attempted, calculating the induction energies of the two molecules. The assumption that the induction energy may be neglected is justified for the case of carbonyl sulphide but found to be far less satisfactory for cyanogen iodide. Finally details of ab initio calculations are outlined. The amount of experimental data available for the electrostatic properties of the two molecules under consideration is relatively small and the experimental data which is available is supplemented by values obtained from these calculations.
NASA Astrophysics Data System (ADS)
Leung, Juliana Y.; Srinivasan, Sanjay
2016-09-01
Modeling transport process at large scale requires proper scale-up of subsurface heterogeneity and an understanding of its interaction with the underlying transport mechanisms. A technique based on volume averaging is applied to quantitatively assess the scaling characteristics of effective mass transfer coefficient in heterogeneous reservoir models. The effective mass transfer coefficient represents the combined contribution from diffusion and dispersion to the transport of non-reactive solute particles within a fluid phase. Although treatment of transport problems with the volume averaging technique has been published in the past, application to geological systems exhibiting realistic spatial variability remains a challenge. Previously, the authors developed a new procedure where results from a fine-scale numerical flow simulation reflecting the full physics of the transport process albeit over a sub-volume of the reservoir are integrated with the volume averaging technique to provide effective description of transport properties. The procedure is extended such that spatial averaging is performed at the local-heterogeneity scale. In this paper, the transport of a passive (non-reactive) solute is simulated on multiple reservoir models exhibiting different patterns of heterogeneities, and the scaling behavior of effective mass transfer coefficient (Keff) is examined and compared. One such set of models exhibit power-law (fractal) characteristics, and the variability of dispersion and Keff with scale is in good agreement with analytical expressions described in the literature. This work offers an insight into the impacts of heterogeneity on the scaling of effective transport parameters. A key finding is that spatial heterogeneity models with similar univariate and bivariate statistics may exhibit different scaling characteristics because of the influence of higher order statistics. More mixing is observed in the channelized models with higher-order continuity. It reinforces the notion that the flow response is influenced by the higher-order statistical description of heterogeneity. An important implication is that when scaling-up transport response from lab-scale results to the field scale, it is necessary to account for the scale-up of heterogeneity. Since the characteristics of higher-order multivariate distributions and large-scale heterogeneity are typically not captured in small-scale experiments, a reservoir modeling framework that captures the uncertainty in heterogeneity description should be adopted.
Benea, Lidia; Celis, Jean-Pierre
2016-01-01
This research work describes the effect of dispersed titanium carbide (TiC) nanoparticles into nickel plating bath on Ni/TiC nanostructured composite layers obtained by electro-codeposition. The surface morphology of Ni/TiC nanostructured composite layers was characterized by scanning electron microscopy (SEM). The composition of coatings and the incorporation percentage of TiC nanoparticles into Ni matrix were studied and estimated by using energy dispersive X-ray analysis (EDX). X-ray diffractometer (XRD) has been applied in order to investigate the phase structure as well as the corresponding relative texture coefficients of the composite layers. The results show that the concentration of nano-TiC particles added in the nickel electrolyte affects the inclusion percentage of TiC into Ni/TiC nano strucured layers, as well as the corresponding morphology, relative texture coefficients and thickness indicating an increasing tendency with the increasing concentration of nano-TiC concentration. By increasing the amount of TiC nanoparticles in the electrolyte, their incorporation into nickel matrix also increases. The hybrid Ni/nano-TiC composite layers obtained revealed a higher roughness and higher hardness; therefore, these layers are promising superhydrophobic surfaces for special application and could be more resistant to wear than the pure Ni layers. PMID:28773395
Li, Pu; Weng, Linlu; Niu, Haibo; Robinson, Brian; King, Thomas; Conmy, Robyn; Lee, Kenneth; Liu, Lei
2016-12-15
This study was aimed at testing the applicability of modified Weber number scaling with Alaska North Slope (ANS) crude oil, and developing a Reynolds number scaling approach for oil droplet size prediction for high viscosity oils. Dispersant to oil ratio and empirical coefficients were also quantified. Finally, a two-step Rosin-Rammler scheme was introduced for the determination of droplet size distribution. This new approach appeared more advantageous in avoiding the inconsistency in interfacial tension measurements, and consequently delivered concise droplet size prediction. Calculated and observed data correlated well based on Reynolds number scaling. The relation indicated that chemical dispersant played an important role in reducing the droplet size of ANS under different seasonal conditions. The proposed Reynolds number scaling and two-step Rosin-Rammler approaches provide a concise, reliable way to predict droplet size distribution, supporting decision making in chemical dispersant application during an offshore oil spill. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sintering Process and Mechanical Property of MWCNTs/HDPE Bulk Composite.
Ming-Wen, Wang; Tze-Chi, Hsu; Jie-Ren, Zheng
2009-08-01
Studies have proved that increasing polymer matrices by carbon nanotubes to form structural reinforcement and electrical conductivity have significantly improved mechanical and electrical properties at very low carbon nanotubes loading. In other words, increasing polymer matrices by carbon nanotubes to form structural reinforcement can reduce friction coefficient and enhance anti-wear property. However, producing traditional MWCNTs in polymeric materix is an extremely complicated process. Using melt-mixing process or in situ polymerization leads to better dispersion effect on composite materials. In this study, therefore, to simplify MWCNTs /HDPE composite process and increase dispersion, powder was used directly to replace pellet to mix and sinter with MWCNTs. The composite bulks with 0, 0.5, 1, 2 and 4% nanotube content by weight was analyzed under SEM to observe nanotubes dispersion. At this rate, a MWCNTs/HDPE composite bulk with uniformly dispersed MWCNTs was achieved, and through the wear bench (Pin-on-Disk), the wear experiment has accomplished. Accordingly, the result suggests the sintered MWCNTs/HDPE composites amplify the hardness and wear-resist property.
Proynov, Emil; Liu, Fenglai; Gan, Zhengting; Wang, Matthew; Kong, Jing
2015-01-01
We implement and compute the density functional nonadditive three-body dispersion interaction using a combination of Tang-Karplus formalism and the exchange-dipole moment model of Becke and Johnson. The computation of the C9 dispersion coefficients is done in a non-empirical fashion. The obtained C9 values of a series of noble atom triplets agree well with highly accurate values in the literature. We also calculate the C9 values for a series of benzene trimers and find a good agreement with high-level ab initio values reported recently in the literature. For the question of damping of the three-body dispersion at short distances, we propose two damping schemes and optimize them based on the benzene trimers data, and the fitted analytic potentials of He3 and Ar3 trimers fitted to the results of high-level wavefunction theories available from the literature. Both damping schemes respond well to the optimization of two parameters. PMID:26328836
Ferrone, Vincenzo; Genovese, Salvatore; Carlucci, Maura; Tiecco, Matteo; Germani, Raimondo; Preziuso, Francesca; Epifano, Francesco; Carlucci, Giuseppe; Taddeo, Vito Alessandro
2018-04-15
A green dispersive liquid-liquid microextraction (DLLME) using deep eutectic solvent (DES) as the extracting solvent has been developed and applied for the simultaneous quantification of ferulic acid, umbelliferone, boropinic acid, 7-isopentenyloxycoumarin, 4'-geranyloxyferulic acid (GOFA), and auraptene in some vegetable oils using ultra high performance liquid chromatography (UHPLC) with photodiode array detection (PDA). All parameters in the extraction step, including selection and loading of both extracting and dispersing solvents, amount of both extractant and disperser solvent were investigated and optimized. PhAA/TMG DES achieved higher recovery and enrichment factor compared to other DESs. The validated method showed good linearity with correlation coefficients, r 2 >0.9990 for all the analytes. Furthermore, this is the first time that eco-friendly solvents are used for the extraction of oxyprenylated phenylpropanoids and the corresponding extract analyzed with ultra high performance liquid chromatography with photodiode array detection. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Proynov, Emil; Wang, Matthew; Kong, Jing, E-mail: jing.kong@mtsu.edu
We implement and compute the density functional nonadditive three-body dispersion interaction using a combination of Tang-Karplus formalism and the exchange-dipole moment model of Becke and Johnson. The computation of the C{sub 9} dispersion coefficients is done in a non-empirical fashion. The obtained C{sub 9} values of a series of noble atom triplets agree well with highly accurate values in the literature. We also calculate the C{sub 9} values for a series of benzene trimers and find a good agreement with high-level ab initio values reported recently in the literature. For the question of damping of the three-body dispersion at shortmore » distances, we propose two damping schemes and optimize them based on the benzene trimers data, and the fitted analytic potentials of He{sub 3} and Ar{sub 3} trimers fitted to the results of high-level wavefunction theories available from the literature. Both damping schemes respond well to the optimization of two parameters.« less
Recuperator with microjet technology as a proposal for heat recovery from low-temperature sources
NASA Astrophysics Data System (ADS)
Wajs, Jan; Mikielewicz, Dariusz; Fornalik-Wajs, Elżbieta; Bajor, Michał
2015-12-01
A tendency to increase the importance of so-called dispersed generation, based on the local energy sources and the working systems utilizing both the fossil fuels and the renewable energy resources is observed nowadays. Generation of electricity on industrial or domestic scale together with production of heat can be obtained for example through employment of the ORC systems. It is mentioned in the EU directive 2012/27/EU for cogenerative production of heat and electricity. For such systems the crucial points are connected with the heat exchangers, which should be small in size but be able to transfer high heat fluxes. In presented paper the prototype microjet heat exchanger dedicated for heat recovery systems is introduced. Its novel construction is described together with the systematical experimental analysis of heat transfer and flow characteristics. Reported results showed high values of the overall heat transfer coefficient and slight increase in the pressure drop. The results of microjet heat exchanger were compared with the results of commercially available compact plate heat exchanger.
Analytical Optimization of the Net Residual Dispersion in SPM-Limited Dispersion-Managed Systems
NASA Astrophysics Data System (ADS)
Xiao, Xiaosheng; Gao, Shiming; Tian, Yu; Yang, Changxi
2006-05-01
Dispersion management is an effective technique to suppress the nonlinear impairment in fiber transmission systems, which includes tuning the amounts of precompensation, residual dispersion per span (RDPS), and net residual dispersion (NRD) of the systems. For self-phase modulation (SPM)-limited systems, optimizing the NRD is necessary because it can greatly improve the system performance. In this paper, an analytical method is presented to optimize NRD for SPM-limited dispersion-managed systems. The method is based on the correlation between the nonlinear impairment and the output pulse broadening of SPM-limited systems; therefore, dispersion-managed systems can be optimized through minimizing the output single-pulse broadening. A set of expressions is derived to calculate the output pulse broadening of the SPM-limited dispersion-managed system, from which the analytical result of optimal NRD is obtained. Furthermore, with the expressions of pulse broadening, how the nonlinear impairment depends on the amounts of precompensation and RDPS can be revealed conveniently.
Ramanan, B; Holmes, W M; Sloan, W T; Phoenix, V R
2012-01-03
Quantifying nanoparticle (NP) transport inside saturated porous geological media is imperative for understanding their fate in a range of natural and engineered water systems. While most studies focus upon finer grained systems representative of soils and aquifers, very few examine coarse-grained systems representative of riverbeds and gravel based sustainable urban drainage systems. In this study, we investigated the potential of magnetic resonance imaging (MRI) to image transport behaviors of nanoparticles (NPs) through a saturated coarse-grained system. MRI successfully imaged the transport of superparamagnetic NPs, inside a porous column composed of quartz gravel using T(2)-weighted images. A calibration protocol was then used to convert T(2)-weighted images into spatially resolved quantitative concentration maps of NPs at different time intervals. Averaged concentration profiles of NPs clearly illustrates that transport of a positively charged amine-functionalized NP within the column was slower compared to that of a negatively charged carboxyl-functionalized NP, due to electrostatic attraction between positively charged NP and negatively charged quartz grains. Concentration profiles of NPs were then compared with those of a convection-dispersion model to estimate coefficients of dispersivity and retardation. For the amine functionalized NPs (which exhibited inhibited transport), a better model fit was obtained when permanent attachment (deposition) was incorporated into the model as opposed to nonpermanent attachment (retardation). This technology can be used to further explore transport processes of NPs inside coarse-grained porous media, either by using the wide range of commercially available (super)paramagnetically tagged NPs or by using custom-made tagged NPs.
Saheli, P T; Rowe, R K; Petersen, E J; O'Carroll, D M
2017-05-01
The new applications for carbon nanotubes (CNTs) in various fields and consequently their greater production volume have increased their potential release to the environment. Landfills are one of the major locations where carbon nanotubes are expected to be disposed and it is important to ensure that they can limit the release of CNTs. Diffusion of multiwall carbon nanotubes (MWCNTs) dispersed in an aqueous media through a high-density polyethylene (HDPE) geomembrane (as a part of the landfill barrier system) was examined. Based on the laboratory tests, the permeation coefficient was estimated to be less than 5.1×10 -15 m 2 /s. The potential performance of a HDPE geomembrane and geosynthetic clay liner (GCL) as parts of a composite liner in containing MWCNTs was modelled for six different scenarios. The results suggest that the low value of permeation coefficient of an HDPE geomembrane makes it an effective diffusive barrier for MWCNTs and by keeping the geomembrane defects to minimum during the construction (e.g., number of holes and length of wrinkles) a composite liner commonly used in municipal solid waste landfills will effectively contain MWCNTs.
NASA Technical Reports Server (NTRS)
Leviton, Douglas B.; Miller, Kevin H.; Quijada, Manuel A.; Grupp, Frank D.
2015-01-01
Using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we measured absolute refractive indices at temperatures from 100 to 310 K at wavelengths from 0.42 to 3.6 microns for CaF2, Suprasil 3001 fused silica, and S-FTM16 glass in support of lens designs for the Near Infrared Spectrometer and Photometer (NISP) for ESA's Euclid dark energy mission. We report absolute refractive index, dispersion (dn/d?), and thermo-optic coefficient (dn/dT) for these materials. In this study, materials from different melts were procured to understand index variability in each material. We provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures. For calcium fluoride (CaF2) and S-FTM16, we compare our current measurements with CHARMS measurements of these materials made in the recent past for other programs. We also compare Suprasil 3001's indices to those of other forms of fused silica we have measured in CHARMS.
Microwave dielectric behavior of vegetation material
NASA Technical Reports Server (NTRS)
Elrayes, Mohamed A.; Ulaby, Fawwaz T.
1987-01-01
The microwave dielectric behavior of vegetation was examined through the development of theoretical models involving dielectric dispersion by both bound and free water and supported by extensive dielectric measurements conducted over a wide range of conditions. The experimental data were acquired using an open-ended coaxial probe that was developed for sensing the dielectric constant of thin layers of materials, such as leaves, from measurements of the complex reflection coefficient using a network analyzer. The probe system was successfully used to record the spectral variation of the dielectric constant over a wide frequency range extending from 0.5 to 20.4 GHz at numerous temperatures between -40 to +40 C. The vegetation samples were measured over a wide range of moisture conditions. To model the dielectric spectrum of the bound water component of the water included in vegetation, dielectric measurements were made for several sucrose-water solutions as analogs for the situation in vegetation. The results were used in conjunction with the experimental data for leaves to determine some of the constant coefficients in the theoretical models. Two models, both of which provide good fit to the data, are proposed.
Shizgal, Bernie D
2018-05-01
This paper considers two nonequilibrium model systems described by linear Fokker-Planck equations for the time-dependent velocity distribution functions that yield steady state Kappa distributions for specific system parameters. The first system describes the time evolution of a charged test particle in a constant temperature heat bath of a second charged particle. The time dependence of the distribution function of the test particle is given by a Fokker-Planck equation with drift and diffusion coefficients for Coulomb collisions as well as a diffusion coefficient for wave-particle interactions. A second system involves the Fokker-Planck equation for electrons dilutely dispersed in a constant temperature heat bath of atoms or ions and subject to an external time-independent uniform electric field. The momentum transfer cross section for collisions between the two components is assumed to be a power law in reduced speed. The time-dependent Fokker-Planck equations for both model systems are solved with a numerical finite difference method and the approach to equilibrium is rationalized with the Kullback-Leibler relative entropy. For particular choices of the system parameters for both models, the steady distribution is found to be a Kappa distribution. Kappa distributions were introduced as an empirical fitting function that well describe the nonequilibrium features of the distribution functions of electrons and ions in space science as measured by satellite instruments. The calculation of the Kappa distribution from the Fokker-Planck equations provides a direct physically based dynamical approach in contrast to the nonextensive entropy formalism by Tsallis [J. Stat. Phys. 53, 479 (1988)JSTPBS0022-471510.1007/BF01016429].
NASA Astrophysics Data System (ADS)
Shizgal, Bernie D.
2018-05-01
This paper considers two nonequilibrium model systems described by linear Fokker-Planck equations for the time-dependent velocity distribution functions that yield steady state Kappa distributions for specific system parameters. The first system describes the time evolution of a charged test particle in a constant temperature heat bath of a second charged particle. The time dependence of the distribution function of the test particle is given by a Fokker-Planck equation with drift and diffusion coefficients for Coulomb collisions as well as a diffusion coefficient for wave-particle interactions. A second system involves the Fokker-Planck equation for electrons dilutely dispersed in a constant temperature heat bath of atoms or ions and subject to an external time-independent uniform electric field. The momentum transfer cross section for collisions between the two components is assumed to be a power law in reduced speed. The time-dependent Fokker-Planck equations for both model systems are solved with a numerical finite difference method and the approach to equilibrium is rationalized with the Kullback-Leibler relative entropy. For particular choices of the system parameters for both models, the steady distribution is found to be a Kappa distribution. Kappa distributions were introduced as an empirical fitting function that well describe the nonequilibrium features of the distribution functions of electrons and ions in space science as measured by satellite instruments. The calculation of the Kappa distribution from the Fokker-Planck equations provides a direct physically based dynamical approach in contrast to the nonextensive entropy formalism by Tsallis [J. Stat. Phys. 53, 479 (1988), 10.1007/BF01016429].
Laser control of natural disperse systems
NASA Astrophysics Data System (ADS)
Vlasova, Olga L.; Bezrukova, Alexandra G.
2003-10-01
Different water disperse systems were studied by integral (spectroturbidemetry) and differential light scattering method with a laser as a source of light. The investigation done concerns the state of kaolin dispersions at storage and under dilution as an example of mineral dispersion systems such as natural water. The role of some light scattering parameters for an optical analysis of water dispersions, like the dispersion of erythrocytes and bacterial cells -Escherichia coli is discussed. The results obtained can help to elaborate the methods for on-line optical control fo natural disperse systems (water, air) with mineral and biological particles.
