Sample records for dispersion model validation

  1. Validation and optimization of SST k-ω turbulence model for pollutant dispersion within a building array

    NASA Astrophysics Data System (ADS)

    Yu, Hesheng; Thé, Jesse

    2016-11-01

    The prediction of the dispersion of air pollutants in urban areas is of great importance to public health, homeland security, and environmental protection. Computational Fluid Dynamics (CFD) emerges as an effective tool for pollutant dispersion modelling. This paper reports and quantitatively validates the shear stress transport (SST) k-ω turbulence closure model and its transitional variant for pollutant dispersion under complex urban environment for the first time. Sensitivity analysis is performed to establish recommendation for the proper use of turbulence models in urban settings. The current SST k-ω simulation is validated rigorously by extensive experimental data using hit rate for velocity components, and the "factor of two" of observations (FAC2) and fractional bias (FB) for concentration field. The simulation results show that current SST k-ω model can predict flow field nicely with an overall hit rate of 0.870, and concentration dispersion with FAC2 = 0.721 and FB = 0.045. The flow simulation of the current SST k-ω model is slightly inferior to that of a detached eddy simulation (DES), but better than that of standard k-ε model. However, the current study is the best among these three model approaches, when validated against measurements of pollutant dispersion in the atmosphere. This work aims to provide recommendation for proper use of CFD to predict pollutant dispersion in urban environment.

  2. Validation of the DIFFAL, HPAC and HotSpot Dispersion Models Using the Full-Scale Radiological Dispersal Device (FSRDD) Field Trials Witness Plate Deposition Dataset.

    PubMed

    Purves, Murray; Parkes, David

    2016-05-01

    Three atmospheric dispersion models--DIFFAL, HPAC, and HotSpot--of differing complexities have been validated against the witness plate deposition dataset taken during the Full-Scale Radiological Dispersal Device (FSRDD) Field Trials. The small-scale nature of these trials in comparison to many other historical radiological dispersion trials provides a unique opportunity to evaluate the near-field performance of the models considered. This paper performs validation of these models using two graphical methods of comparison: deposition contour plots and hotline profile graphs. All of the models tested are assessed to perform well, especially considering that previous model developments and validations have been focused on larger-scale scenarios. Of the models, HPAC generally produced the most accurate results, especially at locations within ∼100 m of GZ. Features present within the observed data, such as hot spots, were not well modeled by any of the codes considered. Additionally, it was found that an increase in the complexity of the meteorological data input to the models did not necessarily lead to an improvement in model accuracy; this is potentially due to the small-scale nature of the trials.

  3. Simulation of gaseous pollutant dispersion around an isolated building using the k-ω SST (shear stress transport) turbulence model.

    PubMed

    Yu, Hesheng; Thé, Jesse

    2017-05-01

    The dispersion of gaseous pollutant around buildings is complex due to complex turbulence features such as flow detachment and zones of high shear. Computational fluid dynamics (CFD) models are one of the most promising tools to describe the pollutant distribution in the near field of buildings. Reynolds-averaged Navier-Stokes (RANS) models are the most commonly used CFD techniques to address turbulence transport of the pollutant. This research work studies the use of [Formula: see text] closure model for the gas dispersion around a building by fully resolving the viscous sublayer for the first time. The performance of standard [Formula: see text] model is also included for comparison, along with results of an extensively validated Gaussian dispersion model, the U.S. Environmental Protection Agency (EPA) AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model). This study's CFD models apply the standard [Formula: see text] and the [Formula: see text] turbulence models to obtain wind flow field. A passive concentration transport equation is then calculated based on the resolved flow field to simulate the distribution of pollutant concentrations. The resultant simulation of both wind flow and concentration fields are validated rigorously by extensive data using multiple validation metrics. The wind flow field can be acceptably modeled by the [Formula: see text] model. However, the [Formula: see text] model fails to simulate the gas dispersion. The [Formula: see text] model outperforms [Formula: see text] in both flow and dispersion simulations, with higher hit rates for dimensionless velocity components and higher "factor of 2" of observations (FAC2) for normalized concentration. All these validation metrics of [Formula: see text] model pass the quality assurance criteria recommended by The Association of German Engineers (Verein Deutscher Ingenieure, VDI) guideline. Furthermore, these metrics are better than or the same as those in the literature. Comparison between the performances of [Formula: see text] and AERMOD shows that the CFD simulation is superior to Gaussian-type model for pollutant dispersion in the near wake of obstacles. AERMOD can perform as a screening tool for near-field gas dispersion due to its expeditious calculation and the ability to handle complicated cases. The utilization of [Formula: see text] to simulate gaseous pollutant dispersion around an isolated building is appropriate and is expected to be suitable for complex urban environment. Multiple validation metrics of [Formula: see text] turbulence model in CFD quantitatively indicated that this turbulence model was appropriate for the simulation of gas dispersion around buildings. CFD is, therefore, an attractive alternative to wind tunnel for modeling gas dispersion in urban environment due to its excellent performance, and lower cost.

  4. Fast Running Urban Dispersion Model for Radiological Dispersal Device (RDD) Releases: Model Description and Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gowardhan, Akshay; Neuscamman, Stephanie; Donetti, John

    Aeolus is an efficient three-dimensional computational fluid dynamics code based on finite volume method developed for predicting transport and dispersion of contaminants in a complex urban area. It solves the time dependent incompressible Navier-Stokes equation on a regular Cartesian staggered grid using a fractional step method. It also solves a scalar transport equation for temperature and using the Boussinesq approximation. The model also includes a Lagrangian dispersion model for predicting the transport and dispersion of atmospheric contaminants. The model can be run in an efficient Reynolds Average Navier-Stokes (RANS) mode with a run time of several minutes, or a moremore » detailed Large Eddy Simulation (LES) mode with run time of hours for a typical simulation. This report describes the model components, including details on the physics models used in the code, as well as several model validation efforts. Aeolus wind and dispersion predictions are compared to field data from the Joint Urban Field Trials 2003 conducted in Oklahoma City (Allwine et al 2004) including both continuous and instantaneous releases. Newly implemented Aeolus capabilities include a decay chain model and an explosive Radiological Dispersal Device (RDD) source term; these capabilities are described. Aeolus predictions using the buoyant explosive RDD source are validated against two experimental data sets: the Green Field explosive cloud rise experiments conducted in Israel (Sharon et al 2012) and the Full-Scale RDD Field Trials conducted in Canada (Green et al 2016).« less

  5. Longitudinal dispersion coefficients for numerical modeling of groundwater solute transport in heterogeneous formations

    NASA Astrophysics Data System (ADS)

    Lee, Jonghyun; Rolle, Massimo; Kitanidis, Peter K.

    2018-05-01

    Most recent research on hydrodynamic dispersion in porous media has focused on whole-domain dispersion while other research is largely on laboratory-scale dispersion. This work focuses on the contribution of a single block in a numerical model to dispersion. Variability of fluid velocity and concentration within a block is not resolved and the combined spreading effect is approximated using resolved quantities and macroscopic parameters. This applies whether the formation is modeled as homogeneous or discretized into homogeneous blocks but the emphasis here being on the latter. The process of dispersion is typically described through the Fickian model, i.e., the dispersive flux is proportional to the gradient of the resolved concentration, commonly with the Scheidegger parameterization, which is a particular way to compute the dispersion coefficients utilizing dispersivity coefficients. Although such parameterization is by far the most commonly used in solute transport applications, its validity has been questioned. Here, our goal is to investigate the effects of heterogeneity and mass transfer limitations on block-scale longitudinal dispersion and to evaluate under which conditions the Scheidegger parameterization is valid. We compute the relaxation time or memory of the system; changes in time with periods larger than the relaxation time are gradually leading to a condition of local equilibrium under which dispersion is Fickian. The method we use requires the solution of a steady-state advection-dispersion equation, and thus is computationally efficient, and applicable to any heterogeneous hydraulic conductivity K field without requiring statistical or structural assumptions. The method was validated by comparing with other approaches such as the moment analysis and the first order perturbation method. We investigate the impact of heterogeneity, both in degree and structure, on the longitudinal dispersion coefficient and then discuss the role of local dispersion and mass transfer limitations, i.e., the exchange of mass between the permeable matrix and the low permeability inclusions. We illustrate the physical meaning of the method and we show how the block longitudinal dispersivity approaches, under certain conditions, the Scheidegger limit at large Péclet numbers. Lastly, we discuss the potential and limitations of the method to accurately describe dispersion in solute transport applications in heterogeneous aquifers.

  6. Theoretical model for a Faraday anomalous dispersion optical filter

    NASA Technical Reports Server (NTRS)

    Yin, B.; Shay, T. M.

    1991-01-01

    A model for the Faraday anomalous dispersion optical filter is presented. The model predicts a bandwidth of 0.6 GHz and a transmission peak of 0.98 for a filter operating on the Cs (D2) line. The model includes hyperfine effects and is valid for arbitrary magnetic fields.

  7. On the validity of travel-time based nonlinear bioreactive transport models in steady-state flow.

    PubMed

    Sanz-Prat, Alicia; Lu, Chuanhe; Finkel, Michael; Cirpka, Olaf A

    2015-01-01

    Travel-time based models simplify the description of reactive transport by replacing the spatial coordinates with the groundwater travel time, posing a quasi one-dimensional (1-D) problem and potentially rendering the determination of multidimensional parameter fields unnecessary. While the approach is exact for strictly advective transport in steady-state flow if the reactive properties of the porous medium are uniform, its validity is unclear when local-scale mixing affects the reactive behavior. We compare a two-dimensional (2-D), spatially explicit, bioreactive, advective-dispersive transport model, considered as "virtual truth", with three 1-D travel-time based models which differ in the conceptualization of longitudinal dispersion: (i) neglecting dispersive mixing altogether, (ii) introducing a local-scale longitudinal dispersivity constant in time and space, and (iii) using an effective longitudinal dispersivity that increases linearly with distance. The reactive system considers biodegradation of dissolved organic carbon, which is introduced into a hydraulically heterogeneous domain together with oxygen and nitrate. Aerobic and denitrifying bacteria use the energy of the microbial transformations for growth. We analyze six scenarios differing in the variance of log-hydraulic conductivity and in the inflow boundary conditions (constant versus time-varying concentration). The concentrations of the 1-D models are mapped to the 2-D domain by means of the kinematic (for case i), and mean groundwater age (for cases ii & iii), respectively. The comparison between concentrations of the "virtual truth" and the 1-D approaches indicates extremely good agreement when using an effective, linearly increasing longitudinal dispersivity in the majority of the scenarios, while the other two 1-D approaches reproduce at least the concentration tendencies well. At late times, all 1-D models give valid approximations of two-dimensional transport. We conclude that the conceptualization of nonlinear bioreactive transport in complex multidimensional domains by quasi 1-D travel-time models is valid for steady-state flow fields if the reactants are introduced over a wide cross-section, flow is at quasi steady state, and dispersive mixing is adequately parametrized. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Predicting Aspergillus fumigatus exposure from composting facilities using a dispersion model: A conditional calibration and validation.

    PubMed

    Douglas, Philippa; Tyrrel, Sean F; Kinnersley, Robert P; Whelan, Michael; Longhurst, Philip J; Hansell, Anna L; Walsh, Kerry; Pollard, Simon J T; Drew, Gillian H

    2017-01-01

    Bioaerosols are released in elevated quantities from composting facilities and are associated with negative health effects, although dose-response relationships are unclear. Exposure levels are difficult to quantify as established sampling methods are costly, time-consuming and current data provide limited temporal and spatial information. Confidence in dispersion model outputs in this context would be advantageous to provide a more detailed exposure assessment. We present the calibration and validation of a recognised atmospheric dispersion model (ADMS) for bioaerosol exposure assessments. The model was calibrated by a trial and error optimisation of observed Aspergillus fumigatus concentrations at different locations around a composting site. Validation was performed using a second dataset of measured concentrations for a different site. The best fit between modelled and measured data was achieved when emissions were represented as a single area source, with a temperature of 29°C. Predicted bioaerosol concentrations were within an order of magnitude of measured values (1000-10,000CFU/m 3 ) at the validation site, once minor adjustments were made to reflect local differences between the sites (r 2 >0.7 at 150, 300, 500 and 600m downwind of source). Results suggest that calibrated dispersion modelling can be applied to make reasonable predictions of bioaerosol exposures at multiple sites and may be used to inform site regulation and operational management. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  9. Longitudinal dispersion coefficients for numerical modeling of groundwater solute transport in heterogeneous formations.

    PubMed

    Lee, Jonghyun; Rolle, Massimo; Kitanidis, Peter K

    2017-09-15

    Most recent research on hydrodynamic dispersion in porous media has focused on whole-domain dispersion while other research is largely on laboratory-scale dispersion. This work focuses on the contribution of a single block in a numerical model to dispersion. Variability of fluid velocity and concentration within a block is not resolved and the combined spreading effect is approximated using resolved quantities and macroscopic parameters. This applies whether the formation is modeled as homogeneous or discretized into homogeneous blocks but the emphasis here being on the latter. The process of dispersion is typically described through the Fickian model, i.e., the dispersive flux is proportional to the gradient of the resolved concentration, commonly with the Scheidegger parameterization, which is a particular way to compute the dispersion coefficients utilizing dispersivity coefficients. Although such parameterization is by far the most commonly used in solute transport applications, its validity has been questioned. Here, our goal is to investigate the effects of heterogeneity and mass transfer limitations on block-scale longitudinal dispersion and to evaluate under which conditions the Scheidegger parameterization is valid. We compute the relaxation time or memory of the system; changes in time with periods larger than the relaxation time are gradually leading to a condition of local equilibrium under which dispersion is Fickian. The method we use requires the solution of a steady-state advection-dispersion equation, and thus is computationally efficient, and applicable to any heterogeneous hydraulic conductivity K field without requiring statistical or structural assumptions. The method was validated by comparing with other approaches such as the moment analysis and the first order perturbation method. We investigate the impact of heterogeneity, both in degree and structure, on the longitudinal dispersion coefficient and then discuss the role of local dispersion and mass transfer limitations, i.e., the exchange of mass between the permeable matrix and the low permeability inclusions. We illustrate the physical meaning of the method and we show how the block longitudinal dispersivity approaches, under certain conditions, the Scheidegger limit at large Péclet numbers. Lastly, we discuss the potential and limitations of the method to accurately describe dispersion in solute transport applications in heterogeneous aquifers. Copyright © 2017. Published by Elsevier B.V.

  10. Evaluation of regional and local atmospheric dispersion models for the analysis of traffic-related air pollution in urban areas

    NASA Astrophysics Data System (ADS)

    Fallah-Shorshani, Masoud; Shekarrizfard, Maryam; Hatzopoulou, Marianne

    2017-10-01

    Dispersion of road transport emissions in urban metropolitan areas is typically simulated using Gaussian models that ignore the turbulence and drag induced by buildings, which are especially relevant for areas with dense downtown cores. To consider the effect of buildings, street canyon models are used but often at the level of single urban corridors and small road networks. In this paper, we compare and validate two dispersion models with widely varying algorithms, across a modelling domain consisting of the City of Montreal, Canada accounting for emissions of more 40,000 roads. The first dispersion model is based on flow decomposition into the urban canopy sub-flow as well as overlying airflow. It takes into account the specific height and geometry of buildings along each road. The second model is a Gaussian puff dispersion model, which handles complex terrain and incorporates three-dimensional meteorology, but accounts for buildings only through variations in the initial vertical mixing coefficient. Validation against surface observations indicated that both models under-predicted measured concentrations. Average weekly exposure surfaces derived from both models were found to be reasonably correlated (r = 0.8) although the Gaussian dispersion model tended to underestimate concentrations around the roadways compared to the street canyon model. In addition, both models were used to estimate exposures of a representative sample of the Montreal population composed of 1319 individuals. Large differences were noted whereby exposures derived from the Gaussian puff model were significantly lower than exposures derived from the street canyon model, an expected result considering the concentration of population around roadways. These differences have large implications for the analyses of health effects associated with NO2 exposure.

  11. Teaching and communicating dispersion in hydrogeology, with emphasis on the applicability of the Fickian model

    NASA Astrophysics Data System (ADS)

    Kitanidis, P. K.

    2017-08-01

    The process of dispersion in porous media is the effect of combined variability in fluid velocity and concentration at scales smaller than the ones resolved that contributes to spreading and mixing. It is usually introduced in textbooks and taught in classes through the Fick-Scheidegger parameterization, which is introduced as a scientific law of universal validity. This parameterization is based on observations in bench-scale laboratory experiments using homogeneous media. Fickian means that dispersive flux is proportional to the gradient of the resolved concentration while the Scheidegger parameterization is a particular way to compute the dispersion coefficients. The unresolved scales are thus associated with the pore-grain geometry that is ignored when the composite pore-grain medium is replaced by a homogeneous continuum. However, the challenge faced in practice is how to account for dispersion in numerical models that discretize the domain into blocks, often cubic meters in size, that contain multiple geologic facies. Although the Fick-Scheidegger parameterization is by far the one most commonly used, its validity has been questioned. This work presents a method of teaching dispersion that emphasizes the physical basis of dispersion and highlights the conditions under which a Fickian dispersion model is justified. In particular, we show that Fickian dispersion has a solid physical basis provided that an equilibrium condition is met. The issue of the Scheidegger parameterization is more complex but it is shown that the approximation that the dispersion coefficients should scale linearly with the mean velocity is often reasonable, at least as a practical approximation, but may not necessarily be always appropriate. Generally in Hydrogeology, the Scheidegger feature of constant dispersivity is considered as a physical law and inseparable from the Fickian model, but both perceptions are wrong. We also explain why Fickian dispersion fails under certain conditions, such as dispersion inside and directly upstream of a contaminant source. Other issues discussed are the relevance of column tests and confusion regarding the meaning of terms dispersion and Fickian.

  12. Development of a unified oil droplet size distribution model with application to surface breaking waves and subsea blowout releases considering dispersant effects.

    PubMed

    Li, Zhengkai; Spaulding, Malcolm; French McCay, Deborah; Crowley, Deborah; Payne, James R

    2017-01-15

    An oil droplet size model was developed for a variety of turbulent conditions based on non-dimensional analysis of disruptive and restorative forces, which is applicable to oil droplet formation under both surface breaking-wave and subsurface-blowout conditions, with or without dispersant application. This new model was calibrated and successfully validated with droplet size data obtained from controlled laboratory studies of dispersant-treated and non-treated oil in subsea dispersant tank tests and field surveys, including the Deep Spill experimental release and the Deepwater Horizon blowout oil spill. This model is an advancement over prior models, as it explicitly addresses the effects of the dispersed phase viscosity, resulting from dispersant application and constrains the maximum stable droplet size based on Rayleigh-Taylor instability that is invoked for a release from a large aperture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel tests and its application in pollutant dispersion studies.

    PubMed

    Gromke, Christof

    2011-01-01

    A new vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel investigations was developed. The modeling concept is based on fluid dynamical similarity aspects and allows the small-scale modeling of various kinds of vegetation, e.g. field crops, shrubs, hedges, single trees and forest stands. The applicability of the modeling concept was validated in wind tunnel pollutant dispersion studies. Avenue trees in urban street canyons were modeled and their implications on traffic pollutant dispersion were investigated. The dispersion experiments proved the modeling concept to be practicable for wind tunnel studies and suggested to provide reliable concentration results. Unfavorable effects of trees on pollutant dispersion and natural ventilation in street canyons were revealed. Increased traffic pollutant concentrations were found in comparison to the tree-free reference case. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Microscale Obstacle Resolving Air Quality Model Evaluation with the Michelstadt Case

    PubMed Central

    Rakai, Anikó; Kristóf, Gergely

    2013-01-01

    Modelling pollutant dispersion in cities is challenging for air quality models as the urban obstacles have an important effect on the flow field and thus the dispersion. Computational Fluid Dynamics (CFD) models with an additional scalar dispersion transport equation are a possible way to resolve the flowfield in the urban canopy and model dispersion taking into consideration the effect of the buildings explicitly. These models need detailed evaluation with the method of verification and validation to gain confidence in their reliability and use them as a regulatory purpose tool in complex urban geometries. This paper shows the performance of an open source general purpose CFD code, OpenFOAM for a complex urban geometry, Michelstadt, which has both flow field and dispersion measurement data. Continuous release dispersion results are discussed to show the strengths and weaknesses of the modelling approach, focusing on the value of the turbulent Schmidt number, which was found to give best statistical metric results with a value of 0.7. PMID:24027450

  15. Microscale obstacle resolving air quality model evaluation with the Michelstadt case.

    PubMed

    Rakai, Anikó; Kristóf, Gergely

    2013-01-01

    Modelling pollutant dispersion in cities is challenging for air quality models as the urban obstacles have an important effect on the flow field and thus the dispersion. Computational Fluid Dynamics (CFD) models with an additional scalar dispersion transport equation are a possible way to resolve the flowfield in the urban canopy and model dispersion taking into consideration the effect of the buildings explicitly. These models need detailed evaluation with the method of verification and validation to gain confidence in their reliability and use them as a regulatory purpose tool in complex urban geometries. This paper shows the performance of an open source general purpose CFD code, OpenFOAM for a complex urban geometry, Michelstadt, which has both flow field and dispersion measurement data. Continuous release dispersion results are discussed to show the strengths and weaknesses of the modelling approach, focusing on the value of the turbulent Schmidt number, which was found to give best statistical metric results with a value of 0.7.

  16. Optimisation of dispersion parameters of Gaussian plume model for CO₂ dispersion.

    PubMed

    Liu, Xiong; Godbole, Ajit; Lu, Cheng; Michal, Guillaume; Venton, Philip

    2015-11-01

    The carbon capture and storage (CCS) and enhanced oil recovery (EOR) projects entail the possibility of accidental release of carbon dioxide (CO2) into the atmosphere. To quantify the spread of CO2 following such release, the 'Gaussian' dispersion model is often used to estimate the resulting CO2 concentration levels in the surroundings. The Gaussian model enables quick estimates of the concentration levels. However, the traditionally recommended values of the 'dispersion parameters' in the Gaussian model may not be directly applicable to CO2 dispersion. This paper presents an optimisation technique to obtain the dispersion parameters in order to achieve a quick estimation of CO2 concentration levels in the atmosphere following CO2 blowouts. The optimised dispersion parameters enable the Gaussian model to produce quick estimates of CO2 concentration levels, precluding the necessity to set up and run much more complicated models. Computational fluid dynamics (CFD) models were employed to produce reference CO2 dispersion profiles in various atmospheric stability classes (ASC), different 'source strengths' and degrees of ground roughness. The performance of the CFD models was validated against the 'Kit Fox' field measurements, involving dispersion over a flat horizontal terrain, both with low and high roughness regions. An optimisation model employing a genetic algorithm (GA) to determine the best dispersion parameters in the Gaussian plume model was set up. Optimum values of the dispersion parameters for different ASCs that can be used in the Gaussian plume model for predicting CO2 dispersion were obtained.

  17. 75 FR 53371 - Liquefied Natural Gas Facilities: Obtaining Approval of Alternative Vapor-Gas Dispersion Models

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... factors as the approved models, are validated by experimental test data, and receive the Administrator's... stage of the MEP involves applying the model against a database of experimental test cases including..., particularly the requirement for validation by experimental test data. That guidance is based on the MEP's...

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soltanian, Mohamad Reza; Sun, Alexander; Dai, Zhenxue

    Yucca Mountain, Nevada, had been extensively investigated as a potential deep geologic repository for storing high-level nuclear wastes. Previous field investigations of stratified alluvial aquifer downstream of the site revealed that there is a hierarchy of sedimentary facies types. There is a corresponding log conductivity and reactive surface area subpopulations within each facies at each scale of sedimentary architecture. Here in this paper, we use a Lagrangian-based transport model in order to analyze radionuclide dispersion in the saturated alluvium of Fortymile Wash, Nevada. First, we validate the Lagrangian model using high-resolution flow and reactive transport simulations. Then, we used themore » validated model to investigate how each scale of sedimentary architecture may affect long-term radionuclide transport at Yucca Mountain. Results show that the reactive solute dispersion developed by the Lagrangian model matches the ensemble average of numerical simulations well. The link between the alluvium spatial variability and reactive solute dispersion at different spatiotemporal scales is demonstrated using the Lagrangian model. Finally, the longitudinal dispersivity of the reactive plume can be on the order of hundreds to thousands of meters, and it may not reach its asymptotic value even after 10,000 years of travel time and 2–3 km of travel distance.« less

  19. DART model for irradiation-induced swelling of uranium silicide dispersion fuel elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rest, J.; Hofman, G.L.

    1999-04-01

    Models for the interaction of uranium silicide dispersion fuels with an aluminum matrix, for the resultant reaction product swelling, and for the calculation of the stress gradient within the fuel particles are described within the context of DART fission-gas-induced swelling models. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by comparing DART calculations with irradiation data for the swelling of U{sub 3}SiAl-Al and U{sub 3}Si{sub 2}-Al in variously designed dispersion fuel elements.

  20. Performance assessment of Large Eddy Simulation (LES) for modeling dispersion in an urban street canyon with tree planting

    NASA Astrophysics Data System (ADS)

    Moonen, P.; Gromke, C.; Dorer, V.

    2013-08-01

    The potential of a Large Eddy Simulation (LES) model to reliably predict near-field pollutant dispersion is assessed. To that extent, detailed time-resolved numerical simulations of coupled flow and dispersion are conducted for a street canyon with tree planting. Different crown porosities are considered. The model performance is assessed in several steps, ranging from a qualitative comparison to measured concentrations, over statistical data analysis by means of scatter plots and box plots, up to the calculation of objective validation metrics. The extensive validation effort highlights and quantifies notable features and shortcomings of the model, which would otherwise remain unnoticed. The model performance is found to be spatially non-uniform. Closer agreement with measurement data is achieved near the canyon ends than for the central part of the canyon, and typical model acceptance criteria are satisfied more easily for the leeward than for the windward canyon wall. This demonstrates the need for rigorous model evaluation. Only quality-assured models can be used with confidence to support assessment, planning and implementation of pollutant mitigation strategies.

  1. Application of the DART Code for the Assessment of Advanced Fuel Behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rest, J.; Totev, T.

    2007-07-01

    The Dispersion Analysis Research Tool (DART) code is a dispersion fuel analysis code that contains mechanistically-based fuel and reaction-product swelling models, a one dimensional heat transfer analysis, and mechanical deformation models. DART has been used to simulate the irradiation behavior of uranium oxide, uranium silicide, and uranium molybdenum aluminum dispersion fuels, as well as their monolithic counterparts. The thermal-mechanical DART code has been validated against RERTR tests performed in the ATR for irradiation data on interaction thickness, fuel, matrix, and reaction product volume fractions, and plate thickness changes. The DART fission gas behavior model has been validated against UO{sub 2}more » fission gas release data as well as measured fission gas-bubble size distributions. Here DART is utilized to analyze various aspects of the observed bubble growth in U-Mo/Al interaction product. (authors)« less

  2. Forecasting volcanic ash dispersal and coeval resuspension during the April-May 2015 Calbuco eruption

    NASA Astrophysics Data System (ADS)

    Reckziegel, F.; Bustos, E.; Mingari, L.; Báez, W.; Villarosa, G.; Folch, A.; Collini, E.; Viramonte, J.; Romero, J.; Osores, S.

    2016-07-01

    Atmospheric dispersion of volcanic ash from explosive eruptions or from subsequent fallout deposit resuspension causes a range of impacts and disruptions on human activities and ecosystems. The April-May 2015 Calbuco eruption in Chile involved eruption and resuspension activities. We overview the chronology, effects, and products resulting from these events, in order to validate an operational forecast strategy for tephra dispersal. The modelling strategy builds on coupling the meteorological Weather Research and Forecasting (WRF/ARW) model with the FALL3D dispersal model for eruptive and resuspension processes. The eruption modelling considers two distinct particle granulometries, a preliminary first guess distribution used operationally when no field data was available yet, and a refined distribution based on field measurements. Volcanological inputs were inferred from eruption reports and results from an Argentina-Chilean ash sample data network, which performed in-situ sampling during the eruption. In order to validate the modelling strategy, results were compared with satellite retrievals and ground deposit measurements. Results indicate that the WRF-FALL3D modelling system can provide reasonable forecasts in both eruption and resuspension modes, particularly when the adjusted granulometry is considered. The study also highlights the importance of having dedicated datasets of active volcanoes furnishing first-guess model inputs during the early stages of an eruption.

  3. Non-Parabolic Hydrodynamic Formulations for the Simulation of Inhomogeneous Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Smith, A. W.; Brennan, K. F.

    1996-01-01

    Hydrodynamic models are becoming prevalent design tools for small scale devices and other devices in which high energy effects can dominate transport. Most current hydrodynamic models use a parabolic band approximation to obtain fairly simple conservation equations. Interest in accounting for band structure effects in hydrodynamic device simulation has begun to grow since parabolic models cannot fully describe the transport in state of the art devices due to the distribution populating non-parabolic states within the band. This paper presents two different non-parabolic formulations or the hydrodynamic model suitable for the simulation of inhomogeneous semiconductor devices. The first formulation uses the Kane dispersion relationship ((hk)(exp 2)/2m = W(1 + alphaW). The second formulation makes use of a power law ((hk)(exp 2)/2m = xW(exp y)) for the dispersion relation. Hydrodynamic models which use the first formulation rely on the binomial expansion to obtain moment equations with closed form coefficients. This limits the energy range over which the model is valid. The power law formulation readily produces closed form coefficients similar to those obtained using the parabolic band approximation. However, the fitting parameters (x,y) are only valid over a limited energy range. The physical significance of the band non-parabolicity is discussed as well as the advantages/disadvantages and approximations of the two non-parabolic models. A companion paper describes device simulations based on the three dispersion relationships; parabolic, Kane dispersion and power law dispersion.

  4. Non-parabolic hydrodynamic formulations for the simulation of inhomogeneous semiconductor devices

    NASA Technical Reports Server (NTRS)

    Smith, Arlynn W.; Brennan, Kevin F.

    1995-01-01

    Hydrodynamic models are becoming prevalent design tools for small scale devices and other devices in which high energy effects can dominate transport. Most current hydrodynamic models use a parabolic band approximation to obtain fairly simple conservation equations. Interest in accounting for band structure effects in hydrodynamic device simulation has begun to grow since parabolic models can not fully describe the transport in state of the art devices due to the distribution populating non-parabolic states within the band. This paper presents two different non-parabolic formulations of the hydrodynamic model suitable for the simulation of inhomogeneous semiconductor devices. The first formulation uses the Kane dispersion relationship (hk)(exp 2)/2m = W(1 + alpha(W)). The second formulation makes use of a power law ((hk)(exp 2)/2m = xW(sup y)) for the dispersion relation. Hydrodynamic models which use the first formulation rely on the binomial expansion to obtain moment equations with closed form coefficients. This limits the energy range over which the model is valid. The power law formulation readily produces closed form coefficients similar to those obtained using the parabolic band approximation. However, the fitting parameters (x,y) are only valid over a limited energy range. The physical significance of the band non-parabolicity is discussed as well as the advantages/disadvantages and approximations of the two non-parabolic models. A companion paper describes device simulations based on the three dispersion relationships: parabolic, Kane dispersion, and power low dispersion.

  5. DART model for irradiation-induced swelling of dispersion fuel elements including aluminum-fuel interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rest, J.; Hofman, G.L.

    1997-12-01

    The Dispersion Analysis Research Tool (DART) contains models for fission-gas-induced fuel swelling, interaction of fuel with the matrix aluminum, for the resultant reaction-product swelling, and for the calculation of the stress gradient within the fuel particle. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by a comparison of DART calculations of fuel swelling of U{sub 3}SiAl-Al and U{sub 3}Si{sub 2}-Al for various dispersion fuel element designs with the data.

  6. Comparison of CFD and operational dispersion models in an urban-like environment

    NASA Astrophysics Data System (ADS)

    Antonioni, G.; Burkhart, S.; Burman, J.; Dejoan, A.; Fusco, A.; Gaasbeek, R.; Gjesdal, T.; Jäppinen, A.; Riikonen, K.; Morra, P.; Parmhed, O.; Santiago, J. L.

    2012-02-01

    Chemical plants, refineries, transportation of hazardous materials are some of the most attractive facilities for external attacks aimed at the release of toxic substances. Dispersion of these substances into the atmosphere forms a concentration distribution of airborne pollutants with severe consequences for exposed individuals. For emergency preparedness and management, the availability of assessed/validated dispersion models, which can be able to predict concentration distribution and thus dangerous zones for exposed individuals, is of primary importance. Air quality models, integral models and analytical models predict the transport and the turbulent dispersion of gases or aerosols after their release without taking into account in detail the presence of obstacles. Obstacles can modify the velocity field and in turn the concentration field. The Computational Fluid Dynamics (CFD) models on the other hand are able to describe such phenomena, but they need to be correctly set up, tested and validated in order to obtain reliable results. Within the project Europa-ERG1 TA 113.034 "NBC Modelling and Simulation" several different approaches in CFD modelling of turbulent dispersion in closed, semi-confined and urban-like environment were adopted and compared with experimental data and with operational models. In this paper the results of a comparison between models describing the dispersion of a neutral gas in an idealized urban-like environment are presented and discussed. Experimental data available in the literature have been used as a benchmark for assessing statistical performance for each model. Selected experimental trials include some water channel tests, that were performed by Coanda at 1:205 scale, and one full-scale case that was tested in the fall of 2001 at the Dugway Proving Grounds in Utah, using an array of shipping containers. The paper also suggests the adoption of improved statistical parameters in order to better address differences between models, and to have a more straightforward method for comparing models suitable for emergency preparedness aims.

  7. Reactive transport in the complex heterogeneous alluvial aquifer of Fortymile Wash, Nevada

    DOE PAGES

    Soltanian, Mohamad Reza; Sun, Alexander; Dai, Zhenxue

    2017-04-02

    Yucca Mountain, Nevada, had been extensively investigated as a potential deep geologic repository for storing high-level nuclear wastes. Previous field investigations of stratified alluvial aquifer downstream of the site revealed that there is a hierarchy of sedimentary facies types. There is a corresponding log conductivity and reactive surface area subpopulations within each facies at each scale of sedimentary architecture. Here in this paper, we use a Lagrangian-based transport model in order to analyze radionuclide dispersion in the saturated alluvium of Fortymile Wash, Nevada. First, we validate the Lagrangian model using high-resolution flow and reactive transport simulations. Then, we used themore » validated model to investigate how each scale of sedimentary architecture may affect long-term radionuclide transport at Yucca Mountain. Results show that the reactive solute dispersion developed by the Lagrangian model matches the ensemble average of numerical simulations well. The link between the alluvium spatial variability and reactive solute dispersion at different spatiotemporal scales is demonstrated using the Lagrangian model. Finally, the longitudinal dispersivity of the reactive plume can be on the order of hundreds to thousands of meters, and it may not reach its asymptotic value even after 10,000 years of travel time and 2–3 km of travel distance.« less

  8. Method validation for chemical composition determination by electron microprobe with wavelength dispersive spectrometer

    NASA Astrophysics Data System (ADS)

    Herrera-Basurto, R.; Mercader-Trejo, F.; Muñoz-Madrigal, N.; Juárez-García, J. M.; Rodriguez-López, A.; Manzano-Ramírez, A.

    2016-07-01

    The main goal of method validation is to demonstrate that the method is suitable for its intended purpose. One of the advantages of analytical method validation is translated into a level of confidence about the measurement results reported to satisfy a specific objective. Elemental composition determination by wavelength dispersive spectrometer (WDS) microanalysis has been used over extremely wide areas, mainly in the field of materials science, impurity determinations in geological, biological and food samples. However, little information is reported about the validation of the applied methods. Herein, results of the in-house method validation for elemental composition determination by WDS are shown. SRM 482, a binary alloy Cu-Au of different compositions, was used during the validation protocol following the recommendations for method validation proposed by Eurachem. This paper can be taken as a reference for the evaluation of the validation parameters more frequently requested to get the accreditation under the requirements of the ISO/IEC 17025 standard: selectivity, limit of detection, linear interval, sensitivity, precision, trueness and uncertainty. A model for uncertainty estimation was proposed including systematic and random errors. In addition, parameters evaluated during the validation process were also considered as part of the uncertainty model.

  9. Three atmospheric dispersion experiments involving oil fog plumes measured by lidar

    NASA Technical Reports Server (NTRS)

    Eberhard, W. L.; Mcnice, G. T.; Troxel, S. W.

    1986-01-01

    The Wave Propagation Lab. participated with the U.S. Environmental Protection Agency in a series of experiments with the goal of developing and validating dispersion models that perform substantially better that models currently available. The lidar systems deployed and the data processing procedures used in these experiments are briefly described. Highlights are presented of conclusions drawn thus far from the lidar data.

  10. EDMS Multi-year Validation Plan

    DOT National Transportation Integrated Search

    2001-06-01

    The Emissions and Dispersion Modeling System (EDMS) is the air quality model required for use on airport projects by the Federal Aviation Administration (FAA). This model has continued to be improved and recently has included several important enhanc...

  11. Magnetic resonance dispersion imaging for localization of angiogenesis and cancer growth.

    PubMed

    Mischi, Massimo; Turco, Simona; Lavini, Cristina; Kompatsiari, Kyveli; de la Rosette, Jean J M C H; Breeuwer, Marcel; Wijkstra, Hessel

    2014-08-01

    Cancer angiogenesis can be imaged by using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Pharmacokinetic modeling can be used to assess vascular perfusion and permeability, but the assessment of angiogenic changes in the microvascular architecture remains challenging. This article presents 2 models enabling the characterization of the microvascular architecture by DCE-MRI. The microvascular architecture is reflected in the dispersion coefficient according to the convective dispersion equation. A solution of this equation, combined with the Tofts model, permits defining a dispersion model for magnetic resonance imaging. A reduced dispersion model is also presented. The proposed models were evaluated for prostate cancer diagnosis. Dynamic contrast-enhanced magnetic resonance imaging was performed, and concentration-time curves were calculated in each voxel. The simultaneous generation of parametric maps related to permeability and dispersion was obtained through model fitting. A preliminary validation was carried out through comparison with the histology in 15 patients referred for radical prostatectomy. Cancer localization was accurate with both dispersion models, with an area under the receiver operating characteristic curve greater than 0.8. None of the compared parameters, aimed at assessing vascular permeability and perfusion, showed better results. A new DCE-MRI method is proposed to characterize the microvascular architecture through the assessment of intravascular dispersion, without the need for separate arterial-input-function estimation. The results are promising and encourage further research.

  12. On the validity of effective formulations for transport through heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    de Dreuzy, Jean-Raynald; Carrera, Jesus

    2016-04-01

    Geological heterogeneity enhances spreading of solutes and causes transport to be anomalous (i.e., non-Fickian), with much less mixing than suggested by dispersion. This implies that modeling transport requires adopting either stochastic approaches that model heterogeneity explicitly or effective transport formulations that acknowledge the effects of heterogeneity. A number of such formulations have been developed and tested as upscaled representations of enhanced spreading. However, their ability to represent mixing has not been formally tested, which is required for proper reproduction of chemical reactions and which motivates our work. We propose that, for an effective transport formulation to be considered a valid representation of transport through heterogeneous porous media (HPM), it should honor mean advection, mixing and spreading. It should also be flexible enough to be applicable to real problems. We test the capacity of the multi-rate mass transfer (MRMT) model to reproduce mixing observed in HPM, as represented by the classical multi-Gaussian log-permeability field with a Gaussian correlation pattern. Non-dispersive mixing comes from heterogeneity structures in the concentration fields that are not captured by macrodispersion. These fine structures limit mixing initially, but eventually enhance it. Numerical results show that, relative to HPM, MRMT models display a much stronger memory of initial conditions on mixing than on dispersion because of the sensitivity of the mixing state to the actual values of concentration. Because MRMT does not restitute the local concentration structures, it induces smaller non-dispersive mixing than HPM. However long-lived trapping in the immobile zones may sustain the deviation from dispersive mixing over much longer times. While spreading can be well captured by MRMT models, in general non-dispersive mixing cannot.

  13. The Aliso Canyon Natural Gas Leak : Large Eddy Simulations for Modeling Atmospheric Dynamics and Interpretation of Observations.

    NASA Astrophysics Data System (ADS)

    Prasad, K.; Thorpe, A. K.; Duren, R. M.; Thompson, D. R.; Whetstone, J. R.

    2016-12-01

    The National Institute of Standards and Technology (NIST) has supported the development and demonstration of a measurement capability to accurately locate greenhouse gas sources and measure their flux to the atmosphere over urban domains. However, uncertainties in transport models which form the basis of all top-down approaches can significantly affect our capability to attribute sources and predict their flux to the atmosphere. Reducing uncertainties between bottom-up and top-down models will require high resolution transport models as well as validation and verification of dispersion models over an urban domain. Tracer experiments involving the release of Perfluorocarbon Tracers (PFTs) at known flow rates offer the best approach for validating dispersion / transport models. However, tracer experiments are limited by cost, ability to make continuous measurements, and environmental concerns. Natural tracer experiments, such as the leak from the Aliso Canyon underground storage facility offers a unique opportunity to improve and validate high resolution transport models, test leak hypothesis, and to estimate the amount of methane released.High spatial resolution (10 m) Large Eddy Simulations (LES) coupled with WRF atmospheric transport models were performed to simulate the dynamics of the Aliso Canyon methane plume and to quantify the source. High resolution forward simulation results were combined with aircraft and tower based in-situ measurements as well as data from NASA airborne imaging spectrometers. Comparison of simulation results with measurement data demonstrate the capability of the LES models to accurately model transport and dispersion of methane plumes over urban domains.

  14. On the validity of the dispersion model of hepatic drug elimination when intravascular transit time densities are long-tailed.

    PubMed

    Weiss, M; Stedtler, C; Roberts, M S

    1997-09-01

    The dispersion model with mixed boundary conditions uses a single parameter, the dispersion number, to describe the hepatic elimination of xenobiotics and endogenous substances. An implicit a priori assumption of the model is that the transit time density of intravascular indicators is approximately by an inverse Gaussian distribution. This approximation is limited in that the model poorly describes the tail part of the hepatic outflow curves of vascular indicators. A sum of two inverse Gaussian functions is proposed as an alternative, more flexible empirical model for transit time densities of vascular references. This model suggests that a more accurate description of the tail portion of vascular reference curves yields an elimination rate constant (or intrinsic clearance) which is 40% less than predicted by the dispersion model with mixed boundary conditions. The results emphasize the need to accurately describe outflow curves in using them as a basis for determining pharmacokinetic parameters using hepatic elimination models.

  15. Derivation of a Multiparameter Gamma Model for Analyzing the Residence-Time Distribution Function for Nonideal Flow Systems as an Alternative to the Advection-Dispersion Equation

    DOE PAGES

    Embry, Irucka; Roland, Victor; Agbaje, Oluropo; ...

    2013-01-01

    A new residence-time distribution (RTD) function has been developed and applied to quantitative dye studies as an alternative to the traditional advection-dispersion equation (AdDE). The new method is based on a jointly combined four-parameter gamma probability density function (PDF). The gamma residence-time distribution (RTD) function and its first and second moments are derived from the individual two-parameter gamma distributions of randomly distributed variables, tracer travel distance, and linear velocity, which are based on their relationship with time. The gamma RTD function was used on a steady-state, nonideal system modeled as a plug-flow reactor (PFR) in the laboratory to validate themore » effectiveness of the model. The normalized forms of the gamma RTD and the advection-dispersion equation RTD were compared with the normalized tracer RTD. The normalized gamma RTD had a lower mean-absolute deviation (MAD) (0.16) than the normalized form of the advection-dispersion equation (0.26) when compared to the normalized tracer RTD. The gamma RTD function is tied back to the actual physical site due to its randomly distributed variables. The results validate using the gamma RTD as a suitable alternative to the advection-dispersion equation for quantitative tracer studies of non-ideal flow systems.« less

  16. An improved kinetics approach to describe the physical stability of amorphous solid dispersions.

    PubMed

    Yang, Jiao; Grey, Kristin; Doney, John

    2010-01-15

    The recrystallization of amorphous solid dispersions may lead to a loss in the dissolution rate, and consequently reduce bioavailability. The purpose of this work is to understand factors governing the recrystallization of amorphous drug-polymer solid dispersions, and develop a kinetics model capable of accurately predicting their physical stability. Recrystallization kinetics was measured using differential scanning calorimetry for initially amorphous efavirenz-polyvinylpyrrolidone solid dispersions stored at controlled temperature and relative humidity. The experimental measurements were fitted by a new kinetic model to estimate the recrystallization rate constant and microscopic geometry of crystal growth. The new kinetics model was used to illustrate the governing factors of amorphous solid dispersions stability. Temperature was found to affect efavirenz recrystallization in an Arrhenius manner, while recrystallization rate constant was shown to increase linearly with relative humidity. Polymer content tremendously inhibited the recrystallization process by increasing the crystallization activation energy and decreasing the equilibrium crystallinity. The new kinetic model was validated by the good agreement between model fits and experiment measurements. A small increase in polyvinylpyrrolidone resulted in substantial stability enhancements of efavirenz amorphous solid dispersion. The new established kinetics model provided more accurate predictions than the Avrami equation.

  17. Particle dispersion in homogeneous turbulence using the one-dimensional turbulence model

    DOE PAGES

    Sun, Guangyuan; Lignell, David O.; Hewson, John C.; ...

    2014-10-09

    Lagrangian particle dispersion is studied using the one-dimensional turbulence (ODT) model in homogeneous decaying turbulence configurations. The ODT model has been widely and successfully applied to a number of reacting and nonreacting flow configurations, but only limited application has been made to multiphase flows. We present a version of the particle implementation and interaction with the stochastic and instantaneous ODT eddy events. The model is characterized by comparison to experimental data of particle dispersion for a range of intrinsic particle time scales and body forces. Particle dispersion, velocity, and integral time scale results are presented. Moreover, the particle implementation introducesmore » a single model parameter β p , and sensitivity to this parameter and behavior of the model are discussed. Good agreement is found with experimental data and the ODT model is able to capture the particle inertial and trajectory crossing effects. Our results serve as a validation case of the multiphase implementations of ODT for extensions to other flow configurations.« less

  18. On the validity of effective formulations for transport through heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    de Dreuzy, J.-R.; Carrera, J.

    2015-11-01

    Geological heterogeneity enhances spreading of solutes, and causes transport to be anomalous (i.e., non-Fickian), with much less mixing than suggested by dispersion. This implies that modeling transport requires adopting either stochastic approaches that model heterogeneity explicitly or effective transport formulations that acknowledge the effects of heterogeneity. A number of such formulations have been developed and tested as upscaled representations of enhanced spreading. However, their ability to represent mixing has not been formally tested, which is required for proper reproduction of chemical reactions and which motivates our work. We propose that, for an effective transport formulation to be considered a valid representation of transport through Heterogeneous Porous Media (HPM), it should honor mean advection, mixing and spreading. It should also be flexible enough to be applicable to real problems. We test the capacity of the Multi-Rate Mass Transfer (MRMT) to reproduce mixing observed in HPM, as represented by the classical multi-Gaussian log-permeability field with a Gaussian correlation pattern. Non-dispersive mixing comes from heterogeneity structures in the concentration fields that are not captured by macrodispersion. These fine structures limit mixing initially, but eventually enhance it. Numerical results show that, relative to HPM, MRMT models display a much stronger memory of initial conditions on mixing than on dispersion because of the sensitivity of the mixing state to the actual values of concentration. Because MRMT does not restitute the local concentration structures, it induces smaller non-dispersive mixing than HPM. However long-lived trapping in the immobile zones may sustain the deviation from dispersive mixing over much longer times. While spreading can be well captured by MRMT models, non-dispersive mixing cannot.

  19. Characterizing near-road air pollution using local-scale emission and dispersion models and validation against in-situ measurements

    NASA Astrophysics Data System (ADS)

    Wang, An; Fallah-Shorshani, Masoud; Xu, Junshi; Hatzopoulou, Marianne

    2016-10-01

    Near-road concentrations of nitrogen dioxide (NO2), a known marker of traffic-related air pollution, were simulated along a busy urban corridor in Montreal, Quebec using a combination of microscopic traffic simulation, instantaneous emission modeling, and air pollution dispersion. In order to calibrate and validate the model, a data collection campaign was designed. For this purpose, measurements of NO2 were conducted mid-block along four segments of the corridor throughout a four-week campaign conducted between March and April 2015. The four segments were chosen to be consecutive and yet exhibiting variability in road configuration and built environment characteristics. Roadside NO2 measurements were also paired with on-site and fixed-station meteorological data. In addition, traffic volumes, composition, and routing decisions were collected using video-cameras located at upstream and downstream intersections. Dispersion of simulated emissions was conducted for eight time slots and under a range of meteorological conditions using three different models with vastly different dispersion algorithms (OSPM, CALINE 4, and SIRANE). The three models exhibited poor correlation with near-road NO2 concentrations and were better able to simulate average concentrations occurring along the roadways rather than the range of concentrations measured under diverse meteorological and traffic conditions. As hypothesized, the model SIRANE that can handle a street canyon configuration was the most sensitive to the built environment especially to the presence of tall buildings around the road. In contrast, CALINE exhibited the lowest sensitivity to the built environment.

  20. Development and Validation of a Weather-Based Model for Predicting Infection of Loquat Fruit by Fusicladium eriobotryae

    PubMed Central

    González-Domínguez, Elisa; Armengol, Josep; Rossi, Vittorio

    2014-01-01

    A mechanistic, dynamic model was developed to predict infection of loquat fruit by conidia of Fusicladium eriobotryae, the causal agent of loquat scab. The model simulates scab infection periods and their severity through the sub-processes of spore dispersal, infection, and latency (i.e., the state variables); change from one state to the following one depends on environmental conditions and on processes described by mathematical equations. Equations were developed using published data on F. eriobotryae mycelium growth, conidial germination, infection, and conidial dispersion pattern. The model was then validated by comparing model output with three independent data sets. The model accurately predicts the occurrence and severity of infection periods as well as the progress of loquat scab incidence on fruit (with concordance correlation coefficients >0.95). Model output agreed with expert assessment of the disease severity in seven loquat-growing seasons. Use of the model for scheduling fungicide applications in loquat orchards may help optimise scab management and reduce fungicide applications. PMID:25233340

  1. A new statistical dispersion model for tracer tests and contaminant spread in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ates, H.; Kasap, E.

    Dispersion of solutes moving in permeable media is an essential control to describe fluid flow in permeable media. Dispersion can be thought of as a spreading of a solute caused by the presence of microscopic inhomogeneities. An accurate model for dispersion is needed for accurate estimation of oil recovery efficiencies and clean up costs of subsurface contaminants. Current approaches utilizing the fickian assumption fall short in describing the real physics of spreading during a solute transport process. Numerous field investigations have shown that dispersivities measured in the field are much larger than those measured in the lab for the samemore » type of porous material. Moreover, field measured dispersivities have been shown to be scale dependent, that is, a tracer test conducted over a longer travel path will yield a larger dispersivity value than a tracer test conducted in the same geologic formation over a shorter travel path. Numerous approaches to address this problem have been developed yet none attempted to go beyond the Fickian dispersion assumption. In this study, a convective dispersivity is introduced. New model assumes that dispersion is dimensionless and mainly determined by pore size distribution. The new model results in a spread that increases linearly with time contrary to conventional model, which predicts a mixing zone length that increases with square root of time. Therefore, new model explains the field test results that indicate increasing dispersivity with distance. The model validations are in perfect agreement with experimental results, which include; Ganapathy et al.`s slug experiment on Antolini sandstone, Handy`s radioactive tracer experiment on Alhambra sandstone, and CT experiment conducted at BDM-OK/NIPER facilities on Tallant sandstone.« less

  2. "Dispersion modeling approaches for near road | Science ...

    EPA Pesticide Factsheets

    Roadway design and roadside barriers can have significant effects on the dispersion of traffic-generated pollutants, especially in the near-road environment. Dispersion models that can accurately simulate these effects are needed to fully assess these impacts for a variety of applications. For example, such models can be useful for evaluating the mitigation potential of roadside barriers in reducing near-road exposures and their associated adverse health effects. Two databases, a tracer field study and a wind tunnel study, provide measurements used in the development and/or validation of algorithms to simulate dispersion in the presence of noise barriers. The tracer field study was performed in Idaho Falls, ID, USA with a 6-m noise barrier and a finite line source in a variety of atmospheric conditions. The second study was performed in the meteorological wind tunnel at the US EPA and simulated line sources at different distances from a model noise barrier to capture the effect on emissions from individual lanes of traffic. In both cases, velocity and concentration measurements characterized the effect of the barrier on dispersion.This paper presents comparisons with the two datasets of the barrier algorithms implemented in two different dispersion models: US EPA’s R-LINE (a research dispersion modelling tool under development by the US EPA’s Office of Research and Development) and CERC’s ADMS model (ADMS-Urban). In R-LINE the physical features reveal

  3. Numerical simulations of LNG vapor dispersion in Brayton Fire Training Field tests with ANSYS CFX.

    PubMed

    Qi, Ruifeng; Ng, Dedy; Cormier, Benjamin R; Mannan, M Sam

    2010-11-15

    Federal safety regulations require the use of validated consequence models to determine the vapor cloud dispersion exclusion zones for accidental liquefied natural gas (LNG) releases. One tool that is being developed in industry for exclusion zone determination and LNG vapor dispersion modeling is computational fluid dynamics (CFD). This paper uses the ANSYS CFX CFD code to model LNG vapor dispersion in the atmosphere. Discussed are important parameters that are essential inputs to the ANSYS CFX simulations, including the atmospheric conditions, LNG evaporation rate and pool area, turbulence in the source term, ground surface temperature and roughness height, and effects of obstacles. A sensitivity analysis was conducted to illustrate uncertainties in the simulation results arising from the mesh size and source term turbulence intensity. In addition, a set of medium-scale LNG spill tests were performed at the Brayton Fire Training Field to collect data for validating the ANSYS CFX prediction results. A comparison of test data with simulation results demonstrated that CFX was able to describe the dense gas behavior of LNG vapor cloud, and its prediction results of downwind gas concentrations close to ground level were in approximate agreement with the test data. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Evaluating Force-Field London Dispersion Coefficients Using the Exchange-Hole Dipole Moment Model.

    PubMed

    Mohebifar, Mohamad; Johnson, Erin R; Rowley, Christopher N

    2017-12-12

    London dispersion interactions play an integral role in materials science and biophysics. Force fields for atomistic molecular simulations typically represent dispersion interactions by the 12-6 Lennard-Jones potential using empirically determined parameters. These parameters are generally underdetermined, and there is no straightforward way to test if they are physically realistic. Alternatively, the exchange-hole dipole moment (XDM) model from density-functional theory predicts atomic and molecular London dispersion coefficients from first principles, providing an innovative strategy to validate the dispersion terms of molecular-mechanical force fields. In this work, the XDM model was used to obtain the London dispersion coefficients of 88 organic molecules relevant to biochemistry and pharmaceutical chemistry and the values compared with those derived from the Lennard-Jones parameters of the CGenFF, GAFF, OPLS, and Drude polarizable force fields. The molecular dispersion coefficients for the CGenFF, GAFF, and OPLS models are systematically higher than the XDM-calculated values by a factor of roughly 1.5, likely due to neglect of higher order dispersion terms and premature truncation of the dispersion-energy summation. The XDM dispersion coefficients span a large range for some molecular-mechanical atom types, suggesting an unrecognized source of error in force-field models, which assume that atoms of the same type have the same dispersion interactions. Agreement with the XDM dispersion coefficients is even poorer for the Drude polarizable force field. Popular water models were also examined, and TIP3P was found to have dispersion coefficients similar to the experimental and XDM references, although other models employ anomalously high values. Finally, XDM-derived dispersion coefficients were used to parametrize molecular-mechanical force fields for five liquids-benzene, toluene, cyclohexane, n-pentane, and n-hexane-which resulted in improved accuracy in the computed enthalpies of vaporization despite only having to evaluate a much smaller section of the parameter space.

  5. National Atmospheric Release Advisory Center dispersion modeling of the Full-scale Radiological Dispersal device (FSRDD) field trials

    DOE PAGES

    Neuscamman, Stephanie J.; Yu, Kristen L.

    2016-05-01

    The results of the National Atmospheric Release Advisory Center (NARAC) model simulations are compared to measured data from the Full-Scale Radiological Dispersal Device (FSRDD) field trials. The series of explosive radiological dispersal device (RDD) experiments was conducted in 2012 by Defence Research and Development Canada (DRDC) and collaborating organizations. During the trials, a wealth of data was collected, including a variety of deposition and air concentration measurements. The experiments were conducted with one of the stated goals being to provide measurements to atmospheric dispersion modelers. These measurements can be used to facilitate important model validation studies. For this study, meteorologicalmore » observations recorded during the tests are input to the diagnostic meteorological model, ADAPT, which provides 3–D, time-varying mean wind and turbulence fields to the LODI dispersion model. LODI concentration and deposition results are compared to the measured data, and the sensitivity of the model results to changes in input conditions (such as the particle activity size distribution of the source) and model physics (such as the rise of the buoyant cloud of explosive products) is explored. The NARAC simulations predicted the experimentally measured deposition results reasonably well considering the complexity of the release. Lastly, changes to the activity size distribution of the modeled particles can improve the agreement of the model results to measurement.« less

  6. Theory and application of an approximate model of saltwater upconing in aquifers

    USGS Publications Warehouse

    McElwee, C.; Kemblowski, M.

    1990-01-01

    Motion and mixing of salt water and fresh water are vitally important for water-resource development throughout the world. An approximate model of saltwater upconing in aquifers is developed, which results in three non-linear coupled equations for the freshwater zone, the saltwater zone, and the transition zone. The description of the transition zone uses the concept of a boundary layer. This model invokes some assumptions to give a reasonably tractable model, considerably better than the sharp interface approximation but considerably simpler than a fully three-dimensional model with variable density. We assume the validity of the Dupuit-Forchheimer approximation of horizontal flow in each layer. Vertical hydrodynamic dispersion into the base of the transition zone is assumed and concentration of the saltwater zone is assumed constant. Solute in the transition zone is assumed to be moved by advection only. Velocity and concentration are allowed to vary vertically in the transition zone by using shape functions. Several numerical techniques can be used to solve the model equations, and simple analytical solutions can be useful in validating the numerical solution procedures. We find that the model equations can be solved with adequate accuracy using the procedures presented. The approximate model is applied to the Smoky Hill River valley in central Kansas. This model can reproduce earlier sharp interface results as well as evaluate the importance of hydrodynamic dispersion for feeding salt water to the river. We use a wide range of dispersivity values and find that unstable upconing always occurs. Therefore, in this case, hydrodynamic dispersion is not the only mechanism feeding salt water to the river. Calculations imply that unstable upconing and hydrodynamic dispersion could be equally important in transporting salt water. For example, if groundwater flux to the Smoky Hill River were only about 40% of its expected value, stable upconing could exist where hydrodynamic dispersion into a transition zone is the primary mechanism for moving salt water to the river. The current model could be useful in situations involving dense saltwater layers. ?? 1990.

  7. Molecular surface area based predictive models for the adsorption and diffusion of disperse dyes in polylactic acid matrix.

    PubMed

    Xu, Suxin; Chen, Jiangang; Wang, Bijia; Yang, Yiqi

    2015-11-15

    Two predictive models were presented for the adsorption affinities and diffusion coefficients of disperse dyes in polylactic acid matrix. Quantitative structure-sorption behavior relationship would not only provide insights into sorption process, but also enable rational engineering for desired properties. The thermodynamic and kinetic parameters for three disperse dyes were measured. The predictive model for adsorption affinity was based on two linear relationships derived by interpreting the experimental measurements with molecular structural parameters and compensation effect: ΔH° vs. dye size and ΔS° vs. ΔH°. Similarly, the predictive model for diffusion coefficient was based on two derived linear relationships: activation energy of diffusion vs. dye size and logarithm of pre-exponential factor vs. activation energy of diffusion. The only required parameters for both models are temperature and solvent accessible surface area of the dye molecule. These two predictive models were validated by testing the adsorption and diffusion properties of new disperse dyes. The models offer fairly good predictive ability. The linkage between structural parameter of disperse dyes and sorption behaviors might be generalized and extended to other similar polymer-penetrant systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Analytical Characterization of SPM Impact on XPM-Induced Degradation in Dispersion-Compensated WDM Systems

    NASA Astrophysics Data System (ADS)

    Luís, Ruben S.; Cartaxo, Adolfo V. T.

    2005-03-01

    This paper proposes the definition of a cross-phase modulation (XPM)-induced power penalty for intensity modulation/direct detection (IM-DD) systems as a function of the normalized variance of the XPM-induced IM. This allows the definition of 1-dB power penalty reference values. New expressions of the equivalent linear model transfer functions for the XPM-induced IM and phase modulation (PM) that include the influence of self-phase modulation (SPM) as well as group-velocity dispersion are derived. The new expressions allow a significant extension for higher powers and dispersion parameters of expressions derived in previous papers for single-segment and multisegment fiber systems with dispersion compensation. Good agreement between analytical results and numerical simulations is obtained. Consistency with work performed numerically and experimentally by other authors is shown, validating the proposed model. Using the proposed model, the influence of residual dispersion and SPM on the limitations imposed by XPM on the performance of dispersion-compensated systems is assessed. It is shown that inline residual dispersion may lead to performance improvement for a properly tuned total residual dispersion. The influence of SPM is shown to degrade the system performance when nonzero-dispersion-shifted fiber is used. However, systems using standard single-mode fiber may benefit from the presence of SPM.

  9. Symmetries, chirp-free points, and bistability in dispersion-managed fiber lines.

    PubMed

    Turitsyn, S K; Nijhof, J H; Mezentsev, V K; Doran, N J

    1999-12-15

    We show from an elementary symmetry analysis that, in dispersion-compensated systems for which a lossless model is valid, nonlinearity requires a chirp-free point at the center of symmetry (if such exists) of the map for any kind of unique periodic solution. We also present an example of a more-complex map when the periodic solution is not unique.

  10. The model SIRANE for atmospheric urban pollutant dispersion. PART III: Validation against NO2 yearly concentration measurements in a large urban agglomeration

    NASA Astrophysics Data System (ADS)

    Soulhac, L.; Nguyen, C. V.; Volta, P.; Salizzoni, P.

    2017-10-01

    We present a validation study of an updated version of the SIRANE model, whose results have been systematically compared to concentrations of nitrogen dioxide collected over the whole urban agglomeration of Lyon. We model atmospheric dispersion of nitrogen oxides emitted by road traffic, industries and domestic heating. The meteorological wind field is computed by a pre-processor using data collected at a ground level monitoring station. Model results are compared with hourly concentrations measured at 15 monitoring stations over the whole year (2008). Further 75 passive diffusion samplers were used during 3 periods of 2 weeks to get a detailed spatial distribution over the west part of the city. An analysis of the model results depending on the variability of the meteorological input allows us to identify the causes for peculiar bad performances of the model and to identify possible improvements of the parameterisations implemented in it.

  11. Experimental validation of ultrasonic guided modes in electrical cables by optical interferometry.

    PubMed

    Mateo, Carlos; de Espinosa, Francisco Montero; Gómez-Ullate, Yago; Talavera, Juan A

    2008-03-01

    In this work, the dispersion curves of elastic waves propagating in electrical cables and in bare copper wires are obtained theoretically and validated experimentally. The theoretical model, based on Gazis equations formulated according to the global matrix methodology, is resolved numerically. Viscoelasticity and attenuation are modeled theoretically using the Kelvin-Voigt model. Experimental tests are carried out using interferometry. There is good agreement between the simulations and the experiments despite the peculiarities of electrical cables.

  12. Computing dispersion curves of elastic/viscoelastic transversely-isotropic bone plates coupled with soft tissue and marrow using semi-analytical finite element (SAFE) method.

    PubMed

    Nguyen, Vu-Hieu; Tran, Tho N H T; Sacchi, Mauricio D; Naili, Salah; Le, Lawrence H

    2017-08-01

    We present a semi-analytical finite element (SAFE) scheme for accurately computing the velocity dispersion and attenuation in a trilayered system consisting of a transversely-isotropic (TI) cortical bone plate sandwiched between the soft tissue and marrow layers. The soft tissue and marrow are mimicked by two fluid layers of finite thickness. A Kelvin-Voigt model accounts for the absorption of all three biological domains. The simulated dispersion curves are validated by the results from the commercial software DISPERSE and published literature. Finally, the algorithm is applied to a viscoelastic trilayered TI bone model to interpret the guided modes of an ex-vivo experimental data set from a bone phantom. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Relating coupled map lattices to integro-difference equations: dispersal-driven instabilities in coupled map lattices.

    PubMed

    White, Steven M; White, K A Jane

    2005-08-21

    Recently there has been a great deal of interest within the ecological community about the interactions of local populations that are coupled only by dispersal. Models have been developed to consider such scenarios but the theory needed to validate model outcomes has been somewhat lacking. In this paper, we present theory which can be used to understand these types of interaction when population exhibit discrete time dynamics. In particular, we consider a spatial extension to discrete-time models, known as coupled map lattices (CMLs) which are discrete in space. We introduce a general form of the CML and link this to integro-difference equations via a special redistribution kernel. General conditions are then derived for dispersal-driven instabilities. We then apply this theory to two discrete-time models; a predator-prey model and a host-pathogen model.

  14. Progress on Numerical Modeling of the Dispersion of Ceramic Nanoparticles During Ultrasonic Processing and Solidification of Al-Based Nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhang, Daojie; Nastac, Laurentiu

    2016-12-01

    In present study, 6061- and A356-based nano-composites are fabricated by using the ultrasonic stirring technology (UST) in a coreless induction furnace. SiC nanoparticles are used as the reinforcement. Nanoparticles are added into the molten metal and then dispersed by ultrasonic cavitation and acoustic streaming assisted by electromagnetic stirring. The applied UST parameters in the current experiments are used to validate a recently developed magneto-hydro-dynamics (MHD) model, which is capable of modeling the cavitation and nanoparticle dispersion during UST processing. The MHD model accounts for turbulent fluid flow, heat transfer and solidification, and electromagnetic field, as well as the complex interaction between the nanoparticles and both the molten and solidified alloys by using ANSYS Maxwell and ANSYS Fluent. Molecular dynamics (MD) simulations are conducted to analyze the complex interactions between the nanoparticle and the liquid/solid interface. The current modeling results demonstrate that a strong flow can disperse the nanoparticles relatively well during molten metal and solidification processes. MD simulation results prove that ultrafine particles (10 nm) will be engulfed by the solidification front instead of being pushed, which is beneficial for nano-dispersion.

  15. A Bayesian network approach to knowledge integration and representation of farm irrigation: 1. Model development

    NASA Astrophysics Data System (ADS)

    Wang, Q. J.; Robertson, D. E.; Haines, C. L.

    2009-02-01

    Irrigation is important to many agricultural businesses but also has implications for catchment health. A considerable body of knowledge exists on how irrigation management affects farm business and catchment health. However, this knowledge is fragmentary; is available in many forms such as qualitative and quantitative; is dispersed in scientific literature, technical reports, and the minds of individuals; and is of varying degrees of certainty. Bayesian networks allow the integration of dispersed knowledge into quantitative systems models. This study describes the development, validation, and application of a Bayesian network model of farm irrigation in the Shepparton Irrigation Region of northern Victoria, Australia. In this first paper we describe the process used to integrate a range of sources of knowledge to develop a model of farm irrigation. We describe the principal model components and summarize the reaction to the model and its development process by local stakeholders. Subsequent papers in this series describe model validation and the application of the model to assess the regional impact of historical and future management intervention.

  16. Three-dimensional Modeling of Water Quality and Ecology in Narragansett Bay

    EPA Science Inventory

    This report presents the methodology to apply, calibrate, and validate the three-dimensional water quality and ecological model provided with the Environmental Fluid Dynamics Code (EFDC). The required advection and dispersion mechanisms are generated simultaneously by the EFDC h...

  17. Validation of the FALL3D ash dispersion model using observations of the 2010 Eyjafjallajökull volcanic ash clouds

    NASA Astrophysics Data System (ADS)

    Folch, A.; Costa, A.; Basart, S.

    2012-03-01

    During April-May 2010 volcanic ash clouds from the Icelandic Eyjafjallajökull volcano reached Europe causing an unprecedented disruption of the EUR/NAT region airspace. Civil aviation authorities banned all flight operations because of the threat posed by volcanic ash to modern turbine aircraft. New quantitative airborne ash mass concentration thresholds, still under discussion, were adopted for discerning regions contaminated by ash. This has implications for ash dispersal models routinely used to forecast the evolution of ash clouds. In this new context, quantitative model validation and assessment of the accuracies of current state-of-the-art models is of paramount importance. The passage of volcanic ash clouds over central Europe, a territory hosting a dense network of meteorological and air quality observatories, generated a quantity of observations unusual for volcanic clouds. From the ground, the cloud was observed by aerosol lidars, lidar ceilometers, sun photometers, other remote-sensing instruments and in-situ collectors. From the air, sondes and multiple aircraft measurements also took extremely valuable in-situ and remote-sensing measurements. These measurements constitute an excellent database for model validation. Here we validate the FALL3D ash dispersal model by comparing model results with ground and airplane-based measurements obtained during the initial 14-23 April 2010 Eyjafjallajökull explosive phase. We run the model at high spatial resolution using as input hourly-averaged observed heights of the eruption column and the total grain size distribution reconstructed from field observations. Model results are then compared against remote ground-based and in-situ aircraft-based measurements, including lidar ceilometers from the German Meteorological Service, aerosol lidars and sun photometers from EARLINET and AERONET networks, and flight missions of the German DLR Falcon aircraft. We find good quantitative agreement, with an error similar to the spread in the observations (however depending on the method used to estimate mass eruption rate) for both airborne and ground mass concentration. Such verification results help us understand and constrain the accuracy and reliability of ash transport models and it is of enormous relevance for designing future operational mitigation strategies at Volcanic Ash Advisory Centers.

  18. Sensitivity of predicted bioaerosol exposure from open windrow composting facilities to ADMS dispersion model parameters.

    PubMed

    Douglas, P; Tyrrel, S F; Kinnersley, R P; Whelan, M; Longhurst, P J; Walsh, K; Pollard, S J T; Drew, G H

    2016-12-15

    Bioaerosols are released in elevated quantities from composting facilities and are associated with negative health effects, although dose-response relationships are not well understood, and require improved exposure classification. Dispersion modelling has great potential to improve exposure classification, but has not yet been extensively used or validated in this context. We present a sensitivity analysis of the ADMS dispersion model specific to input parameter ranges relevant to bioaerosol emissions from open windrow composting. This analysis provides an aid for model calibration by prioritising parameter adjustment and targeting independent parameter estimation. Results showed that predicted exposure was most sensitive to the wet and dry deposition modules and the majority of parameters relating to emission source characteristics, including pollutant emission velocity, source geometry and source height. This research improves understanding of the accuracy of model input data required to provide more reliable exposure predictions. Copyright © 2016. Published by Elsevier Ltd.

  19. Nonlinear dispersion effects in elastic plates: numerical modelling and validation

    NASA Astrophysics Data System (ADS)

    Kijanka, Piotr; Radecki, Rafal; Packo, Pawel; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.

    2017-04-01

    Nonlinear features of elastic wave propagation have attracted significant attention recently. The particular interest herein relates to complex wave-structure interactions, which provide potential new opportunities for feature discovery and identification in a variety of applications. Due to significant complexity associated with wave propagation in nonlinear media, numerical modeling and simulations are employed to facilitate design and development of new measurement, monitoring and characterization systems. However, since very high spatio- temporal accuracy of numerical models is required, it is critical to evaluate their spectral properties and tune discretization parameters for compromise between accuracy and calculation time. Moreover, nonlinearities in structures give rise to various effects that are not present in linear systems, e.g. wave-wave interactions, higher harmonics generation, synchronism and | recently reported | shifts to dispersion characteristics. This paper discusses local computational model based on a new HYBRID approach for wave propagation in nonlinear media. The proposed approach combines advantages of the Local Interaction Simulation Approach (LISA) and Cellular Automata for Elastodynamics (CAFE). The methods are investigated in the context of their accuracy for predicting nonlinear wavefields, in particular shifts to dispersion characteristics for finite amplitude waves and secondary wavefields. The results are validated against Finite Element (FE) calculations for guided waves in copper plate. Critical modes i.e., modes determining accuracy of a model at given excitation frequency - are identified and guidelines for numerical model parameters are proposed.

  20. Pseudo Random Stimulus Response of Combustion Systems.

    DTIC Science & Technology

    1980-01-01

    is also 7 applicable to the coalescence/dispersion (C/D) micromixing model In the C/D model, micromixing is simulated by considering the reacting...the turbulent fluctuations on the local heat release rate. Thus the micromixing ’noise’ measurements will not be valid, however, deductions

  1. Development of PRIME for irradiation performance analysis of U-Mo/Al dispersion fuel

    NASA Astrophysics Data System (ADS)

    Jeong, Gwan Yoon; Kim, Yeon Soo; Jeong, Yong Jin; Park, Jong Man; Sohn, Dong-Seong

    2018-04-01

    A prediction code for the thermo-mechanical performance of research reactor fuel (PRIME) has been developed with the implementation of developed models to analyze the irradiation behavior of U-Mo dispersion fuel. The code is capable of predicting the two-dimensional thermal and mechanical performance of U-Mo dispersion fuel during irradiation. A finite element method was employed to solve the governing equations for thermal and mechanical equilibria. Temperature- and burnup-dependent material properties of the fuel meat constituents and cladding were used. The numerical solution schemes in PRIME were verified by benchmarking solutions obtained using a commercial finite element analysis program (ABAQUS). The code was validated using irradiation data from RERTR, HAMP-1, and E-FUTURE tests. The measured irradiation data used in the validation were IL thickness, volume fractions of fuel meat constituents for the thermal analysis, and profiles of the plate thickness changes and fuel meat swelling for the mechanical analysis. The prediction results were in good agreement with the measurement data for both thermal and mechanical analyses, confirming the validity of the code.

  2. DEVELOPMENT OF MESOSCALE AIR QUALITY SIMULATION MODELS. VOLUME 1. COMPARATIVE SENSITIVITY STUDIES OF PUFF, PLUME, AND GRID MODELS FOR LONG DISTANCE DISPERSION

    EPA Science Inventory

    This report provides detailed comparisons and sensitivity analyses of three candidate models, MESOPLUME, MESOPUFF, and MESOGRID. This was not a validation study; there was no suitable regional air quality data base for the Four Corners area. Rather, the models have been evaluated...

  3. Prediction of Phyllosticta citricarpa using an hourly infection model and validation with prevalence data from South Africa and Australia

    USDA-ARS?s Scientific Manuscript database

    A simple hourly infection model was used for a risk assessment of citrus black spot (CBS) caused by Phyllosticta citricarpa. The infection model contained a temperature-moisture response function and also included functions to simulate ascospore release and dispersal of pycnidiospores. A validatio...

  4. Lagrangian predictability characteristics of an Ocean Model

    NASA Astrophysics Data System (ADS)

    Lacorata, Guglielmo; Palatella, Luigi; Santoleri, Rosalia

    2014-11-01

    The Mediterranean Forecasting System (MFS) Ocean Model, provided by INGV, has been chosen as case study to analyze Lagrangian trajectory predictability by means of a dynamical systems approach. To this regard, numerical trajectories are tested against a large amount of Mediterranean drifter data, used as sample of the actual tracer dynamics across the sea. The separation rate of a trajectory pair is measured by computing the Finite-Scale Lyapunov Exponent (FSLE) of first and second kind. An additional kinematic Lagrangian model (KLM), suitably treated to avoid "sweeping"-related problems, has been nested into the MFS in order to recover, in a statistical sense, the velocity field contributions to pair particle dispersion, at mesoscale level, smoothed out by finite resolution effects. Some of the results emerging from this work are: (a) drifter pair dispersion displays Richardson's turbulent diffusion inside the [10-100] km range, while numerical simulations of MFS alone (i.e., without subgrid model) indicate exponential separation; (b) adding the subgrid model, model pair dispersion gets very close to observed data, indicating that KLM is effective in filling the energy "mesoscale gap" present in MFS velocity fields; (c) there exists a threshold size beyond which pair dispersion becomes weakly sensitive to the difference between model and "real" dynamics; (d) the whole methodology here presented can be used to quantify model errors and validate numerical current fields, as far as forecasts of Lagrangian dispersion are concerned.

  5. Numerical Study on Sensitivity of Pollutant Dispersion on Turbulent Schmidt Number in a Street Canyon

    NASA Astrophysics Data System (ADS)

    WANG, J.; Kim, J.

    2014-12-01

    In this study, sensitivity of pollutant dispersion on turbulent Schmidt number (Sct) was investigated in a street canyon using a computational fluid dynamics (CFD) model. For this, numerical simulations with systematically varied Sct were performed and the CFD model results were validated against a wind‒tunnel measurement data. The results showed that root mean square error (RMSE) was quite dependent on Sct and dispersion patterns of non‒reactive scalar pollutant with different Sct were quite different among the simulation results. The RMSE was lowest in the case of Sct = 0.35 and the apparent dispersion pattern was most similar to the wind‒tunnel data in the case of Sct = 0.35. Also, numerical simulations using spatially weighted Sct were additionally performed in order for the best reproduction of the wind‒tunnel data. Detailed method and procedure to find the best reproduction will be presented.

  6. Wholly Patient-tailored Ablation of Atrial Fibrillation Guided by Spatio-Temporal Dispersion of Electrograms in the Absence of Pulmonary Veins Isolation

    PubMed Central

    Seitz, Julien; Bars, Clément; Théodore, Guillaume; Beurtheret, Sylvain; Lellouche, Nicolas; Bremondy, Michel; Ferracci, Ange; Faure, Jacques; Penaranda, Guillaume; Yamazaki, Masatoshi; Avula, Uma Mahesh R.; Curel, Laurence; Siame, Sabrina; Berenfeld, Omer; Pisapia, André; Kalifa, Jérôme

    2017-01-01

    Background The use of intra-cardiac electrograms to guide atrial fibrillation (AF) ablation has yielded conflicting results. We evaluated an electrogram marker of AF drivers: the clustering of electrograms exhibiting spatio-temporal dispersion — regardless of whether such electrograms were fractionated or not. Objective To evaluate the usefulness of spatio-temporal dispersion, a visually recognizable electric footprint of AF drivers, for the ablation of all forms of AF. Methods We prospectively enrolled 105 patients admitted for AF ablation. AF was sequentially mapped in both atria with a 20-pole PentaRay catheter. We tagged and ablated only regions displaying electrogram dispersion during AF. Results were compared to a validation set in which a conventional ablation approach was used (pulmonary vein isolation/stepwise approach). To establish the mechanism underlying spatio-temporal dispersion of AF electrograms, we conducted realistic numerical simulations of AF drivers in a 2-dimensional model and optical mapping of ovine atrial scar-related AF. Results Ablation at dispersion areas terminated AF in 95%. After ablation of 17±10% of the left atrial surface and 18 months of follow-up, the atrial arrhythmia recurrence rate was 15% after 1.4±0.5 procedure/patient vs 41% in the validation set after 1.5±0.5 procedure/patient (arrhythmia free-survival rates: 85% vs 59%, log rank P<0.001). In comparison with the validation set, radiofrequency times (49 ± 21 minutes vs 85 ± 34.5 minutes, p=0.001) and procedure times (168 ± 42 minutes vs. 230 ± 67 minutes, p<.0001) were shorter. In simulations and optical mapping experiments, virtual PentaRay recordings demonstrated that electrogram dispersion is mostly recorded in the vicinity of a driver. Conclusions The clustering of intra-cardiac electrograms exhibiting spatio-temporal dispersion is indicative of AF drivers. Their ablation allows for a non-extensive and patient-tailored approach to AF ablation. Clinical trial.gov number: NCT02093949 PMID:28104073

  7. Application of a Gaussian multilayer diffusion model to characterize dispersion of vertical HCl column density in rocket exhaust clouds

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Staton, W. L.

    1981-01-01

    Solid rocket exhaust cloud dispersion cases, based on seven meteorological regimes for overland advection in the Cape Canaveral, Florida, area, are examined for launch vehicle environmental impacts. They include a space shuttle case and all seven meteorological cases for the Titan 3, which exhausts 60% less HC1. The C(HC1) decays are also compared with recent in cloud peak HC1 data from eight Titan 3 launches. It is stipulated that while good overall agreement provides validation of the model, its limitations are considerable and a dynamics model is needed to handle local convective situations.

  8. A consistent modelling methodology for secondary settling tanks: a reliable numerical method.

    PubMed

    Bürger, Raimund; Diehl, Stefan; Farås, Sebastian; Nopens, Ingmar; Torfs, Elena

    2013-01-01

    The consistent modelling methodology for secondary settling tanks (SSTs) leads to a partial differential equation (PDE) of nonlinear convection-diffusion type as a one-dimensional model for the solids concentration as a function of depth and time. This PDE includes a flux that depends discontinuously on spatial position modelling hindered settling and bulk flows, a singular source term describing the feed mechanism, a degenerating term accounting for sediment compressibility, and a dispersion term for turbulence. In addition, the solution itself is discontinuous. A consistent, reliable and robust numerical method that properly handles these difficulties is presented. Many constitutive relations for hindered settling, compression and dispersion can be used within the model, allowing the user to switch on and off effects of interest depending on the modelling goal as well as investigate the suitability of certain constitutive expressions. Simulations show the effect of the dispersion term on effluent suspended solids and total sludge mass in the SST. The focus is on correct implementation whereas calibration and validation are not pursued.

  9. Arterial waveguide model for shear wave elastography: implementation and in vitro validation

    NASA Astrophysics Data System (ADS)

    Vaziri Astaneh, Ali; Urban, Matthew W.; Aquino, Wilkins; Greenleaf, James F.; Guddati, Murthy N.

    2017-07-01

    Arterial stiffness is found to be an early indicator of many cardiovascular diseases. Among various techniques, shear wave elastography has emerged as a promising tool for estimating local arterial stiffness through the observed dispersion of guided waves. In this paper, we develop efficient models for the computational simulation of guided wave dispersion in arterial walls. The models are capable of considering fluid-loaded tubes, immersed in fluid or embedded in a solid, which are encountered in in vitro/ex vivo, and in vivo experiments. The proposed methods are based on judiciously combining Fourier transformation and finite element discretization, leading to a significant reduction in computational cost while fully capturing complex 3D wave propagation. The developed methods are implemented in open-source code, and verified by comparing them with significantly more expensive, fully 3D finite element models. We also validate the models using the shear wave elastography of tissue-mimicking phantoms. The computational efficiency of the developed methods indicates the possibility of being able to estimate arterial stiffness in real time, which would be beneficial in clinical settings.

  10. Validation of smoke plume rise models using ground based lidar

    Treesearch

    Cyle E. Wold; Shawn Urbanski; Vladimir Kovalev; Alexander Petkov; Wei Min Hao

    2010-01-01

    Biomass fires can significantly degrade regional air quality. Plume rise height is one of the critical factors determining the impact of fire emissions on air quality. Plume rise models are used to prescribe the vertical distribution of fire emissions which are critical input for smoke dispersion and air quality models. The poor state of model evaluation is due in...

  11. Electroacoustic theory for concentrated colloids with overlapped DLs at arbitrary kappa alpha. I. Application to nanocolloids and nonaqueous colloids.

    PubMed

    Shilov, V N; Borkovskaja, Y B; Dukhin, A S

    2004-09-15

    Existing theories of electroacoustic phenomena in concentrated colloids neglect the possibility of double layer overlap and are valid mostly for the "thin double layer," when the double layer thickness is much less than the particle size. In this paper we present a new electroacoustic theory which removes this restriction. This would make this new theory applicable to characterizing a variety of aqueous nanocolloids and of nonaqueous dispersions. There are two versions of the theory leading to the analytical solutions. The first version corresponds to strongly overlapped diffuse layers (so-called quasi-homogeneous model). It yields a simple analytical formula for colloid vibration current (CVI), which is valid for arbitrary ultrasound frequency, but for restricted kappa alpha range. This version of the theory, as well the Smoluchowski theory for microelectrophoresis, is independent of particle shape and polydispersity. This makes it very attractive for practical use, with the hope that it might be as useful as classical Smoluchowski theory. In order to determine the kappa alpha range of the quasi-homogeneous model validity we develop the second version that limits ultrasound frequency, but applies no restriction on kappa alpha. The ultrasound frequency should substantially exceed the Maxwell-Wagner relaxation frequency. This limitation makes active conductivity related current negligible compared to the passive dielectric displacement current. It is possible to derive an expression for CVI in the concentrated dispersion as formulae inhering definite integrals with integrands depending on equilibrium potential distribution. This second version allowed us to estimate the ranges of the applicability of the first, quasi-homogeneous version. It turns out that the quasi-homogeneous model works for kappa alpha values up to almost 1. For instance, at volume fraction 30%, the highest kappa alpha limit of the quasi-homogeneous model is 0.65. Therefore, this version of the electroacoustic theory is valid for almost all nonaqueous dispersions and a wide variety of nanocolloids, especially with sizes under 100 nm.

  12. Predicting field-scale dispersion under realistic conditions with the polar Markovian velocity process model

    NASA Astrophysics Data System (ADS)

    Dünser, Simon; Meyer, Daniel W.

    2016-06-01

    In most groundwater aquifers, dispersion of tracers is dominated by flow-field inhomogeneities resulting from the underlying heterogeneous conductivity or transmissivity field. This effect is referred to as macrodispersion. Since in practice, besides a few point measurements the complete conductivity field is virtually never available, a probabilistic treatment is needed. To quantify the uncertainty in tracer concentrations from a given geostatistical model for the conductivity, Monte Carlo (MC) simulation is typically used. To avoid the excessive computational costs of MC, the polar Markovian velocity process (PMVP) model was recently introduced delivering predictions at about three orders of magnitude smaller computing times. In artificial test cases, the PMVP model has provided good results in comparison with MC. In this study, we further validate the model in a more challenging and realistic setup. The setup considered is derived from the well-known benchmark macrodispersion experiment (MADE), which is highly heterogeneous and non-stationary with a large number of unevenly scattered conductivity measurements. Validations were done against reference MC and good overall agreement was found. Moreover, simulations of a simplified setup with a single measurement were conducted in order to reassess the model's most fundamental assumptions and to provide guidance for model improvements.

  13. Simulation and validation of larval sucker dispersal and retention through the restored Williamson River Delta and Upper Klamath Lake system, Oregon

    USGS Publications Warehouse

    Wood, Tamara M.; Hendrixson, Heather A.; Markle, Douglas F.; Erdman, Charles S.; Burdick, Summer M.; Ellsworth, Craig M.

    2014-01-01

    A hydrodynamic model with particle tracking was used to create individual-based simulations to describe larval fish dispersal through the restored Williamson River Delta and into Upper Klamath Lake, Oregon. The model was verified by converting particle ages to larval lengths and comparing these lengths to lengths of larvae in net catches. Correlations of simulated lengths with field data were moderate and suggested a species-specific difference in model performance. Particle trajectories through the delta were affected by wind speed and direction, lake elevation, and shoreline configuration. Once particles entered the lake, transport was a function of current speed and whether behavior enhanced transport (swimming aligned with currents) or countered transport through greater dispersal (faster random swimming). We tested sensitivity to swim speed (higher speeds led to greater dispersal and more retention), shoreline configuration (restoration increased retention relative to pre-restoration conditions), and lake elevation (retention was maximized at an intermediate elevation). The simulations also highlight additional biological questions, such as the extent to which spatially heterogeneous mortality or fish behavior and environmental cues could interact with wind-driven currents and contribute to patterns of dispersal.

  14. Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations

    NASA Astrophysics Data System (ADS)

    Arqub, Omar Abu; El-Ajou, Ahmad; Momani, Shaher

    2015-07-01

    Building fractional mathematical models for specific phenomena and developing numerical or analytical solutions for these fractional mathematical models are crucial issues in mathematics, physics, and engineering. In this work, a new analytical technique for constructing and predicting solitary pattern solutions of time-fractional dispersive partial differential equations is proposed based on the generalized Taylor series formula and residual error function. The new approach provides solutions in the form of a rapidly convergent series with easily computable components using symbolic computation software. For method evaluation and validation, the proposed technique was applied to three different models and compared with some of the well-known methods. The resultant simulations clearly demonstrate the superiority and potentiality of the proposed technique in terms of the quality performance and accuracy of substructure preservation in the construct, as well as the prediction of solitary pattern solutions for time-fractional dispersive partial differential equations.

  15. Development of test methods for scale model simulation of aerial applications in the NASA Langley Vortex Research Facility. [agricultural aircraft

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.

    1980-01-01

    As part of basic research to improve aerial applications technology, methods were developed at the Langley Vortex Research Facility to simulate and measure deposition patterns of aerially-applied sprays and granular materials by means of tests with small-scale models of agricultural aircraft and dynamically-scaled test particles. Interactions between the aircraft wake and the dispersed particles are being studied with the objective of modifying wake characteristics and dispersal techniques to increase swath width, improve deposition pattern uniformity, and minimize drift. The particle scaling analysis, test methods for particle dispersal from the model aircraft, visualization of particle trajectories, and measurement and computer analysis of test deposition patterns are described. An experimental validation of the scaling analysis and test results that indicate improved control of chemical drift by use of winglets are presented to demonstrate test methods.

  16. Comment on: "Corrections to the Mathematical Formulation of a Backwards Lagrangian Particle Dispersion Model" by Gibson and Sailor (2012: Boundary-Layer Meteorology 145, 399-406)

    NASA Astrophysics Data System (ADS)

    Stöckl, Stefan; Rotach, Mathias W.; Kljun, Natascha

    2018-01-01

    We discuss the results of Gibson and Sailor (Boundary-Layer Meteorol 145:399-406, 2012) who suggest several corrections to the mathematical formulation of the Lagrangian particle dispersion model of Rotach et al. (Q J R Meteorol Soc 122:367-389, 1996). While most of the suggested corrections had already been implemented in the 1990s, one suggested correction raises a valid point, but results in a violation of the well-mixed criterion. Here we improve their idea and test the impact on model results using a well-mixed test and a comparison with wind-tunnel experimental data. The new approach results in similar dispersion patterns as the original approach, while the approach suggested by Gibson and Sailor leads to erroneously reduced concentrations near the ground in convective and especially forced convective conditions.

  17. Modelling and estimating pollen movement in oilseed rape (Brassica napus) at the landscape scale using genetic markers.

    PubMed

    Devaux, C; Lavigne, C; Austerlitz, F; Klein, E K

    2007-02-01

    Understanding patterns of pollen movement at the landscape scale is important for establishing management rules following the release of genetically modified (GM) crops. We use here a mating model adapted to cultivated species to estimate dispersal kernels from the genotypes of the progenies of male-sterile plants positioned at different sampling sites within a 10 x 10-km oilseed rape production area. Half of the pollen clouds sampled by the male-sterile plants originated from uncharacterized pollen sources that could consist of both large volunteer and feral populations, and fields within and outside the study area. The geometric dispersal kernel was the most appropriate to predict pollen movement in the study area. It predicted a much larger proportion of long-distance pollination than previously fitted dispersal kernels. This best-fitting mating model underestimated the level of differentiation among pollen clouds but could predict its spatial structure. The estimation method was validated on simulated genotypic data, and proved to provide good estimates of both the shape of the dispersal kernel and the rate and composition of pollen issued from uncharacterized pollen sources. The best dispersal kernel fitted here, the geometric kernel, should now be integrated into models that aim at predicting gene flow at the landscape level, in particular between GM and non-GM crops.

  18. Atmospheric Dispersal and Dispostion of Tephra From a Potential Volcanic Eruption at Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Keating; W.Statham

    2004-02-12

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (ASHPLUME) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. The ASHPLUME conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The ASHPLUME mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the groundmore » surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report will improve and clarify the previous documentation of the ASHPLUME mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model.« less

  19. The surface drifter program for real time and off-line validation of ocean forecasts and reanalyses

    NASA Astrophysics Data System (ADS)

    Hernandez, Fabrice; Regnier, Charly; Drévillon, Marie

    2017-04-01

    As part of the Global Ocean Observing System, the Global Drifter Program (GDP) is comprised of an array of about 1250 drifting buoys spread over the global ocean, that provide operational, near-real time surface velocity, sea surface temperature (SST) and sea level pressure observations. This information is used mainly used for numerical weather forecasting, research, and in-situ calibration/verification of satellite observations. Since 2013 the drifting buoy SST measurements are used for near real time assessment of global forecasting systems from Canada, France, UK, USA, Australia in the frame of the GODAE OceanView Intercomparison and Validation Task. For most of these operational systems, these data are not used for assimilation, and offer an independent observation assessment. This approach mimics the validation performed for SST satellite products. More recently, validation procedures have been proposed in order to assess the surface dynamics of Mercator Océan global and regional forecast and reanalyses. Velocities deduced from drifter trajectories are used in two ways. First, the Eulerian approach where buoy and ocean model velocity values are compared at the position of drifters. Then, from discrepancies, statistics are computed and provide an evaluation of the ocean model's surface dynamics reliability. Second, the Lagrangian approach, where drifting trajectories are simulated at each location of the real drifter trajectory using the ocean model velocity fields. Then, on daily basis, real and simulated drifter trajectories are compared by analyzing the spread after one day, two days etc…. The cumulated statistics on specific geographical boxes are evaluated in term of dispersion properties of the "real ocean" as captured by drifters, and those properties in the ocean model. This approach allows to better evaluate forecasting score for surface dispersion applications, like Search and Rescue, oil spill forecast, drift of other objects or contaminant, larvae dispersion etc… These Eulerian and Lagrangian validation approach can be applied for real time or offline assessment of ocean velocity products. In real time, the main limitation is our capability to detect drifter drogue's loss, causing erroneous assessment. Several methods, by comparison to wind entrainment effect or other velocity estimates like from satellite altimetry, are used. These Eulerian and Lagrangian surface velocity validation methods are planned to be adopted by the GODAE OceanView operational community in order to offer independent verification of surface current forecast.

  20. Design and damping force characterization of a new magnetorheological damper activated by permanent magnet flux dispersion

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Hoon; Han, Chulhee; Choi, Seung-Bok

    2018-01-01

    This work proposes a novel type of tunable magnetorheological (MR) damper operated based solely on the location of a permanent magnet incorporated into the piston. To create a larger damping force variation in comparison with the previous model, a different design configuration of the permanent-magnet-based MR (PMMR) damper is introduced to provide magnetic flux dispersion in two magnetic circuits by utilizing two materials with different magnetic reluctance. After discussing the design configuration and some advantages of the newly designed mechanism, the magnetic dispersion principle is analyzed through both the formulated analytical model of the magnetic circuit and the computer simulation based on the magnetic finite element method. Sequentially, the principal design parameters of the damper are determined and fabricated. Then, experiments are conducted to evaluate the variation in damping force depending on the location of the magnet. It is demonstrated that the new design and magnetic dispersion concept are valid showing higher damping force than the previous model. In addition, a curved structure of the two materials is further fabricated and tested to realize the linearity of the damping force variation.

  1. A numerical study of diurnally varying surface temperature on flow patterns and pollutant dispersion in street canyons

    NASA Astrophysics Data System (ADS)

    Tan, Zijing; Dong, Jingliang; Xiao, Yimin; Tu, Jiyuan

    2015-03-01

    The impacts of the diurnal variation of surface temperature on street canyon flow pattern and pollutant dispersion are investigated based on a two-dimensional street canyon model under different thermal stratifications. Uneven distributed street temperature conditions and a user-defined wall function representing the heat transfer between the air and the street canyon are integrated into the current numerical model. The prediction accuracy of this model is successfully validated against a published wind tunnel experiment. Then, a series of numerical simulations representing four time scenarios (Morning, Afternoon, Noon and Night) are performed at different Bulk Richardson number (Rb). The results demonstrate that uneven distributed street temperature conditions significantly alters street canyon flow structure and pollutant dispersion characteristics compared with conventional uniform street temperature assumption, especially for the morning event. Moreover, air flow patterns and pollutant dispersion are greatly influenced by diurnal variation of surface temperature under unstable stratification conditions. Furthermore, the residual pollutant in near-ground-zone decreases as Rb increases in noon, afternoon and night events under all studied stability conditions.

  2. Constraints on short-term mantle rheology from the J2 observation and the dispersion of the 18.6 y tidal Love number

    NASA Technical Reports Server (NTRS)

    Sabadini, R.; Yuen, D. A.; Widmer, R.

    1985-01-01

    Information derived from data recently acquired from the LAGEOS satellite is used to place some constraints on the rheological parameters of short-term mantle rheology. The validity of Lambeck and Nakiboglu's (1983) rheological model is assessed by formally developing an expression for the transformed shear modulus using a truncated retardation spectrum. This analytical formula is used to show that the parameters of the above mentioned model are not consistent at all with the amount of anelastic dispersion expected in the Chandler wobble and with the attenuation of seismic normal modes. The feasibility of a standard linear solid (SLS) rheology operating over intermediate timescales between 1 and 100 yr is investigated to determine whether the tidal dispersion at 18.6 yr can be explained by this model. An attempt is made to place some constraints on the parameters of the SLS model and the nature of short-term mantle rheology for timescales of less than 100 yr is discussed.

  3. Development of land use regression models for nitrogen dioxide, ultrafine particles, lung deposited surface area, and four other markers of particulate matter pollution in the Swiss SAPALDIA regions.

    PubMed

    Eeftens, Marloes; Meier, Reto; Schindler, Christian; Aguilera, Inmaculada; Phuleria, Harish; Ineichen, Alex; Davey, Mark; Ducret-Stich, Regina; Keidel, Dirk; Probst-Hensch, Nicole; Künzli, Nino; Tsai, Ming-Yi

    2016-04-18

    Land Use Regression (LUR) is a popular method to explain and predict spatial contrasts in air pollution concentrations, but LUR models for ultrafine particles, such as particle number concentration (PNC) are especially scarce. Moreover, no models have been previously presented for the lung deposited surface area (LDSA) of ultrafine particles. The additional value of ultrafine particle metrics has not been well investigated due to lack of exposure measurements and models. Air pollution measurements were performed in 2011 and 2012 in the eight areas of the Swiss SAPALDIA study at up to 40 sites per area for NO2 and at 20 sites in four areas for markers of particulate air pollution. We developed multi-area LUR models for biannual average concentrations of PM2.5, PM2.5 absorbance, PM10, PMcoarse, PNC and LDSA, as well as alpine, non-alpine and study area specific models for NO2, using predictor variables which were available at a national level. Models were validated using leave-one-out cross-validation, as well as independent external validation with routine monitoring data. Model explained variance (R(2)) was moderate for the various PM mass fractions PM2.5 (0.57), PM10 (0.63) and PMcoarse (0.45), and was high for PM2.5 absorbance (0.81), PNC (0.87) and LDSA (0.91). Study-area specific LUR models for NO2 (R(2) range 0.52-0.89) outperformed combined-area alpine (R (2)  = 0.53) and non-alpine (R (2)  = 0.65) models in terms of both cross-validation and independent external validation, and were better able to account for between-area variability. Predictor variables related to traffic and national dispersion model estimates were important predictors. LUR models for all pollutants captured spatial variability of long-term average concentrations, performed adequately in validation, and could be successfully applied to the SAPALDIA cohort. Dispersion model predictions or area indicators served well to capture the between area variance. For NO2, applying study-area specific models was preferable over applying combined-area alpine/non-alpine models. Correlations between pollutants were higher in the model predictions than in the measurements, so it will remain challenging to disentangle their health effects.

  4. Finite difference time domain electromagnetic scattering from frequency-dependent lossy materials

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Beggs, John H.

    1991-01-01

    Four different FDTD computer codes and companion Radar Cross Section (RCS) conversion codes on magnetic media are submitted. A single three dimensional dispersive FDTD code for both dispersive dielectric and magnetic materials was developed, along with a user's manual. The extension of FDTD to more complicated materials was made. The code is efficient and is capable of modeling interesting radar targets using a modest computer workstation platform. RCS results for two different plate geometries are reported. The FDTD method was also extended to computing far zone time domain results in two dimensions. Also the capability to model nonlinear materials was incorporated into FDTD and validated.

  5. The magnetotelluric response over a 3D polarizable structure

    NASA Astrophysics Data System (ADS)

    Esposito, R.; Troiano, A.; Di Giuseppe, M. G.; Patella, D.; Castelo Branco, R. M.

    2017-06-01

    This paper analyses the 3D magnetotelluric (MT) response in the presence of resistivity frequency dispersion. The aim is to give further insight into this topic, already approached in previous papers dedicated to 1D and 2D cases. We show the MT diagrams along three parallel profiles, normal to the longitudinal axis of a dispersive conductive prism of finite horizontal and vertical extent, buried in a non-dispersive resistive half-space. The Cole-Cole dispersion law has been assumed to represent the dispersion features of the prism. The MT responses along the same profiles in the complete absence of dispersion effects are also provided for reference. The results confirm that the TE mode, as in the 2D case, is mostly affected by dispersion. Compared with the non-dispersive responses, a notable increase in the amplitude of the anomaly is observed along the profile passing through the center of the prism, while an increase in its width is the effect along the profile above the edge of the prism. As a field example, the MT profile in the eastern Snake River Plain geothermal area is considered. The profile was already dealt with in a previous paper by a 2D dispersive MT modeling approach, by which a dispersive slab of infinite length in the direction normal to the MT profile, immersed in a 1D layered host, was modeled. A finite length of the dispersive conductive slab is now derived, validated by the increased goodness of fit between the field TM and TE pseudosections and the synthetic ones from the 3D model compared with the misfit previously obtained by the 2D approach. Finally, an explanation of the chargeability and main values of the time constant assumed to fit the field data is attempted in terms of the abundance of hydrothermal alteration products and temperature, respectively, inside the dispersive slab.

  6. Dispersal and extrapolation on the accuracy of temporal predictions from distribution models for the Darwin's frog.

    PubMed

    Uribe-Rivera, David E; Soto-Azat, Claudio; Valenzuela-Sánchez, Andrés; Bizama, Gustavo; Simonetti, Javier A; Pliscoff, Patricio

    2017-07-01

    Climate change is a major threat to biodiversity; the development of models that reliably predict its effects on species distributions is a priority for conservation biogeography. Two of the main issues for accurate temporal predictions from Species Distribution Models (SDM) are model extrapolation and unrealistic dispersal scenarios. We assessed the consequences of these issues on the accuracy of climate-driven SDM predictions for the dispersal-limited Darwin's frog Rhinoderma darwinii in South America. We calibrated models using historical data (1950-1975) and projected them across 40 yr to predict distribution under current climatic conditions, assessing predictive accuracy through the area under the ROC curve (AUC) and True Skill Statistics (TSS), contrasting binary model predictions against temporal-independent validation data set (i.e., current presences/absences). To assess the effects of incorporating dispersal processes we compared the predictive accuracy of dispersal constrained models with no dispersal limited SDMs; and to assess the effects of model extrapolation on the predictive accuracy of SDMs, we compared this between extrapolated and no extrapolated areas. The incorporation of dispersal processes enhanced predictive accuracy, mainly due to a decrease in the false presence rate of model predictions, which is consistent with discrimination of suitable but inaccessible habitat. This also had consequences on range size changes over time, which is the most used proxy for extinction risk from climate change. The area of current climatic conditions that was absent in the baseline conditions (i.e., extrapolated areas) represents 39% of the study area, leading to a significant decrease in predictive accuracy of model predictions for those areas. Our results highlight (1) incorporating dispersal processes can improve predictive accuracy of temporal transference of SDMs and reduce uncertainties of extinction risk assessments from global change; (2) as geographical areas subjected to novel climates are expected to arise, they must be reported as they show less accurate predictions under future climate scenarios. Consequently, environmental extrapolation and dispersal processes should be explicitly incorporated to report and reduce uncertainties in temporal predictions of SDMs, respectively. Doing so, we expect to improve the reliability of the information we provide for conservation decision makers under future climate change scenarios. © 2017 by the Ecological Society of America.

  7. Atmospheric Dispersion about a Heavy Gas Vapor Detention System.

    NASA Astrophysics Data System (ADS)

    Shin, Seong-Hee

    Dispersion of liquefied natural gas (LNG) in the event of an accidental spill is a major concern in LNG storage and transport safety planning, hazard response, and facility siting. Falcon Series large scale LNG spill experiments were planned by Lawrence Livermore National Laboratory (LLNL) for the Department of Transportation (DOT) and the Gas Research Institute (GRI) as part of a joint government/industry study in 1987 to evaluate the effectiveness of vapor fences as a mitigating technique for accidental release of LNG and to assist in validating wind tunnel and numerical methods for vapor dispersion simulation. Post-field-spill wind-tunnel experiments were performed in Environmental Wind Tunnel (EWT) (1988, 1989) to augment the LNG Vapor Fence Program data obtained during the Falcon Test Series. The program included four different model length scales and two different simulant gases. The purpose of this program is to provide a basis for the analysis of the simulation of physical modeling tests using proper physical modeling techniques and to assist in the development and verification of analytical models. Field data and model data were compared and analyzed by surface pattern comparisons and statistical methods. A layer-averaged slab model developed by Meroney et al. (1988) (FENC23) was expanded to evaluate an enhanced entrainment model proposed for dense gas dispersion including the effect of vapor barriers, and the numerical model was simulated for Falcon tests without the fence and with the vapor fence to examine the effectiveness of vapor detention system on heavy gas dispersion. Model data and the field data were compared with the numerical model data, and degree of similarity between data were assessed.

  8. Charge-dependent many-body exchange and dispersion interactions in combined QM/MM simulations

    NASA Astrophysics Data System (ADS)

    Kuechler, Erich R.; Giese, Timothy J.; York, Darrin M.

    2015-12-01

    Accurate modeling of the molecular environment is critical in condensed phase simulations of chemical reactions. Conventional quantum mechanical/molecular mechanical (QM/MM) simulations traditionally model non-electrostatic non-bonded interactions through an empirical Lennard-Jones (LJ) potential which, in violation of intuitive chemical principles, is bereft of any explicit coupling to an atom's local electronic structure. This oversight results in a model whereby short-ranged exchange-repulsion and long-ranged dispersion interactions are invariant to changes in the local atomic charge, leading to accuracy limitations for chemical reactions where significant atomic charge transfer can occur along the reaction coordinate. The present work presents a variational, charge-dependent exchange-repulsion and dispersion model, referred to as the charge-dependent exchange and dispersion (QXD) model, for hybrid QM/MM simulations. Analytic expressions for the energy and gradients are provided, as well as a description of the integration of the model into existing QM/MM frameworks, allowing QXD to replace traditional LJ interactions in simulations of reactive condensed phase systems. After initial validation against QM data, the method is demonstrated by capturing the solvation free energies of a series of small, chlorine-containing compounds that have varying charge on the chlorine atom. The model is further tested on the SN2 attack of a chloride anion on methylchloride. Results suggest that the QXD model, unlike the traditional LJ model, is able to simultaneously obtain accurate solvation free energies for a range of compounds while at the same time closely reproducing the experimental reaction free energy barrier. The QXD interaction model allows explicit coupling of atomic charge with many-body exchange and dispersion interactions that are related to atomic size and provides a more accurate and robust representation of non-electrostatic non-bonded QM/MM interactions.

  9. Validation of a Sensor-Driven Modeling Paradigm for Multiple Source Reconstruction with FFT-07 Data

    DTIC Science & Technology

    2009-05-01

    operational warning and reporting (information) systems that combine automated data acquisition, analysis , source reconstruction, display and distribution of...report and to incorporate this operational ca- pability into the integrative multiscale urban modeling system implemented in the com- putational...Journal of Fluid Mechanics, 180, 529–556. [27] Flesch, T., Wilson, J. D., and Yee, E. (1995), Backward- time Lagrangian stochastic dispersion models

  10. Validation of FAA's emissions and dispersion modeling system (EDMS): carbon monoxide study

    DOT National Transportation Integrated Search

    2003-06-22

    Air quality at airports has received substantial attention in recent years. In a 2000 report : by the U.S. General Accounting Office (GAO), air quality was cited as the number two : environmental concern (after noise) by the 50 busiest airports in th...

  11. Complex dispersion relation of surface acoustic waves at a lossy metasurface

    NASA Astrophysics Data System (ADS)

    Schwan, Logan; Geslain, Alan; Romero-García, Vicente; Groby, Jean-Philippe

    2017-01-01

    The complex dispersion relation of surface acoustic waves (SAWs) at a lossy resonant metasurface is theoretically and experimentally reported. The metasurface consists of the periodic arrangement of borehole resonators in a rigid substrate. The theoretical model relies on a boundary layer approach that provides the effective metasurface admittance governing the complex dispersion relation in the presence of viscous and thermal losses. The model is experimentally validated by measurements in the semi-anechoic chamber. The complex SAW dispersion relation is experimentally retrieved from the analysis of the spatial Laplace transform of the pressure scanned along a line at the metasurface. The geometrical spreading of the energy from the speaker is accounted for, and both the real and imaginary parts of the SAW wavenumber are obtained. The results show that the strong reduction of the SAW group velocity occurs jointly with a drastic attenuation of the wave, leading to the confinement of the field close to the source and preventing the efficient propagation of such slow-sound surface modes. The method opens perspectives to theoretically predict and experimentally characterize both the dispersion and the attenuation of surface waves at structured surfaces.

  12. Analytic model for washout of HCl(g) from dispersing rocket exhaust clouds

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.

    1981-01-01

    The potential is investigated that precipitation scavenging of HCl from large solid rocket exhaust clouds may result in unacceptably acidic rain in the Cape Canaveral, Florida, area before atmospheric dispersion reduces HCl concentrations to safe limits. Several analytic expressions for HCl(g) and HCl(g + aq) washout are derived; a geometric mean washout coefficient is recommended. A previous HCl washout model is refined and applied to a space shuttle case (70 t HCl exhausted up to 4 km) and eight Titan 3 (60 percent less exhaust) dispersion cases. The vertical column density (sigma) decays were deduced by application of a multilayer Gaussian diffusion model to seven standard meteorological regimes for overland advection. The Titan 3 decays of sigma and initial rain pH differed greatly among regimes; e.g., a range of 2 pH units was spanned at x 100 km downwind and t = 2 hr. Environmentally significant pH's .5 for infrequent exposures were shown possible at X = 50 km and t 5 hr for the two least dispersive Titan 3 cases. Representative examples of downwind rainwater pH and G(X) are analyzed. Factors affecting the validity of the results are discussed.

  13. Turbulent Dispersion of Pathogenic Spores Within and Above Plant Canopies: Field Experiments and Lagrangian Modeling

    NASA Astrophysics Data System (ADS)

    Gleicher, S.; Chamecki, M.; Isard, S.; Katul, G. G.

    2012-12-01

    Plant disease epidemics caused by pathogenic spores are a common and consequential threat to agricultural crops. In most cases, pathogenic spores are produced and released deep inside plant canopies and must be transported out of the canopy region in order to infect other fields and spread the disease. The fraction of spores that "escape" the canopy is crucial in determining how fast and far these plant diseases will spread. The goal of this work is to use a field experiment, coupled with a Lagrangian Stochastic Model (LSM), to investigate how properties of canopy turbulence impact the dispersion of spores inside the canopy and the fraction of spores that escape from the canopy. An extensive field experiment was conducted to study spore dispersion inside and outside a corn canopy. The spores were released from point sources located at various depths inside the canopy. Concentration measurements were obtained inside and above the canopy by a 3-dimensional grid of spore collectors. The experimental measurements of mean spore concentration are used to validate a LSM for spore dispersion. In the LSM, flow field statistics used to drive the particle dispersion are specified by a second-order closure model for turbulence within plant canopies. The dispersion model includes spore deposition on and rebound from canopy elements. The combination of experimental and numerical simulations is used to quantify the fraction of spores that escape the canopy. Effects of release height, friction velocity, and canopy architecture on the escape fraction of spores are explored using the LSM, and implications for disease propagation are discussed.

  14. Consequence modeling using the fire dynamics simulator.

    PubMed

    Ryder, Noah L; Sutula, Jason A; Schemel, Christopher F; Hamer, Andrew J; Van Brunt, Vincent

    2004-11-11

    The use of Computational Fluid Dynamics (CFD) and in particular Large Eddy Simulation (LES) codes to model fires provides an efficient tool for the prediction of large-scale effects that include plume characteristics, combustion product dispersion, and heat effects to adjacent objects. This paper illustrates the strengths of the Fire Dynamics Simulator (FDS), an LES code developed by the National Institute of Standards and Technology (NIST), through several small and large-scale validation runs and process safety applications. The paper presents two fire experiments--a small room fire and a large (15 m diameter) pool fire. The model results are compared to experimental data and demonstrate good agreement between the models and data. The validation work is then extended to demonstrate applicability to process safety concerns by detailing a model of a tank farm fire and a model of the ignition of a gaseous fuel in a confined space. In this simulation, a room was filled with propane, given time to disperse, and was then ignited. The model yields accurate results of the dispersion of the gas throughout the space. This information can be used to determine flammability and explosive limits in a space and can be used in subsequent models to determine the pressure and temperature waves that would result from an explosion. The model dispersion results were compared to an experiment performed by Factory Mutual. Using the above examples, this paper will demonstrate that FDS is ideally suited to build realistic models of process geometries in which large scale explosion and fire failure risks can be evaluated with several distinct advantages over more traditional CFD codes. Namely transient solutions to fire and explosion growth can be produced with less sophisticated hardware (lower cost) than needed for traditional CFD codes (PC type computer verses UNIX workstation) and can be solved for longer time histories (on the order of hundreds of seconds of computed time) with minimal computer resources and length of model run. Additionally results that are produced can be analyzed, viewed, and tabulated during and following a model run within a PC environment. There are some tradeoffs, however, as rapid computations in PC's may require a sacrifice in the grid resolution or in the sub-grid modeling, depending on the size of the geometry modeled.

  15. Early detection of emerging forest disease using dispersal estimation and ecological niche modeling.

    PubMed

    Meentemeyer, Ross K; Anacker, Brian L; Mark, Walter; Rizzo, David M

    2008-03-01

    Distinguishing the manner in which dispersal limitation and niche requirements control the spread of invasive pathogens is important for prediction and early detection of disease outbreaks. Here, we use niche modeling augmented by dispersal estimation to examine the degree to which local habitat conditions vs. force of infection predict invasion of Phytophthora ramorum, the causal agent of the emerging infectious tree disease sudden oak death. We sampled 890 field plots for the presence of P. ramorum over a three-year period (2003-2005) across a range of host and abiotic conditions with variable proximities to known infections in California, USA. We developed and validated generalized linear models of invasion probability to analyze the relative predictive power of 12 niche variables and a negative exponential dispersal kernel estimated by likelihood profiling. Models were developed incrementally each year (2003, 2003-2004, 2003-2005) to examine annual variability in model parameters and to create realistic scenarios for using models to predict future infections and to guide early-detection sampling. Overall, 78 new infections were observed up to 33.5 km from the nearest known site of infection, with slightly increasing rates of prevalence across time windows (2003, 6.5%; 2003-2004, 7.1%; 2003-2005, 9.6%). The pathogen was not detected in many field plots that contained susceptible host vegetation. The generalized linear modeling indicated that the probability of invasion is limited by both dispersal and niche constraints. Probability of invasion was positively related to precipitation and temperature in the wet season and the presence of the inoculum-producing foliar host Umbellularia californica and decreased exponentially with distance to inoculum sources. Models that incorporated niche and dispersal parameters best predicted the locations of new infections, with accuracies ranging from 0.86 to 0.90, suggesting that the modeling approach can be used to forecast locations of disease spread. Application of the combined niche plus dispersal models in a geographic information system predicted the presence of P. ramorum across approximately 8228 km2 of California's 84785 km2 (9.7%) of land area with susceptible host species. This research illustrates how probabilistic modeling can be used to analyze the relative roles of niche and dispersal limitation in controlling the distribution of invasive pathogens.

  16. GADEN: A 3D Gas Dispersion Simulator for Mobile Robot Olfaction in Realistic Environments.

    PubMed

    Monroy, Javier; Hernandez-Bennets, Victor; Fan, Han; Lilienthal, Achim; Gonzalez-Jimenez, Javier

    2017-06-23

    This work presents a simulation framework developed under the widely used Robot Operating System (ROS) to enable the validation of robotics systems and gas sensing algorithms under realistic environments. The framework is rooted in the principles of computational fluid dynamics and filament dispersion theory, modeling wind flow and gas dispersion in 3D real-world scenarios (i.e., accounting for walls, furniture, etc.). Moreover, it integrates the simulation of different environmental sensors, such as metal oxide gas sensors, photo ionization detectors, or anemometers. We illustrate the potential and applicability of the proposed tool by presenting a simulation case in a complex and realistic office-like environment where gas leaks of different chemicals occur simultaneously. Furthermore, we accomplish quantitative and qualitative validation by comparing our simulated results against real-world data recorded inside a wind tunnel where methane was released under different wind flow profiles. Based on these results, we conclude that our simulation framework can provide a good approximation to real world measurements when advective airflows are present in the environment.

  17. GADEN: A 3D Gas Dispersion Simulator for Mobile Robot Olfaction in Realistic Environments

    PubMed Central

    Hernandez-Bennetts, Victor; Fan, Han; Lilienthal, Achim; Gonzalez-Jimenez, Javier

    2017-01-01

    This work presents a simulation framework developed under the widely used Robot Operating System (ROS) to enable the validation of robotics systems and gas sensing algorithms under realistic environments. The framework is rooted in the principles of computational fluid dynamics and filament dispersion theory, modeling wind flow and gas dispersion in 3D real-world scenarios (i.e., accounting for walls, furniture, etc.). Moreover, it integrates the simulation of different environmental sensors, such as metal oxide gas sensors, photo ionization detectors, or anemometers. We illustrate the potential and applicability of the proposed tool by presenting a simulation case in a complex and realistic office-like environment where gas leaks of different chemicals occur simultaneously. Furthermore, we accomplish quantitative and qualitative validation by comparing our simulated results against real-world data recorded inside a wind tunnel where methane was released under different wind flow profiles. Based on these results, we conclude that our simulation framework can provide a good approximation to real world measurements when advective airflows are present in the environment. PMID:28644375

  18. High-resolution modelling of atmospheric dispersion of dense gas using TWODEE-2.1: application to the 1986 Lake Nyos limnic eruption

    NASA Astrophysics Data System (ADS)

    Folch, Arnau; Barcons, Jordi; Kozono, Tomofumi; Costa, Antonio

    2017-06-01

    Atmospheric dispersal of a gas denser than air can threat the environment and surrounding communities if the terrain and meteorological conditions favour its accumulation in topographic depressions, thereby reaching toxic concentration levels. Numerical modelling of atmospheric gas dispersion constitutes a useful tool for gas hazard assessment studies, essential for planning risk mitigation actions. In complex terrains, microscale winds and local orographic features can have a strong influence on the gas cloud behaviour, potentially leading to inaccurate results if not captured by coarser-scale modelling. We introduce a methodology for microscale wind field characterisation based on transfer functions that couple a mesoscale numerical weather prediction model with a microscale computational fluid dynamics (CFD) model for the atmospheric boundary layer. The resulting time-dependent high-resolution microscale wind field is used as input for a shallow-layer gas dispersal model (TWODEE-2.1) to simulate the time evolution of CO2 gas concentration at different heights above the terrain. The strategy is applied to review simulations of the 1986 Lake Nyos event in Cameroon, where a huge CO2 cloud released by a limnic eruption spread downslopes from the lake, suffocating thousands of people and animals across the Nyos and adjacent secondary valleys. Besides several new features introduced in the new version of the gas dispersal code (TWODEE-2.1), we have also implemented a novel impact criterion based on the percentage of human fatalities depending on CO2 concentration and exposure time. New model results are quantitatively validated using the reported percentage of fatalities at several locations. The comparison with previous simulations that assumed coarser-scale steady winds and topography illustrates the importance of high-resolution modelling in complex terrains.

  19. Structure and osmotic pressure of ionic microgel dispersions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hedrick, Mary M.; Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050; Chung, Jun Kyung

    We investigate structural and thermodynamic properties of aqueous dispersions of ionic microgels—soft colloidal gel particles that exhibit unusual phase behavior. Starting from a coarse-grained model of microgel macroions as charged spheres that are permeable to microions, we perform simulations and theoretical calculations using two complementary implementations of Poisson-Boltzmann (PB) theory. Within a one-component model, based on a linear-screening approximation for effective electrostatic pair interactions, we perform molecular dynamics simulations to compute macroion-macroion radial distribution functions, static structure factors, and macroion contributions to the osmotic pressure. For the same model, using a variational approximation for the free energy, we compute bothmore » macroion and microion contributions to the osmotic pressure. Within a spherical cell model, which neglects macroion correlations, we solve the nonlinear PB equation to compute microion distributions and osmotic pressures. By comparing the one-component and cell model implementations of PB theory, we demonstrate that the linear-screening approximation is valid for moderately charged microgels. By further comparing cell model predictions with simulation data for osmotic pressure, we chart the cell model’s limits in predicting osmotic pressures of salty dispersions.« less

  20. Modeling non-equilibrium mass transport in biologically reactive porous media

    NASA Astrophysics Data System (ADS)

    Davit, Yohan; Debenest, Gérald; Wood, Brian D.; Quintard, Michel

    2010-09-01

    We develop a one-equation non-equilibrium model to describe the Darcy-scale transport of a solute undergoing biodegradation in porous media. Most of the mathematical models that describe the macroscale transport in such systems have been developed intuitively on the basis of simple conceptual schemes. There are two problems with such a heuristic analysis. First, it is unclear how much information these models are able to capture; that is, it is not clear what the model's domain of validity is. Second, there is no obvious connection between the macroscale effective parameters and the microscopic processes and parameters. As an alternative, a number of upscaling techniques have been developed to derive the appropriate macroscale equations that are used to describe mass transport and reactions in multiphase media. These approaches have been adapted to the problem of biodegradation in porous media with biofilms, but most of the work has focused on systems that are restricted to small concentration gradients at the microscale. This assumption, referred to as the local mass equilibrium approximation, generally has constraints that are overly restrictive. In this article, we devise a model that does not require the assumption of local mass equilibrium to be valid. In this approach, one instead requires only that, at sufficiently long times, anomalous behaviors of the third and higher spatial moments can be neglected; this, in turn, implies that the macroscopic model is well represented by a convection-dispersion-reaction type equation. This strategy is very much in the spirit of the developments for Taylor dispersion presented by Aris (1956). On the basis of our numerical results, we carefully describe the domain of validity of the model and show that the time-asymptotic constraint may be adhered to even for systems that are not at local mass equilibrium.

  1. Finite-element time-domain algorithms for modeling linear Debye and Lorentz dielectric dispersions at low frequencies.

    PubMed

    Stoykov, Nikolay S; Kuiken, Todd A; Lowery, Madeleine M; Taflove, Allen

    2003-09-01

    We present what we believe to be the first algorithms that use a simple scalar-potential formulation to model linear Debye and Lorentz dielectric dispersions at low frequencies in the context of finite-element time-domain (FETD) numerical solutions of electric potential. The new algorithms, which permit treatment of multiple-pole dielectric relaxations, are based on the auxiliary differential equation method and are unconditionally stable. We validate the algorithms by comparison with the results of a previously reported method based on the Fourier transform. The new algorithms should be useful in calculating the transient response of biological materials subject to impulsive excitation. Potential applications include FETD modeling of electromyography, functional electrical stimulation, defibrillation, and effects of lightning and impulsive electric shock.

  2. Dispersal of Male Aedes aegypti in a Coastal Village in Southern Mexico

    PubMed Central

    Valerio, Laura; Facchinelli, Luca; Ramsey, Janine M.; Scott, Thomas W.

    2012-01-01

    Most Aedes aegypti dispersal studies have focused on females because of their central role in dengue virus transmission. Only a few mark-release-recapture (MRR) studies provided insights into male Ae. aegypti dispersal. To fill this knowledge gap, we conducted five male Ae. aegypti MRR experiments in a coastal village in southern Mexico. Small and large male cohorts were marked with fluorescent dusts, released outside buildings, and recaptures were carried out by using backpack aspirators. Recapture rates ranged between 0.35% and 6.55% and median distance traveled was 12–166 meters. A statistically significant difference in median distance traveled with large males dispersing farther than small ones was detected only in one experiment (MRR5: U = 3.5, P < 0.01). Male dispersal data will be useful for constructing and estimating parameter values and validating models that will be used to plan the most effective release strategies for genetically modified male Ae. aegypti. PMID:22492152

  3. Numerical simulation on pollutant dispersion from vehicle exhaust in street configurations.

    PubMed

    Yassin, Mohamed F; Kellnerová, R; Janour, Z

    2009-09-01

    The impact of the street configurations on pollutants dispersion from vehicles exhausts within urban canyons was numerically investigated using a computational fluid dynamics (CFD) model. Three-dimensional flow and dispersion of gaseous pollutants were modeled using standard kappa - epsilon turbulence model, which was numerically solved based on Reynolds-averaged Navier-Stokes equations by the commercial CFD code FLUENT. The concentration fields in the urban canyons were examined in three cases of street configurations: (1) a regular-shaped intersection, (2) a T-shaped intersection and (3) a Skew-shaped crossing intersection. Vehicle emissions were simulated as double line sources along the street. The numerical model was validated against wind tunnel results in order to optimize the turbulence model. Numerical predictions agreed reasonably well with wind tunnel results. The results obtained indicate that the mean horizontal velocity was very small in the center near the lower region of street canyon. The lowest turbulent kinetic energy was found at the separation and reattachment points associated with the corner of the down part of the upwind and downwind buildings in the street canyon. The pollutant concentration at the upwind side in the regular-shaped street intersection was higher than that in the T-shaped and Skew-shaped street intersections. Moreover, the results reveal that the street intersections are important factors to predict the flow patterns and pollutant dispersion in street canyon.

  4. Evaluation of a micro-scale wind model's performance over realistic building clusters using wind tunnel experiments

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Du, Yunsong; Miao, Shiguang; Fang, Xiaoyi

    2016-08-01

    The simulation performance over complex building clusters of a wind simulation model (Wind Information Field Fast Analysis model, WIFFA) in a micro-scale air pollutant dispersion model system (Urban Microscale Air Pollution dispersion Simulation model, UMAPS) is evaluated using various wind tunnel experimental data including the CEDVAL (Compilation of Experimental Data for Validation of Micro-Scale Dispersion Models) wind tunnel experiment data and the NJU-FZ experiment data (Nanjing University-Fang Zhuang neighborhood wind tunnel experiment data). The results show that the wind model can reproduce the vortexes triggered by urban buildings well, and the flow patterns in urban street canyons and building clusters can also be represented. Due to the complex shapes of buildings and their distributions, the simulation deviations/discrepancies from the measurements are usually caused by the simplification of the building shapes and the determination of the key zone sizes. The computational efficiencies of different cases are also discussed in this paper. The model has a high computational efficiency compared to traditional numerical models that solve the Navier-Stokes equations, and can produce very high-resolution (1-5 m) wind fields of a complex neighborhood scale urban building canopy (~ 1 km ×1 km) in less than 3 min when run on a personal computer.

  5. Validating data analysis of broadband laser ranging

    NASA Astrophysics Data System (ADS)

    Rhodes, M.; Catenacci, J.; Howard, M.; La Lone, B.; Kostinski, N.; Perry, D.; Bennett, C.; Patterson, J.

    2018-03-01

    Broadband laser ranging combines spectral interferometry and a dispersive Fourier transform to achieve high-repetition-rate measurements of the position of a moving surface. Telecommunications fiber is a convenient tool for generating the large linear dispersions required for a dispersive Fourier transform, but standard fiber also has higher-order dispersion that distorts the Fourier transform. Imperfections in the dispersive Fourier transform significantly complicate the ranging signal and must be dealt with to make high-precision measurements. We describe in detail an analysis process for interpreting ranging data when standard telecommunications fiber is used to perform an imperfect dispersive Fourier transform. This analysis process is experimentally validated over a 27-cm scan of static positions, showing an accuracy of 50 μm and a root-mean-square precision of 4.7 μm.

  6. Simulation of Smoke-Haze Dispersion from Wildfires in South East Asia with a Lagrangian Particle Model

    NASA Astrophysics Data System (ADS)

    Hertwig, D.; Burgin, L.; Gan, C.; Hort, M.; Jones, A. R.; Shaw, F.; Witham, C. S.; Zhang, K.

    2014-12-01

    Biomass burning, often related to agricultural deforestation, not only affects local pollution levels but periodically deteriorates air quality in many South East Asian megacities due to the transboundary transport of smoke-haze. In June 2013, Singapore experienced the worst wildfire related air-pollution event on record following from the escalation of peatland fires in Sumatra. An extended dry period together with anomalous westerly winds resulted in severe and unhealthy pollution levels in Singapore that lasted for more than two weeks. Reacting to this event, the Met Office and the Meteorological Service Singapore have explored how to adequately simulate haze-pollution dispersion, with the aim to provide a reliable operational forecast for Singapore. Simulations with the Lagrangian particle model NAME (Numerical Atmospheric-dispersion Modelling Environment), running on numerical weather prediction data from the Met Office and Meteorological Service Singapore and emission data derived from satellite observations of the fire radiative power, are validated against PM10 observations in South East Asia. Comparisons of simulated concentrations with hourly averages of PM10 measurements in Singapore show that the model captures well the severe smoke-haze event in June 2013 and a minor episode in March 2014. Different quantitative satellite-derived emissions have been tested, with one source demonstrating a consistent factor of two under-prediction for Singapore. Confidence in the skill of the model system has been substantiated by further comparisons with data from monitoring sites in Malaysia, Brunei and Thailand. Following the validation study, operational smoke-haze pollution forecasts with NAME were launched in Singapore, in time for the 2014 fire season. Real-time bias correction and verification of this forecast will be discussed.

  7. Uni-directional optical pulses, temporal propagation, and spatial and temporal dispersion

    NASA Astrophysics Data System (ADS)

    Kinsler, P.

    2018-02-01

    I derive a temporally propagated uni-directional optical pulse equation valid in the few cycle limit. Temporal propagation is advantageous because it naturally preserves causality, unlike the competing spatially propagated models. The exact coupled bi-directional equations that this approach generates can be efficiently approximated down to a uni-directional form in cases where an optical pulse changes little over one optical cycle. They also permit a direct term-to-term comparison of the exact bi-directional theory with its corresponding approximate uni-directional theory. Notably, temporal propagation handles dispersion in a different way, and this difference serves to highlight existing approximations inherent in spatially propagated treatments of dispersion. Accordingly, I emphasise the need for future work in clarifying the limitations of the dispersion conversion required by these types of approaches; since the only alternative in the few cycle limit may be to resort to the much more computationally intensive full Maxwell equation solvers.

  8. Evaluation of the dispersion effect in through movement bicycles at signalized intersection via cellular automata simulation

    NASA Astrophysics Data System (ADS)

    Jiang, Hang; Ma, Yongjian; Jiang, Lin; Chen, Guozhou; Wang, Dongwei

    2018-05-01

    At signalized intersection areas, bicycle traffic presents a dispersion feature which may influence the movements of vehicles during peak period. The primary objective of this study is to simulate the dispersion effect in through-movement bicycle traffic at intersection areas and evaluate its influence on through-movement traffic. A cellular automata (CA) model is developed and validated to simulate the operations of through-movement bicycle traffic departing from two types of intersection approaches. Simulation results show that bicycles benefit from the dispersion effect when they depart from the approach with an exclusive right-turn vehicle lane. But when bicycles travel from the approach with a shared right-turn and through vehicle lane, the dispersion effect will result in friction interference and block interference on through-movement vehicles. Bicycle interferences reduce the vehicle speed and increase the delay of through-movement vehicles. The policy implications in regard to the dispersion effect from two types of approaches are discussed to improve the performance of through-movement traffic operations at signalized intersections.

  9. On the Validity of the Streaming Model for the Redshift-Space Correlation Function in the Linear Regime

    NASA Astrophysics Data System (ADS)

    Fisher, Karl B.

    1995-08-01

    The relation between the galaxy correlation functions in real-space and redshift-space is derived in the linear regime by an appropriate averaging of the joint probability distribution of density and velocity. The derivation recovers the familiar linear theory result on large scales but has the advantage of clearly revealing the dependence of the redshift distortions on the underlying peculiar velocity field; streaming motions give rise to distortions of θ(Ω0.6/b) while variations in the anisotropic velocity dispersion yield terms of order θ(Ω1.2/b2). This probabilistic derivation of the redshift-space correlation function is similar in spirit to the derivation of the commonly used "streaming" model, in which the distortions are given by a convolution of the real-space correlation function with a velocity distribution function. The streaming model is often used to model the redshift-space correlation function on small, highly nonlinear, scales. There have been claims in the literature, however, that the streaming model is not valid in the linear regime. Our analysis confirms this claim, but we show that the streaming model can be made consistent with linear theory provided that the model for the streaming has the functional form predicted by linear theory and that the velocity distribution is chosen to be a Gaussian with the correct linear theory dispersion.

  10. Artery buckling analysis using a two-layered wall model with collagen dispersion.

    PubMed

    Mottahedi, Mohammad; Han, Hai-Chao

    2016-07-01

    Artery buckling has been proposed as a possible cause for artery tortuosity associated with various vascular diseases. Since microstructure of arterial wall changes with aging and diseases, it is essential to establish the relationship between microscopic wall structure and artery buckling behavior. The objective of this study was to developed arterial buckling equations to incorporate the two-layered wall structure with dispersed collagen fiber distribution. Seven porcine carotid arteries were tested for buckling to determine their critical buckling pressures at different axial stretch ratios. The mechanical properties of these intact arteries and their intima-media layer were determined via pressurized inflation test. Collagen alignment was measured from histological sections and modeled by a modified von-Mises distribution. Buckling equations were developed accordingly using microstructure-motivated strain energy function. Our results demonstrated that collagen fibers disperse around two mean orientations symmetrically to the circumferential direction (39.02°±3.04°) in the adventitia layer; while aligning closely in the circumferential direction (2.06°±3.88°) in the media layer. The microstructure based two-layered model with collagen fiber dispersion described the buckling behavior of arteries well with the model predicted critical pressures match well with the experimental measurement. Parametric studies showed that with increasing fiber dispersion parameter, the predicted critical buckling pressure increases. These results validate the microstructure-based model equations for artery buckling and set a base for further studies to predict the stability of arteries due to microstructural changes associated with vascular diseases and aging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. High Fidelity Modeling of Turbulent Mixing and Chemical Kinetics Interactions in a Post-Detonation Flow Field

    NASA Astrophysics Data System (ADS)

    Sinha, Neeraj; Zambon, Andrea; Ott, James; Demagistris, Michael

    2015-06-01

    Driven by the continuing rapid advances in high-performance computing, multi-dimensional high-fidelity modeling is an increasingly reliable predictive tool capable of providing valuable physical insight into complex post-detonation reacting flow fields. Utilizing a series of test cases featuring blast waves interacting with combustible dispersed clouds in a small-scale test setup under well-controlled conditions, the predictive capabilities of a state-of-the-art code are demonstrated and validated. Leveraging physics-based, first principle models and solving large system of equations on highly-resolved grids, the combined effects of finite-rate/multi-phase chemical processes (including thermal ignition), turbulent mixing and shock interactions are captured across the spectrum of relevant time-scales and length scales. Since many scales of motion are generated in a post-detonation environment, even if the initial ambient conditions are quiescent, turbulent mixing plays a major role in the fireball afterburning as well as in dispersion, mixing, ignition and burn-out of combustible clouds in its vicinity. Validating these capabilities at the small scale is critical to establish a reliable predictive tool applicable to more complex and large-scale geometries of practical interest.

  12. Modelling Black Carbon concentrations in two busy street canyons in Brussels using CANSBC

    NASA Astrophysics Data System (ADS)

    Brasseur, O.; Declerck, P.; Heene, B.; Vanderstraeten, P.