Daneyko, Anton; Hlushkou, Dzmitry; Baranau, Vasili; Khirevich, Siarhei; Seidel-Morgenstern, Andreas; Tallarek, Ulrich
2015-08-14
In recent years, chromatographic columns packed with core-shell particles have been widely used for efficient and fast separations at comparatively low operating pressure. However, the influence of the porous shell properties on the mass transfer kinetics in core-shell packings is still not fully understood. We report on results obtained with a modeling approach to simulate three-dimensional advective-diffusive transport in bulk random packings of monosized core-shell particles, covering a range of reduced mobile phase flow velocities from 0.5 up to 1000. The impact of the effective diffusivity of analyte molecules in the porous shell and the shell thickness on the resulting plate height was investigated. An extension of Giddings' theory of coupled eddy dispersion to account for retention of analyte molecules due to stagnant regions in porous shells with zero mobile phase flow velocity is presented. The plate height equation involving a modified eddy dispersion term excellently describes simulated data obtained for particle-packings with varied shell thickness and shell diffusion coefficient. It is confirmed that the model of trans-particle mass transfer resistance of core-shell particles by Kaczmarski and Guiochon [42] is applicable up to a constant factor. We analyze individual contributions to the plate height from different mass transfer mechanisms in dependence of the shell parameters. The simulations demonstrate that a reduction of plate height in packings of core-shell relative to fully porous particles arises mainly due to reduced trans-particle mass transfer resistance and transchannel eddy dispersion. Copyright © 2015 Elsevier B.V. All rights reserved.
Thermo-optical properties of 1H[3,4-b] quinoline films used in electroluminescent devices
NASA Astrophysics Data System (ADS)
Jaglarz, Janusz; Kępińska, Mirosława; Sanetra, Jerzy
2014-06-01
Electroluminescence cells with H[3,4-b] quinoline layers are promising devices for a blue light emitting EL diode. This work measured the optical reflectance as a function of temperature in copolymers PAQ layers deposited on Si crystalline substrate. Using the extended Cauchy dispersion model of the film refractive index we determined the thermo-optical coefficients for quinoline layers in the temperature range of 76-333 K from combined ellipsometric and spectrofotometric studies. The obtained values of thermo-optical coefficients of thin PAQ film, were negative and ranged in 5-10 × 10-4 [1/K].
NASA Astrophysics Data System (ADS)
Kumar, Ashok; Thakkar, Ajit J.
2017-03-01
Dipole oscillator strength distributions for Br2 and BrCN are constructed from photoabsorption cross-sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule, the high-energy behavior of the dipole-oscillator-strength density and molar refractivity data when available. The distributions are used to predict dipole sum rules S (k) , mean excitation energies I (k) , and van der Waals C6 coefficients. Coupled-cluster calculations of the static dipole polarizabilities of Br2 and BrCN are reported for comparison with the values of S (- 2) extracted from the distributions.
NASA Astrophysics Data System (ADS)
Laptev, A. G.; Basharov, M. M.
2018-05-01
The problem of modeling turbulent transfer of finely dispersed particles in liquids has been considered. An approach is used where the transport of particles is represented in the form of a variety of the diffusion process with the coefficient of turbulent transfer to the wall. Differential equations of transfer are written for different cases, and a solution of the cell model is obtained for calculating the efficiency of separation in a channel. Based on the theory of turbulent transfer of particles and of the boundary layer model, an expression has been obtained for calculating the rate of turbulent deposition of finely dispersed particles. The application of this expression in determining the efficiency of physical coagulation of emulsions in different channels and on the surface of chaotic packings is shown.
Stability of the surface layer and its relation to the dispersion of primary pollutants in St. Louis
NASA Technical Reports Server (NTRS)
Remsberg, E. E.; Woodbury, G. E.
1983-01-01
The effects of atmospheric stability on the dispersion of primary pollutants such as CO, total hydrocarbons (THC), and NO were examined in St. Louis. The pollutant levels were measured at 25 stations, temperature at 12 stations at 5 and 30 m height, and wind speed and direction at the 30 m level at 12 stations. Correlation coefficients were generated for pairs of the vertical temperature differences, the log of the mean wind speed reciprocal, the bulk Richardson number, and specific pollutant concentrations. A high correlation was obtained between the thermal stability and the urban concentration of the primary pollutants in the lowest part of the boundary layer. A restricted nighttime dispersion of the pollutants was observed, indicating near-ground increased concentrations at times when the source emissions actually decrease.
NASA Astrophysics Data System (ADS)
Hu, Zengrong; Li, Yue; Fan, Xueliang; Chen, Feng; Xu, Jiale
2018-04-01
Single layer grapheme oxide Nano sheets and Nano titanium powder were dispersed in deionized water by ultrasonic dispersion. Then the mixed solution was pre-coating on AISI4140 substrate. Using laser sintering process to fabricated grapheme oxide and Ti composite coating. Microstructures and composition of the composite coating was studied by Scanning Electron Microscopy (SEM), x-ray diffract meter (XRD) and Raman spectroscopy. Raman spectrum, XRD pattern and SEM results proved that grapheme oxide sheets were dispersed in the composite coating. The composite coating had much higher average Vickers hardness values than that of pure Ti coating. The tribological performance of the composite coatings became better while the suitable GO content was selected. For the 2.5wt. % GO content coating, the friction coefficient was reduced to near 0.1.
NASA Astrophysics Data System (ADS)
Laptev, A. G.; Basharov, M. M.
2018-03-01
The problem of modeling turbulent transfer of finely dispersed particles in liquids has been considered. An approach is used where the transport of particles is represented in the form of a variety of the diffusion process with the coefficient of turbulent transfer to the wall. Differential equations of transfer are written for different cases, and a solution of the cell model is obtained for calculating the efficiency of separation in a channel. Based on the theory of turbulent transfer of particles and of the boundary layer model, an expression has been obtained for calculating the rate of turbulent deposition of finely dispersed particles. The application of this expression in determining the efficiency of physical coagulation of emulsions in different channels and on the surface of chaotic packings is shown.
Azeez, Ali Basheer; Mohammed, Kahtan S; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Sandu, Andrei Victor; Razak, Rafiza Abdul
2013-10-23
Samples of concrete contain various waste materials, such as iron particulates, steel balls of used ball bearings and slags from steel industry were assessed for their anti-radiation attenuation coefficient properties. The attenuation measurements were performed using gamma spectrometer of NaI (Tl) detector. The utilized radiation sources comprised 137 Cs and ⁶⁰Co radioactive elements with photon energies of 0.662 MeV for 137 Cs and two energy levels of 1.17 and 1.33 MeV for the ⁶⁰Co. Likewise the mean free paths for the tested samples were obtained. The aim of this work is to investigate the effect of the waste loading rates and the particulate dispersive manner within the concrete matrix on the attenuation coefficients. The maximum linear attenuation coefficient (μ) was attained for concrete incorporates iron filling wastes of 30 wt %. They were of 1.12 ± 1.31×10 -3 for 137 Cs and 0.92 ± 1.57 × 10 -3 for ⁶⁰Co. Substantial improvement in attenuation performance by 20%-25% was achieved for concrete samples incorporate iron fillings as opposed to that of steel ball samples at different (5%-30%) loading rates. The steel balls and the steel slags gave much inferior values. The microstructure, concrete-metal composite density, the homogeneity and particulate dispersion were examined and evaluated using different metallographic, microscopic and measurement facilities.
Du, Li-Jing; Huang, Jian-Ping; Wang, Bin; Wang, Chen-Hui; Wang, Qiu-Yan; Hu, Yu-Han; Yi, Ling; Cao, Jun; Peng, Li-Qing; Chen, Yu-Bo; Zhang, Qi-Dong
2018-06-04
A rapid, simple and efficient sample extraction method based on micro-matrix-solid-phase dispersion (micro-MSPD) was applied to the extraction of polyphenols from pomegranate peel. Five target analytes were determined by ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. Carbon molecular sieve (CMS) was firstly used as dispersant to improve extraction efficiency in micro-MSPD. The major micro-MSPD parameters, such as type of dispersant, amount of dispersant, grinding time and the type and the volume of elution solvents, were studied and optimized. Under optimized conditions, 26 mg of pomegranate peel was dispersed with 32.5 mg of CMS, the grinding time was selected as 90 s, the dispersed sample was eluted with 100 μL of methanol. Results showed that the proposed method was of good linearity for concentrations of analytes against their peak areas (coefficient of determination r 2 >0.990), the limit of the detection was as low as 3.2 ng/mL, and the spiking recoveries were between 88.1% and 106%. Satisfactory results were obtained for the extraction of gallic acid, punicalagin A, punicalagin B, catechin and ellagic acid from pomegranate peel sample, which demonstrated nice reliability and high sensitivity of this approach. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Su, Jing-Jing; Gao, Yi-Tian
2018-03-01
Under investigation in this paper is a higher-order nonlinear Schrödinger equation with space-dependent coefficients, related to an optical fiber. Based on the self-similarity transformation and Hirota method, related to the integrability, the N-th-order bright and dark soliton solutions are derived under certain constraints. It is revealed that the velocities and trajectories of the solitons are both affected by the coefficient of the sixth-order dispersion term while the amplitudes of the solitons are determined by the gain function. Amplitudes increase when the gain function is positive and decrease when the gain function is negative. Furthermore, we find that the intensities of dark solitons are presented as a superposition of the solitons and stationary waves.
Impact of local diffusion on macroscopic dispersion in three-dimensional porous media
NASA Astrophysics Data System (ADS)
Dartois, Arthur; Beaudoin, Anthony; Huberson, Serge
2018-02-01
While macroscopic longitudinal and transverse dispersion in three-dimensional porous media has been simulated previously mostly under purely advective conditions, the impact of diffusion on macroscopic dispersion in 3D remains an open question. Furthermore, both in 2D and 3D, recurring difficulties have been encountered due to computer limitation or analytical approximation. In this work, we use the Lagrangian velocity covariance function and the temporal derivative of second-order moments to study the influence of diffusion on dispersion in highly heterogeneous 2D and 3D porous media. The first approach characterizes the correlation between the values of Eulerian velocity components sampled by particles undergoing diffusion at two times. The second approach allows the estimation of dispersion coefficients and the analysis of their behaviours as functions of diffusion. These two approaches allowed us to reach new results. The influence of diffusion on dispersion seems to be globally similar between highly heterogeneous 2D and 3D porous media. Diffusion induces a decrease in the dispersion in the direction parallel to the flow direction and an increase in the dispersion in the direction perpendicular to the flow direction. However, the amplification of these two effects with the permeability variance is clearly different between 2D and 3D. For the direction parallel to the flow direction, the amplification is more important in 3D than in 2D. It is reversed in the direction perpendicular to the flow direction.
Use of airborne and terrestrial lidar to detect ground displacement hazards to water systems
Stewart, J.P.; Hu, Jiawen; Kayen, R.E.; Lembo, A.J.; Collins, B.D.; Davis, C.A.; O'Rourke, T. D.
2009-01-01
We investigate the use of multiepoch airborne and terrestrial lidar to detect and measure ground displacements of sufficient magnitude to damage buried pipelines and other water system facilities that might result, for example, from earthquake or rainfall-induced landslides. Lidar scans are performed at three sites with coincident measurements by total station surveying. Relative horizontal accuracy is evaluated by measurements of lateral dimensions of well defined objects such as buildings and tanks; we find misfits ranging from approximately 5 to 12 cm, which is consistent with previous work. The bias and dispersion of lidar elevation measurements, relative to total station surveying, is assessed at two sites: (1) a power plant site (PP2) with vegetated steeply sloping terrain; and (2) a relatively flat and unvegetated site before and after trenching operations were performed. At PP2, airborne lidar showed minimal elevation bias and a standard deviation of approximately 70 cm, whereas terrestrial lidar did not produce useful results due to beam divergence issues and inadequate sampling of the study region. At the trench site, airborne lidar showed minimal elevation bias and reduced standard deviation relative to PP2 (6-20 cm), whereas terrestrial lidar was nearly unbiased with very low dispersion (4-6 cm). Pre- and posttrench bias-adjusted normalized residuals showed minimal to negligible correlation, but elevation change was affected by relative bias between epochs. The mean of elevation change bias essentially matches the difference in means of pre- and posttrench elevation bias, whereas elevation change standard deviation is sensitive to the dispersion of individual epoch elevations and their correlation coefficient. The observed lidar bias and standard deviations enable reliable detection of damaging ground displacements for some pipelines types (e.g., welded steel) but not all (e.g., concrete with unwelded, mortared joints). ?? ASCE 2009.
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Benthem, Klaus; Tan, Guolong; French, Roger H
2006-01-01
Attractive van der Waals V London dispersion interactions between two half crystals arise from local physical property gradients within the interface layer separating the crystals. Hamaker coefficients and London dispersion energies were quantitatively determined for 5 and near- 13 grain boundaries in SrTiO3 by analysis of spatially resolved valence electron energy-loss spectroscopy (VEELS) data. From the experimental data, local complex dielectric functions were determined, from which optical properties can be locally analysed. Both local electronic structures and optical properties revealed gradients within the grain boundary cores of both investigated interfaces. The obtained results show that even in the presence ofmore » atomically structured grain boundary cores with widths of less than 1 nm, optical properties have to be represented with gradual changes across the grain boundary structures to quantitatively reproduce accurate van der Waals V London dispersion interactions. London dispersion energies of the order of 10% of the apparent interface energies of SrTiO3 were observed, demonstrating their significance in the grain boundary formation process. The application of different models to represent optical property gradients shows that long-range van der Waals V London dispersion interactions scale significantly with local, i.e atomic length scale property variations.« less
Haule, Kamila; Freda, Włodzimierz
2016-04-01
Oil pollution in seawater, primarily visible on sea surface, becomes dispersed as an effect of wave mixing as well as chemical dispersant treatment, and forms spherical oil droplets. In this study, we examined the influence of oil droplet size of highly dispersed Petrobaltic crude on the underwater visible light flux and the inherent optical properties (IOPs) of seawater, including absorption, scattering, backscattering and attenuation coefficients. On the basis of measured data and Mie theory, we calculated the IOPs of dispersed Petrobaltic crude oil in constant concentration, but different log-normal size distributions. We also performed a radiative transfer analysis, in order to evaluate the influence on the downwelling irradiance Ed, remote sensing reflectance Rrs and diffuse reflectance R, using in situ data from the Baltic Sea. We found that during dispersion, there occurs a boundary size distribution characterized by a peak diameter d0 = 0.3 μm causing a maximum E d increase of 40% within 0.5-m depth, and the maximum Ed decrease of 100% at depths below 5 m. Moreover, we showed that the impact of size distribution on the "blue to green" ratios of Rrs and R varies from 24% increase to 27% decrease at the same crude oil concentration.
Higher-harmonic collective modes in a trapped gas from second-order hydrodynamics
Lewis, William E.; Romatschke, P.
2017-02-21
Utilizing a second-order hydrodynamics formalism, the dispersion relations for the frequencies and damping rates of collective oscillations as well as spatial structure of these modes up to the decapole oscillation in both two- and three- dimensional gas geometries are calculated. In addition to higher-order modes, the formalism also gives rise to purely damped "non-hydrodynamic" modes. We calculate the amplitude of the various modes for both symmetric and asymmetric trap quenches, finding excellent agreement with an exact quantum mechanical calculation. Furthermore, we find that higher-order hydrodynamic modes are more sensitive to the value of shear viscosity, which may be of interestmore » for the precision extraction of transport coefficients in Fermi gas systems.« less
Higher-harmonic collective modes in a trapped gas from second-order hydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, William E.; Romatschke, P.
Utilizing a second-order hydrodynamics formalism, the dispersion relations for the frequencies and damping rates of collective oscillations as well as spatial structure of these modes up to the decapole oscillation in both two- and three- dimensional gas geometries are calculated. In addition to higher-order modes, the formalism also gives rise to purely damped "non-hydrodynamic" modes. We calculate the amplitude of the various modes for both symmetric and asymmetric trap quenches, finding excellent agreement with an exact quantum mechanical calculation. Furthermore, we find that higher-order hydrodynamic modes are more sensitive to the value of shear viscosity, which may be of interestmore » for the precision extraction of transport coefficients in Fermi gas systems.« less
Time-Frequency Analysis of the Dispersion of Lamb Modes
NASA Technical Reports Server (NTRS)
Prosser, W. H.; Seale, Michael D.; Smith, Barry T.
1999-01-01
Accurate knowledge of the velocity dispersion of Lamb modes is important for ultrasonic nondestructive evaluation methods used in detecting and locating flaws in thin plates and in determining their elastic stiffness coefficients. Lamb mode dispersion is also important in the acoustic emission technique for accurately triangulating the location of emissions in thin plates. In this research, the ability to characterize Lamb mode dispersion through a time-frequency analysis (the pseudo-Wigner-Ville distribution) was demonstrated. A major advantage of time-frequency methods is the ability to analyze acoustic signals containing multiple propagation modes, which overlap and superimpose in the time domain signal. By combining time-frequency analysis with a broadband acoustic excitation source, the dispersion of multiple Lamb modes over a wide frequency range can be determined from as little as a single measurement. In addition, the technique provides a direct measurement of the group velocity dispersion. The technique was first demonstrated in the analysis of a simulated waveform in an aluminum plate in which the Lamb mode dispersion was well known. Portions of the dispersion curves of the AO, A I , So, and S2 Lamb modes were obtained from this one waveform. The technique was also applied for the analysis of experimental waveforms from a unidirectional graphite/epoxy composite plate. Measurements were made both along and perpendicular to the fiber direction. In this case, the signals contained only the lowest order symmetric and antisymmetric modes. A least squares fit of the results from several source to detector distances was used. Theoretical dispersion curves were calculated and are shown to be in good agreement with experimental results.
40 CFR 799.6755 - TSCA partition coefficient (n-octanol/water), shake flask method.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Qualifying statements. This method applies only to pure, water soluble substances which do not dissociate or... applies to a pure substance dispersed between two pure solvents. If several different solutes occur in one... applied. The values presented in table 1 of this section are not necessarily representative of the results...