    2015-01-01

    This paper focused on modelling Black Carbon (BC) concentrations in two busy street canyons, the Crown and Belliard Street in Brussels. The used original Operational Street Pollution Model was adapted to BC by eliminating the chemical module and is noted here as CANSBC. Model validations were performed using temporal BC data from the fixed measurement network in Brussels. Subsequently, BC emissions were adjusted so that simulated BC concentrations equalled the observed ones, averaged over the whole period of simulation. Direct validations were performed for the Crown Street, while BC model calculations for the Belliard Street were validated indirectly using the linear relationship between BC and NOx. Concerning the Crown Street, simulated and observed half-hourly BC concentrations correlated well (r = 0.74) for the period from July 1st, 2011 till June 30th, 2013. In particular, CANSBC performed very well to simulate the monthly and diurnal evolutions of averaged BC concentrations, as well as the difference between weekdays and weekends. This means that the model correctly handled the meteorological conditions as well as the variation in traffic emissions. Considering dispersion, it should however be noted that BC concentrations are better simulated under stable than under unstable conditions. Even if the correlation on half-hourly NOx concentrations was slightly lower (r = 0.60) than the one of BC, indirect validations of CANSBC for the Belliard Street yielded comparable results and conclusions as described above for the Crown Street. Based on our results, it can be stated that CANSBC is suitable to accurately simulate BC concentrations in the street canyons of Brussels, under the following conditions: (i) accurate vehicle counting data is available to correctly estimate traffic emissions, and (ii) vehicle speeds are measured in order to improve emission estimates and to take into account the impact of the turbulence generated by moving vehicles on the local dispersion of BC.

  13. VALIDATION OF A METHOD FOR ESTIMATING POLLUTION EMISSION RATES FROM AREA SOURCES USING OPEN-PATH FTIR SEPCTROSCOPY AND DISPERSION MODELING TECHNIQUES

    EPA Science Inventory

    The paper describes a methodology developed to estimate emissions factors for a variety of different area sources in a rapid, accurate, and cost effective manner. he methodology involves using an open-path Fourier transform infrared (FTIR) spectrometer to measure concentrations o...

  14. Evaluation of spray drift using low speed wind tunnel measurements and dispersion modeling

    USDA-ARS?s Scientific Manuscript database

    The objective of this work was to evaluate the EPA’s proposed Test Plan for the validation testing of pesticide spray drift reduction technologies (DRTs) for row and field crops, focusing on the evaluation of ground application systems using the low-speed wind tunnel protocols and processing the dat...

  15. ASSESSING INTERNAL CONTAMINATION AFTER THE DETONATION OF A RADIOLOGICAL DISPERSION DEVICE USING A 2×2-INCH SODIUM IODIDE DETECTOR

    PubMed Central

    Dewji, S.; Hertel, N.; Ansari, A.

    2017-01-01

    The detonation of a radiological dispersion device may result in a situation where individuals inhale radioactive materials and require rapid assessment of internal contamination. The feasibility of using a 2×2-inch sodium-iodide detector to determine the committed effective dose to an individual following acute inhalation of gamma-emitting radionuclides was investigated. Experimental configurations of point sources with a polymethyl methacrylate slab phantom were used to validate Monte Carlo simulations. The validated detector model was used to simulate the responses for four detector positions on six different anthropomorphic phantoms. The nuclides examined included 241Am, 60Co, 137Cs, 131I and 192Ir. Biokinetic modelling was employed to determine the distributed activity in the body as a function of post-inhalation time. The simulation and biokinetic data were used to determine time-dependent count-rate values at optimal detector locations on the body for each radionuclide corresponding to a target committed effective dose (E50) value of 250 mSv. PMID:23436621

  16. Polarimetry noise in fiber-based optical coherence tomography instrumentation

    PubMed Central

    Zhang, Ellen Ziyi; Vakoc, Benjamin J.

    2011-01-01

    High noise levels in fiber-based polarization-sensitive optical coherence tomography (PS-OCT) have broadly limited its clinical utility. In this study we investigate contribution of polarization mode dispersion (PMD) to the polarimetry noise. We develop numerical models of the PS-OCT system including PMD and validate these models with empirical data. Using these models, we provide a framework for predicting noise levels, for processing signals to reduce noise, and for designing an optimized system. PMID:21935044

  17. An attempt for modeling the atmospheric transport of 3H around Kakrapar Atomic Power Station.

    PubMed

    Patra, A K; Nankar, D P; Joshi, C P; Venkataraman, S; Sundar, D; Hegde, A G

    2008-01-01

    Prediction of downwind tritium air concentrations in the environment around Kakrapar Atomic Power Station (KAPS) was studied on the basis of Gaussian plume dispersion model. The tritium air concentration by field measurement [measured tritium air concentrations in the areas adjacent to KAPS] were compared with the theoretically calculated values (predicted) to validate the model. This approach will be useful in evaluating environmental radiological impacts due to pressurised heavy water reactors.

  18. Eulerian-Lagrangian CFD modelling of pesticide dust emissions from maize planters

    NASA Astrophysics Data System (ADS)

    Devarrewaere, Wouter; Foqué, Dieter; Nicolai, Bart; Nuyttens, David; Verboven, Pieter

    2018-07-01

    An Eulerian-Lagrangian 3D computational fluid dynamics (CFD) model of pesticide dust drift from precision vacuum planters in field conditions was developed. Tractor and planter models were positioned in an atmospheric computational domain, representing the field and its edges. Physicochemical properties of dust abraded from maize seeds (particle size, shape, porosity, density, a.i. content), dust emission rates and exhaust air velocity values at the planter fan outlets were measured experimentally and implemented in the model. The wind profile, the airflow pattern around the machines and the dust dispersion were computed. Various maize sowing scenarios with different wind conditions, dust properties, planter designs and vacuum pressures were simulated. Dust particle trajectories were calculated by means of Lagrangian particle tracking, considering nonspherical particle drag, gravity and turbulent dispersion. The dust dispersion model was previously validated with wind tunnel data. In this study, simulated pesticide concentrations in the air and on the soil in the different sowing scenarios were compared and discussed. The model predictions were similar to experimental literature data in terms of concentrations and drift distance. Pesticide exposure levels to bees during flight and foraging were estimated from the simulated concentrations. The proposed CFD model can be used in risk assessment studies and in the evaluation of dust drift mitigation measures.

  19. Statistical analysis for improving data precision in the SPME GC-MS analysis of blackberry (Rubus ulmifolius Schott) volatiles.

    PubMed

    D'Agostino, M F; Sanz, J; Martínez-Castro, I; Giuffrè, A M; Sicari, V; Soria, A C

    2014-07-01

    Statistical analysis has been used for the first time to evaluate the dispersion of quantitative data in the solid-phase microextraction (SPME) followed by gas chromatography-mass spectrometry (GC-MS) analysis of blackberry (Rubus ulmifolius Schott) volatiles with the aim of improving their precision. Experimental and randomly simulated data were compared using different statistical parameters (correlation coefficients, Principal Component Analysis loadings and eigenvalues). Non-random factors were shown to significantly contribute to total dispersion; groups of volatile compounds could be associated with these factors. A significant improvement of precision was achieved when considering percent concentration ratios, rather than percent values, among those blackberry volatiles with a similar dispersion behavior. As novelty over previous references, and to complement this main objective, the presence of non-random dispersion trends in data from simple blackberry model systems was evidenced. Although the influence of the type of matrix on data precision was proved, the possibility of a better understanding of the dispersion patterns in real samples was not possible from model systems. The approach here used was validated for the first time through the multicomponent characterization of Italian blackberries from different harvest years. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Local Equilibrium and Retardation Revisited.

    PubMed

    Hansen, Scott K; Vesselinov, Velimir V

    2018-01-01

    In modeling solute transport with mobile-immobile mass transfer (MIMT), it is common to use an advection-dispersion equation (ADE) with a retardation factor, or retarded ADE. This is commonly referred to as making the local equilibrium assumption (LEA). Assuming local equilibrium, Eulerian textbook treatments derive the retarded ADE, ostensibly exactly. However, other authors have presented rigorous mathematical derivations of the dispersive effect of MIMT, applicable even in the case of arbitrarily fast mass transfer. We resolve the apparent contradiction between these seemingly exact derivations by adopting a Lagrangian point of view. We show that local equilibrium constrains the expected time immobile, whereas the retarded ADE actually embeds a stronger, nonphysical, constraint: that all particles spend the same amount of every time increment immobile. Eulerian derivations of the retarded ADE thus silently commit the gambler's fallacy, leading them to ignore dispersion due to mass transfer that is correctly modeled by other approaches. We then present a particle tracking simulation illustrating how poor an approximation the retarded ADE may be, even when mobile and immobile plumes are continually near local equilibrium. We note that classic "LEA" (actually, retarded ADE validity) criteria test for insignificance of MIMT-driven dispersion relative to hydrodynamic dispersion, rather than for local equilibrium. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  1. Osmotic Pressure in Ionic Microgel Dispersions

    NASA Astrophysics Data System (ADS)

    Denton, Alan R.; Tang, Qiyun

    2015-03-01

    Microgels are microscopic gel particles, typically 10-1000 nm in size, that are swollen by a solvent. Hollow microgels (microcapsules) can encapsulate cargo, such as dye molecules or drugs, in their solvent-filled cavities. Their sensitive response to environmental conditions (e.g., temperature, pH) and influence on flow properties suit microgels to widespread applications in the chemical, pharmaceutical, food, and consumer care industries. When dispersed in water, polyelectrolyte gels become charged through dissociation of counterions. The electrostatic contribution to the osmotic pressure inside and outside of ionic microgels influences particle swelling and bulk materials properties, including thermodynamic, structural, optical, and rheological properties. Within the primitive and cell models of polyelectrolyte solutions, we derive an exact statistical mechanical formula for the contribution of mobile microions to the osmotic pressure within ionic microgels. Using Poisson-Boltzmann theory, we validate this result by explicitly calculating ion distributions across the surface of an ionic microgel and the electrostatic contribution to the osmotic pressure. Within a coarse-grained one-component model, we further chart the limits of the cell model for salty dispersions. This work was supported by the National Science Foundation under Grant No. DMR-1106331.

  2. Impact of building configuration on air quality in street canyon

    NASA Astrophysics Data System (ADS)

    Xie, Xiaomin; Huang, Zhen; Wang, Jia-song

    The objective of this study is to provide a simulation of emissions from vehicle exhausts in a street canyon within an urban environment. Standard, RNG and Chen-Kim k- ɛ turbulence models are compared with the wind tunnel measured data for optimization of turbulence model. In the first approach, the investigation is made into the effect of the different roof shapes and ambient building structures. The results indicate that the in-canyon vortex dynamics (e.g. vortex orientation) and the characteristics of pollutant dispersion are dependent on the roof shapes and ambient building structures strongly. A second set of calculations for a three-dimensional simulation of the street canyon setup was performed to investigate the influence of building geometry on pollutant dispersion. The validation of the numerical model was evaluated using an extensive experimental database obtained from the atmospheric boundary layer wind tunnel at the Meteorological Institute of Hamburg University, Germany (Studie on different roof geometries in a simplified urban environment, 1995). The studies give evidence that roof shapes, the ambient building configurations and building geometries are important factors determining the flow patterns and pollutant dispersion in street canyon.

  3. Study on evaluation methods for Rayleigh wave dispersion characteristic

    USGS Publications Warehouse

    Shi, L.; Tao, X.; Kayen, R.; Shi, H.; Yan, S.

    2005-01-01

    The evaluation of Rayleigh wave dispersion characteristic is the key step for detecting S-wave velocity structure. By comparing the dispersion curves directly with the spectra analysis of surface waves (SASW) method, rather than comparing the S-wave velocity structure, the validity and precision of microtremor-array method (MAM) can be evaluated more objectively. The results from the China - US joint surface wave investigation in 26 sites in Tangshan, China, show that the MAM has the same precision with SASW method in 83% of the 26 sites. The MAM is valid for Rayleigh wave dispersion characteristic testing and has great application potentiality for site S-wave velocity structure detection.

  4. A Two-Stage Algorithm for Origin-Destination Matrices Estimation Considering Dynamic Dispersion Parameter for Route Choice

    PubMed Central

    Wang, Yong; Ma, Xiaolei; Liu, Yong; Gong, Ke; Henricakson, Kristian C.; Xu, Maozeng; Wang, Yinhai

    2016-01-01

    This paper proposes a two-stage algorithm to simultaneously estimate origin-destination (OD) matrix, link choice proportion, and dispersion parameter using partial traffic counts in a congested network. A non-linear optimization model is developed which incorporates a dynamic dispersion parameter, followed by a two-stage algorithm in which Generalized Least Squares (GLS) estimation and a Stochastic User Equilibrium (SUE) assignment model are iteratively applied until the convergence is reached. To evaluate the performance of the algorithm, the proposed approach is implemented in a hypothetical network using input data with high error, and tested under a range of variation coefficients. The root mean squared error (RMSE) of the estimated OD demand and link flows are used to evaluate the model estimation results. The results indicate that the estimated dispersion parameter theta is insensitive to the choice of variation coefficients. The proposed approach is shown to outperform two established OD estimation methods and produce parameter estimates that are close to the ground truth. In addition, the proposed approach is applied to an empirical network in Seattle, WA to validate the robustness and practicality of this methodology. In summary, this study proposes and evaluates an innovative computational approach to accurately estimate OD matrices using link-level traffic flow data, and provides useful insight for optimal parameter selection in modeling travelers’ route choice behavior. PMID:26761209

  5. Charge-dependent many-body exchange and dispersion interactions in combined QM/MM simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuechler, Erich R.; Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431; Giese, Timothy J.

    2015-12-21

    Accurate modeling of the molecular environment is critical in condensed phase simulations of chemical reactions. Conventional quantum mechanical/molecular mechanical (QM/MM) simulations traditionally model non-electrostatic non-bonded interactions through an empirical Lennard-Jones (LJ) potential which, in violation of intuitive chemical principles, is bereft of any explicit coupling to an atom’s local electronic structure. This oversight results in a model whereby short-ranged exchange-repulsion and long-ranged dispersion interactions are invariant to changes in the local atomic charge, leading to accuracy limitations for chemical reactions where significant atomic charge transfer can occur along the reaction coordinate. The present work presents a variational, charge-dependent exchange-repulsion andmore » dispersion model, referred to as the charge-dependent exchange and dispersion (QXD) model, for hybrid QM/MM simulations. Analytic expressions for the energy and gradients are provided, as well as a description of the integration of the model into existing QM/MM frameworks, allowing QXD to replace traditional LJ interactions in simulations of reactive condensed phase systems. After initial validation against QM data, the method is demonstrated by capturing the solvation free energies of a series of small, chlorine-containing compounds that have varying charge on the chlorine atom. The model is further tested on the S{sub N}2 attack of a chloride anion on methylchloride. Results suggest that the QXD model, unlike the traditional LJ model, is able to simultaneously obtain accurate solvation free energies for a range of compounds while at the same time closely reproducing the experimental reaction free energy barrier. The QXD interaction model allows explicit coupling of atomic charge with many-body exchange and dispersion interactions that are related to atomic size and provides a more accurate and robust representation of non-electrostatic non-bonded QM/MM interactions.« less

  6. Viscoelastic love-type surface waves

    USGS Publications Warehouse

    Borcherdt, Roger D.

    2008-01-01

    The general theoretical solution for Love-Type surface waves in viscoelastic media provides theoreticalexpressions for the physical characteristics of the waves in elastic as well as anelastic media with arbitraryamounts of intrinsic damping. The general solution yields dispersion and absorption-coefficient curves for the waves as a function of frequency and theamount of intrinsic damping for any chosen viscoelastic model.Numerical results valid for a variety of viscoelastic models provide quantitative estimates of the physicalcharacteristics of the waves pertinent to models of Earth materials ranging from small amounts of damping in the Earth’s crust to moderate and large amounts of damping in soft soils and water-saturated sediments. Numerical results, presented herein, are valid for a wide range of solids and applications.

  7. Turbulent Combustion in SDF Explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, A L; Bell, J B; Beckner, V E

    2009-11-12

    A heterogeneous continuum model is proposed to describe the dispersion and combustion of an aluminum particle cloud in an explosion. It combines the gas-dynamic conservation laws for the gas phase with a continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models. It incorporates a combustion model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gasdynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes intomore » account both the afterburning of the detonation products of the C-4 booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Numerical simulations of the explosion fields from 1.5-g Shock-Dispersed-Fuel (SDF) charge in a 6.6 liter calorimeter were used to validate the combustion model. Then the model was applied to 10-kg Al-SDF explosions in a an unconfined height-of-burst explosion. Computed pressure histories are compared with measured waveforms. Differences are caused by physical-chemical kinetic effects of particle combustion which induce ignition delays in the initial reactive blast wave and quenching of reactions at late times. Current simulations give initial insights into such modeling issues.« less

  8. Predicting and validating the motion of an ash cloud during the 2006 eruption of Mount Augustine volcano

    USGS Publications Warehouse

    Collins, Richard L.; Fochesatto, Javier; Sassen, Kenneth; Webley, Peter W.; Atkinson, David E.; Dean, Kenneson G.; Cahill, Catherine F.; Mizutani, Kohei

    2007-01-01

    On 11 January 2006, Mount Augustine volcano in southern Alaska began erupting after 20- year repose. The Anchorage Forecast Office of the National Weather Service (NWS) issued an advisory on 28 January for Kodiak City. On 31 January, Alaska Airlines cancelled all flights to and from Anchorage after multiple advisories from the NWS for Anchorage and the surrounding region. The Alaska Volcano Observatory (AVO) had reported the onset of the continuous eruption. AVO monitors the approximately 100 active volcanoes in the Northern Pacific. Ash clouds from these volcanoes can cause serious damage to an aircraft and pose a serious threat to the local communities, and to transcontinental air traffic throughout the Arctic and sub-Arctic region. Within AVO, a dispersion model has been developed to track the dispersion of volcanic ash clouds. The model, Puff, was used operational by AVO during the Augustine eruptive period. Here, we examine the dispersion of a volcanic ash (or aerosol) cloud from Mount Augustine across Alaska from 29 January through the 2 February 2006. We present the synoptic meteorology, the Puff predictions, and measurements from aerosol samplers, laser radar (or lidar) systems, and satellites. Aerosol samplers revealed the presence of volcanic aerosols at the surface at sites where Puff predicted the ash clouds movement. Remote sensing satellite data showed the development of the ash cloud in close proximity to the volcano consistent with the Puff predictions. Two lidars showed the presence of volcanic aerosol with consistent characteristics aloft over Alaska and were capable of detecting the aerosol, even in the presence of scattered clouds and where the ash cloud is too thin/disperse to be detected by remote sensing satellite data. The lidar measurements revealed the different trajectories of ash consistent with the Puff predictions. Dispersion models provide a forecast of volcanic ash cloud movement that might be undetectable by any other means but are still a significant hazard. Validation is the key to assessing the accuracy of any predictions. The study highlights the use of multiple and complementary observations used in detecting the trajectory ash cloud, both at the surface and aloft in the atmosphere.

  9. Dispersal of larval suckers at the Williamson River Delta, Upper Klamath Lake, Oregon, 2006-09

    USGS Publications Warehouse

    Wood, Tamara M.; Hendrixson, Heather A.; Markle, Douglas F.; Erdman, Charles S.; Burdick, Summer M.; Ellsworth, Craig M.; Buccola, Norman L.

    2012-01-01

    An advection/diffusion modeling approach was used to simulate the transport of larval suckers from spawning areas in the Williamson River, through the newly restored Williamson River Delta, to Upper Klamath Lake. The density simulations spanned the years of phased restoration, from 2006/2007 prior to any levee breaching, to 2008 when the northern part of the delta was reconnected to the lake, and 2009 when levees on both sides of the delta had been breached. Model simulation results from all four years were compared to field data using rank correlation. Spearman ρ correlation coefficients were usually significant and in the range 0.30 to 0.60, providing moderately strong validation of the model. The correlation coefficients varied with fish size class in a way that suggested that the model best described the distribution of smaller fish near the Williamson River channel, and larger fish away from the channel. When Lost River and shortnose/Klamath largescale suckers were simulated independently, the correlation results suggested that the model better described the transport and dispersal of the latter species. The incorporation of night-time-only drift behavior in the Williamson River channel neither improved nor degraded correlations with field data. The model showed that advection by currents is an important factor in larval dispersal.

  10. Development of PRIME for irradiation performance analysis of U-Mo/Al dispersion fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Gwan Yoon; Kim, Yeon Soo; Jeong, Yong Jin

    A prediction code for the thermo-mechanical performance of research reactor fuel (PRIME) has been developed with the implementation of developed models to analyze the irradiation behavior of U-Mo dispersion fuel. The code is capable of predicting the two-dimensional thermal and mechanical performance of U-Mo dispersion fuel during irradiation. A finite element method was employed to solve the governing equations for thermal and mechanical equilibria. Temperature-and burnup-dependent material properties of the fuel meat constituents and cladding were used. The numerical solution schemes in PRIME were verified by benchmarking solutions obtained using a commercial finite element analysis program (ABAQUS).The code was validatedmore » using irradiation data from RERTR, HAMP-1, and E-FUTURE tests. The measured irradiation data used in the validation were IL thickness, volume fractions of fuel meat constituents for the thermal analysis, and profiles of the plate thickness changes and fuel meat swelling for the mechanical analysis. The prediction results were in good agreement with the measurement data for both thermal and mechanical analyses, confirming the validity of the code. (c) 2018 Elsevier B.V. All rights reserved.« less

  11. Standardized dirts for testing the efficacy of workplace cleaning products: validation of their workplace relevance.

    PubMed

    Elsner, Peter; Seyfarth, Florian; Sonsmann, Flora; Strunk, Meike; John, Swen-Malte; Diepgen, Thomas; Schliemann, Sibylle

    2013-10-01

    In order to assess the cleaning efficacy of occupational skin cleansers, standardized test dirts mimicking the spectrum of skin soiling at dirty workplaces are necessary. To validate newly developed standardized test dirts (compliant with the EU Cosmetics Directive) for their occupational relevance. In this single-blinded, monocentric questionnaire-based clinical trial, 87 apprentices of three trades (household management; house painting and varnishing; and metal processing) evaluated the cleanability of six standardized test dirts in relation to their workplace dirts. In addition, they judged the similarity of the test dirts to actual dirts encountered in their working environments. Most of the household management participants assessed the hydrophilic model dirt ('mascara'), the lipophilic model dirt ('W/O cream') and a film-forming model dirt ('disperse paint') as best resembling the dirts found at their workplaces. Most of the painters and varnishers judged the filmogenic model dirts ('disperse paint' and 'acrylic paint') as best resembling the dirts found at their workplaces. For the metal workers, the lipophilic and paste-like model dirts were most similar to their workplace dirts. The spectrum of standardized test dirts developed represents well the dirts encountered at various workplaces. The test dirts may be useful in the development and in vivo efficacy testing of occupational skin cleansers. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Transport and dispersion of pollutants in surface impoundments: a finite difference model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, G.T.

    1980-07-01

    A surface impoundment model by finite-difference (SIMFD) has been developed. SIMFD computes the flow rate, velocity field, and the concentration distribution of pollutants in surface impoundments with any number of islands located within the region of interest. Theoretical derivations and numerical algorithm are described in detail. Instructions for the application of SIMFD and listings of the FORTRAN IV source program are provided. Two sample problems are given to illustrate the application and validity of the model.

  13. MT3DMS: Model use, calibration, and validation

    USGS Publications Warehouse

    Zheng, C.; Hill, Mary C.; Cao, G.; Ma, R.

    2012-01-01

    MT3DMS is a three-dimensional multi-species solute transport model for solving advection, dispersion, and chemical reactions of contaminants in saturated groundwater flow systems. MT3DMS interfaces directly with the U.S. Geological Survey finite-difference groundwater flow model MODFLOW for the flow solution and supports the hydrologic and discretization features of MODFLOW. MT3DMS contains multiple transport solution techniques in one code, which can often be important, including in model calibration. Since its first release in 1990 as MT3D for single-species mass transport modeling, MT3DMS has been widely used in research projects and practical field applications. This article provides a brief introduction to MT3DMS and presents recommendations about calibration and validation procedures for field applications of MT3DMS. The examples presented suggest the need to consider alternative processes as models are calibrated and suggest opportunities and difficulties associated with using groundwater age in transport model calibration.

  14. Aerodynamics of saccate pollen and its implications for wind pollination.

    PubMed

    Schwendemann, Andrew B; Wang, George; Mertz, Meredith L; McWilliams, Ryan T; Thatcher, Scott L; Osborn, Jeffrey M

    2007-08-01

    Pollen grains of many wind-pollinated plants contain 1-3 air-filled bladders, or sacci. Sacci are thought to help orient the pollen grain in the pollination droplet. Sacci also increase surface area of the pollen grain, yet add minimal mass, thereby increasing dispersal distance; however, this aerodynamic hypothesis has not been tested in a published study. Using scanning electron and transmission electron microscopy, mathematical modeling, and the saccate pollen of three extant conifers with structurally different pollen grains (Pinus, Falcatifolium, Dacrydium), we developed a computational model to investigate pollen flight. The model calculates terminal settling velocity based on structural characters of the pollen grain, including lengths, widths, and depths of the main body and sacci; angle of saccus rotation; and thicknesses of the saccus wall, endoreticulations, intine, and exine. The settling speeds predicted by the model were empirically validated by stroboscopic photography. This study is the first to quantitatively demonstrate the adaptive significance of sacci for the aerodynamics of wind pollination. Modeling pollen both with and without sacci indicated that sacci can reduce pollen settling speeds, thereby increasing dispersal distance, with the exception of pollen grains having robust endoreticulations and those with thick saccus walls. Furthermore, because the mathematical model is based on structural characters and error propagation methods show that the model yields valid results when sample sizes are small, the flight dynamics of fossil pollen can be investigated. Several fossils were studied, including bisaccate (Pinus, Pteruchus, Caytonanthus), monosaccate (Gothania), and nonsaccate (Monoletes) pollen types.

  15. Parametric study of guided waves dispersion curves for composite plates

    NASA Astrophysics Data System (ADS)

    Predoi, Mihai Valentin; Petre, Cristian Cǎtǎlin; Kettani, Mounsif Ech Cherif El; Leduc, Damien

    2018-02-01

    Nondestructive testing of composite panels benefit from the relatively long range propagation of guided waves in sandwich structures. The guided waves are sensitive to delamination, air bubbles inclusions and cracks and can thus bring information about hidden defects in the composite panel. The preliminary data in all such inspections is represented by the dispersion curves, representing the dependency of the phase/group velocity on the frequency for the propagating modes. In fact, all modes are more or less attenuated, so it is even more important to compute the dispersion curves, which provide also the modal attenuation as function of frequency. Another important aspect is the sensitivity of the dispersion curves on each of the elastic constant of the composite, which are orthotropic in most cases. All these aspects are investigated in the present work, based on our specially developed finite element numerical model implemented in Comsol, which has several advantages over existing methods. The dispersion curves and modal displacements are computed for an example of composite plate. Comparison with literature data validates the accuracy of our results.

  16. Equivalent distributed capacitance model of oxide traps on frequency dispersion of C-V curve for MOS capacitors

    NASA Astrophysics Data System (ADS)

    Lu, Han-Han; Xu, Jing-Ping; Liu, Lu; Lai, Pui-To; Tang, Wing-Man

    2016-11-01

    An equivalent distributed capacitance model is established by considering only the gate oxide-trap capacitance to explain the frequency dispersion in the C-V curve of MOS capacitors measured for a frequency range from 1 kHz to 1 MHz. The proposed model is based on the Fermi-Dirac statistics and the charging/discharging effects of the oxide traps induced by a small ac signal. The validity of the proposed model is confirmed by the good agreement between the simulated results and experimental data. Simulations indicate that the capacitance dispersion of an MOS capacitor under accumulation and near flatband is mainly caused by traps adjacent to the oxide/semiconductor interface, with negligible effects from the traps far from the interface, and the relevant distance from the interface at which the traps can still contribute to the gate capacitance is also discussed. In addition, by excluding the negligible effect of oxide-trap conductance, the model avoids the use of imaginary numbers and complex calculations, and thus is simple and intuitive. Project supported by the National Natural Science Foundation of China (Grant Nos. 61176100 and 61274112), the University Development Fund of the University of Hong Kong, China (Grant No. 00600009), and the Hong Kong Polytechnic University, China (Grant No. 1-ZVB1).

  17. Mechanical Properties of Graphene Nanoplatelet/Carbon Fiber/Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    NASA Technical Reports Server (NTRS)

    Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite while the effect on the axial properties is shown to be insignificant.

  18. Mechanical Properties of Graphene Nanoplatelet/Carbon Fiber/Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    NASA Technical Reports Server (NTRS)

    Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  19. Mechanical Properties of Graphene Nanoplatelet Carbon Fiber Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    NASA Technical Reports Server (NTRS)

    Hadden, Cameron M.; Klimek-McDonald, Danielle R.; Pineda, Evan J.; King, Julie A.; Reichanadter, Alex M.; Miskioglu, Ibrahim; Gowtham, S.; Odegard, Gregory M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  20. Drastic reduction in the growth temperature of graphene on copper via enhanced London dispersion force

    PubMed Central

    Choi, Jin-Ho; Li, Zhancheng; Cui, Ping; Fan, Xiaodong; Zhang, Hui; Zeng, Changgan; Zhang, Zhenyu

    2013-01-01

    London dispersion force is ubiquitous in nature, and is increasingly recognized to be an important factor in a variety of surface processes. Here we demonstrate unambiguously the decisive role of London dispersion force in non-equilibrium growth of ordered nanostructures on metal substrates using aromatic source molecules. Our first-principles based multi-scale modeling shows that a drastic reduction in the growth temperature, from ~1000°C to ~300°C, can be achieved in graphene growth on Cu(111) when the typical carbon source of methane is replaced by benzene or p-Terphenyl. The London dispersion force enhances their adsorption energies by about (0.5–1.8) eV, thereby preventing their easy desorption, facilitating dehydrogenation, and promoting graphene growth at much lower temperatures. These quantitative predictions are validated in our experimental tests, showing convincing demonstration of monolayer graphene growth using the p-Terphenyl source. The general trends established are also more broadly applicable in molecular synthesis of surface-based nanostructures. PMID:23722566

  1. NASA Agricultural Aircraft Research Program in the Langley Vortex Research Facility and the Langley Full Scale Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.; Mclemore, H. C.; Bragg, M. B.

    1978-01-01

    The current status of aerial applications technology research at the Langley's Vortex Research Facility and Full-Scale Wind Tunnel is reviewed. Efforts have been directed mainly toward developing and validating the required experimental and theoretical research tools. A capability to simulate aerial dispersal of materials from agricultural airplanes with small-scale airplane models, numerical methods, and dynamically scaled test particles was demonstrated. Tests on wake modification concepts have proved the feasibility of tailoring wake properties aerodynamically to produce favorable changes in deposition and to provide drift control. An aerodynamic evaluation of the Thrush Commander 800 agricultural airplane with various dispersal systems installed is described. A number of modifications intended to provide system improvement to both airplane and dispersal system are examined, and a technique for documenting near-field spray characteristics is evaluated.

  2. Applying the cold plasma dispersion relation to whistler mode chorus waves: EMFISIS wave measurements from the Van Allen Probes

    DOE PAGES

    Hartley, D. P.; Chen, Y.; Kletzing, C. A.; ...

    2015-01-26

    Most theoretical wave models require the power in the wave magnetic field in order to determine the effect of chorus waves on radiation belt electrons. However, researchers typically use the cold plasma dispersion relation to approximate the magnetic wave power when only electric field data are available. In this study, the validity of using the cold plasma dispersion relation in this context is tested using Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) observations of both the electric and magnetic spectral intensities in the chorus wave band (0.1–0.9 f ce). Results from this study indicate that the calculatedmore » wave intensity is least accurate during periods of enhanced wave activity. For observed wave intensities >10⁻³ nT², using the cold plasma dispersion relation results in an underestimate of the wave intensity by a factor of 2 or greater 56% of the time over the full chorus wave band, 60% of the time for lower band chorus, and 59% of the time for upper band chorus. Hence, during active periods, empirical chorus wave models that are reliant on the cold plasma dispersion relation will underestimate chorus wave intensities to a significant degree, thus causing questionable calculation of wave-particle resonance effects on MeV electrons.« less

  3. LEOPARD: A grid-based dispersion relation solver for arbitrary gyrotropic distributions

    NASA Astrophysics Data System (ADS)

    Astfalk, Patrick; Jenko, Frank

    2017-01-01

    Particle velocity distributions measured in collisionless space plasmas often show strong deviations from idealized model distributions. Despite this observational evidence, linear wave analysis in space plasma environments such as the solar wind or Earth's magnetosphere is still mainly carried out using dispersion relation solvers based on Maxwellians or other parametric models. To enable a more realistic analysis, we present the new grid-based kinetic dispersion relation solver LEOPARD (Linear Electromagnetic Oscillations in Plasmas with Arbitrary Rotationally-symmetric Distributions) which no longer requires prescribed model distributions but allows for arbitrary gyrotropic distribution functions. In this work, we discuss the underlying numerical scheme of the code and we show a few exemplary benchmarks. Furthermore, we demonstrate a first application of LEOPARD to ion distribution data obtained from hybrid simulations. In particular, we show that in the saturation stage of the parallel fire hose instability, the deformation of the initial bi-Maxwellian distribution invalidates the use of standard dispersion relation solvers. A linear solver based on bi-Maxwellians predicts further growth even after saturation, while LEOPARD correctly indicates vanishing growth rates. We also discuss how this complies with former studies on the validity of quasilinear theory for the resonant fire hose. In the end, we briefly comment on the role of LEOPARD in directly analyzing spacecraft data, and we refer to an upcoming paper which demonstrates a first application of that kind.

  4. Explosive particle soil surface dispersion model for detonated military munitions.

    PubMed

    Hathaway, John E; Rishel, Jeremy P; Walsh, Marianne E; Walsh, Michael R; Taylor, Susan

    2015-07-01

    The accumulation of high explosive mass residue from the detonation of military munitions on training ranges is of environmental concern because of its potential to contaminate the soil, surface water, and groundwater. The US Department of Defense wants to quantify, understand, and remediate high explosive mass residue loadings that might be observed on active firing ranges. Previously, efforts using various sampling methods and techniques have resulted in limited success, due in part to the complicated dispersion pattern of the explosive particle residues upon detonation. In our efforts to simulate particle dispersal for high- and low-order explosions on hypothetical firing ranges, we use experimental particle data from detonations of munitions from a 155-mm howitzer, which are common military munitions. The mass loadings resulting from these simulations provide a previously unattained level of detail to quantify the explosive residue source-term for use in soil and water transport models. In addition, the resulting particle placements can be used to test, validate, and optimize particle sampling methods and statistical models as applied to firing ranges. Although the presented results are for a hypothetical 155-mm howitzer firing range, the method can be used for other munition types once the explosive particle characteristics are known.

  5. Spatial exposure-hazard and landscape models for assessing the impact of GM crops on non-target organisms.

    PubMed

    Leclerc, Melen; Walker, Emily; Messéan, Antoine; Soubeyrand, Samuel

    2018-05-15

    The cultivation of Genetically Modified (GM) crops may have substantial impacts on populations of non-target organisms (NTOs) in agroecosystems. These impacts should be assessed at larger spatial scales than the cultivated field, and, as landscape-scale experiments are difficult, if not impossible, modelling approaches are needed to address landscape risk management. We present an original stochastic and spatially explicit modelling framework for assessing the risk at the landscape level. We use techniques from spatial statistics for simulating simplified landscapes made up of (aggregated or non-aggregated) GM fields, neutral fields and NTO's habitat areas. The dispersal of toxic pollen grains is obtained by convolving the emission of GM plants and validated dispersal kernel functions while the locations of exposed individuals are drawn from a point process. By taking into account the adherence of the ambient pollen on plants, the loss of pollen due to climatic events, and, an experimentally-validated mortality-dose function we predict risk maps and provide a distribution giving how the risk varies within exposed individuals in the landscape. Then, we consider the impact of the Bt maize on Inachis io in worst-case scenarii where exposed individuals are located in the vicinity of GM fields and pollen shedding overlaps with larval emergence. We perform a Global Sensitivity Analysis (GSA) to explore numerically how our input parameters influence the risk. Our results confirm the important effects of pollen emission and loss. Most interestingly they highlight that the optimal spatial distribution of GM fields that mitigates the risk depends on our knowledge of the habitats of NTOs, and finally, moderate the influence of the dispersal kernel function. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations.

    PubMed

    van de Streek, Jacco; Neumann, Marcus A

    2010-10-01

    This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 A either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect.

  7. Progress and challenges in the development of physically-based numerical models for prediction of flow and contaminant dispersion in the urban environment

    NASA Astrophysics Data System (ADS)

    Lien, F. S.; Yee, E.; Ji, H.; Keats, A.; Hsieh, K. J.

    2006-06-01

    The release of chemical, biological, radiological, or nuclear (CBRN) agents by terrorists or rogue states in a North American city (densely populated urban centre) and the subsequent exposure, deposition and contamination are emerging threats in an uncertain world. The modeling of the transport, dispersion, deposition and fate of a CBRN agent released in an urban environment is an extremely complex problem that encompasses potentially multiple space and time scales. The availability of high-fidelity, time-dependent models for the prediction of a CBRN agent's movement and fate in a complex urban environment can provide the strongest technical and scientific foundation for support of Canada's more broadly based effort at advancing counter-terrorism planning and operational capabilities.The objective of this paper is to report the progress of developing and validating an integrated, state-of-the-art, high-fidelity multi-scale, multi-physics modeling system for the accurate and efficient prediction of urban flow and dispersion of CBRN (and other toxic) materials discharged into these flows. Development of this proposed multi-scale modeling system will provide the real-time modeling and simulation tool required to predict injuries, casualties and contamination and to make relevant decisions (based on the strongest technical and scientific foundations) in order to minimize the consequences of a CBRN incident in a populated centre.

  8. A Flexible Spatio-Temporal Model for Air Pollution with Spatial and Spatio-Temporal Covariates.

    PubMed

    Lindström, Johan; Szpiro, Adam A; Sampson, Paul D; Oron, Assaf P; Richards, Mark; Larson, Tim V; Sheppard, Lianne

    2014-09-01

    The development of models that provide accurate spatio-temporal predictions of ambient air pollution at small spatial scales is of great importance for the assessment of potential health effects of air pollution. Here we present a spatio-temporal framework that predicts ambient air pollution by combining data from several different monitoring networks and deterministic air pollution model(s) with geographic information system (GIS) covariates. The model presented in this paper has been implemented in an R package, SpatioTemporal, available on CRAN. The model is used by the EPA funded Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) to produce estimates of ambient air pollution; MESA Air uses the estimates to investigate the relationship between chronic exposure to air pollution and cardiovascular disease. In this paper we use the model to predict long-term average concentrations of NO x in the Los Angeles area during a ten year period. Predictions are based on measurements from the EPA Air Quality System, MESA Air specific monitoring, and output from a source dispersion model for traffic related air pollution (Caline3QHCR). Accuracy in predicting long-term average concentrations is evaluated using an elaborate cross-validation setup that accounts for a sparse spatio-temporal sampling pattern in the data, and adjusts for temporal effects. The predictive ability of the model is good with cross-validated R 2 of approximately 0.7 at subject sites. Replacing four geographic covariate indicators of traffic density with the Caline3QHCR dispersion model output resulted in very similar prediction accuracy from a more parsimonious and more interpretable model. Adding traffic-related geographic covariates to the model that included Caline3QHCR did not further improve the prediction accuracy.

  9. Groundwater Source Identification Using Backward Fractional-Derivative Models

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Sun, H.; Zheng, C.

    2017-12-01

    The forward Fractional Advection Dispersion Equation (FADE) provides a useful model for non-Fickian transport in heterogeneous porous media. This presentation introduces the corresponding backward FADE model, to identify groundwater source location and release time. The backward method is developed from the theory of inverse problems, and the resultant backward FADE differs significantly from the traditional backward ADE because the fractional derivative is not self-adjoint and the probability density function for backward locations is highly skewed. Finally, the method is validated using tracer data from well-known field experiments.

  10. Lamb Wave Dispersion Ultrasound Vibrometry (LDUV) Method for Quantifying Mechanical Properties of Viscoelastic Solids

    PubMed Central

    Nenadic, Ivan Z.; Urban, Matthew W.; Mitchell, Scott A.; Greenleaf, James F.

    2011-01-01

    Diastolic dysfunction is the inability of the left ventricle to supply sufficient stroke volumes under normal physiological conditions and is often accompanied by stiffening of the left-ventricular myocardium. A noninvasive technique capable of quantifying viscoelasticity of the myocardium would be beneficial in clinical settings. Our group has been investigating the use of Shearwave Dispersion Ultrasound Vibrometry (SDUV), a noninvasive ultrasound based method for quantifying viscoelasticity of soft tissues. The primary motive of this study is the design and testing of viscoelastic materials suitable for validation of the Lamb wave Dispersion Ultrasound Vibrometry (LDUV), an SDUV-based technique for measuring viscoelasticity of tissues with plate-like geometry. We report the results of quantifying viscoelasticity of urethane rubber and gelatin samples using LDUV and an embedded sphere method. The LDUV method was used to excite antisymmetric Lamb waves and measure the dispersion in urethane rubber and gelatin plates. An antisymmetric Lamb wave model was fitted to the wave speed dispersion data to estimate elasticity and viscosity of the materials. A finite element model of a viscoelastic plate submerged in water was used to study the appropriateness of the Lamb wave dispersion equations. An embedded sphere method was used as an independent measurement of the viscoelasticity of the urethane rubber and gelatin. The FEM dispersion data were in excellent agreement with the theoretical predictions. Viscoelasticity of the urethane rubber and gelatin obtained using the LDUV and embedded sphere methods agreed within one standard deviation. LDUV studies on excised porcine myocardium sample were performed to investigate the feasibility of the approach in preparation for open-chest in vivo studies. The results suggest that the LDUV technique can be used to quantify mechanical properties of soft tissues with a plate-like geometry. PMID:21403186

  11. Lamb wave dispersion ultrasound vibrometry (LDUV) method for quantifying mechanical properties of viscoelastic solids.

    PubMed

    Nenadic, Ivan Z; Urban, Matthew W; Mitchell, Scott A; Greenleaf, James F

    2011-04-07

    Diastolic dysfunction is the inability of the left ventricle to supply sufficient stroke volumes under normal physiological conditions and is often accompanied by stiffening of the left-ventricular myocardium. A noninvasive technique capable of quantifying viscoelasticity of the myocardium would be beneficial in clinical settings. Our group has been investigating the use of shear wave dispersion ultrasound vibrometry (SDUV), a noninvasive ultrasound-based method for quantifying viscoelasticity of soft tissues. The primary motive of this study is the design and testing of viscoelastic materials suitable for validation of the Lamb wave dispersion ultrasound vibrometry (LDUV), an SDUV-based technique for measuring viscoelasticity of tissues with plate-like geometry. We report the results of quantifying viscoelasticity of urethane rubber and gelatin samples using LDUV and an embedded sphere method. The LDUV method was used to excite antisymmetric Lamb waves and measure the dispersion in urethane rubber and gelatin plates. An antisymmetric Lamb wave model was fitted to the wave speed dispersion data to estimate elasticity and viscosity of the materials. A finite element model of a viscoelastic plate submerged in water was used to study the appropriateness of the Lamb wave dispersion equations. An embedded sphere method was used as an independent measurement of the viscoelasticity of the urethane rubber and gelatin. The FEM dispersion data were in excellent agreement with the theoretical predictions. Viscoelasticity of the urethane rubber and gelatin obtained using the LDUV and embedded sphere methods agreed within one standard deviation. LDUV studies on excised porcine myocardium sample were performed to investigate the feasibility of the approach in preparation for open-chest in vivo studies. The results suggest that the LDUV technique can be used to quantify the mechanical properties of soft tissues with a plate-like geometry.

  12. Active-passive measurements and CFD based modelling for indoor radon dispersion study.

    PubMed

    Chauhan, Neetika; Chauhan, R P

    2015-06-01

    Computational fluid dynamics (CFD) play a significant role in indoor pollutant dispersion study. Radon is an indoor pollutant which is radioactive and inert gas in nature. The concentration level and spatial distribution of radon may be affected by the dwelling's ventilation conditions. Present work focus at the study of indoor radon gas distribution via measurement and CFD modeling in naturally ventilated living room. The need of the study is the prediction of activity level and to study the effect of natural ventilation on indoor radon. Two measurement techniques (Passive measurement using pin-hole dosimeters and active measurement using continuous radon monitor (SRM)) were used for the validation purpose of CFD results. The CFD simulation results were compared with the measurement results at 15 points, 3 XY planes at different heights along with the volumetric average concentration. The simulation results found to be comparable with the measurement results. The future scope of these CFD codes is to study the effect of varying inflow rate of air on the radon concentration level and dispersion pattern. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Improving Metallic Thermal Protection System Hypervelocity Impact Resistance Through Design of Experiments Approach

    NASA Technical Reports Server (NTRS)

    Poteet, Carl C.; Blosser, Max L.

    2001-01-01

    A design of experiments approach has been implemented using computational hypervelocity impact simulations to determine the most effective place to add mass to an existing metallic Thermal Protection System (TPS) to improve hypervelocity impact protection. Simulations were performed using axisymmetric models in CTH, a shock-physics code developed by Sandia National Laboratories, and validated by comparison with existing test data. The axisymmetric models were then used in a statistical sensitivity analysis to determine the influence of five design parameters on degree of hypervelocity particle dispersion. Several damage metrics were identified and evaluated. Damage metrics related to the extent of substructure damage were seen to produce misleading results, however damage metrics related to the degree of dispersion of the hypervelocity particle produced results that corresponded to physical intuition. Based on analysis of variance results it was concluded that the most effective way to increase hypervelocity impact resistance is to increase the thickness of the outer foil layer. Increasing the spacing between the outer surface and the substructure is also very effective at increasing dispersion.

  14. DNA Fingerprinting Validates Seed Dispersal Curves from Observational Studies in the Neotropical Legume Parkia

    PubMed Central

    Heymann, Eckhard W.; Lüttmann, Kathrin; Michalczyk, Inga M.; Saboya, Pedro Pablo Pinedo; Ziegenhagen, Birgit; Bialozyt, Ronald

    2012-01-01

    Background Determining the distances over which seeds are dispersed is a crucial component for examining spatial patterns of seed dispersal and their consequences for plant reproductive success and population structure. However, following the fate of individual seeds after removal from the source tree till deposition at a distant place is generally extremely difficult. Here we provide a comparison of observationally and genetically determined seed dispersal distances and dispersal curves in a Neotropical animal-plant system. Methodology/Principal Findings In a field study on the dispersal of seeds of three Parkia (Fabaceae) species by two Neotropical primate species, Saguinus fuscicollis and Saguinus mystax, in Peruvian Amazonia, we observationally determined dispersal distances. These dispersal distances were then validated through DNA fingerprinting, by matching DNA from the maternally derived seed coat to DNA from potential source trees. We found that dispersal distances are strongly right-skewed, and that distributions obtained through observational and genetic methods and fitted distributions do not differ significantly from each other. Conclusions/Significance Our study showed that seed dispersal distances can be reliably estimated through observational methods when a strict criterion for inclusion of seeds is observed. Furthermore, dispersal distances produced by the two primate species indicated that these primates fulfil one of the criteria for efficient seed dispersers. Finally, our study demonstrated that DNA extraction methods so far employed for temperate plant species can be successfully used for hard-seeded tropical plants. PMID:22514748

  15. Developing A New Predictive Dispersion Equation Based on Tidal Average (TA) Condition in Alluvial Estuaries

    NASA Astrophysics Data System (ADS)

    Anak Gisen, Jacqueline Isabella; Nijzink, Remko C.; Savenije, Hubert H. G.

    2014-05-01

    Dispersion mathematical representation of tidal mixing between sea water and fresh water in The definition of dispersion somehow remains unclear as it is not directly measurable. The role of dispersion is only meaningful if it is related to the appropriate temporal and spatial scale of mixing, which are identified as the tidal period, tidal excursion (longitudinal), width of estuary (lateral) and mixing depth (vertical). Moreover, the mixing pattern determines the salt intrusion length in an estuary. If a physically based description of the dispersion is defined, this would allow the analytical solution of the salt intrusion problem. The objective of this study is to develop a predictive equation for estimating the dispersion coefficient at tidal average (TA) condition, which can be applied in the salt intrusion model to predict the salinity profile for any estuary during different events. Utilizing available data of 72 measurements in 27 estuaries (including 6 recently studied estuaries in Malaysia), regressions analysis has been performed with various combinations of dimensionless parameters . The predictive dispersion equations have been developed for two different locations, at the mouth D0TA and at the inflection point D1TA (where the convergence length changes). Regressions have been carried out with two separated datasets: 1) more reliable data for calibration; and 2) less reliable data for validation. The combination of dimensionless ratios that give the best performance is selected as the final outcome which indicates that the dispersion coefficient is depending on the tidal excursion, tidal range, tidal velocity amplitude, friction and the Richardson Number. A limitation of the newly developed equation is that the friction is generally unknown. In order to compensate this problem, further analysis has been performed adopting the hydraulic model of Cai et. al. (2012) to estimate the friction and depth. Keywords: dispersion, alluvial estuaries, mixing, salt intrusion, predictive equation

  16. Ensemble assimilation of ARGO temperature profile, sea surface temperature, and altimetric satellite data into an eddy permitting primitive equation model of the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Yan, Y.; Barth, A.; Beckers, J. M.; Candille, G.; Brankart, J. M.; Brasseur, P.

    2015-07-01

    Sea surface height, sea surface temperature, and temperature profiles at depth collected between January and December 2005 are assimilated into a realistic eddy permitting primitive equation model of the North Atlantic Ocean using the Ensemble Kalman Filter. Sixty ensemble members are generated by adding realistic noise to the forcing parameters related to the temperature. The ensemble is diagnosed and validated by comparison between the ensemble spread and the model/observation difference, as well as by rank histogram before the assimilation experiments. An incremental analysis update scheme is applied in order to reduce spurious oscillations due to the model state correction. The results of the assimilation are assessed according to both deterministic and probabilistic metrics with independent/semiindependent observations. For deterministic validation, the ensemble means, together with the ensemble spreads are compared to the observations, in order to diagnose the ensemble distribution properties in a deterministic way. For probabilistic validation, the continuous ranked probability score (CRPS) is used to evaluate the ensemble forecast system according to reliability and resolution. The reliability is further decomposed into bias and dispersion by the reduced centered random variable (RCRV) score in order to investigate the reliability properties of the ensemble forecast system. The improvement of the assimilation is demonstrated using these validation metrics. Finally, the deterministic validation and the probabilistic validation are analyzed jointly. The consistency and complementarity between both validations are highlighted.

  17. Compact energy dispersive X-ray microdiffractometer for diagnosis of neoplastic tissues

    NASA Astrophysics Data System (ADS)

    Sosa, C.; Malezan, A.; Poletti, M. E.; Perez, R. D.

    2017-08-01

    An energy dispersive X-ray microdiffractometer with capillary optics has been developed for characterizing breast cancer. The employment of low divergence capillary optics helps to reduce the setup size to a few centimeters, while providing a lateral spatial resolution of 100 μm. The system angular calibration and momentum transfer resolution were assessed by a detailed study of a polycrystalline reference material. The performance of the system was tested by means of the analysis of tissue-equivalent samples previously characterized by conventional X-ray diffraction. In addition, a simplified correction model for an appropriate comparison of the diffraction spectra was developed and validated. Finally, the system was employed to evaluate normal and neoplastic human breast samples, in order to determine their X-ray scatter signatures. The initial results indicate that the use of this compact energy dispersive X-ray microdiffractometer combined with a simplified correction procedure is able to provide additional information to breast cancer diagnosis.

  18. Biomagnetic monitoring as a validation tool for local air quality models: a case study for an urban street canyon.

    PubMed

    Hofman, Jelle; Samson, Roeland

    2014-09-01

    Biomagnetic monitoring of tree leaf deposited particles has proven to be a good indicator of the ambient particulate concentration. The objective of this study is to apply this method to validate a local-scale air quality model (ENVI-met), using 96 tree crown sampling locations in a typical urban street canyon. To the best of our knowledge, the application of biomagnetic monitoring for the validation of pollutant dispersion modeling is hereby presented for the first time. Quantitative ENVI-met validation showed significant correlations between modeled and measured results throughout the entire in-leaf period. ENVI-met performed much better at the first half of the street canyon close to the ring road (r=0.58-0.79, RMSE=44-49%), compared to second part (r=0.58-0.64, RMSE=74-102%). The spatial model behavior was evaluated by testing effects of height, azimuthal position, tree position and distance from the main pollution source on the obtained model results and magnetic measurements. Our results demonstrate that biomagnetic monitoring seems to be a valuable method to evaluate the performance of air quality models. Due to the high spatial and temporal resolution of this technique, biomagnetic monitoring can be applied anywhere in the city (where urban green is present) to evaluate model performance at different spatial scales. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. General relationships between ultrasonic attenuation and dispersion

    NASA Technical Reports Server (NTRS)

    Odonnell, M.; Jaynes, E. T.; Miller, J. G.

    1978-01-01

    General relationships between the ultrasonic attenuation and dispersion are presented. The validity of these nonlocal relationships hinges only on the properties of causality and linearity, and does not depend upon details of the mechanism responsible for the attenuation and dispersion. Approximate, nearly local relationships are presented and are demonstrated to predict accurately the ultrasonic dispersion in solutions of hemoglobin from the results of attenuation measurements.

  20. A Well-Posed, Objective and Dynamic Two-Fluid Model

    NASA Astrophysics Data System (ADS)

    Chetty, Krishna; Vaidheeswaran, Avinash; Sharma, Subash; Clausse, Alejandro; Lopez de Bertodano, Martin

    The transition from dispersed to clustered bubbly flows due to wake entrainment is analyzed with a well-posed and objective one-dimensional (1-D) Two-Fluid Model, derived from variational principles. Modeling the wake entrainment force using the variational technique requires formulation of the inertial coupling coefficient, which defines the kinetic coupling between the phases. The kinetic coupling between a pair of bubbles and the liquid is obtained from potential flow over two-spheres and the results are validated by comparing the virtual mass coefficients with existing literature. The two-body interaction kinetic coupling is then extended to a lumped parameter model for viscous flow over two cylindrical bubbles, to get the Two-Fluid Model for wake entrainment. Linear stability analyses comprising the characteristics and the dispersion relation and non-linear numerical simulations are performed with the 1-D variational Two-Fluid Model to demonstrate the wake entrainment instability leading to clustering of bubbles. Finally, the wavelengths, amplitudes and propagation velocities of the void waves from non-linear simulations are compared with the experimental data.

  1. Variational Iterative Refinement Source Term Estimation Algorithm Assessment for Rural and Urban Environments

    NASA Astrophysics Data System (ADS)

    Delle Monache, L.; Rodriguez, L. M.; Meech, S.; Hahn, D.; Betancourt, T.; Steinhoff, D.

    2016-12-01

    It is necessary to accurately estimate the initial source characteristics in the event of an accidental or intentional release of a Chemical, Biological, Radiological, or Nuclear (CBRN) agent into the atmosphere. The accurate estimation of the source characteristics are important because many times they are unknown and the Atmospheric Transport and Dispersion (AT&D) models rely heavily on these estimates to create hazard assessments. To correctly assess the source characteristics in an operational environment where time is critical, the National Center for Atmospheric Research (NCAR) has developed a Source Term Estimation (STE) method, known as the Variational Iterative Refinement STE algorithm (VIRSA). VIRSA consists of a combination of modeling systems. These systems include an AT&D model, its corresponding STE model, a Hybrid Lagrangian-Eulerian Plume Model (H-LEPM), and its mathematical adjoint model. In an operational scenario where we have information regarding the infrastructure of a city, the AT&D model used is the Urban Dispersion Model (UDM) and when using this model in VIRSA we refer to the system as uVIRSA. In all other scenarios where we do not have the city infrastructure information readily available, the AT&D model used is the Second-order Closure Integrated PUFF model (SCIPUFF) and the system is referred to as sVIRSA. VIRSA was originally developed using SCIPUFF 2.4 for the Defense Threat Reduction Agency and integrated into the Hazard Prediction and Assessment Capability and Joint Program for Information Systems Joint Effects Model. The results discussed here are the verification and validation of the upgraded system with SCIPUFF 3.0 and the newly implemented UDM capability. To verify uVIRSA and sVIRSA, synthetic concentration observation scenarios were created in urban and rural environments and the results of this verification are shown. Finally, we validate the STE performance of uVIRSA using scenarios from the Joint Urban 2003 (JU03) experiment, which was held in Oklahoma City and also validate the performance of sVIRSA using scenarios from the FUsing Sensor Integrated Observing Network (FUSION) Field Trial 2007 (FFT07), held at Dugway Proving Grounds in rural Utah.

  2. Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye.

    PubMed

    Harmening, Wolf M; Tiruveedhula, Pavan; Roorda, Austin; Sincich, Lawrence C

    2012-09-01

    A special challenge arises when pursuing multi-wavelength imaging of retinal tissue in vivo, because the eye's optics must be used as the main focusing elements, and they introduce significant chromatic dispersion. Here we present an image-based method to measure and correct for the eye's transverse chromatic aberrations rapidly, non-invasively, and with high precision. We validate the technique against hyperacute psychophysical performance and the standard chromatic human eye model. In vivo correction of chromatic dispersion will enable confocal multi-wavelength images of the living retina to be aligned, and allow targeted chromatic stimulation of the photoreceptor mosaic to be performed accurately with sub-cellular resolution.

  3. Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye

    PubMed Central

    Harmening, Wolf M.; Tiruveedhula, Pavan; Roorda, Austin; Sincich, Lawrence C.

    2012-01-01

    A special challenge arises when pursuing multi-wavelength imaging of retinal tissue in vivo, because the eye’s optics must be used as the main focusing elements, and they introduce significant chromatic dispersion. Here we present an image-based method to measure and correct for the eye’s transverse chromatic aberrations rapidly, non-invasively, and with high precision. We validate the technique against hyperacute psychophysical performance and the standard chromatic human eye model. In vivo correction of chromatic dispersion will enable confocal multi-wavelength images of the living retina to be aligned, and allow targeted chromatic stimulation of the photoreceptor mosaic to be performed accurately with sub-cellular resolution. PMID:23024901

  4. Spatially dispersive finite-difference time-domain analysis of sub-wavelength imaging by the wire medium slabs

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Belov, Pavel A.; Hao, Yang

    2006-06-01

    In this paper, a spatially dispersive finite-difference time-domain (FDTD) method to model wire media is developed and validated. Sub-wavelength imaging properties of the finite wire medium slabs are examined. It is demonstrated that the slab with its thickness equal to an integer number of half-wavelengths is capable of transporting images with sub-wavelength resolution from one interface of the slab to another. It is also shown that the operation of such transmission devices is not sensitive to their transverse dimensions, which can be made even comparable to the wavelength. In this case, the edge diffractions are negligible and do not disturb the image formation.

  5. Time Domain Tool Validation Using ARES I-X Flight Data

    NASA Technical Reports Server (NTRS)

    Hough, Steven; Compton, James; Hannan, Mike; Brandon, Jay

    2011-01-01

    The ARES I-X vehicle was launched from NASA's Kennedy Space Center (KSC) on October 28, 2009 at approximately 11:30 EDT. ARES I-X was the first test flight for NASA s ARES I launch vehicle, and it was the first non-Shuttle launch vehicle designed and flown by NASA since Saturn. The ARES I-X had a 4-segment solid rocket booster (SRB) first stage and a dummy upper stage (US) to emulate the properties of the ARES I US. During ARES I-X pre-flight modeling and analysis, six (6) independent time domain simulation tools were developed and cross validated. Each tool represents an independent implementation of a common set of models and parameters in a different simulation framework and architecture. Post flight data and reconstructed models provide the means to validate a subset of the simulations against actual flight data and to assess the accuracy of pre-flight dispersion analysis. Post flight data consists of telemetered Operational Flight Instrumentation (OFI) data primarily focused on flight computer outputs and sensor measurements as well as Best Estimated Trajectory (BET) data that estimates vehicle state information from all available measurement sources. While pre-flight models were found to provide a reasonable prediction of the vehicle flight, reconstructed models were generated to better represent and simulate the ARES I-X flight. Post flight reconstructed models include: SRB propulsion model, thrust vector bias models, mass properties, base aerodynamics, and Meteorological Estimated Trajectory (wind and atmospheric data). The result of the effort is a set of independently developed, high fidelity, time-domain simulation tools that have been cross validated and validated against flight data. This paper presents the process and results of high fidelity aerospace modeling, simulation, analysis and tool validation in the time domain.

  6. Development of Additional Hazard Assessment Models

    DTIC Science & Technology

    1977-03-01

    globules, their trajectory (the distance from the spill point to the impact point on the river bed), and the time required for sinking. Established theories ...chemicals, the dissolution rate is estimated by using eddy diffusivity surface renewal theories . The validity of predictions of these theories has been... theories and experimental data on aeration of rivers. * Describe dispersion in rivers with stationary area source and sources moving with the stream

  7. Prediction of dosage-based parameters from the puff dispersion of airborne materials in urban environments using the CFD-RANS methodology

    NASA Astrophysics Data System (ADS)

    Efthimiou, G. C.; Andronopoulos, S.; Bartzis, J. G.

    2018-02-01

    One of the key issues of recent research on the dispersion inside complex urban environments is the ability to predict dosage-based parameters from the puff release of an airborne material from a point source in the atmospheric boundary layer inside the built-up area. The present work addresses the question of whether the computational fluid dynamics (CFD)-Reynolds-averaged Navier-Stokes (RANS) methodology can be used to predict ensemble-average dosage-based parameters that are related with the puff dispersion. RANS simulations with the ADREA-HF code were, therefore, performed, where a single puff was released in each case. The present method is validated against the data sets from two wind-tunnel experiments. In each experiment, more than 200 puffs were released from which ensemble-averaged dosage-based parameters were calculated and compared to the model's predictions. The performance of the model was evaluated using scatter plots and three validation metrics: fractional bias, normalized mean square error, and factor of two. The model presented a better performance for the temporal parameters (i.e., ensemble-average times of puff arrival, peak, leaving, duration, ascent, and descent) than for the ensemble-average dosage and peak concentration. The majority of the obtained values of validation metrics were inside established acceptance limits. Based on the obtained model performance indices, the CFD-RANS methodology as implemented in the code ADREA-HF is able to predict the ensemble-average temporal quantities related to transient emissions of airborne material in urban areas within the range of the model performance acceptance criteria established in the literature. The CFD-RANS methodology as implemented in the code ADREA-HF is also able to predict the ensemble-average dosage, but the dosage results should be treated with some caution; as in one case, the observed ensemble-average dosage was under-estimated slightly more than the acceptance criteria. Ensemble-average peak concentration was systematically underpredicted by the model to a degree higher than the allowable by the acceptance criteria, in 1 of the 2 wind-tunnel experiments. The model performance depended on the positions of the examined sensors in relation to the emission source and the buildings configuration. The work presented in this paper was carried out (partly) within the scope of COST Action ES1006 "Evaluation, improvement, and guidance for the use of local-scale emergency prediction and response tools for airborne hazards in built environments".

  8. Industrial point source CO2 emission strength estimation with aircraft measurements and dispersion modelling.

    PubMed

    Carotenuto, Federico; Gualtieri, Giovanni; Miglietta, Franco; Riccio, Angelo; Toscano, Piero; Wohlfahrt, Georg; Gioli, Beniamino

    2018-02-22

    CO 2 remains the greenhouse gas that contributes most to anthropogenic global warming, and the evaluation of its emissions is of major interest to both research and regulatory purposes. Emission inventories generally provide quite reliable estimates of CO 2 emissions. However, because of intrinsic uncertainties associated with these estimates, it is of great importance to validate emission inventories against independent estimates. This paper describes an integrated approach combining aircraft measurements and a puff dispersion modelling framework by considering a CO 2 industrial point source, located in Biganos, France. CO 2 density measurements were obtained by applying the mass balance method, while CO 2 emission estimates were derived by implementing the CALMET/CALPUFF model chain. For the latter, three meteorological initializations were used: (i) WRF-modelled outputs initialized by ECMWF reanalyses; (ii) WRF-modelled outputs initialized by CFSR reanalyses and (iii) local in situ observations. Governmental inventorial data were used as reference for all applications. The strengths and weaknesses of the different approaches and how they affect emission estimation uncertainty were investigated. The mass balance based on aircraft measurements was quite succesful in capturing the point source emission strength (at worst with a 16% bias), while the accuracy of the dispersion modelling, markedly when using ECMWF initialization through the WRF model, was only slightly lower (estimation with an 18% bias). The analysis will help in highlighting some methodological best practices that can be used as guidelines for future experiments.

  9. ATMOSPHERIC DISPERSAL AND DEPOSITION OF TEPHRA FROM A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN, NEVADA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Harrington

    2004-10-25

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through themore » Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit by Igneous Intrusion''. This model report provides direct inputs to the TSPA, which uses the ASHPLUME software described and used in this model report. Thus, ASHPLUME software inputs are inputs to this model report for ASHPLUME runs in this model report. However, ASHPLUME software inputs are outputs of this model report for ASHPLUME runs by TSPA.« less

  10. PARTICLE SCATTERING OFF OF RIGHT-HANDED DISPERSIVE WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreiner, C.; Kilian, P.; Spanier, F., E-mail: cschreiner@astro.uni-wuerzburg.de

    Resonant scattering of fast particles off low frequency plasma waves is a major process determining transport characteristics of energetic particles in the heliosphere and contributing to their acceleration. Usually, only Alfvén waves are considered for this process, although dispersive waves are also present throughout the heliosphere. We investigate resonant interaction of energetic electrons with dispersive, right-handed waves. For the interaction of particles and a single wave a variable transformation into the rest frame of the wave can be performed. Here, well-established analytic models derived in the framework of magnetostatic quasi-linear theory can be used as a reference to validate simulationmore » results. However, this approach fails as soon as several dispersive waves are involved. Based on analytic solutions modeling the scattering amplitude in the magnetostatic limit, we present an approach to modify these equations for use in the plasma frame. Thereby we aim at a description of particle scattering in the presence of several waves. A particle-in-cell code is employed to study wave–particle scattering on a micro-physically correct level and to test the modified model equations. We investigate the interactions of electrons at different energies (from 1 keV to 1 MeV) and right-handed waves with various amplitudes. Differences between model and simulation arise in the case of high amplitudes or several waves. Analyzing the trajectories of single particles we find no microscopic diffusion in the case of a single plasma wave, although a broadening of the particle distribution can be observed.« less

  11. Effects of building aspect ratio, diurnal heating scenario, and wind speed on reactive pollutant dispersion in urban street canyons.

    PubMed

    Tong, Nelson Y O; Leung, Dennis Y C

    2012-01-01

    A photochemistry coupled computational fluid dynamics (CFD) based numerical model has been developed to model the reactive pollutant dispersion within urban street canyons, particularly integrating the interrelationship among diurnal heating scenario (solar radiation affections in nighttime, daytime, and sun-rise/set), wind speed, building aspect ratio (building-height-to-street-width), and dispersion of reactive gases, specifically nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3) such that a higher standard of air quality in metropolitan cities can be achieved. Validation has been done with both experimental and numerical results on flow and temperature fields in a street canyon with bottom heating, which justifies the accuracy of the current model. The model was applied to idealized street canyons of different aspect ratios from 0.5 to 8 with two different ambient wind speeds under different diurnal heating scenarios to estimate the influences of different aforementioned parameters on the chemical evolution of NO, NO2 and O3. Detailed analyses of vertical profiles of pollutant concentrations showed that different diurnal heating scenarios could substantially affect the reactive gases exchange between the street canyon and air aloft, followed by respective dispersion and reaction. Higher building aspect ratio and stronger ambient wind speed were revealed to be, in general, responsible for enhanced entrainment of O3 concentrations into the street canyons along windward walls under all diurnal heating scenarios. Comparatively, particular attention can be paid on the windward wall heating and nighttime uniform surface heating scenarios.

  12. Effects of moving-vehicle wakes on pollutant dispersion inside a highway road tunnel.

    PubMed

    Bhautmage, Utkarsh; Gokhale, Sharad

    2016-11-01

    This study investigates the pollutant dispersion in a highway road tunnel in the presence of moving-vehicle wakes by a relative-velocity approach using 3-D CFD (3-Dimensional Computational Fluid Dynamics). The turbulent behavior of airflow around different-shaped vehicles and its impact on the pollutant dispersion have been studied. The different-shaped vehicle geometries were extracted, and simplified and dimensioned basing the typical vehicles on Indian roads. The model has been verified with the literature data of static pressure around a moving vehicle body before applying to simulate concentrations, and validated with on-site data at two locations. The results showed that wakes varied with the size, shape and speed of vehicles. The mixed-traffic flow produced higher near-field wakes and accelerated the piston effect, pushing pollutants toward the tunnel roof and out of exit portal in short-time. The findings have particular significance in the studies related to dispersion inside the tunnels having a mixed traffic of different dimensions and shape. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Multimodal approach to seismic pavement testing

    USGS Publications Warehouse

    Ryden, N.; Park, C.B.; Ulriksen, P.; Miller, R.D.

    2004-01-01

    A multimodal approach to nondestructive seismic pavement testing is described. The presented approach is based on multichannel analysis of all types of seismic waves propagating along the surface of the pavement. The multichannel data acquisition method is replaced by multichannel simulation with one receiver. This method uses only one accelerometer-receiver and a light hammer-source, to generate a synthetic receiver array. This data acquisition technique is made possible through careful triggering of the source and results in such simplification of the technique that it is made generally available. Multiple dispersion curves are automatically and objectively extracted using the multichannel analysis of surface waves processing scheme, which is described. Resulting dispersion curves in the high frequency range match with theoretical Lamb waves in a free plate. At lower frequencies there are several branches of dispersion curves corresponding to the lower layers of different stiffness in the pavement system. The observed behavior of multimodal dispersion curves is in agreement with theory, which has been validated through both numerical modeling and the transfer matrix method, by solving for complex wave numbers. ?? ASCE / JUNE 2004.

  14. AMR Code Simulations of Turbulent Combustion in Confined and Unconfined SDF Explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, A L; Bell, J B; Beckner, V

    2009-05-29

    A heterogeneous continuum model is proposed to describe the dispersion and combustion of an aluminum particle cloud in an explosion. It combines the gas-dynamic conservation laws for the gas phase with a continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models. It incorporates a combustion model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gas dynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takesmore » into account both the afterburning of the detonation products of the booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Numerical simulations of the explosion fields from 1.5-g Shock-Dispersed-Fuel (SDF) charge in a 6.6 liter calorimeter were used to validate the combustion model. Then the model was applied to 10-kg Al-SDF explosions in a vented two-room structure and in an unconfined height-of-burst explosion. Computed pressure histories are in reasonable (but not perfect) agreement with measured waveforms. Differences are caused by physical-chemical kinetic effects of particle combustion which induce ignition delays in the initial reactive blast wave and quenching of reactions at late times. Current simulations give initial insights into such modeling issues.« less

  15. The effect of solute size on diffusive-dispersive transport in porous media

    NASA Astrophysics Data System (ADS)

    Hu, Qinhong; Brusseau, Mark L.

    1994-06-01

    The purpose of this work was to investigate the effect of solute size on diffusive-dispersive transport in porous media. Miscible displacement experiments were performed with tracers of various sizes (i.e. tritiated water ( 3H 2O), pentafluorobenzoate (PFBA), and 2,4-dichlorophenoxyacetic acid (2,4-D)) and a homogeneous, nonreactive sand for pore-water velocities varying by three orders of magnitude (70, 7, 0.66, and 0.06 cm h -1). Hydrodynamic dispersion is the predominant source of dispersion for higher pore-water velocities (exceeding 1 cm h -1), and dispersivity is, therefore, essentially independent of solute size. In this case, the practice of using a small-sized tracer, such as 3H 2O, to characterize the dispersive properties of a soil is valid. The contribution of axial diffusion becomes significant at pore-water velocities lower than 0.1 cm h -1. At a given velocity below this value, the contribution of axial diffusion is larger for 3H 2O, with its larger coefficient of molecular diffusion, than it is for PFBA and 2,4-D. The apparent dispersivities are, therefore, a function of solute size. The use of a tracer-derived dispersivity for solutes of different sizes would not be valid in this case. For systems where diffusion is important, compounds such as PFBA are the preferred tracers for representing advective-dispersive transport of many organic contaminants of interest.

  16. Larval Dispersal Modeling of Pearl Oyster Pinctada margaritifera following Realistic Environmental and Biological Forcing in Ahe Atoll Lagoon

    PubMed Central

    Thomas, Yoann; Dumas, Franck; Andréfouët, Serge

    2014-01-01

    Studying the larval dispersal of bottom-dwelling species is necessary to understand their population dynamics and optimize their management. The black-lip pearl oyster (Pinctada margaritifera) is cultured extensively to produce black pearls, especially in French Polynesia's atoll lagoons. This aquaculture relies on spat collection, a process that can be optimized by understanding which factors influence larval dispersal. Here, we investigate the sensitivity of P. margaritifera larval dispersal kernel to both physical and biological factors in the lagoon of Ahe atoll. Specifically, using a validated 3D larval dispersal model, the variability of lagoon-scale connectivity is investigated against wind forcing, depth and location of larval release, destination location, vertical swimming behavior and pelagic larval duration (PLD) factors. The potential connectivity was spatially weighted according to both the natural and cultivated broodstock densities to provide a realistic view of connectivity. We found that the mean pattern of potential connectivity was driven by the southwest and northeast main barotropic circulation structures, with high retention levels in both. Destination locations, spawning sites and PLD were the main drivers of potential connectivity, explaining respectively 26%, 59% and 5% of the variance. Differences between potential and realistic connectivity showed the significant contribution of the pearl oyster broodstock location to its own dynamics. Realistic connectivity showed larger larval supply in the western destination locations, which are preferentially used by farmers for spat collection. In addition, larval supply in the same sectors was enhanced during summer wind conditions. These results provide new cues to understanding the dynamics of bottom-dwelling populations in atoll lagoons, and show how to take advantage of numerical models for pearl oyster management. PMID:24740288

  17. Modelling the dispersion of treated wastewater in a shallow coastal wind-driven environment, Geographe Bay, Western Australia: implications for environmental management.

    PubMed

    Dunn, Ryan J K; Zigic, Sasha; Shiell, Glenn R

    2014-10-01

    Numerical models are useful for predicting the transport and fate of contaminants in dynamic marine environments, and are increasingly a practical solution to environmental impact assessments. In this study, a three-dimensional hydrodynamic model and field data were used to validate a far-field dispersion model that, in turn, was used to determine the fate of treated wastewater (TWW) discharged to the ocean via a submarine ocean outfall under hypothetical TWW flows. The models were validated with respect to bottom and surface water current speed and direction, and in situ measurements of total nitrogen and faecal coliforms. Variations in surface and bottom currents were accurately predicted by the model as were nutrient and coliform concentrations. Results indicated that the ocean circulation was predominately wind driven, evidenced by relatively small oscillations in the current speeds along the time-scale of the tide, and that dilution mixing zones were orientated in a predominantly north-eastern direction from the outfall and parallel to the coastline. Outputs of the model were used to determine the 'footprint' of the TWW plume under a differing discharge scenario and, particularly, whether the resultant changes in TWW contaminants, total nitrogen and faecal coliforms would meet local environmental quality objectives (EQO) for ecosystem integrity, shellfish harvesting and primary recreation. Modelling provided a practical solution for predicting the dilution of contaminants under a hypothetical discharge scenario and a means for determining the aerial extent of exclusion zones, where the EQOs for shellfish harvesting and primary recreation may not always be met. Results of this study add to the understanding of regional discharge conditions and provide a practical case study for managing impacts to marine environments under a differing TWW discharge scenario, in comparison to an existing scenario.

  18. R1 dispersion contrast at high field with fast field-cycling MRI

    NASA Astrophysics Data System (ADS)

    Bödenler, Markus; Basini, Martina; Casula, Maria Francesca; Umut, Evrim; Gösweiner, Christian; Petrovic, Andreas; Kruk, Danuta; Scharfetter, Hermann

    2018-05-01

    Contrast agents with a strong R1 dispersion have been shown to be effective in generating target-specific contrast in MRI. The utilization of this R1 field dependence requires the adaptation of an MRI scanner for fast field-cycling (FFC). Here, we present the first implementation and validation of FFC-MRI at a clinical field strength of 3 T. A field-cycling range of ±100 mT around the nominal B0 field was realized by inserting an additional insert coil into an otherwise conventional MRI system. System validation was successfully performed with selected iron oxide magnetic nanoparticles and comparison to FFC-NMR relaxometry measurements. Furthermore, we show proof-of-principle R1 dispersion imaging and demonstrate the capability of generating R1 dispersion contrast at high field with suppressed background signal. With the presented ready-to-use hardware setup it is possible to investigate MRI contrast agents with a strong R1 dispersion at a field strength of 3 T.

  19. What did Kramers and Kronig do and how did they do it?

    NASA Astrophysics Data System (ADS)

    Bohren, Craig F.

    2010-05-01

    Over time the account of how the Kramers-Kronig (dispersion) relations between the real and imaginary parts of response functions were derived in 1926 and 1927 has been transmogrified into anecdotes about what might have been done but was not. Although Kramers obtained both members of a pair of relations, Kronig obtained only one. Both authors appealed to specific models of an atomic gas rather than to the general arguments about linearity, causality and analyticity in modern model-independent derivations. Kramers merely speculated on whether the specific results he obtained might have a more general validity. Neither author showed that a signal cannot travel faster than cin any medium for which the dispersion relations are satisfied. Indeed, they did not mention, even obliquely, signal speeds and causality. Despite their magical aura, Kramers-Kronig relations are translations into somewhat cryptic frequency language of statements clearer in time language.

  20. Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms

    PubMed Central

    Amador, Carolina; Urban, Matthew W.; Chen, Shigao; Chen, Qingshan; An, Kai-Nan; Greenleaf, James F.

    2011-01-01

    Tissue mechanical properties such as elasticity are linked to tissue pathology state. Several groups have proposed shear wave propagation speed to quantify tissue mechanical properties. It is well known that biological tissues are viscoelastic materials; therefore velocity dispersion resulting from material viscoelasticity is expected. A method called Shearwave Dispersion Ultrasound Vibrometry (SDUV) can be used to quantify tissue viscoelasticity by measuring dispersion of shear wave propagation speed. However, there is not a gold standard method for validation. In this study we present an independent validation method of shear elastic modulus estimation by SDUV in 3 gelatin phantoms of differing stiffness. In addition, the indentation measurements are compared to estimates of elasticity derived from shear wave group velocities. The shear elastic moduli from indentation were 1.16, 3.40 and 5.6 kPa for a 7, 10 and 15% gelatin phantom respectively. SDUV measurements were 1.61, 3.57 and 5.37 kPa for the gelatin phantoms respectively. Shear elastic moduli derived from shear wave group velocities were 1.78, 5.2 and 7.18 kPa for the gelatin phantoms respectively. The shear elastic modulus estimated from the SDUV, matched the elastic modulus measured by indentation. On the other hand, shear elastic modulus estimated by group velocity did not agree with indentation test estimations. These results suggest that shear elastic modulus estimation by group velocity will be bias when the medium being investigated is dispersive. Therefore a rheological model should be used in order to estimate mechanical properties of viscoelastic materials. PMID:21317078

  1. Inference of emission rates from multiple sources using Bayesian probability theory.

    PubMed

    Yee, Eugene; Flesch, Thomas K

    2010-03-01

    The determination of atmospheric emission rates from multiple sources using inversion (regularized least-squares or best-fit technique) is known to be very susceptible to measurement and model errors in the problem, rendering the solution unusable. In this paper, a new perspective is offered for this problem: namely, it is argued that the problem should be addressed as one of inference rather than inversion. Towards this objective, Bayesian probability theory is used to estimate the emission rates from multiple sources. The posterior probability distribution for the emission rates is derived, accounting fully for the measurement errors in the concentration data and the model errors in the dispersion model used to interpret the data. The Bayesian inferential methodology for emission rate recovery is validated against real dispersion data, obtained from a field experiment involving various source-sensor geometries (scenarios) consisting of four synthetic area sources and eight concentration sensors. The recovery of discrete emission rates from three different scenarios obtained using Bayesian inference and singular value decomposition inversion are compared and contrasted.

  2. Validity of a traffic air pollutant dispersion model to assess exposure to fine particles.

    PubMed

    Kostrzewa, Aude; Reungoat, Patrice; Raherison, Chantal

    2009-08-01

    Fine particles (PM(2.5)) are an important component of air pollution. Epidemiological studies have shown health effects due to ambient air particles, particularly allergies in children. Since the main difficulty is to determine exposure to such pollution, traffic air pollutant (TAP) dispersions models have been developed to improve the estimation of individual exposure levels. One such model, the ExTra index, has been validated for nitrogen oxide concentrations but not for other pollutants. The purpose of this study was to assess the validity of the ExTra index to assess PM(2.5) exposure. We compared PM(2.5) concentrations calculated by the ExTra index to reference measures (passive samplers situated under the covered part of the playground), in 15 schools in Bordeaux, in 2000. First, we collected the input data required by the ExTra index: background and local pollution depending on traffic, meteorology and topography. Second, the ExTra index was calculated for each school. Statistical analysis consisted of a graphic description; then, we calculated an intraclass correlation coefficient. Concentrations calculated with the ExTra index and the reference method were similar. The ExTra index underestimated exposure by 2.2 microg m(-3) on average compared to the reference method. The intraclass correlation coefficient was 0.85 and its 95% confidence interval was [0.62; 0.95]. The results suggest that the ExTra index provides an assessment of PM(2.5) exposure similar to that of the reference method. Although caution is required in interpreting these results owing to the small number of sites, the ExTra index could be a useful epidemiological tool for reconstructing individual exposure, an important challenge in epidemiology.

  3. Phylogeographic Structure in Benthic Marine Invertebrates of the Southeast Pacific Coast of Chile with Differing Dispersal Potential

    PubMed Central

    Haye, Pilar A.; Segovia, Nicolás I.; Muñoz-Herrera, Natalia C.; Gálvez, Francisca E.; Martínez, Andrea; Meynard, Andrés; Pardo-Gandarillas, María C.; Poulin, Elie; Faugeron, Sylvain

    2014-01-01

    The role of dispersal potential on phylogeographic structure, evidenced by the degree of genetic structure and the presence of coincident genetic and biogeographic breaks, was evaluated in a macrogeographic comparative approach along the north-central coast of Chile, across the biogeographic transition zone at 30°S. Using 2,217 partial sequences of the mitochondrial Cytochrome Oxidase I gene of eight benthic invertebrate species along ca. 2,600 km of coast, we contrasted dispersal potential with genetic structure and determined the concordance between genetic divergence between biogeographic regions and the biogeographic transition zone at 30°S. Genetic diversity and differentiation highly differed between species with high and low dispersal potential. Dispersal potential, sometimes together with biogeographic region, was the factor that best explained the genetic structure of the eight species. The three low dispersal species, and one species assigned to the high dispersal category, had a phylogeographic discontinuity coincident with the biogeographic transition zone at 30°S. Furthermore, coalescent analyses based on the isolation-with-migration model validate that the split between biogeographic regions north and south of 30°S has a historic origin. The signatures of the historic break in high dispersers is parsimoniously explained by the homogenizing effects of gene flow that have erased the genetic signatures, if ever existed, in high dispersers. Of the four species with structure across the break, only two had significant albeit very low levels of asymmetric migration across the transition zone. Historic processes have led to the current biogeographic and phylogeographic structure of marine species with limited dispersal along the north-central coast of Chile, with a strong lasting impact in their genetic structure. PMID:24586356

  4. Use of a Monte Carlo technique to complete a fragmented set of H2S emission rates from a wastewater treatment plant.

    PubMed

    Schauberger, Günther; Piringer, Martin; Baumann-Stanzer, Kathrin; Knauder, Werner; Petz, Erwin

    2013-12-15

    The impact of ambient concentrations in the vicinity of a plant can only be assessed if the emission rate is known. In this study, based on measurements of ambient H2S concentrations and meteorological parameters, the a priori unknown emission rates of a tannery wastewater treatment plant are calculated by an inverse dispersion technique. The calculations are determined using the Gaussian Austrian regulatory dispersion model. Following this method, emission data can be obtained, though only for a measurement station that is positioned such that the wind direction at the measurement station is leeward of the plant. Using the inverse transform sampling, which is a Monte Carlo technique, the dataset can also be completed for those wind directions for which no ambient concentration measurements are available. For the model validation, the measured ambient concentrations are compared with the calculated ambient concentrations obtained from the synthetic emission data of the Monte Carlo model. The cumulative frequency distribution of this new dataset agrees well with the empirical data. This inverse transform sampling method is thus a useful supplement for calculating emission rates using the inverse dispersion technique. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Steam stripping of the unsaturated zone of contaminated sub-soils: The effect of diffusion/dispersion in the start-up phase

    NASA Astrophysics Data System (ADS)

    Brouwers, H. J. H.; Gilding, B. H.

    2006-02-01

    The unsteady process of steam stripping of the unsaturated zone of soils contaminated with volatile organic compounds (VOCs) is addressed. A model is presented. It accounts for the effects of water and contaminants remaining in vapour phase, as well as diffusion and dispersion of contaminants in this phase. The model has two components. The first is a one-dimensional description of the propagation of a steam front in the start-up phase. This is based on Darcy's law and conservation laws of mass and energy. The second component describes the transport of volatile contaminants. Taking the view that non-equilibrium between liquid and vapour phases exists, it accounts for evaporation, transport, and condensation at the front. This leads to a moving-boundary problem. The moving-boundary problem is brought into a fixed domain by a suitable transformation of the governing partial differential equations, and solved numerically. For a broad range of the governing dimensionless numbers, such as the Henry, Merkel and Péclet numbers, computational results are discussed. A mathematical asymptotic analysis supports this discussion. The range of parameter values for which the model is valid is investigated. Diffusion and dispersion are shown to be of qualitative importance, but to have little quantitative effect in the start-up phase.

  6. Study on the wind field and pollutant dispersion in street canyons using a stable numerical method.

    PubMed

    Xia, Ji-Yang; Leung, Dennis Y C

    2005-01-01

    A stable finite element method for the time dependent Navier-Stokes equations was used for studying the wind flow and pollutant dispersion within street canyons. A three-step fractional method was used to solve the velocity field and the pressure field separately from the governing equations. The Streamline Upwind Petrov-Galerkin (SUPG) method was used to get stable numerical results. Numerical oscillation was minimized and satisfactory results can be obtained for flows at high Reynolds numbers. Simulating the flow over a square cylinder within a wide range of Reynolds numbers validates the wind field model. The Strouhal numbers obtained from the numerical simulation had a good agreement with those obtained from experiment. The wind field model developed in the present study is applied to simulate more complex flow phenomena in street canyons with two different building configurations. The results indicated that the flow at rooftop of buildings might not be assumed parallel to the ground as some numerical modelers did. A counter-clockwise rotating vortex may be found in street canyons with an inflow from the left to right. In addition, increasing building height can increase velocity fluctuations in the street canyon under certain circumstances, which facilitate pollutant dispersion. At high Reynolds numbers, the flow regimes in street canyons do not change with inflow velocity.

  7. Radiological Dispersal Devices: Select Issues in Consequence Management

    DTIC Science & Technology

    2004-03-10

    goals, following which medical treatment of the radiation effects can be provided.10 Post- exposure medical therapy is designed to treat the consequences ...the approach that radiation related health effects can be extrapolated, i.e. the damage caused by radiation exposure CRS-3 8 For example, see Health...effort to determine the validity of these models, the federal government funds research into the health effects of radiation exposure through the

  8. Efficient Wideband Numerical Simulations for Nanostructures Employing a Drude-Critical Points (DCP) Dispersive Model.

    PubMed

    Ren, Qiang; Nagar, Jogender; Kang, Lei; Bian, Yusheng; Werner, Ping; Werner, Douglas H

    2017-05-18

    A highly efficient numerical approach for simulating the wideband optical response of nano-architectures comprised of Drude-Critical Points (DCP) media (e.g., gold and silver) is proposed and validated through comparing with commercial computational software. The kernel of this algorithm is the subdomain level discontinuous Galerkin time domain (DGTD) method, which can be viewed as a hybrid of the spectral-element time-domain method (SETD) and the finite-element time-domain (FETD) method. An hp-refinement technique is applied to decrease the Degrees-of-Freedom (DoFs) and computational requirements. The collocated E-J scheme facilitates solving the auxiliary equations by converting the inversions of matrices to simpler vector manipulations. A new hybrid time stepping approach, which couples the Runge-Kutta and Newmark methods, is proposed to solve the temporal auxiliary differential equations (ADEs) with a high degree of efficiency. The advantages of this new approach, in terms of computational resource overhead and accuracy, are validated through comparison with well-known commercial software for three diverse cases, which cover both near-field and far-field properties with plane wave and lumped port sources. The presented work provides the missing link between DCP dispersive models and FETD and/or SETD based algorithms. It is a competitive candidate for numerically studying the wideband plasmonic properties of DCP media.

  9. Partial least squares density modeling (PLS-DM) - a new class-modeling strategy applied to the authentication of olives in brine by near-infrared spectroscopy.

    PubMed

    Oliveri, Paolo; López, M Isabel; Casolino, M Chiara; Ruisánchez, Itziar; Callao, M Pilar; Medini, Luca; Lanteri, Silvia

    2014-12-03

    A new class-modeling method, referred to as partial least squares density modeling (PLS-DM), is presented. The method is based on partial least squares (PLS), using a distance-based sample density measurement as the response variable. Potential function probability density is subsequently calculated on PLS scores and used, jointly with residual Q statistics, to develop efficient class models. The influence of adjustable model parameters on the resulting performances has been critically studied by means of cross-validation and application of the Pareto optimality criterion. The method has been applied to verify the authenticity of olives in brine from cultivar Taggiasca, based on near-infrared (NIR) spectra recorded on homogenized solid samples. Two independent test sets were used for model validation. The final optimal model was characterized by high efficiency and equilibrate balance between sensitivity and specificity values, if compared with those obtained by application of well-established class-modeling methods, such as soft independent modeling of class analogy (SIMCA) and unequal dispersed classes (UNEQ). Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Is There a Critical Distance for Fickian Transport? - a Statistical Approach to Sub-Fickian Transport Modelling in Porous Media

    NASA Astrophysics Data System (ADS)

    Most, S.; Nowak, W.; Bijeljic, B.

    2014-12-01

    Transport processes in porous media are frequently simulated as particle movement. This process can be formulated as a stochastic process of particle position increments. At the pore scale, the geometry and micro-heterogeneities prohibit the commonly made assumption of independent and normally distributed increments to represent dispersion. Many recent particle methods seek to loosen this assumption. Recent experimental data suggest that we have not yet reached the end of the need to generalize, because particle increments show statistical dependency beyond linear correlation and over many time steps. The goal of this work is to better understand the validity regions of commonly made assumptions. We are investigating after what transport distances can we observe: A statistical dependence between increments, that can be modelled as an order-k Markov process, boils down to order 1. This would be the Markovian distance for the process, where the validity of yet-unexplored non-Gaussian-but-Markovian random walks would start. A bivariate statistical dependence that simplifies to a multi-Gaussian dependence based on simple linear correlation (validity of correlated PTRW). Complete absence of statistical dependence (validity of classical PTRW/CTRW). The approach is to derive a statistical model for pore-scale transport from a powerful experimental data set via copula analysis. The model is formulated as a non-Gaussian, mutually dependent Markov process of higher order, which allows us to investigate the validity ranges of simpler models.

  11. Modelling Nitrogen Oxides in Los Angeles Using a Hybrid Dispersion/Land Use Regression Model

    NASA Astrophysics Data System (ADS)

    Wilton, Darren C.

    The goal of this dissertation is to develop models capable of predicting long term annual average NOx concentrations in urban areas. Predictions from simple meteorological dispersion models and seasonal proxies for NO2 oxidation were included as covariates in a land use regression (LUR) model for NOx in Los Angeles, CA. The NO x measurements were obtained from a comprehensive measurement campaign that is part of the Multi-Ethnic Study of Atherosclerosis Air Pollution Study (MESA Air). Simple land use regression models were initially developed using a suite of GIS-derived land use variables developed from various buffer sizes (R²=0.15). Caline3, a simple steady-state Gaussian line source model, was initially incorporated into the land-use regression framework. The addition of this spatio-temporally varying Caline3 covariate improved the simple LUR model predictions. The extent of improvement was much more pronounced for models based solely on the summer measurements (simple LUR: R²=0.45; Caline3/LUR: R²=0.70), than it was for models based on all seasons (R²=0.20). We then used a Lagrangian dispersion model to convert static land use covariates for population density, commercial/industrial area into spatially and temporally varying covariates. The inclusion of these covariates resulted in significant improvement in model prediction (R²=0.57). In addition to the dispersion model covariates described above, a two-week average value of daily peak-hour ozone was included as a surrogate of the oxidation of NO2 during the different sampling periods. This additional covariate further improved overall model performance for all models. The best model by 10-fold cross validation (R²=0.73) contained the Caline3 prediction, a static covariate for length of A3 roads within 50 meters, the Calpuff-adjusted covariates derived from both population density and industrial/commercial land area, and the ozone covariate. This model was tested against annual average NOx concentrations from an independent data set from the EPA's Air Quality System (AQS) and MESA Air fixed site monitors, and performed very well (R²=0.82).

  12. Integrating a street-canyon model with a regional Gaussian dispersion model for improved characterisation of near-road air pollution

    NASA Astrophysics Data System (ADS)

    Fallah-Shorshani, Masoud; Shekarrizfard, Maryam; Hatzopoulou, Marianne

    2017-03-01

    The development and use of dispersion models that simulate traffic-related air pollution in urban areas has risen significantly in support of air pollution exposure research. In order to accurately estimate population exposure, it is important to generate concentration surfaces that take into account near-road concentrations as well as the transport of pollutants throughout an urban region. In this paper, an integrated modelling chain was developed to simulate ambient Nitrogen Dioxide (NO2) in a dense urban neighbourhood while taking into account traffic emissions, the regional background, and the transport of pollutants within the urban canopy. For this purpose, we developed a hybrid configuration including 1) a street canyon model, which simulates pollutant transfer along streets and intersections, taking into account the geometry of buildings and other obstacles, and 2) a Gaussian puff model, which resolves the transport of contaminants at the top of the urban canopy and accounts for regional meteorology. Each dispersion model was validated against measured concentrations and compared against the hybrid configuration. Our results demonstrate that the hybrid approach significantly improves the output of each model on its own. An underestimation appears clearly for the Gaussian model and street-canyon model compared to observed data. This is due to ignoring the building effect by the Gaussian model and undermining the contribution of other roads by the canyon model. The hybrid approach reduced the RMSE (of observed vs. predicted concentrations) by 16%-25% compared to each model on its own, and increased FAC2 (fraction of predictions within a factor of two of the observations) by 10%-34%.

  13. Flow injection analysis simulations and diffusion coefficient determination by stochastic and deterministic optimization methods.

    PubMed

    Kucza, Witold

    2013-07-25

    Stochastic and deterministic simulations of dispersion in cylindrical channels on the Poiseuille flow have been presented. The random walk (stochastic) and the uniform dispersion (deterministic) models have been used for computations of flow injection analysis responses. These methods coupled with the genetic algorithm and the Levenberg-Marquardt optimization methods, respectively, have been applied for determination of diffusion coefficients. The diffusion coefficients of fluorescein sodium, potassium hexacyanoferrate and potassium dichromate have been determined by means of the presented methods and FIA responses that are available in literature. The best-fit results agree with each other and with experimental data thus validating both presented approaches. Copyright © 2013 The Author. Published by Elsevier B.V. All rights reserved.

  14. Functional connectivity in replicated urban landscapes in the land snail (Cornu aspersum).

    PubMed

    Balbi, Manon; Ernoult, Aude; Poli, Pedro; Madec, Luc; Guiller, Annie; Martin, Marie-Claire; Nabucet, Jean; Beaujouan, Véronique; Petit, Eric J

    2018-03-01

    Urban areas are highly fragmented and thereby exert strong constraints on individual dispersal. Despite this, some species manage to persist in urban areas, such as the garden snail, Cornu aspersum, which is common in cityscapes despite its low mobility. Using landscape genetic approaches, we combined study area replication and multiscale analysis to determine how landscape composition, configuration and connectivity influence snail dispersal across urban areas. At the overall landscape scale, areas with a high percentage of roads decreased genetic differentiation between populations. At the population scale, genetic differentiation was positively linked with building surface, the proportion of borders where wooded patches and roads appeared side by side and the proportion of borders combining wooded patches and other impervious areas. Analyses based on pairwise genetic distances validated the isolation-by-distance and isolation-by-resistance models for this land snail, with an equal fit to least-cost paths and circuit-theory-based models. Each of the 12 landscapes analysed separately yielded specific relations to environmental features, whereas analyses integrating all replicates highlighted general common effects. Our results suggest that urban transport infrastructures facilitate passive snail dispersal. At a local scale, corresponding to active dispersal, unfavourable habitats (wooded and impervious areas) isolate populations. This work upholds the use of replicated landscapes to increase the generalizability of landscape genetics results and shows how multiscale analyses provide insight into scale-dependent processes. © 2018 John Wiley & Sons Ltd.

  15. CFD modeling of particle dispersion and deposition coupled with particle dynamical models in a ventilated room

    NASA Astrophysics Data System (ADS)

    Xu, Guangping; Wang, Jiasong

    2017-10-01

    Two dynamical models, the traditional method of moments coupled model (MCM) and Taylor-series expansion method of moments coupled model (TECM) for particle dispersion distribution and gravitation deposition are developed in three-dimensional ventilated environments. The turbulent airflow field is modeled with the renormalization group (RNG) k-ε turbulence model. The particle number concentration distribution in a ventilated room is obtained by solving the population balance equation coupled with the airflow field. The coupled dynamical models are validated using experimental data. A good agreement between the numerical and experimental results can be achieved. Both models have a similar characteristic for the spatial distribution of particle concentration. Relative to the MCM model, the TECM model presents a more close result to the experimental data. The vortex structure existed in the air flow makes a relative large concentration difference at the center region and results in a spatial non-uniformity of concentration field. With larger inlet velocity, the mixing level of particles in the room is more uniform. In general, the new dynamical models coupled with computational fluid dynamics (CFD) in the current study provide a reasonable and accurate method for the temporal and spatial evolution of particles effected by the deposition and dispersion behaviors. In addition, two ventilation modes with different inlet velocities are proceeded to study the effect on the particle evolution. The results show that with the ceiling ventilation mode (CVM), the particles can be better mixed and the concentration level is also higher. On the contrast, with the side ceiling ventilation mode (SVM), the particle concentration has an obvious stratified distribution with a relative lower level and it makes a much better environment condition to the human exposure.

  16. Investigations of VOCs in and around buildings close to service stations

    NASA Astrophysics Data System (ADS)

    Hicklin, William; Farrugia, Pierre S.; Sinagra, Emmanuel

    2018-01-01

    Gas service stations are one of the major sources of volatile organic compounds in urban environments. Their emissions are expected not only to affect the ambient air quality but also that in any nearby buildings. This is particularly the case in Malta where most service stations have been built within residential zones. For this reason, it is important to understand the dispersion of volatile organic compounds (VOCs) from service stations and their infiltration into nearby residences. Two models were considered; one to predict the dispersion of VOCs in the outdoor environment in the vicinity of the service station and another one to predict the filtration of the compounds indoors. The two models can be used in tandem to predict the concentration of indoor VOCs that originate from a service station in the vicinity. Outdoor and indoor concentrations of VOCs around a service station located in a street canyon were measured, and the results used to validate the models. Predictions made using the models were found to be in general agreement with the measured concentrations of the pollutants.

  17. Interactive computer modeling of combustion chemistry and coalescence-dispersion modeling of turbulent combustion

    NASA Technical Reports Server (NTRS)

    Pratt, D. T.

    1984-01-01

    An interactive computer code for simulation of a high-intensity turbulent combustor as a single point inhomogeneous stirred reactor was developed from an existing batch processing computer code CDPSR. The interactive CDPSR code was used as a guide for interpretation and direction of DOE-sponsored companion experiments utilizing Xenon tracer with optical laser diagnostic techniques to experimentally determine the appropriate mixing frequency, and for validation of CDPSR as a mixing-chemistry model for a laboratory jet-stirred reactor. The coalescence-dispersion model for finite rate mixing was incorporated into an existing interactive code AVCO-MARK I, to enable simulation of a combustor as a modular array of stirred flow and plug flow elements, each having a prescribed finite mixing frequency, or axial distribution of mixing frequency, as appropriate. Further increase the speed and reliability of the batch kinetics integrator code CREKID was increased by rewriting in vectorized form for execution on a vector or parallel processor, and by incorporating numerical techniques which enhance execution speed by permitting specification of a very low accuracy tolerance.

  18. Non-perturbative theory of dispersion interactions

    NASA Astrophysics Data System (ADS)

    Boström, M.; Thiyam, P.; Persson, C.; Parsons, D. F.; Buhmann, S. Y.; Brevik, I.; Sernelius, Bo E.

    2015-03-01

    Some open questions exist with fluctuation-induced forces between extended dipoles. Conventional intuition derives from large-separation perturbative approximations to dispersion force theory. Here, we present a full non-perturbative theory. In addition, we discuss how one can take into account finite dipole size corrections. It is of fundamental value to investigate the limits of validity of the perturbative dispersion force theory.

  19. Modelling the minislump spread of superplasticized PPC paste using RLS with the application of Random Kitchen sink

    NASA Astrophysics Data System (ADS)

    Sathyan, Dhanya; Anand, K. B.; Jose, Chinnu; Aravind, N. R.

    2018-02-01

    Super plasticizers(SPs) are added to the concrete to improve its workability with out changing the water cement ratio. Property of fresh concrete is mainly governed by the cement paste which depends on the dispersion of cement particle. Cement dispersive properties of the SP depends up on its dosage and the family. Mini slump spread diameter with different dosages and families of SP is taken as the measure of workability characteristic of cement paste chosen for measuring the rheological properties of cement paste. The main purpose of this study includes measure the dispersive ability of different families of SP by conducting minislump test and model the minislump spread diameter of the super plasticized Portland Pozzolona Cement (PPC)paste using regularized least square (RLS) approach along with the application of Random kitchen sink (RKS) algorithm. For preparing test and training data for the model 287 different mixes were prepared in the laboratory at a water cement ratio of 0.37 using four locally available brand of Portland Pozzolona cement (PPC) and SP belonging to four different families. Water content, cement weight and amount of SP (by considering it as seven separate input based on their family and brand) were the input parameters and mini slump spread diameter was the output parameter for the model. The variation of predicted and measured values of spread diameters were compared and validated. From this study it was observed that, the model could effectively predict the minislump spread of cement paste

  20. Modelling and mapping trace element accumulation in Sphagnum peatlands at the European scale using a geomatic model of pollutant emissions dispersion.

    PubMed

    Diaz-de-Quijano, Maria; Joly, Daniel; Gilbert, Daniel; Toussaint, Marie-Laure; Franchi, Marielle; Fallot, Jean-Michel; Bernard, Nadine

    2016-07-01

    Trace elements (TEs) transported by atmospheric fluxes can negatively impact isolated ecosystems. Modelling based on moss-borne TE accumulation makes tracking TE deposition in remote areas without monitoring stations possible. Using a single moss species from ombrotrophic hummock peatlands reinforces estimate quality. This study used a validated geomatic model of particulate matter dispersion to identify the origin of Cd, Zn, Pb and Cu accumulated in Sphagnum capillifolium and the distance transported from their emission sources. The residential and industrial sectors of particulate matter emissions showed the highest correlations with the TEs accumulated in S. capillifolium (0.28(Zn)-0.56(Cu)) and (0.27(Zn)-0.47(Cu), respectively). Distances of dispersion varied depending on the sector of emissions and the considered TE. The greatest transportation distances for mean emissions values were found in the industrial (10.6 km when correlating with all TEs) and roads sectors (13 km when correlating with Pb). The residential sector showed the shortest distances (3.6 km when correlating with Cu, Cd, and Zn). The model presented here is a new tool for evaluating the efficacy of air pollution abatement policies in non-monitored areas and provides high-resolution (200 × 200 m) maps of TE accumulation that make it possible to survey the potential impacts of TEs on isolated ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Validation of OpenFoam for heavy gas dispersion applications.

    PubMed

    Mack, A; Spruijt, M P N

    2013-11-15

    In the present paper heavy gas dispersion calculations were performed with OpenFoam. For a wind tunnel test case, numerical data was validated with experiments. For a full scale numerical experiment, a code to code comparison was performed with numerical results obtained from Fluent. The validation was performed in a gravity driven environment (slope), where the heavy gas induced the turbulence. For the code to code comparison, a hypothetical heavy gas release into a strongly turbulent atmospheric boundary layer including terrain effects was selected. The investigations were performed for SF6 and CO2 as heavy gases applying the standard k-ɛ turbulence model. A strong interaction of the heavy gas with the turbulence is present which results in a strong damping of the turbulence and therefore reduced heavy gas mixing. Especially this interaction, based on the buoyancy effects, was studied in order to ensure that the turbulence-buoyancy coupling is the main driver for the reduced mixing and not the global behaviour of the turbulence modelling. For both test cases, comparisons were performed between OpenFoam and Fluent solutions which were mainly in good agreement with each other. Beside steady state solutions, the time accuracy was investigated. In the low turbulence environment (wind tunnel test) which for both codes (laminar solutions) was in good agreement, also with the experimental data. The turbulent solutions of OpenFoam were in much better agreement with the experimental results than the Fluent solutions. Within the strong turbulence environment, both codes showed an excellent comparability. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. A study of atmospheric dispersion of radionuclides at a coastal site using a modified Gaussian model and a mesoscale sea breeze model

    NASA Astrophysics Data System (ADS)

    Venkatesan, R.; Mathiyarasu, R.; Somayaji, K. M.

    Ground level concentration and sky-shine dose due to radioactive emissions from a nuclear power plant at a coastal site have been estimated using the standard Gaussian Plume Model (GPM) and the modified GPM suggested by Misra (Atmospheric Environment 14 (1980) 397), which incorporates fumigation effect under sea breeze condition. The difference in results between these two models is analysed in order to understand their significance and errors that would occur if proper choice were not made. Radioactive sky-shine dose from 41Ar, emitted from a 100 m stack of the nuclear plant is continuously recorded by environmental gamma dose monitors and the data is used to validate the modified GPM. It is observed that the dose values increase by a factor of about 2 times than those of the standard GPM estimates, up to a downwind distance of 6 km during sea breeze hours. In order to examine the dispersion of radioactive effluents in the mesoscale range, a sea breeze model coupled with a particle dispersion model is used. The deposited activity, thyroid dose and sky-shine radioactive dose are simulated for a range of 30 km. In this range, the plume is found to deviate from its straight-line trajectory, as otherwise assumed in GPM. A secondary maximum in the concentration and the sky-shine dose is also observed in the model results. These results are quite significant in realistically estimating the area affected under any unlikely event of an accidental release of radioactivity.

  3. An Internal Thermal Environment Model of an Aluminized Solid Rocket Motor with Experimental Validation

    NASA Technical Reports Server (NTRS)

    Martin, Heath T.

    2015-01-01

    Due to the severity of the internal solid rocket motor (SRM) environment, very few direct measurements of that environment exist; therefore, the appearance of such data provides a unique opportunity to assess current thermal/fluid modeling capabilities. As part of a previous study of SRM internal insulation performance, the internal thermal environment of a laboratory-scale SRM featuring aluminized propellant was characterized with two types of custom heat-flux calorimeters: one that measured the total heat flux to a graphite slab within the SRM chamber and another that measured the thermal radiation flux. Therefore, in the current study, a thermal/fluid model of this lab-scale SRM was constructed using ANSYS Fluent to predict not only the flow field structure within the SRM and the convective heat transfer to the interior walls, but also the resulting dispersion of alumina droplets and the radiative heat transfer to the interior walls. The dispersion of alumina droplets within the SRM chamber was determined by employing the Lagrangian discrete phase model that was fully coupled to the Eulerian gas-phase flow. The P1-approximation was engaged to model the radiative heat transfer through the SRM chamber where the radiative contributions of the gas phase were ignored and the aggregate radiative properties of the alumina dispersion were computed from the radiative properties of its individual constituent droplets, which were sourced from literature. The convective and radiative heat fluxes computed from the thermal/fluid model were then compared with those measured in the lab-scale SRM test firings and the modeling approach evaluated.

  4. Urban Flow and Pollutant Dispersion Simulation with Multi-scale coupling of Meteorological Model with Computational Fluid Dynamic Analysis

    NASA Astrophysics Data System (ADS)

    Liu, Yushi; Poh, Hee Joo

    2014-11-01

    The Computational Fluid Dynamics analysis has become increasingly important in modern urban planning in order to create highly livable city. This paper presents a multi-scale modeling methodology which couples Weather Research and Forecasting (WRF) Model with open source CFD simulation tool, OpenFOAM. This coupling enables the simulation of the wind flow and pollutant dispersion in urban built-up area with high resolution mesh. In this methodology meso-scale model WRF provides the boundary condition for the micro-scale CFD model OpenFOAM. The advantage is that the realistic weather condition is taken into account in the CFD simulation and complexity of building layout can be handled with ease by meshing utility of OpenFOAM. The result is validated against the Joint Urban 2003 Tracer Field Tests in Oklahoma City and there is reasonably good agreement between the CFD simulation and field observation. The coupling of WRF- OpenFOAM provide urban planners with reliable environmental modeling tool in actual urban built-up area; and it can be further extended with consideration of future weather conditions for the scenario studies on climate change impact.

  5. Multiphase flow modeling and simulation of explosive volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Neri, Augusto

    Recent worldwide volcanic activity, such as eruptions at Mt. St. Helens, Washington, in 1980, Mt. Pinatubo, Philippines, in 1991, as well as the ongoing eruption at Montserrat, West Indies, highlighted again the complex nature of explosive volcanic eruptions as well as the tremendous risk associated to them. In the year 2000, about 500 million people are expected to live under the shadow of an active volcano. The understanding of pyroclastic dispersion processes produced by explosive eruptions is, therefore, of primary interest, not only from the scientific point of view, but also for the huge worldwide risk associated with them. The thesis deals with an interdisciplinary research aimed at the modeling and simulation of explosive volcanic eruptions by using multiphase thermo-fluid-dynamic models. The first part of the work was dedicated to the understanding and validation of recently developed kinetic theory of two-phase flow. The hydrodynamics of fluid catalytic cracking particles in the IIT riser were simulated and compared with lab experiments. Simulation results confirm the validity of the kinetic theory approach. Transport of solids in the riser is due to dense clusters. On a time-average basis the bottom of the riser and the walls are dense, in agreement with IIT experimental data. The low frequency of oscillation (about 0.2 Hz) is also in agreement with data. The second part of the work was devoted to the development of transient two-dimensional multiphase and multicomponent flow models of pyroclastic dispersion processes. In particular, the dynamics of ground-hugging high-speed and high-temperature pyroclastic flows generated by the collapse of volcanic columns or by impulsive discrete explosions, was investigated. The model accounts for the mechanical and thermal non-equilibrium between a multicomponent gas phase and N different solid phases representative of pyroclastic particles of different sizes. Pyroclastic dispersion dynamics describes the formation of the initial vertical jet, the column collapse, and the building of the pyroclastic fountain, followed by the generation of radially spreading pyroclastic flows. The development of thermal convective instabilities in the flow lead to the formation of co-ignimbritic or phoenix clouds. Simulation results strongly highlight the importance of the multiphase flow formulation of the mixture. Large particles tend to segregate and sediment along the ground, whereas fine particles tend to form ascending buoyant plumes. Mixtures rich in fine grained particles produce larger runout of the flow and larger ascending plumes than mixtures rich in coarse particles. Simulation results appear to be qualitatively in agreement with field observations, but require to be fully validated by the simulation of well-known test cases.

  6. Lessons learned from LNG safety research.

    PubMed

    Koopman, Ronald P; Ermak, Donald L

    2007-02-20

    During the period from 1977 to 1989, the Lawrence Livermore National Laboratory (LLNL) conducted a liquefied gaseous fuels spill effects program under the sponsorship of the US Department of Energy, Department of Transportation, Gas Research Institute and others. The goal of this program was to develop and validate tools that could be used to predict the effects of a large liquefied gas spill through the execution of large scale field experiments and the development of computer models to make predictions for conditions under which tests could not be performed. Over the course of the program, three series of LNG spill experiments were performed to study cloud formation, dispersion, combustion and rapid phase transition (RPT) explosions. The purpose of this paper is to provide an overview of this program, the lessons learned from 12 years of research as well as some recommendations for the future. The general conclusion from this program is that cold, dense gas related phenomena can dominate the dispersion of a large volume, high release rate spill of LNG especially under low ambient wind speed and stable atmospheric conditions, and therefore, it is necessary to include a detailed and validated description of these phenomena in computer models to adequately predict the consequences of a release. Specific conclusions include: * LNG vapor clouds are lower and wider than trace gas clouds and tend to follow the downhill slope of terrain due to dampened vertical turbulence and gravity flow within the cloud. Under low wind speed, stable atmospheric conditions, a bifurcated, two lobed structure develops. * Navier-Stokes models provide the most complete description of LNG dispersion, while more highly parameterized Lagrangian models were found to be well suited to emergency response applications. * The measured heat flux from LNG vapor cloud burns exceeded levels necessary for third degree burns and were large enough to ignite most flammable materials. * RPTs are of two types, source generated and enrichment generated, and were observed to increase the burn area by a factor of two and to extend the downwind burn distance by 65%. Additional large scale experiments and model development are recommended.

  7. Modeling flow around bluff bodies and predicting urban dispersion using large eddy simulation.

    PubMed

    Tseng, Yu-Heng; Meneveau, Charles; Parlange, Marc B

    2006-04-15

    Modeling air pollutant transport and dispersion in urban environments is especially challenging due to complex ground topography. In this study, we describe a large eddy simulation (LES) tool including a new dynamic subgrid closure and boundary treatment to model urban dispersion problems. The numerical model is developed, validated, and extended to a realistic urban layout. In such applications fairly coarse grids must be used in which each building can be represented using relatively few grid-points only. By carrying out LES of flow around a square cylinder and of flow over surface-mounted cubes, the coarsest resolution required to resolve the bluff body's cross section while still producing meaningful results is established. Specifically, we perform grid refinement studies showing that at least 6-8 grid points across the bluff body are required for reasonable results. The performance of several subgrid models is also compared. Although effects of the subgrid models on the mean flow are found to be small, dynamic Lagrangian models give a physically more realistic subgrid-scale (SGS) viscosity field. When scale-dependence is taken into consideration, these models lead to more realistic resolved fluctuating velocities and spectra. These results set the minimum grid resolution and subgrid model requirements needed to apply LES in simulations of neutral atmospheric boundary layer flow and scalar transport over a realistic urban geometry. The results also illustrate the advantages of LES over traditional modeling approaches, particularly its ability to take into account the complex boundary details and the unsteady nature of atmospheric boundary layer flow. Thus LES can be used to evaluate probabilities of extreme events (such as probabilities of exceeding threshold pollutant concentrations). Some comments about computer resources required for LES are also included.

  8. The use of wavelength dispersive X-ray fluorescence in the identification of the elemental composition of vanilla samples and the determination of the geographic origin by discriminant function analysis.

    PubMed

    Hondrogiannis, Ellen; Rotta, Kathryn; Zapf, Charles M

    2013-03-01

    Sixteen elements found in 37 vanilla samples from Madagascar, Uganda, India, Indonesia (all Vanilla planifolia species), and Papa New Guinea (Vanilla tahitensis species) were measured by wavelength dispersive X-ray fluorescence (WDXRF) spectroscopy for the purpose of determining the elemental concentrations to discriminate among the origins. Pellets were prepared of the samples and elemental concentrations were calculated based on calibration curves created using 4 Natl. Inst. of Standards and Technology (NIST) standards. Discriminant analysis was used to successfully classify the vanilla samples by their species and their geographical region. Our method allows for higher throughput in the rapid screening of vanilla samples in less time than analytical methods currently available. Wavelength dispersive X-ray fluorescence spectroscopy and discriminant function analysis were used to classify vanilla from different origins resulting in a model that could potentially serve to rapidly validate these samples before purchasing from a producer. © 2013 Institute of Food Technologists®

  9. Weighted interior penalty discretization of fully nonlinear and weakly dispersive free surface shallow water flows

    NASA Astrophysics Data System (ADS)

    Di Pietro, Daniele A.; Marche, Fabien

    2018-02-01

    In this paper, we further investigate the use of a fully discontinuous Finite Element discrete formulation for the study of shallow water free surface flows in the fully nonlinear and weakly dispersive flow regime. We consider a decoupling strategy in which we approximate the solutions of the classical shallow water equations supplemented with a source term globally accounting for the non-hydrostatic effects. This source term can be computed through the resolution of elliptic second-order linear sub-problems, which only involve second order partial derivatives in space. We then introduce an associated Symmetric Weighted Internal Penalty discrete bilinear form, allowing to deal with the discontinuous nature of the elliptic problem's coefficients in a stable and consistent way. Similar discrete formulations are also introduced for several recent optimized fully nonlinear and weakly dispersive models. These formulations are validated again several benchmarks involving h-convergence, p-convergence and comparisons with experimental data, showing optimal convergence properties.

  10. Exciton dispersion in molecular solids

    NASA Astrophysics Data System (ADS)

    Cudazzo, Pierluigi; Sottile, Francesco; Rubio, Angel; Gatti, Matteo

    2015-03-01

    The investigation of the exciton dispersion (i.e. the exciton energy dependence as a function of the momentum carried by the electron-hole pair) is a powerful approach to identify the exciton character, ranging from the strongly localised Frenkel to the delocalised Wannier-Mott limiting cases. We illustrate this possibility at the example of four prototypical molecular solids (picene, pentacene, tetracene and coronene) on the basis of the parameter-free solution of the many-body Bethe-Salpeter equation. We discuss the mixing between Frenkel and charge-transfer excitons and the origin of their Davydov splitting in the framework of many-body perturbation theory and establish a link with model approaches based on molecular states. Finally, we show how the interplay between the electronic band dispersion and the exchange electron-hole interaction plays a fundamental role in setting the nature of the exciton. This analysis has a general validity holding also for other systems in which the electron wavefunctions are strongly localized, as in strongly correlated insulators.

  11. Transverse jet plumes. Final report, February 1, 1966--October 31, 1970

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halitsky, J.

    1970-01-01

    This report is the fifth and final Progress Report of a 4 yr 8 mo research project on the characteristics of chimney smoke plumes in a natural atmospheric wind, at short distances from the stack. The dispersion model and the accompanying data are believed to be a valid and unique contribution to our knowledge in this area. It is recommended that completion of the analytical phase of the study be favorably considered.

  12. Linear Instability Analysis of non-uniform Bubbly Mixing layer with Two-Fluid model

    NASA Astrophysics Data System (ADS)

    Sharma, Subash; Chetty, Krishna; Lopez de Bertodano, Martin

    We examine the inviscid instability of a non-uniform adiabatic bubbly shear layer with a Two-Fluid model. The Two-Fluid model is made well-posed with the closure relations for interfacial forces. First, a characteristic analysis is carried out to study the well posedness of the model over range of void fraction with interfacial forces for virtual mass, interfacial drag, interfacial pressure. A dispersion analysis then allow us to obtain growth rate and wavelength. Then, the well-posed two-fluid model is solved using CFD to validate the results obtained with the linear stability analysis. The effect of the void fraction and the distribution profile on stability is analyzed.

  13. Computation of leaky guided waves dispersion spectrum using vibroacoustic analyses and the Matrix Pencil Method: a validation study for immersed rectangular waveguides.

    PubMed

    Mazzotti, M; Bartoli, I; Castellazzi, G; Marzani, A

    2014-09-01

    The paper aims at validating a recently proposed Semi Analytical Finite Element (SAFE) formulation coupled with a 2.5D Boundary Element Method (2.5D BEM) for the extraction of dispersion data in immersed waveguides of generic cross-section. To this end, three-dimensional vibroacoustic analyses are carried out on two waveguides of square and rectangular cross-section immersed in water using the commercial Finite Element software Abaqus/Explicit. Real wavenumber and attenuation dispersive data are extracted by means of a modified Matrix Pencil Method. It is demonstrated that the results obtained using the two techniques are in very good agreement. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. R1 dispersion contrast at high field with fast field-cycling MRI.

    PubMed

    Bödenler, Markus; Basini, Martina; Casula, Maria Francesca; Umut, Evrim; Gösweiner, Christian; Petrovic, Andreas; Kruk, Danuta; Scharfetter, Hermann

    2018-05-01

    Contrast agents with a strong R 1 dispersion have been shown to be effective in generating target-specific contrast in MRI. The utilization of this R 1 field dependence requires the adaptation of an MRI scanner for fast field-cycling (FFC). Here, we present the first implementation and validation of FFC-MRI at a clinical field strength of 3 T. A field-cycling range of ±100 mT around the nominal B 0 field was realized by inserting an additional insert coil into an otherwise conventional MRI system. System validation was successfully performed with selected iron oxide magnetic nanoparticles and comparison to FFC-NMR relaxometry measurements. Furthermore, we show proof-of-principle R 1 dispersion imaging and demonstrate the capability of generating R 1 dispersion contrast at high field with suppressed background signal. With the presented ready-to-use hardware setup it is possible to investigate MRI contrast agents with a strong R 1 dispersion at a field strength of 3 T. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Evaluation of hydrodynamic ocean models as a first step in larval dispersal modelling

    NASA Astrophysics Data System (ADS)

    Vasile, Roxana; Hartmann, Klaas; Hobday, Alistair J.; Oliver, Eric; Tracey, Sean

    2018-01-01

    Larval dispersal modelling, a powerful tool in studying population connectivity and species distribution, requires accurate estimates of the ocean state, on a high-resolution grid in both space (e.g. 0.5-1 km horizontal grid) and time (e.g. hourly outputs), particularly of current velocities and water temperature. These estimates are usually provided by hydrodynamic models based on which larval trajectories and survival are computed. In this study we assessed the accuracy of two hydrodynamic models around Australia - Bluelink ReANalysis (BRAN) and Hybrid Coordinate Ocean Model (HYCOM) - through comparison with empirical data from the Australian National Moorings Network (ANMN). We evaluated the models' predictions of seawater parameters most relevant to larval dispersal - temperature, u and v velocities and current speed and direction - on the continental shelf where spawning and nursery areas for major fishery species are located. The performance of each model in estimating ocean parameters was found to depend on the parameter investigated and to vary from one geographical region to another. Both BRAN and HYCOM models systematically overestimated the mean water temperature, particularly in the top 140 m of water column, with over 2 °C bias at some of the mooring stations. HYCOM model was more accurate than BRAN for water temperature predictions in the Great Australian Bight and along the east coast of Australia. Skill scores between each model and the in situ observations showed lower accuracy in the models' predictions of u and v ocean current velocities compared to water temperature predictions. For both models, the lowest accuracy in predicting ocean current velocities, speed and direction was observed at 200 m depth. Low accuracy of both model predictions was also observed in the top 10 m of the water column. BRAN had more accurate predictions of both u and v velocities in the upper 50 m of water column at all mooring station locations. While HYCOM predictions of ocean current speed were generally more accurate than BRAN, BRAN predictions of both ocean current speed and direction were more accurate than HYCOM along the southeast coast of Australia and Tasmania. This study identified important inaccuracies in the hydrodynamic models' estimations of the real ocean parameters and on time scales relevant to larval dispersal studies. These findings highlight the importance of the choice and validation of hydrodynamic models, and calls for estimates of such bias to be incorporated in dispersal studies.

  16. A regression-based method for mapping traffic-related air pollution: application and testing in four contrasting urban environments.

    PubMed

    Briggs, D J; de Hoogh, C; Gulliver, J; Wills, J; Elliott, P; Kingham, S; Smallbone, K

    2000-05-15

    Accurate, high-resolution maps of traffic-related air pollution are needed both as a basis for assessing exposures as part of epidemiological studies, and to inform urban air-quality policy and traffic management. This paper assesses the use of a GIS-based, regression mapping technique to model spatial patterns of traffic-related air pollution. The model--developed using data from 80 passive sampler sites in Huddersfield, as part of the SAVIAH (Small Area Variations in Air Quality and Health) project--uses data on traffic flows and land cover in the 300-m buffer zone around each site, and altitude of the site, as predictors of NO2 concentrations. It was tested here by application in four urban areas in the UK: Huddersfield (for the year following that used for initial model development), Sheffield, Northampton, and part of London. In each case, a GIS was built in ArcInfo, integrating relevant data on road traffic, urban land use and topography. Monitoring of NO2 was undertaken using replicate passive samplers (in London, data were obtained from surveys carried out as part of the London network). In Huddersfield, Sheffield and Northampton, the model was first calibrated by comparing modelled results with monitored NO2 concentrations at 10 randomly selected sites; the calibrated model was then validated against data from a further 10-28 sites. In London, where data for only 11 sites were available, validation was not undertaken. Results showed that the model performed well in all cases. After local calibration, the model gave estimates of mean annual NO2 concentrations within a factor of 1.5 of the actual mean (approx. 70-90%) of the time and within a factor of 2 between 70 and 100% of the time. r2 values between modelled and observed concentrations are in the range of 0.58-0.76. These results are comparable to those achieved by more sophisticated dispersion models. The model also has several advantages over dispersion modelling. It is able, for example, to provide high-resolution maps across a whole urban area without the need to interpolate between receptor points. It also offers substantially reduced costs and processing times compared to formal dispersion modelling. It is concluded that the model might thus be used as a means of mapping long-term air pollution concentrations either in support of local authority air-quality management strategies, or in epidemiological studies.

  17. Experimental and numerical study on particle distribution in a two-zone chamber

    NASA Astrophysics Data System (ADS)

    Lai, Alvin C. K.; Wang, K.; Chen, F. Z.

    Better understanding of aerosol dynamics is an important step for improving personal exposure assessments in indoor environments. Although the limitation of the assumptions in a well-mixed model is well known, there has been very little research reported in the published literature on the discrepancy of exposure assessments between numerical models which take account of gravitational effects and the well-mixed model. A new Eulerian-type drift-flux model has been developed to simulate particle dispersion and personal exposure in a two-zone geometry, which accounts for the drift velocity resulting from gravitational settling and diffusion. To validate the numerical model, a small-scale chamber was fabricated. The airflow characteristics and particle concentrations were measured by a phase Doppler Anemometer. Both simulated airflow and concentration profiles agree well with the experimental results. A strong inhomogeneous concentration was observed experimentally for 10 μm aerosols. The computational model was further applied to study a simple hypothetical, yet more realistic scenario. The aim was to explore different levels of exposure predicted by the new model and the well-mixed model. Aerosols are initially uniformly distributed in one zone and subsequently transported and dispersed to an adjacent zone through an opening. Owing to the significant difference in the rates of transport and dispersion between aerosols and gases, inferred from the results, the well-mixed model tends to overpredict the concentration in the source zone, and under-predict the concentration in the exposed zone. The results are very useful to illustrate that the well-mixed assumption must be applied cautiously for exposure assessments as such an ideal condition may not be applied for coarse particles.

  18. Ensemble assimilation of ARGO temperature profile, sea surface temperature and Altimetric satellite data into an eddy permitting primitive equation model of the North Atlantic ocean

    NASA Astrophysics Data System (ADS)

    Yan, Yajing; Barth, Alexander; Beckers, Jean-Marie; Candille, Guillem; Brankart, Jean-Michel; Brasseur, Pierre

    2015-04-01

    Sea surface height, sea surface temperature and temperature profiles at depth collected between January and December 2005 are assimilated into a realistic eddy permitting primitive equation model of the North Atlantic Ocean using the Ensemble Kalman Filter. 60 ensemble members are generated by adding realistic noise to the forcing parameters related to the temperature. The ensemble is diagnosed and validated by comparison between the ensemble spread and the model/observation difference, as well as by rank histogram before the assimilation experiments. Incremental analysis update scheme is applied in order to reduce spurious oscillations due to the model state correction. The results of the assimilation are assessed according to both deterministic and probabilistic metrics with observations used in the assimilation experiments and independent observations, which goes further than most previous studies and constitutes one of the original points of this paper. Regarding the deterministic validation, the ensemble means, together with the ensemble spreads are compared to the observations in order to diagnose the ensemble distribution properties in a deterministic way. Regarding the probabilistic validation, the continuous ranked probability score (CRPS) is used to evaluate the ensemble forecast system according to reliability and resolution. The reliability is further decomposed into bias and dispersion by the reduced centred random variable (RCRV) score in order to investigate the reliability properties of the ensemble forecast system. The improvement of the assimilation is demonstrated using these validation metrics. Finally, the deterministic validation and the probabilistic validation are analysed jointly. The consistency and complementarity between both validations are highlighted. High reliable situations, in which the RMS error and the CRPS give the same information, are identified for the first time in this paper.

  19. Calculation of phonon dispersion relation using new correlation functional

    NASA Astrophysics Data System (ADS)

    Jitropas, Ukrit; Hsu, Chung-Hao

    2017-06-01

    To extend the use of Local Density Approximation (LDA), a new analytical correlation functional is introduced. Correlation energy is an essential ingredient within density functional theory and used to determine ground state energy and other properties including phonon dispersion relation. Except for high and low density limit, the general expression of correlation energy is unknown. The approximation approach is therefore required. The accuracy of the modelling system depends on the quality of correlation energy approximation. Typical correlation functionals used in LDA such as Vosko-Wilk-Nusair (VWN) and Perdew-Wang (PW) were obtained from parameterizing the near-exact quantum Monte Carlo data of Ceperley and Alder. These functionals are presented in complex form and inconvenient to implement. Alternatively, the latest published formula of Chachiyo correlation functional provides a comparable result for those much more complicated functionals. In addition, it provides more predictive power based on the first principle approach, not fitting functionals. Nevertheless, the performance of Chachiyo formula for calculating phonon dispersion relation (a key to the thermal properties of materials) has not been tested yet. Here, the implementation of new correlation functional to calculate phonon dispersion relation is initiated. The accuracy and its validity will be explored.

  20. Photonic fractional Fourier transformer with a single dispersive device.

    PubMed

    Cuadrado-Laborde, C; Carrascosa, A; Díez, A; Cruz, J L; Andres, M V

    2013-04-08

    In this work we used the temporal analog of spatial Fresnel diffraction to design a temporal fractional Fourier transformer with a single dispersive device, in this way avoiding the use of quadratic phase modulators. We demonstrate that a single dispersive passive device inherently provides the fractional Fourier transform of an incident optical pulse. The relationships linking the fractional Fourier transform order and scaling factor with the dispersion parameters are derived. We first provide some numerical results in order to prove the validity of our proposal, using a fiber Bragg grating as the dispersive device. Next, we experimentally demonstrate the feasibility of this proposal by using a spool of a standard optical fiber as the dispersive device.

  1. Development and application of a backscatter lidar forward operator for quantitative validation of aerosol dispersion models and future data assimilation

    NASA Astrophysics Data System (ADS)

    Geisinger, Armin; Behrendt, Andreas; Wulfmeyer, Volker; Strohbach, Jens; Förstner, Jochen; Potthast, Roland

    2017-12-01

    A new backscatter lidar forward operator was developed which is based on the distinct calculation of the aerosols' backscatter and extinction properties. The forward operator was adapted to the COSMO-ART ash dispersion simulation of the Eyjafjallajökull eruption in 2010. While the particle number concentration was provided as a model output variable, the scattering properties of each individual particle type were determined by dedicated scattering calculations. Sensitivity studies were performed to estimate the uncertainties related to the assumed particle properties. Scattering calculations for several types of non-spherical particles required the usage of T-matrix routines. Due to the distinct calculation of the backscatter and extinction properties of the models' volcanic ash size classes, the sensitivity studies could be made for each size class individually, which is not the case for forward models based on a fixed lidar ratio. Finally, the forward-modeled lidar profiles have been compared to automated ceilometer lidar (ACL) measurements both qualitatively and quantitatively while the attenuated backscatter coefficient was chosen as a suitable physical quantity. As the ACL measurements were not calibrated automatically, their calibration had to be performed using satellite lidar and ground-based Raman lidar measurements. A slight overestimation of the model-predicted volcanic ash number density was observed. Major requirements for future data assimilation of data from ACL have been identified, namely, the availability of calibrated lidar measurement data, a scattering database for atmospheric aerosols, a better representation and coverage of aerosols by the ash dispersion model, and more investigation in backscatter lidar forward operators which calculate the backscatter coefficient directly for each individual aerosol type. The introduced forward operator offers the flexibility to be adapted to a multitude of model systems and measurement setups.

  2. Estimation of VOC emissions from produced-water treatment ponds in Uintah Basin oil and gas field using modeling techniques

    NASA Astrophysics Data System (ADS)

    Tran, H.; Mansfield, M. L.; Lyman, S. N.; O'Neil, T.; Jones, C. P.

    2015-12-01

    Emissions from produced-water treatment ponds are poorly characterized sources in oil and gas emission inventories that play a critical role in studying elevated winter ozone events in the Uintah Basin, Utah, U.S. Information gaps include un-quantified amounts and compositions of gases emitted from these facilities. The emitted gases are often known as volatile organic compounds (VOCs) which, beside nitrogen oxides (NOX), are major precursors for ozone formation in the near-surface layer. Field measurement campaigns using the flux-chamber technique have been performed to measure VOC emissions from a limited number of produced water ponds in the Uintah Basin of eastern Utah. Although the flux chamber provides accurate measurements at the point of sampling, it covers just a limited area of the ponds and is prone to altering environmental conditions (e.g., temperature, pressure). This fact raises the need to validate flux chamber measurements. In this study, we apply an inverse-dispersion modeling technique with evacuated canister sampling to validate the flux-chamber measurements. This modeling technique applies an initial and arbitrary emission rate to estimate pollutant concentrations at pre-defined receptors, and adjusts the emission rate until the estimated pollutant concentrations approximates measured concentrations at the receptors. The derived emission rates are then compared with flux-chamber measurements and differences are analyzed. Additionally, we investigate the applicability of the WATER9 wastewater emission model for the estimation of VOC emissions from produced-water ponds in the Uintah Basin. WATER9 estimates the emission of each gas based on properties of the gas, its concentration in the waste water, and the characteristics of the influent and treatment units. Results of VOC emission estimations using inverse-dispersion and WATER9 modeling techniques will be reported.

  3. A CFD study on the effectiveness of trees to disperse road traffic emissions at a city scale

    NASA Astrophysics Data System (ADS)

    Jeanjean, A. P. R.; Hinchliffe, G.; McMullan, W. A.; Monks, P. S.; Leigh, R. J.

    2015-11-01

    This paper focuses on the effectiveness of trees at dispersing road traffic emissions on a city scale. CFD simulations of air-pollutant concentrations were performed using the OpenFOAM software platform using the k-ε model. Results were validated against the CODASC wind tunnel database before being applied to a LIDAR database of buildings and trees representing the City of Leicester (UK). Most other CFD models in the literature typically use idealised buildings to model wind flow and pollution dispersion. However, the methodology used in this study uses real buildings and trees data from LIDAR to reconstruct a 3D representation of Leicester City Centre. It focuses on a 2 × 2 km area which is on a scale larger than those usually used in other CFD studies. Furthermore, the primary focus of this study is on the interaction of trees with wind flow dynamics. It was found that in effect, trees have a regionally beneficial impact on road traffic emissions by increasing turbulence and reducing ambient concentrations of road traffic emissions by 7% at pedestrian height on average. This was an important result given that previous studies generally concluded that trees trapped pollution by obstructing wind flow in street canyons. Therefore, this study is novel both in its methodology and subsequent results, highlighting the importance of combining local and regional scale models for assessing the impact of trees in urban planning.

  4. FLORIDA TOWER FOOTPRINT EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WATSON,T.B.; DIETZ, R.N.; WILKE, R.

    2007-01-01

    The Florida Footprint experiments were a series of field programs in which perfluorocarbon tracers were released in different configurations centered on a flux tower to generate a data set that can be used to test transport and dispersion models. These models are used to determine the sources of the CO{sub 2} that cause the fluxes measured at eddy covariance towers. Experiments were conducted in a managed slash pine forest, 10 km northeast of Gainesville, Florida, in 2002, 2004, and 2006 and in atmospheric conditions that ranged from well mixed, to very stable, including the transition period between convective conditions atmore » midday to stable conditions after sun set. There were a total of 15 experiments. The characteristics of the PFTs, details of sampling and analysis methods, quality control measures, and analytical statistics including confidence limits are presented. Details of the field programs including tracer release rates, tracer source configurations, and configuration of the samplers are discussed. The result of this experiment is a high quality, well documented tracer and meteorological data set that can be used to improve and validate canopy dispersion models.« less

  5. The Use of Dispersion Relations For The Geomagnetic Transfer Functions

    NASA Astrophysics Data System (ADS)

    Marcuello, A.; Queralt, P.; Ledo, J. J.