Optical, Physical, and Chemical Properties of Surface Modified Titanium Dioxide Powders
2011-02-01
coefficient depends on the optical efficiency factor, QCM , the geometric cross section, G, and the particle mass as indicated by the relationship in eq 2...diffraction sensor with a RODOS powder dispersing unit. The instrument houses a HeNe laser (632.8 nm) and Fourier lens. Upon introduction of the
USDA-ARS?s Scientific Manuscript database
A rapid, effective technique applying vortex-assisted liquid–liquid microextraction (VALLME) prior to ultra high performance liquid chromatography-evaporating light scattering detectection/ mass spectroscopy (UHPLC-ELSD/MS) determination was developed for the analysis of four cucurbitane triterpenoi...
Nanolubricant: magnetic nanoparticle based
NASA Astrophysics Data System (ADS)
Trivedi, Kinjal; Parekh, Kinnari; Upadhyay, Ramesh V.
2017-11-01
In the present study magnetic nanoparticles of Fe3O4 having average particle diameter, 11.7 nm were synthesized using chemical coprecipitation technique and dispersed in alpha olefin hydrocarbon synthetic lubricating oil. The solid weight fraction of magnetic nanoparticles in the lubricating oil was varied from 0 wt% to 10 wt%. The tribological properties were studied using four-ball tester. The results demonstrate that the coefficient of friction and wear scar diameter reduces by 45% and 30%, respectively at an optimal value, i.e. 4 wt% of magnetic nanoparticles concentration. The surface characterization of worn surface was carried out using a scanning electron microscope, and energy dispersive spectroscopy. These results implied that rolling mechanism is responsible to reduce coefficient of friction while magnetic nanoparticles act as the spacer between the asperities and reduces the wear scar diameter. The surface roughness of the worn surface studied using an atomic force microscope shows a reduction in surface roughness by a factor of four when magnetic nanoparticles are used as an additive. The positive response of magnetic nanoparticles in a lubricating oil, shows the potential replacement of conventional lubricating oil.
A Well-Posed, Objective and Dynamic Two-Fluid Model
NASA Astrophysics Data System (ADS)
Chetty, Krishna; Vaidheeswaran, Avinash; Sharma, Subash; Clausse, Alejandro; Lopez de Bertodano, Martin
The transition from dispersed to clustered bubbly flows due to wake entrainment is analyzed with a well-posed and objective one-dimensional (1-D) Two-Fluid Model, derived from variational principles. Modeling the wake entrainment force using the variational technique requires formulation of the inertial coupling coefficient, which defines the kinetic coupling between the phases. The kinetic coupling between a pair of bubbles and the liquid is obtained from potential flow over two-spheres and the results are validated by comparing the virtual mass coefficients with existing literature. The two-body interaction kinetic coupling is then extended to a lumped parameter model for viscous flow over two cylindrical bubbles, to get the Two-Fluid Model for wake entrainment. Linear stability analyses comprising the characteristics and the dispersion relation and non-linear numerical simulations are performed with the 1-D variational Two-Fluid Model to demonstrate the wake entrainment instability leading to clustering of bubbles. Finally, the wavelengths, amplitudes and propagation velocities of the void waves from non-linear simulations are compared with the experimental data.
NASA Astrophysics Data System (ADS)
Kumar, Ashok; Thakkar, Ajit J.
2010-02-01
The construction of the dipole oscillator strength distribution (DOSD) from theoretical and experimental photoabsorption cross sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule and molar refractivity data is a well-established technique that has been successfully applied to more than 50 species. Such DOSDs are insufficiently accurate at large photon energies. A novel iterative procedure is developed that rectifies this deficiency by using the high-energy asymptotic behavior of the dipole oscillator strength density as an additional constraint. Pilot applications are made for the neon, argon, krypton, and xenon atoms. The resulting DOSDs improve the agreement of the predicted S2 and S1 sum rules with ab initio calculations while preserving the accuracy of the remainder of the moments. Our DOSDs exploit new and more accurate experimental data. Improved estimates of dipole properties for these four atoms and of dipole-dipole C6 and triple-dipole C9 dispersion coefficients for the interactions among them are reported.
An, Jiwoo; Rahn, Kira L; Anderson, Jared L
2017-05-15
A headspace single drop microextraction (HS-SDME) method and a dispersive liquid-liquid microextraction (DLLME) method were developed using two tetrachloromanganate ([MnCl 4 2- ])-based magnetic ionic liquids (MIL) as extraction solvents for the determination of twelve aromatic compounds, including four polyaromatic hydrocarbons, by reversed phase high-performance liquid chromatography (HPLC). The analytical performance of the developed HS-SDME method was compared to the DLLME approach employing the same MILs. In the HS-SDME approach, the magnetic field generated by the magnet was exploited to suspend the MIL solvent from the tip of a rod magnet. The utilization of MILs in HS-SDME resulted in a highly stable microdroplet under elevated temperatures and long extraction times, overcoming a common challenge encountered in traditional SDME approaches of droplet instability. The low UV absorbance of the [MnCl 4 2- ]-based MILs permitted direct analysis of the analyte enriched extraction solvent by HPLC. In HS-SDME, the effects of ionic strength of the sample solution, temperature of the extraction system, extraction time, stir rate, and headspace volume on extraction efficiencies were examined. Coefficients of determination (R 2 ) ranged from 0.994 to 0.999 and limits of detection (LODs) varied from 0.04 to 1.0μgL -1 with relative recoveries from lake water ranging from 70.2% to 109.6%. For the DLLME method, parameters including disperser solvent type and volume, ionic strength of the sample solution, mass of extraction solvent, and extraction time were studied and optimized. Coefficients of determination for the DLLME method varied from 0.997 to 0.999 with LODs ranging from 0.05 to 1.0μgL -1 . Relative recoveries from lake water samples ranged from 68.7% to 104.5%. Overall, the DLLME approach permitted faster extraction times and higher enrichment factors for analytes with low vapor pressure whereas the HS-SDME approach exhibited better extraction efficiencies for analytes with relatively higher vapor pressure. Copyright © 2017 Elsevier B.V. All rights reserved.
Quantum interference of highly-dispersive surface plasmons (Conference Presentation)
NASA Astrophysics Data System (ADS)
Tokpanov, Yury S.; Fakonas, James S.; Atwater, Harry A.
2016-09-01
Previous experiments have shown that surface plasmon polaritons (SPPs) preserve their entangled state and do not cause measurable decoherence. However, essentially all of them were done using SPPs whose dispersion was in the linear "photon-like" regime. We report in this presentation on experiments showing how transition to "true-plasmon" non-linear dispersion regime, which occurs near SPP resonance frequency, will affect quantum coherent properties of light. To generate a polarization-entangled state we utilize type-I parametric down-conversion, occurring in a pair of non-linear crystals (BiBO), glued together and rotated by 90 degrees with respect to each other. For state projection measurements, we use a pair of polarizers and single-photon avalanche diode coincidence count detectors. We interpose a plasmonic hole array in the path of down-converted light before the polarizer. Without the hole array, we measure visibility V=99-100% and Bell's number S=2.81±0.03. To study geometrical effects we fabricated plasmonic hole arrays (gold on optically polished glass) with elliptical holes (axes are 190nm and 240nm) using focused ion beam. When we put this sample in our system we measured the reduction of visibility V=86±5% using entangled light. However, measurement using classical light gave exactly the same visibility; hence, this reduction is caused only by the difference in transmission coefficients of different polarizations. As samples with non-linear dispersion we fabricated two-layer (a-Si - Au) and three-layer (a-Si - Au - a-Si) structures on optically polished glass with different pitches and circular holes. The results of measurements with these samples will be discussed along with the theoretical investigations.
Liu, Gaisheng; Lu, Zhiming; Zhang, Dongxiao
2007-01-01
A new approach has been developed for solving solute transport problems in randomly heterogeneous media using the Karhunen‐Loève‐based moment equation (KLME) technique proposed by Zhang and Lu (2004). The KLME approach combines the Karhunen‐Loève decomposition of the underlying random conductivity field and the perturbative and polynomial expansions of dependent variables including the hydraulic head, flow velocity, dispersion coefficient, and solute concentration. The equations obtained in this approach are sequential, and their structure is formulated in the same form as the original governing equations such that any existing simulator, such as Modular Three‐Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems (MT3DMS), can be directly applied as the solver. Through a series of two‐dimensional examples, the validity of the KLME approach is evaluated against the classical Monte Carlo simulations. Results indicate that under the flow and transport conditions examined in this work, the KLME approach provides an accurate representation of the mean concentration. For the concentration variance, the accuracy of the KLME approach is good when the conductivity variance is 0.5. As the conductivity variance increases up to 1.0, the mismatch on the concentration variance becomes large, although the mean concentration can still be accurately reproduced by the KLME approach. Our results also indicate that when the conductivity variance is relatively large, neglecting the effects of the cross terms between velocity fluctuations and local dispersivities, as done in some previous studies, can produce noticeable errors, and a rigorous treatment of the dispersion terms becomes more appropriate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCloy, John S.; Riley, Brian J.; Johnson, Bradley R.
Four compositions of high density (~8 g/cm3) heavy metal oxide glasses composed of PbO, Bi2O3, and Ga2O3 were produced and refractivity parameters (refractive index and density) were computed and measured. Optical basicity was computed using three different models – average electronegativity, ionic-covalent parameter, and energy gap – and the basicity results were used to compute oxygen polarizability and subsequently refractive index. Refractive indices were measured in the visible and infrared at 0.633 μm, 1.55 μm, 3.39 μm, 5.35 μm, 9.29 μm, and 10.59 μm using a unique prism coupler setup, and data were fitted to the Sellmeier expression to obtainmore » an equation of the dispersion of refractive index with wavelength. Using this dispersion relation, single oscillator energy, dispersion energy, and lattice energy were determined. Oscillator parameters were also calculated for the various glasses from their oxide values as an additional means of predicting index. Calculated dispersion parameters from oxides underestimate the index by 3 to 4%. Predicted glass index from optical basicity, based on component oxide energy gaps, underpredicts the index at 0.633 μm by only 2%, while other basicity scales are less accurate. The predicted energy gap of the glasses based on this optical basicity overpredicts the Tauc optical gap as determined by transmission measurements by 6 to 10%. These results show that for this system, density, refractive index in the visible, and energy gap can be reasonably predicted using only composition, optical basicity values for the constituent oxides, and partial molar volume coefficients. Calculations such as these are useful for a priori prediction of optical properties of glasses.« less
Electronic and thermoelectric analysis of phases in the In 2O 3(ZnO) k system
Hopper, E. Mitchell; Zhu, Qimin; Song, Jung-Hwan; ...
2011-01-01
The high-temperature electrical conductivity and thermopower of several compounds in the In 2O 3(ZnO) k system (k = 3, 5, 7, and 9) were measured, and the band structures of the k = 1, 2, and 3 structures were predicted based on first-principles calculations. These phases exhibit highly dispersed conduction bands consistent with transparent conducting oxide behavior. Jonker plots (Seebeck coefficient vs. natural logarithm of conductivity) were used to obtain the product of the density of states and mobility for these phases, which were related to the maximum achievable power factor (thermopower squared times conductivity) for each phase by Ioffemore » analysis (maximum power factor vs. Jonker plot intercept). With the exception of the k = 9 phase, all other phases were found to have maximum predicted power factors comparable to other thermoelectric oxides if suitably doped.« less
De Groot, G. A.; During, H. J.; Ansell, S. W.; Schneider, H.; Bremer, P.; Wubs, E. R. J.; Maas, J. W.; Korpelainen, H.; Erkens, R. H. J.
2012-01-01
Background and Aims Populations established by long-distance colonization are expected to show low levels of genetic variation per population, but strong genetic differentiation among populations. Whether isolated populations indeed show this genetic signature of isolation depends on the amount and diversity of diaspores arriving by long-distance dispersal, and time since colonization. For ferns, however, reliable estimates of long-distance dispersal rates remain largely unknown, and previous studies on fern population genetics often sampled older or non-isolated populations. Young populations in recent, disjunct habitats form a useful study system to improve our understanding of the genetic impact of long-distance dispersal. Methods Microsatellite markers were used to analyse the amount and distribution of genetic diversity in young populations of four widespread calcicole ferns (Asplenium scolopendrium, diploid; Asplenium trichomanes subsp. quadrivalens, tetraploid; Polystichum setiferum, diploid; and Polystichum aculeatum, tetraploid), which are rare in The Netherlands but established multiple populations in a forest (the Kuinderbos) on recently reclaimed Dutch polder land following long-distance dispersal. Reference samples from populations throughout Europe were used to assess how much of the existing variation was already present in the Kuinderbos. Key Results A large part of the Dutch and European genetic diversity in all four species was already found in the Kuinderbos. This diversity was strongly partitioned among populations. Most populations showed low genetic variation and high inbreeding coefficients, and were assigned to single, unique gene pools in cluster analyses. Evidence for interpopulational gene flow was low, except for the most abundant species. Conclusions The results show that all four species, diploids as well as polyploids, were capable of frequent long-distance colonization via single-spore establishment. This indicates that even isolated habitats receive dense and diverse spore rains, including genotypes capable of self-fertilization. Limited gene flow may conserve the genetic signature of multiple long-distance colonization events for several decades. PMID:22323427
Vanderborght, Jan; Vereecken, Harry
2002-01-01
The local scale dispersion tensor, Dd, is a controlling parameter for the dilution of concentrations in a solute plume that is displaced by groundwater flow in a heterogeneous aquifer. In this paper, we estimate the local scale dispersion from time series or breakthrough curves, BTCs, of Br concentrations that were measured at several points in a fluvial aquifer during a natural gradient tracer test at Krauthausen. Locally measured BTCs were characterized by equivalent convection dispersion parameters: equivalent velocity, v(eq)(x) and expected equivalent dispersivity, [lambda(eq)(x)]. A Lagrangian framework was used to approximately predict these equivalent parameters in terms of the spatial covariance of log(e) transformed conductivity and the local scale dispersion coefficient. The approximate Lagrangian theory illustrates that [lambda(eq)(x)] increases with increasing travel distance and is much larger than the local scale dispersivity, lambda(d). A sensitivity analysis indicates that [lambda(eq)(x)] is predominantly determined by the transverse component of the local scale dispersion and by the correlation scale of the hydraulic conductivity in the transverse to flow direction whereas it is relatively insensitive to the longitudinal component of the local scale dispersion. By comparing predicted [lambda(eq)(x)] for a range of Dd values with [lambda(eq)(x)] obtained from locally measured BTCs, the transverse component of Dd, DdT, was estimated. The estimated transverse local scale dispersivity, lambda(dT) = DdT/U1 (U1 = mean advection velocity) is in the order of 10(1)-10(2) mm, which is relatively large but realistic for the fluvial gravel sediments at Krauthausen.
Fernández, Elena; Vidal, Lorena; Iniesta, Jesús; Metters, Jonathan P; Banks, Craig E; Canals, Antonio
2014-03-01
A novel method is reported, whereby screen-printed electrodes (SPELs) are combined with dispersive liquid-liquid microextraction. In-situ ionic liquid (IL) formation was used as an extractant phase in the microextraction technique and proved to be a simple, fast and inexpensive analytical method. This approach uses miniaturized systems both in sample preparation and in the detection stage, helping to develop environmentally friendly analytical methods and portable devices to enable rapid and onsite measurement. The microextraction method is based on a simple metathesis reaction, in which a water-immiscible IL (1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [Hmim][NTf2]) is formed from a water-miscible IL (1-hexyl-3-methylimidazolium chloride, [Hmim][Cl]) and an ion-exchange reagent (lithium bis[(trifluoromethyl)sulfonyl]imide, LiNTf2) in sample solutions. The explosive 2,4,6-trinitrotoluene (TNT) was used as a model analyte to develop the method. The electrochemical behavior of TNT in [Hmim][NTf2] has been studied in SPELs. The extraction method was first optimized by use of a two-step multivariate optimization strategy, using Plackett-Burman and central composite designs. The method was then evaluated under optimum conditions and a good level of linearity was obtained, with a correlation coefficient of 0.9990. Limits of detection and quantification were 7 μg L(-1) and 9 μg L(-1), respectively. The repeatability of the proposed method was evaluated at two different spiking levels (20 and 50 μg L(-1)), and coefficients of variation of 7 % and 5 % (n = 5) were obtained. Tap water and industrial wastewater were selected as real-world water samples to assess the applicability of the method.
Zhong, Zhixiong; Li, Gongke; Wu, Rong; Zhu, Binghui; Luo, Zhibin
2014-08-01
A simple and reliable ultrasound-assisted solid-phase dispersion extraction coupled with ion chromatography was developed for the determination of aminophenols and phenol. The highly viscous hair colorant was dispersed in solvents using anhydrous sodium sulfite having dual functions of dispersant and antioxidant. The use of anhydrous sodium sulfite did not change the sample volume because it could completely dissolve in solution after matrix dispersion. The extraction and cleanup were combined in one single step for simplifying operation. The extraction process could be rapidly accomplished within 9 min with high sample throughput under the synergistic effects of vibration, ultrasound, and heating. Satisfactory linearity was observed with correlation coefficients higher than 0.9992, and the limits of detection varied from 0.02 to 0.09 mg/L. The applicability of the proposed method was demonstrated by measuring the concentrations of aminophenols and phenol in 32 different commercial hair color products. The recoveries ranged from 86.4-101.2% with the relative standard deviations in the range of 0.52-4.3%. The method offers an attractive alternative for the analysis of trace phenols in complex matrices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of warm water inflows on the dispersion of pollutants in small reservoirs.
Palancar, María C; Aragón, José M; Sánchez, Fernando; Gil, Roberto
2006-11-01
The effects of the warm water discharged by a nuclear power plant (NPP) into a small reservoir are studied. A case study is presented (José Cabrera NPP-Zorita Hidráulica Reservoir) with experimental data of the reservoir stratification and predicted data of the dispersion of radioactive pollutants from operative or accidental releases. The vertical and longitudinal temperature profiles, electrical conductivity and transparency of the reservoir water were measured for an annual cycle. The results indicate that the continuous warm water discharge from the NPP causes permanent and artificial reservoir stratification. The stratification is significant within 1500 m upstream and 1000 m downstream from the warm water outfall. The pollutant dispersion has been predicted by using a flow model based on N(T) perfect-mixing compartments in series with feedback. The model parameter, N(T), is calculated from the longitudinal diffusion coefficient. The prediction of pollutant dispersion by means of this model shows that the stratification slows down the vertical mixing in the whole water body, and reduces the reservoir volume that is effective for the dilution and dispersion of pollutants. This means that, in the case of a radioactive pollutant release, the reservoir radioactivity level could increase significantly.
Modeling benzene permeation through drinking water high density polyethylene (HDPE) pipes.