    The magnetotelluric responses are complex magnitudes, where real and imaginary parts contain the same information on the geoelectrical structure. It seems possible, from very general hypotheses on the geoelectrical models (causality, stability and passivity), to apply the Kramers-Krönig dispersion relations to the magnetotelluric responses (impedance, geomagnetic transfer functions,...). In particular, the applica- bility of these relations to the impedance is a current point of discussion, but there are not many examples of their application to the geomagnetic transfer functions (tipper). The aim of this paper is to study how the relations of dispersion are applied to the real and imaginary part of the geomagnetic transfer functions, and to check its validity. For this reason, we have considered data (or responses) from two- and three-dimensional structures, and for these data, we have taken two situations: 1.- Responses that have been synthetically generated from numerical modelling, that allows us to control the quality of the data. 2.- Responses obtained from fieldwork, that are affected by exper- imental error. Additionally, we have also explored the use of these relations to extrap- olate the geomagnetic transfer functions outside the interval of measured frequencies, in order to obtain constrains on the values of these extrapolated data. The results have shown that the dispersion relations are accomplished for the geomag- netic transfer functions, and they can offer information about how these responses are behaved outside (but near) the range of measured frequencies.

  6. Assessing geotechnical centrifuge modelling in addressing variably saturated flow in soil and fractured rock.

    PubMed

    Jones, Brendon R; Brouwers, Luke B; Van Tonder, Warren D; Dippenaar, Matthys A

    2017-05-01

    The vadose zone typically comprises soil underlain by fractured rock. Often, surface water and groundwater parameters are readily available, but variably saturated flow through soil and rock are oversimplified or estimated as input for hydrological models. In this paper, a series of geotechnical centrifuge experiments are conducted to contribute to the knowledge gaps in: (i) variably saturated flow and dispersion in soil and (ii) variably saturated flow in discrete vertical and horizontal fractures. Findings from the research show that the hydraulic gradient, and not the hydraulic conductivity, is scaled for seepage flow in the geotechnical centrifuge. Furthermore, geotechnical centrifuge modelling has been proven as a viable experimental tool for the modelling of hydrodynamic dispersion as well as the replication of similar flow mechanisms for unsaturated fracture flow, as previously observed in literature. Despite the imminent challenges of modelling variable saturation in the vadose zone, the geotechnical centrifuge offers a powerful experimental tool to physically model and observe variably saturated flow. This can be used to give valuable insight into mechanisms associated with solid-fluid interaction problems under these conditions. Findings from future research can be used to validate current numerical modelling techniques and address the subsequent influence on aquifer recharge and vulnerability, contaminant transport, waste disposal, dam construction, slope stability and seepage into subsurface excavations.

  7. Modelling of Dispersed Gas-Liquid Flow using LBGK and LPT Approach

    NASA Astrophysics Data System (ADS)

    Agarwal, Alankar; Prakash, Akshay; Ravindra, B.

    2017-11-01

    The dynamics of gas bubbles play a significant, if not crucial, role in a large variety of industrial process that involves using reactors. Many of these processes are still not well understood in terms of optimal scale-up strategies.An accurate modeling of bubbles and bubble swarms become important for high fidelity bioreactor simulations. This study is a part of the development of robust bubble fluid interaction modules for simulation of industrial-scale reactors. The work presents the simulation of a single bubble rising in a quiescent water tank using current models presented in the literature for bubble-fluid interaction. In this multiphase benchmark problem, the continuous phase (water) is discretized using the Lattice Bhatnagar-Gross and Krook (LBGK) model of Lattice Boltzmann Method (LBM), while the dispersed gas phase (i.e. air-bubble) modeled with the Lagrangian particle tracking (LPT) approach. The cheap clipped fourth order polynomial function is used to model the interaction between two phases. The model is validated by comparing the simulation results for terminal velocity of a bubble at varying bubble diameter and the influence of bubble motion in liquid velocity with the theoretical and previously available experimental data. This work is supported by the ``Centre for Development of Advanced Computing (C-DAC), Pune'' by providing the advanced computational facility in PARAM Yuva-II.

  8. Dispersive models describing mosquitoes’ population dynamics

    NASA Astrophysics Data System (ADS)

    Yamashita, W. M. S.; Takahashi, L. T.; Chapiro, G.

    2016-08-01

    The global incidences of dengue and, more recently, zica virus have increased the interest in studying and understanding the mosquito population dynamics. Understanding this dynamics is important for public health in countries where climatic and environmental conditions are favorable for the propagation of these diseases. This work is based on the study of nonlinear mathematical models dealing with the life cycle of the dengue mosquito using partial differential equations. We investigate the existence of traveling wave solutions using semi-analytical method combining dynamical systems techniques and numerical integration. Obtained solutions are validated through numerical simulations using finite difference schemes.

  9. Modelling Short-Term Maximum Individual Exposure from Airborne Hazardous Releases in Urban Environments. Part ΙI: Validation of a Deterministic Model with Wind Tunnel Experimental Data.

    PubMed

    Efthimiou, George C; Bartzis, John G; Berbekar, Eva; Hertwig, Denise; Harms, Frank; Leitl, Bernd

    2015-06-26

    The capability to predict short-term maximum individual exposure is very important for several applications including, for example, deliberate/accidental release of hazardous substances, odour fluctuations or material flammability level exceedance. Recently, authors have proposed a simple approach relating maximum individual exposure to parameters such as the fluctuation intensity and the concentration integral time scale. In the first part of this study (Part I), the methodology was validated against field measurements, which are governed by the natural variability of atmospheric boundary conditions. In Part II of this study, an in-depth validation of the approach is performed using reference data recorded under truly stationary and well documented flow conditions. For this reason, a boundary-layer wind-tunnel experiment was used. The experimental dataset includes 196 time-resolved concentration measurements which detect the dispersion from a continuous point source within an urban model of semi-idealized complexity. The data analysis allowed the improvement of an important model parameter. The model performed very well in predicting the maximum individual exposure, presenting a factor of two of observations equal to 95%. For large time intervals, an exponential correction term has been introduced in the model based on the experimental observations. The new model is capable of predicting all time intervals giving an overall factor of two of observations equal to 100%.

  10. Research on the interfacial behaviors of plate-type dispersion nuclear fuel elements

    NASA Astrophysics Data System (ADS)

    Wang, Qiming; Yan, Xiaoqing; Ding, Shurong; Huo, Yongzhong

    2010-04-01

    The three-dimensional constitutive relations are constructed, respectively, for the fuel particles, the metal matrix and the cladding of dispersion nuclear fuel elements, allowing for the effects of large deformation and thermal-elastoplasticity. According to the constitutive relations, the method of modeling their irradiation behaviors in ABAQUS is developed and validated. Numerical simulations of the interfacial performances between the fuel meat and the cladding are implemented with the developed finite element models for different micro-structures of the fuel meat. The research results indicate that: (1) the interfacial tensile stresses and shear stresses for some cases will increase with burnup, but the relative stresses will decrease with burnup for some micro-structures; (2) at the lower burnups, the interfacial stresses increase with the particle sizes and the particle volume fractions; however, it is not the case at the higher burnups; (3) the particle distribution characteristics distinctly affect the interfacial stresses, and the face-centered cubic case has the best interfacial performance of the three considered cases.

  11. Quantitative energy-dispersive x-ray diffraction for identification of counterfeit medicines: a preliminary study

    NASA Astrophysics Data System (ADS)

    Crews, Chiaki C. E.; O'Flynn, Daniel; Sidebottom, Aiden; Speller, Robert D.

    2015-06-01

    The prevalence of counterfeit and substandard medicines has been growing rapidly over the past decade, and fast, nondestructive techniques for their detection are urgently needed to counter this trend. In this study, energy-dispersive X-ray diffraction (EDXRD) combined with chemometrics was assessed for its effectiveness in quantitative analysis of compressed powder mixtures. Although EDXRD produces lower-resolution diffraction patterns than angular-dispersive X-ray diffraction (ADXRD), it is of interest for this application as it carries the advantage of allowing the analysis of tablets within their packaging, due to the higher energy X-rays used. A series of caffeine, paracetamol and microcrystalline cellulose mixtures were prepared with compositions between 0 - 100 weight% in 20 weight% steps (22 samples in total, including a centroid mixture), and were pressed into tablets. EDXRD spectra were collected in triplicate, and a principal component analysis (PCA) separated these into their correct positions in the ternary mixture design. A partial least-squares (PLS) regression model calibrated using this training set was validated using both segmented cross-validation, and with a test set of six samples (mixtures in 8:1:1 and 5⅓:2⅓:2⅓ ratios) - the latter giving a root-mean square error of prediction (RMSEP) of 1.30, 2.25 and 2.03 weight% for caffeine, paracetamol and cellulose respectively. These initial results are promising, with RMSEP values on a par with those reported in the ADXRD literature.

  12. STEMS-Air: a simple GIS-based air pollution dispersion model for city-wide exposure assessment.

    PubMed

    Gulliver, John; Briggs, David

    2011-05-15

    Current methods of air pollution modelling do not readily meet the needs of air pollution mapping for short-term (i.e. daily) exposure studies. The main limiting factor is that for those few models that couple with a GIS there are insufficient tools for directly mapping air pollution both at high spatial resolution and over large areas (e.g. city wide). A simple GIS-based air pollution model (STEMS-Air) has been developed for PM(10) to meet these needs with the option to choose different exposure averaging periods (e.g. daily and annual). STEMS-Air uses the grid-based FOCALSUM function in ArcGIS in conjunction with a fine grid of emission sources and basic information on meteorology to implement a simple Gaussian plume model of air pollution dispersion. STEMS-Air was developed and validated in London, UK, using data on concentrations of PM(10) from routinely available monitoring data. Results from the validation study show that STEMS-Air performs well in predicting both daily (at four sites) and annual (at 30 sites) concentrations of PM(10). For daily modelling, STEMS-Air achieved r(2) values in the range 0.19-0.43 (p<0.001) based solely on traffic-related emissions and r(2) values in the range 0.41-0.63 (p<0.001) when adding information on 'background' levels of PM(10). For annual modelling of PM(10), the model returned r(2) in the range 0.67-0.77 (P<0.001) when compared with monitored concentrations. The model can thus be used for rapid production of daily or annual city-wide air pollution maps either as a screening process in urban air quality planning and management, or as the basis for health risk assessment and epidemiological studies. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  13. Stress-dependent permeability and wave dispersion in tight cracked rocks: Experimental validation of simple effective medium models

    NASA Astrophysics Data System (ADS)

    Sarout, Joel; Cazes, Emilie; Delle Piane, Claudio; Arena, Alessio; Esteban, Lionel

    2017-08-01

    We experimentally assess the impact of microstructure, pore fluid, and frequency on wave velocity, wave dispersion, and permeability in thermally cracked Carrara marble under effective pressure up to 50 MPa. The cracked rock is isotropic, and we observe that (1) P and S wave velocities at 500 kHz and the low-strain (<10-5) mechanical moduli at 0.01 Hz are pressure-dependent, (2) permeability decreases asymptotically toward a small value with increasing pressure, (3) wave dispersion between 0.01 Hz and 500 MHz in the water-saturated rock reaches a maximum of 26% for S waves and 9% for P waves at 1 MPa, and (4) wave dispersion virtually vanishes above 30 MPa. Assuming no interactions between the cracks, effective medium theory is used to model the rock's elastic response and its permeability. P and S wave velocity data are jointly inverted to recover the crack density and effective aspect ratio. The permeability data are inverted to recover the cracks' effective radius. These parameters lead to a good agreement between predicted and measured wave velocities, dispersion and permeability up to 50 MPa, and up to a crack density of 0.5. The evolution of the crack parameters suggests that three deformation regimes exist: (1) contact between cracks' surface asperities up to 10 MPa, (2) progressive crack closure between 10 and 30 MPa, and (3) crack closure effectively complete above 30 MPa. The derived crack parameters differ significantly from those obtained by analysis of 2-D electron microscope images of thin sections or 3-D X-ray microtomographic images of millimeter-size specimens.

  14. Probabilistic safety analysis for urgent situations following the accidental release of a pollutant in the atmosphere

    NASA Astrophysics Data System (ADS)

    Armand, P.; Brocheton, F.; Poulet, D.; Vendel, F.; Dubourg, V.; Yalamas, T.

    2014-10-01

    This paper is an original contribution to uncertainty quantification in atmospheric transport & dispersion (AT&D) at the local scale (1-10 km). It is proposed to account for the imprecise knowledge of the meteorological and release conditions in the case of an accidental hazardous atmospheric emission. The aim is to produce probabilistic risk maps instead of a deterministic toxic load map in order to help the stakeholders making their decisions. Due to the urge attached to such situations, the proposed methodology is able to produce such maps in a limited amount of time. It resorts to a Lagrangian particle dispersion model (LPDM) using wind fields interpolated from a pre-established database that collects the results from a computational fluid dynamics (CFD) model. This enables a decoupling of the CFD simulations from the dispersion analysis, thus a considerable saving of computational time. In order to make the Monte-Carlo-sampling-based estimation of the probability field even faster, it is also proposed to recourse to the use of a vector Gaussian process surrogate model together with high performance computing (HPC) resources. The Gaussian process (GP) surrogate modelling technique is coupled with a probabilistic principal component analysis (PCA) for reducing the number of GP predictors to fit, store and predict. The design of experiments (DOE) from which the surrogate model is built, is run over a cluster of PCs for making the total production time as short as possible. The use of GP predictors is validated by comparing the results produced by this technique with those obtained by crude Monte Carlo sampling.

  15. Some Observational and Modeling Studies of the Atmospheric Boundary Layer at Mississippi Gulf Coast for Air Pollution Dispersion Assessment

    PubMed Central

    Yerramilli, Anjaneyulu; Challa, Venkata Srinivas; Indracanti, Jayakumar; Dasari, Hariprasad; Baham, Julius; Patrick, Chuck; Young, John; Hughes, Robert; White, Lorren D.; Hardy, Mark G.; Swanier, Shelton

    2008-01-01

    Coastal atmospheric conditions widely vary from those over inland due to the land-sea interface, temperature contrast and the consequent development of local circulations. In this study a field meteorological experiment was conducted to measure vertical structure of boundary layer during the period 25–29 June, 2007 at three locations Seabee base, Harrison and Wiggins sites in the Mississippi coast. A GPS Sonde along with slow ascent helium balloon and automated weather stations equipped with slow and fast response sensors were used in the experiment. GPS sonde were launched at three specific times (0700 LT, 1300 LT and 1800 LT) during the experiment days. The observations indicate shallow boundary layer near the coast which gradually develops inland. The weather research and forecasting (WRF) meso-scale atmospheric model and a Lagrangian particle dispersion model (HYSPLIT) are used to simulate the lower atmospheric flow and dispersion in a range of 100 km from the coast for 28–30 June, 2007. The simulated meteorological parameters were compared with the experimental observations. The meso-scale model results show significant temporal and spatial variations in the meteorological fields as a result of development of sea breeze flow, its coupling with the large scale flow field and the ensuing alteration in the mixing depth across the coast. Simulated ground-level concentrations of SO2 from four elevated point sources located along the coast indicate diurnal variation and impact of the local sea-land breeze on the direction of the plume. Model concentration levels were highest during the stable morning condition and during the sea-breeze time in the afternoon. The highest concentrations were found up to 40 km inland during sea breeze time. The study illustrates the application of field meteorological observations for the validation of WRF which is coupled to HYSPLIT for dispersion assessment in the coastal region. PMID:19151446

  16. Microstructural Characterization and Modeling of SLM Superalloy 718

    NASA Technical Reports Server (NTRS)

    Smith, Tim M.; Sudbrack, Chantal K.; Bonacuse, Pete; Rogers, Richard

    2017-01-01

    Superalloy 718 is an excellent candidate for selective laser melting (SLM) fabrication due to a combination of excellent mechanical properties and workability. Predicting and validating the microstructure of SLM-fabricated Superalloy 718 after potential post heat-treatment paths is an important step towards producing components comparable to those made using conventional methods. At present, obtaining accurate volume fraction and size measurements of gamma-double-prime, gamma-prime and delta precipitates has been challenging due to their size, low volume fractions, and similar chemistries. A technique combining high resolution distortion corrected SEM imaging and with x-ray energy dispersive spectroscopy has been developed to accurately and independently measure the size and volume fractions of the three precipitates. These results were further validated using x-ray diffraction and phase extraction methods and compared to the precipitation kinetics predicted by PANDAT and JMatPro. Discrepancies are discussed in context of materials properties, model assumptions, sampling, and experimental errors.

  17. Modelling retention and dispersion mechanisms of bluefin tuna eggs and larvae in the northwest Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Mariani, Patrizio; MacKenzie, Brian R.; Iudicone, Daniele; Bozec, Alexandra

    2010-07-01

    Knowledge of early life history of most fish species in the Mediterranean Sea is sparse and processes affecting their recruitment are poorly understood. This is particularly true for bluefin tuna, Thunnus thynnus, even though this species is one of the world’s most valued fish species. Here we develop, apply and validate an individually based coupled biological-physical oceanographic model of fish early life history in the Mediterranean Sea. We first validate the general structure of the coupled model with a 12-day Lagrangian drift study of anchovy ( Engraulis encrasicolus) larvae in the Catalan Sea. The model reproduced the drift and growth of anchovy larvae as they drifted along the Catalan coast and yielded similar patterns as those observed in the field. We then applied the model to investigate transport and retention processes affecting the spatial distribution of bluefin tuna eggs and larvae during 1999-2003, and we compared modelled distributions with available field data collected in 2001 and 2003. Modelled and field distributions generally coincided and were patchy at mesoscales (10s-100s km); larvae were most abundant in eddies and along frontal zones. We also identified probable locations of spawning bluefin tuna using hydrographic backtracking procedures; these locations were situated in a major salinity frontal zone and coincided with distributions of an electronically tagged bluefin tuna and commercial bluefin tuna fishing vessels. Moreover, we hypothesized that mesoscale processes are responsible for the aggregation and dispersion mechanisms in the area and showed that these processes were significantly correlated to atmospheric forcing processes over the NW Mediterranean Sea. Interannual variations in average summer air temperature can reduce the intensity of ocean mesoscale processes in the Balearic area and thus potentially affect bluefin tuna larvae. These modelling approaches can increase understanding of bluefin tuna recruitment processes and eventually contribute to management of bluefin tuna fisheries.

  18. Modeling approaches in avian conservation and the role of field biologists

    USGS Publications Warehouse

    Beissinger, Steven R.; Walters, J.R.; Catanzaro, D.G.; Smith, Kimberly G.; Dunning, J.B.; Haig, Susan M.; Noon, Barry; Stith, Bradley M.

    2006-01-01

    This review grew out of our realization that models play an increasingly important role in conservation but are rarely used in the research of most avian biologists. Modelers are creating models that are more complex and mechanistic and that can incorporate more of the knowledge acquired by field biologists. Such models require field biologists to provide more specific information, larger sample sizes, and sometimes new kinds of data, such as habitat-specific demography and dispersal information. Field biologists need to support model development by testing key model assumptions and validating models. The best conservation decisions will occur where cooperative interaction enables field biologists, modelers, statisticians, and managers to contribute effectively. We begin by discussing the general form of ecological models—heuristic or mechanistic, "scientific" or statistical—and then highlight the structure, strengths, weaknesses, and applications of six types of models commonly used in avian conservation: (1) deterministic single-population matrix models, (2) stochastic population viability analysis (PVA) models for single populations, (3) metapopulation models, (4) spatially explicit models, (5) genetic models, and (6) species distribution models. We end by considering their unique attributes, determining whether the assumptions that underlie the structure are valid, and testing the ability of the model to predict the future correctly.

  19. Turbulent particulate transportation during electrostatic precipitation

    NASA Astrophysics Data System (ADS)

    Choi, Bum Seog

    The generation of secondary flows and turbulence by a corona discharge influences particle transport in an electrostatic precipitator (ESP), and is known to play an important role in the particle collection process. However, it is difficult to characterise theoretically and experimentally the ``turbulent'' fluctuations of the gas flow produced by negative tuft corona. Because of this difficulty, only limited studies have been undertaken previously to understand the structure of corona-induced turbulence and its influence on particle transport in ESPs. The present study is aimed at modelling electrohydrodynamic turbulent flows and particle transport, and at establishing an unproved understanding of them. For a multiply interactive coupling of electrostatics, fluid dynamics and particle dynamics, a strongly coupled system of the governing equations has been solved. The present computer model has considered the most important interaction mechanisms including an ionic wind, corona- induced turbulence and the particle space charge effect. Numerical simulations have been performed for the extensive validation of the numerical and physical models. To account for electrically excited turbulence associated with the inhomogeneous and unsteady characteristics of negative corona discharges, a new turbulence model (called the electrostatic turbulence model) has been developed. In this, an additional production or destruction term is included into the turbulent kinetic energy and dissipation rate equations. It employs a gradient type model of the current density and an electrostatic diffusivity concept. The results of the computation show that the electrostatic turbulence model gives much better agreement with the experimental data than the conventional RNG k-ɛ turbulence model when predicting turbulent gas flows and particle distributions in an ESP. Computations of turbulent particulate two-phase flows for both mono-dispersed and poly-dispersed particles have been performed. The effects of coriona-induced turbulence and the particle space charge on particle transport and the collection process have been investigated. The calculated results for the poly-dispersed particulate flow were compared with those of the mono-dispersed particulate flow, and significant differences were demonstrated. It is established that effective particle- particle interaction occurs, due to the influence of the particle space charge, even for dilute gas-particle flows that occur in ESPs.

  20. Constructal thermodynamics combined with infrared experiments to evaluate temperature differences in cells

    PubMed Central

    Lucia, Umberto; Grazzini, Giuseppe; Montrucchio, Bartolomeo; Grisolia, Giulia; Borchiellini, Romano; Gervino, Gianpiero; Castagnoli, Carlotta; Ponzetto, Antonio; Silvagno, Francesca

    2015-01-01

    The aim of this work was to evaluate differences in energy flows between normal and immortalized cells when these distinct biological systems are exposed to environmental stimulation. These differences were considered using a constructal thermodynamic approach, and were subsequently verified experimentally. The application of constructal law to cell analysis led to the conclusion that temperature differences between cells with distinct behaviour can be amplified by interaction between cells and external fields. Experimental validation of the principle was carried out on two cellular models exposed to electromagnetic fields. By infrared thermography we were able to assess small changes in heat dissipation measured as a variation in cell internal energy. The experimental data thus obtained are in agreement with the theoretical calculation, because they show a different thermal dispersion pattern when normal and immortalized cells are exposed to electromagnetic fields. By using two methods that support and validate each other, we have demonstrated that the cell/environment interaction can be exploited to enhance cell behavior differences, in particular heat dissipation. We propose infrared thermography as a technique effective in discriminating distinct patterns of thermal dispersion and therefore able to distinguish a normal phenotype from a transformed one. PMID:26100383

  1. Constructal thermodynamics combined with infrared experiments to evaluate temperature differences in cells.

    PubMed

    Lucia, Umberto; Grazzini, Giuseppe; Montrucchio, Bartolomeo; Grisolia, Giulia; Borchiellini, Romano; Gervino, Gianpiero; Castagnoli, Carlotta; Ponzetto, Antonio; Silvagno, Francesca

    2015-06-23

    The aim of this work was to evaluate differences in energy flows between normal and immortalized cells when these distinct biological systems are exposed to environmental stimulation. These differences were considered using a constructal thermodynamic approach, and were subsequently verified experimentally. The application of constructal law to cell analysis led to the conclusion that temperature differences between cells with distinct behaviour can be amplified by interaction between cells and external fields. Experimental validation of the principle was carried out on two cellular models exposed to electromagnetic fields. By infrared thermography we were able to assess small changes in heat dissipation measured as a variation in cell internal energy. The experimental data thus obtained are in agreement with the theoretical calculation, because they show a different thermal dispersion pattern when normal and immortalized cells are exposed to electromagnetic fields. By using two methods that support and validate each other, we have demonstrated that the cell/environment interaction can be exploited to enhance cell behavior differences, in particular heat dissipation. We propose infrared thermography as a technique effective in discriminating distinct patterns of thermal dispersion and therefore able to distinguish a normal phenotype from a transformed one.

  2. Charging and Transport Dynamics of a Flow-Through Electrode Capacitive Deionization System.

    PubMed

    Qu, Yatian; Campbell, Patrick G; Hemmatifar, Ali; Knipe, Jennifer M; Loeb, Colin K; Reidy, John J; Hubert, Mckenzie A; Stadermann, Michael; Santiago, Juan G

    2018-01-11

    We present a study of the interplay among electric charging rate, capacitance, salt removal, and mass transport in "flow-through electrode" capacitive deionization (CDI) systems. We develop two models describing coupled transport and electro-adsorption/desorption which capture salt removal dynamics. The first model is a simplified, unsteady zero-dimensional volume-averaged model which identifies dimensionless parameters and figures of merits associated with cell performance. The second model is a higher fidelity area-averaged model which captures both spatial and temporal responses of charging. We further conducted an experimental study of these dynamics and considered two salt transport regimes: (1) advection-limited regime and (2) dispersion-limited regime. We use these data to validate models. The study shows that, in the advection-limited regime, differential charge efficiency determines the salt adsorption at the early stage of the deionization process. Subsequently, charging transitions to a quasi-steady state where salt removal rate is proportional to applied current scaled by the inlet flow rate. In the dispersion-dominated regime, differential charge efficiency, cell volume, and diffusion rates govern adsorption dynamics and flow rate has little effect. In both regimes, the interplay among mass transport rate, differential charge efficiency, cell capacitance, and (electric) charging current governs salt removal in flow-through electrode CDI.

  3. Larval connectivity of pearl oyster through biophysical modelling; evidence of food limitation and broodstock effect

    NASA Astrophysics Data System (ADS)

    Thomas, Yoann; Dumas, Franck; Andréfouët, Serge

    2016-12-01

    The black-lip pearl oyster (Pinctada margaritifera) is cultured extensively to produce black pearls, especially in French Polynesia atoll lagoons. This aquaculture relies on spat collection, a process that experiences spatial and temporal variability and needs to be optimized by understanding which factors influence recruitment. Here, we investigate the sensitivity of P. margaritifera larval dispersal to both physical and biological factors in the lagoon of Ahe atoll. Coupling a validated 3D larval dispersal model, a bioenergetics larval growth model following the Dynamic Energy Budget (DEB) theory, and a population dynamics model, the variability of lagoon-scale connectivity patterns and recruitment potential is investigated. The relative contribution of reared and wild broodstock to the lagoon-scale recruitment potential is also investigated. Sensitivity analyses pointed out the major effect of the broodstock population structure as well as the sensitivity to larval mortality rate and inter-individual growth variability to larval supply and to the subsequent settlement potential. The application of the growth model clarifies how trophic conditions determine the larval supply and connectivity patterns. These results provide new cues to understand the dynamics of bottom-dwelling populations in atoll lagoons, their recruitment, and discuss how to take advantage of these findings and numerical models for pearl oyster management.

  4. Statistical methods for launch vehicle guidance, navigation, and control (GN&C) system design and analysis

    NASA Astrophysics Data System (ADS)

    Rose, Michael Benjamin

    A novel trajectory and attitude control and navigation analysis tool for powered ascent is developed. The tool is capable of rapid trade-space analysis and is designed to ultimately reduce turnaround time for launch vehicle design, mission planning, and redesign work. It is streamlined to quickly determine trajectory and attitude control dispersions, propellant dispersions, orbit insertion dispersions, and navigation errors and their sensitivities to sensor errors, actuator execution uncertainties, and random disturbances. The tool is developed by applying both Monte Carlo and linear covariance analysis techniques to a closed-loop, launch vehicle guidance, navigation, and control (GN&C) system. The nonlinear dynamics and flight GN&C software models of a closed-loop, six-degree-of-freedom (6-DOF), Monte Carlo simulation are formulated and developed. The nominal reference trajectory (NRT) for the proposed lunar ascent trajectory is defined and generated. The Monte Carlo truth models and GN&C algorithms are linearized about the NRT, the linear covariance equations are formulated, and the linear covariance simulation is developed. The performance of the launch vehicle GN&C system is evaluated using both Monte Carlo and linear covariance techniques and their trajectory and attitude control dispersion, propellant dispersion, orbit insertion dispersion, and navigation error results are validated and compared. Statistical results from linear covariance analysis are generally within 10% of Monte Carlo results, and in most cases the differences are less than 5%. This is an excellent result given the many complex nonlinearities that are embedded in the ascent GN&C problem. Moreover, the real value of this tool lies in its speed, where the linear covariance simulation is 1036.62 times faster than the Monte Carlo simulation. Although the application and results presented are for a lunar, single-stage-to-orbit (SSTO), ascent vehicle, the tools, techniques, and mathematical formulations that are discussed are applicable to ascent on Earth or other planets as well as other rocket-powered systems such as sounding rockets and ballistic missiles.

  5. Experimental Validation of Advanced Dispersed Fringe Sensing (ADFS) Algorithm Using Advanced Wavefront Sensing and Correction Testbed (AWCT)

    NASA Technical Reports Server (NTRS)

    Wang, Xu; Shi, Fang; Sigrist, Norbert; Seo, Byoung-Joon; Tang, Hong; Bikkannavar, Siddarayappa; Basinger, Scott; Lay, Oliver

    2012-01-01

    Large aperture telescope commonly features segment mirrors and a coarse phasing step is needed to bring these individual segments into the fine phasing capture range. Dispersed Fringe Sensing (DFS) is a powerful coarse phasing technique and its alteration is currently being used for JWST.An Advanced Dispersed Fringe Sensing (ADFS) algorithm is recently developed to improve the performance and robustness of previous DFS algorithms with better accuracy and unique solution. The first part of the paper introduces the basic ideas and the essential features of the ADFS algorithm and presents the some algorithm sensitivity study results. The second part of the paper describes the full details of algorithm validation process through the advanced wavefront sensing and correction testbed (AWCT): first, the optimization of the DFS hardware of AWCT to ensure the data accuracy and reliability is illustrated. Then, a few carefully designed algorithm validation experiments are implemented, and the corresponding data analysis results are shown. Finally the fiducial calibration using Range-Gate-Metrology technique is carried out and a <10nm or <1% algorithm accuracy is demonstrated.

  6. Development and validation of a matrix solid-phase dispersion method to determine acrylamide in coffee and coffee substitutes.

    PubMed

    Soares, Cristina M Dias; Alves, Rita C; Casal, Susana; Oliveira, M Beatriz P P; Fernandes, José Oliveira

    2010-04-01

    The present study describes the development and validation of a new method based on a matrix solid-phase dispersion (MSPD) sample preparation procedure followed by GC-MS for determination of acrylamide levels in coffee (ground coffee and brewed coffee) and coffee substitute samples. Samples were dispersed in C(18) sorbent and the mixture was further packed into a preconditioned custom-made ISOLUTE bilayered SPE column (C(18)/Multimode; 1 g + 1 g). Acrylamide was subsequently eluted with water, and then derivatized with bromine and quantified by GC-MS in SIM mode. The MSPD/GC-MS method presented a LOD of 5 microg/kg and a LOQ of 10 microg/kg. Intra and interday precisions ranged from 2% to 4% and 4% to 10%, respectively. To evaluate the performance of the method, 11 samples of ground and brewed coffee and coffee substitutes were simultaneously analyzed by the developed method and also by a previously validated method based in a liquid-extraction (LE) procedure, and the results were compared showing a high correlation between them.

  7. Task Validation for Studies on Fragmented Sleep and Cognitive Efficiency under Stress

    DTIC Science & Technology

    1982-11-01

    43 10 Interactions Between Sex and Xenoid Dispersion ........ ... 48 11 Percent Weapon Commands Issued Without Adequate Shield...42 15 Variables Showing Significant Main Effects for Sex of Subject...45 H16 Significant Interactions Between Sex and Xenoid Dispersion .. ............................................46 17 Experimental Design of the

  8. Water Vapor Measurement and Compensation in the Near and Mid-infrared with the Keck Interferometer Nuller

    NASA Technical Reports Server (NTRS)

    Koresko, Chris D.; Colavita, Mark M.; Serabyn, Eugene; Booth, Andrew; Garcia, Jean I.

    2006-01-01

    A viewgraph presentation describing the methods, motivation and methods for water vapor measurement with the Keck interferometer near and mid infrared radiation band is shown. The topics include: 1) Motivation: Why measure H2O?; 2) Method: How do we measure H2O?; 3) Data: Phase and Group Delays for the K and N Bands; 4) Predicted and Actual Nband Phase and Dispersion; and 5) Validation of Atmospheric Turbulence Models with KI Data.

  9. Transient shear viscosity of weakly aggregating polystyrene latex dispersions

    NASA Astrophysics Data System (ADS)

    de Rooij, R.; Potanin, A. A.; van den Ende, D.; Mellema, J.

    1994-04-01

    The transient behavior of the viscosity (stress growth) of a weakly aggregating polystyrene latex dispersion after a step from a high shear rate to a lower shear rate has been measured and modeled. Single particles cluster together into spherical fractal aggregates. The steady state size of these aggregates is determined by the shear stresses exerted on the latter by the flow field. The restructuring process taking place when going from a starting situation with monodisperse spherical aggregates to larger monodisperse spherical aggregates is described by the capture of primary fractal aggregates by growing aggregates until a new steady state is reached. It is assumed that the aggregation mechanism is diffusion limited. The model is valid if the radii of primary aggregates Rprim are much smaller than the radii of the growing aggregates. Fitting the model to experimental data at two volume fractions and a number of step sizes in shear rate yielded physically reasonable values of Rprim at fractal dimensions 2.1≤df≤2.2. The latter range is in good agreement with the range 2.0≤df≤2.3 obtained from steady shear results. The experimental data have also been fitted to a numerical solution of the diffusion equation for primary aggregates for a cell model with moving boundary, also yielding 2.1≤df≤2.2. The range for df found from both approaches agrees well with the range df≊2.1-2.2 determined from computer simulations on diffusion-limited aggregation including restructuring or thermal breakup after formation of bonds. Thus a simple model has been put forward which may capture the basic features of the aggregating model dispersion on a microstructural level and leads to physically acceptable parameter values.

  10. Design, fabrication and testing of porous tungsten vaporizers for mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Zavesky, R.; Kroeger, E.; Kami, S.

    1983-01-01

    The dispersions in the characteristics, performance and reliability of vaporizers for early model 30-cm thrusters were investigated. The purpose of the paper is to explore the findings and to discuss the approaches that were taken to reduce the observed dispersion and present the results of a program which validated those approaches. The information that is presented includes porous tungsten materials specifications, a discussion of assembly procedures, and a description of a test program which screens both material and fabrication processes. There are five appendices providing additional detail in the areas of vaporizer contamination, nitrogen flow testing, bubble testing, porosimeter testing, and mercury purity. Four neutralizers, seven cathodes and five main vaporizers were successfully fabricated, tested, and operated on thrusters. Performance data from those devices is presented and indicates extremely repeatable results from using the design and fabrication procedures.

  11. Stochastic cellular automata model of cell migration, proliferation and differentiation: validation with in vitro cultures of muscle satellite cells.

    PubMed

    Garijo, N; Manzano, R; Osta, R; Perez, M A

    2012-12-07

    Cell migration and proliferation has been modelled in the literature as a process similar to diffusion. However, using diffusion models to simulate the proliferation and migration of cells tends to create a homogeneous distribution in the cell density that does not correlate to empirical observations. In fact, the mechanism of cell dispersal is not diffusion. Cells disperse by crawling or proliferation, or are transported in a moving fluid. The use of cellular automata, particle models or cell-based models can overcome this limitation. This paper presents a stochastic cellular automata model to simulate the proliferation, migration and differentiation of cells. These processes are considered as completely stochastic as well as discrete. The model developed was applied to predict the behaviour of in vitro cell cultures performed with adult muscle satellite cells. Moreover, non homogeneous distribution of cells has been observed inside the culture well and, using the above mentioned stochastic cellular automata model, we have been able to predict this heterogeneous cell distribution and compute accurate quantitative results. Differentiation was also incorporated into the computational simulation. The results predicted the myotube formation that typically occurs with adult muscle satellite cells. In conclusion, we have shown how a stochastic cellular automata model can be implemented and is capable of reproducing the in vitro behaviour of adult muscle satellite cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. A comparison of various modes of liquid-liquid based microextraction techniques: determination of picric acid.

    PubMed

    Burdel, Martin; Šandrejová, Jana; Balogh, Ioseph S; Vishnikin, Andriy; Andruch, Vasil

    2013-03-01

    Three modes of liquid-liquid based microextraction techniques--namely auxiliary solvent-assisted dispersive liquid-liquid microextraction, auxiliary solvent-assisted dispersive liquid-liquid microextraction with low-solvent consumption, and ultrasound-assisted emulsification microextraction--were compared. Picric acid was used as the model analyte. The determination is based on the reaction of picric acid with Astra Phloxine reagent to produce an ion associate easily extractable by various organic solvents, followed by spectrophotometric detection at 558 nm. Each of the compared procedures has both advantages and disadvantages. The main benefit of ultrasound-assisted emulsification microextraction is that no hazardous chlorinated extraction solvents and no dispersive solvent are necessary. Therefore, this procedure was selected for validation. Under optimized experimental conditions (pH 3, 7 × 10(-5) mol/L of Astra Phloxine, and 100 μL of toluene), the calibration plot was linear in the range of 0.02-0.14 mg/L and the LOD was 7 μg/L of picric acid. The developed procedure was applied to the analysis of spiked water samples. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Faraday waves in a Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Li, Jing; Li, Xiaochen; Chen, Kaijie; Xie, Bin; Liao, Shijun

    2018-04-01

    We investigate Faraday waves in a Hele-Shaw cell via experimental, numerical, and theoretical studies. Inspired by the Kelvin-Helmholtz-Darcy theory, we develop the gap-averaged Navier-Stokes equations and end up with the stable standing waves with half frequency of the external forced vibration. To overcome the dependency of a numerical model on the experimental parameter of wave length, we take two-phase flow into consideration and a novel dispersion relation is derived. The numerical results compare well with our experimental data, which effectively validates our proposed mathematical model. Therefore, this model can produce robust solutions of Faraday wave patterns and resolve related physical phenomena, which demonstrates the practical importance of the present study.

  14. Coupling of Large Eddy Simulations with Meteorological Models to simulate Methane Leaks from Natural Gas Storage Facilities

    NASA Astrophysics Data System (ADS)

    Prasad, K.

    2017-12-01

    Atmospheric transport is usually performed with weather models, e.g., the Weather Research and Forecasting (WRF) model that employs a parameterized turbulence model and does not resolve the fine scale dynamics generated by the flow around buildings and features comprising a large city. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model that utilizes large eddy simulation methods to model flow around buildings at length scales much smaller than is practical with models like WRF. FDS has the potential to evaluate the impact of complex topography on near-field dispersion and mixing that is difficult to simulate with a mesoscale atmospheric model. A methodology has been developed to couple the FDS model with WRF mesoscale transport models. The coupling is based on nudging the FDS flow field towards that computed by WRF, and is currently limited to one way coupling performed in an off-line mode. This approach allows the FDS model to operate as a sub-grid scale model with in a WRF simulation. To test and validate the coupled FDS - WRF model, the methane leak from the Aliso Canyon underground storage facility was simulated. Large eddy simulations were performed over the complex topography of various natural gas storage facilities including Aliso Canyon, Honor Rancho and MacDonald Island at 10 m horizontal and vertical resolution. The goal of these simulations included improving and validating transport models as well as testing leak hypotheses. Forward simulation results were compared with aircraft and tower based in-situ measurements as well as methane plumes observed using the NASA Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) and the next generation instrument AVIRIS-NG. Comparison of simulation results with measurement data demonstrate the capability of the coupled FDS-WRF models to accurately simulate the transport and dispersion of methane plumes over urban domains. Simulated integrated methane enhancements will be presented and compared with results obtained from spectrometer data to estimate the temporally evolving methane flux during the Aliso Canyon blowout.

  15. Mate-finding as an overlooked critical determinant of dispersal variation in sexually-reproducing animals.

    PubMed

    Gilroy, James J; Lockwood, Julie L

    2012-01-01

    Dispersal is a critically important process in ecology, but robust predictive models of animal dispersal remain elusive. We identify a potentially ubiquitous component of variation in animal dispersal that has been largely overlooked until now: the influence of mate encounters on settlement probability. We use an individual-based model to simulate dispersal in sexually-reproducing organisms that follow a simple set of movement rules based on conspecific encounters, within an environment lacking spatial habitat heterogeneity. We show that dispersal distances vary dramatically with fluctuations in population density in such a model, even in the absence of variation in dispersive traits between individuals. In a simple random-walk model with promiscuous mating, dispersal distributions become increasingly 'fat-tailed' at low population densities due to the increasing scarcity of mates. Similar variation arises in models incorporating territoriality. In a model with polygynous mating, we show that patterns of sex-biased dispersal can even be reversed across a gradient of population density, despite underlying dispersal mechanisms remaining unchanged. We show that some widespread dispersal patterns found in nature (e.g. fat tailed distributions) can arise as a result of demographic variability in the absence of heterogeneity in dispersive traits across the population. This implies that models in which individual dispersal distances are considered to be fixed traits might be unrealistic, as dispersal distances vary widely under a single dispersal mechanism when settlement is influenced by mate encounters. Mechanistic models offer a promising means of advancing our understanding of dispersal in sexually-reproducing organisms.

  16. The success of failed Homo sapiens dispersals out of Africa and into Asia.

    PubMed

    Rabett, Ryan J

    2018-02-01

    The evidence for an early dispersal of Homo sapiens from Africa into the Levant during Marine Isotope Stage 5 (MIS-5) 126-74 ka (thousand years ago) was characterized for many years as an 'abortive' expansion: a precursor to a sustained dispersal from which all extant human populations can be traced. Recent archaeological and genetic data from both western and eastern parts of Eurasia and from Australia are starting to challenge that interpretation. This Perspective reviews the current evidence for a scenario where the MIS-5 dispersal encompassed a much greater geographic distribution and temporal duration. The implications of this for tracking and understanding early human dispersal in Southeast Asia specifically are considered, and the validity of measuring dispersal success only through genetic continuity into the present is examined.

  17. Predicting airborne particle deposition by a modified Markov chain model for fast estimation of potential contaminant spread

    NASA Astrophysics Data System (ADS)

    Mei, Xiong; Gong, Guangcai

    2018-07-01

    As potential carriers of hazardous pollutants, airborne particles may deposit onto surfaces due to gravitational settling. A modified Markov chain model to predict gravity induced particle dispersion and deposition is proposed in the paper. The gravity force is considered as a dominant weighting factor to adjust the State Transfer Matrix, which represents the probabilities of the change of particle spatial distributions between consecutive time steps within an enclosure. The model performance has been further validated by particle deposition in a ventilation chamber and a horizontal turbulent duct flow in pre-existing literatures. Both the proportion of deposited particles and the dimensionless deposition velocity are adopted to characterize the validation results. Comparisons between our simulated results and the experimental data from literatures show reasonable accuracy. Moreover, it is also found that the dimensionless deposition velocity can be remarkably influenced by particle size and stream-wise velocity in a typical horizontal flow. This study indicates that the proposed model can predict the gravity-dominated airborne particle deposition with reasonable accuracy and acceptable computing time.

  18. A New Scheme for the Simulation of Microscale Flow and Dispersion in Urban Areas by Coupling Large-Eddy Simulation with Mesoscale Models

    NASA Astrophysics Data System (ADS)

    Li, Haifeng; Cui, Guixiang; Zhang, Zhaoshun

    2018-04-01

    A coupling scheme is proposed for the simulation of microscale flow and dispersion in which both the mesoscale field and small-scale turbulence are specified at the boundary of a microscale model. The small-scale turbulence is obtained individually in the inner and outer layers by the transformation of pre-computed databases, and then combined in a weighted sum. Validation of the results of a flow over a cluster of model buildings shows that the inner- and outer-layer transition height should be located in the roughness sublayer. Both the new scheme and the previous scheme are applied in the simulation of the flow over the central business district of Oklahoma City (a point source during intensive observation period 3 of the Joint Urban 2003 experimental campaign), with results showing that the wind speed is well predicted in the canopy layer. Compared with the previous scheme, the new scheme improves the prediction of the wind direction and turbulent kinetic energy (TKE) in the canopy layer. The flow field influences the scalar plume in two ways, i.e. the averaged flow field determines the advective flux and the TKE field determines the turbulent flux. Thus, the mean, root-mean-square and maximum of the concentration agree better with the observations with the new scheme. These results indicate that the new scheme is an effective means of simulating the complex flow and dispersion in urban canopies.

  19. Validity of strong lensing statistics for constraints on the galaxy evolution model

    NASA Astrophysics Data System (ADS)

    Matsumoto, Akiko; Futamase, Toshifumi

    2008-02-01

    We examine the usefulness of the strong lensing statistics to constrain the evolution of the number density of lensing galaxies by adopting the values of the cosmological parameters determined by recent Wilkinson Microwave Anisotropy Probe observation. For this purpose, we employ the lens-redshift test proposed by Kochanek and constrain the parameters in two evolution models, simple power-law model characterized by the power-law indexes νn and νv, and the evolution model by Mitchell et al. based on cold dark matter structure formation scenario. We use the well-defined lens sample from the Sloan Digital Sky Survey (SDSS) and this is similarly sized samples used in the previous studies. Furthermore, we adopt the velocity dispersion function of early-type galaxies based on SDSS DR1 and DR5. It turns out that the indexes of power-law model are consistent with the previous studies, thus our results indicate the mild evolution in the number and velocity dispersion of early-type galaxies out to z = 1. However, we found that the values for p and q used by Mitchell et al. are inconsistent with the presently available observational data. More complete sample is necessary to withdraw more realistic determination on these parameters.

  20. Skull's acoustic attenuation and dispersion modeling on photoacoustic signal

    NASA Astrophysics Data System (ADS)

    Mohammadi, Leila; Behnam, Hamid; Tavakkoli, Jahan; Nasiriavanaki, Mohammadreza

    2018-02-01

    Despite the promising results of the recent novel transcranial photoacoustic (PA) brain imaging technology, it has been demonstrated that the presence of the skull severely affects the performance of this imaging modality. We theoretically investigate the effects of acoustic heterogeneity induced by skull on the PA signals generated from single particles, with firstly developing a mathematical model for this phenomenon and then explore experimental validation of the results. The model takes into account the frequency dependent attenuation and dispersion effects occur with wave reflection, refraction and mode conversion at the skull surfaces. Numerical simulations based on the developed model are performed for calculating the propagation of photoacoustic waves through the skull. The results show a strong agreement between simulation and ex-vivo study. The findings are as follow: The thickness of the skull is the most PA signal deteriorating factor that affects both its amplitude (attenuation) and phase (distortion). Also we demonstrated that, when the depth of target region is low and it is comparable to the skull thickness, however, the skull-induced distortion becomes increasingly severe and the reconstructed image would be strongly distorted without correcting these effects. It is anticipated that an accurate quantification and modeling of the skull transmission effects would ultimately allow for aberration correction in transcranial PA brain imaging.

  1. Increasing the Reliability of Circulation Model Validation: Quantifying Drifter Slip to See how Currents are Actually Moving

    NASA Astrophysics Data System (ADS)

    Anderson, T.

    2016-02-01

    Ocean circulation forecasts can help answer questions regarding larval dispersal, passive movement of injured sea animals, oil spill mitigation, and search and rescue efforts. Circulation forecasts are often validated with GPS-tracked drifter paths, but how accurately do these drifters actually move with ocean currents? Drifters are not only moved by water, but are also forced by wind and waves acting on the exposed buoy and transmitter; this imperfect movement is referred to as drifter slip. The quantification and further understanding of drifter slip will allow scientists to differentiate between drifter imperfections and actual computer model error when comparing trajectory forecasts with actual drifter tracks. This will avoid falsely accrediting all discrepancies between a trajectory forecast and an actual drifter track to computer model error. During multiple deployments of drifters in Nantucket Sound and using observed wind and wave data, we attempt to quantify the slip of drifters developed by the Northeast Fisheries Science Center's (NEFSC) Student Drifters Program. While similar studies have been conducted previously, very few have directly attached current meters to drifters to quantify drifter slip. Furthermore, none have quantified slip of NEFSC drifters relative to the oceanographic-standard "CODE" drifter. The NEFSC drifter archive has over 1000 drifter tracks primarily off the New England coast. With a better understanding of NEFSC drifter slip, modelers can reliably use these tracks for model validation.

  2. Increasing the Reliability of Circulation Model Validation: Quantifying Drifter Slip to See how Currents are Actually Moving

    NASA Astrophysics Data System (ADS)

    Anderson, T.

    2015-12-01

    Ocean circulation forecasts can help answer questions regarding larval dispersal, passive movement of injured sea animals, oil spill mitigation, and search and rescue efforts. Circulation forecasts are often validated with GPS-tracked drifter paths, but how accurately do these drifters actually move with ocean currents? Drifters are not only moved by water, but are also forced by wind and waves acting on the exposed buoy and transmitter; this imperfect movement is referred to as drifter slip. The quantification and further understanding of drifter slip will allow scientists to differentiate between drifter imperfections and actual computer model error when comparing trajectory forecasts with actual drifter tracks. This will avoid falsely accrediting all discrepancies between a trajectory forecast and an actual drifter track to computer model error. During multiple deployments of drifters in Nantucket Sound and using observed wind and wave data, we attempt to quantify the slip of drifters developed by the Northeast Fisheries Science Center's (NEFSC) Student Drifters Program. While similar studies have been conducted previously, very few have directly attached current meters to drifters to quantify drifter slip. Furthermore, none have quantified slip of NEFSC drifters relative to the oceanographic-standard "CODE" drifter. The NEFSC drifter archive has over 1000 drifter tracks primarily off the New England coast. With a better understanding of NEFSC drifter slip, modelers can reliably use these tracks for model validation.

  3. Mapping air quality zones for coastal urban centers.

    PubMed

    Freeman, Brian; Gharabaghi, Bahram; Thé, Jesse; Munshed, Mohammad; Faisal, Shah; Abdullah, Meshal; Al Aseed, Athari

    2017-05-01

    This study presents a new method that incorporates modern air dispersion models allowing local terrain and land-sea breeze effects to be considered along with political and natural boundaries for more accurate mapping of air quality zones (AQZs) for coastal urban centers. This method uses local coastal wind patterns and key urban air pollution sources in each zone to more accurately calculate air pollutant concentration statistics. The new approach distributes virtual air pollution sources within each small grid cell of an area of interest and analyzes a puff dispersion model for a full year's worth of 1-hr prognostic weather data. The difference of wind patterns in coastal and inland areas creates significantly different skewness (S) and kurtosis (K) statistics for the annually averaged pollutant concentrations at ground level receptor points for each grid cell. Plotting the S-K data highlights grouping of sources predominantly impacted by coastal winds versus inland winds. The application of the new method is demonstrated through a case study for the nation of Kuwait by developing new AQZs to support local air management programs. The zone boundaries established by the S-K method were validated by comparing MM5 and WRF prognostic meteorological weather data used in the air dispersion modeling, a support vector machine classifier was trained to compare results with the graphical classification method, and final zones were compared with data collected from Earth observation satellites to confirm locations of high-exposure-risk areas. The resulting AQZs are more accurate and support efficient management strategies for air quality compliance targets effected by local coastal microclimates. A novel method to determine air quality zones in coastal urban areas is introduced using skewness (S) and kurtosis (K) statistics calculated from grid concentrations results of air dispersion models. The method identifies land-sea breeze effects that can be used to manage local air quality in areas of similar microclimates.

  4. Parameterizing Urban Canopy Layer transport in an Lagrangian Particle Dispersion Model

    NASA Astrophysics Data System (ADS)

    Stöckl, Stefan; Rotach, Mathias W.

    2016-04-01

    The percentage of people living in urban areas is rising worldwide, crossed 50% in 2007 and is even higher in developed countries. High population density and numerous sources of air pollution in close proximity can lead to health issues. Therefore it is important to understand the nature of urban pollutant dispersion. In the last decades this field has experienced considerable progress, however the influence of large roughness elements is complex and has as of yet not been completely described. Hence, this work studied urban particle dispersion close to source and ground. It used an existing, steady state, three-dimensional Lagrangian particle dispersion model, which includes Roughness Sublayer parameterizations of turbulence and flow. The model is valid for convective and neutral to stable conditions and uses the kernel method for concentration calculation. As most Lagrangian models, its lower boundary is the zero-plane displacement, which means that roughly the lower two-thirds of the mean building height are not included in the model. This missing layer roughly coincides with the Urban Canopy Layer. An earlier work "traps" particles hitting the lower model boundary for a recirculation period, which is calculated under the assumption of a vortex in skimming flow, before "releasing" them again. The authors hypothesize that improving the lower boundary condition by including Urban Canopy Layer transport could improve model predictions. This was tested herein by not only trapping the particles, but also advecting them with a mean, parameterized flow in the Urban Canopy Layer. Now the model calculates the trapping period based on either recirculation due to vortex motion in skimming flow regimes or vertical velocity if no vortex forms, depending on incidence angle of the wind on a randomly chosen street canyon. The influence of this modification, as well as the model's sensitivity to parameterization constants, was investigated. To reach this goal, the model was initialized and compared with meteorological and SF6 tracer measurements from the Basel UrBan Boundary Layer Experiment (BUBBLE). The proposed modification does not improve the model's agreement with concentration observations, even though the trapping time shows promising agreement with measurements. Additionally, the modification's influence is smaller than those of different turbulence profiles, zero-plane displacement height and Roughness Sublayer height.

  5. Validation of a Fast-Response Urban Micrometeorological Model to Assess the Performance of Urban Heat Island Mitigation Strategies

    NASA Astrophysics Data System (ADS)

    Nadeau, D.; Girard, P.; Overby, M.; Pardyjak, E.; Stoll, R., II; Willemsen, P.; Bailey, B.; Parlange, M. B.

    2015-12-01

    Urban heat islands (UHI) are a real threat in many cities worldwide and mitigation measures have become a central component of urban planning strategies. Even within a city, causes of UHI vary from one neighborhood to another, mostly due the spatial variability in surface thermal properties, building geometry, anthropogenic heat flux releases and vegetation cover. As a result, the performance of UHI mitigation measures also varies in space. Hence, there is a need to develop a tool to quantify the efficiency of UHI mitigation measures at the neighborhood scale. The objective of this ongoing study is to validate the fast-response micrometeorological model QUIC EnvSim (QES). This model can provide all information required for UHI studies with a fine spatial resolution (up to 0.5m) and short computation time. QES combines QUIC, a CFD-based wind solver and dispersion model, and EnvSim, composed of a radiation model, a land-surface model and a turbulent transport model. Here, high-resolution (1 m) simulations are run over a subset of the École Polytechnique Fédérale de Lausanne (EPFL) campus including complex buildings, various surfaces properties and vegetation. For nearly five months in 2006-07, a dense network of meteorological observations (92 weather stations over 0.1 km2) was deployed over the campus and these unique data are used here as a validation dataset. We present validation results for different test cases (e.g., sunny vs cloudy days, different incoming wind speeds and directions) and explore the effect of a few UHI mitigation strategies on the spatial distribution of near-surface air temperatures. Preliminary results suggest that QES may be a valuable tool in decision-making regarding adaptation of urban planning to UHI.

  6. The use of on-line characterization technologies during the manufacture of nanostructured materials

    NASA Astrophysics Data System (ADS)

    Barbas, Joana Margarida de Oliveira

    Since their potential has become widely recognized, one of the major research lines on polymer-clay nanocomposites has focused on the preparation of well dispersed systems, which involves investigating their compounding (including their structural and morphological characterization) and the determination of their physical and mechanical performances. Currently, there is an understanding that a high degree of dispersion, particularly exfoliation, of the nanoclay is required to improve the overall performance. Although the influencing parameters are known - interfacial adhesion, chemical affinity and operating conditions - the effect of each on the onset and extent of the organoclay dispersion are still subject of debate. Twin screw extrusion allows for control of the main variables (shear, stress and time), but also, due to the typical modular construction, offers a high degree of freedom in creating the adequate screw design and enables knowledgeable alteration of the barrel. These features offer a solid basis for the development and implementation of apt on-line/in-line monitoring techniques, able to follow up the evolution of dispersion of polymer-clay nanocomposites during processing. This research included the validation, implementation and application of a methodology based on inline Near-Infrared (NIR) Spectroscopy for the characterization of the dispersion along the extruder axis. The results showed that the operating conditions have great impact on the dispersion level, but also that degradation may affect the interfacial chemistry of the system, altering the dispersion pathways. Overall the results obtained confirm that NIR is a valid tool for the on-line characterization of these materials, offering the possibility of assessing in real time the clay dispersion, enabling proper corrective and optimization actions over the material characteristics in a timely manner.

  7. Landscape influences on dispersal behaviour: a theoretical model and empirical test using the fire salamander, Salamandra infraimmaculata.

    PubMed

    Kershenbaum, Arik; Blank, Lior; Sinai, Iftach; Merilä, Juha; Blaustein, Leon; Templeton, Alan R

    2014-06-01

    When populations reside within a heterogeneous landscape, isolation by distance may not be a good predictor of genetic divergence if dispersal behaviour and therefore gene flow depend on landscape features. Commonly used approaches linking landscape features to gene flow include the least cost path (LCP), random walk (RW), and isolation by resistance (IBR) models. However, none of these models is likely to be the most appropriate for all species and in all environments. We compared the performance of LCP, RW and IBR models of dispersal with the aid of simulations conducted on artificially generated landscapes. We also applied each model to empirical data on the landscape genetics of the endangered fire salamander, Salamandra infraimmaculata, in northern Israel, where conservation planning requires an understanding of the dispersal corridors. Our simulations demonstrate that wide dispersal corridors of the low-cost environment facilitate dispersal in the IBR model, but inhibit dispersal in the RW model. In our empirical study, IBR explained the genetic divergence better than the LCP and RW models (partial Mantel correlation 0.413 for IBR, compared to 0.212 for LCP, and 0.340 for RW). Overall dispersal cost in salamanders was also well predicted by landscape feature slope steepness (76%), and elevation (24%). We conclude that fire salamander dispersal is well characterised by IBR predictions. Together with our simulation findings, these results indicate that wide dispersal corridors facilitate, rather than hinder, salamander dispersal. Comparison of genetic data to dispersal model outputs can be a useful technique in inferring dispersal behaviour from population genetic data.

  8. Numerical simulation of disperse particle flows on a graphics processing unit

    NASA Astrophysics Data System (ADS)

    Sierakowski, Adam J.

    In both nature and technology, we commonly encounter solid particles being carried within fluid flows, from dust storms to sediment erosion and from food processing to energy generation. The motion of uncountably many particles in highly dynamic flow environments characterizes the tremendous complexity of such phenomena. While methods exist for the full-scale numerical simulation of such systems, current computational capabilities require the simplification of the numerical task with significant approximation using closure models widely recognized as insufficient. There is therefore a fundamental need for the investigation of the underlying physical processes governing these disperse particle flows. In the present work, we develop a new tool based on the Physalis method for the first-principles numerical simulation of thousands of particles (a small fraction of an entire disperse particle flow system) in order to assist in the search for new reduced-order closure models. We discuss numerous enhancements to the efficiency and stability of the Physalis method, which introduces the influence of spherical particles to a fixed-grid incompressible Navier-Stokes flow solver using a local analytic solution to the flow equations. Our first-principles investigation demands the modeling of unresolved length and time scales associated with particle collisions. We introduce a collision model alongside Physalis, incorporating lubrication effects and proposing a new nonlinearly damped Hertzian contact model. By reproducing experimental studies from the literature, we document extensive validation of the methods. We discuss the implementation of our methods for massively parallel computation using a graphics processing unit (GPU). We combine Eulerian grid-based algorithms with Lagrangian particle-based algorithms to achieve computational throughput up to 90 times faster than the legacy implementation of Physalis for a single central processing unit. By avoiding all data communication between the GPU and the host system during the simulation, we utilize with great efficacy the GPU hardware with which many high performance computing systems are currently equipped. We conclude by looking forward to the future of Physalis with multi-GPU parallelization in order to perform resolved disperse flow simulations of more than 100,000 particles and further advance the development of reduced-order closure models.

  9. Bridging the gap between computation and clinical biology: validation of cable theory in humans

    PubMed Central

    Finlay, Malcolm C.; Xu, Lei; Taggart, Peter; Hanson, Ben; Lambiase, Pier D.

    2013-01-01

    Introduction: Computerized simulations of cardiac activity have significantly contributed to our understanding of cardiac electrophysiology, but techniques of simulations based on patient-acquired data remain in their infancy. We sought to integrate data acquired from human electrophysiological studies into patient-specific models, and validated this approach by testing whether electrophysiological responses to sequential premature stimuli could be predicted in a quantitatively accurate manner. Methods: Eleven patients with structurally normal hearts underwent electrophysiological studies. Semi-automated analysis was used to reconstruct activation and repolarization dynamics for each electrode. This S2 extrastimuli data was used to inform individualized models of cardiac conduction, including a novel derivation of conduction velocity restitution. Activation dynamics of multiple premature extrastimuli were then predicted from this model and compared against measured patient data as well as data derived from the ten-Tusscher cell-ionic model. Results: Activation dynamics following a premature S3 were significantly different from those after an S2. Patient specific models demonstrated accurate prediction of the S3 activation wave, (Pearson's R2 = 0.90, median error 4%). Examination of the modeled conduction dynamics allowed inferences into the spatial dispersion of activation delay. Further validation was performed against data from the ten-Tusscher cell-ionic model, with our model accurately recapitulating predictions of repolarization times (R2 = 0.99). Conclusions: Simulations based on clinically acquired data can be used to successfully predict complex activation patterns following sequential extrastimuli. Such modeling techniques may be useful as a method of incorporation of clinical data into predictive models. PMID:24027527

  10. "Hypothetical" Heavy Particles Dynamics in LES of Turbulent Dispersed Two-Phase Channel Flow

    NASA Technical Reports Server (NTRS)

    Gorokhovski, M.; Chtab, A.

    2003-01-01

    The extensive experimental study of dispersed two-phase turbulent flow in a vertical channel has been performed in Eaton's research group in the Mechanical Engineering Department at Stanford University. In Wang & Squires (1996), this study motivated the validation of LES approach with Lagrangian tracking of round particles governed by drag forces. While the computed velocity of the flow have been predicted relatively well, the computed particle velocity differed strongly from the measured one. Using Monte Carlo simulation of inter-particle collisions, the computation of Yamamoto et al. (2001) was specifically performed to model Eaton's experiment. The results of Yamamoto et al. (2001) improved the particle velocity distribution. At the same time, Vance & Squires (2002) mentioned that the stochastic simualtion of inter-particle collisions is too expensive, requiring significantly more CPU resources than one needs for the gas flow computation. Therefore, the need comes to account for the inter-particle collisions in a simpler and still effective way. To present such a model in the framework of LES/Lagrangian particle approach, and to compare the calculated results with Eaton's measurement and modeling of Yamamoto is the main objective of the present paper.

  11. Direct Visualisation of the Structural Transformation between the Lyotropic Liquid Crystalline Lamellar and Bicontinuous Cubic Mesophase.

    PubMed

    Tran, Nhiem; Zhai, Jiali; Conn, Charlotte E; Mulet, Xavier; Waddington, Lynne J; Drummond, Calum J

    2018-05-29

    The transition between the lyotropic liquid crystalline lamellar and the bicontinuous cubic mesophase drives multiple fundamental cellular processes involving changes in cell membrane topology including endocytosis and membrane budding. While several theoretical models have been proposed to explain this dynamic transformation, experimental validation of these models has been challenging due to the short lived nature of the intermediates present during the phase transition. Herein, we report the direct observation of a lamellar to bicontinuous cubic phase transition in nanoscale dispersions using a combination of cryogenic transmission electron microscopy and static small angle X-ray scattering. The results represent the first experimental confirmation of a theoretical model which proposed that the bicontinuous cubic phase originates from the centre of a lamellar vesicle, then propagates outward via the formation of inter-lamellar attachments and stalks. The observation was possible due to the precise control of the lipid composition to place the dispersion systems at the phase boundary of a lamellar and a cubic phase, allowing for the creation of long-lived structural intermediates. By surveying the nanoparticles using cryogenic transmission electron microscopy, a complete phase transition sequence was established.

  12. Size and Structure of Clusters Formed by Shear Induced Coagulation: Modeling by Discrete Element Method.

    PubMed

    Kroupa, Martin; Vonka, Michal; Soos, Miroslav; Kosek, Juraj

    2015-07-21

    The coagulation process has a dramatic impact on the properties of dispersions of colloidal particles including the change of optical, rheological, as well as texture properties. We model the behavior of a colloidal dispersion with moderate particle volume fraction, that is, 5 wt %, subjected to high shear rates employing the time-dependent Discrete Element Method (DEM) in three spatial dimensions. The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was used to model noncontact interparticle interactions, while contact mechanics was described by the Johnson-Kendall-Roberts (JKR) theory of adhesion. The obtained results demonstrate that the steady-state size of the produced clusters is a strong function of the applied shear rate, primary particle size, and the surface energy of the particles. Furthermore, it was found that the cluster size is determined by the maximum adhesion force between the primary particles and not the adhesion energy. This observation is in agreement with several simulation studies and is valid for the case when the particle-particle contact is elastic and no plastic deformation occurs. These results are of major importance, especially for the emulsion polymerization process, during which the fouling of reactors and piping causes significant financial losses.

  13. Thermal modelling of normal distributed nanoparticles through thickness in an inorganic material matrix

    NASA Astrophysics Data System (ADS)

    Latré, S.; Desplentere, F.; De Pooter, S.; Seveno, D.

    2017-10-01

    Nanoscale materials showing superior thermal properties have raised the interest of the building industry. By adding these materials to conventional construction materials, it is possible to decrease the total thermal conductivity by almost one order of magnitude. This conductivity is mainly influenced by the dispersion quality within the matrix material. At the industrial scale, the main challenge is to control this dispersion to reduce or even eliminate thermal bridges. This allows to reach an industrially relevant process to balance out the high material cost and their superior thermal insulation properties. Therefore, a methodology is required to measure and describe these nanoscale distributions within the inorganic matrix material. These distributions are either random or normally distributed through thickness within the matrix material. We show that the influence of these distributions is meaningful and modifies the thermal conductivity of the building material. Hence, this strategy will generate a thermal model allowing to predict the thermal behavior of the nanoscale particles and their distributions. This thermal model will be validated by the hot wire technique. For the moment, a good correlation is found between the numerical results and experimental data for a randomly distributed form of nanoparticles in all directions.

  14. Numerical study of underwater dispersion of dilute and dense sediment-water mixtures

    NASA Astrophysics Data System (ADS)

    Chan, Ziying; Dao, Ho-Minh; Tan, Danielle S.

    2018-05-01

    As part of the nodule-harvesting process, sediment tailings are released underwater. Due to the long period of clouding in the water during the settling process, this presents a significant environmental and ecological concern. One possible solution is to release a mixture of sediment tailings and seawater, with the aim of reducing the settling duration as well as the amount of spreading. In this paper, we present some results of numerical simulations using the smoothed particle hydrodynamics (SPH) method to model the release of a fixed volume of pre-mixed sediment-water mixture into a larger body of quiescent water. Both the sediment-water mixture and the “clean” water are modeled as two different fluids, with concentration-dependent bulk properties of the sediment-water mixture adjusted according to the initial solids concentration. This numerical model was validated in a previous study, which indicated significant differences in the dispersion and settling process between dilute and dense mixtures, and that a dense mixture may be preferable. For this study, we investigate a wider range of volumetric concentration with the aim of determining the optimum volumetric concentration, as well as its overall effectiveness compared to the original process (100% sediment).

  15. Forensic Uncertainty Quantification of Explosive Dispersal of Particles

    NASA Astrophysics Data System (ADS)

    Hughes, Kyle; Park, Chanyoung; Haftka, Raphael; Kim, Nam-Ho

    2017-06-01

    In addition to the numerical challenges of simulating the explosive dispersal of particles, validation of the simulation is often plagued with poor knowledge of the experimental conditions. The level of experimental detail required for validation is beyond what is usually included in the literature. This presentation proposes the use of forensic uncertainty quantification (UQ) to investigate validation-quality experiments to discover possible sources of uncertainty that may have been missed in initial design of experiments or under-reported. The current experience of the authors has found that by making an analogy to crime scene investigation when looking at validation experiments, valuable insights may be gained. One examines all the data and documentation provided by the validation experimentalists, corroborates evidence, and quantifies large sources of uncertainty a posteriori with empirical measurements. In addition, it is proposed that forensic UQ may benefit from an independent investigator to help remove possible implicit biases and increases the likelihood of discovering unrecognized uncertainty. Forensic UQ concepts will be discussed and then applied to a set of validation experiments performed at Eglin Air Force Base. This work was supported in part by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program.

  16. Optically buffered Jones-matrix-based multifunctional optical coherence tomography with polarization mode dispersion correction

    PubMed Central

    Hong, Young-Joo; Makita, Shuichi; Sugiyama, Satoshi; Yasuno, Yoshiaki

    2014-01-01

    Polarization mode dispersion (PMD) degrades the performance of Jones-matrix-based polarization-sensitive multifunctional optical coherence tomography (JM-OCT). The problem is specially acute for optically buffered JM-OCT, because the long fiber in the optical buffering module induces a large amount of PMD. This paper aims at presenting a method to correct the effect of PMD in JM-OCT. We first mathematically model the PMD in JM-OCT and then derive a method to correct the PMD. This method is a combination of simple hardware modification and subsequent software correction. The hardware modification is introduction of two polarizers which transform the PMD into global complex modulation of Jones matrix. Subsequently, the software correction demodulates the global modulation. The method is validated with an experimentally obtained point spread function with a mirror sample, as well as by in vivo measurement of a human retina. PMID:25657888

  17. Kuznetsov-Ma waves train generation in a left-handed material

    NASA Astrophysics Data System (ADS)

    Atangana, Jacques; Giscard Onana Essama, Bedel; Biya-Motto, Frederick; Mokhtari, Bouchra; Cherkaoui Eddeqaqi, Noureddine; Crépin Kofane, Timoléon

    2015-03-01

    We analyze the behavior of an electromagnetic wave which propagates in a left-handed material. Second-order dispersion and cubic-quintic nonlinearities are considered. This behavior of an electromagnetic wave is modeled by a nonlinear Schrödinger equation which is solved by collective coordinates theory in order to characterize the light pulse intensity profile. More so, a specific frequency range has been outlined where electromagnetic wave behavior will be investigated. The perfect combination of second-order dispersion and cubic nonlinearity leads to a robust soliton. When the quintic nonlinearity comes into play, it provokes strong and long internal perturbations which lead to Benjamin-Feir instability. This phenomenon, also called modulational instability, induces appearance of a Kuznetsov-Ma waves train. We numerically verify the validity of Kuznetsov-Ma theory by presenting physical conditions which lead to Kuznetsov-Ma waves train generation. Thereafter, some properties of such waves train are also verified.

  18. The life cycle of infrared ultra-short high intensity laser pulses in air

    NASA Astrophysics Data System (ADS)

    Ma, Cunliang; Lin, Wenbin

    2015-08-01

    The life cycle of ultra-short high intensity laser pulses propagation in air is studied. As the controversial of the high-order Kerr indices measured by Loriot et al. [Opt. Express 18, 3011 (2010)], we focus on two models which are high-order Kerr effect included and not included. Two factors are mainly analyzed, group-velocity-dispersion and the energy evolution of the pulse. It is found that the group-velocity-dispersion can not be simply ignored even though the pulse's duration is as long as several hundreds femtoseconds. The energy loss due to the multi-photon-absorption is very small, and it may hardly change the propagation length of the pulse. Another contribution of this work is to introduce a probability quantity, which may be useful in validating the positive and negative alternating of the Kerr and high-order Kerr indices.

  19. Seed Dispersal Near and Far: Patterns Across Temperate and Tropical Forests

    Treesearch

    James S. Clark; Miles Silman; Ruth Kern; Eric Macklin; Janneke HilleRisLambers

    1999-01-01

    Dispersal affects community dynamics and vegetation response to global change. Understanding these effects requires descriptions of dispersal at local and regional scales and statistical models that permit estimation. Classical models of dispersal describe local or long-distance dispersal, but not both. The lack of statistical methods means that models have rarely been...

  20. Drift-free kinetic equations for turbulent dispersion

    NASA Astrophysics Data System (ADS)

    Bragg, A.; Swailes, D. C.; Skartlien, R.

    2012-11-01

    The dispersion of passive scalars and inertial particles in a turbulent flow can be described in terms of probability density functions (PDFs) defining the statistical distribution of relevant scalar or particle variables. The construction of transport equations governing the evolution of such PDFs has been the subject of numerous studies, and various authors have presented formulations for this type of equation, usually referred to as a kinetic equation. In the literature it is often stated, and widely assumed, that these PDF kinetic equation formulations are equivalent. In this paper it is shown that this is not the case, and the significance of differences among the various forms is considered. In particular, consideration is given to which form of equation is most appropriate for modeling dispersion in inhomogeneous turbulence and most consistent with the underlying particle equation of motion. In this regard the PDF equations for inertial particles are considered in the limit of zero particle Stokes number and assessed against the fully mixed (zero-drift) condition for fluid points. A long-standing question regarding the validity of kinetic equations in the fluid-point limit is answered; it is demonstrated formally that one version of the kinetic equation (derived using the Furutsu-Novikov method) provides a model that satisfies this zero-drift condition exactly in both homogeneous and inhomogeneous systems. In contrast, other forms of the kinetic equation do not satisfy this limit or apply only in a limited regime.

  1. Drift-free kinetic equations for turbulent dispersion.

    PubMed

    Bragg, A; Swailes, D C; Skartlien, R

    2012-11-01

    The dispersion of passive scalars and inertial particles in a turbulent flow can be described in terms of probability density functions (PDFs) defining the statistical distribution of relevant scalar or particle variables. The construction of transport equations governing the evolution of such PDFs has been the subject of numerous studies, and various authors have presented formulations for this type of equation, usually referred to as a kinetic equation. In the literature it is often stated, and widely assumed, that these PDF kinetic equation formulations are equivalent. In this paper it is shown that this is not the case, and the significance of differences among the various forms is considered. In particular, consideration is given to which form of equation is most appropriate for modeling dispersion in inhomogeneous turbulence and most consistent with the underlying particle equation of motion. In this regard the PDF equations for inertial particles are considered in the limit of zero particle Stokes number and assessed against the fully mixed (zero-drift) condition for fluid points. A long-standing question regarding the validity of kinetic equations in the fluid-point limit is answered; it is demonstrated formally that one version of the kinetic equation (derived using the Furutsu-Novikov method) provides a model that satisfies this zero-drift condition exactly in both homogeneous and inhomogeneous systems. In contrast, other forms of the kinetic equation do not satisfy this limit or apply only in a limited regime.

  2. Measurements using orthodontic analysis software on digital models obtained by 3D scans of plaster casts : Intrarater reliability and validity.

    PubMed

    Czarnota, Judith; Hey, Jeremias; Fuhrmann, Robert

    2016-01-01

    The purpose of this work was to determine the reliability and validity of measurements performed on digital models with a desktop scanner and analysis software in comparison with measurements performed manually on conventional plaster casts. A total of 20 pairs of plaster casts reflecting the intraoral conditions of 20 fully dentate individuals were digitized using a three-dimensional scanner (D700; 3Shape). A series of defined parameters were measured both on the resultant digital models with analysis software (Ortho Analyzer; 3Shape) and on the original plaster casts with a digital caliper (Digimatic CD-15DCX; Mitutoyo). Both measurement series were repeated twice and analyzed for intrarater reliability based on intraclass correlation coefficients (ICCs). The results from the digital models were evaluated for their validity against the casts by calculating mean-value differences and associated 95 % limits of agreement (Bland-Altman method). Statistically significant differences were identified via a paired t test. Significant differences were obtained for 16 of 24 tooth-width measurements, for 2 of 5 sites of contact-point displacement in the mandibular anterior segment, for overbite, for maxillary intermolar distance, for Little's irregularity index, and for the summation indices of maxillary and mandibular incisor width. Overall, however, both the mean differences between the results obtained on the digital models versus on the plaster casts and the dispersion ranges associated with these differences suggest that the deviations incurred by the digital measuring technique are not clinically significant. Digital models are adequately reproducible and valid to be employed for routine measurements in orthodontic practice.

  3. Satellite measurements of SO2 emission and dispersion during the 2008-2009 eruption of Halema‘uma‘u, Kilauea

    NASA Astrophysics Data System (ADS)

    Carn, S. A.; Sutton, A. J.; Elias, T.; Patrick, M. R.; Owen, R. C.; Wu, S.

    2009-12-01

    Satellite remote sensing is providing unique constraints on sulfur dioxide (SO2) emissions associated with the ongoing eruption of Halema‘uma‘u (HMM), and daily observations of volcanic plume dispersion. We use synoptic SO2 measurements by the Ozone Monitoring Instrument (OMI) on NASA’s Aura satellite to chart the fluctuation in SO2 emissions and plume dispersion. Prior to the onset of degassing from HMM, OMI detected SO2 emissions from the east rift Pu‘u ‘O‘o vent; the average daily SO2 burden measured between Sept 6, 2004 and Feb 29, 2008 was 0.7 kilotons (kt) ±1 (1σ). The additional SO2 production from HMM caused total SO2 burdens in the composite Kilauea plume to increase notably in March-April 2008, and a daily average SO2 burden of ~4 kt ±4 (1σ) was measured by OMI between Mar 1, 2008 and Jul 31, 2009 (all burdens are preliminary and assume a SO2 plume altitude of 3 km). A total of ~2 Megatons of SO2 was measured by OMI in the Kilauea emissions between March 2008 and July 2009. The increased SO2 emissions provide an excellent opportunity to compare ground-based ultraviolet (UV) spectrometer and space-based UV OMI measurements of SO2 output, and test algorithms for derivation of emission rates from satellite data. Kilauea data analyzed to date show that trends in ground-based SO2 emission rates and OMI SO2 burdens are in qualitative agreement but differ in magnitude. Plume altitude is a critical factor in satellite SO2 retrievals, and interpretation of the Kilauea observations is complicated by the presence of two SO2 plumes (from HMM and Pu‘u ‘O‘o) within the OMI field-of-view. In order to constrain plume heights and SO2 lifetimes, we use plume simulations generated by the FLEXPART particle dispersion model and compare the model output with OMI SO2 observations. We validate the model-generated plume altitudes using vertical aerosol profiles derived from the CALIPSO space-borne lidar instrument. Gaussian plume models parameterized using visual observations of the HMM plume injection height further constrain near-source plume dispersion and downwind evolution. Refinement of SO2 altitude provides improved constraints on SO2 burdens in observed plumes. A more rigorous approach to deriving source emission strengths from satellite observations is an inverse modeling scheme incorporating measurements and models. Using Kilauea as a case study, we plan to develop such a scheme using OMI data, FLEXPART simulations and atmospheric chemistry and transport modeling using the GEOS-Chem model. Modeling of plume dispersion and chemistry will also provide estimates of SO2 and acid aerosol concentrations for potential use in air quality and health hazard assessments in Hawaii.

  4. Controlling Release Kinetics of PLG Microspheres Using a Manufacturing Technique

    NASA Astrophysics Data System (ADS)

    Berchane, Nader

    2005-11-01

    Controlled drug delivery offers numerous advantages compared with conventional free dosage forms, in particular: improved efficacy and patient compliance. Emulsification is a widely used technique to entrap drugs in biodegradable microspheres for controlled drug delivery. The size of the formed microspheres has a significant influence on drug release kinetics. Despite the advantages of controlled drug delivery, previous attempts to achieve predetermined release rates have seen limited success. This study develops a tool to tailor desired release kinetics by combining microsphere batches of specified mean diameter and size distribution. A fluid mechanics based correlation that predicts the average size of Poly(Lactide-co-Glycolide) [PLG] microspheres from the manufacturing technique, is constructed and validated by comparison with experimental results. The microspheres produced are accurately represented by the Rosin-Rammler mathematical distribution function. A mathematical model is formulated that incorporates the microsphere distribution function to predict the release kinetics from mono-dispersed and poly-dispersed populations. Through this mathematical model, different release kinetics can be achieved by combining different sized populations in different ratios. The resulting design tool should prove useful for the pharmaceutical industry to achieve designer release kinetics.

  5. Large-Eddy Simulation of Flow and Pollutant Transport in Urban Street Canyons with Ground Heating

    NASA Astrophysics Data System (ADS)

    Li, Xian-Xiang; Britter, Rex E.; Koh, Tieh Yong; Norford, Leslie K.; Liu, Chun-Ho; Entekhabi, Dara; Leung, Dennis Y. C.

    2010-11-01

    Our study employed large-eddy simulation (LES) based on a one-equation subgrid-scale model to investigate the flow field and pollutant dispersion characteristics inside urban street canyons. Unstable thermal stratification was produced by heating the ground of the street canyon. Using the Boussinesq approximation, thermal buoyancy forces were taken into account in both the Navier-Stokes equations and the transport equation for subgrid-scale turbulent kinetic energy (TKE). The LESs were validated against experimental data obtained in wind-tunnel studies before the model was applied to study the detailed turbulence, temperature, and pollutant dispersion characteristics in the street canyon of aspect ratio 1. The effects of different Richardson numbers ( Ri) were investigated. The ground heating significantly enhanced mean flow, turbulence, and pollutant flux inside the street canyon, but weakened the shear at the roof level. The mean flow was observed to be no longer isolated from the free stream and fresh air could be entrained into the street canyon at the roof-level leeward corner. Weighed against higher temperature, the ground heating facilitated pollutant removal from the street canyon.

  6. Linear solvation energy relationship for the adsorption of synthetic organic compounds on single-walled carbon nanotubes in water.

    PubMed

    Ding, H; Chen, C; Zhang, X

    2016-01-01

    The linear solvation energy relationship (LSER) was applied to predict the adsorption coefficient (K) of synthetic organic compounds (SOCs) on single-walled carbon nanotubes (SWCNTs). A total of 40 log K values were used to develop and validate the LSER model. The adsorption data for 34 SOCs were collected from 13 published articles and the other six were obtained in our experiment. The optimal model composed of four descriptors was developed by a stepwise multiple linear regression (MLR) method. The adjusted r(2) (r(2)adj) and root mean square error (RMSE) were 0.84 and 0.49, respectively, indicating good fitness. The leave-one-out cross-validation Q(2) ([Formula: see text]) was 0.79, suggesting the robustness of the model was satisfactory. The external Q(2) ([Formula: see text]) and RMSE (RMSEext) were 0.72 and 0.50, respectively, showing the model's strong predictive ability. Hydrogen bond donating interaction (bB) and cavity formation and dispersion interactions (vV) stood out as the two most influential factors controlling the adsorption of SOCs onto SWCNTs. The equilibrium concentration would affect the fitness and predictive ability of the model, while the coefficients varied slightly.

  7. Numerical modeling on air quality in an urban environment with changes of the aspect ratio and wind direction.

    PubMed

    Yassin, Mohamed F

    2013-06-01

    Due to heavy traffic emissions within an urban environment, air quality during the last decade becomes worse year by year and hazard to public health. In the present work, numerical modeling of flow and dispersion of gaseous emissions from vehicle exhaust in a street canyon were investigated under changes of the aspect ratio and wind direction. The three-dimensional flow and dispersion of gaseous pollutants were modeled using a computational fluid dynamics (CFD) model which was numerically solved using Reynolds-averaged Navier-Stokes (RANS) equations. The diffusion flow field in the atmospheric boundary layer within the street canyon was studied for different aspect ratios (W/H=1/2, 3/4, and 1) and wind directions (θ=90°, 112.5°, 135°, and 157.5°). The numerical models were validated against wind tunnel results to optimize the turbulence model. The numerical results agreed well with the wind tunnel results. The simulation demonstrated that the minimum concentration at the human respiration height within the street canyon was on the windward side for aspect ratios W/H=1/2 and 1 and wind directions θ=112.5°, 135°, and 157.5°. The pollutant concentration level decreases as the wind direction and aspect ratio increase. The wind velocity and turbulence intensity increase as the aspect ratio and wind direction increase.

  8. Modeling the Complex Photochemistry of Biomass Burning Plumes in Plume-Scale, Regional, and Global Air Quality Models

    NASA Astrophysics Data System (ADS)

    Alvarado, M. J.; Lonsdale, C. R.; Yokelson, R. J.; Travis, K.; Fischer, E. V.; Lin, J. C.

    2014-12-01

    Forecasting the impacts of biomass burning (BB) plumes on air quality is difficult due to the complex photochemistry that takes place in the concentrated young BB plumes. The spatial grid of global and regional scale Eulerian models is generally too large to resolve BB photochemistry, which can lead to errors in predicting the formation of secondary organic aerosol (SOA) and O3, as well as the partitioning of NOyspecies. AER's Aerosol Simulation Program (ASP v2.1) can be used within plume-scale Lagrangian models to simulate this complex photochemistry. We will present results of validation studies of the ASP model against aircraft observations of young BB smoke plumes. We will also present initial results from the coupling of ASP v2.1 into the Lagrangian particle dispersion model STILT-Chem in order to better examine the interactions between BB plume chemistry and dispersion. In addition, we have used ASP to develop a sub-grid scale parameterization of the near-source chemistry of BB plumes for use in regional and global air quality models. The parameterization takes inputs from the host model, such as solar zenith angle, temperature, and fire fuel type, and calculates enhancement ratios of O3, NOx, PAN, aerosol nitrate, and other NOy species, as well as organic aerosol (OA). We will present results from the ASP-based BB parameterization as well as its implementation into the global atmospheric composition model GEOS-Chem for the SEAC4RS campaign.

  9. Stochastic differential equations and turbulent dispersion

    NASA Technical Reports Server (NTRS)

    Durbin, P. A.

    1983-01-01

    Aspects of the theory of continuous stochastic processes that seem to contribute to an understanding of turbulent dispersion are introduced and the theory and philosophy of modelling turbulent transport is emphasized. Examples of eddy diffusion examined include shear dispersion, the surface layer, and channel flow. Modeling dispersion with finite-time scale is considered including the Langevin model for homogeneous turbulence, dispersion in nonhomogeneous turbulence, and the asymptotic behavior of the Langevin model for nonhomogeneous turbulence.

  10. Dispersal kernel estimation: A comparison of empirical and modelled particle dispersion in a coastal marine system

    NASA Astrophysics Data System (ADS)

    Hrycik, Janelle M.; Chassé, Joël; Ruddick, Barry R.; Taggart, Christopher T.

    2013-11-01

    Early life-stage dispersal influences recruitment and is of significance in explaining the distribution and connectivity of marine species. Motivations for quantifying dispersal range from biodiversity conservation to the design of marine reserves and the mitigation of species invasions. Here we compare estimates of real particle dispersion in a coastal marine environment with similar estimates provided by hydrodynamic modelling. We do so by using a system of magnetically attractive particles (MAPs) and a magnetic-collector array that provides measures of Lagrangian dispersion based on the time-integration of MAPs dispersing through the array. MAPs released as a point source in a coastal marine location dispersed through the collector array over a 5-7 d period. A virtual release and observed (real-time) environmental conditions were used in a high-resolution three-dimensional hydrodynamic model to estimate the dispersal of virtual particles (VPs). The number of MAPs captured throughout the collector array and the number of VPs that passed through each corresponding model location were enumerated and compared. Although VP dispersal reflected several aspects of the observed MAP dispersal, the comparisons demonstrated model sensitivity to the small-scale (random-walk) particle diffusivity parameter (Kp). The one-dimensional dispersal kernel for the MAPs had an e-folding scale estimate in the range of 5.19-11.44 km, while those from the model simulations were comparable at 1.89-6.52 km, and also demonstrated sensitivity to Kp. Variations among comparisons are related to the value of Kp used in modelling and are postulated to be related to MAP losses from the water column and (or) shear dispersion acting on the MAPs; a process that is constrained in the model. Our demonstration indicates a promising new way of 1) quantitatively and empirically estimating the dispersal kernel in aquatic systems, and 2) quantitatively assessing and (or) improving regional hydrodynamic models.

  11. Aerosol bolus dispersion in acinar airways—influence of gravity and airway asymmetry

    PubMed Central

    Ma, Baoshun

    2012-01-01

    The aerosol bolus technique can be used to estimate the degree of convective mixing in the lung; however, contributions of different lung compartments to measured dispersion cannot be differentiated unambiguously. To estimate dispersion in the distal lung, we studied the effect of gravity and airway asymmetry on the dispersion of 1 μm-diameter particle boluses in three-dimensional computational models of the lung periphery, ranging from a single alveolar sac to four-generation (g4) structures of bifurcating airways that deformed homogeneously during breathing. Boluses were introduced at the beginning of a 2-s inhalation, immediately followed by a 3-s exhalation. Dispersion was estimated by the half-width of the exhaled bolus. Dispersion was significantly affected by the spatial orientation of the models in normal gravity and was less in zero gravity than in normal gravity. Dispersion was strongly correlated with model volume in both normal and zero gravity. Predicted pulmonary dispersion based on a symmetric g4 acinar model was 391 ml and 238 ml under normal and zero gravity, respectively. These results accounted for a significant amount of dispersion measured experimentally. In zero gravity, predicted dispersion in a highly asymmetric model accounted for ∼20% of that obtained in a symmetric model with comparable volume and number of alveolated branches, whereas normal gravity dispersions were comparable in both models. These results suggest that gravitational sedimentation and not geometrical asymmetry is the dominant factor in aerosol dispersion in the lung periphery. PMID:22678957

  12. Aerosol bolus dispersion in acinar airways--influence of gravity and airway asymmetry.

    PubMed

    Ma, Baoshun; Darquenne, Chantal

    2012-08-01

    The aerosol bolus technique can be used to estimate the degree of convective mixing in the lung; however, contributions of different lung compartments to measured dispersion cannot be differentiated unambiguously. To estimate dispersion in the distal lung, we studied the effect of gravity and airway asymmetry on the dispersion of 1 μm-diameter particle boluses in three-dimensional computational models of the lung periphery, ranging from a single alveolar sac to four-generation (g4) structures of bifurcating airways that deformed homogeneously during breathing. Boluses were introduced at the beginning of a 2-s inhalation, immediately followed by a 3-s exhalation. Dispersion was estimated by the half-width of the exhaled bolus. Dispersion was significantly affected by the spatial orientation of the models in normal gravity and was less in zero gravity than in normal gravity. Dispersion was strongly correlated with model volume in both normal and zero gravity. Predicted pulmonary dispersion based on a symmetric g4 acinar model was 391 ml and 238 ml under normal and zero gravity, respectively. These results accounted for a significant amount of dispersion measured experimentally. In zero gravity, predicted dispersion in a highly asymmetric model accounted for ∼20% of that obtained in a symmetric model with comparable volume and number of alveolated branches, whereas normal gravity dispersions were comparable in both models. These results suggest that gravitational sedimentation and not geometrical asymmetry is the dominant factor in aerosol dispersion in the lung periphery.

  13. A multiphase ion-transport analysis of the electrostatic disjoining pressure: implications for binary droplet coalescence

    NASA Astrophysics Data System (ADS)

    Mason, Lachlan; Gebauer, Felix; Bart, Hans-Jörg; Stevens, Geoffrey; Harvie, Dalton

    2016-11-01

    Understanding the physics of emulsion coalescence is critical for the robust simulation of industrial solvent extraction processes, in which loaded organic and raffinate phases are separated via the coalescence of dispersed droplets. At the droplet scale, predictive collision-outcome models require an accurate description of the repulsive surface forces arising from electrical-double-layer interactions. The conventional disjoining-pressure treatment of double-layer forces, however, relies on assumptions which do not hold generally for deformable droplet collisions: namely, low interfacial curvature and negligible advection of ion species. This study investigates the validity bounds of the disjoining pressure approximation for low-inertia droplet interactions. A multiphase ion-transport model, based on a coupling of droplet-scale Nernst-Planck and Navier-Stokes equations, predicts ion-concentration fields that are consistent with the equilibrium Boltzmann distribution; indicating that the disjoining-pressure approach is valid for both static and dynamic interactions in low-Reynolds-number settings. The present findings support the development of coalescence kernels for application in macro-scale population balance modelling.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webley, Peter W.; Atkinson, D.; Collins, Richard L.

    On 11 January 2006, Mount Augustine volcano in southern Alaska began erupting after 20-year repose. The Anchorage Forecast Office of the National Weather Service (NWS) issued an advisory on 28 January for Kodiak City. On 31 January, Alaska Airlines cancelled all flights to and from Anchorage after multiple advisories from the NWS for Anchorage and the surrounding region. The Alaska Volcano Observatory (AVO) had reported the onset of the continuous eruption. AVO monitors the approximately 100 active volcanoes in the Northern Pacific. Ash clouds from these volcanoes can cause serious damage to an aircraft and pose a serious threat tomore » the local communities, and to transcontinental air traffic throughout the Arctic and sub-Arctic region. Within AVO, a dispersion model has been developed to track the dispersion of volcanic ash clouds. The model, Puff, was used operational by AVO during the Augustine eruptive period. Here, we examine the dispersion of a volcanic ash cloud from Mount Augustine across Alaska from 29 January through the 2 February 2006. We present the synoptic meteorology, the Puff predictions, and measurements from aerosol samplers, laser radar (or lidar) systems, and satellites. UAF aerosol samplers revealed the presence of volcanic aerosols at the surface at sites where Puff predicted the ash clouds movement. Remote sensing satellite data showed the development of the ash cloud in close proximity to the volcano and a sulfur-dioxide cloud further from the volcano consistent with the Puff predictions. Lidars showed the presence of volcanic aerosol with consistent characteristics aloft over Alaska and were capable of detecting the aerosol, even in the presence of scattered clouds and where the cloud is too thin/disperse to be detected by remote sensing satellite data. The lidar measurements revealed the different trajectories of ash consistent with the Puff predictions. Dispersion models provide a forecast of volcanic ash cloud movement that might be undetectable by any other means but are still a significant hazard. Validation is the key to assessing the accuracy of any future predictions. The study highlights the use of multiple and complementary observations used in detecting the trajectory ash cloud, both at the surface and aloft within the atmosphere.« less

  15. A Comparison of Exposure Metrics for Traffic-Related Air Pollutants: Application to Epidemiology Studies in Detroit, Michigan

    PubMed Central

    Batterman, Stuart; Burke, Janet; Isakov, Vlad; Lewis, Toby; Mukherjee, Bhramar; Robins, Thomas

    2014-01-01

    Vehicles are major sources of air pollutant emissions, and individuals living near large roads endure high exposures and health risks associated with traffic-related air pollutants. Air pollution epidemiology, health risk, environmental justice, and transportation planning studies would all benefit from an improved understanding of the key information and metrics needed to assess exposures, as well as the strengths and limitations of alternate exposure metrics. This study develops and evaluates several metrics for characterizing exposure to traffic-related air pollutants for the 218 residential locations of participants in the NEXUS epidemiology study conducted in Detroit (MI, USA). Exposure metrics included proximity to major roads, traffic volume, vehicle mix, traffic density, vehicle exhaust emissions density, and pollutant concentrations predicted by dispersion models. Results presented for each metric include comparisons of exposure distributions, spatial variability, intraclass correlation, concordance and discordance rates, and overall strengths and limitations. While showing some agreement, the simple categorical and proximity classifications (e.g., high diesel/low diesel traffic roads and distance from major roads) do not reflect the range and overlap of exposures seen in the other metrics. Information provided by the traffic density metric, defined as the number of kilometers traveled (VKT) per day within a 300 m buffer around each home, was reasonably consistent with the more sophisticated metrics. Dispersion modeling provided spatially- and temporally-resolved concentrations, along with apportionments that separated concentrations due to traffic emissions and other sources. While several of the exposure metrics showed broad agreement, including traffic density, emissions density and modeled concentrations, these alternatives still produced exposure classifications that differed for a substantial fraction of study participants, e.g., from 20% to 50% of homes, depending on the metric, would be incorrectly classified into “low”, “medium” or “high” traffic exposure classes. These and other results suggest the potential for exposure misclassification and the need for refined and validated exposure metrics. While data and computational demands for dispersion modeling of traffic emissions are non-trivial concerns, once established, dispersion modeling systems can provide exposure information for both on- and near-road environments that would benefit future traffic-related assessments. PMID:25226412

  16. Atmospheric fate and transport of fine volcanic ash: Does particle shape matter?

    NASA Astrophysics Data System (ADS)

    White, C. M.; Allard, M. P.; Klewicki, J.; Proussevitch, A. A.; Mulukutla, G.; Genareau, K.; Sahagian, D. L.

    2013-12-01

    Volcanic ash presents hazards to infrastructure, agriculture, and human and animal health. In particular, given the economic importance of intercontinental aviation, understanding how long ash is suspended in the atmosphere, and how far it is transported has taken on greater importance. Airborne ash abrades the exteriors of aircraft, enters modern jet engines and melts while coating interior engine parts causing damage and potential failure. The time fine ash stays in the atmosphere depends on its terminal velocity. Existing models of ash terminal velocities are based on smooth, quasi-spherical particles characterized by Stokes velocity. Ash particles, however, violate the various assumptions upon which Stokes flow and associated models are based. Ash particles are non-spherical and can have complex surface and internal structure. This suggests that particle shape may be one reason that models fail to accurately predict removal rates of fine particles from volcanic ash clouds. The present research seeks to better parameterize predictive models for ash particle terminal velocities, diffusivity, and dispersion in the atmospheric boundary layer. The fundamental hypothesis being tested is that particle shape irreducibly impacts the fate and transport properties of fine volcanic ash. Pilot studies, incorporating modeling and experiments, are being conducted to test this hypothesis. Specifically, a statistical model has been developed that can account for actual volcanic ash size distributions, complex ash particle geometry, and geometry variability. Experimental results are used to systematically validate and improve the model. The experiments are being conducted at the Flow Physics Facility (FPF) at UNH. Terminal velocities and dispersion properties of fine ash are characterized using still air drop experiments in an unconstrained open space using a homogenized mix of source particles. Dispersion and sedimentation dynamics are quantified using particle image velocimetry (PIV). Scanning Electron Microscopy (SEM) of ash particles collected in localized deposition areas is used to correlate the PIV results to particle shape. In addition, controlled wind tunnel experiments are used to determine particle fate and transport in a turbulent boundary layer for a mixed particle population. Collectively, these studies will provide an improved understanding of the effects of particle shape on sedimentation and dispersion, and foundational data for the predictive modeling of the fate and transport of fine ash particles suspended in the atmosphere.

  17. Subcarrier multiplexing tolerant dispersion transmission system employing optical broadband sources.

    PubMed

    Grassi, Fulvio; Mora, José; Ortega, Beatriz; Capmany, José

    2009-03-16

    This paper presents a novel SCM optical transmission system for next-generation WDM-PONs combining broadband optical sources and a Mach-Zehnder interferometric structure. The approach leeds to transport RF signals up to 50 GHz being compatible with RoF systems since a second configuration has been proposed in order to overcome dispersion carrier suppression effect using DSB modulation. The theoretical analysis validates the potentiality of the system also considering the effects of the dispersion slope over the transmission window. (c) 2009 Optical Society of America

  18. Soliton's eigenvalue based analysis on the generation mechanism of rogue wave phenomenon in optical fibers exhibiting weak third order dispersion.

    PubMed

    Weerasekara, Gihan; Tokunaga, Akihiro; Terauchi, Hiroki; Eberhard, Marc; Maruta, Akihiro

    2015-01-12

    One of the extraordinary aspects of nonlinear wave evolution which has been observed as the spontaneous occurrence of astonishing and statistically extraordinary amplitude wave is called rogue wave. We show that the eigenvalues of the associated equation of nonlinear Schrödinger equation are almost constant in the vicinity of rogue wave and we validate that optical rogue waves are formed by the collision between quasi-solitons in anomalous dispersion fiber exhibiting weak third order dispersion.

  19. Simulation of water level, streamflow, and mass transport for the Cooper and Wando rivers near Charleston, South Carolina, 1992-95

    USGS Publications Warehouse

    Conrads, P.A.; Smith, P.A.

    1996-01-01

    The one-dimensional, unsteady-flow model, BRANCH, and the Branched Lagrangian Transport Model (BLTM) were calibrated and validated for the Cooper and Wando Rivers near Charleston, South Carolina. Data used to calibrate the BRANCH model included water-level data at four locations on the Cooper River and two locations on the Wando River, measured tidal-cycle streamflows at five locations on the Wando River, and simulated tidal-cycle streamflows (using an existing validated BRANCH model of the Cooper River) for four locations on the Cooper River. The BRANCH model was used to generate the necessary hydraulic data used in the BLTM model. The BLTM model was calibrated and validated using time series of salinity concentrations at two locations on the Cooper River and at two locations on the Wando River. Successful calibration and validation of the BRANCH and BLTM models to water levels, stream flows, and salinity were achieved after applying a positive 0.45 foot datum correction to the downstream boundary. The sensitivity of the simulated salinity concentrations to changes in the downstream gage datum, channel geometry, and roughness coefficient in the BRANCH model, and to the dispersion factor in the BLTM model was evaluated. The simulated salinity concentrations were most sensitive to changes in the downstream gage datum. A decrease of 0.5 feet in the downstream gage datum increased the simulated 3-day mean salinity concentration by 107 percent (12.7 to 26.3 parts per thousand). The range of the salinity concentration went from a tidal oscillation with a standard deviation of 3.9 parts per thousand to a nearly constant concentration with a standard deviation of 0.0 parts per thousand. An increase in the downstream gage datum decreased the simulated 3-day mean salinity concentration by 47 percent (12.7 to 6.7 parts per thousand) and decreased the standard deviation from 3.9 to 3.4 parts per thousand.

  20. Anthropogenic radioactivity in the Arctic Ocean--review of the results from the joint German project.

    PubMed

    Nies, H; Harms, I H; Karcher, M J; Dethleff, D; Bahe, C

    1999-09-30

    The paper presents the results of the joint project carried out in Germany in order to assess the consequences in the marine environment from the dumping of nuclear wastes in the Kara and Barents Seas. The project consisted of experimental work on measurements of radionuclides in samples from the Arctic marine environment and numerical modelling of the potential pathways and dispersion of contaminants in the Arctic Ocean. Water and sediment samples were collected for determination of radionuclide such as 137Cs, 90Sr, 239 + 240Pu, 238Pu, and 241Am and various organic micropollutants. In addition, a few water and numerous surface sediment samples collected in the Kara Sea and from the Kola peninsula were taken by Russian colleagues and analysed for artificial radionuclide by the BSH laboratory. The role of transport by sea ice from the Kara Sea into the Arctic Ocean was assessed by a small subgroup at GEOMAR. This transport process might be considered as a rapid contribution due to entrainment of contaminated sediments into sea ice, following export from the Kara Sea into the transpolar ice drift and subsequent release in the Atlantic Ocean in the area of the East Greenland Current. Numerical modelling of dispersion of pollutants from the Kara and Barents Seas was carried out both on a local scale for the Barents and Kara Seas and for long range dispersion into the Arctic and Atlantic Oceans. Three-dimensional baroclinic circulation models were applied to trace the transport of pollutants. Experimental results were used to validate the model results such as the discharges from the nuclear reprocessing plant at Sellafield and subsequent contamination of the North Sea up the Arctic Seas.

  1. A Modelling Approach on Fine Particle Spatial Distribution for Street Canyons in Asian Residential Community

    NASA Astrophysics Data System (ADS)

    Ling, Hong; Lung, Shih-Chun Candice; Uhrner, Ulrich

    2016-04-01

    Rapidly increasing urban pollution poses severe health risks.Especially fine particles pollution is considered to be closely related to respiratory and cardiovascular disease. In this work, ambient fine particles are studied in street canyons of a typical Asian residential community using a computational fluid dynamics (CFD) dispersion modelling approach. The community is characterised by an artery road with a busy traffic flow of about 4000 light vehicles (mainly cars and motorcycles) per hour at rush hours, three streets with hundreds light vehicles per hour at rush hours and several small lanes with less traffic. The objective is to study the spatial distribution of the ambient fine particle concentrations within micro-environments, in order to assess fine particle exposure of the people living in the community. The GRAL modelling system is used to simulate and assess the emission and dispersion of the traffic-related fine particles within the community. Traffic emission factors and traffic situation is assigned using both field observation and local emissions inventory data. High resolution digital elevation data (DEM) and building height data are used to resolve the topographical features. Air quality monitoring and mobile monitoring within the community is used to validate the simulation results. By using this modelling approach, the dispersion of fine particles in street canyons is simulated; the impact of wind condition and street orientation are investigated; the contributions of car and motorcycle emissions are quantified respectively; the residents' exposure level of fine particles is assessed. The study is funded by "Taiwan Megacity Environmental Research (II)-chemistry and environmental impacts of boundary layer aerosols (Year 2-3) (103-2111-M-001-001-); Spatial variability and organic markers of aerosols (Year 3)(104-2111-M-001 -005 -)"

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malheiro, Carine; Mendiboure, Bruno; Plantier, Frédéric

    As a first step of an ongoing study of thermodynamic properties and adsorption of complex fluids in confined media, we present a new theoretical description for spherical monomers using the Statistical Associating Fluid Theory for potential of Variable Range (SAFT-VR) and a Non-Local Density Functional Theory (NLDFT) with Weighted Density Approximations (WDA). The well-known Modified Fundamental Measure Theory is used to describe the inhomogeneous hard-sphere contribution as a reference for the monomer and two WDA approaches are developed for the dispersive terms from the high-temperature Barker and Henderson perturbation expansion. The first approach extends the dispersive contributions using the scalarmore » and vector weighted densities introduced in the Fundamental Measure Theory (FMT) and the second one uses a coarse-grained (CG) approach with a unique weighted density. To test the accuracy of this new NLDFT/SAFT-VR coupling, the two versions of the theoretical model are compared with Grand Canonical Monte Carlo (GCMC) molecular simulations using the same molecular model. Only the version with the “CG” approach for the dispersive terms provides results in excellent agreement with GCMC calculations in a wide range of conditions while the “FMT” extension version gives a good representation solely at low pressures. Hence, the “CG” version of the theoretical model is used to reproduce methane adsorption isotherms in a Carbon Molecular Sieve and compared with experimental data after a characterization of the material. The whole results show an excellent agreement between modeling and experiments. Thus, through a complete and consistent comparison both with molecular simulations and with experimental data, the NLDFT/SAFT-VR theory has been validated for the description of monomers.« less

  3. Density functional theory for the description of spherical non-associating monomers in confined media using the SAFT-VR equation of state and weighted density approximations.

    PubMed

    Malheiro, Carine; Mendiboure, Bruno; Plantier, Frédéric; Blas, Felipe J; Miqueu, Christelle

    2014-04-07

    As a first step of an ongoing study of thermodynamic properties and adsorption of complex fluids in confined media, we present a new theoretical description for spherical monomers using the Statistical Associating Fluid Theory for potential of Variable Range (SAFT-VR) and a Non-Local Density Functional Theory (NLDFT) with Weighted Density Approximations (WDA). The well-known Modified Fundamental Measure Theory is used to describe the inhomogeneous hard-sphere contribution as a reference for the monomer and two WDA approaches are developed for the dispersive terms from the high-temperature Barker and Henderson perturbation expansion. The first approach extends the dispersive contributions using the scalar and vector weighted densities introduced in the Fundamental Measure Theory (FMT) and the second one uses a coarse-grained (CG) approach with a unique weighted density. To test the accuracy of this new NLDFT/SAFT-VR coupling, the two versions of the theoretical model are compared with Grand Canonical Monte Carlo (GCMC) molecular simulations using the same molecular model. Only the version with the "CG" approach for the dispersive terms provides results in excellent agreement with GCMC calculations in a wide range of conditions while the "FMT" extension version gives a good representation solely at low pressures. Hence, the "CG" version of the theoretical model is used to reproduce methane adsorption isotherms in a Carbon Molecular Sieve and compared with experimental data after a characterization of the material. The whole results show an excellent agreement between modeling and experiments. Thus, through a complete and consistent comparison both with molecular simulations and with experimental data, the NLDFT/SAFT-VR theory has been validated for the description of monomers.

  4. Acoustic and Seismic Dispersion in Complex Fluids and Solids

    NASA Astrophysics Data System (ADS)

    Goddard, Joe

    2017-04-01

    The first part of the present paper is the continuation of a previous work [3] on the effects of higher spatial gradients and temporal relaxation on stress and heat flux in complex fluids. In particular, the general linear theory is applied to acoustic dispersion, extending a simpler model proposed by Davis and Brenner [2]. The theory is applied to a linearized version of the Chapman-Enskog fluid [1] valid to terms of Burnett order and including Maxwell-Cataneo relaxation of stress and heat flux on relaxation time scales τ. For this model, the dispersion relation k(ω) giving spatial wave number k as function of temporal frequency ω is a cubic in k2, in contrast to the quadratic in k2 given by the classical model and the recently proposed modification [2]. The cubic terms are shown to be important only for ωτ = O(1) where Maxwell-Cataneo relaxation is also important. As a second part of the present work, it is shown how the above model can also be applied to isotropic solids, where both shear and pressure waves are important. Finally, consideration is given to hyperstress in micro- polar continua, including both graded and micro-morphic varieties. [1]S. Chapman and T. Cowling. The mathematical theory of non-uniform gases. Cambridge University Press, [Cambridge, UK], 1960. [2]A. M.J. Davis and H. Brenner. Thermal and viscous effects on sound waves: revised classical theory. J. Acoust. Soc. Am., 132(5):2963-9, 2012. [3] J.D. Goddard. On material velocities and non-locality in the thermo-mechanics of continua. Int. J. Eng. Sci., 48(11):1279-88, 2010.

  5. Produced water re-injection in a non-fresh water aquifer with geochemical reaction, hydrodynamic molecular dispersion and adsorption kinetics controlling: model development and numerical simulation

    NASA Astrophysics Data System (ADS)

    Obe, Ibidapo; Fashanu, T. A.; Idialu, Peter O.; Akintola, Tope O.; Abhulimen, Kingsley E.

    2017-06-01

    An improved produced water reinjection (PWRI) model that incorporates filtration, geochemical reaction, molecular transport, and mass adsorption kinetics was developed to predict cake deposition and injectivity performance in hydrocarbon aquifers in Nigeria oil fields. Thus, the improved PWRI model considered contributions of geochemical reaction, adsorption kinetics, and hydrodynamic molecular dispersion mechanism to alter the injectivity and deposition of suspended solids on aquifer wall resulting in cake formation in pores during PWRI and transport of active constituents in hydrocarbon reservoirs. The injectivity decline and cake deposition for specific case studies of hydrocarbon aquifers in Nigeria oil fields were characterized with respect to its well geometry, lithology, and calibrations data and simulated in COMSOL multiphysics software environment. The PWRI model was validated by comparisons to assessments of previous field studies based on data and results supplied by operator and regulator. The results of simulation showed that PWRI performance was altered because of temporal variations and declinations of permeability, injectivity, and cake precipitation, which were observed to be dependent on active adsorption and geochemical reaction kinetics coupled with filtration scheme and molecular dispersion. From the observed results and findings, transition time t r to cake nucleation and growth were dependent on aquifer constituents, well capacity, filtration coefficients, particle-to-grain size ratio, water quality, and more importantly, particle-to-grain adsorption kinetics. Thus, the results showed that injectivity decline and permeability damage were direct contributions of geochemical reaction, hydrodynamic molecular diffusion, and adsorption kinetics to the internal filtration mechanism, which are largely dependent on the initial conditions of concentration of active constituents of produced water and aquifer capacity.

  6. Quantification of Dynamic Model Validation Metrics Using Uncertainty Propagation from Requirements

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Peck, Jeffrey A.; Stewart, Eric C.

    2018-01-01

    The Space Launch System, NASA's new large launch vehicle for long range space exploration, is presently in the final design and construction phases, with the first launch scheduled for 2019. A dynamic model of the system has been created and is critical for calculation of interface loads and natural frequencies and mode shapes for guidance, navigation, and control (GNC). Because of the program and schedule constraints, a single modal test of the SLS will be performed while bolted down to the Mobile Launch Pad just before the first launch. A Monte Carlo and optimization scheme will be performed to create thousands of possible models based on given dispersions in model properties and to determine which model best fits the natural frequencies and mode shapes from modal test. However, the question still remains as to whether this model is acceptable for the loads and GNC requirements. An uncertainty propagation and quantification (UP and UQ) technique to develop a quantitative set of validation metrics that is based on the flight requirements has therefore been developed and is discussed in this paper. There has been considerable research on UQ and UP and validation in the literature, but very little on propagating the uncertainties from requirements, so most validation metrics are "rules-of-thumb;" this research seeks to come up with more reason-based metrics. One of the main assumptions used to achieve this task is that the uncertainty in the modeling of the fixed boundary condition is accurate, so therefore that same uncertainty can be used in propagating the fixed-test configuration to the free-free actual configuration. The second main technique applied here is the usage of the limit-state formulation to quantify the final probabilistic parameters and to compare them with the requirements. These techniques are explored with a simple lumped spring-mass system and a simplified SLS model. When completed, it is anticipated that this requirements-based validation metric will provide a quantified confidence and probability of success for the final SLS dynamics model, which will be critical for a successful launch program, and can be applied in the many other industries where an accurate dynamic model is required.

  7. Testing a 1-D Analytical Salt Intrusion Model and the Predictive Equation in Malaysian Estuaries

    NASA Astrophysics Data System (ADS)

    Gisen, Jacqueline Isabella; Savenije, Hubert H. G.

    2013-04-01

    Little is known about the salt intrusion behaviour in Malaysian estuaries. Study on this topic sometimes requires large amounts of data especially if a 2-D or 3-D numerical models are used for analysis. In poor data environments, 1-D analytical models are more appropriate. For this reason, a fully analytical 1-D salt intrusion model, based on the theory of Savenije in 2005, was tested in three Malaysian estuaries (Bernam, Selangor and Muar) because it is simple and requires minimal data. In order to achieve that, site surveys were conducted in these estuaries during the dry season (June-August) at spring tide by moving boat technique. Data of cross-sections, water levels and salinity were collected, and then analysed with the salt intrusion model. This paper demonstrates a good fit between the simulated and observed salinity distribution for all three estuaries. Additionally, the calibrated Van der Burgh's coefficient K, Dispersion coefficient D0, and salt intrusion length L, for the estuaries also displayed a reasonable correlations with those calculated from the predictive equations. This indicates that not only is the salt intrusion model valid for the case studies in Malaysia but also the predictive model. Furthermore, the results from this study describe the current state of the estuaries with which the Malaysian water authority in Malaysia can make decisions on limiting water abstraction or dredging. Keywords: salt intrusion, Malaysian estuaries, discharge, predictive model, dispersion

  8. Neural network controller development and implementation for spark ignition engines with high EGR levels.

    PubMed

    Vance, Jonathan Blake; Singh, Atmika; Kaul, Brian C; Jagannathan, Sarangapani; Drallmeier, James A

    2007-07-01

    Past research has shown substantial reductions in the oxides of nitrogen (NOx) concentrations by using 10%-25% exhaust gas recirculation (EGR) in spark ignition (SI) engines (see Dudek and Sain, 1989). However, under high EGR levels, the engine exhibits strong cyclic dispersion in heat release which may lead to instability and unsatisfactory performance preventing commercial engines to operate with high EGR levels. A neural network (NN)-based output feedback controller is developed to reduce cyclic variation in the heat release under high levels of EGR even when the engine dynamics are unknown by using fuel as the control input. A separate control loop was designed for controlling EGR levels. The stability analysis of the closed-loop system is given and the boundedness of the control input is demonstrated by relaxing separation principle, persistency of excitation condition, certainty equivalence principle, and linear in the unknown parameter assumptions. Online training is used for the adaptive NN and no offline training phase is needed. This online learning feature and model-free approach is used to demonstrate the applicability of the controller on a different engine with minimal effort. Simulation results demonstrate that the cyclic dispersion is reduced significantly using the proposed controller when implemented on an engine model that has been validated experimentally. For a single cylinder research engine fitted with a modern four-valve head (Ricardo engine), experimental results at 15% EGR indicate that cyclic dispersion was reduced 33% by the controller, an improvement of fuel efficiency by 2%, and a 90% drop in NOx from stoichiometric operation without EGR was observed. Moreover, unburned hydrocarbons (uHC) drop by 6% due to NN control as compared to the uncontrolled scenario due to the drop in cyclic dispersion. Similar performance was observed with the controller on a different engine.

  9. Modelling of hydrogen sulfide dispersion from the geothermal power plants of Tuscany (Italy).

    PubMed

    Somma, Renato; Granieri, Domenico; Troise, Claudia; Terranova, Carlo; De Natale, Giuseppe; Pedone, Maria

    2017-04-01

    We applied the Eulerian code DISGAS (DISpersion of GAS) to investigate the dispersion of the hydrogen sulfide (H 2 S) from 32 geothermal power plants (out of 35 active) belonging to the geothermal districts of Larderello, Travale-Radicondoli and Monte Amiata, in Tuscany (Italy). An updated geographic database, for use in a GIS environment, was realized in order to process input data required by the code and to handle the outputs. The results suggest that H 2 S plumes emitted from geothermal power plants are mainly concentrated around the stacks of emission (H 2 S concentration up to 1100μg/m 3 ) and rapidly dilute along the dominant local wind direction. Although estimated values of air H 2 S concentrations are orders of magnitude higher than in unpolluted areas, they do not indicate an immediate health risk for nearby communities, under the more frequent local atmospheric conditions. Starting from the estimated values, validated by measurements in the field, we make some considerations about the environmental impact of the H 2 S emission in all the geothermal areas of the Tuscany region. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Development, validation, and uncertainty measurement of multi-residue analysis of organochlorine and organophosphorus pesticides using pressurized liquid extraction and dispersive-SPE techniques.

    PubMed

    Sanyal, Doyeli; Rani, Anita; Alam, Samsul; Gujral, Seema; Gupta, Ruchi

    2011-11-01

    Simple and efficient multi-residue analytical methods were developed and validated for the determination of 13 organochlorine and 17 organophosphorous pesticides from soil, spinach and eggplant. Techniques namely accelerated solvent extraction and dispersive SPE were used for sample preparations. The recovery studies were carried out by spiking the samples at three concentration levels (1 limit of quantification (LOQ), 5 LOQ, and 10 LOQ). The methods were subjected to a thorough validation procedure. The mean recovery for soil, spinach and eggplant were in the range of 70-120% with median CV (%) below 10%. The total uncertainty was evaluated taking four main independent sources viz., weighing, purity of the standard, GC calibration curve and repeatability under consideration. The expanded uncertainty was well below 10% for most of the pesticides and the rest fell in the range of 10-20%.

  11. A new method to track seed dispersal and recruitment using 15N isotope enrichment.

    PubMed

    Carlo, Tomás A; Tewksbury, Joshua J; Martínez Del Río, Carlos

    2009-12-01

    Seed dispersal has a powerful influence on population dynamics, genetic structuring, evolutionary rates, and community ecology. Yet, patterns of seed dispersal are difficult to measure due to methodological shortcomings in tracking dispersed seeds from sources of interest. Here we introduce a new method to track seed dispersal: stable isotope enrichment. It consists of leaf-feeding plants with sprays of 15N-urea during the flowering stage such that seeds developed after applications are isotopically enriched. We conducted a greenhouse experiment with Solanum americanum and two field experiments with wild Capsicum annuum in southern Arizona, USA, to field-validate the method. First, we show that plants sprayed with 15N-urea reliably produce isotopically enriched progeny, and that delta 15N (i.e., the isotopic ratio) of seeds and seedlings is a linear function of the 15N-urea concentration sprayed on mothers. We demonstrate that three urea dosages can be used to distinctly enrich plants and unambiguously differentiate their offspring after seeds are dispersed by birds. We found that, with high urea dosages, the resulting delta 15N values in seedlings are 10(3) - 10(4) times higher than the delta 15N values of normal plants. This feature allows tracking not only where seeds arrive, but in locations where seeds germinate and recruit, because delta 15N enrichment is detectable in seedlings that have increased in mass by at least two orders of magnitude before fading to normal delta 15N values. Last, we tested a mixing model to analyze seed samples in bulk. We used the delta 15N values of batches (i.e., combined seedlings or seeds captured in seed traps) to estimate the number of enriched seeds coming from isotopically enriched plants in the field. We confirm that isotope enrichment, combined with batch-sampling, is a cheap, reliable, and user-friendly method for bulk-processing seeds and is thus excellent for the detection of rare dispersal events. This method could further the study of dispersal biology, including the elusive, but critically important, estimation of long-distance seed dispersal.

  12. Dart model for irradiation-induced swelling of dispersion fuel elements including aluminum-fuel interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rest, J.; Hofman, G.L.

    1997-06-01

    The Dispersion Analysis Research Tool (DART) contains models for fission-gas induced fuel swelling, interaction of fuel with the matrix aluminum, resultant reaction-product swelling, and calculation of the stress gradient within the fuel particle. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by a comparison of DART calculations of fuel swelling of U{sub 3}SiAl-Al and U{sub 3}Si{sub 2}-Al for various dispersion fuel element designs with the data. DART results are compared with data for fuel swelling Of U{sub 3}SiAl-Al in plate, tube, and rod configurations as a function of fission density.more » Plate and tube calculations were performed at a constant fuel temperature of 373 K and 518 K, respectively. An irradiation temperature of 518 K results in a calculated aluminide layer thickness for the Russian tube that is in the center of the measured range (16 {mu}m). Rod calculations were performed with a temperature gradient across the rod characterized by surface and central temperatures of 373 K and 423 K, respectively. The effective yield stress of irradiated Al matrix material and the aluminide was determined by comparing the results of DART calculations with postirradiation immersion volume measurement of U{sub 3}SiAl plates. The values for the effective yield stress were used in all subsequent simulations. The lower calculated fuel swelling in the rod-type element is due to an assumed biaxial stress state. Fuel swelling in plates results in plate thickness increase only. Likewise, in tubes, only the wall thickness increases. Irradiation experiments have shown that plate-type dispersion fuel elements can develop blisters or pillows at high U-235 burnup when fuel compounds exhibiting breakaway swelling are used at moderate to high fuel volume fractions. DART-calculated interaction layer thickness and fuel swelling follows the trends of the observations. 3 refs., 2 figs.« less

  13. Heterogeneity in Hydraulic Conductivity and Its Role on the Macroscale Transport of a Solute Plume from a Landfill: From Measurements to a Practical Application of Stochastic Flow and Transport Theory

    NASA Astrophysics Data System (ADS)

    Sudicky, E. A.; Illman, W. A.; Goltz, I. K.; Adams, J. J.; McLaren, R. G.

    2008-12-01

    The spatial variability of hydraulic conductivity in a shallow unconfined aquifer located at North Bay, Ontario composed of glacial-lacustrine and glacial-fluvial sands is examined in exceptional detail and characterized geostatistically. A total of 1878 permeameter measurements were performed at 0.05 m vertical intervals along cores taken from 20 boreholes along two intersecting transect lines. Simultaneous three-dimensional fitting of ln K variogram data to an exponential model yielded geostatistical parameters for the estimation of bulk hydraulic conductivity and solute dispersion parameters. The analysis revealed a ln K variance equal to about 2.0 and three-dimensional anisotropy of the correlation structure of the heterogeneity (λ 1, λ 2 and λ 3 equal to 17.19 m, 7.39 m and 1.0 m, respectively). Effective values of the hydraulic conductivity tensor and the value of the longitudinal macrodispersivity were calculated using the theoretical expressions of Gelhar and Axness (1983). The magnitude of the longitudinal macrodispersivity is reasonably consistent with the observed degree of longitudinal dispersion of the landfill plume along the principal path of migration. The prediction of the transverse dispersion suggests that the transverse-mixing process at the field scale is essentially controlled by local dispersion and diffusion. Variably-saturated 3D flow modeling using the statistically-derived effective hydraulic conductivity tensor allowed a reasonably close calibration to the measured water table and the observed heads at various depths in an array of piezometers. Concomitant transport modeling using the calculated longitudinal macrodispersivity, as well as local-scale values of the transverse dispersion parameters, reasonably predicted the extent and migration rates of the observed contaminant plume that was monitored using a network of multi-level samplers over a period of about 5 years. This study demonstrates that the use of statistically-derived parameters based on stochastic theories results in reliable large-scale 3D flow and transport models for complex hydrogeological systems. This is in agreement with the conclusions reached by Sudicky (1986) at the site of an elaborate tracer test conducted in the aquifer at the Canadian Forces Base Borden. This study represents one of the few attempts at validating stochastic theories of groundwater flow and solute transport in three-dimensions at a site where extensive field data have been collected.

  14. 3D model of radionuclide dispersion in coastal areas with multifraction cohesive and non-cohesive sediments

    NASA Astrophysics Data System (ADS)

    Brovchenko, Igor; Maderich, Vladimir; Jung, Kyung Tae

    2015-04-01

    We developed new radionuclide dispersion model that may be used in coastal areas, rivers and estuaries with non-uniform distribution of suspended and bed sediments both cohesive and non-cohesive types. Model describes radionuclides concentration in dissolved phase in water column, particulated phase on suspended sediments on each sediment class types, bed sediments and pore water. The transfer of activity between the water column and the pore water in the upper layer of the bottom sediment is governed by diffusion processes. The phase exchange between dissolved and particulate radionuclides is written in terms of desorption rate a12 (s-1) and distribution coefficient Kd,iw and Kd,ib (m3/kg) for water column and for bottom deposit, respectively. Following (Periáñez et al., 1996) the dependence of distribution coefficients is inversely proportional to the sediment particle size. For simulation of 3D circulation, turbulent diffusion and wave fields a hydrostatic model SELFE (Roland et. al. 2010) that solves Reynolds-stress averaged Navier-Stokes (RANS) equations and Wave Action transport equation on the unstructured grids was used. Simulation of suspended sediment concentration and bed sediments composition is based on (L. Pinto et. al., 2012) approach that originally was developed for non-cohesive sediments. In present study we modified this approach to include possibility of simulating mixture of cohesive and non-cohesive sediments by implementing parameterizations for erosion and deposition fluxes for cohesive sediments and by implementing flocculation model for determining settling velocity of cohesive flocs. Model of sediment transport was calibrated on measurements in the Yellow Sea which is shallow tidal basin with strongly non-uniform distribution of suspended and bed sediments. Model of radionuclide dispersion was verified on measurements of 137Cs concentration in surface water and bed sediments after Fukushima Daiichi nuclear accident. References Periáñez, R. Abril, J.M., Garcia-Leon, M. (1996). Modelling the dispersion of non-conservative radionuclides in tidal waters'Part 1: conceptual and mathematical model. Journal of Environmental Radioactivity 31 (2), 127-141 Roland, A., Y. J. Zhang, H. V. Wang, Y. Meng, Y.-C. Teng, V. Maderich, I. Brovchenko, M. Dutour-Sikiric, and U. Zanke (2012), A fully coupled 3D wave-current interaction model on unstructured grids, J. Geophys. Res., 117, C00J33 Pinto L., Fortunato A.B., Zhang Y., Oliveira A., Sancho F.E.P. (2012) Development and validation of a three-dimensional morphodynamic modelling system for non-cohesive sediments, Ocean Modell., (57-58), 1-14

  15. How tall buildings affect turbulent air flows and dispersion of pollution within a neighbourhood.

    PubMed

    Aristodemou, Elsa; Boganegra, Luz Maria; Mottet, Laetitia; Pavlidis, Dimitrios; Constantinou, Achilleas; Pain, Christopher; Robins, Alan; ApSimon, Helen

    2018-02-01

    The city of London, UK, has seen in recent years an increase in the number of high-rise/multi-storey buildings ("skyscrapers") with roof heights reaching 150 m and more, with the Shard being a prime example with a height of ∼310 m. This changing cityscape together with recent plans of local authorities of introducing Combined Heat and Power Plant (CHP) led to a detailed study in which CFD and wind tunnel studies were carried out to assess the effect of such high-rise buildings on the dispersion of air pollution in their vicinity. A new, open-source simulator, FLUIDITY, which incorporates the Large Eddy Simulation (LES) method, was implemented; the simulated results were subsequently validated against experimental measurements from the EnFlo wind tunnel. The novelty of the LES methodology within FLUIDITY is based on the combination of an adaptive, unstructured, mesh with an eddy-viscosity tensor (for the sub-grid scales) that is anisotropic. The simulated normalised mean concentrations results were compared to the corresponding wind tunnel measurements, showing for most detector locations good correlations, with differences ranging from 3% to 37%. The validation procedure was followed by the simulation of two further hypothetical scenarios, in which the heights of buildings surrounding the source building were increased. The results showed clearly how the high-rise buildings affected the surrounding air flows and dispersion patterns, with the generation of "dead-zones" and high-concentration "hotspots" in areas where these did not previously exist. The work clearly showed that complex CFD modelling can provide useful information to urban planners when changes to cityscapes are considered, so that design options can be tested against environmental quality criteria. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  16. Effect of tubing length on the dispersion correction of an arterially sampled input function for kinetic modeling in PET.

    PubMed

    O'Doherty, Jim; Chilcott, Anna; Dunn, Joel

    2015-11-01

    Arterial sampling with dispersion correction is routinely performed for kinetic analysis of PET studies. Because of the the advent of PET-MRI systems, non-MR safe instrumentation will be required to be kept outside the scan room, which requires the length of the tubing between the patient and detector to increase, thus worsening the effects of dispersion. We examined the effects of dispersion in idealized radioactive blood studies using various lengths of tubing (1.5, 3, and 4.5 m) and applied a well-known transmission-dispersion model to attempt to correct the resulting traces. A simulation study was also carried out to examine noise characteristics of the model. The model was applied to patient traces using a 1.5 m acquisition tubing and extended to its use at 3 m. Satisfactory dispersion correction of the blood traces was achieved in the 1.5 m line. Predictions on the basis of experimental measurements, numerical simulations and noise analysis of resulting traces show that corrections of blood data can also be achieved using the 3 m tubing. The effects of dispersion could not be corrected for the 4.5 m line by the selected transmission-dispersion model. On the basis of our setup, correction of dispersion in arterial sampling tubing up to 3 m by the transmission-dispersion model can be performed. The model could not dispersion correct data acquired using a 4.5 m arterial tubing.

  17. CFD-RANS prediction of individual exposure from continuous release of hazardous airborne materials in complex urban environments

    NASA Astrophysics Data System (ADS)

    Efthimiou, G. C.; Andronopoulos, S.; Bartzis, J. G.; Berbekar, E.; Harms, F.; Leitl, B.

    2017-02-01

    One of the key issues of recent research on the dispersion inside complex urban environments is the ability to predict individual exposure (maximum dosages) of an airborne material which is released continuously from a point source. The present work addresses the question whether the computational fluid dynamics (CFD)-Reynolds-averaged Navier-Stokes (RANS) methodology can be used to predict individual exposure for various exposure times. This is feasible by providing the two RANS concentration moments (mean and variance) and a turbulent time scale to a deterministic model. The whole effort is focused on the prediction of individual exposure inside a complex real urban area. The capabilities of the proposed methodology are validated against wind-tunnel data (CUTE experiment). The present simulations were performed 'blindly', i.e. the modeller had limited information for the inlet boundary conditions and the results were kept unknown until the end of the COST Action ES1006. Thus, a high uncertainty of the results was expected. The general performance of the methodology due to this 'blind' strategy is good. The validation metrics fulfil the acceptance criteria. The effect of the grid and the turbulence model on the model performance is examined.

  18. Generalized analytical solutions to multispecies transport equations with scale-dependent dispersion coefficients subject to time-dependent boundary conditions

    NASA Astrophysics Data System (ADS)

    Chen, J. S.; Chiang, S. Y.; Liang, C. P.

    2017-12-01

    It is essential to develop multispecies transport analytical models based on a set of advection-dispersion equations (ADEs) coupled with sequential first-order decay reactions for the synchronous prediction of plume migrations of both parent and its daughter species of decaying contaminants such as radionuclides, dissolved chlorinated organic compounds, pesticides and nitrogen. Although several analytical models for multispecies transport have already been reported, those currently available in the literature have primarily been derived based on ADEs with constant dispersion coefficients. However, there have been a number of studies demonstrating that the dispersion coefficients increase with the solute travel distance as a consequence of variation in the hydraulic properties of the porous media. This study presents novel analytical models for multispecies transport with distance-dependent dispersion coefficients. The correctness of the derived analytical models is confirmed by comparing them against the numerical models. Results show perfect agreement between the analytical and numerical models. Comparison of our new analytical model for multispecies transport with scale-dependent dispersion to an analytical model with constant dispersion is made to illustrate the effects of the dispersion coefficients on the multispecies transport of decaying contaminants.

  19. The use of dispersion modeling to determine the feasibility of vegetative environmental buffers (VEBS) at controlling odor dispersion

    NASA Astrophysics Data System (ADS)

    Weber, Eric E.

    Concentrated animal feeding operations (CAFOs) have been experiencing increased resistance from surrounding residents making construction of new facilities or expansion of existing ones increasingly limited (Jacobson et al., 2002). Such concerns often include the impact of nuisance odor on peoples’ lives and on the environment (Huang and Miller, 2006). Vegetative environmental buffers (VEBs) have been suggested as a possible odor control technology. They have been found to impact odor plume dispersion and have shown the possibility of being an effective tool for odor abatement when used alone or in combination with other technologies (Lin et al., 2006). The main objective of this study was to use Gaussian-type dispersion modeling to determine the feasibility of use and the effectiveness of a VEB at controlling the spread of odor from a swine feeding operation. First, wind tunnel NH3 dispersion trends were compared to model generated dispersion trends to determine the accuracy of the model at handling VEB dispersion. Next, facility-scale (northern Missouri specific) model simulations with and without a VEB were run to determine its viability as an option for dispersion reduction. Finally, dispersion forecasts that integrated numerical weather forecasts were developed and compared to collected concentration data to determine forecast accuracy. The results of this study found that dispersion models can be used to simulate dispersion around a VEB. AERMOD-generated dispersion trends were found to follow similar patterns of decreasing downwind concentration to those of both wind tunnel simulations and previous research. This shows that a VEB can be incorporated into AERMOD and that the model can be used to determine its effectiveness as an odor control option. The results of this study also showed that a VEB has an effect on odor dispersion by reducing downwind concentrations. This was confirmed by both wind tunnel and AERMOD simulations of dispersion displaying decreased downwind concentrations from a control scenario. This shows that VEBs have the potential to act as an odor control option for CAFOs. This study also found that a forecast method that integrated numerical weather prediction into dispersion models could be developed to forecast areas of high concentration. Model-forecasted dispersion trends had a high spatial correlation with collected concentrations for days when the facility was emitting. This shows that dispersion models can accurately predict high concentration areas using forecasted weather data. The information provided by this study may ultimately prove useful for this particular facility and others and may help to lower tensions with surrounding residents.

  20. Development of a Scale-up Tool for Pervaporation Processes

    PubMed Central

    Thiess, Holger; Strube, Jochen

    2018-01-01

    In this study, an engineering tool for the design and optimization of pervaporation processes is developed based on physico-chemical modelling coupled with laboratory/mini-plant experiments. The model incorporates the solution-diffusion-mechanism, polarization effects (concentration and temperature), axial dispersion, pressure drop and the temperature drop in the feed channel due to vaporization of the permeating components. The permeance, being the key model parameter, was determined via dehydration experiments on a mini-plant scale for the binary mixtures ethanol/water and ethyl acetate/water. A second set of experimental data was utilized for the validation of the model for two chemical systems. The industrially relevant ternary mixture, ethanol/ethyl acetate/water, was investigated close to its azeotropic point and compared to a simulation conducted with the determined binary permeance data. Experimental and simulation data proved to agree very well for the investigated process conditions. In order to test the scalability of the developed engineering tool, large-scale data from an industrial pervaporation plant used for the dehydration of ethanol was compared to a process simulation conducted with the validated physico-chemical model. Since the membranes employed in both mini-plant and industrial scale were of the same type, the permeance data could be transferred. The comparison of the measured and simulated data proved the scalability of the derived model. PMID:29342956

  1. A Computer Model of Insect Traps in a Landscape

    NASA Astrophysics Data System (ADS)

    Manoukis, Nicholas C.; Hall, Brian; Geib, Scott M.