Mao, Feng; Ong, Say Kee; Gaunt, James A
2015-09-01
Organic compounds such as benzene, toluene, ethyl benzene and o-, m-, and p-xylene from contaminated soil and groundwater may permeate through thermoplastic pipes which are used for the conveyance of drinking water in water distribution systems. In this study, permeation parameters of benzene in 25 mm (1 inch) standard inside dimension ratio (SIDR) 9 high density polyethylene (HDPE) pipes were estimated by fitting the measured data to a permeation model based on a combination of equilibrium partitioning and Fick's diffusion. For bulk concentrations between 6.0 and 67.5 mg/L in soil pore water, the concentration-dependent diffusion coefficients of benzene were found to range from 2.0×10(-9) to 2.8×10(-9) cm2/s while the solubility coefficient was determined to be 23.7. The simulated permeation curves of benzene for SIDR 9 and SIDR 7 series of HDPE pipes indicated that small diameter pipes were more vulnerable to permeation of benzene than large diameter pipes, and the breakthrough of benzene into the HDPE pipe was retarded and the corresponding permeation flux decreased with an increase of the pipe thickness. HDPE pipes exposed to an instantaneous plume exhibited distinguishable permeation characteristics from those exposed to a continuous source with a constant input. The properties of aquifer such as dispersion coefficients (DL) also influenced the permeation behavior of benzene through HDPE pipes.
NASA Astrophysics Data System (ADS)
Mondal, Indranil; Raj, Shipra; Roy, Poulomi; Poddar, Raju
2018-01-01
We present noninvasive three-dimensional depth-resolved imaging of animal tissue with a swept-source optical coherence tomography system at 1064 nm center wavelength and silver nanoparticles (AgNPs) as a potential contrast agent. A swept-source laser light source is used to enable an imaging rate of 100 kHz (100 000 A-scans s-1). Swept-source optical coherence tomography is a new variant of the optical coherence tomography (OCT) technique, offering unique advantages in terms of sensitivity, reduction of motion artifacts, etc. To enhance the contrast of an OCT image, AgNPs are utilized as an exogeneous contrast agent. AgNPs are synthesized using a modified Tollens method and characterization is done by UV-vis spectroscopy, dynamic light scattering, scanning electron microscopy and energy dispersive x-ray spectroscopy. In vitro imaging of chicken breast tissue, with and without the application of AgNPs, is performed. The effect of AgNPs is studied with different exposure times. A mathematical model is also built to calculate changes in the local scattering coefficient of tissue from OCT images. A quantitative estimation of scattering coefficient and contrast is performed for tissues with and without application of AgNPs. Significant improvement in contrast and increase in scattering coefficient with time is observed.
Long-range dispersion interactions between Li and rare-gas atoms
NASA Astrophysics Data System (ADS)
Zhang, Deng-Hong; Xu, Ya-Bin; Jiang, Jun; Jiang, Li; Xie, Lu-You; Dong, Chen-Zhong
2017-06-01
The energy levels, oscillator strength and dipole scalar polarizabilities of Li atoms are calculated by using the relativistic semiempirical-core-potential method (RCICP). The dispersion coefficients C6 between ground 2s1/2 2p1/2,2p3/2 states of Li atom and the ground state of rare gas atoms (Ne, Ar, Kr, Xe) are calculated in JJ coupled states, in which the spin-orbital interactions are included. Present results are in good agreement with other available results. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.
Impact of Dispersion Slope on SPM Degradation in WDM Systems With High Channel Count
NASA Astrophysics Data System (ADS)
Luí; S, Ruben S.; Cartaxo, Adolfo V. T.
2005-11-01
Dispersion management design in wavelength division multiplexing (WDM) intensity modulation-direct detection (IM-DD) systems is often difficult due to the complex relation between the dispersion-management parameters (inline and total residual dispersion) and nonlinear impairments, such as cross-phase modulation (XPM). In this paper, we investigate the dependence of the XPM degradation on the dispersion-management parameters of a two-channel system. Afterwards, the XPM degradation on systems with high channel count (161 channels) is analytically evaluated, and the observed behaviors are explained using the results obtained with a two-channel system. In the absence of dispersion-slope compensation (DSC), significant differences in the XPM degradation of different channels in the same system are shown. Such differences result mainly from the strong dependence of the phase-modulation-to-intensity-modulation conversion of the XPM on the dispersion-management parameters of each channel. Due to this dependence, numerical results show that, unlike systems without dispersion compensation (DC), the XPM degradation may increase steadily with the channel count, and the worst-case channel may not be the center channel of the transmitted band. DSC allows a remarkable equalization of the XPM degradation along the transmitted band, facilitating dispersion-management planning. However, variations of the dispersion parameter and excessive residual dispersion that is not compensated may still induce a tilt of the XPM degradation along the transmitted band.
Electromagnetic absorption behaviour of ferrite loaded three phase carbon fabric composites
NASA Astrophysics Data System (ADS)
Jagatheesan, Krishnasamy; Ramasamy, Alagirusamy; Das, Apurba; Basu, Ananjan
2018-02-01
This article investigates the electromagnetic absorption behaviours of carbon helical yarn fabric reinforced composites and manganese-zinc (Mn-Zn) ferrite particles loaded 3 phase fabric composites. A carbon helical yarn having stainless steel core was prepared and made into single jersey knitted fabric. The composite was prepared by sandwiching a fabric with polypropylene films and thermal pressed. The absorption values of helical yarn fabric composite was observed to be less in the C band region (4-8 GHz). For improving the absorption coefficients of composite, Mn-Zn ferrite particles were dispersed in the polypropylene (PP) composite. The ferrite loaded PP composites exhibited better permittivity and permeability values, hence the absorption loss of the composite was improved. The helical yarn fabric reinforced with Mn-Zn ferrite/PP composite showed larger absorption coefficients than virgin PP/fabric composite. The change in thermal stability and particle size distribution in the Mn-Zn ferrite/PP composite was also analyzed. At higher ferrite concentration, bimodal particle distribution was observed which increased the conductivity and shielding effectiveness (SE) of the composite. In addition, complex permittivity value was also increased for higher incident frequency (4-8 GHz). As the ferrite content increases, the dielectric loss and magnetic permeability of PP/ferrite increases due to increased magnetic loss. Hence, ferrite loaded PP composite showed the total SE of -14.2 dB with the absorption coefficients of 0.717. The S1C7 fabric composite having ferrite dispersion showed the better absorption loss and lower reflection coefficient of 14.2 dB and 0.345 respectively compared to virgin PP/helical yarn fabric composite. The increasing ferrite content (45 wt%) improved the absorption loss and total SE. Though, ferrite based fabric composite exhibits moderate absorptive shielding, it can be used as shielding panels in the electronic industries.
Calculations of long-range three-body interactions for He(n0λS )-He(n0λS )-He(n0'λL )
NASA Astrophysics Data System (ADS)
Yan, Pei-Gen; Tang, Li-Yan; Yan, Zong-Chao; Babb, James F.
2018-04-01
We theoretically investigate long-range interactions between an excited L -state He atom and two identical S -state He atoms for the cases of the three atoms all in spin-singlet states or all in spin-triplet states, denoted by He(n0λS )-He(n0λS )-He(n0'λL ), with n0 and n0' principal quantum numbers, λ =1 or 3 the spin multiplicity, and L the orbital angular momentum of a He atom. Using degenerate perturbation theory for the energies up to second-order, we evaluate the coefficients C3 of the first-order dipolar interactions and the coefficients C6 and C8 of the second-order additive and nonadditive interactions. Both the dipolar and dispersion interaction coefficients, for these three-body degenerate systems, show dependences on the geometrical configurations of the three atoms. The nonadditive interactions start to appear in second-order. To demonstrate the results and for applications, the obtained coefficients Cn are evaluated with highly accurate variationally generated nonrelativistic wave functions in Hylleraas coordinates for He(1 1S ) -He(1 1S ) -He(2 1S ) , He(1 1S ) -He(1 1S ) -He(2 1P ) , He(2 1S ) -He(2 1S ) -He(2 1P ) , and He(2 3S ) -He(2 3S ) -He(2 3P ) . The calculations are given for three like nuclei for the cases of hypothetical infinite mass He nuclei, and of real finite mass 4He or 3He nuclei. The special cases of the three atoms in equilateral triangle configurations are explored in detail, and for the cases in which one of the atoms is in a P state, we also present results for the atoms in an isosceles right triangle configuration or in an equally spaced collinear configuration. The results can be applied to construct potential energy surfaces for three helium atom systems.
NASA Astrophysics Data System (ADS)
Hoefer, Mark A.
This thesis examines nonlinear wave phenomena, in two physical systems: a Bose-Einstein condensate (BEC) and thin film ferromagnets where the magnetization dynamics are excited by the spin momentum transfer (SMT) effect. In the first system, shock waves generated by steep gradients in the BEC wavefunction are shown to be of the disperse type. Asymptotic and averaging methods are used to determine shock speeds and structure in one spatial dimension. These results are compared with multidimensional numerical simulations and experiment showing good, qualitative agreement. In the second system, a model of magnetization dynamics due to SMT is presented. Using this model, nonlinear oscillating modes---nano-oscillators---are found numerically and analytically using perturbative methods. These results compare well with experiment. A Bose-Einstein condensate (BEC) is a quantum fluid that gives rise to interesting shock wave nonlinear dynamics. Experiments depict a BEC that exhibits behavior similar to that of a shock wave in a compressible gas, e.g. traveling fronts with steep gradients. However, the governing Gross-Pitaevskii (GP) equation that describes the mean field of a BEC admits no dissipation hence classical dissipative shock solutions do not explain the phenomena. Instead, wave dynamics with small dispersion is considered and it is shown that this provides a mechanism for the generation of a dispersive shock wave (DSW). Computations with the GP equation are compared to experiment with excellent agreement. A comparison between a canonical 1D dissipative and dispersive shock problem shows significant differences in shock structure and shock front speed. Numerical results associated with laboratory experiments show that three and two-dimensional approximations are in excellent agreement and one dimensional approximations are in qualitative agreement. The interaction of two DSWs is investigated analytically and numerically. Using one dimensional DSW theory it is argued that the experimentally observed blast waves may be viewed as dispersive shock waves. A nonlinear mathematical model of spin-wave excitation using a point contact in a thin ferromagnetic film is introduced. This work incorporates a recently proposed spin-torque contribution to classical magnetodynamic theory with a variable coefficient terra in the magnetic torque equation. Large-amplitude magnetic solitary waves are computed, which help explain recent spin-torque experiments. Numerical simulations of the full nonlinear model predict excitation frequencies in excess of 0.2 THz for contact diameters smaller than 6 nm. Simulations also predict a saturation and red shift of the frequency at currents large enough to invert the magnetization tinder the point contact. In the weak nonlinear limit, the theory is approximated by a cubic complex Ginzburg-Landau type equation. The mode's nonlinear frequency shift is found by use of perturbation techniques, whose results agree with those of direct numerical simulations.
NASA Technical Reports Server (NTRS)
Hirasaki, P. N.
1971-01-01
Shielding a spacecraft from the severe thermal environment of an atmospheric entry requires a sophisticated thermal protection system (TPS). Thermal computer program models were developed for two such TPS designs proposed for the space shuttle orbiter. The multilayer systems, a reusable surface insulation TPS, and a re-radiative metallic skin TPS, were sized for a cross-section of trajectories in the entry corridor. This analysis indicates the relative influence of the entry parameters on the weight of each TPS concept. The results are summarized graphically. The trajectory variables considered were down-range, cross-range, orbit inclination, entry interface velocity and flight path angle, maximum heating rate level, angle of attack, and ballistic coefficient. Variations in cross-range and flight path angle over the ranges considered had virtually no effect on the required entry TPS weight. The TPS weight was significantly more sensitive to variations in angle of attack than to dispersions in the other trajectory considered.
Rogue waves in space dusty plasmas
NASA Astrophysics Data System (ADS)
Chowdhury, N. A.; Mannan, A.; Mamun, A. A.
2017-11-01
The modulational instability of dust-acoustic (DA) waves (DAWs) and corresponding DA rogue waves (DARWs) in a realistic space dusty plasma system (containing inertial warm positively and negatively charged dust, isothermal ions, and super-thermal kappa distributed electrons) has been theoretically investigated. The nonlinear Schrödinger equation is derived by using a reductive perturbation method for this investigation. It is observed that the dusty plasma system under consideration supports two branches of modes, namely, fast and slow DA modes, and that both of these two modes can be stable or unstable depending on the sign of ratio of the dispersive and nonlinear coefficients. The numerical analysis has shown that the basic features (viz., stability/instability, growth rate, amplitude, and width of the rogue structures, etc.) of the DAWs associated with the fast DA modes are significantly modified by super-thermal parameter (κ) and other various plasma parameters. The results of our present investigation should be useful for understanding DARWs in space plasma systems, viz., mesosphere and ionosphere.
NASA Technical Reports Server (NTRS)
Pei, Jing; Wall, John
2013-01-01
This paper describes the techniques involved in determining the aerodynamic stability derivatives for the frequency domain analysis of the Space Launch System (SLS) vehicle. Generally for launch vehicles, determination of the derivatives is fairly straightforward since the aerodynamic data is usually linear through a moderate range of angle of attack. However, if the wind tunnel data lacks proper corrections then nonlinearities and asymmetric behavior may appear in the aerodynamic database coefficients. In this case, computing the derivatives becomes a non-trivial task. Errors in computing the nominal derivatives could lead to improper interpretation regarding the natural stability of the system and tuning of the controller parameters, which would impact both stability and performance. The aerodynamic derivatives are also provided at off nominal operating conditions used for dispersed frequency domain Monte Carlo analysis. Finally, results are shown to illustrate that the effects of aerodynamic cross axis coupling can be neglected for the SLS configuration studied
Evaluation of the Technicon Axon analyser.
Martínez, C; Márquez, M; Cortés, M; Mercé, J; Rodriguez, J; González, F
1990-01-01
An evaluation of the Technicon Axon analyser was carried out following the guidelines of the 'Sociedad Española de Química Clínica' and the European Committee for Clinical Laboratory Standards.A photometric study revealed acceptable results at both 340 nm and 404 nm. Inaccuracy and imprecision were lower at 404 nm than at 340 nm, although poor dispersion was found at both wavelengths, even at low absorbances. Drift was negligible, the imprecision of the sample pipette delivery system was greater for small sample volumes, the reagent pipette delivery system imprecision was acceptable and the sample diluting system study showed good precision and accuracy.Twelve analytes were studied for evaluation of the analyser under routine working conditions. Satisfactory results were obtained for within-run imprecision, while coefficients of variation for betweenrun imprecision were much greater than expected. Neither specimenrelated nor specimen-independent contamination was found in the carry-over study. For all analytes assayed, when comparing patient sample results with those obtained in a Hitachi 737 analyser, acceptable relative inaccuracy was observed.
NASA Astrophysics Data System (ADS)
Kryshchenko, V. S.; Zamulina, I. V.; Rybyanets, T. V.; Kravtsova, N. E.; Biryukova, O. A.; Golozubov, O. M.
2016-06-01
Monitoring of soil dispersivity and humus state has been performed in the stationary profile of ordinary chernozem in the Botanic Garden of the Southern Federal University in 2009-2014. The contents of physical clay and sand are almost stable in time, which indicates a quasi-static (climax) equilibrium in the soil. Another (reversible dynamic) process occurs simultaneously: seasonal and annual variation in the mass fractions of clay and silt in physical clay. Variations of humus content in the whole soil and in its physical clay are also observed on the background of seasonal changes in precipitation and temperature. A procedure has been developed for the analysis of the polydisperse soil system with consideration for the quasi-static and dynamic equilibriums. A two-vector coordinate system has been introduced, which consists of scales for changes in the contents of physical clay and physical sand in 100 g of soil and changes in the fractions of clay and silt in 100 g of physical clay. Co-measurements of two dispersivity series of soil samples—actual dynamic and calculated under quasi-static equilibrium (ideal)—have been performed. Dynamic equilibrium coefficients, which cumulatively reflect the varying proportions of physical clay and physical sand in the soil and the mass fractions of clay and silt in physical clay, have been calculated.
Effect of α-stable sorptive waiting times on microbial transport in microflow cells
NASA Astrophysics Data System (ADS)
Bonilla, F. Alejandro; Cushman, John H.
2002-09-01
The interaction of bacteria in the fluid phase with pore walls of a porous material involves a wide range of effective reaction times which obey a diversity of substrate-bacteria adhesion conditions, and adhesive mechanisms. For a transported species, this heterogeneity in sorption conditions occurs both in time and space. Modern experimental methods allow one to measure adhesive reaction times of individual bacteria. This detailed information may be incorporated into nonequilibrium transport-sorption models that capture the heterogeneity in reaction times caused by varying chemical conditions. We have carried out particle (Brownian dynamic) simulations of adhesive, self-motile bacteria convected between two infinite plates as a model for a microflow cell. The adhesive heterogeneity is included by introducing adhesive reaction time (understood as time spent at a solid boundary once the particle collides against it) as a random variable that can be infinite (irreversible sorption) or vary over a wide range of values. This is made possible by treating this reaction time random variable as having an α-stable probability distribution whose properties (e.g., infinite moments and long tails) are distinctive from the standard exponential distribution commonly used to model reversible sorption. In addition, the α-stable distribution is renormalizable and hence upscalable to complex porous media. Simulations are performed in a pressure-driven microflow cell. Bacteria motility (driven by an effective Brownian force) acts as a dispersive component in the convective field. Upon collision with the pore wall, bacteria attachment or detachment occurs. The time bacteria spend at the wall varies over a wide range of time scales. This model has the advantage of being parsimonious, that is, involving very few parameters to model complex irreversible or reversible adhesion in heterogeneous environments. It is shown that, as in Taylor dispersion, the ratio of the channel half width b to the Brownian bacteria motility coefficient (D0 or dispersion coefficient) tb=b2/D0 controls the different adhesion regimes along with the value of α. Universal scalings (with respect to dimensionless time t*=t/tb) for the mean position,
Optical characteristics of Tl0.995Cu0.005InS2 single crystals
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Ali, H. A. M.; Abu-Samaha, F. S. H.
2013-04-01
Optical properties of Tl0.995Cu0.005InS2 single crystals were studied using transmittance and reflectance measurements in the spectral wavelength range of 300-2500 nm. The optical constants (n and k) were calculated at room temperature. The analysis of the spectral behavior of the absorption coefficient in the absorption region revealed indirect transition. The refractive index dispersion data were analyzed in terms of the single oscillator model. Dispersion parameters such as the single oscillator energy (Eo), the dispersion energy (Ed), the high frequency dielectric constant (ε∞), the lattice dielectric constant (εL) and the ratio of free charge carrier concentration to the effective mass (N/m*) were estimated. The third order nonlinear susceptibility (χ(3)) was calculated according to the generalized Miller's rule. Also, the real and imaginary parts of the complex dielectric constant were determined.
Aggregation control of quantum dots through ion-mediated hydrogen bonding shielding.
Liu, Jianbo; Yang, Xiaohai; Wang, Kemin; He, Xiaoxiao; Wang, Qing; Huang, Jin; Liu, Yan
2012-06-26
Nanoparticle stabilization against detrimental aggregation is a critical parameter that needs to be well controlled. Herein, we present a facile and rapid ion-mediated dispersing technique that leads to hydrophilic aggregate-free quantum dots (QDs). Because of the shielding of the hydrogen bonds between cysteamine-capped QDs, the presence of F(-) ions disassembled the aggregates of QDs and afforded their high colloidal stability. The F(-) ions also greatly eliminated the nonspecific adsorption of the QDs on glass slides and cells. Unlike the conventional colloidal stabilized method that requires the use of any organic ligand and/or polymer for the passivation of the nanoparticle surface, the proposed approach adopts the small size and large diffusion coefficient of inorganic ions as dispersant, which offers the disaggregation a fast reaction dynamics and negligible influence on their intrinsic surface functional properties. Therefore, the ion-mediated dispersing strategy showed great potential in chemosensing and biomedical applications.
Çabuk, Hasan; Köktürk, Mustafa
2013-01-01
A simple and efficient method was established for the determination of synthetic antioxidants in beverages by using dispersive liquid-liquid microextraction combined with high-performance liquid chromatography with ultraviolet detection. Butylated hydroxy toluene, butylated hydroxy anisole, and tert-butylhydroquinone were the antioxidants evaluated. Experimental parameters including extraction solvent, dispersive solvent, pH of sample solution, salt concentration, and extraction time were optimized. Under optimal conditions, the extraction recoveries ranged from 53 to 96%. Good linearity was observed by the square of correlation coefficients ranging from 0.9975 to 0.9997. The relative standard deviations ranged from 1.0 to 5.2% for all of the analytes. Limits of detection ranged from 0.85 to 2.73 ng mL−1. The method was successfully applied for determination of synthetic antioxidants in undiluted beverage samples with satisfactory recoveries. PMID:23853535
Estimation of αL, velocity, Kd and confidence limits from tracer injection test data
Broermann, James; Bassett, R.L.; Weeks, Edwin P.; Borgstrom, Mark
1997-01-01
Bromide and boron were used as tracers during an injection experiment conducted at an artificial recharge facility near Stanton, Texas. The Ogallala aquifer at the Stanton site represents a heterogeneous alluvial environment and provides the opportunity to report scale dependent dispersivities at observation distances of 2 to 15 m in this setting. Values of longitudinal dispersivities are compared with other published values. Water samples were collected at selected depths both from piezometers and from fully screened observation wells at radii of 2, 5, 10 and 15 m. An exact analytical solution is used to simulate the concentration breakthrough curves and estimate longitudinal dispersivities and velocity parameters. Greater confidence can be placed on these data because the estimated parameters are error bounded using the bootstrap method. The non-conservative behavior of boron transport in clay rich sections of the aquifer were quantified with distribution coefficients by using bromide as a conservative reference tracer.
Estimation of αL, velocity, Kd, and confidence limits from tracer injection data
Broermann, James; Bassett, R.L.; Weeks, Edwin P.; Borgstrom, Mark
1997-01-01
Bromide and boron were used as tracers during an injection experiment conducted at an artificial recharge facility near Stanton, Texas. The Ogallala aquifer at the Stanton site represents a heterogeneous alluvial environment and provides the opportunity to report scale dependent dispersivities at observation distances of 2 to 15 m in this setting. Values of longitudinal dispersivities are compared with other published values. Water samples were collected at selected depths both from piezometers and from fully screened observation wells at radii of 2, 5, 10 and 15 m. An exact analytical solution is used to simulate the concentration breakthrough curves and estimate longitudinal dispersivities and velocity parameters. Greater confidence can be placed on these data because the estimated parameters are error bounded using the bootstrap method. The non-conservative behavior of boron transport in clay rich sections of the aquifer were quantified with distribution coefficients by using bromide as a conservative reference tracer.
Gao, Guangyao; Fu, Bojie; Zhan, Hongbin; Ma, Ying
2013-05-01
Predicting the fate and movement of contaminant in soils and groundwater is essential to assess and reduce the risk of soil contamination and groundwater pollution. Reaction processes of contaminant often decreased monotonously with depth. Time-dependent input sources usually occurred at the inlet of natural or human-made system such as radioactive waste disposal site. This study presented a one-dimensional convection-dispersion equation (CDE) for contaminant transport in soils with depth-dependent reaction coefficients and time-dependent inlet boundary conditions, and derived its analytical solution. The adsorption coefficient and degradation rate were represented as sigmoidal functions of soil depth. Solute breakthrough curves (BTCs) and concentration profiles obtained from CDE with depth-dependent and constant reaction coefficients were compared, and a constant effective reaction coefficient, which was calculated by arithmetically averaging the depth-dependent reaction coefficient, was proposed to reflect the lumped depth-dependent reaction effect. With the effective adsorption coefficient and degradation rate, CDE could produce similar BTCs and concentration profiles as those from CDE with depth-dependent reactions in soils with moderate chemical heterogeneity. In contrast, the predicted concentrations of CDE with fitted reaction coefficients at a certain depth departed significantly from those of CDE with depth-dependent reactions. Parametric analysis was performed to illustrate the effects of sinusoidally and exponentially decaying input functions on solute BTCs. The BTCs and concentration profiles obtained from the solutions for finite and semi-infinite domain were compared to investigate the effects of effluent boundary condition. The finite solution produced higher concentrations at the increasing limb of the BTCs and possessed a higher peak concentration than the semi-infinite solution which had a slightly long tail. Furthermore, the finite solution gave a higher concentration in the immediate vicinity of the exit boundary than the semi-infinite solution. The applicability of the proposed model was tested with a field herbicide and tracer leaching experiment in an agricultural area of northeastern Greece. The simulation results indicated that the proposed CDE with depth-dependent reaction coefficients was able to capture the evolution of metolachlor concentration at the upper soil depths. However, the simulation results at deep depths were not satisfactory as the proposed model did not account for preferential flow observed in the field. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sahmani, Saeid; Aghdam, Mohammad Mohammadi; Rabczuk, Timon
2018-04-01
By gradually changing of the porosity across a specific direction, functionally graded porous materials (FGPMs) are produced which can impart desirable mechanical properties. To enhance these properties, it is common to reinforce FGPMs with nanofillers. The main aim of the current study is to investigate the size-dependent nonlinear axial postbuckling characteristics of FGPM micro/nano-plates reinforced with graphene platelets. For this purpose, the theory of nonlocal strain gradient elasticity incorporating the both stiffness reduction and stiffness enhancement mechanisms of size effects is applied to the refined exponential shear deformation plate theory. Three different patterns of porosity dispersion across the plate thickness in conjunction with the uniform one are assumed for FGPM as an open-cell metal foam is utilized associated with the coefficients of the relative density and porosity. With the aid of the virtual work’s principle, the non-classical governing differential equations are constructed. Thereafter, an improved perturbation technique is employed to capture the size dependencies in the nonlinear load-deflection and load-shortening responses of the reinforced FGPM micro/nano-plates with and without initial geometric imperfection. It is indicated that by increasing the value of porosity coefficient, the size-dependent critical buckling loads of reinforced FGPM micro/nano-plates with all types of porosity dispersion pattern reduce, but the associated shortening may increase or decrease which depends on the type of dispersion pattern.
Pyell, Ute; Jalil, Alaa H; Pfeiffer, Christian; Pelaz, Beatriz; Parak, Wolfgang J
2015-07-15
Taking gold nanoparticles with different hydrophilic coatings as an example, it is investigated whether capillary electrophoresis in combination with Taylor dispersion analysis allows for the precise determination of mean electrophoretic mobilities, electrophoretic mobility distributions, and zeta potentials in a matrix of exactly known composition and the calibration-free determination of number-weighted mean hydrodynamic radii. Our experimental data confirm that the calculation of the zeta potential for colloidal nanoparticles with ζ>25 mV requires to take the relaxation effect into account. Because of the requirement to avoid particle-wall interactions, a solution of disodiumtetraborate decahydrate (borax) in deionized water had been selected as suitable electrolyte. Measurements of the electrophoretic mobility at different ionic strength and application of the analytic approximation developed by Ohshima show that in the present case of a buffered solution with a weak electrolyte co-ion and a strong electrolyte counterion, the effective ionic drag coefficient should be approximated with the ionic drag coefficient of the counterion. The obtained results are in good agreement with theoretical expectations regarding the dependence of the zeta potential and the electrokinetic surface charge density on the ionic strength. We also show that Taylor dispersion analysis (besides estimation of the number-weighted mean hydrodynamic radius) provides additional information on the type and width of the number-weighted particle distribution. Copyright © 2015 Elsevier Inc. All rights reserved.
Self-similarity of solitary waves on inertia-dominated falling liquid films.
Denner, Fabian; Pradas, Marc; Charogiannis, Alexandros; Markides, Christos N; van Wachem, Berend G M; Kalliadasis, Serafim
2016-03-01
We propose consistent scaling of solitary waves on inertia-dominated falling liquid films, which accurately accounts for the driving physical mechanisms and leads to a self-similar characterization of solitary waves. Direct numerical simulations of the entire two-phase system are conducted using a state-of-the-art finite volume framework for interfacial flows in an open domain that was previously validated against experimental film-flow data with excellent agreement. We present a detailed analysis of the wave shape and the dispersion of solitary waves on 34 different water films with Reynolds numbers Re=20-120 and surface tension coefficients σ=0.0512-0.072 N m(-1) on substrates with inclination angles β=19°-90°. Following a detailed analysis of these cases we formulate a consistent characterization of the shape and dispersion of solitary waves, based on a newly proposed scaling derived from the Nusselt flat film solution, that unveils a self-similarity as well as the driving mechanism of solitary waves on gravity-driven liquid films. Our results demonstrate that the shape of solitary waves, i.e., height and asymmetry of the wave, is predominantly influenced by the balance of inertia and surface tension. Furthermore, we find that the dispersion of solitary waves on the inertia-dominated falling liquid films considered in this study is governed by nonlinear effects and only driven by inertia, with surface tension and gravity having a negligible influence.
Rodríguez-González, N; González-Castro, M J; Beceiro-González, E; Muniategui-Lorenzo, S; Prada-Rodríguez, D
2014-04-01
A method using dual process columns of Matrix Solid Phase Dispersion (MSPD) and Solid Phase Extraction (SPE) has been developed for extracting and cleaning-up of nine triazine herbicides (ametryn, atrazine, cyanazine, prometryn, propazine, simazine, simetryn, terbuthylazine and terbutryn) in seaweed samples. Under optimized conditions, samples were blended with 2g of octasilyl-derivatized silica (C8) and transferred into an SPE cartridge containing ENVI-Carb II/PSA (0.5/0.5 g) as a clean up co-sorbent. Then the dispersed sample was washed with 10 mL of n-hexane and triazines were eluted with 20 mL ethyl acetate and 5 mL acetonitrile. Finally the extract was concentrated to dryness, re-constituted with 1 mL methanol:water (1:1) and injected into the HPLC-DAD system. The linearity of the calibration curves was excellent in matrix matched standards, and yielded the coefficients of determination>0.995 for all the target analytes. The recoveries ranged from 75% to 100% with relative standard deviations lower than 7%. The achieved LOQs (<10 µg kg(-1)) for all triazines under study permits to ensure proper determination at the maximum allowed residue levels set in the European Union Legislation. Samples of three seaweeds were subjected to the procedure proving the suitability of MSPD method for the analysis of triazines in different seaweeds samples. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pan, Ying
This work combines numerical, experimental, and theoretical methods to investigate the dispersion of particles inside and above plant canopies. The large-eddy simulation (LES) approach is used to reproduce turbulence statistics and three-dimensional particle dispersion within the canopy roughness sublayer. The Eulerian description of conservation laws of fluid momentum and particle concentration implies that the continuous concentration field is advected by the continuous flow field. Within the canopy, modifications are required for the filtered momentum and concentration equations, because spatial filtering of flow variables and concentration field is inapplicable to a control volume consisting of both fluid and solid elements. In this work, the canopy region is viewed as a space occupied by air only. The sink of airflow momentum induced by forces acting on the surfaces of canopy elements is parameterized as a non-conservative virtual body force that dissipates the kinetic energy of the air. This virtual body force must reflect the characteristic of the surface forces exerted by canopy elements within the control volume, and is parameterized as a "drag force" following standard practice in LES studies. Specifically, the "drag force" is calculated as a product of a drag coefficient, the projected leaf area density, and the square of velocity. Using a constant drag coefficient, this model allows first-order accuracy in reproducing the vertically integrated sink of momentum within the canopy layer for airflows of high Reynolds number. The corresponding LES results of first- and second-order turbulence statistics are in good agreement with experimental data obtained in the field interior, within and just above mature maize canopies. However, the distribution of momentum sink among weak and strong events has not been well reproduced, inferred from the significant underestition of streamwise and vertical velocity skewness as well as the fractions of vertical momentum flux transported by strong events. Using a velocity-dependent drag coefficient that accounts for the effect of plant reconfiguration, the "drag force" model leads to LES results of streamwise and vertical velocity skewness as well as the fractions of vertical momentum flux transported by strong events in better agreement with field experimental data. The link between plant reconfiguration and turbulence dynamics within the canopy roughness sublayer is further investigated. The "reconfiguration drag model" using velocity-dependent drag coefficient is revised to incorporate a theoretical model of the force balance on individual crosswind blades. In the LES, the dimension and degree of the reconfiguration of canopy elements affect the magnitude and position of peak streamwise velocity skewness within the canopy as well as the fractions of vertical momentum flux transported by strong events. The streamwise velocity skewness is shown to be related to the penetration of strong events into the canopy, which is associated with the passage of canopy-scale coherent eddies. With the profile of mean vertical momentum flux constrained by field experimental data, changing the model of drag coefficient induces negligible changes in the vertically integrated "drag force" within the canopy layer. Consequently, first- and second-order turbulence statistics remain approximately the same. However, enhancing the rate of decrease of drag coefficient with increasing velocity increases the streamwise and vertical velocity skewness, the fractions of vertical momentum flux transported by strong events, as well as the ratio between vertical momentum flux transported by relatively strong head-down "sweeps" and relatively weak head-up "ejections." These results confirmed the inadequacy of describing the effects of canopy-scale coherent structures using just first- and second-order turbulence statistics. The filtered concentration equation is applied to the dispersion of particles within the canopy roughness sublayer, assuming that a virtual continuous concentration field is advected by a virtual continuous velocity field. A canopy deposition model is used to model the sink of particle concentration associated with the impaction, sedimentation, retention, and re-entrainment of particles on the surfaces of canopy elements. LES results of mean particle concentration field and mean ground deposition rate were evaluated against data obtained during an artificial continuous point-source release experiment. Accounting for the effect of reconfiguration by using a velocity dependent drag coefficient leads to better agreement between LES results and field experimental data of the mean particle concentration field, suggesting the importance of reproducing the distribution of momentum sink among weak and strong events for reproducing the dispersion of particles. LES results obtained using a velocity-dependent drag coefficient are analyzed to estimate essential properties for the occurrence of plant disease epidemics. The most interesting finding is that an existing analytical function can be used to model the crosswind-integrated mean concentration field above the canopy normalized by the escape fraction for particles released from the field interior. (Abstract shortened by ProQuest.).
Willis, Catherine; Rubin, Jacob
1987-01-01
A moving boundary problem which arises during transport with precipitation-dissolution reactions is solved by three different numerical methods. Two of these methods (one explicit and one implicit) are based on an integral formulation of mass balance and lead to an approximation of a weak solution. These methods are compared to a front-tracking scheme. Although the two approaches are conceptually different, the numerical solutions showed good agreement. As the ratio of dispersion to convection decreases, the methods based on the integral formulation become computationally more efficient. Specific reactions were modeled to examine the dependence of the system on the physical and chemical parameters. Although the water flow rate does not explicitly appear in the equation for the velocity of the moving boundary, the speed of the boundary depends more on the flux rate than on the dispersion coefficient. The discontinuity in the gradient of the solute concentration profile at the boundary increases with convection and with the initial concentration of the mineral. Our implicit method is extended to allow participation of the solutes in complexation reactions as well as the precipitation-dissolution reaction. This extension is easily made and does not change the basic method.
NASA Astrophysics Data System (ADS)
Brovchenko, Igor; Maderich, Vladimir; Jung, Kyung Tae
2015-04-01
We developed new radionuclide dispersion model that may be used in coastal areas, rivers and estuaries with non-uniform distribution of suspended and bed sediments both cohesive and non-cohesive types. Model describes radionuclides concentration in dissolved phase in water column, particulated phase on suspended sediments on each sediment class types, bed sediments and pore water. The transfer of activity between the water column and the pore water in the upper layer of the bottom sediment is governed by diffusion processes. The phase exchange between dissolved and particulate radionuclides is written in terms of desorption rate a12 (s-1) and distribution coefficient Kd,iw and Kd,ib (m3/kg) for water column and for bottom deposit, respectively. Following (Periáñez et al., 1996) the dependence of distribution coefficients is inversely proportional to the sediment particle size. For simulation of 3D circulation, turbulent diffusion and wave fields a hydrostatic model SELFE (Roland et. al. 2010) that solves Reynolds-stress averaged Navier-Stokes (RANS) equations and Wave Action transport equation on the unstructured grids was used. Simulation of suspended sediment concentration and bed sediments composition is based on (L. Pinto et. al., 2012) approach that originally was developed for non-cohesive sediments. In present study we modified this approach to include possibility of simulating mixture of cohesive and non-cohesive sediments by implementing parameterizations for erosion and deposition fluxes for cohesive sediments and by implementing flocculation model for determining settling velocity of cohesive flocs. Model of sediment transport was calibrated on measurements in the Yellow Sea which is shallow tidal basin with strongly non-uniform distribution of suspended and bed sediments. Model of radionuclide dispersion was verified on measurements of 137Cs concentration in surface water and bed sediments after Fukushima Daiichi nuclear accident. References Periáñez, R. Abril, J.M., Garcia-Leon, M. (1996). Modelling the dispersion of non-conservative radionuclides in tidal waters'Part 1: conceptual and mathematical model. Journal of Environmental Radioactivity 31 (2), 127-141 Roland, A., Y. J. Zhang, H. V. Wang, Y. Meng, Y.-C. Teng, V. Maderich, I. Brovchenko, M. Dutour-Sikiric, and U. Zanke (2012), A fully coupled 3D wave-current interaction model on unstructured grids, J. Geophys. Res., 117, C00J33 Pinto L., Fortunato A.B., Zhang Y., Oliveira A., Sancho F.E.P. (2012) Development and validation of a three-dimensional morphodynamic modelling system for non-cohesive sediments, Ocean Modell., (57-58), 1-14
One-dimensional Analytical Modelling of Floating Seed Dispersal in Tidal Channels
NASA Astrophysics Data System (ADS)
Shi, W.; Purnama, A.; Shao, D.; Cui, B.; Gao, W.