    2014-11-01

    Attractant-based trap networks are important elements of invasive insect detection, pest control, and basic research programs. We present a landscape-level, spatially explicit model of trap networks, focused on detection, that incorporates variable attractiveness of traps and a movement model for insect dispersion. We describe the model and validate its behavior using field trap data on networks targeting two species, Ceratitis capitata and Anoplophora glabripennis. Our model will assist efforts to optimize trap networks by 1) introducing an accessible and realistic mathematical characterization of the operation of a single trap that lends itself easily to parametrization via field experiments and 2) allowing direct quantification and comparison of sensitivity between trap networks. Results from the two case studies indicate that the relationship between number of traps and their spatial distribution and capture probability under the model is qualitatively dependent on the attractiveness of the traps, a result with important practical consequences.

  2. Comparing large eddy simulations and measurements of the turbulent kinetic energy budget in an urban canopy layer

    NASA Astrophysics Data System (ADS)

    Parlange, M. B.; Giometto, M. G.; Meneveau, C. V.; Fang, J.; Christen, A.

    2013-12-01

    Local turbulent kinetic energy (TKE) in the Urban Canopy Layer (UCL) is highly dependent on the actual configuration of obstacles relative to mean wind and stability. For many applications, building-resolving information is neither required nor feasible, and simply beyond the numerical capabilities of operational systems. Common urban canopy parameterizations (UCP) used in dispersion and mesoscale forecasting models hence rely on a horizontally averaged approach, where the UCL is represented as a 1D column, often for simplified geometries such as infinite street canyons. We use Large Eddy Simulations (LES) of the airflow over and within a realistic urban geometry in the city of Basel, Switzerland to determine all terms of the TKE budget in order to guide and validate current approaches used in UCPs. A series of high-resolution LES runs of the fully developed flow are performed in order to characterize the TKE budget terms in a horizontally averaged frame of view for various directions of the approaching flow under neutral conditions. Equations are solved on a regular domain with a horizontal resolution of 2 m. A Lagrangian scale-dependent LES model is adopted to parametrize the subgrid-scale stresses and buildings are taken into account adopting an immersed boundary approach with the geometry taken from a highly accurate digital building model. The modeled (periodic) domain is centered on the location of a 32 m tall tower, where measurements of turbulence were performed, during the BUBBLE program in 2001/02 (Rotach et al., Theor. Appl. Clim., 82, 231-261, 2005). Selected terms of the TKE budget were inferred from six levels of ultrasonic anemometer measurements operated over nearly a full year between ground level and two times the mean building height. This contribution answers the questions: (1) How well do TKE budget terms calculated by the LES at the exact tower location match the single point measurements on the tower under comparable conditions? (2) How representative are the single-point measurements at the tower-location compared to the horizontally-averaged TKE budget in the entire urban domain? (3) How important are non-measurable terms of the TKE budget (wake production, dispersive transport, pressure transport) under the current real urban geometry? Our results show good statistical agreement between tower measurements and numerically resolved quantities, validating the model and confirming our immersed boundary approach in the LES a valuable tool to study turbulence and dispersion within real UCLs. Turbulent kinetic energy (TKE) in the UCL is primarily produced at roof-level, and turbulence is transported down into the cavities of the urban canopy (street canyons, backyards). From our results it is also clear how tower measurements cannot be used to quantify all terms in a horizontally-averaged view and the non-measured dispersive terms are important in a real canopy.

  3. Crash data modeling with a generalized estimator.

    PubMed

    Ye, Zhirui; Xu, Yueru; Lord, Dominique

    2018-08-01

    The investigation of relationships between traffic crashes and relevant factors is important in traffic safety management. Various methods have been developed for modeling crash data. In real world scenarios, crash data often display the characteristics of over-dispersion. However, on occasions, some crash datasets have exhibited under-dispersion, especially in cases where the data are conditioned upon the mean. The commonly used models (such as the Poisson and the NB regression models) have associated limitations to cope with various degrees of dispersion. In light of this, a generalized event count (GEC) model, which can be generally used to handle over-, equi-, and under-dispersed data, is proposed in this study. This model was first applied to case studies using data from Toronto, characterized by over-dispersion, and then to crash data from railway-highway crossings in Korea, characterized with under-dispersion. The results from the GEC model were compared with those from the Negative binomial and the hyper-Poisson models. The cases studies show that the proposed model provides good performance for crash data characterized with over- and under-dispersion. Moreover, the proposed model simplifies the modeling process and the prediction of crash data. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Uncertainty Quantification of Multi-Phase Closures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadiga, Balasubramanya T.; Baglietto, Emilio

    In the ensemble-averaged dispersed phase formulation used for CFD of multiphase ows in nuclear reactor thermohydraulics, closures of interphase transfer of mass, momentum, and energy constitute, by far, the biggest source of error and uncertainty. Reliable estimators of this source of error and uncertainty are currently non-existent. Here, we report on how modern Validation and Uncertainty Quanti cation (VUQ) techniques can be leveraged to not only quantify such errors and uncertainties, but also to uncover (unintended) interactions between closures of di erent phenomena. As such this approach serves as a valuable aide in the research and development of multiphase closures.more » The joint modeling of lift, drag, wall lubrication, and turbulent dispersion|forces that lead to tranfer of momentum between the liquid and gas phases|is examined in the frame- work of validation of the adiabatic but turbulent experiments of Liu and Banko , 1993. An extensive calibration study is undertaken with a popular combination of closure relations and the popular k-ϵ turbulence model in a Bayesian framework. When a wide range of super cial liquid and gas velocities and void fractions is considered, it is found that this set of closures can be validated against the experimental data only by allowing large variations in the coe cients associated with the closures. We argue that such an extent of variation is a measure of uncertainty induced by the chosen set of closures. We also nd that while mean uid velocity and void fraction pro les are properly t, uctuating uid velocity may or may not be properly t. This aspect needs to be investigated further. The popular set of closures considered contains ad-hoc components and are undesirable from a predictive modeling point of view. Consequently, we next consider improvements that are being developed by the MIT group under CASL and which remove the ad-hoc elements. We use non-intrusive methodologies for sensitivity analysis and calibration (using Dakota) to study sensitivities of the CFD representation (STARCCM+) of uid velocity pro les and void fraction pro les in the context of Shaver and Podowski, 2015 correction to lift, and the Lubchenko et al., 2017 formulation of wall lubrication.« less

  5. Seismic tomography of northeastern Tibetan Plateau from body wave arrival times and surface wave dispersion data

    NASA Astrophysics Data System (ADS)

    Fang, H.; Yao, H.; Zhang, H.

    2017-12-01

    Reliable crustal and upper mantle structure is important to understand expansion of material from the Tibetan plateau to its northeastern margin. Previous studies have used either ambient noise tomography or body wave traveltime tomography to obtain the crustal velocity models in northeastern Tibetan Plateau. However, clear differences appear in these models obtained using different datasets. Here we propose to jointly invert local and teleseismic body wave arrival times and surface wave dispersion data from ambient noise cross correlation to obtain a unified P and S wavespeed model of the crust and upper mantle in NE Tibetan Plateau. Following Fang et al. (2016), we adopt the direct inversion strategy for surface wave data (Fang et al., 2015), which eliminates the need to construct the phase/group velocity maps and allows the straightforward incorporation of surface wave dispersion data into the body wave inversion framework. For body wave data including both local and teleseismic arrival times, we use the fast marching method (Rawlinson et al., 2004) in order to trace multiple seismic phases simultaneously. The joint inversion method takes advantage of the complementary strengths of different data types, with local body wave data constraining more on the P than S wavespeed in the crust, surface wave data most sensitive to S wavespeed in the crust and upper mantle, teleseismic body wave data resolving the upper mantle structure. A series of synthetic tests will be used to show the robustness and superiority of the joint inversion method. Besides, the inverted model will be validated by waveform simulation and comparison with other studies, like receiver function imaging. The resultant P and S wavespeed models, as well as the derived Vp/Vs model, will be essential to understand the regional tectonics of the northeastern Tibetan Plateau, and to address the related geodynamic questions of the Tibetan Plateau formation and expansion.

  6. Tsunami Modeling to Validate Slip Models of the 2007 M w 8.0 Pisco Earthquake, Central Peru

    NASA Astrophysics Data System (ADS)

    Ioualalen, M.; Perfettini, H.; Condo, S. Yauri; Jimenez, C.; Tavera, H.

    2013-03-01

    Following the 2007, August 15th, M w 8.0, Pisco earthquake in central Peru, Sladen et al. (J Geophys Res 115: B02405, 2010) have derived several slip models of this event. They inverted teleseismic data together with geodetic (InSAR) measurements to look for the co-seismic slip distribution on the fault plane, considering those data sets separately or jointly. But how close to the real slip distribution are those inverted slip models? To answer this crucial question, the authors generated some tsunami records based on their slip models and compared them to DART buoys, tsunami records, and available runup data. Such an approach requires a robust and accurate tsunami model (non-linear, dispersive, accurate bathymetry and topography, etc.) otherwise the differences between the data and the model may be attributed to the slip models themselves, though they arise from an incomplete tsunami simulation. The accuracy of a numerical tsunami simulation strongly depends, among others, on two important constraints: (i) A fine computational grid (and thus the bathymetry and topography data sets used) which is not always available, unfortunately, and (ii) a realistic tsunami propagation model including dispersion. Here, we extend Sladen's work using newly available data, namely a tide gauge record at Callao (Lima harbor) and the Chilean DART buoy record, while considering a complete set of runup data along with a more realistic tsunami numerical that accounts for dispersion, and also considering a fine-resolution computational grid, which is essential. Through these accurate numerical simulations we infer that the InSAR-based model is in better agreement with the tsunami data, studying the case of the Pisco earthquake indicating that geodetic data seems essential to recover the final co-seismic slip distribution on the rupture plane. Slip models based on teleseismic data are unable to describe the observed tsunami, suggesting that a significant amount of co-seismic slip may have been aseismic. Finally, we compute the runup distribution along the central part of the Peruvian coast to better understand the wave amplification/attenuation processes of the tsunami generated by the Pisco earthquake.

  7. A generalized groundwater fluctuation model based on precipitation for estimating water table levels of deep unconfined aquifers

    NASA Astrophysics Data System (ADS)

    Jeong, Jina; Park, Eungyu; Shik Han, Weon; Kim, Kue-Young; Suk, Heejun; Beom Jo, Si

    2018-07-01

    A generalized water table fluctuation model based on precipitation was developed using a statistical conceptualization of unsaturated infiltration fluxes. A gamma distribution function was adopted as a transfer function due to its versatility in representing recharge rates with temporally dispersed infiltration fluxes, and a Laplace transformation was used to obtain an analytical solution. To prove the general applicability of the model, convergences with previous water table fluctuation models were shown as special cases. For validation, a few hypothetical cases were developed, where the applicability of the model to a wide range of unsaturated zone conditions was confirmed. For further validation, the model was applied to water table level estimations of three monitoring wells with considerably thick unsaturated zones on Jeju Island. The results show that the developed model represented the pattern of hydrographs from the two monitoring wells fairly well. The lag times from precipitation to recharge estimated from the developed system transfer function were found to agree with those from a conventional cross-correlation analysis. The developed model has the potential to be adopted for the hydraulic characterization of both saturated and unsaturated zones by being calibrated to actual data when extraneous and exogenous causes of water table fluctuation are limited. In addition, as it provides reference estimates, the model can be adopted as a tool for surveilling groundwater resources under hydraulically stressed conditions.

  8. Experimental & Numerical Modeling of Non-combusting Model Firebrands' Transport

    NASA Astrophysics Data System (ADS)

    Tohidi, Ali; Kaye, Nigel

    2016-11-01

    Fire spotting is one of the major mechanisms of wildfire spread. Three phases of this phenomenon are firebrand formation and break-off from burning vegetation, lofting and downwind transport of firebrands through the velocity field of the wildfire, and spot fire ignition upon landing. The lofting and downwind transport phase is modeled by conducting large-scale wind tunnel experiments. Non-combusting rod-like model firebrands with different aspect ratios are released within the velocity field of a jet in a boundary layer cross-flow that approximates the wildfire velocity field. Characteristics of the firebrand dispersion are quantified by capturing the full trajectory of the model firebrands using the developed image processing algorithm. The results show that the lofting height has a direct impact on the maximum travel distance of the model firebrands. Also, the experimental results are utilized for validation of a highly scalable coupled stochastic & parametric firebrand flight model that, couples the LES-resolved velocity field of a jet-in-nonuniform-cross-flow (JINCF) with a 3D fully deterministic 6-degrees-of-freedom debris transport model. The validation results show that the developed numerical model is capable of estimating average statistics of the firebrands' flight. Authors would like to thank support of the National Science Foundation under Grant No. 1200560. Also, the presenter (Ali Tohid) would like to thank Dr. Michael Gollner from the University of Maryland College Park for the conference participation support.

  9. Application of Koopmans' theorem for density functional theory to full valence-band photoemission spectroscopy modeling.

    PubMed

    Li, Tsung-Lung; Lu, Wen-Cai

    2015-10-05

    In this work, Koopmans' theorem for Kohn-Sham density functional theory (KS-DFT) is applied to the photoemission spectra (PES) modeling over the entire valence-band. To examine the validity of this application, a PES modeling scheme is developed to facilitate a full valence-band comparison of theoretical PES spectra with experiments. The PES model incorporates the variations of electron ionization cross-sections over atomic orbitals and a linear dispersion of spectral broadening widths. KS-DFT simulations of pristine rubrene (5,6,11,12-tetraphenyltetracene) and potassium-rubrene complex are performed, and the simulation results are used as the input to the PES models. Two conclusions are reached. First, decompositions of the theoretical total spectra show that the dissociated electron of the potassium mainly remains on the backbone and has little effect on the electronic structures of phenyl side groups. This and other electronic-structure results deduced from the spectral decompositions have been qualitatively obtained with the anionic approximation to potassium-rubrene complexes. The qualitative validity of the anionic approximation is thus verified. Second, comparison of the theoretical PES with the experiments shows that the full-scale simulations combined with the PES modeling methods greatly enhance the agreement on spectral shapes over the anionic approximation. This agreement of the theoretical PES spectra with the experiments over the full valence-band can be regarded, to some extent, as a collective validation of the application of Koopmans' theorem for KS-DFT to valence-band PES, at least, for this hydrocarbon and its alkali-adsorbed complex. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Acoustic wave transmission through piezoelectric structured materials.

    PubMed

    Lam, M; Le Clézio, E; Amorín, H; Algueró, M; Holc, Janez; Kosec, Marija; Hladky-Hennion, A C; Feuillard, G

    2009-05-01

    This paper deals with the transmission of acoustic waves through multilayered piezoelectric materials. It is modeled in an octet formalism via the hybrid matrix of the structure. The theoretical evolution with the angle and frequency of the transmission coefficients of ultrasonic plane waves propagating through a partially depoled PZT plate is compared to finite element calculations showing that both methods are in very good agreement. The model is then used to study a periodic stack of 0.65 PMN-0.35 PT/0.90 PMN-0.10 PT layers. The transmission spectra are interpreted in terms of a dispersive behavior of the critical angles of longitudinal and transverse waves, and band gap structures are analysed. Transmission measurements confirm the theoretical calculations and deliver an experimental validation of the model.

  11. Modeling the propagation, transformation and the impact of tsunami on urban areas using the coupling STOC-ML/IC/CADMAS in nested grids - Application to specific sites of Chile to improve the tsunami induced loads prediction.

    NASA Astrophysics Data System (ADS)

    Mokrani, C.; Catalan, P. A.; Cienfuegos, R.; Arikawa, T.

    2016-02-01

    A large part of coasts around the world are affected by tsunami impacts, which supposes a challenge when designing coastal protection structures. Numerical models provide predictions of tsunami-induced loads and there time evolution, which can be used to improve sizing rules of coastal structures. However, the numerical assessment of impact loads is an hard stake. Indeed, recent experimental studies have shown that pressure dynamics generated during tsunami impacts are highly sensitive to the incident local shape of the tsunami. Therefore, high numerical resolutions and very accurate models are required to model all stages during which the tsunami shape is modified before the impact. Given the large distances involved in tsunami events, this can be disregarded in favor of computing time. The Port and Airport Research Institute (PARI) has recently developed a three-way coupled model which allows to accurately model the incident tsunami shape while maintaining reasonable computational time. This coupling approach uses three models used in nested grids (cf. Figure 1). The first one (STOC-ML) solves Nonlinear Shallow Water Equations with hydrostatic pressure. It is used to model the tsunami propagation off the coast. The second one (STOC-IC) is a 3D non-hydrostatic model, on which the free-surface position is estimated through the integrated continuity equation. It has shown to accurately describe dispersive and weakly linear effects occurring at the coast vicinity. The third model (CADMAS-SURF) solves fully three-dimensional Navier-Stokes equations and use a VOF method. Highly nonlinear, dispersive effects and wave breaking processes can be included at the wave scale and therefore, a very accurate description of the incident tsunami is provided. Each model have been separately validated from analytical and/or experimental data. The present objective is to highlight recent advances in Coastal Ocean modeling for tsunami modeling and loads prediction by applying this coupling approach to different sites of the Chilean coast. We first present validation tests to highlight the numerical abilities of this coupling. Then, two tsunami cases are considered and both near-shore processes and tsunami-induced loads on structures are analyzed.

  12. Emissions of volatile organic compounds during the ship-loading of petroleum products: Dispersion modelling and environmental concerns.

    PubMed

    Milazzo, Maria Francesca; Ancione, Giuseppa; Lisi, Roberto

    2017-12-15

    Emissions due to ship-loading of hydrocarbons are currently not addressed neither by the Directive on the integrated pollution prevention or by other environmental regulations. The scope of this study is to point towards the environmental and safety concerns associated with such emissions, even if proper attention has not been given to this issue until now. In order to achieve this goal, the modelling of the emission volatile organic compounds (VOC), due to ship-load operations at refineries has been made by means of the definition of a simulation procedure which includes a proper treatment of the hours of calm. Afterwards, a quantitative analysis of VOC dispersion for an Italian case-study is presented with the primary aims: (i) to develop and verify the validity of the approach for the modelling of the emission sources and of the diffusion of these contaminants into the atmosphere by a proper treatment of the hours of calm and (ii) to identify their contribution to the total VOC emitted in a typical refinery. The calculated iso-concentration contours have also been drawn on a map and allowed the identification of critical areas for people protecting by the adoption of abatement solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Final report for the DOE Early Career Award #DE-SC0003912

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayaraman, Arthi

    This DoE supported early career project was aimed at developing computational models, theory and simulation methods that would be then be used to predict assembly and morphology in polymer nanocomposites. In particular, the focus was on composites in active layers of devices, containing conducting polymers that act as electron donors and nanoscale additives that act as electron acceptors. During the course this work, we developed the first of its kind molecular models to represent conducting polymers enabling simulations at the experimentally relevant length and time scales. By comparison with experimentally observed morphologies we validated these models. Furthermore, using these modelsmore » and molecular dynamics simulations on graphical processing units (GPUs) we predicted the molecular level design features in polymers and additive that lead to morphologies with optimal features for charge carrier behavior in solar cells. Additionally, we also predicted computationally new design rules for better dispersion of additives in polymers that have been confirmed through experiments. Achieving dispersion in polymer nanocomposites is valuable to achieve controlled macroscopic properties of the composite. The results obtained during the course of this DOE funded project enables optimal design of higher efficiency organic electronic and photovoltaic devices and improve every day life with engineering of these higher efficiency devices.« less

  14. Temperate marine protected area provides recruitment subsidies to local fisheries.

    PubMed

    Le Port, A; Montgomery, J C; Smith, A N H; Croucher, A E; McLeod, I M; Lavery, S D

    2017-10-25

    The utility of marine protected areas (MPAs) as a means of protecting exploited species and conserving biodiversity within MPA boundaries is supported by strong empirical evidence. However, the potential contribution of MPAs to fished populations beyond their boundaries is still highly controversial; empirical measures are scarce and modelling studies have produced a range of predictions, including both positive and negative effects. Using a combination of genetic parentage and relatedness analysis, we measured larval subsidies to local fisheries replenishment for Australasian snapper ( Chrysophrys auratus : Sparidae) from a small (5.2 km 2 ), well-established, temperate, coastal MPA in northern New Zealand. Adult snapper within the MPA contributed an estimated 10.6% (95% CI: 5.5-18.1%) of newly settled juveniles to surrounding areas (approx. 400 km 2 ), with no decreasing trend in contributions up to 40 km away. Biophysical modelling of larval dispersal matched experimental data, showing larvae produced inside the MPA dispersed over a comparable distance. These results demonstrate that temperate MPAs have the potential to provide recruitment subsidies at magnitudes and spatial scales relevant to fisheries management. The validated biophysical model provides a cost-efficient opportunity to generalize these findings to other locations and climate conditions, and potentially informs the design of MPA networks for enhancing fisheries management. © 2017 The Author(s).

  15. Representing uncertainty in a spatial invasion model that incorporates human-mediated dispersal

    Treesearch

    Frank H. Koch; Denys Yemshanov; Robert A. Haack

    2013-01-01

    Most modes of human-mediated dispersal of invasive species are directional and vector-based. Classical spatial spread models usually depend on probabilistic dispersal kernels that emphasize distance over direction and have limited ability to depict rare but influential long-distance dispersal events. These aspects are problematic if such models are used to estimate...

  16. Using Dispersed Modes During Model Correlation

    NASA Technical Reports Server (NTRS)

    Stewart, Eric C.; Hathcock, Megan L.

    2017-01-01

    The model correlation process for the modal characteristics of a launch vehicle is well established. After a test, parameters within the nominal model are adjusted to reflect structural dynamics revealed during testing. However, a full model correlation process for a complex structure can take months of man-hours and many computational resources. If the analyst only has weeks, or even days, of time in which to correlate the nominal model to the experimental results, then the traditional correlation process is not suitable. This paper describes using model dispersions to assist the model correlation process and decrease the overall cost of the process. The process creates thousands of model dispersions from the nominal model prior to the test and then compares each of them to the test data. Using mode shape and frequency error metrics, one dispersion is selected as the best match to the test data. This dispersion is further improved by using a commercial model correlation software. In the three examples shown in this paper, this dispersion based model correlation process performs well when compared to models correlated using traditional techniques and saves time in the post-test analysis.

  17. Equatorward dispersion of the Sarychev volcanic plume and the relation to the Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Wu, Xue; Griessbach, Sabine; Hoffmann, Lars

    2017-04-01

    Sulfur dioxide emissions and subsequent sulfate aerosols from strong volcanic eruptions have large impact on global climate. Although most of previous studies attribute the global influence to volcanic eruptions in the tropics, high-latitude volcanic eruptions are also an important cause for global climate variations. In fact, the potential climate impact of volcanic also largely depends on the season when eruptions occur, the erupted plume height and the surrounding meteorological conditions. This work focuses on the eruption of a high-latitude volcano Sarychev, and the role of Asian summer monsoon (ASM) during the transport and dispersion of the erupted plumes. First, the sulfur dioxide emission rate and height of emission of the Sarychev eruption in June 2009 are modelled using a Lagrangian particle dispersion model named Massive-Parallel Trajectory Calculations (MPTRAC), together with sulfur dioxide observations of the Atmospheric Infrared Sounder (AIRS/Aqua) and a backward trajectory approach. Then, the transport and dispersion of the plumes are modelled with MPTRAC and validated with sulfur dioxide observations from AIRS and aerosol observations from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). The modelled trajectories and the MIPAS data both show the plumes are transported towards the tropics from the southeast edge of the ASM (in the vertical range of 340-400K) controlled by the clockwise winds of ASM, and from above the ASM (above 400K) in form of in-mixing process. Especially, in the vertical range around 340-400K, a transport barrier based on potential vorticity (PV) gradients separates the 'aerosol hole' inside of the ASM circulation and the aerosol-rich surrounding area, which shows the PV gradients based barrier may be more practical than the barrier based on the geopotential height. With help of ASM circulation, the aerosol transported to the tropics and stayed in the tropical lower stratosphere for about eight months, which were the main aerosol sources during that time. This enables the Sarychev eruption to have potential impact on global radiative budget similar to a tropical volcanic eruption.

  18. Cost and time-effective method for multi-scale measures of rugosity, fractal dimension, and vector dispersion from coral reef 3D models

    PubMed Central

    Dey, S.

    2017-01-01

    We present a method to construct and analyse 3D models of underwater scenes using a single cost-effective camera on a standard laptop with (a) free or low-cost software, (b) no computer programming ability, and (c) minimal man hours for both filming and analysis. This study focuses on four key structural complexity metrics: point-to-point distances, linear rugosity (R), fractal dimension (D), and vector dispersion (1/k). We present the first assessment of accuracy and precision of structure-from-motion (SfM) 3D models from an uncalibrated GoPro™ camera at a small scale (4 m2) and show that they can provide meaningful, ecologically relevant results. Models had root mean square errors of 1.48 cm in X-Y and 1.35 in Z, and accuracies of 86.8% (R), 99.6% (D at scales 30–60 cm), 93.6% (D at scales 1–5 cm), and 86.9 (1/k). Values of R were compared to in-situ chain-and-tape measurements, while values of D and 1/k were compared with ground truths from 3D printed objects modelled underwater. All metrics varied less than 3% between independently rendered models. We thereby improve and rigorously validate a tool for ecologists to non-invasively quantify coral reef structural complexity with a variety of multi-scale metrics. PMID:28406937

  19. The resurrection of oceanic dispersal in historical biogeography.

    PubMed

    de Queiroz, Alan

    2005-02-01

    Geographical distributions of terrestrial or freshwater taxa that are broken up by oceans can be explained by either oceanic dispersal or vicariance in the form of fragmentation of a previously contiguous landmass. The validation of plate-tectonics theory provided a global vicariance mechanism and, along with cladistic arguments for the primacy of vicariance, helped create a view of oceanic dispersal as a rare phenomenon and an explanation of last resort. Here, I describe recent work that suggests that the importance of oceanic dispersal has been strongly underestimated. In particular, molecular dating of lineage divergences favors oceanic dispersal over tectonic vicariance as an explanation for disjunct distributions in a wide variety of taxa, from frogs to beetles to baobab trees. Other evidence, such as substantial gene flow among island populations of Anolis lizards, also indicates unexpectedly high frequencies of oceanic dispersal. The resurrection of oceanic dispersal is the most striking aspect of a major shift in historical biogeography toward a more even balance between vicariance and dispersal explanations. This new view implies that biotas are more dynamic and have more recent origins than had been thought previously. A high frequency of dispersal also suggests that a fundamental methodological assumption of many biogeographical studies--that vicariance is a priori a more probable explanation than dispersal--needs to be re-evaluated and perhaps discarded.

  20. Lidar ceilometer observations and modeling of a fireworks plume in Vancouver, British Columbia

    NASA Astrophysics Data System (ADS)

    van der Kamp, Derek; McKendry, Ian; Wong, May; Stull, Roland

    Observations of a plume emanating from a 30-min duration pyrotechnic display with a lidar ceilometer are described for an urban setting in complex, coastal terrain. Advection of the plume across the ceilometer occurred at a mean height of 250 m AGL. The plume traveled downwind at ˜3 m s -1, and at a distance of 8 km downwind, was ˜100 m in vertical thickness with particulate matter (PM) concentrations of order 30-40 μg m -3. Surface PM observations from surrounding urban monitoring stations suggest that the plume was not mixed to ground over the urban area. Plume trajectories at ˜250 m simulated by three numerical models all traveled to the northeast of the ceilometer location. Horizontal plume dispersion estimates suggest that the model trajectories were too far north to accommodate the likely lateral plume spread necessary to explain the ceilometer observations. This poor agreement between near surface observations and model output is consistent with previous mesoscale model validations in this region of complex urbanized terrain, and suggests that despite improvements in mesoscale model resolution, there remains an urgent need to improve upstream initial conditions over the Pacific Ocean, data assimilation over complex terrain, the representation of urban areas in mesoscale models, and to further validate such models for nocturnal applications in complex settings.

  1. Subsurface storage of freshwater in South Florida; a digital model analysis of recoverability

    USGS Publications Warehouse

    Merritt, Michael L.

    1985-01-01

    As part of a study of the feasibility of recovering freshwater injected and stored underground in south Florida, a digital solute-transport model was used to investigate the relation of recovery efficiency to the variety of hydrogeologic conditions that could prevail in brackish artesian aquifers and to a variety of management alternatives. The analyses employed a modeling approach in which the control for sensitivity testing was a hypothetical aquifer considered representative of permeable zones in south Florida that might be used for storage of freshwater. Parameter variations in the tests represented possible variations in aquifer conditions in the area. The applicability of the analyses to south Florida limestone aquifers required the assumption that flow nonuniformities in those aquifers are small on the scale of volumes of water likely to be injected, and that their effect could be represented as hydrodynamic dispersion. Generally, it was shown that a loss of recovery efficiency is caused by (1) processes causing mixing of injected freshwater with native saline water (hydrodynamic dispersion), (2) processes causing the more or less irreversible displacement of the injected freshwater with respect to the well (buoyancy stratification, background hydraulic gradients, and interlayer dispersion), or (3) processes causing injection and withdrawal flow patterns to be dissimilar (directionally biased well-bore plugging, and dissimilar injection and withdrawal schedules in multiple-well systems). Other results indicated that recovery efficiency improves considerably with successive cycles, providing that each recovery phase ends when the chloride concentration of withdrawn water exceeds established criteria for potability (usually 250 milligrams per liter), and that freshwater injected into highly permeable or highly saline aquifers (such as the 'boulder zone') would buoy rapidly. Many hydrologic conditions were posed for model analysis. To have obtained comparable results with operational testing would have been more costly by orders of magnitude. The tradeoff is that the validity of results obtained from computer modeling is somewhat less certain. In particular, results must be qualified with observations that (1) the complex set of processes lumped as hydrodynamic dispersion is represented with a somewhat simplified mathematical approximation, and (2) other flow processes in limestone injection zones are as yet incompletely understood. Despite such reservations, the study is considered a practical example of the use of transport models in ground-water investigations.

  2. Implications of nonrandom seed abscission and global stilling for migration of wind-dispersed plant species.

    PubMed

    Thompson, Sally E; Katul, Gabriel G

    2013-06-01

    Migration of plant populations is a potential survival response to climate change that depends critically on seed dispersal. Biological and physical factors determine dispersal and migration of wind-dispersed species. Recent field and wind tunnel studies demonstrate biological adaptations that bias seed release toward conditions of higher wind velocity, promoting longer dispersal distances and faster migration. However, another suite of international studies also recently highlighted a global decrease in near-surface wind speeds, or 'global stilling'. This study assessed the implications of both factors on potential plant population migration rates, using a mechanistic modeling framework. Nonrandom abscission was investigated using models of three seed release mechanisms: (i) a simple drag model; (ii) a seed deflection model; and (iii) a 'wear and tear' model. The models generated a single functional relationship between the frequency of seed release and statistics of the near-surface wind environment, independent of the abscission mechanism. An Inertial-Particle, Coupled Eulerian-Lagrangian Closure model (IP-CELC) was used to investigate abscission effects on seed dispersal kernels and plant population migration rates under contemporary and potential future wind conditions (based on reported global stilling trends). The results confirm that nonrandom seed abscission increased dispersal distances, particularly for light seeds. The increases were mitigated by two physical feedbacks: (i) although nonrandom abscission increased the initial acceleration of seeds from rest, the sensitivity of the seed dispersal to this initial condition declined as the wind speed increased; and (ii) while nonrandom abscission increased the mean dispersal length, it reduced the kurtosis of seasonal dispersal kernels, and thus the chance of long-distance dispersal. Wind stilling greatly reduced the modeled migration rates under biased seed release conditions. Thus, species that require high wind velocities for seed abscission could experience threshold-like reductions in dispersal and migration potential if near-surface wind speeds continue to decline. © 2013 Blackwell Publishing Ltd.

  3. Impact of height and shape of building roof on air quality in urban street canyons

    NASA Astrophysics Data System (ADS)

    Yassin, Mohamed F.

    2011-09-01

    A building's roof shape and roof height play an important role in determining pollutant concentrations from vehicle emissions and its complex flow patterns within urban street canyons. The impact of the roof shape and height on wind flow and dispersion of gaseous pollutants from vehicle exhaust within urban canyons were investigated numerically using a Computational Fluid Dynamics (CFD) model. Two-dimensional flow and dispersion of gaseous pollutants were analyzed using standard κ- ɛ turbulence model, which was numerically solved based on Reynolds Averaged Navier-Stokes (RANS) equations. The diffusion fields in the urban canyons were examined with three roof heights ( Z H/ H = 0.17, 0.33 and 0.5) and five roof shapes: (1) flat-shaped roof, (2) slanted-shaped roof, (3) downwind wedge-shaped roof, (4) upwind wedge-shaped roof, and (5) trapezoid-shaped roof. The numerical model was validated against the wind tunnels results in order to optimize the turbulence model. The numerical simulations agreed reasonably with the wind tunnel results. The results obtained indicated that the pollutant concentration increased as the roof height decreases. It also decreased with the slanted and trapezoid-shaped roofs but increased with the flat-shaped roof. The pollutant concentration distributions simulated in the present work, indicated that the variability of the roof shapes and roof heights of the buildings are important factors for estimating air quality within urban canyons.

  4. The evolution of dispersal conditioned on migration status

    PubMed Central

    Asaduzzaman, Sarder Mohammed; Wild, Geoff

    2012-01-01

    We consider a model for the evolution of dispersal of offspring. Dispersal is treated as a parental trait that is expressed conditional upon a parent’s own “migration status,” that is, whether a parent, itself, is native or nonnative to the area in which it breeds. We compare the evolution of this kind of conditional dispersal to the evolution of unconditional dispersal, in order to determine the extent to which the former changes predictions about population-wide levels of dispersal. We use numerical simulations of an inclusive-fitness model, and individual-based simulations to predict population-average dispersal rates for the case in which dispersal based on migration status occurs. When our model predictions are compared to predictions that neglect conditional dispersal, observed differences between rates are only slight, and never exceed 0.06. While the effect of dispersal conditioned upon migration status could be detected in a carefully designed experiment, we argue that less-than-ideal experimental conditions, and factors such as dispersal conditioned on sex are likely to play a larger role that the type of conditional dispersal studied here. PMID:22837829

  5. Estimating near-road pollutant dispersion: a model inter-comparison

    EPA Science Inventory

    A model inter-comparison study to assess the abilities of steady-state Gaussian dispersion models to capture near-road pollutant dispersion has been carried out with four models (AERMOD, run with both the area-source and volume-source options to represent roadways, CALINE, versio...

  6. Can dispersal mode predict corridor effects on plant parasites?

    PubMed

    Sullivan, Lauren L; Johnson, Brenda L; Brudvig, Lars A; Haddad, Nick M

    2011-08-01

    Habitat corridors, a common management strategy for increasing connectivity in fragmented landscapes, have experimentally validated positive influences on species movement and diversity. However, long-standing concerns that corridors could negatively impact native species by spreading antagonists, such as disease, remain largely untested. Using a large-scale, replicated experiment, we evaluated whether corridors increase the incidence of plant parasites. We found that corridor impacts varied with parasite dispersal mode. Connectivity provided by corridors increased incidence of biotically dispersed parasites (galls on Solidago odora) but not of abiotically dispersed parasites (foliar fungi on S. odora and three Lespedeza spp.). Both biotically and abiotically dispersed parasites responded to edge effects, but the direction of responses varied across species. Although our results require additional tests for generality to other species and landscapes, they suggest that, when establishing conservation corridors, managers should focus on mitigating two potential negative effects: the indirect effects of narrow corridors in creating edges and direct effects of corridors in enhancing connectivity of biotically dispersed parasites.

  7. Optimal weighted combinatorial forecasting model of QT dispersion of ECGs in Chinese adults.

    PubMed

    Wen, Zhang; Miao, Ge; Xinlei, Liu; Minyi, Cen

    2016-07-01

    This study aims to provide a scientific basis for unifying the reference value standard of QT dispersion of ECGs in Chinese adults. Three predictive models including regression model, principal component model, and artificial neural network model are combined to establish the optimal weighted combination model. The optimal weighted combination model and single model are verified and compared. Optimal weighted combinatorial model can reduce predicting risk of single model and improve the predicting precision. The reference value of geographical distribution of Chinese adults' QT dispersion was precisely made by using kriging methods. When geographical factors of a particular area are obtained, the reference value of QT dispersion of Chinese adults in this area can be estimated by using optimal weighted combinatorial model and reference value of the QT dispersion of Chinese adults anywhere in China can be obtained by using geographical distribution figure as well.

  8. Revisiting Temporal Markov Chains for Continuum modeling of Transport in Porous Media

    NASA Astrophysics Data System (ADS)

    Delgoshaie, A. H.; Jenny, P.; Tchelepi, H.

    2017-12-01

    The transport of fluids in porous media is dominated by flow­-field heterogeneity resulting from the underlying permeability field. Due to the high uncertainty in the permeability field, many realizations of the reference geological model are used to describe the statistics of the transport phenomena in a Monte Carlo (MC) framework. There has been strong interest in working with stochastic formulations of the transport that are different from the standard MC approach. Several stochastic models based on a velocity process for tracer particle trajectories have been proposed. Previous studies have shown that for high variances of the log-conductivity, the stochastic models need to account for correlations between consecutive velocity transitions to predict dispersion accurately. The correlated velocity models proposed in the literature can be divided into two general classes of temporal and spatial Markov models. Temporal Markov models have been applied successfully to tracer transport in both the longitudinal and transverse directions. These temporal models are Stochastic Differential Equations (SDEs) with very specific drift and diffusion terms tailored for a specific permeability correlation structure. The drift and diffusion functions devised for a certain setup would not necessarily be suitable for a different scenario, (e.g., a different permeability correlation structure). The spatial Markov models are simple discrete Markov chains that do not require case specific assumptions. However, transverse spreading of contaminant plumes has not been successfully modeled with the available correlated spatial models. Here, we propose a temporal discrete Markov chain to model both the longitudinal and transverse dispersion in a two-dimensional domain. We demonstrate that these temporal Markov models are valid for different correlation structures without modification. Similar to the temporal SDEs, the proposed model respects the limited asymptotic transverse spreading of the plume in two-dimensional problems.

  9. Connectivity modeling and graph theory analysis predict recolonization in transient populations

    NASA Astrophysics Data System (ADS)

    Rognstad, Rhiannon L.; Wethey, David S.; Oliver, Hilde; Hilbish, Thomas J.

    2018-07-01

    Population connectivity plays a major role in the ecology and evolution of marine organisms. In these systems, connectivity of many species occurs primarily during a larval stage, when larvae are frequently too small and numerous to track directly. To indirectly estimate larval dispersal, ocean circulation models have emerged as a popular technique. Here we use regional ocean circulation models to estimate dispersal of the intertidal barnacle Semibalanus balanoides at its local distribution limit in Southwest England. We incorporate historical and recent repatriation events to provide support for our modeled dispersal estimates, which predict a recolonization rate similar to that observed in two recolonization events. Using graph theory techniques to describe the dispersal landscape, we identify likely physical barriers to dispersal in the region. Our results demonstrate the use of recolonization data to support dispersal models and how these models can be used to describe population connectivity.

  10. Sedimentary Geothermal Feasibility Study: October 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustine, Chad; Zerpa, Luis

    The objective of this project is to analyze the feasibility of commercial geothermal projects using numerical reservoir simulation, considering a sedimentary reservoir with low permeability that requires productivity enhancement. A commercial thermal reservoir simulator (STARS, from Computer Modeling Group, CMG) is used in this work for numerical modeling. In the first stage of this project (FY14), a hypothetical numerical reservoir model was developed, and validated against an analytical solution. The following model parameters were considered to obtain an acceptable match between the numerical and analytical solutions: grid block size, time step and reservoir areal dimensions; the latter related to boundarymore » effects on the numerical solution. Systematic model runs showed that insufficient grid sizing generates numerical dispersion that causes the numerical model to underestimate the thermal breakthrough time compared to the analytic model. As grid sizing is decreased, the model results converge on a solution. Likewise, insufficient reservoir model area introduces boundary effects in the numerical solution that cause the model results to differ from the analytical solution.« less

  11. Include dispersion in quantum chemical modeling of enzymatic reactions: the case of isoaspartyl dipeptidase.

    PubMed

    Zhang, Hai-Mei; Chen, Shi-Lu

    2015-06-09

    The lack of dispersion in the B3LYP functional has been proposed to be the main origin of big errors in quantum chemical modeling of a few enzymes and transition metal complexes. In this work, the essential dispersion effects that affect quantum chemical modeling are investigated. With binuclear zinc isoaspartyl dipeptidase (IAD) as an example, dispersion is included in the modeling of enzymatic reactions by two different procedures, i.e., (i) geometry optimizations followed by single-point calculations of dispersion (approach I) and (ii) the inclusion of dispersion throughout geometry optimization and energy evaluation (approach II). Based on a 169-atom chemical model, the calculations show a qualitative consistency between approaches I and II in energetics and most key geometries, demonstrating that both approaches are available with the latter preferential since both geometry and energy are dispersion-corrected in approach II. When a smaller model without Arg233 (147 atoms) was used, an inconsistency was observed, indicating that the missing dispersion interactions are essentially responsible for determining equilibrium geometries. Other technical issues and mechanistic characteristics of IAD are also discussed, in particular with respect to the effects of Arg233.

  12. A review of methods for predicting air pollution dispersion

    NASA Technical Reports Server (NTRS)

    Mathis, J. J., Jr.; Grose, W. L.

    1973-01-01

    Air pollution modeling, and problem areas in air pollution dispersion modeling were surveyed. Emission source inventory, meteorological data, and turbulent diffusion are discussed in terms of developing a dispersion model. Existing mathematical models of urban air pollution, and highway and airport models are discussed along with their limitations. Recommendations for improving modeling capabilities are included.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraccarollo, Alberto; Cantatore, Valentina; Boschetto, Gabriele

    A number of 2D layered perovskites A{sub 2}PbI{sub 4} and BPbI{sub 4}, with A and B mono- and divalent ammonium and imidazolium cations, have been modeled with different theoretical methods. The periodic structures have been optimized (both in monoclinic and in triclinic systems, corresponding to eclipsed and staggered arrangements of the inorganic layers) at the DFT level, with hybrid functionals, Gaussian-type orbitals and dispersion energy corrections. With the same methods, the various contributions to the solid stabilization energy have been discussed, separating electrostatic and dispersion energies, organic-organic intralayer interactions and H-bonding effects, when applicable. Then the electronic band gaps havemore » been computed with plane waves, at the DFT level with scalar and full relativistic potentials, and including the correlation energy through the GW approximation. Spin orbit coupling and GW effects have been combined in an additive scheme, validated by comparing the computed gap with well known experimental and theoretical results for a model system. Finally, various contributions to the computed band gaps have been discussed on some of the studied systems, by varying some geometrical parameters and by substituting one cation in another’s place.« less

  14. Numerical treatment for solving two-dimensional space-fractional advection-dispersion equation using meshless method

    NASA Astrophysics Data System (ADS)

    Cheng, Rongjun; Sun, Fengxin; Wei, Qi; Wang, Jufeng

    2018-02-01

    Space-fractional advection-dispersion equation (SFADE) can describe particle transport in a variety of fields more accurately than the classical models of integer-order derivative. Because of nonlocal property of integro-differential operator of space-fractional derivative, it is very challenging to deal with fractional model, and few have been reported in the literature. In this paper, a numerical analysis of the two-dimensional SFADE is carried out by the element-free Galerkin (EFG) method. The trial functions for the SFADE are constructed by the moving least-square (MLS) approximation. By the Galerkin weak form, the energy functional is formulated. Employing the energy functional minimization procedure, the final algebraic equations system is obtained. The Riemann-Liouville operator is discretized by the Grünwald formula. With center difference method, EFG method and Grünwald formula, the fully discrete approximation schemes for SFADE are established. Comparing with exact results and available results by other well-known methods, the computed approximate solutions are presented in the format of tables and graphs. The presented results demonstrate the validity, efficiency and accuracy of the proposed techniques. Furthermore, the error is computed and the proposed method has reasonable convergence rates in spatial and temporal discretizations.

  15. Nonreciprocal dispersion of spin waves in ferromagnetic thin films covered with a finite-conductivity metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mruczkiewicz, M.; Krawczyk, M.

    2014-03-21

    We study the effect of one-side metallization of a uniform ferromagnetic thin film on its spin-wave dispersion relation in the Damon–Eshbach geometry. Due to the finite conductivity of the metallic cover layer on the ferromagnetic film, the spin-wave dispersion relation may be nonreciprocal only in a limited wave-vector range. We provide an approximate analytical solution for the spin-wave frequency, discuss its validity, and compare it with numerical results. The dispersion is analyzed systematically by varying the parameters of the ferromagnetic film, the metal cover layer and the value of the external magnetic field. The conclusions drawn from this analysis allowmore » us to define a structure based on a 30 nm thick CoFeB film with an experimentally accessible nonreciprocal dispersion relation in a relatively wide wave-vector range.« less

  16. Linking resource selection and mortality modeling for population estimation of mountain lions in Montana

    USGS Publications Warehouse

    Robinson, Hugh S.; Ruth, Toni K.; Gude, Justin A.; Choate, David; DeSimone, Rich; Hebblewhite, Mark; Matchett, Marc R.; Mitchell, Michael S.; Murphy, Kerry; Williams, Jim

    2015-01-01

    To be most effective, the scale of wildlife management practices should match the range of a particular species’ movements. For this reason, combined with our inability to rigorously or regularly census mountain lion populations, several authors have suggested that mountain lions be managed in a source-sink or metapopulation framework. We used a combination of resource selection functions, mortality estimation, and dispersal modeling to estimate cougar population levels in Montana statewide and potential population level effects of planned harvest levels. Between 1980 and 2012, 236 independent mountain lions were collared and monitored for research in Montana. From these data we used 18,695 GPS locations collected during winter from 85 animals to develop a resource selection function (RSF), and 11,726 VHF and GPS locations from 142 animals along with the locations of 6343 mountain lions harvested from 1988–2011 to validate the RSF model. Our RSF model validated well in all portions of the State, although it appeared to perform better in Montana Fish, Wildlife and Parks (MFWP) Regions 1, 2, 4 and 6, than in Regions 3, 5, and 7. Our mean RSF based population estimate for the total population (kittens, juveniles, and adults) of mountain lions in Montana in 2005 was 3926, with almost 25% of the entire population in MFWP Region 1. Estimates based on a high and low reference population estimates produce a possible range of 2784 to 5156 mountain lions statewide. Based on a range of possible survival rates we estimated the mountain lion population in Montana to be stable to slightly increasing between 2005 and 2010 with lambda ranging from 0.999 (SD = 0.05) to 1.02 (SD = 0.03). We believe these population growth rates to be a conservative estimate of true population growth. Our model suggests that proposed changes to female harvest quotas for 2013–2015 will result in an annual statewide population decline of 3% and shows that, due to reduced dispersal, changes to harvest in one management unit may affect population growth in neighboring units where smaller or even no changes were made. Uncertainty regarding dispersal levels and initial population density may have a significant effect on predictions at a management unit scale (i.e. 2000 km2), while at a regional scale (i.e. 50,000 km2) large differences in initial population density result in relatively small changes in population growth rate, and uncertainty about dispersal may not be as influential. Doubling the presumed initial density from a low estimation of 2.19 total animals per 100 km2 resulted in a difference in annual population growth rate of only 2.6% statewide when compared to high density of 4.04 total animals per 100 km2 (low initial population estimate λ = 0.99, while high initial population estimate λ = 1.03). We suggest modeling tools such as this may be useful in harvest planning at a regional and statewide level.

  17. 40 CFR 503.43 - Pollutant limits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... with § 503.43(e). (e) Air dispersion modeling and performance testing. (1) The air dispersion model... the type of sewage sludge incinerator. (2) For air dispersion modeling initiated after September 3, 1999, the modeling results shall be submitted to the permitting authority 30 days after completion of...

  18. 40 CFR 503.43 - Pollutant limits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... with § 503.43(e). (e) Air dispersion modeling and performance testing. (1) The air dispersion model... the type of sewage sludge incinerator. (2) For air dispersion modeling initiated after September 3, 1999, the modeling results shall be submitted to the permitting authority 30 days after completion of...

  19. 40 CFR 503.43 - Pollutant limits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... with § 503.43(e). (e) Air dispersion modeling and performance testing. (1) The air dispersion model... the type of sewage sludge incinerator. (2) For air dispersion modeling initiated after September 3, 1999, the modeling results shall be submitted to the permitting authority 30 days after completion of...

  20. Inversion of Surface-wave Dispersion Curves due to Low-velocity-layer Models

    NASA Astrophysics Data System (ADS)

    Shen, C.; Xia, J.; Mi, B.

    2016-12-01

    A successful inversion relies on exact forward modeling methods. It is a key step to accurately calculate multi-mode dispersion curves of a given model in high-frequency surface-wave (Rayleigh wave and Love wave) methods. For normal models (shear (S)-wave velocity increasing with depth), their theoretical dispersion curves completely match the dispersion spectrum that is generated based on wave equation. For models containing a low-velocity-layer, however, phase velocities calculated by existing forward-modeling algorithms (e.g. Thomson-Haskell algorithm, Knopoff algorithm, fast vector-transfer algorithm and so on) fail to be consistent with the dispersion spectrum at a high frequency range. They will approach a value that close to the surface-wave velocity of the low-velocity-layer under the surface layer, rather than that of the surface layer when their corresponding wavelengths are short enough. This phenomenon conflicts with the characteristics of surface waves, which results in an erroneous inverted model. By comparing the theoretical dispersion curves with simulated dispersion energy, we proposed a direct and essential solution to accurately compute surface-wave phase velocities due to low-velocity-layer models. Based on the proposed forward modeling technique, we can achieve correct inversion for these types of models. Several synthetic data proved the effectiveness of our method.

  1. THE NEW YORK CITY URBAN DISPERSION PROGRAM MARCH 2005 FIELD STUDY: TRACER METHODS AND RESULTS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WATSON, T.B.; HEISER, J.; KALB, P.

    The Urban Dispersion Program March 2005 Field Study tracer releases, sampling, and analytical methods are described in detail. There were two days where tracer releases and sampling were conducted. A total of 16.0 g of six tracers were released during the first test day or Intensive Observation Period (IOP) 1 and 15.7 g during IOP 2. Three types of sampling instruments were used in this study. Sequential air samplers, or SAS, collected six-minute samples, while Brookhaven atmospheric tracer samplers (BATS) and personal air samplers (PAS) collected thirty-minute samples. There were a total of 1300 samples resulting from the two IOPs.more » Confidence limits in the sampling and analysis method were 20% as determined from 100 duplicate samples. The sample recovery rate was 84%. The integrally averaged 6-minute samples were compared to the 30-minute samples. The agreement was found to be good in most cases. The validity of using a background tracer to calculate sample volumes was examined and also found to have a confidence level of 20%. Methods for improving sampling and analysis are discussed. The data described in this report are available as Excel files. An additional Excel file of quality assured tracer data for use in model validation efforts is also available. The file consists of extensively quality assured BATS tracer data with background concentrations subtracted.« less

  2. Does the dose-solubility ratio affect the mean dissolution time of drugs?

    PubMed

    Lánský, P; Weiss, M

    1999-09-01

    To present a new model for describing drug dissolution. On the basis of the new model to characterize the dissolution profile by the distribution function of the random dissolution time of a drug molecule, which generalizes the classical first order model. Instead of assuming a constant fractional dissolution rate, as in the classical model, it is considered that the fractional dissolution rate is a decreasing function of the dissolved amount controlled by the dose-solubility ratio. The differential equation derived from this assumption is solved and the distribution measures (half-dissolution time, mean dissolution time, relative dispersion of the dissolution time, dissolution time density, and fractional dissolution rate) are calculated. Finally, instead of monotonically decreasing the fractional dissolution rate, a generalization resulting in zero dissolution rate at time origin is introduced. The behavior of the model is divided into two regions defined by q, the ratio of the dose to the solubility level: q < 1 (complete dissolution of the dose, dissolution time) and q > 1 (saturation of the solution, saturation time). The singular case q = 1 is also treated and in this situation the mean as well as the relative dispersion of the dissolution time increase to infinity. The model was successfully fitted to data (1). This empirical model is descriptive without detailed physical reasoning behind its derivation. According to the model, the mean dissolution time is affected by the dose-solubility ratio. Although this prediction appears to be in accordance with preliminary application, further validation based on more suitable experimental data is required.

  3. SEVIRI 4D-var assimilation analysing the April 2010 Eyjafjallajökull ash dispersion

    NASA Astrophysics Data System (ADS)

    Lange, Anne Caroline; Elbern, Hendrik

    2016-04-01

    We present first results of four dimensional variational (4D-var) data assimilation analysis applying SEVIRI observations to the Eulerian regional chemistry and aerosol transport model EURAD-IM (European Air Pollution Dispersion - Inverse Model). Optimising atmospheric dispersion models in terms of volcanic ash transport predictions by observations is especially essential for the aviation industry and associated interests. Remote sensing satellite observations are instrumental for ash detection and monitoring. We choose volcanic ash column retrievals of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) because as infrared instrument on the geostationary satellite Meteosat Second Generation it delivers measurements with high temporal resolution during day and night. The retrieval method relies on the reverse absorption effect. In the framework of the national initiative ESKP (Earth System Knowledge Platform) and the European ACTRIS-2 (Aerosol, Clouds, and Trace gases Research InfraStructure) project, we developed new modules (forward and adjoint) within the EURAD-IM, which are able to process SEVIRI ash column data as observational input to the 4D-var system. The focus of the 4D-var analysis is on initial value optimisation of the volcanic ash clouds that were emitted during the explosive Eyjafjallajökull eruption in April 2010. This eruption caused high public interest because of air traffic closures and it was particularly well observed from many different observation systems all over Europe. Considering multiple observation periods simultaneously in one assimilation window generates a continuous trajectory in the phase space and ensures that past observations are considered within their uncertainties. Results are validated mainly by lidar (LIght Detection And Ranging) observations, both ground and satellite based.

  4. First-principle modelling of forsterite surface properties: Accuracy of methods and basis sets.

    PubMed

    Demichelis, Raffaella; Bruno, Marco; Massaro, Francesco R; Prencipe, Mauro; De La Pierre, Marco; Nestola, Fabrizio

    2015-07-15

    The seven main crystal surfaces of forsterite (Mg2 SiO4 ) were modeled using various Gaussian-type basis sets, and several formulations for the exchange-correlation functional within the density functional theory (DFT). The recently developed pob-TZVP basis set provides the best results for all properties that are strongly dependent on the accuracy of the wavefunction. Convergence on the structure and on the basis set superposition error-corrected surface energy can be reached also with poorer basis sets. The effect of adopting different DFT functionals was assessed. All functionals give the same stability order for the various surfaces. Surfaces do not exhibit any major structural differences when optimized with different functionals, except for higher energy orientations where major rearrangements occur around the Mg sites at the surface or subsurface. When dispersions are not accounted for, all functionals provide similar surface energies. The inclusion of empirical dispersions raises the energy of all surfaces by a nearly systematic value proportional to the scaling factor s of the dispersion formulation. An estimation for the surface energy is provided through adopting C6 coefficients that are more suitable than the standard ones to describe O-O interactions in minerals. A 2 × 2 supercell of the most stable surface (010) was optimized. No surface reconstruction was observed. The resulting structure and surface energy show no difference with respect to those obtained when using the primitive cell. This result validates the (010) surface model here adopted, that will serve as a reference for future studies on adsorption and reactivity of water and carbon dioxide at this interface. © 2015 Wiley Periodicals, Inc.

  5. Probabilistic accident consequence uncertainty analysis: Dispersion and deposition uncertainty assessment, appendices A and B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harper, F.T.; Young, M.L.; Miller, L.A.

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, completed in 1990, estimate the risks presented by nuclear installations based on postulated frequencies and magnitudes of potential accidents. In 1991, the US Nuclear Regulatory Commission (NRC) and the Commission of the European Communities (CEC) began a joint uncertainty analysis of the two codes. The objective was to develop credible and traceable uncertainty distributions for the input variables of the codes. Expert elicitation, developed independently, was identified as the best technology available for developing a library of uncertainty distributions for the selected consequence parameters. The study was formulatedmore » jointly and was limited to the current code models and to physical quantities that could be measured in experiments. To validate the distributions generated for the wet deposition input variables, samples were taken from these distributions and propagated through the wet deposition code model along with the Gaussian plume model (GPM) implemented in the MACCS and COSYMA codes. Resulting distributions closely replicated the aggregated elicited wet deposition distributions. Project teams from the NRC and CEC cooperated successfully to develop and implement a unified process for the elaboration of uncertainty distributions on consequence code input parameters. Formal expert judgment elicitation proved valuable for synthesizing the best available information. Distributions on measurable atmospheric dispersion and deposition parameters were successfully elicited from experts involved in the many phenomenological areas of consequence analysis. This volume is the second of a three-volume document describing the project and contains two appendices describing the rationales for the dispersion and deposition data along with short biographies of the 16 experts who participated in the project.« less

  6. Pollen Dispersion Forecast At Regional Scale

    NASA Astrophysics Data System (ADS)

    Mangin, A.; Asthma Forecast System Team

    The forecast of the pollen concentration is generally based on an identification of sim- ilar coincidence of measured pollen at given points and meteorological data that is searched in an archive and which, with the help of experts, allows building a predicted value. This may be classified under the family of statistical approaches for forecast- ing. While palynologists make these methods more and more accurate with the help of innovative techniques of regression against empirical rules and/or evolving mathe- matical structures (e.g. neural networks), the spatial dispersion of the pollen is not or poorly considered, mainly because it requires a lot of means and technique that are not familiar to this scientific discipline. The research on pollen forecasts are presently mainly focused on the problematic of modeling the behavior of pollen trends and sea- sons at one location regardless of the topography, the locations of emitters, the relative strengths of emitter, in one word the Sspatial backgroundT. This research work was a & cedil;successful attempt to go a step further combining this SlocalT approach with a trans- & cedil;port/dispersion modeling allowing the access to mapping of concentration. The areas of interest that were selected for the demonstration of feasibility were 200x200km zones centered on Cordoba, Barcelona and Bologna and four pollen types were ex- amined, namely: Cupressaceae, Olea europaea, Poaceae and Parietaria. At the end of this three-year European project in December 2001, the system was fully deployed and validated. The multidisciplinary team will present the original methodologies that were derived for modeling the numerous aspects of this problem and also some con- clusions regarding potential extent to other areas and taxa.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleury, Pierre; Uzan, Jean-Philippe; Larena, Julien, E-mail: fleury@iap.fr, E-mail: j.larena@ru.ac.za, E-mail: uzan@iap.fr

    On the scale of the light beams subtended by small sources, e.g. supernovae, matter cannot be accurately described as a fluid, which questions the applicability of standard cosmic lensing to those cases. In this article, we propose a new formalism to deal with small-scale lensing as a diffusion process: the Sachs and Jacobi equations governing the propagation of narrow light beams are treated as Langevin equations. We derive the associated Fokker-Planck-Kolmogorov equations, and use them to deduce general analytical results on the mean and dispersion of the angular distance. This formalism is applied to random Einstein-Straus Swiss-cheese models, allowing usmore » to: (1) show an explicit example of the involved calculations; (2) check the validity of the method against both ray-tracing simulations and direct numerical integration of the Langevin equation. As a byproduct, we obtain a post-Kantowski-Dyer-Roeder approximation, accounting for the effect of tidal distortions on the angular distance, in excellent agreement with numerical results. Besides, the dispersion of the angular distance is correctly reproduced in some regimes.« less

  8. The theory of stochastic cosmological lensing

    NASA Astrophysics Data System (ADS)

    Fleury, Pierre; Larena, Julien; Uzan, Jean-Philippe

    2015-11-01

    On the scale of the light beams subtended by small sources, e.g. supernovae, matter cannot be accurately described as a fluid, which questions the applicability of standard cosmic lensing to those cases. In this article, we propose a new formalism to deal with small-scale lensing as a diffusion process: the Sachs and Jacobi equations governing the propagation of narrow light beams are treated as Langevin equations. We derive the associated Fokker-Planck-Kolmogorov equations, and use them to deduce general analytical results on the mean and dispersion of the angular distance. This formalism is applied to random Einstein-Straus Swiss-cheese models, allowing us to: (1) show an explicit example of the involved calculations; (2) check the validity of the method against both ray-tracing simulations and direct numerical integration of the Langevin equation. As a byproduct, we obtain a post-Kantowski-Dyer-Roeder approximation, accounting for the effect of tidal distortions on the angular distance, in excellent agreement with numerical results. Besides, the dispersion of the angular distance is correctly reproduced in some regimes.

  9. The role of passive sampling in monitoring the environmental impacts of produced water discharges from the Norwegian oil and gas industry.

    PubMed

    Hale, Sarah E; Oen, Amy M P; Cornelissen, Gerard; Jonker, Michiel T O; Waarum, Ivar-Kristian; Eek, Espen

    2016-10-15

    Stringent and periodic iteration of regulations related to the monitoring of chemical releases from the offshore oil and gas industry requires the use of ever changing, rapidly developing and technologically advancing techniques. Passive samplers play an important role in water column monitoring of produced water (PW) discharge to seawater under Norwegian regulation, where they are used to; i) measure aqueous concentrations of pollutants, ii) quantify the exposure of caged organisms and investigate PW dispersal, and iii) validate dispersal models. This article summarises current Norwegian water column monitoring practice and identifies research and methodological gaps for the use of passive samplers in monitoring. The main gaps are; i) the range of passive samplers used should be extended, ii) differences observed in absolute concentrations accumulated by passive samplers and organisms should be understood, and iii) the link between PW discharge concentrations and observed acute and sub-lethal ecotoxicological end points in organisms should be investigated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Modeling compressible multiphase flows with dispersed particles in both dense and dilute regimes

    NASA Astrophysics Data System (ADS)

    McGrath, T.; St. Clair, J.; Balachandar, S.

    2018-05-01

    Many important explosives and energetics applications involve multiphase formulations employing dispersed particles. While considerable progress has been made toward developing mathematical models and computational methodologies for these flows, significant challenges remain. In this work, we apply a mathematical model for compressible multiphase flows with dispersed particles to existing shock and explosive dispersal problems from the literature. The model is cast in an Eulerian framework, treats all phases as compressible, is hyperbolic, and satisfies the second law of thermodynamics. It directly applies the continuous-phase pressure gradient as a forcing function for particle acceleration and thereby retains relaxed characteristics for the dispersed particle phase that remove the constituent material sound velocity from the eigenvalues. This is consistent with the expected characteristics of dispersed particle phases and can significantly improve the stable time-step size for explicit methods. The model is applied to test cases involving the shock and explosive dispersal of solid particles and compared to data from the literature. Computed results compare well with experimental measurements, providing confidence in the model and computational methods applied.

  11. Uncertainty in spatially explicit animal dispersal models

    USGS Publications Warehouse

    Mooij, Wolf M.; DeAngelis, Donald L.

    2003-01-01

    Uncertainty in estimates of survival of dispersing animals is a vexing difficulty in conservation biology. The current notion is that this uncertainty decreases the usefulness of spatially explicit population models in particular. We examined this problem by comparing dispersal models of three levels of complexity: (1) an event-based binomial model that considers only the occurrence of mortality or arrival, (2) a temporally explicit exponential model that employs mortality and arrival rates, and (3) a spatially explicit grid-walk model that simulates the movement of animals through an artificial landscape. Each model was fitted to the same set of field data. A first objective of the paper is to illustrate how the maximum-likelihood method can be used in all three cases to estimate the means and confidence limits for the relevant model parameters, given a particular set of data on dispersal survival. Using this framework we show that the structure of the uncertainty for all three models is strikingly similar. In fact, the results of our unified approach imply that spatially explicit dispersal models, which take advantage of information on landscape details, suffer less from uncertainly than do simpler models. Moreover, we show that the proposed strategy of model development safeguards one from error propagation in these more complex models. Finally, our approach shows that all models related to animal dispersal, ranging from simple to complex, can be related in a hierarchical fashion, so that the various approaches to modeling such dispersal can be viewed from a unified perspective.

  12. Validation of a multi-layer Green's function code for ion beam transport

    NASA Astrophysics Data System (ADS)

    Walker, Steven; Tweed, John; Tripathi, Ram; Badavi, Francis F.; Miller, Jack; Zeitlin, Cary; Heilbronn, Lawrence

    To meet the challenge of future deep space programs, an accurate and efficient engineering code for analyzing the shielding requirements against high-energy galactic heavy radiations is needed. In consequence, a new version of the HZETRN code capable of simulating high charge and energy (HZE) ions with either laboratory or space boundary conditions is currently under development. The new code, GRNTRN, is based on a Green's function approach to the solution of Boltzmann's transport equation and like its predecessor is deterministic in nature. The computational model consists of the lowest order asymptotic approximation followed by a Neumann series expansion with non-perturbative corrections. The physical description includes energy loss with straggling, nuclear attenuation, nuclear fragmentation with energy dispersion and down shift. Code validation in the laboratory environment is addressed by showing that GRNTRN accurately predicts energy loss spectra as measured by solid-state detectors in ion beam experiments with multi-layer targets. In order to validate the code with space boundary conditions, measured particle fluences are propagated through several thicknesses of shielding using both GRNTRN and the current version of HZETRN. The excellent agreement obtained indicates that GRNTRN accurately models the propagation of HZE ions in the space environment as well as in laboratory settings and also provides verification of the HZETRN propagator.

  13. Larval retention and connectivity among populations of corals and reef fishes: history, advances and challenges

    NASA Astrophysics Data System (ADS)

    Jones, G. P.; Almany, G. R.; Russ, G. R.; Sale, P. F.; Steneck, R. S.; van Oppen, M. J. H.; Willis, B. L.

    2009-06-01

    The extent of larval dispersal on coral reefs has important implications for the persistence of coral reef metapopulations, their resilience and recovery from an increasing array of threats, and the success of protective measures. This article highlights a recent dramatic increase in research effort and a growing diversity of approaches to the study of larval retention within (self-recruitment) and dispersal among (connectivity) isolated coral reef populations. Historically, researchers were motivated by alternative hypotheses concerning the processes limiting populations and structuring coral reef assemblages, whereas the recent impetus has come largely from the need to incorporate dispersal information into the design of no-take marine protected area (MPA) networks. Although the majority of studies continue to rely on population genetic approaches to make inferences about dispersal, a wide range of techniques are now being employed, from small-scale larval tagging and paternity analyses, to large-scale biophysical circulation models. Multiple approaches are increasingly being applied to cross-validate and provide more realistic estimates of larval dispersal. The vast majority of empirical studies have focused on corals and fishes, where evidence for both extremely local scale patterns of self-recruitment and ecologically significant connectivity among reefs at scales of tens of kilometers (and in some cases hundreds of kilometers) is accumulating. Levels of larval retention and the spatial extent of connectivity in both corals and fishes appear to be largely independent of larval duration or reef size, but may be strongly influenced by geographic setting. It is argued that high levels of both self-recruitment and larval import can contribute to the resilience of reef populations and MPA networks, but these benefits will erode in degrading reef environments.

  14. Sex-specific genetic analysis indicates low correlation between demographic and genetic connectivity in the Scandinavian brown bear (Ursus arctos).