2017-12-01
Seed dispersal is a primary factor influencing plant community development, and thus plays a critical role in maintaining wetland ecosystem functioning. However, compared with fluvial seed dispersal of riparian plants, dispersal of saltmarsh plant seeds in tidal channels is much less studied due to its complex behavior, and relevant mathematical modelling is particularly lacking. In this study, we developed a one-dimensional advection-dispersion model to explore the patterns of tidal seed dispersal. Oscillatory tidal current and water depth were assumed to represent the tidal effects. An exponential decay coefficient λ was introduced to account for seed deposition and retention. Analytical solution in integral form was derived using Green's function and further evaluated using numerical integration. The developed model was applied to simulate Spartina densiflora seed dispersal in a tidal channel located at the Mad River Slough in North Humboldt Bay, California, USA, to demonstrate its practical applicability. Model predictions agree satisfactorily with field observation and simulation results from Delft3D numerical model. Sensitivity analyses were also conducted to evaluate the effects of varying calibrated parameters on model predictions. The range of the seed dispersion as well as the distribution of the seed concentration were further analyzed through statistical parameters such as centroid displacement and variance of the seed cloud together with seed concentration contours. Implications of the modelling results on tidal marsh restoration and protection, e.g., revegetation through seed addition, were also discussed through scenario analysis. The developed analytical model provides a useful tool for ecological management of tidal marshes.
Atmospheric aerosols: Their Optical Properties and Effects (supplement)
NASA Technical Reports Server (NTRS)
1976-01-01
A digest of technical papers is presented. Topics include aerosol size distribution from spectral attenuation with scattering measurements; comparison of extinction and backscattering coefficients for measured and analytic stratospheric aerosol size distributions; using hybrid methods to solve problems in radiative transfer and in multiple scattering; blue moon phenomena; absorption refractive index of aerosols in the Denver pollution cloud; a two dimensional stratospheric model of the dispersion of aerosols from the Fuego volcanic eruption; the variation of the aerosol volume to light scattering coefficient; spectrophone in situ measurements of the absorption of visible light by aerosols; a reassessment of the Krakatoa volcanic turbidity, and multiple scattering in the sky radiance.
Peng, Guilong; He, Qiang; Mmereki, Daniel; Lu, Ying; Zhong, Zhihui; Liu, Hanyang; Pan, Weiliang; Zhou, Guangming; Chen, Junhua
2016-04-01
A novel dispersive solid-phase extraction combined with vortex-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet was developed for the determination of eight benzoylurea insecticides in soil and sewage sludge samples before high-performance liquid chromatography with ultraviolet detection. The analytes were first extracted from the soil and sludge samples into acetone under optimized pretreatment conditions. Clean-up of the extract was conducted by dispersive solid-phase extraction using activated carbon as the sorbent. The vortex-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet procedure was performed by using 1-undecanol with lower density than water as the extraction solvent, and the acetone contained in the solution also acted as dispersive solvent. Under the optimum conditions, the linearity of the method was in the range 2-500 ng/g with correlation coefficients (r) of 0.9993-0.9999. The limits of detection were in the range of 0.08-0.56 ng/g. The relative standard deviations varied from 2.16 to 6.26% (n = 5). The enrichment factors ranged from 104 to 118. The extraction recoveries ranged from 81.05 to 97.82% for all of the analytes. The good performance has demonstrated that the proposed methodology has a strong potential for application in the multiresidue analysis of complex matrices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Understanding the relative role of dispersion mechanisms across basin scales
NASA Astrophysics Data System (ADS)
Di Lazzaro, M.; Zarlenga, A.; Volpi, E.
2016-05-01
Different mechanisms are understood to represent the primary sources of the variance of travel time distribution in natural catchments. To quantify the fraction of variance introduced by each component, dispersion coefficients have been earlier defined in the framework of geomorphology-based rainfall-runoff models. In this paper we compare over a wide range of basin sizes and for a variety of runoff conditions the relative role of geomorphological dispersion, related to the heterogeneity of path lengths, and hillslope kinematic dispersion, generated by flow processes within the hillslopes. Unlike previous works, our approach does not focus on a specific study case; instead, we try to generalize results already obtained in previous literature stemming from the definition of a few significant parameters related to the metrics of the catchment and flow dynamics. We further extend this conceptual framework considering the effects of two additional variance-producing processes: the first covers the random variability of hillslope velocities (i.e. of travel times over hillslopes); the second deals with non-uniform production of runoff over the basin (specifically related to drainage density). Results are useful to clarify the role of hillslope kinematic dispersion and define under which conditions it counteracts or reinforces geomorphological dispersion. We show how its sign is ruled by the specific spatial distribution of hillslope lengths within the basin, as well as by flow conditions. Interestingly, while negative in a wide range of cases, kinematic dispersion is expected to become invariantly positive when the variability of hillslope velocity is large.
Scheven, U M
2013-12-01
This paper describes a new variant of established stimulated echo pulse sequences, and an analytical method for determining diffusion or dispersion coefficients for Gaussian or non-Gaussian displacement distributions. The unipolar displacement encoding PFGSTE sequence uses trapezoidal gradient pulses of equal amplitude g and equal ramp rates throughout while sampling positive and negative halves of q-space. Usefully, the equal gradient amplitudes and gradient ramp rates help to reduce the impact of experimental artefacts caused by residual amplifier transients, eddy currents, or ferromagnetic hysteresis in components of the NMR magnet. The pulse sequence was validated with measurements of diffusion in water and of dispersion in flow through a packing of spheres. The analytical method introduced here permits the robust determination of the variance of non-Gaussian, dispersive displacement distributions. The noise sensitivity of the analytical method is shown to be negligible, using a demonstration experiment with a non-Gaussian longitudinal displacement distribution, measured on flow through a packing of mono-sized spheres. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Othmani, Cherif; Takali, Farid; Njeh, Anouar
2017-06-01
In this paper, the propagation of the Lamb waves in the GaAs-FGPM-AlAs sandwich plate is studied. Based on the orthogonal function, Legendre polynomial series expansion is applied along the thickness direction to obtain the Lamb dispersion curves. The convergence and accuracy of this polynomial method are discussed. In addition, the influences of the volume fraction p and thickness hFGPM of the FGPM middle layer on the Lamb dispersion curves are developed. The numerical results also show differences between the characteristics of Lamb dispersion curves in the sandwich plate for various gradient coefficients of the FGPM middle layer. In fact, if the volume fraction p increases the phase velocity will increases and the number of modes will decreases at a given frequency range. All the developments performed in this paper were implemented in Matlab software. The corresponding results presented in this work may have important applications in several industry areas and developing novel acoustic devices such as sensors, electromechanical transducers, actuators and filters.
NASA Astrophysics Data System (ADS)
Tomita, Shota; Yanagitani, Takahiko; Takayanagi, Shinji; Ichihashi, Hayato; Shibagaki, Yoshiaki; Hayashi, Hiromichi; Matsukawa, Mami
2017-06-01
Longitudinal wave velocity dispersion in ZnO single crystals, owing to the acoustoelectric effect, has been investigated by Brillouin scattering. The resistivity dependence of the longitudinal wave velocity in a c-plane ZnO single crystal was theoretically estimated and experimentally investigated. Velocity dispersion owing to the acoustoelectric effect was observed in the range 0.007-10 Ωm. The observed velocity dispersion shows a similar tendency to the theoretical estimation and gives the piezoelectric stiffened and unstiffened wave velocities. However, the measured dispersion curve shows a characteristic shift from the theoretical curve. One possible reason is the carrier mobility in the sample, which could be lower than the reported value. The measurement data gave the piezoelectric stiffened and unstiffened longitudinal wave velocities, from which the electromechanical coupling coefficient k33 was determined. The value of k33 is in good agreement with reported values. This method is promising for noncontact evaluation of electromechanical coupling. In particular, it could be for evaluation of the unknown piezoelectricity in the thickness direction of semiconductive materials and film resonators.
Sintering Process and Mechanical Property of MWCNTs/HDPE Bulk Composite
Tze-Chi, Hsu; Jie-Ren, Zheng
2009-01-01
Studies have proved that increasing polymer matrices by carbon nanotubes to form structural reinforcement and electrical conductivity have significantly improved mechanical and electrical properties at very low carbon nanotubes loading. In other words, increasing polymer matrices by carbon nanotubes to form structural reinforcement can reduce friction coefficient and enhance anti-wear property. However, producing traditional MWCNTs in polymeric materix is an extremely complicated process. Using melt-mixing process or in situ polymerization leads to better dispersion effect on composite materials. In this study, therefore, to simplify MWCNTs /HDPE composite process and increase dispersion, powder was used directly to replace pellet to mix and sinter with MWCNTs. The composite bulks with 0, 0.5, 1, 2 and 4% nanotube content by weight was analyzed under SEM to observe nanotubes dispersion. At this rate, a MWCNTs/HDPE composite bulk with uniformly dispersed MWCNTs was achieved, and through the wear bench (Pin-on-Disk), the wear experiment has accomplished. Accordingly, the result suggests the sintered MWCNTs/HDPE composites amplify the hardness and wear-resist property. PMID:19730688
Time-Frequency Analysis of the Dispersion of Lamb Modes
NASA Technical Reports Server (NTRS)
Prosser, W. H.; Seale, Michael D.; Smith, Barry T.
1999-01-01
Accurate knowledge of the velocity dispersion of Lamb modes is important for ultrasonic nondestructive evaluation methods used in detecting and locating flaws in thin plates and in determining their elastic stiffness coefficients. Lamb mode dispersion is also important in the acoustic emission technique for accurately triangulating the location of emissions in thin plates. In this research, the ability to characterize Lamb mode dispersion through a time-frequency analysis (the pseudo Wigner-Ville distribution) was demonstrated. A major advantage of time-frequency methods is the ability to analyze acoustic signals containing multiple propagation modes, which overlap and superimpose in the time domain signal. By combining time-frequency analysis with a broadband acoustic excitation source, the dispersion of multiple Lamb modes over a wide frequency range can be determined from as little as a single measurement. In addition, the technique provides a direct measurement of the group velocity dispersion. The technique was first demonstrated in the analysis of a simulated waveform in an aluminum plate in which the Lamb mode dispersion was well known. Portions of the dispersion curves of the A(sub 0), A(sub 1), S(sub 0), and S(sub 2)Lamb modes were obtained from this one waveform. The technique was also applied for the analysis of experimental waveforms from a unidirectional graphite/epoxy composite plate. Measurements were made both along, and perpendicular to the fiber direction. In this case, the signals contained only the lowest order symmetric and antisymmetric modes. A least squares fit of the results from several source to detector distances was used. Theoretical dispersion curves were calculated and are shown to be in good agreement with experimental results.
Kinetic theory-based numerical modeling and analysis of bi-disperse segregated mixture fluidized bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konan, N. A.; Huckaby, E. D.
We discuss a series of continuum Euler-Euler simulations of an initially mixed bi-disperse fluidized bed which segregates under certain operating conditions. The simulations use the multi-phase kinetic theory-based description of the momentum and energy exchanges between the phases by Simonin’s Group [see e.g. Gourdel, Simonin and Brunier (1999). Proceedings of 6th International Conference on Circulating Fluidized Beds, Germany, pp. 205-210]. The discussion and analysis of the results focus on the fluid-particle momentum exchange (i.e. drag). Simulations using mono- and poly-disperse fluid-particle drag correlations are analyzed for the Geldart D-type size bi-disperse gas-solid experiments performed by Goldschmidt et al. [Powder Tech.,more » pp. 135-159 (2003)]. The poly-disperse gas-particle drag correlations account for the local particle size distribution by using an effective mixture diameter when calculating the Reynolds number and then correcting the resulting force coefficient. Simulation results show very good predictions of the segregation index for bidisperse beds with the mono-disperse drag correlations contrary to the poly-disperse drag correlations for which the segregation rate is systematically under-predicted. The statistical analysis of the results shows a clear separation in the distribution of the gas-particle mean relaxation times of the small and large particles with simulations using the mono-disperse drag. In contrast, the poly-disperse drag simulations have a significant overlap and also a smaller difference in the mean particle relaxation times. This results in the small and large particles in the bed to respond to the gas similarly without enough relative time lag. The results suggest that the difference in the particle response time induce flow dynamics favorable to a force imbalance which results in the segregation.« less
Kinetic theory-based numerical modeling and analysis of bi-disperse segregated mixture fluidized bed
Konan, N. A.; Huckaby, E. D.
2017-06-21
We discuss a series of continuum Euler-Euler simulations of an initially mixed bi-disperse fluidized bed which segregates under certain operating conditions. The simulations use the multi-phase kinetic theory-based description of the momentum and energy exchanges between the phases by Simonin’s Group [see e.g. Gourdel, Simonin and Brunier (1999). Proceedings of 6th International Conference on Circulating Fluidized Beds, Germany, pp. 205-210]. The discussion and analysis of the results focus on the fluid-particle momentum exchange (i.e. drag). Simulations using mono- and poly-disperse fluid-particle drag correlations are analyzed for the Geldart D-type size bi-disperse gas-solid experiments performed by Goldschmidt et al. [Powder Tech.,more » pp. 135-159 (2003)]. The poly-disperse gas-particle drag correlations account for the local particle size distribution by using an effective mixture diameter when calculating the Reynolds number and then correcting the resulting force coefficient. Simulation results show very good predictions of the segregation index for bidisperse beds with the mono-disperse drag correlations contrary to the poly-disperse drag correlations for which the segregation rate is systematically under-predicted. The statistical analysis of the results shows a clear separation in the distribution of the gas-particle mean relaxation times of the small and large particles with simulations using the mono-disperse drag. In contrast, the poly-disperse drag simulations have a significant overlap and also a smaller difference in the mean particle relaxation times. This results in the small and large particles in the bed to respond to the gas similarly without enough relative time lag. The results suggest that the difference in the particle response time induce flow dynamics favorable to a force imbalance which results in the segregation.« less
NASA Astrophysics Data System (ADS)
Yoon, Dae-Woo; Cho, Jung-Wook; Kim, Seon-Hyo
2017-08-01
The present study proposes a countermeasure for regulating total heat flux through the mold flux layer by designed mold flux with additive metallic iron particles. The heat flux through the B2O3-CaO-SiO2-Na2O-CaF2-Fe system was investigated using the infrared emitter technique to evaluate total flux density across the mold flux film. Both scanning electron microscope (SEM) and X-ray diffraction analysis were employed in order to identify the morphological and compositional changes of the crystalline phase, according to increasing iron contents in the mold flux. It was confirmed that the crystalline layer of studied mold fluxes does not have a meaningful effect on the total heat flux density due to the similar structure and fraction of the crystalline phase. The extinction coefficient was measured for glassy mold fluxes using an ultraviolet/visible and a Fourier transformation-infrared ray spectrometer in the range of 0.5 to 5 μm. For analyzing the scattering behavior of iron particles on the extinction coefficient, the number density and diameter of particles were observed by an automated SEM (auto-SEM). With these data, Mie scattering theory is adopted to define the scattering behavior of dispersed iron droplets in glassy matrix. It was found that the theoretical scattering coefficient demonstrated about 1623 to 3295 m-1, which is in accordance with the experimental results. In doing so, this study successfully achieves the strong scattering behavior that would contribute greatly to the optimization of overall heat flux through the mold flux film during the casting process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auger, M.; Jarrell, H.C.; Smith, I.C.P.
1988-06-28
The interactions of local anesthetic tetracaine with multilamellar dispersions of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and cholesterol have been investigated by deuterium nuclear magnetic resonance of specifically deuteriated tetracaines, DMPC and cholesterol. Experiments were performed at pH 5.5, when the anesthetic is primarily charged, and at pH 9.5, when it is primarily uncharged. The partition coefficients of the anesthetic in the membrane have been measured at both pH values for phosphatidylcholine bilayers with and without cholesterol. The higher partition coefficients obtained at pH 9.5 reflect the hydrophobic interactions between the uncharged form of the anesthetic and the hydrocarbon region of the bilayer. Themore » lower partition coefficients for the DMPC/cholesterol system at both pH values suggest that cholesterol, which increases the order of the lipid chains, decreases the solubility of tetracaine into the bilayer. For phosphatidylcholine bilayers, it has been proposed that the charged tetracaine at low pH is located mostly at the phospholipid headgroup level while the uncharged tetracaine intercalates more deeply into the bilayer. The present study suggests that the location of tetracaine in the cholesterol-containing system is different from that in pure phosphatidylcholine bilayers: the anesthetic sits higher in the membrane. An increase in temperature results in a deeper penetration of the anesthetic into the bilayer. Moreover, the incorporation of the anesthetic into DMPC bilayers with or without cholesterol results in a reduction of the lipid order parameters both in the plateau and in the tail regions of the acyl chains, this effect being greater with the charged form of the anesthetic.« less
Senior, Lisa A.; Gyves, Matthew C.
2010-01-01
Time-of-travel, dispersion characteristics, and oxygen reaeration coefficients were determined by use of dye and gas tracing for a 2-mile reach of Tacony/Frankford Creek in Philadelphia, southeastern Pennsylvania. The reach frequently has concentrations of dissolved oxygen (DO) below the water-quality standard of 4 milligrams per liter during warm months. Several large combined sewer overflows (CSOs), including one of the largest in Philadelphia (former Wingohocking Creek), discharge to the study reach in this urbanized watershed, affecting water quality and the timing and magnitude of storm peaks. In addition, a dam that commonly results in backwater conditions and reduced natural reaeration is present a few hundred feet from the end of the study reach. Time-of-travel and reaeration data were collected under base-flow conditions in August and September 2009 for three sub-reaches from Roosevelt Boulevard (U.S. Route 1) to Castor Avenue. Determination of traveltimes to the centroid of the dye cloud were needed for calculation of the reaeration coefficients. Results of the dye study in Tacony/Frankford Creek indicate that traveltimes were affected by the presence of man-made structures, such as the large scour hole and pool developed at the outfall of the T14 CSO and the dam, both of which reduce stream velocities. Mean stream velocities during the dye-tracer tests ranged from a maximum of 0.44 to 0.04 foot per second through a large pool. The dispersion efficiency of the stream was determined from relations between normalized unit concentrations to time to peak for use in water-quality modeling. Oxygen reaeration coefficients determined by a constant rate-injection method using propane as the tracer gas were as low as 0.04 unit per hour in a long pool affected by backwater conditions behind a dam. The highest reaeration coefficient was 2.29 units per hour for a steep-gradient reach with multiple winding channels through gravel deposits, just downstream of a large scour pool developed at the outlet of the T14 CSO. Reaeration coefficients determined from the field tracer-gas method were compared to values calculated by two other methods, one that is based on theoretical equations using physical properties of the stream as variables and the other that is based on equations using the timing of measured daily maximum DO concentrations in the stream. Reaeration coefficients from the two alternate methods were most similar to values determined from the field tracer-gas method for the upstream portion of the study reach, characterized by free-flowing riffle and pools. Values of reaeration coefficients determined by the tracer-gas method were 2 to 10 times higher than values determined by 2 alternate methods for most subreaches hydraulically affected by man-made structures. In addition to the tracer gas, propane, the gas analysis also included methane, ethane, and ethene, of which only methane was measured in concentrations above a few micrograms per liter. Methane, thought to occur naturally or because of ongoing processes in the stream, was measured in concentrations ranging from 6.6 to 78 micrograms per liter; the concentrations were greatest in sub-reaches dominated by pools.
Friction and wear study of NR/SBR blends with Si3N4Filler
NASA Astrophysics Data System (ADS)
GaneshKumar, A.; Balaganesan, G.; Sivakumar, M. S.
2018-04-01
The aim of this paper is to investigate mechanical and frictional properties of natural rubber/styrene butadiene rubber (NR/SBR) blends with and without silicon nitride (Si3N4) filler. The rubber is surface modified by silane coupling agent (Si-69) for enhancing hydrophobic property. The Si3N4of percentage 0 1, 3, 5 and 7, is incorporated into NR/SBR rubber compounds with 20% precipitated silica. The specimens with and without fillers are prepared as per standard for tensile and friction testing. Fourier transform infrared (FTIR) spectroscopy test is conducted and it is inferred that the coupling agent is covalently bonded on the surface of Si3N4 particles and an organic coating layer is formed. The co-efficient of friction and specific wear rate of NR/SBR blends are examined using an in-house built friction tester in a disc-on-plate (DOP) configuration. The specimens are tested to find coefficient of friction (COF) against steel grip antiskid plate under dry, mud, wet and oil environmental conditions. It is found that the increase in tensile strength and modulus at low percentage of Si3N4 dispersion. It is also observed that increase in sliding friction co-efficient and decrease in wear rate for 1% of Si3N4 dispersion in NR/SBR blends. The friction tested surfaces are inspected using Scanning Electron Microscope (SEM) and 3D non contact surface profiler.
Azeez, Ali Basheer; Mohammed, Kahtan S.; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Sandu, Andrei Victor; Razak, Rafiza Abdul
2013-01-01
Samples of concrete contain various waste materials, such as iron particulates, steel balls of used ball bearings and slags from steel industry were assessed for their anti-radiation attenuation coefficient properties. The attenuation measurements were performed using gamma spectrometer of NaI (Tl) detector. The utilized radiation sources comprised 137Cs and 60Co radioactive elements with photon energies of 0.662 MeV for 137Cs and two energy levels of 1.17 and 1.33 MeV for the 60Co. Likewise the mean free paths for the tested samples were obtained. The aim of this work is to investigate the effect of the waste loading rates and the particulate dispersive manner within the concrete matrix on the attenuation coefficients. The maximum linear attenuation coefficient (μ) was attained for concrete incorporates iron filling wastes of 30 wt %. They were of 1.12 ± 1.31×10−3 for 137Cs and 0.92 ± 1.57 × 10−3 for 60Co. Substantial improvement in attenuation performance by 20%–25% was achieved for concrete samples incorporate iron fillings as opposed to that of steel ball samples at different (5%–30%) loading rates. The steel balls and the steel slags gave much inferior values. The microstructure, concrete-metal composite density, the homogeneity and particulate dispersion were examined and evaluated using different metallographic, microscopic and measurement facilities. PMID:28788363
NASA Astrophysics Data System (ADS)
Yokomizu, Yasunobu
Dispersed generation systems, such as micro gas-turbines and fuel cells, have been installed on some of commercial facilities. Smaller dispersed generators like solar photovoltaics have been also located on the several of individual homes. The trends in the introduction of the these generation systems seem to continue in the future and to cause the power system to have the enormous number of the dispersed generation systems. The present report discusses the near-future power distribution systems.
Mixing-controlled reactive transport on travel times in heterogeneous media
NASA Astrophysics Data System (ADS)
Luo, J.; Cirpka, O.
2008-05-01
Modeling mixing-controlled reactive transport using traditional spatial discretization of the domain requires identifying the spatial distributions of hydraulic and reactive parameters including mixing-related quantities such as dispersivities and kinetic mass-transfer coefficients. In most applications, breakthrough curves of conservative and reactive compounds are measured at only a few locations and models are calibrated by matching these breakthrough curves, which is an ill posed inverse problem. By contrast, travel-time based transport models avoid costly aquifer characterization. By considering breakthrough curves measured on different scales, one can distinguish between mixing, which is a prerequisite for reactions, and spreading, which per se does not foster reactions. In the travel-time based framework, the breakthrough curve of a solute crossing an observation plane, or ending in a well, is interpreted as the weighted average of concentrations in an ensemble of non-interacting streamtubes, each of which is characterized by a distinct travel-time value. Mixing is described by longitudinal dispersion and/or kinetic mass transfer along individual streamtubes, whereas spreading is characterized by the distribution of travel times which also determines the weights associated to each stream tube. Key issues in using the travel-time based framework include the description of mixing mechanisms and the estimation of the travel-time distribution. In this work, we account for both apparent longitudinal dispersion and kinetic mass transfer as mixing mechanisms, thus generalizing the stochastic-convective model with or without inter-phase mass transfer and the advective-dispersive streamtube model. We present a nonparametric approach of determining the travel-time distribution, given a breakthrough curve integrated over an observation plane and estimated mixing parameters. The latter approach is superior to fitting parametric models in cases where the true travel-time distribution exhibits multiple peaks or long tails. It is demonstrated that there is freedom for the combinations of mixing parameters and travel-time distributions to fit conservative breakthrough curves and describe the tailing. Reactive transport cases with a bimolecular instantaneous irreversible reaction and a dual Michaelis-Menten problem demonstrate that the mixing introduced by local dispersion and mass transfer may be described by apparent mean mass transfer with coefficients evaluated by local breakthrough curves.
Dispersion Relations for Proton Relaxation in Solid Dielectrics
NASA Astrophysics Data System (ADS)
Kalytka, V. A.; Korovkin, M. V.
2017-04-01
Frequency-temperature spectra of the complex permittivity are studied for proton semiconductors and dielectrics using the methods of a quasi-classical kinetic theory of dielectric relaxation (the Boltzmann kinetic theory) in the linear approximation with respect to the polarizing field in the radio frequency range at temperatures T = 50-450 K. The effect of the quantum transitions of protons on the Debye dispersion relations is taken into account for crystals with hydrogen bonds (HBC) at low temperatures (50-100 K). The diffusion coefficients and the mobilities under electrical transfer of protons in the HBCs are constructed at high temperatures (100-350 K) in a non-linear approximation with respect to the polarizing field.
Inversion of residual stress profiles from ultrasonic Rayleigh wave dispersion data
NASA Astrophysics Data System (ADS)
Mora, P.; Spies, M.
2018-05-01
We investigate theoretically and with synthetic data the performance of several inversion methods to infer a residual stress state from ultrasonic surface wave dispersion data. We show that this particular problem may reveal in relevant materials undesired behaviors for some methods that could be reliably applied to infer other properties. We focus on two methods, one based on a Taylor-expansion, and another one based on a piecewise linear expansion regularized by a singular value decomposition. We explain the instabilities of the Taylor-based method by highlighting singularities in the series of coefficients. At the same time, we show that the other method can successfully provide performances which only weakly depend on the material.
NASA Astrophysics Data System (ADS)
Abu El-Fadl, A.; Abd-Elsalam, A. M.
2018-05-01
Single crystals of potassium magnesium chloride sulfate (KMCS) doped with cobalt ions were grown by slow cooling method. Powder XRD study confirmed the monoclinic structure of the grown crystals. The functional group vibrations were checked through FTIR spectroscopy measurements. In optical studies, the absorbance behavior of the crystals and their optical energy gap were established by Tauc plot. The refractive index, the extinction coefficient and other optical constants were calculated for the grown crystals. The normal dispersion of the refractive index was analyzed according to single oscillator Sellmeier's model. The Urbach's rule was applied to analyze the localized states density in the forbidden gap.
Thermophysical and tribological properties of nanolubricants: A review
NASA Astrophysics Data System (ADS)
Kotia, Ankit; Rajkhowa, Pranami; Rao, Gogineni Satyanarayana; Ghosh, Subrata Kumar
2018-05-01
Recent studies in heat transfer evident that the nanofluid shows better heat transfer results as compared to base fluid. This influences the research community for the dispersion of nanoparticles in lubricants to enhance its thermophysical and tribological properties and these suspensions are termed as Nanolubricants. This review focuses on the effect of nanoparticle additives on thermophysical and tribological properties of base lubricant. Initial section briefly summarizes the variation in thermophysical properties namely viscosity, thermal conductivity, density and specific heat of nanolubricants. In later section, the coefficient of friction and anti-wear properties of nanolubricants are summarized. This review along with the replenishment of current knowledge, also discusses the fundamental mechanisms that evolve with the dispersion of nanoparticles.
The generalized Morse wavelet method to determine refractive index dispersion of dielectric films
NASA Astrophysics Data System (ADS)
Kocahan, Özlem; Özcan, Seçkin; Coşkun, Emre; Özder, Serhat
2017-04-01
The continuous wavelet transform (CWT) method is a useful tool for the determination of refractive index dispersion of dielectric films. Mother wavelet selection is an important factor for the accuracy of the results when using CWT. In this study, generalized Morse wavelet (GMW) was proposed as the mother wavelet because of having two degrees of freedom. The simulation studies, based on error calculations and Cauchy Coefficient comparisons, were presented and also the noisy signal was tested by CWT method with GMW. The experimental validity of this method was checked by D263 T schott glass having 100 μm thickness and the results were compared to those from the catalog value.
NASA Astrophysics Data System (ADS)
Ranjan, Suman; Mandal, Sanjoy
2017-12-01
Modeling of triple asymmetrical optical micro ring resonator (TAOMRR) in z-domain with 2 × 2 input-output system with detailed design of its waveguide configuration using finite-difference time-domain (FDTD) method is presented. Transfer function in z-domain using delay-line signal processing technique of the proposed TAOMRR is determined for different input and output ports. The frequency response analysis is carried out using MATLAB software. Group delay and dispersion characteristics are also determined in MATLAB. The electric field analysis is done using FDTD. The method proposes a new methodology to design and draw multiple configurations of coupled ring resonators having multiple in and out ports. Various important parameters such as coupling coefficients and FSR are also determined.
NASA Astrophysics Data System (ADS)
Ranjan, Suman; Mandal, Sanjoy
2018-02-01
Modeling of triple asymmetrical optical micro ring resonator (TAOMRR) in z-domain with 2 × 2 input-output system with detailed design of its waveguide configuration using finite-difference time-domain (FDTD) method is presented. Transfer function in z-domain using delay-line signal processing technique of the proposed TAOMRR is determined for different input and output ports. The frequency response analysis is carried out using MATLAB software. Group delay and dispersion characteristics are also determined in MATLAB. The electric field analysis is done using FDTD. The method proposes a new methodology to design and draw multiple configurations of coupled ring resonators having multiple in and out ports. Various important parameters such as coupling coefficients and FSR are also determined.
Yu, Fajun
2017-02-01
Starting from a discrete spectral problem, we derive a hierarchy of nonlinear discrete equations which include the Ablowitz-Ladik (AL) equation. We analytically study the discrete rogue-wave (DRW) solutions of AL equation with three free parameters. The trajectories of peaks and depressions of profiles for the first- and second-order DRWs are produced by means of analytical and numerical methods. In particular, we study the solutions with dispersion in parity-time ( PT) symmetric potential for Ablowitz-Musslimani equation. And we consider the non-autonomous DRW solutions, parameters controlling and their interactions with variable coefficients, and predict the long-living rogue wave solutions. Our results might provide useful information for potential applications of synthetic PT symmetric systems in nonlinear optics and condensed matter physics.
NASA Technical Reports Server (NTRS)
Fuller, C. R.
1984-01-01
Sound propagation in infinite, semiinfinite, and finite circular ducts with circumferentially varying wall admittances is investigated analytically. The infinite case is considered, and an example demonstrates the effects of wall-admittance distribution on dispersion characteristics and mode shapes. An exact solution is obtained for the semiinfinite case, a circular duct with a flanged opening: sidelobe suppression and circumferential-mode energy scattering leading to radiated-field asymmetry are found. A finite duct system with specified hard-walled pressure sources is examined in detail, evaluating reflection coefficients, transmission losses, and radiated-field directivity. Graphs and diagrams are provided, and the implications of the results obtained for the design of aircraft-turbofan inlet liners are discussed.
Electronegative nonlinear oscillating modes in plasmas
NASA Astrophysics Data System (ADS)
Panguetna, Chérif Souleman; Tabi, Conrad Bertrand; Kofané, Timoléon Crépin
2018-02-01
The emergence of nonlinear modulated waves is addressed in an unmagnetized electronegative plasma made of Boltzmann electrons, Boltzmann negative ions and cold mobile positive ions. The reductive perturbation method is used to reduce the dynamics of the whole system to a cubic nonlinear Schrödinger equation, whose the nonlinear and dispersion coefficients, P and Q, are function of the negative ion parameters, namely the negative ion concentration ratio (α) and the electron-to-negative ion temperature ratio (σn). It is observed that these parameters importantly affect the formation of modulated ion-acoustic waves, either as exact solutions or via the activation of modulational instability. Especially, the theory of modulational instability is used to show the correlation between the parametric analysis and the formation of modulated solitons, obtained here as bright envelopes and kink-wave solitons.
NASA Astrophysics Data System (ADS)
Luís, Ruben S.; Cartaxo, Adolfo V. T.
2005-03-01
This paper proposes the definition of a cross-phase modulation (XPM)-induced power penalty for intensity modulation/direct detection (IM-DD) systems as a function of the normalized variance of the XPM-induced IM. This allows the definition of 1-dB power penalty reference values. New expressions of the equivalent linear model transfer functions for the XPM-induced IM and phase modulation (PM) that include the influence of self-phase modulation (SPM) as well as group-velocity dispersion are derived. The new expressions allow a significant extension for higher powers and dispersion parameters of expressions derived in previous papers for single-segment and multisegment fiber systems with dispersion compensation. Good agreement between analytical results and numerical simulations is obtained. Consistency with work performed numerically and experimentally by other authors is shown, validating the proposed model. Using the proposed model, the influence of residual dispersion and SPM on the limitations imposed by XPM on the performance of dispersion-compensated systems is assessed. It is shown that inline residual dispersion may lead to performance improvement for a properly tuned total residual dispersion. The influence of SPM is shown to degrade the system performance when nonzero-dispersion-shifted fiber is used. However, systems using standard single-mode fiber may benefit from the presence of SPM.
Zhao, Xiao; Liu, Wen; Fu, Jie; Cai, Zhengqing; O'Reilly, S E; Zhao, Dongye
2016-08-15
This work examined effects of model oil dispersants on dispersion, sorption and photodegradation of petroleum hydrocarbons in simulated marine systems. Three dispersants (Corexit 9500A, Corexit 9527A and SPC 1000) were used to prepare dispersed water accommodated oil (DWAO). While higher doses of dispersants dispersed more n-alkanes and PAHs, Corexit 9500A preferentially dispersed C11-C20 n-alkanes, whereas Corexit 9527A was more favorable for smaller alkanes (C10-C16), and SPC 1000 for C12-C28 n-alkanes. Sorption of petroleum hydrocarbons on sediment was proportional to TPH types/fractions in the DWAOs. Addition of 18mg/L of Corexit 9500A increased sediment uptake of 2-3 ring PAHs, while higher dispersant doses reduced the uptake, due to micelle-enhanced solubilization effects. Both dispersed n-alkanes and PAHs were susceptible to photodegradation under simulated sunlight. For PAHs, both photodegradation and photo-facilitated alkylation were concurrently taking place. The information can facilitate sounder assessment of fate and distribution of dispersed oil hydrocarbons in marine systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yeh, G. T.; Tsai, C. H.
2015-12-01
This paper presents the development of a THMC (thermal-hydrology-mechanics-chemistry) process model in variably saturated media. The governing equations for variably saturated flow and reactive chemical transport are obtained based on the mass conservation principle of species transport supplemented with Darcy's law, constraint of species concentration, equation of states, and constitutive law of K-S-P (Conductivity-Degree of Saturation-Capillary Pressure). The thermal transport equation is obtained based on the conservation of energy. The geo-mechanic displacement is obtained based on the assumption of equilibrium. Conventionally, these equations have been implicitly coupled via the calculations of secondary variables based on primary variables. The mechanisms of coupling have not been obvious. In this paper, governing equations are explicitly coupled for all primary variables. The coupling is accomplished via the storage coefficients, transporting velocities, and conduction-dispersion-diffusion coefficient tensor; one set each for every primary variable. With this new system of equations, the coupling mechanisms become clear. Physical interpretations of every term in the coupled equations will be discussed. Examples will be employed to demonstrate the intuition and superiority of these explicit coupling approaches. Keywords: Variably Saturated Flow, Thermal Transport, Geo-mechanics, Reactive Transport.
Saheli, P. T.; Rowe, R. K.; Petersen, E. J.; O’Carroll, D. M.
2017-01-01
The new applications for carbon nanotubes (CNTs) in various fields and consequently their greater production volume have increased their potential release to the environment. Landfills are one of the major locations where carbon nanotubes are expected to be disposed and it is important to ensure that they can limit the release of CNTs. Diffusion of multiwall carbon nanotubes (MWCNTs) dispersed in an aqueous media through a high-density polyethylene (HDPE) geomembrane (as a part of the landfill barrier system) was examined. Based on the laboratory tests, the permeation coefficient was estimated to be less than 5.1×10−15 m2/s. The potential performance of a HDPE geomembrane and geosynthetic clay liner (GCL) as parts of a composite liner in containing MWCNTs was modelled for six different scenarios. The results suggest that the low value of permeation coefficient of an HDPE geomembrane makes it an effective diffusive barrier for MWCNTs and by keeping the geomembrane defects to minimum during the construction (e.g., number of holes and length of wrinkles) a composite liner commonly used in municipal solid waste landfills will effectively contain MWCNTs. PMID:28740357
NASA Astrophysics Data System (ADS)
Ford, R.; Boser, B.
2012-12-01
Bioremediation processes depend on contact between microbial populations and the groundwater contaminants that they biodegrade. Chemotaxis, the ability of bacteria to sense a chemical gradient and swim preferentially toward locations of higher concentration, can enhance the transport of bacteria toward contaminant sources that may not be readily accessible by advection and dispersion alone. A two-dimensional rectangular-shaped microcosm packed with quartz sand was used to quantify the effect of chemotaxis on the migration of bacteria within a saturated model aquifer system. Artificial groundwater was pumped through the microcosm at a rate of approximately 1 m/day. A plume of sodium benzoate was created by continuous injection into an upper port of the microcosm to generate a chemical gradient in the vertical direction transverse to flow. Chemotactic bacteria, Pseudomonas putida F1, or the nonchemotactic mutant, P. putida F1 CheA, were injected with a conservative tracer in a port several centimeters below the benzoate position. As the injectates traversed the one-meter length of the microcosm, samples were collected from a dozen effluent ports to determine vertical concentration distributions for the bacteria, benzoate and tracer. A moment analysis was implemented to estimate the center of mass, variance, and skewness of the concentration profiles. The transverse dispersion coefficient and the transverse dispersivity for chemotactic and nonchemotactic bacteria were also evaluated. Experiments performed with a continuous injection of bacteria showed that the center of mass for chemotactic bacteria was closer to the benzoate source on average than the nonchemotactic control (relative to the conservative tracer). These results demonstrated that chemotaxis can increase bacterial transport toward contaminants, potentially enhancing the effectiveness of in situ bioremediation. Experiments with 2 cm and 3 cm spacing between bacteria and benzoate injection locations were performed to explore the relationship between the exposure time of the bacteria to benzoate and the transverse migration of bacteria due to chemotaxis. Experimentally determined transport parameters were then used as input to a two-dimensional mathematical model for bacterial transport. Model results showed the shift in center of mass for chemotactic bacteria was greater for 2 cm and 3 cm spacing than for 4 cm spacing for a given chemotactic sensitivity coefficient value, which showed that an increase in the exposure time of the bacteria to the model contaminant benzoate increased the transverse migration of bacteria. Modeling was used to test the effects of changing the chemotactic sensitivity coefficient and the chemotaxis receptor constant at three different bacteria and benzoate separation distances: 2 cm, 3 cm, and 4 cm. Mathematical models from this work can be applied to future field-scale studies to select design parameters that maximize transverse migration of chemotactic bacteria.
Row, Jeffrey R.; Knick, Steven T.; Oyler-McCance, Sara J.; Lougheed, Stephen C.; Fedy, Bradley C.
2017-01-01
Dispersal can impact population dynamics and geographic variation, and thus, genetic approaches that can establish which landscape factors influence population connectivity have ecological and evolutionary importance. Mixed models that account for the error structure of pairwise datasets are increasingly used to compare models relating genetic differentiation to pairwise measures of landscape resistance. A model selection framework based on information criteria metrics or explained variance may help disentangle the ecological and landscape factors influencing genetic structure, yet there are currently no consensus for the best protocols. Here, we develop landscape-directed simulations and test a series of replicates that emulate independent empirical datasets of two species with different life history characteristics (greater sage-grouse; eastern foxsnake). We determined that in our simulated scenarios, AIC and BIC were the best model selection indices and that marginal R2 values were biased toward more complex models. The model coefficients for landscape variables generally reflected the underlying dispersal model with confidence intervals that did not overlap with zero across the entire model set. When we controlled for geographic distance, variables not in the underlying dispersal models (i.e., nontrue) typically overlapped zero. Our study helps establish methods for using linear mixed models to identify the features underlying patterns of dispersal across a variety of landscapes.
Ito, Atsutoshi; Watanabe, Tomoyuki; Yada, Shuichi; Hamaura, Takeshi; Nakagami, Hiroaki; Higashi, Kenjirou; Moribe, Kunikazu; Yamamoto, Keiji
2010-01-04
The purpose of this study was to elaborate the relationship between the (13)C CP/MAS NMR spectra and the recrystallization behavior during the storage of troglitazone solid dispersions. The solid dispersions were prepared by either the solvent method or by co-grinding. The recrystallization behavior under storage conditions at 40 degrees C/94% RH was evaluated by the Kolmogorov-Johnson-Mehl-Avrami (KJMA) equation. Solid dispersions prepared by the solvent method or by prolonged grinding brought about inhibition of the nucleation and the nuclei growth at the same time. No differences in the PXRD profiles were found in the samples prepared by the co-grinding and solvent methods, however, (13)C CP/MAS NMR showed significant differences in the spectra. The correlation coefficients using partial least square regression analysis between the PXRD profiles and the apparent nuclei-growth constant or induction period to nucleation were 0.1305 or 0.6350, respectively. In contrast, those between the (13)C CP/MAS NMR spectra and the constant or the period were 0.9916 or 0.9838, respectively. The (13)C CP/MAS NMR spectra had good correlation with the recrystallization kinetic parameters evaluated by the KJMA equation. Consequently, solid-state NMR was judged to be a useful tool for the prediction of the recrystallization behavior of solid dispersions.
Roughness, resistance, and dispersion: Relationships in small streams
NASA Astrophysics Data System (ADS)
Noss, Christian; Lorke, Andreas
2016-04-01
Although relationships between roughness, flow, and transport processes in rivers and streams have been investigated for several decades, the prediction of flow resistance and longitudinal dispersion in small streams is still challenging. Major uncertainties in existing approaches for quantifying flow resistance and longitudinal dispersion at the reach scale arise from limitations in the characterization of riverbed roughness. In this study, we characterized the riverbed roughness in small moderate-gradient streams (0.1-0.5% bed slope) and investigated its effects on flow resistance and dispersion. We analyzed high-resolution transect-based measurements of stream depth and width, which resolved the complete roughness spectrum with scales ranging from the micro to the reach scale. Independently measured flow resistance and dispersion coefficients were mainly affected by roughness at spatial scales between the median grain size and the stream width, i.e., by roughness between the micro- and the mesoscale. We also compared our flow resistance measurements with calculations using various flow resistance equations. Flow resistance in our study streams was well approximated by the equations that were developed for high gradient streams (>1%) and it was overestimated by approaches developed for sand-bed streams with a smooth riverbed or ripple bed. This article was corrected on 10 MAY 2016. See the end of the full text for details.
Graphene Casimir Interactions and Some Possible Applications
NASA Astrophysics Data System (ADS)
Phan, Anh D.
Scientific development requires profound understandings of micromechanical and nanomechanical systems (MEMS/NEMS) due to their applications not only in the technological world, but also for scientific understanding. At the micro- or nano-scale, when two objects are brought close together, the existence of stiction or adhesion is inevitable and plays an important role in the behavior operation of these systems. Such effects are due to surface dispersion forces, such as the van der Waals or Casimir interactions. The scientific understanding of these forces is particularly important for low-dimensional materials. In addition, the discovery of materials, such as graphitic systems has provided opportunities for new classes of devices and challenging fundamental problems. Therefore, investigations of the van der Waals or Caismir forces in graphene-based systems, in particular, and the solution generating non-touching systems are needed. In this study, the Casimir force involving 2D graphene is investigated under various conditions. The Casimir interaction is usually studied in the framework of the Lifshitz theory. According to this theory, it is essential to know the frequency-dependent reflection coefficients of materials. Here, it is found that the graphene reflection coefficients strongly depend on the optical conductivity of graphene, which is described by the Kubo formalism. When objects are placed in vacuum, the Casimir force is attractive and leads to adhesion on the surface. We find that the Casimir repulsion can be obtained by replacing vacuum with a suitable liquid. Our studies show that bromobenzene is the liquid providing this effect. We also find that this long-range force is temperature dependent and graphene/bromobenzene/metal substrate configuration can be used to demonstrate merely thermal Casimir interaction at room temperature and micrometer distances. These findings would provide good guidance and predictions for practical studies.
Improved Optics For Quasi-Elastic Light Scattering
NASA Technical Reports Server (NTRS)
Cheung, Harry Michael
1995-01-01
Improved optical train devised for use in light-scattering measurements of quasi-elastic light scattering (QELS) and laser spectroscopy. Measurements performed on solutions, microemulsions, micellular solutions, and colloidal dispersions. Simultaneous measurements of total intensity and fluctuations in total intensity of light scattered from sample at various angles provides data used, in conjunction with diffusion coefficients, to compute sizes of particles in sample.
NASA Astrophysics Data System (ADS)
Nikolaev, N. A.; Andreev, Yu. M.; Kononova, N. G.; Lanskii, G. V.; Mamrashev, A. A.; Antsygin, V. D.; Kokh, K. A.; Kokh, A. E.
2018-01-01
Lithium triborate LiB3O5 (LBO) crystals are widely used for frequency conversion of the near-IR lasers within main transparency windows. Their optical properties at these wavelengths are well studied. However, very little work has been published on the properties in the terahertz (THz) range. There was a lack of data on the refractive indices, the absorption coefficients spectra and their temperature dispersions. There are no reports of THz applications. Present work reveals all these topics including the prospects for use LBO crystals as down-converters of the near-IR lasers radiation. Optically finished samples of flux-grown LBO crystals were studied by THz-TDS. The refractive index dispersions were recorded and then approximated in the form of Sellmeier equations for the temperatures of 300 and 81 K. The phase-matching curves for the IR-THz and THz-THz frequency conversions were calculated. It was found that the absorption coefficients of LBO decrease significantly with cooling to cryogenic temperatures, but the overall character of optical properties changes is intricated. Experimental results are discussed in detail considering potential characteristics of THz down-converters.
Influence of Self-generated Anchors on the Voice Handicap Index-10 (VHI-10).
Canals-Fortuny, Elisabet; Vila-Rovira, Josep
2017-03-01
The aim of this research is to study whether the presentation of the Voice Handicap Index-10 questionnaire administered at the beginning of the treatment impinged on the results of the responses from the end of the treatment. The questionnaire was administered at the beginning of the treatment to a total of 308 patients. After the treatment, a group of 235 patients answered the questionnaire again without any reference to their responses on the initial administration. The other group of participants, consisting of 73 subjects, completed the questionnaire with the answer sheet of their initial self-assessment in sight. The data obtained show that patients who responded to the anchored answer test show less dispersion and a smaller coefficient of variation (0.90) than those who responded to the nonanchored answer test (coefficient of variation = 1.66). The method of administration of the Voice Handicap Index-10 at the end of a treatment influences the dispersion of the results. We recommend that the patient be anchored to the initial answer sheet while responding to the final self-assessment. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Thomas, Gerald F.; Mulder, Fred; Meath, William J.
1980-12-01
The non-empirical generalized Kirkwood, Unsöld, and the single-Δ Unsöld methods (with double-zeta quality SCF wave-functions) are used to calculate isotropic dispersion (and induction) energy coefficients C2n, with n ⩽ 5, for interactions involving ground state CH 4, C 2H 6, C 3H 8, n-C 4H 10 and cyclo-C 3H 6. Results are also given for the related multipole polarizabilities α l, multipole sums S1/(0) and S1(-1) which are evaluated using sum rules, and the permanent multipole moments. for l = 1 (dipole) to l = 3 (octupole). Estimates of the reliability of the non-empirical methods, for the type of molecules considered, are obtained by a comparison with accurate literature values of α 1S1(-1) and C6. This, and the asymptotic properties of the multipolar expansion of the dispersion energy, the use to discuss recommended representation for the isotropic long range interaction energies through R-10 where R is the intermolecular separation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tartakovsky, Alexandre M.; Meakin, Paul
2005-08-10
A numerical model based on smoothed particle hydrodynamics (SPH) has been developed and used to simulate the classical two-dimensional Rayleigh–Taylor instability and three-dimensional miscible flow in fracture apertures with complex geometries. To model miscible flow fluid particles with variable, composition dependent, masses were used. By basing the SPH equations on the particle number density artificial surface tension effects were avoided. The simulation results for the growth of a single perturbation driven by the Rayleigh – Taylor instability compare well with numerical results obtained by Fournier et al., and the growth of a perturbation with time can be represented quite wellmore » by a second-degree polynomial, in accord with the linear stability analysis of Duff et al. The dispersion coefficient found from SPH simulation of flow and diffusion in an ideal fracture was in excellent agreement with the value predicted by the theory of Taylor and Aris. The simulations of miscible flow in fracture apertures can be used to determination dispersion coefficients for transport in fractured media - a parameter used in large-scale simulations of contaminant transport.« less
De Nolf, Kim; Capek, Richard K; Abe, Sofie; Sluydts, Michael; Jang, Youngjin; Martins, José C; Cottenier, Stefaan; Lifshitz, Efrat; Hens, Zeger
2015-02-25
We investigate the relation between the chain length of ligands used and the size of the nanocrystals formed in the hot injection synthesis. With two different CdSe nanocrystal syntheses, we consistently find that longer chain carboxylic acids result in smaller nanocrystals with improved size dispersions. By combining a more in-depth experimental investigation with kinetic reaction simulations, we come to the conclusion that this size tuning is due to a change in the diffusion coefficient and the solubility of the solute. The relation between size tuning by the ligand chain length and the coordination of the solute by the ligands is further explored by expanding the study to amines and phosphine oxides. In line with the weak coordination of CdSe nanocrystals by amines, no influence of the chain length on the nanocrystals is found, whereas the size tuning brought about by phosphine oxides can be attributed to a solubility change. We conclude that the ligand chain length provides a practical handle to optimize the outcome of a hot injection synthesis in terms of size and size dispersion and can be used to probe the interaction between ligands and the actual solute.
Pumpe, Sebastian; Chemnitz, Mario; Kobelke, Jens; Schmidt, Markus A
2017-09-18
We present a monolithic fiber device that enables investigation of the thermo- and piezo-optical properties of liquids using straightforward broadband transmission measurements. The device is a directional mode coupler consisting of a multi-mode liquid core and a single-mode glass core with pronounced coupling resonances whose wavelength strongly depend on the operation temperature. We demonstrated the functionality and flexibility of our device for carbon disulfide, extending the current knowledge of the thermo-optic coefficient by 200 nm at 20 °C and uniquely for high temperatures. Moreover, our device allows measuring the piezo-optic coefficient of carbon disulfide, confirming results first obtained by Röntgen in 1891. Finally, we applied our approach to obtain the dispersion of the thermo-optic coefficients of benzene and tetrachloroethylene between 450 and 800 nm, whereas no data was available for the latter so far.
NASA Astrophysics Data System (ADS)
Bunkan, Arne; Amédro, Damien; Crowley, John
2017-04-01
The reaction of formaldehyde with HO2 radicals constitutes a minor, but significant sink of formaldehyde in the troposphere as well as a possible interference in other formaldehyde photooxidation experiments. HCHO + HO2 ⇌ HOCH2OO (1) Due to the difficulty of simultaneously monitoring the reactant and product concentrations while preventing interfering secondary chemistry, there is a considerable uncertainty in the literature values for the reaction rate coefficients. We have used two photon, excited fragment spectroscopy (TPEFS), originally developed for monitoring HNO3 formation in kinetic experiments, to monitor the formation of the HOCH2OO radical. Dispersed and single wavelength fluorescence emission following the 193 nm photolysis of HOCH2OO have been recorded and analysed. Characterisation of the method is presented along with rate coefficients for the reaction of HCHO with HO2 radicals at tropospheric temperatures.
Long-Range Adiabatic Corrections to the Ground Molecular State of Alkali-Metal Dimers.
NASA Astrophysics Data System (ADS)
Marinescu, M.; Dalgarno, A.
1997-04-01
The structure of the long-range limit of the diagonal adiabatic corrections to the ground molecular state of diatomic molecules, may be expressed as a series of inverse powers of internuclear distance, R. The coefficients of this expansion are proportional to the inverse of the nuclear mass. Thus, they may be interpreted as a nuclear mass-dependent corrections to the dispersion coefficients. Using perturbation theory we have calculated the long-range coefficients of the diagonal adiabatic corrections up to the order of R-10. The final expressions are in terms of integrals over imaginary frequencies of products of atomic matrix elements involving Green's functions of complex energy. Thus, in our approach the molecular problem is reduced to an atomic one. Numerical evaluations have been done for all alkali-metal dimers. We acknowledge the support of the U.S. Dept. of Energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowley, R.L.; Adams, M.E.; Marshall, T.L.
1997-03-01
Natural gas processors use amine treating processes to remove the acid gases H{sub 2}S and CO{sub 2} from gas streams. Absorption rates of gaseous CO{sub 2} into aqueous N-methyldiethanolamine (MDEA) solutions were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. The absorption rate was found to be insensitive to the diffusion coefficient of CO{sub 2} in solution but very sensitive to the diffusion rate of bicarbonate and protonated MDEA ions. Evidence also suggested that chemical reaction equilibrium is rapid relative to diffusion. A numerical model was developed on the basis of these observations. The modelmore » was used to regress diffusion coefficients of bicarbonate and protonated amine, which must be equivalent by electroneutrality arguments, from measured absorption rates. Complete modeling of the absorption process also required data for the diffusion coefficient of MDEA in water. These were measured using a Taylor dispersion apparatus. CO{sub 2} absorption rates and diffusion coefficients of bicarbonate and protonated MDEA were obtained at 298.2 K and 318.2 K in solutions containing 20, 35, and 50 mass % MDEA in water.« less