    PubMed

    Schregel, Julia; Kopatz, Alexander; Eiken, Hans Geir; Swenson, Jon E; Hagen, Snorre B

    2017-01-01

    The degree of gene flow within and among populations, i.e. genetic population connectivity, may closely track demographic population connectivity. Alternatively, the rate of gene flow may change relative to the rate of dispersal. In this study, we explored the relationship between genetic and demographic population connectivity using the Scandinavian brown bear as model species, due to its pronounced male dispersal and female philopatry. Thus, we expected that females would shape genetic structure locally, whereas males would act as genetic mediators among regions. To test this, we used eight validated microsatellite markers on 1531 individuals sampled noninvasively during country-wide genetic population monitoring in Sweden and Norway from 2006 to 2013. First, we determined sex-specific genetic structure and substructure across the study area. Second, we compared genetic differentiation, migration/gene flow patterns, and spatial autocorrelation results between the sexes both within and among genetic clusters and geographic regions. Our results indicated that demographic connectivity was not a reliable indicator of genetic connectivity. Among regions, we found no consistent difference in long-term gene flow and estimated current migration rates between males and females. Within regions/genetic clusters, only females consistently displayed significant positive spatial autocorrelation, indicating male-biased small-scale dispersal. In one cluster, however, males showed a dispersal pattern similar to females. The Scandinavian brown bear population has experienced substantial recovery over the last decades; however, our results did not show any changes in its large-scale population structure compared to previous studies, suggesting that an increase in population size and dispersal of individuals does not necessary lead to increased genetic connectivity. Thus, we conclude that both genetic and demographic connectivity should be estimated, so as not to make false assumptions about the reality of wildlife populations.

  15. The influence of larval migration and dispersal depth on potential larval trajectories of a deep-sea bivalve

    NASA Astrophysics Data System (ADS)

    McVeigh, Doreen M.; Eggleston, David B.; Todd, Austin C.; Young, Craig M.; He, Ruoying

    2017-09-01

    Many fundamental questions in marine ecology require an understanding of larval dispersal and connectivity, yet direct observations of larval trajectories are difficult or impossible to obtain. Although biophysical models provide an alternative approach, in the deep sea, essential biological parameters for these models have seldom been measured empirically. In this study, we used a biophysical model to explore the role of behaviorally mediated migration from two methane seep sites in the Gulf of Mexico on potential larval dispersal patterns and population connectivity of the deep-sea mussel ;Bathymodiolus; childressi, a species for which some biological information is available. Three possible larval dispersal strategies were evaluated for larvae with a Planktonic Larval Duration (PLD) of 395 days: (1) demersal drift, (2) dispersal near the surface early in larval life followed by an extended demersal period before settlement, and (3) dispersal near the surface until just before settlement. Upward swimming speeds varied in the model based on the best data available. Average dispersal distances for simulated larvae varied between 16 km and 1488 km. Dispersal in the upper water column resulted in the greatest dispersal distance (1173 km ± 2.00), followed by mixed dispersal depth (921 km ± 2.00). Larvae originating in the Gulf of Mexico can potentially seed most known seep metapopulations on the Atlantic continental margin, whereas larvae drifting demersally cannot (237 km ± 1.43). Depth of dispersal is therefore shown to be a critical parameter for models of deep-sea connectivity.

  16. Ensemble Simulations with Coupled Atmospheric Dynamic and Dispersion Models: Illustrating Uncertainties in Dosage Simulations.

    NASA Astrophysics Data System (ADS)

    Warner, Thomas T.; Sheu, Rong-Shyang; Bowers, James F.; Sykes, R. Ian; Dodd, Gregory C.; Henn, Douglas S.

    2002-05-01

    Ensemble simulations made using a coupled atmospheric dynamic model and a probabilistic Lagrangian puff dispersion model were employed in a forensic analysis of the transport and dispersion of a toxic gas that may have been released near Al Muthanna, Iraq, during the Gulf War. The ensemble study had two objectives, the first of which was to determine the sensitivity of the calculated dosage fields to the choices that must be made about the configuration of the atmospheric dynamic model. In this test, various choices were used for model physics representations and for the large-scale analyses that were used to construct the model initial and boundary conditions. The second study objective was to examine the dispersion model's ability to use ensemble inputs to predict dosage probability distributions. Here, the dispersion model was used with the ensemble mean fields from the individual atmospheric dynamic model runs, including the variability in the individual wind fields, to generate dosage probabilities. These are compared with the explicit dosage probabilities derived from the individual runs of the coupled modeling system. The results demonstrate that the specific choices made about the dynamic-model configuration and the large-scale analyses can have a large impact on the simulated dosages. For example, the area near the source that is exposed to a selected dosage threshold varies by up to a factor of 4 among members of the ensemble. The agreement between the explicit and ensemble dosage probabilities is relatively good for both low and high dosage levels. Although only one ensemble was considered in this study, the encouraging results suggest that a probabilistic dispersion model may be of value in quantifying the effects of uncertainties in a dynamic-model ensemble on dispersion model predictions of atmospheric transport and dispersion.

  17. Modelling solute dispersion in periodic heterogeneous porous media: Model benchmarking against intermediate scale experiments

    NASA Astrophysics Data System (ADS)

    Majdalani, Samer; Guinot, Vincent; Delenne, Carole; Gebran, Hicham

    2018-06-01

    This paper is devoted to theoretical and experimental investigations of solute dispersion in heterogeneous porous media. Dispersion in heterogenous porous media has been reported to be scale-dependent, a likely indication that the proposed dispersion models are incompletely formulated. A high quality experimental data set of breakthrough curves in periodic model heterogeneous porous media is presented. In contrast with most previously published experiments, the present experiments involve numerous replicates. This allows the statistical variability of experimental data to be accounted for. Several models are benchmarked against the data set: the Fickian-based advection-dispersion, mobile-immobile, multirate, multiple region advection dispersion models, and a newly proposed transport model based on pure advection. A salient property of the latter model is that its solutions exhibit a ballistic behaviour for small times, while tending to the Fickian behaviour for large time scales. Model performance is assessed using a novel objective function accounting for the statistical variability of the experimental data set, while putting equal emphasis on both small and large time scale behaviours. Besides being as accurate as the other models, the new purely advective model has the advantages that (i) it does not exhibit the undesirable effects associated with the usual Fickian operator (namely the infinite solute front propagation speed), and (ii) it allows dispersive transport to be simulated on every heterogeneity scale using scale-independent parameters.

  18. A review of the basic concepts of dense gas dispersion with special regard to modelling of heat transfer

    NASA Astrophysics Data System (ADS)

    Tasker, M. N.

    1984-01-01

    Dense gas dispersion is the study of the spreading and dilution of a gas that has a density greater than that of ambient air. Models to predict the dispersion of such dense gases as chlorine, sulfur dioxide, liquefied natural gas, and liquid propane are necessary to prevent a catastrophe in environmental and/or human terms. A basic physical picture of dense gas dispersion is provided. Mathematical and wind tunnel models of dense gas flow are presented and discussed, including the constraints and disadvantages of modelling techniques. Special emphasis is given to heat transfer during dense gas dispersion.

  19. Analysis of Developing Gas/liquid Two-Phase Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elena A. Tselishcheva; Michael Z. Podowski; Steven P. Antal

    The goal of this work is to develop a mechanistically based CFD model that can be used to simulate process equipment operating in the churn-turbulent regime. The simulations were performed using a state-of-the-art computational multiphase fluid dynamics code, NPHASE–CMFD [Antal et al,2000]. A complete four-field model, including the continuous liquid field and three dispersed gas fields representing bubbles of different sizes, was first carefully tested for numerical convergence and accuracy, and then used to reproduce the experimental results from the TOPFLOW test facility at Forschungszentrum Dresden-Rossendorf e.V. Institute of Safety Research [Prasser et al,2007]. Good progress has been made inmore » simulating the churn-turbulent flows and comparison the NPHASE-CMFD simulations with TOPFLOW experimental data. The main objective of the paper is to demonstrate capability to predict the evolution of adiabatic churn-turbulent gas/liquid flows. The proposed modelling concept uses transport equations for the continuous liquid field and for dispersed bubble fields [Tselishcheva et al, 2009]. Along with closure laws based on interaction between bubbles and continuous liquid, the effect of height on air density has been included in the model. The figure below presents the developing flow results of the study, namely total void fraction at different axial locations along the TOPFLOW facility test section. The complete model description, as well as results of simulations and validation will be presented in the full paper.« less

  20. Heterogeneity, Mixing, and the Spatial Scales of Mosquito-Borne Pathogen Transmission

    PubMed Central

    Perkins, T. Alex; Scott, Thomas W.; Le Menach, Arnaud; Smith, David L.

    2013-01-01

    The Ross-Macdonald model has dominated theory for mosquito-borne pathogen transmission dynamics and control for over a century. The model, like many other basic population models, makes the mathematically convenient assumption that populations are well mixed; i.e., that each mosquito is equally likely to bite any vertebrate host. This assumption raises questions about the validity and utility of current theory because it is in conflict with preponderant empirical evidence that transmission is heterogeneous. Here, we propose a new dynamic framework that is realistic enough to describe biological causes of heterogeneous transmission of mosquito-borne pathogens of humans, yet tractable enough to provide a basis for developing and improving general theory. The framework is based on the ecological context of mosquito blood meals and the fine-scale movements of individual mosquitoes and human hosts that give rise to heterogeneous transmission. Using this framework, we describe pathogen dispersion in terms of individual-level analogues of two classical quantities: vectorial capacity and the basic reproductive number, . Importantly, this framework explicitly accounts for three key components of overall heterogeneity in transmission: heterogeneous exposure, poor mixing, and finite host numbers. Using these tools, we propose two ways of characterizing the spatial scales of transmission—pathogen dispersion kernels and the evenness of mixing across scales of aggregation—and demonstrate the consequences of a model's choice of spatial scale for epidemic dynamics and for estimation of , both by a priori model formulas and by inference of the force of infection from time-series data. PMID:24348223

  1. A simple approximation for larval retention around reefs

    NASA Astrophysics Data System (ADS)

    Cetina-Heredia, Paulina; Connolly, Sean R.

    2011-09-01

    Estimating larval retention at individual reefs by local scale three-dimensional flows is a significant problem for understanding, and predicting, larval dispersal. Determining larval dispersal commonly involves the use of computationally demanding and expensively calibrated/validated hydrodynamic models that resolve reef wake eddies. This study models variation in larval retention times for a range of reef shapes and circulation regimes, using a reef-scale three-dimensional hydrodynamic model. It also explores how well larval retention time can be estimated based on the "Island Wake Parameter", a measure of the degree of flow turbulence in the wake of reefs that is a simple function of flow speed, reef dimension, and vertical diffusion. The mean residence times found in the present study (0.48-5.64 days) indicate substantial potential for self-recruitment of species whose larvae are passive, or weak swimmers, for the first several days after release. Results also reveal strong and significant relationships between the Island Wake Parameter and mean residence time, explaining 81-92% of the variability in retention among reefs across a range of unidirectional flow speeds and tidal regimes. These findings suggest that good estimates of larval retention may be obtained from relatively coarse-scale characteristics of the flow, and basic features of reef geomorphology. Such approximations may be a valuable tool for modeling connectivity and meta-population dynamics over large spatial scales, where explicitly characterizing fine-scale flows around reef requires a prohibitive amount of computation and extensive model calibration.

  2. Assessment of spatial discordance of primary and effective seed dispersal of European beech (Fagus sylvatica L.) by ecological and genetic methods.

    PubMed

    Millerón, M; López de Heredia, U; Lorenzo, Z; Alonso, J; Dounavi, A; Gil, L; Nanos, N

    2013-03-01

    Spatial discordance between primary and effective dispersal in plant populations indicates that postdispersal processes erase the seed rain signal in recruitment patterns. Five different models were used to test the spatial concordance of the primary and effective dispersal patterns in a European beech (Fagus sylvatica) population from central Spain. An ecological method was based on classical inverse modelling (SSS), using the number of seed/seedlings as input data. Genetic models were based on direct kernel fitting of mother-to-offspring distances estimated by a parentage analysis or were spatially explicit models based on the genotype frequencies of offspring (competing sources model and Moran-Clark's Model). A fully integrated mixed model was based on inverse modelling, but used the number of genotypes as input data (gene shadow model). The potential sources of error and limitations of each seed dispersal estimation method are discussed. The mean dispersal distances for seeds and saplings estimated with these five methods were higher than those obtained by previous estimations for European beech forests. All the methods show strong discordance between primary and effective dispersal kernel parameters, and for dispersal directionality. While seed rain was released mostly under the canopy, saplings were established far from mother trees. This discordant pattern may be the result of the action of secondary dispersal by animals or density-dependent effects; that is, the Janzen-Connell effect. © 2013 Blackwell Publishing Ltd.

  3. Dispersive wave propagation in two-dimensional rigid periodic blocky materials with elastic interfaces

    NASA Astrophysics Data System (ADS)

    Bacigalupo, Andrea; Gambarotta, Luigi

    2017-05-01

    Dispersive waves in two-dimensional blocky materials with periodic microstructure made up of equal rigid units, having polygonal centro-symmetric shape with mass and gyroscopic inertia, connected with each other through homogeneous linear interfaces, have been analyzed. The acoustic behavior of the resulting discrete Lagrangian model has been obtained through a Floquet-Bloch approach. From the resulting eigenproblem derived by the Euler-Lagrange equations for harmonic wave propagation, two acoustic branches and an optical branch are obtained in the frequency spectrum. A micropolar continuum model to approximate the Lagrangian model has been derived based on a second-order Taylor expansion of the generalized macro-displacement field. The constitutive equations of the equivalent micropolar continuum have been obtained, with the peculiarity that the positive definiteness of the second-order symmetric tensor associated to the curvature vector is not guaranteed and depends both on the ratio between the local tangent and normal stiffness and on the block shape. The same results have been obtained through an extended Hamiltonian derivation of the equations of motion for the equivalent continuum that is related to the Hill-Mandel macro homogeneity condition. Moreover, it is shown that the hermitian matrix governing the eigenproblem of harmonic wave propagation in the micropolar model is exact up to the second order in the norm of the wave vector with respect to the same matrix from the discrete model. To appreciate the acoustic behavior of some relevant blocky materials and to understand the reliability and the validity limits of the micropolar continuum model, some blocky patterns have been analyzed: rhombic and hexagonal assemblages and running bond masonry. From the results obtained in the examples, the obtained micropolar model turns out to be particularly accurate to describe dispersive functions for wavelengths greater than 3-4 times the characteristic dimension of the block. Finally, in consideration that the positive definiteness of the second order elastic tensor of the micropolar model is not guaranteed, the hyperbolicity of the equation of motion has been investigated by considering the Legendre-Hadamard ellipticity conditions requiring real values for the wave velocity.

  4. The Use of an Atmospheric Model for Study the Gas Dispersion at the Brazilian Space Launching Center

    NASA Astrophysics Data System (ADS)

    Fisch, G.; Iriart, P. G.; Andrade Schuch, D.; Couto Milanez, V.

    2015-09-01

    The present work aims to use an atmospheric mesoscale model (Weather Research and Forecasting model - WRF) coupled with its chemical module (CHEM) in order to study the simulation of the dispersion of exhausted gas released from a typical rockets (in this case the Satellite Vehicle Launcher characteristics was used) from the Alcântara Launch Center (ALC). For the initialization of the coupled model, the preprocessor PREP-Chem was assigned to the Reanalysis of the TROpospheric chemical composition (RETRO). However, as this repository has no pollutants at the ALC area, a new method of insertion of chemical data assigned to the exact geographical position where the VLS is launched was used with all emissions null unless at the Launcher pad. Also, the model was initialized with meteorological data extracted from the Global Forecasting System (GFS). The simulations were made for different 4 cases representatives of the diurnal (daytime and nighttime) and seasonal (dry and wet seasons) scales. Observational data (radiosondes and wind tower data) was used to validate the wind field. There are 3 grids nested with 9, 3 and 1 km spatial resolution and the model has 45 levels in the vertical (15 levels up to 2000 m). All the simulations showed approximately the same patterns as the wind flow are very persistent (this is a characteristic of the trade winds). Typically, the simulations showed that the CO concentration (the variable used to represent the gases exhausted by the solid motors) at the launch pad is 2 order of magnitude higher than at the gate (1 km far) and 4 order of magnitude higher than Alcantara village (20 km far). It can reach 30000 ppm at the launching pad after Ho + 1 mm. Also, it was computed that the launch pad must stay isolated by 1 5 mm before any other action for the complete dispersion and, consequently, for safety reasons. As the turbulent intensity is higher at 12 UTC (daytime conditions), the total time for the complete dispersion of the plume is reduced (around 40-45 mm) related to the nighttime conditions (60-75 mm). This is an ongoing work that aims to improve this model configuration to include a vertical distribution of the exhausted gases due to the normal launching and to include small scale features at the scale of 100 m. In the near future, this model should be operational for the launchings at ALC.

  5. A modelling study of the inter-diffusion layer formation in U-Mo/Al dispersion fuel plates at high power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, B.; Hofman, G. L.; Leenaers, A.

    Post irradiation examinations of full-size U-Mo/Al dispersion fuel plates fabricated with ZrN- or Sicoated U-Mo particles revealed that the reaction rate of irradiation-induced U-Mo-Al inter-diffusion, an important microstructural change impacting the performance of this type of fuel, is temperature and fission-rate dependent. In order to simulate the U-Mo/Al inter-diffusion layer (IL) growth behavior in full-size dispersion fuel plates, the existing IL growth correlation was modified with a temperaturedependent multiplication factor that transits around a threshold fission rate. In-pile irradiation data from four tests in the BR2 reactors, including FUTURE, E-FUTURE, SELEMIUM, and SELEMIUM-1a, were utilized to determine and validate themore » updated IL growth correlation. Irradiation behavior of the plates was simulated with the DART-2D computational code. The general agreement between the calculated and measured fuel meat swelling and constituent volume fractions as a function of fission density demonstrated the plausibility of the updated IL growth correlation. The simulation results also suggested the temperature dependence of the IL growth rate, similar to the temperature dependence of the intermixing rate in ion-irradiated bi-layer systems.« less

  6. On critical behaviour in generalized Kadomtsev-Petviashvili equations

    NASA Astrophysics Data System (ADS)

    Dubrovin, B.; Grava, T.; Klein, C.

    2016-10-01

    An asymptotic description of the formation of dispersive shock waves in solutions to the generalized Kadomtsev-Petviashvili (KP) equation is conjectured. The asymptotic description based on a multiscales expansion is given in terms of a special solution to an ordinary differential equation of the Painlevé I hierarchy. Several examples are discussed numerically to provide strong evidence for the validity of the conjecture. The numerical study of the long time behaviour of these examples indicates persistence of dispersive shock waves in solutions to the (subcritical) KP equations, while in the supercritical KP equations a blow-up occurs after the formation of the dispersive shock waves.

  7. Effects of different dispersal patterns on the presence-absence of multiple species

    NASA Astrophysics Data System (ADS)

    Mohd, Mohd Hafiz; Murray, Rua; Plank, Michael J.; Godsoe, William

    2018-03-01

    Predicting which species will be present (or absent) across a geographical region remains one of the key problems in ecology. Numerous studies have suggested several ecological factors that can determine species presence-absence: environmental factors (i.e. abiotic environments), interactions among species (i.e. biotic interactions) and dispersal process. While various ecological factors have been considered, less attention has been given to the problem of understanding how different dispersal patterns, in interaction with other factors, shape community assembly in the presence of priority effects (i.e. where relative initial abundances determine the long-term presence-absence of each species). By employing both local and non-local dispersal models, we investigate the consequences of different dispersal patterns on the occurrence of priority effects and coexistence in multi-species communities. In the case of non-local, but short-range dispersal, we observe agreement with the predictions of local models for weak and medium dispersal strength, but disagreement for relatively strong dispersal levels. Our analysis shows the existence of a threshold value in dispersal strength (i.e. saddle-node bifurcation) above which priority effects disappear. These results also reveal a co-dimension 2 point, corresponding to a degenerate transcritical bifurcation: at this point, the transcritical bifurcation changes from subcritical to supercritical with corresponding creation of a saddle-node bifurcation curve. We observe further contrasting effects of non-local dispersal as dispersal distance changes: while very long-range dispersal can lead to species extinctions, intermediate-range dispersal can permit more outcomes with multi-species coexistence than short-range dispersal (or purely local dispersal). Overall, our results show that priority effects are more pronounced in the non-local dispersal models than in the local dispersal models. Taken together, our findings highlight the profound delicacy in the mediation of priority effects by dispersal processes: ;big steps; can have more influence than many ;small steps;.

  8. Simultaneous determination of fumonisins B1 and B2 in different types of maize by matrix solid phase dispersion and HPLC-MS/MS.

    PubMed

    de Oliveira, Gabriel Barros; de Castro Gomes Vieira, Carolyne Menezes; Orlando, Ricardo Mathias; Faria, Adriana Ferreira

    2017-10-15

    This work involved the optimization and validation of a method, according to Directive 2002/657/EC and the Analytical Quality Assurance Manual of Ministério da Agricultura, Pecuária e Abastecimento, Brazil, for simultaneous extraction and determination of fumonisins B1 and B2 in maize. The extraction procedure was based on a matrix solid phase dispersion approach, the optimization of which employed a sequence of different factorial designs. A liquid chromatography-tandem mass spectrometry method was developed for determining these analytes using the selected reaction monitoring mode. The optimized method employed only 1g of silica gel for dispersion and elution with 70% ammonium formate aqueous buffer (50mmolL -1 , pH 9), representing a simple, cheap and chemically friendly sample preparation method. Trueness (recoveries: 86-106%), precision (RSD ≤19%), decision limits, detection capabilities and measurement uncertainties were calculated for the validated method. The method scope was expanded to popcorn kernels, white maize kernels and yellow maize grits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Modeling of dispersion near roadways based on the vehicle-induced turbulence concept

    NASA Astrophysics Data System (ADS)

    Sahlodin, Ali M.; Sotudeh-Gharebagh, Rahmat; Zhu, Yifang

    A mathematical model is developed for dispersion near roadways by incorporating vehicle-induced turbulence (VIT) into Gaussian dispersion modeling using computational fluid dynamics (CFD). The model is based on the Gaussian plume equation in which roadway is regarded as a series of point sources. The Gaussian dispersion parameters are modified by simulation of the roadway using CFD in order to evaluate turbulent kinetic energy (TKE) as a measure of VIT. The model was evaluated against experimental carbon monoxide concentrations downwind of two major freeways reported in the literature. Good agreements were achieved between model results and the literature data. A significant difference was observed between the model results with and without considering VIT. The difference is rather high for data very close to the freeways. This model, after evaluation with additional data, may be used as a framework for predicting dispersion and deposition from any roadway for different traffic (vehicle type and speed) conditions.

  10. Modeling motor vehicle crashes using Poisson-gamma models: examining the effects of low sample mean values and small sample size on the estimation of the fixed dispersion parameter.

    PubMed

    Lord, Dominique

    2006-07-01

    There has been considerable research conducted on the development of statistical models for predicting crashes on highway facilities. Despite numerous advancements made for improving the estimation tools of statistical models, the most common probabilistic structure used for modeling motor vehicle crashes remains the traditional Poisson and Poisson-gamma (or Negative Binomial) distribution; when crash data exhibit over-dispersion, the Poisson-gamma model is usually the model of choice most favored by transportation safety modelers. Crash data collected for safety studies often have the unusual attributes of being characterized by low sample mean values. Studies have shown that the goodness-of-fit of statistical models produced from such datasets can be significantly affected. This issue has been defined as the "low mean problem" (LMP). Despite recent developments on methods to circumvent the LMP and test the goodness-of-fit of models developed using such datasets, no work has so far examined how the LMP affects the fixed dispersion parameter of Poisson-gamma models used for modeling motor vehicle crashes. The dispersion parameter plays an important role in many types of safety studies and should, therefore, be reliably estimated. The primary objective of this research project was to verify whether the LMP affects the estimation of the dispersion parameter and, if it is, to determine the magnitude of the problem. The secondary objective consisted of determining the effects of an unreliably estimated dispersion parameter on common analyses performed in highway safety studies. To accomplish the objectives of the study, a series of Poisson-gamma distributions were simulated using different values describing the mean, the dispersion parameter, and the sample size. Three estimators commonly used by transportation safety modelers for estimating the dispersion parameter of Poisson-gamma models were evaluated: the method of moments, the weighted regression, and the maximum likelihood method. In an attempt to complement the outcome of the simulation study, Poisson-gamma models were fitted to crash data collected in Toronto, Ont. characterized by a low sample mean and small sample size. The study shows that a low sample mean combined with a small sample size can seriously affect the estimation of the dispersion parameter, no matter which estimator is used within the estimation process. The probability the dispersion parameter becomes unreliably estimated increases significantly as the sample mean and sample size decrease. Consequently, the results show that an unreliably estimated dispersion parameter can significantly undermine empirical Bayes (EB) estimates as well as the estimation of confidence intervals for the gamma mean and predicted response. The paper ends with recommendations about minimizing the likelihood of producing Poisson-gamma models with an unreliable dispersion parameter for modeling motor vehicle crashes.

  11. Source, dispersion and combustion modelling of an accidental release of hydrogen in an urban environment.

    PubMed

    Venetsanos, A G; Huld, T; Adams, P; Bartzis, J G

    2003-12-12

    Hydrogen is likely to be the most important future energy carrier, for many stationary and mobile applications, with the potential to make significant reductions in greenhouse gas emissions especially if renewable primary energy sources are used to produce the hydrogen. A safe transition to the use of hydrogen by members of the general public requires that the safety issues associated with hydrogen applications have to be investigated and fully understood. In order to assess the risks associated with hydrogen applications, its behaviour in realistic accident scenarios has to be predicted, allowing mitigating measures to be developed where necessary. A key factor in this process is predicting the release, dispersion and combustion of hydrogen in appropriate scenarios. This paper illustrates an application of CFD methods to the simulation of an actual hydrogen explosion. The explosion occurred on 3 March 1983 in a built up area of central Stockholm, Sweden, after the accidental release of approximately 13.5 kg of hydrogen from a rack of 18 interconnected 50 l industrial pressure vessels (200 bar working pressure) being transported by a delivery truck. Modelling of the source term, dispersion and combustion were undertaken separately using three different numerical tools, due to the differences in physics and scales between the different phenomena. Results from the dispersion calculations together with the official accident report were used to identify a possible ignition source and estimate the time at which ignition could have occurred. Ignition was estimated to occur 10s after the start of the release, coinciding with the time at which the maximum flammable hydrogen mass and cloud volume were found to occur (4.5 kg and 600 m(3), respectively). The subsequent simulation of the combustion adopts initial conditions for mean flow and turbulence from the dispersion simulations, and calculates the development of a fireball. This provides physical values, e.g. maximum overpressure and far-field overpressure that may be used as a comparison with the known accident details to give an indication of the validity of the models. The simulation results are consistent with both the reported near-field damage to buildings and persons and with the far-field damage to windows. The work was undertaken as part of the European Integrated Hydrogen Project-Phase 2 (EIHP2) with partial funding from the European Commission via the Fifth Framework Programme.

  12. Ground-based Observation System Development for the Moon Hyper-spectral Imaging

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Huang, Yu; Wang, Shurong; Li, Zhanfeng; Zhang, Zihui; Hu, Xiuqing; Zhang, Peng

    2017-05-01

    The Moon provides a suitable radiance source for on-orbit calibration of space-borne optical instruments. A ground-based observation system dedicated to the hyper-spectral radiometry of the Moon has been developed for improving and validating the current lunar model. The observation instrument using a dispersive imaging spectrometer is particularly designed for high-accuracy observations of the lunar radiance. The simulation and analysis of the push-broom mechanism is made in detail for lunar observations, and the automated tracking and scanning is well accomplished in different observational condition. A three-month series of hyper-spectral imaging experiments of the Moon have been performed in the wavelength range from 400 to 1000 nm near Lijiang Observatory (Yunnan, China) at phase angles -83°-87°. Preliminary results and data comparison are presented, and it shows the instrument performance and lunar observation capability of this system are well validated. Beyond previous measurements, this observation system provides the entire lunar disk images of continuous spectral coverage by adopting the push-broom mode with special scanning scheme and leads to the further research of lunar photometric model.

  13. Structural habitat predicts functional dispersal habitat of a large carnivore: how leopards change spots.

    PubMed

    Fattebert, Julien; Robinson, Hugh S; Balme, Guy; Slotow, Rob; Hunter, Luke

    2015-10-01

    Natal dispersal promotes inter-population linkage, and is key to spatial distribution of populations. Degradation of suitable landscape structures beyond the specific threshold of an individual's ability to disperse can therefore lead to disruption of functional landscape connectivity and impact metapopulation function. Because it ignores behavioral responses of individuals, structural connectivity is easier to assess than functional connectivity and is often used as a surrogate for landscape connectivity modeling. However using structural resource selection models as surrogate for modeling functional connectivity through dispersal could be erroneous. We tested how well a second-order resource selection function (RSF) models (structural connectivity), based on GPS telemetry data from resident adult leopard (Panthera pardus L.), could predict subadult habitat use during dispersal (functional connectivity). We created eight non-exclusive subsets of the subadult data based on differing definitions of dispersal to assess the predictive ability of our adult-based RSF model extrapolated over a broader landscape. Dispersing leopards used habitats in accordance with adult selection patterns, regardless of the definition of dispersal considered. We demonstrate that, for a wide-ranging apex carnivore, functional connectivity through natal dispersal corresponds to structural connectivity as modeled by a second-order RSF. Mapping of the adult-based habitat classes provides direct visualization of the potential linkages between populations, without the need to model paths between a priori starting and destination points. The use of such landscape scale RSFs may provide insight into predicting suitable dispersal habitat peninsulas in human-dominated landscapes where mitigation of human-wildlife conflict should be focused. We recommend the use of second-order RSFs for landscape conservation planning and propose a similar approach to the conservation of other wide-ranging large carnivore species where landscape-scale resource selection data already exist.

  14. Laser generated guided waves and finite element modeling for the thickness gauging of thin layers.

    PubMed

    Lefevre, F; Jenot, F; Ouaftouh, M; Duquennoy, M; Ourak, M

    2010-03-01

    In this paper, nondestructive testing has been performed on a thin gold layer deposited on a 2 in. silicon wafer. Guided waves were generated and studied using a laser ultrasonic setup and a two-dimensional fast Fourier transform technique was employed to obtain the dispersion curves. A gold layer thickness of 1.33 microm has been determined with a +/-5% margin of error using the shape of the two first propagating modes, assuming for the substrate and the layer an uncertainty on the elastic parameters of +/-2.5%. A finite element model has been implemented to validate the data post-treatment and the experimental results. A good agreement between the numerical simulation, the analytical modeling and the experimentations has been observed. This method was considered suitable for thickness layer higher than 0.7 microm.

  15. Connectivity among subpopulations of Louisiana black bears as estimated by a step selection function

    USGS Publications Warehouse

    Clark, Joseph D.; Jared S. Laufenberg,; Maria Davidson,; Jennifer L. Murrow,

    2015-01-01

    Habitat fragmentation is a fundamental cause of population decline and increased risk of extinction for many wildlife species; animals with large home ranges and small population sizes are particularly sensitive. The Louisiana black bear (Ursus americanus luteolus) exists only in small, isolated subpopulations as a result of land clearing for agriculture, but the relative potential for inter-subpopulation movement by Louisiana black bears has not been quantified, nor have characteristics of effective travel routes between habitat fragments been identified. We placed and monitored global positioning system (GPS) radio collars on 8 female and 23 male bears located in 4 subpopulations in Louisiana, which included a reintroduced subpopulation located between 2 of the remnant subpopulations. We compared characteristics of sequential radiolocations of bears (i.e., steps) with steps that were possible but not chosen by the bears to develop step selection function models based on conditional logistic regression. The probability of a step being selected by a bear increased as the distance to natural land cover and agriculture at the end of the step decreased and as distance from roads at the end of a step increased. To characterize connectivity among subpopulations, we used the step selection models to create 4,000 hypothetical correlated random walks for each subpopulation representing potential dispersal events to estimate the proportion that intersected adjacent subpopulations (hereafter referred to as successful dispersals). Based on the models, movement paths for males intersected all adjacent subpopulations but paths for females intersected only the most proximate subpopulations. Cross-validation and genetic and independent observation data supported our findings. Our models also revealed that successful dispersals were facilitated by a reintroduced population located between 2 distant subpopulations. Successful dispersals for males were dependent on natural land cover in private ownership. The addition of hypothetical 1,000-m- or 3,000-m-wide corridors between the 4 study areas had minimal effects on connectivity among subpopulations. For females, our model suggested that habitat between subpopulations would probably have to be permanently occupied for demographic rescue to occur. Thus, the establishment of stepping-stone populations, such as the reintroduced population that we studied, may be a more effective conservation measure than long corridors without a population presence in between. 

  16. EVALUATION OF ALTERNATIVE GAUSSIAN PLUME DISPERSION MODELING TECHNIQUES IN ESTIMATING SHORT-TERM SULFUR DIOXIDE CONCENTRATIONS

    EPA Science Inventory

    A routinely applied atmospheric dispersion model was modified to evaluate alternative modeling techniques which allowed for more detailed source data, onsite meteorological data, and several dispersion methodologies. These were evaluated with hourly SO2 concentrations measured at...

  17. A review of numerical models to predict the atmospheric dispersion of radionuclides.

    PubMed

    Leelőssy, Ádám; Lagzi, István; Kovács, Attila; Mészáros, Róbert

    2018-02-01

    The field of atmospheric dispersion modeling has evolved together with nuclear risk assessment and emergency response systems. Atmospheric concentration and deposition of radionuclides originating from an unintended release provide the basis of dose estimations and countermeasure strategies. To predict the atmospheric dispersion and deposition of radionuclides several numerical models are available coupled with numerical weather prediction (NWP) systems. This work provides a review of the main concepts and different approaches of atmospheric dispersion modeling. Key processes of the atmospheric transport of radionuclides are emission, advection, turbulent diffusion, dry and wet deposition, radioactive decay and other physical and chemical transformations. A wide range of modeling software are available to simulate these processes with different physical assumptions, numerical approaches and implementation. The most appropriate modeling tool for a specific purpose can be selected based on the spatial scale, the complexity of meteorology, land surface and physical and chemical transformations, also considering the available data and computational resource. For most regulatory and operational applications, offline coupled NWP-dispersion systems are used, either with a local scale Gaussian, or a regional to global scale Eulerian or Lagrangian approach. The dispersion model results show large sensitivity on the accuracy of the coupled NWP model, especially through the description of planetary boundary layer turbulence, deep convection and wet deposition. Improvement of dispersion predictions can be achieved by online coupling of mesoscale meteorology and atmospheric transport models. The 2011 Fukushima event was the first large-scale nuclear accident where real-time prognostic dispersion modeling provided decision support. Dozens of dispersion models with different approaches were used for prognostic and retrospective simulations of the Fukushima release. An unknown release rate proved to be the largest factor of uncertainty, underlining the importance of inverse modeling and data assimilation in future developments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Hydrodynamics of CNT dispersion in high shear dispersion mixers

    NASA Astrophysics Data System (ADS)

    Park, Young Min; Lee, Dong Hyun; Hwang, Wook Ryol; Lee, Sang Bok; Jung, Seung-Il

    2014-11-01

    In this work, we investigate the carbon nanotube (CNT) fragmentation mechanism and dispersion in high shear homogenizers as a plausible dispersion technique, correlating with device geometries and processing conditions, for mass production of CNT-aluminum composites for automobile industries. A CNT dispersion model has been established in a turbulent flow regime and an experimental method in characterizing the critical yield stress of CNT flocs are presented. Considering CNT dispersion in ethanol as a model system, we tested two different geometries of high shear mixers — blade-stirrer type and rotor-stator type homogenizers — and reported the particle size distributions in time and the comparison has been made with the modeling approach and partly with the computational results.

  19. Predicting the movement of pumice rafts in the South Pacific using GNOME for enhanced navigational warnings and coastal hazard management policies

    NASA Astrophysics Data System (ADS)

    Kelly, J.; Bender, M.; Kelly, M.; Walters, C.

    2013-12-01

    Pumice rafts formed from explosive shallow submarine eruptions in the South Pacific pose a significant hazard to local maritime transportation and global coastal communities. Local concerns include the possibility of individual pumice clasts blocking seawater intake valves of ships, damaging the hull of smaller vessels, and inundating harbors bringing fishing and transport to a standstill. Additionally, pumice rafts can introduce harmful invasive species to delicate coastal communities around the world as they dramatically increase dispersal distances for otherwise benthic or relatively sedentary organisms. Two volcanoes in this region have recently formed pumice rafts: Home Reef volcano (Tonga) in 2006 and Havre Seamount (Kermadec Islands) in 2012. These raft events were used as case studies to test a trajectory prediction model since they occurred during times at which high spatial and temporal resolution satellite data were being collected and/or have been described in peer reviewed literature, both of which were necessary for providing model validation. The model was created using the General NOAA Observational Modeling Environment (GNOME), which utilizes sea surface winds and sea surface height (SSH) datasets to predict the possible trajectory a pollutant might follow on a body of water. Wind and ocean current data were acquired from the SeaWinds and Poseidon-3 sensors on board the NASA Earth Observing System (EOS) satellites QuikSCAT and Jason-2. Model outputs showed the 2012 Havre Seamount raft rapidly disperse as it drifted in an ENE direction and the 2006 Home Reef raft drifted quickly in a NW direction towards Papua New Guinea. The 2006 Home Reef prediction model was validated by comparing it to another published model that was based on an integrated surface velocity field in addition to in situ observations. The 2012 Havre Seamount prediction model was validated by spatially and temporally correlating the GNOME trajectory output with moderate-resolution MODIS multispectral data acquired from EOS satellites Aqua and Terra since the raft event has scarcely been studied. Pumice rafts in their early stages are easily observed in MODIS 250 m imagery but after ~5 weeks of exposure to wind shear while drifting, the rafts thinned to <1 km and became extremely difficult to see. Utilization of a higher spatial resolution sensor such as the Operational Land Imager on board LandSat 8 is necessary for imaging and tracking pumice rafts beyond this timeframe, although a significant decrease in temporal resolution is realized. This novel and easily adaptable methodology can be used by island nations and fishery managers to forecast when and where a pumice raft will be, drastically enhancing maritime navigational warnings and response times to eventual pumice landfall.

  20. NMR relaxation induced by iron oxide particles: testing theoretical models.

    PubMed

    Gossuin, Y; Orlando, T; Basini, M; Henrard, D; Lascialfari, A; Mattea, C; Stapf, S; Vuong, Q L

    2016-04-15

    Superparamagnetic iron oxide particles find their main application as contrast agents for cellular and molecular magnetic resonance imaging. The contrast they bring is due to the shortening of the transverse relaxation time T 2 of water protons. In order to understand their influence on proton relaxation, different theoretical relaxation models have been developed, each of them presenting a certain validity domain, which depends on the particle characteristics and proton dynamics. The validation of these models is crucial since they allow for predicting the ideal particle characteristics for obtaining the best contrast but also because the fitting of T 1 experimental data by the theory constitutes an interesting tool for the characterization of the nanoparticles. In this work, T 2 of suspensions of iron oxide particles in different solvents and at different temperatures, corresponding to different proton diffusion properties, were measured and were compared to the three main theoretical models (the motional averaging regime, the static dephasing regime, and the partial refocusing model) with good qualitative agreement. However, a real quantitative agreement was not observed, probably because of the complexity of these nanoparticulate systems. The Roch theory, developed in the motional averaging regime (MAR), was also successfully used to fit T 1 nuclear magnetic relaxation dispersion (NMRD) profiles, even outside the MAR validity range, and provided a good estimate of the particle size. On the other hand, the simultaneous fitting of T 1 and T 2 NMRD profiles by the theory was impossible, and this occurrence constitutes a clear limitation of the Roch model. Finally, the theory was shown to satisfactorily fit the deuterium T 1 NMRD profile of superparamagnetic particle suspensions in heavy water.

  1. Solution of the lossy nonlinear Tricomi equation with application to sonic boom focusing

    NASA Astrophysics Data System (ADS)

    Salamone, Joseph A., III

    Sonic boom focusing theory has been augmented with new terms that account for mean flow effects in the direction of propagation and also for atmospheric absorption/dispersion due to molecular relaxation due to oxygen and nitrogen. The newly derived model equation was numerically implemented using a computer code. The computer code was numerically validated using a spectral solution for nonlinear propagation of a sinusoid through a lossy homogeneous medium. An additional numerical check was performed to verify the linear diffraction component of the code calculations. The computer code was experimentally validated using measured sonic boom focusing data from the NASA sponsored Superboom Caustic and Analysis Measurement Program (SCAMP) flight test. The computer code was in good agreement with both the numerical and experimental validation. The newly developed code was applied to examine the focusing of a NASA low-boom demonstration vehicle concept. The resulting pressure field was calculated for several supersonic climb profiles. The shaping efforts designed into the signatures were still somewhat evident despite the effects of sonic boom focusing.

  2. Behavioral tradeoffs when dispersing across a patchy landscape.

    Treesearch

    Patrick A. Zollner; Steven L. Lima

    2005-01-01

    A better understanding of the behavior of dispersing animals will assist in determining the factors that limit their success and ultimately help improve the way dispersal is incorporated into population models. To that end, we used a simulation model to investigate three questions about behavioral tradeoffs that dispersing animals might face: (i) speed of movement...

  3. Further Validation of the Psychosocial Costs of Racism to Whites Scale among Employed Adults

    ERIC Educational Resources Information Center

    Poteat, V. Paul; Spanierman, Lisa B.

    2008-01-01

    To examine the validity and test the generalizability of the Psychosocial Costs of Racism to Whites Scale (PCRW) beyond the original college student sample, a geographically dispersed sample of employed White adults (N = 284) in eight states completed the measure to assess for White empathic reactions toward racism, White guilt, and White fear of…

  4. Pollen Forecast and Dispersion Modelling

    NASA Astrophysics Data System (ADS)

    Costantini, Monica; Di Giuseppe, Fabio; Medaglia, Carlo Maria; Travaglini, Alessandro; Tocci, Raffaella; Brighetti, M. Antonia; Petitta, Marcello

    2014-05-01

    The aim of this study is monitoring, mapping and forecast of pollen distribution for the city of Rome using in-situ measurements of 10 species of common allergenic pollens and measurements of PM10. The production of daily concentration maps, associated to a mobile phone app, are innovative compared to existing dedicated services to people who suffer from respiratory allergies. The dispersal pollen is one of the most well-known causes of allergic disease that is manifested by disorders of the respiratory functions. Allergies are the third leading cause of chronic disease and it is estimated that tens millions of people in Italy suffer from it. Recent works reveal that during the last few years there was a progressive increase of affected subjects, especially in urban areas. This situation may depend: on the ability to transport of pollutants, on the ability to react between pollutants and pollen and from a combination of other irritants, existing in densely populated and polluted urban areas. The methodology used to produce maps is based on in-situ measurements time series relative to 2012, obtained from networks of air quality and pollen stations in the metropolitan area of Rome. The monitoring station aerobiological of University of Rome "Tor Vergata" is located at the Department of Biology. The instrument used to pollen monitoring is a volumetric sampler type Hirst (Hirst 1952), Model 2000 VPPS Lanzoni; the data acquisition is carried out as reported in Standard UNI 11008:2004 - "Qualità dell'aria - Metodo di campionamento e conteggio dei granuli pollinici e delle spore fungine aerodisperse" - the protocol that describes the procedure for measuring of the concentration of pollen grains and fungal spores dispersed into the atmosphere, and reported in the "Manuale di gestione e qualità della R.I.M.A" (Travaglini et. al. 2009). All 10 allergenic pollen are monitored since 1996. At Tor Vergata university is also operating a meteorological station (SP2000, CAE Bologna, Italy). With pollen and meteorological dataset was created a provisional model for Poaceae. A PLSDA (Partial Least Squares Discriminant Analysis) approach was used in order to predict Poaceae pollen critical concentration (Brighetti et al. 2013) To preserve spatial correlation between pollens and PM10, we choose a Multiavariate Linear Spatial Interpolation Method to quantify pollen concentration in function of PM10, wind, rain and temperature. A test and validation procedure have been conducted to estimate the error associated to the pollen concentration. Validation for the year 2012 shows a good agreement between measured and estimated data , in each area depending of orography and of road traffic (r >0.83, 1%< RRMSE <5% ). This study aims to be a added value to agro-meteorological data in a different branch from the classic sector of defence and of crop production, emphasizing the importance of monitoring and forecast the pollen dispersal in urban areas, evaluated its effect on health and quality of life. In the health area the combined analysis between climate, pollution and dispersal of pollen allows to realize significant operational tools and to develop a reference for subsequent implementations.

  5. Truncation effect on Taylor-Aris dispersion in lattice Boltzmann schemes: Accuracy towards stability

    NASA Astrophysics Data System (ADS)

    Ginzburg, Irina; Roux, Laetitia

    2015-10-01

    The Taylor dispersion in parabolic velocity field provides a well-known benchmark for advection-diffusion (ADE) schemes and serves as a first step towards accurate modeling of the high-order non-Gaussian effects in heterogeneous flow. While applying the Lattice Boltzmann ADE two-relaxation-times (TRT) scheme for a transport with given Péclet number (Pe) one should select six free-tunable parameters, namely, (i) molecular-diffusion-scale, equilibrium parameter; (ii) three families of equilibrium weights, assigned to the terms of mass, velocity and numerical-diffusion-correction, and (iii) two relaxation rates. We analytically and numerically investigate the respective roles of all these degrees of freedom in the accuracy and stability in the evolution of a Gaussian plume. For this purpose, the third- and fourth-order transient multi-dimensional analysis of the recurrence equations of the TRT ADE scheme is extended for a spatially-variable velocity field. The key point is in the coupling of the truncation and Taylor dispersion analysis which allows us to identify the second-order numerical correction δkT to Taylor dispersivity coefficient kT. The procedure is exemplified for a straight Poiseuille flow where δkT is given in a closed analytical form in equilibrium and relaxation parameter spaces. The predicted longitudinal dispersivity is in excellent agreement with the numerical experiments over a wide parameter range. In relatively small Pe-range, the relative dispersion error increases with Péclet number. This deficiency reduces in the intermediate and high Pe-range where it becomes Pe-independent and velocity-amplitude independent. Eliminating δkT by a proper parameter choice and employing specular reflection for zero flux condition on solid boundaries, the d2Q9 TRT ADE scheme may reproduce the Taylor-Aris result quasi-exactly, from very coarse to fine grids, and from very small to arbitrarily high Péclet numbers. Since free-tunable product of two eigenfunctions also controls stability of the model, the validity of the analytically established von Neumann stability diagram is examined in Poiseuille profile. The simplest coordinate-stencil subclass, which is the d2Q5 TRT bounce-back scheme, demonstrates the best performance and achieves the maximum accuracy for most stable relaxation parameters.

  6. LANDSCAPE MODELING OF CHARACTERISTIC HABITAT SCALES, DISPERSAL, AND CONNECTIVITY FROM THE PERSPECTIVE OF THE ORGANISM

    EPA Science Inventory

    A modeling framework was developed to investigate the interactive effects of life history characteristics and landscape heterogeneity on dispersal success. An individual-based model was used to examine how dispersal between resource patches is affected by four landscape characte...

  7. Dispersion modelling approaches for near road applications involving noise barriers

    EPA Science Inventory

    The talk will present comparisons with two datasets of the barrier algorithms implemented in two different dispersion models: US EPA’s R-LINE (a research dispersion modelling tool under development by the US EPA’s Office of Research and Development) and CERC’s A...

  8. A predictive model of avian natal dispersal distance provides prior information for investigating response to landscape change.

    PubMed

    Garrard, Georgia E; McCarthy, Michael A; Vesk, Peter A; Radford, James Q; Bennett, Andrew F

    2012-01-01

    1. Informative Bayesian priors can improve the precision of estimates in ecological studies or estimate parameters for which little or no information is available. While Bayesian analyses are becoming more popular in ecology, the use of strongly informative priors remains rare, perhaps because examples of informative priors are not readily available in the published literature. 2. Dispersal distance is an important ecological parameter, but is difficult to measure and estimates are scarce. General models that provide informative prior estimates of dispersal distances will therefore be valuable. 3. Using a world-wide data set on birds, we develop a predictive model of median natal dispersal distance that includes body mass, wingspan, sex and feeding guild. This model predicts median dispersal distance well when using the fitted data and an independent test data set, explaining up to 53% of the variation. 4. Using this model, we predict a priori estimates of median dispersal distance for 57 woodland-dependent bird species in northern Victoria, Australia. These estimates are then used to investigate the relationship between dispersal ability and vulnerability to landscape-scale changes in habitat cover and fragmentation. 5. We find evidence that woodland bird species with poor predicted dispersal ability are more vulnerable to habitat fragmentation than those species with longer predicted dispersal distances, thus improving the understanding of this important phenomenon. 6. The value of constructing informative priors from existing information is also demonstrated. When used as informative priors for four example species, predicted dispersal distances reduced the 95% credible intervals of posterior estimates of dispersal distance by 8-19%. Further, should we have wished to collect information on avian dispersal distances and relate it to species' responses to habitat loss and fragmentation, data from 221 individuals across 57 species would have been required to obtain estimates with the same precision as those provided by the general model. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.

  9. Modeling interpopulation dispersal by banner-tailed kangaroo rats

    USGS Publications Warehouse

    Skvarla, J.L.; Nichols, J.D.; Hines, J.E.; Waser, P.M.

    2004-01-01

    Many metapopulation models assume rules of population connectivity that are implicitly based on what we know about within-population dispersal, but especially for vertebrates, few data exist to assess whether interpopulation dispersal is just within-population dispersal "scaled up." We extended existing multi-stratum mark-release-recapture models to incorporate the robust design, allowing us to compare patterns of within- and between-population movement in the banner-tailed kangaroo rat (Dipodomys spectabilis). Movement was rare among eight populations separated by only a few hundred meters: seven years of twice-annual sampling captured >1200 individuals but only 26 interpopulation dispersers. We developed a program that implemented models with parameters for capture, survival, and interpopulation movement probability and that evaluated competing hypotheses in a model selection framework. We evaluated variants of the island, stepping-stone, and isolation-by-distance models of interpopulation movement, incorporating effects of age, season, and habitat (short or tall grass). For both sexes, QAICc values clearly favored isolation-by-distance models, or models combining the effects of isolation by distance and habitat. Models with probability of dispersal expressed as linear-logistic functions of distance and as negative exponentials of distance fit the data equally well. Interpopulation movement probabilities were similar among sexes (perhaps slightly biased toward females), greater for juveniles than adults (especially for females), and greater before than during the breeding season (especially for females). These patterns resemble those previously described for within-population dispersal in this species, which we interpret as indicating that the same processes initiate both within- and between-population dispersal.

  10. One-dimensional Analytical Modelling of Floating Seed Dispersal in Tidal Channels

    NASA Astrophysics Data System (ADS)

    Shi, W.; Purnama, A.; Shao, D.; Cui, B.; Gao, W.

    2017-12-01

    Seed dispersal is a primary factor influencing plant community development, and thus plays a critical role in maintaining wetland ecosystem functioning. However, compared with fluvial seed dispersal of riparian plants, dispersal of saltmarsh plant seeds in tidal channels is much less studied due to its complex behavior, and relevant mathematical modelling is particularly lacking. In this study, we developed a one-dimensional advection-dispersion model to explore the patterns of tidal seed dispersal. Oscillatory tidal current and water depth were assumed to represent the tidal effects. An exponential decay coefficient λ was introduced to account for seed deposition and retention. Analytical solution in integral form was derived using Green's function and further evaluated using numerical integration. The developed model was applied to simulate Spartina densiflora seed dispersal in a tidal channel located at the Mad River Slough in North Humboldt Bay, California, USA, to demonstrate its practical applicability. Model predictions agree satisfactorily with field observation and simulation results from Delft3D numerical model. Sensitivity analyses were also conducted to evaluate the effects of varying calibrated parameters on model predictions. The range of the seed dispersion as well as the distribution of the seed concentration were further analyzed through statistical parameters such as centroid displacement and variance of the seed cloud together with seed concentration contours. Implications of the modelling results on tidal marsh restoration and protection, e.g., revegetation through seed addition, were also discussed through scenario analysis. The developed analytical model provides a useful tool for ecological management of tidal marshes.

  11. NEW DEVELOPMENT IN DISPERSION EXPERIMENTS AND MODELS FOR THE CONVECTIVE BOUNDARY LAYER

    EPA Science Inventory

    We present recent experiments and modeling studies of dispersion in the convective boundary layer (CBL) with focus on highly-buoyant plumes that "loft" near the CBL top and resist downward mixing. Such plumes have been a significant problem in earlier dispersion models; they a...

  12. Design and experimental validation of an adaptive phononic crystal using highly dissipative polymeric material interface

    NASA Astrophysics Data System (ADS)

    Billon, K.; Ouisse, M.; Sadoulet-Reboul, E.; Collet, M.; Chevallier, G.; Khelif, A.

    2017-04-01

    In this paper, some numerical tools for dispersion analysis of periodic structures are presented, with a focus on the ability of the methods to deal with dissipative behaviour of the systems. An adaptive phononic crystal based on the combination of metallic parts and highly dissipative polymeric interface is designed. The system consists in an infinite periodic bidirectional waveguide. The periodic cylindrical pillars include a layer of shape memory polymer and Aluminum. The mechanical properties of the polymer depend on both temperature and frequency and can radically change from glassy to rubbery state, with various combination of high/low stiffness and high/low dissipation. A fractional derivative Zener model is used for the description of the frequency-dependent behaviour of the polymer. A 3D finite element model of the cell is developed for the design of the metamaterial. The "Shifted-Cell Operator" technique consists in a reformulation of the PDE problem by "shifting" in terms of wave number the space derivatives appearing in the mechanical behaviour operator inside the cell, while imposing continuity boundary conditions on the borders of the domain. Damping effects can easily be introduced in the system and a quadratic eigenvalue problem yields to the dispersion properties of the periodic structure. In order to validate the design and the adaptive character of the metamaterial, results issued from a full 3D model of a finite structure embedding an interface composed by a distributed set of the unit cells are presented. Various driving temperature are used to change the behaviour of the system. After this step, a comparison between the results obtained using the tunable structure simulation and the experimental results is presented. Two states are obtained by changing the temperature of the polymeric interface: at 25°C, the bandgap is visible around a selected frequency. Above the glass transition, the phononic crystal tends to behave as an homogeneous plate.

  13. Modeling the sediment transport induced by deep sea mining in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Purkiani, Kaveh; Paul, André; Schulz, Michael; Vink, Annemiek; Walter, Maren

    2017-04-01

    A numerical modeling study is conducted in the German license area in northeastern Pacific Ocean to investigate the sediment dispersal of mining exploitation. A sediment transport module is implemented in a hydrodynamic model. All differently sized particles can aggregate and break up until equilibrium floc sizes are obtained. A nested model approach using the MITgcm (Massachusetts Institute of Technology general circulation model) is applied and validated against hydrographic and hydrodynamic measurements obtained in this region. Two different sediment discharge scenarios have been examined to investigate the effect of flocculation on sediment transport distribution in the deep ocean. The suspended sediment is mainly influenced by a dominant SW current far away from the sediment discharge location. Independent of initial particle size all initial particles larger than 30 μm attain similar floc size equilibrium. In contrast to coastal seas and estuaries where floc size equilibrium can be obtained in a few hours, due to low shear rate (G) the flocculation process at deep ocean is completed within 1˜2 days. Considering temporal evolution of the floc size in the model, an increase in floc sinking velocity consequently enhances the sediment deposition at seafloor. The analysis of different sediment concentration scenarios suggests that floc sinking velocity increases at higher suspended sediment concentration (SSC). The presence of a dominant current in this region induces a fine sediment plume in SW direction. The dispersed SSC plume at 20 km downstream the discharge location is able to form the flocculation process and induces a spatial variation of floc size and floc sinking velocity.

  14. Validation of an Analytical Method for Determination of 13 priority polycyclic aromatic hydrocarbons in mineral water using dispersive liquid-liquid microextraction and GC-MS

    PubMed Central

    Sadeghi, Ramezan; Kobarfard, Farzad; Yazdanpanah, Hassan; Eslamizad, Samira; Bayat, Mitra

    2016-01-01

    Dispersive liquid-liquid microextraction (DLLME) combined with gas chromatography–mass spectrometry (GC–MS) was used for the extraction and determination of 13 polycyclic aromatic hydrocarbons (PAHs) in mineral water samples. In this procedure, the suitable combination of extraction solvent (500 µL chloroform) and disperser solvent (1000 µL acetone) were quickly injected into the water sample (10.00 mL) by Hamilton syringe. After centrifugation, 500 µL of the lower organic phase was dried under a gentle stream of nitrogen, re-dissolved in chloroform and injected into GC-MS. Chloroform and acetone were found to be the best extraction and disperser solvent, respectively. Validation of the method was performed using spiked calibration curves. The enrichment factor ranged from 93 to 129 and the recovery ranged from 71 to 90%. The linear ranges for all the PAHs were 0.10-2.80 ngmL-1. The relative standard deviations (RSDs) of PAHs in water by using anthracene-d10 as internal standard, were in the range of 4-11% for most of the analytes (n = 3). Limit of detection (LOD) for different PAHs were between 0.03 and 0.1 ngmL-1. The method was successfully applied for the analysis of PAHs in mineral water samples collected from Tehran. PMID:27610156

  15. Influence of electrical double-layer dispersion forces and size dependency on pull-in instability of clamped microplate immersed in ionic liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Karimipour, I.; Beni, Yaghoub Tadi; Taheri, N.

    2017-10-01

    Plate-type clamped microplate is of the most common constructive elements for developing in-liquid-operating devices. While the electromechanical behavior of clamped microplate in non-liquid environments has exclusively been addressed in the literature, no theoretical studies have yet been conducted on precise modeling of the clamped microplate in electrolyte liquid. Herein, the electromechanical response and instability of the clamped microplate immersed in ionic electrolyte media are investigated. The electrochemical force field is determined using double layer theory and linearized Poisson-Boltzmann equation. The presence of dispersion forces, i.e., Casimir and van der Waals attractions, are included in the theoretical model considering the correction due to the presence of liquid media between the interacting surfaces (three-layer model). To this end, a kind of microplate has been designed, i.e., a square microplate with all edges clamped supported. The strain gradient elasticity is employed to model the size-dependent structural behavior of the clamped microplate. To solve the nonlinear constitutive equation of the system, Extended Kantorovich Method, is employed and the pull-in parameter of the microplate are extracted. Impacts of the dispersion forces and size effect on the instability characteristics are discussed as well as the effect of ion concentration and potential ratio. It is found that the significant difference between the pull-in instability parameters in the modified strain gradient theory and the classical theory for thin microplates is merely due to the consideration of size effect parameter in the modified strain gradient theory. To confirm the validity of formulations, the numerical values of the results are compared. The results predicted via the aforementioned approach are in excellent agreement with those in the literature. Some new examples are solved to demonstrate the applicability of the procedure.

  16. Acoustic Radiation Force-Induced Creep-Recovery (ARFICR): A Noninvasive Method to Characterize Tissue Viscoelasticity.

    PubMed

    Amador Carrascal, Carolina; Chen, Shigao; Urban, Matthew W; Greenleaf, James F

    2018-01-01

    Ultrasound shear wave elastography is a promising noninvasive, low cost, and clinically viable tool for liver fibrosis staging. Current shear wave imaging technologies on clinical ultrasound scanners ignore shear wave dispersion and use a single group velocity measured over the shear wave bandwidth to estimate tissue elasticity. The center frequency and bandwidth of shear waves induced by acoustic radiation force depend on the ultrasound push beam (push duration, -number, etc.) and the viscoelasticity of the medium, and therefore are different across scanners from different vendors. As a result, scanners from different vendors may give different tissue elasticity measurements within the same patient. Various methods have been proposed to evaluate shear wave dispersion to better estimate tissue viscoelasticity. A rheological model such as the Kelvin-Voigt model is typically fitted to the shear wave dispersion to solve for the elasticity and viscosity of tissue. However, these rheological models impose strong assumptions about frequency dependence of elasticity and viscosity. Here, we propose a new method called Acoustic Radiation Force Induced Creep-Recovery (ARFICR) capable of quantifying rheological model-independent measurements of elasticity and viscosity for more robust tissue health assessment. In ARFICR, the creep-recovery time signal at the focus of the push beam is used to calculate the relative elasticity and viscosity (scaled by an unknown constant) over a wide frequency range. Shear waves generated during the ARFICR measurement are also detected and used to calculate the shear wave velocity at its center frequency, which is then used to calibrate the relative elasticity and viscosity to absolute elasticity and viscosity. In this paper, finite-element method simulations and experiments in tissue mimicking phantoms are used to validate and characterize the extent of viscoelastic quantification of ARFICR. The results suggest that ARFICR can measure tissue viscoelasticity reliably. Moreover, the results showed the strong frequency dependence of viscoelastic parameters in tissue mimicking phantoms and healthy liver.

  17. Estimating true instead of apparent survival using spatial Cormack-Jolly-Seber models

    USGS Publications Warehouse

    Schaub, Michael; Royle, J. Andrew

    2014-01-01

    Spatial CJS models enable study of dispersal and survival independent of study design constraints such as imperfect detection and size of the study area provided that some of the dispersing individuals remain in the study area. We discuss possible extensions of our model: alternative dispersal models and the inclusion of covariates and of a habitat suitability map.

  18. Computational study of nonlinear plasma waves. [plasma simulation model applied to electrostatic waves in collisionless plasma

    NASA Technical Reports Server (NTRS)

    Matsuda, Y.

    1974-01-01

    A low-noise plasma simulation model is developed and applied to a series of linear and nonlinear problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. It is demonstrated that use of the hybrid simulation model allows economical studies to be carried out in both the linear and nonlinear regimes with better quantitative results, for comparable computing time, than can be obtained by conventional particle simulation models, or direct solution of the Vlasov equation. The characteristics of the hybrid simulation model itself are first investigated, and it is shown to be capable of verifying the theoretical linear dispersion relation at wave energy levels as low as .000001 of the plasma thermal energy. Having established the validity of the hybrid simulation model, it is then used to study the nonlinear dynamics of monochromatic wave, sideband instability due to trapped particles, and satellite growth.

  19. Optimization of the Büchi B-90 spray drying process using central composite design for preparation of solid dispersions.

    PubMed

    Gu, Bing; Linehan, Brian; Tseng, Yin-Chao

    2015-08-01

    A central composite design approach was applied to study the effect of polymer concentration, inlet temperature and air flow rate on the spray drying process of the Büchi B-90 nano spray dryer (B-90). Hypromellose acetate succinate-LF was used for the Design of Experiment (DoE) study. Statistically significant models to predict the yield, spray rate, and drying efficiency were generated from the study. The spray drying conditions were optimized according to the models to maximize the yield and efficiency of the process. The models were further validated using a poorly water-soluble investigational compound (BI064) from Boehringer Ingelheim Pharmaceuticals. The polymer/drug ratio ranged from 1/1 to 3/1w/w. The spray dried formulations were amorphous determined by differential scanning calorimetry and X-ray powder diffraction. The particle size of the spray dried formulations was 2-10 μm under polarized light microscopy. All the formulations were physically stable for at least 3h when suspended in an aqueous vehicle composed of 1% methyl cellulose. This study demonstrates that DoE is a useful tool to optimize the spray drying process, and the B-90 can be used to efficiently produce amorphous solid dispersions with a limited quantity of drug substance available during drug discovery stages. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Numerical modeling method on the movement of water flow and suspended solids in two-dimensional sedimentation tanks in the wastewater treatment plant.

    PubMed

    Zeng, Guang-Ming; Jiang, Yi-Min; Qin, Xiao-Sheng; Huang, Guo-He; Li, Jian-Bing

    2003-01-01

    Taking the distributing calculation of velocity and concentration as an example, the paper established a series of governing equations by the vorticity-stream function method, and dispersed the equations by the finite differencing method. After figuring out the distribution field of velocity, the paper also calculated the concentration distribution in sedimentation tank by using the two-dimensional concentration transport equation. The validity and feasibility of the numerical method was verified through comparing with experimental data. Furthermore, the paper carried out a tentative exploration into the application of numerical simulation of sedimentation tanks.

  1. Theoretical model for plasmonic photothermal response of gold nanostructures solutions

    NASA Astrophysics Data System (ADS)

    Phan, Anh D.; Nga, Do T.; Viet, Nguyen A.

    2018-03-01

    Photothermal effects of gold core-shell nanoparticles and nanorods dispersed in water are theoretically investigated using the transient bioheat equation and the extended Mie theory. Properly calculating the absorption cross section is an extremely crucial milestone to determine the elevation of solution temperature. The nanostructures are assumed to be randomly and uniformly distributed in the solution. Compared to previous experiments, our theoretical temperature increase during laser light illumination provides, in various systems, both reasonable qualitative and quantitative agreement. This approach can be a highly reliable tool to predict photothermal effects in experimentally unexplored structures. We also validate our approach and discuss itslimitations.

  2. Genetics of dispersal.

    PubMed

    Saastamoinen, Marjo; Bocedi, Greta; Cote, Julien; Legrand, Delphine; Guillaume, Frédéric; Wheat, Christopher W; Fronhofer, Emanuel A; Garcia, Cristina; Henry, Roslyn; Husby, Arild; Baguette, Michel; Bonte, Dries; Coulon, Aurélie; Kokko, Hanna; Matthysen, Erik; Niitepõld, Kristjan; Nonaka, Etsuko; Stevens, Virginie M; Travis, Justin M J; Donohue, Kathleen; Bullock, James M; Del Mar Delgado, Maria

    2018-02-01

    Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal-related phenotypes or evidence for the micro-evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment-dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non-additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non-equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context-dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits. © 2017 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

  3. Extended Poisson process modelling and analysis of grouped binary data.

    PubMed

    Faddy, Malcolm J; Smith, David M

    2012-05-01

    A simple extension of the Poisson process results in binomially distributed counts of events in a time interval. A further extension generalises this to probability distributions under- or over-dispersed relative to the binomial distribution. Substantial levels of under-dispersion are possible with this modelling, but only modest levels of over-dispersion - up to Poisson-like variation. Although simple analytical expressions for the moments of these probability distributions are not available, approximate expressions for the mean and variance are derived, and used to re-parameterise the models. The modelling is applied in the analysis of two published data sets, one showing under-dispersion and the other over-dispersion. More appropriate assessment of the precision of estimated parameters and reliable model checking diagnostics follow from this more general modelling of these data sets. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The evolution of dispersal in a Levins' type metapopulation model.

    PubMed

    Jansen, Vincent A A; Vitalis, Renaud

    2007-10-01

    We study the evolution of the dispersal rate in a metapopulation model with extinction and colonization dynamics, akin to the model as originally described by Levins. To do so we extend the metapopulation model with a description of the within patch dynamics. By means of a separation of time scales we analytically derive a fitness expression from first principles for this model. The fitness function can be written as an inclusive fitness equation (Hamilton's rule). By recasting this equation in a form that emphasizes the effects of competition we show the effect of the local competition and the local population size on the evolution of dispersal. We find that the evolution of dispersal cannot be easily interpreted in terms of avoidance of kin competition, but rather that increased dispersal reduces the competitive ability. Our model also yields a testable prediction in term of relatedness and life-history parameters.

  5. Comparison of AERMOD and WindTrax dispersion models in determining PM10 emission rates from beef cattle feedlots

    USDA-ARS?s Scientific Manuscript database

    Reverse dispersion modeling has been used to determine air emission fluxes from ground-level area sources, including open-lot beef cattle feedlots. This research compared AERMOD, a Gaussian-based and currently the U.S. Environmental Protection Agency (EPA) preferred regulatory dispersion model, and ...

  6. Breather Rogue Waves in Random Seas

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ma, Q. W.; Yan, S.; Chabchoub, A.

    2018-01-01

    Rogue or freak waves are extreme wave events that have heights exceeding 8 times the standard deviation of surrounding waves and emerge, for instance, in the ocean as well as in other physical dispersive wave guides, such as in optical fibers. One effective and convenient way to model such an extreme dynamics in laboratory environments within a controlled framework as well as for short process time and length scales is provided through the breather formalism. Breathers are pulsating localized structures known to model extreme waves in several nonlinear dispersive media in which the initial underlying process is assumed to be narrow banded. On the other hand, several recent studies suggest that breathers can also persist in more complex environments, such as in random seas, beyond the attributed physical limitations. In this work, we study the robustness of the Peregrine breather (PB) embedded in Joint North Sea Wave Project (JONSWAP) configurations using fully nonlinear hydrodynamic numerical simulations in order to validate its practicalness for ocean engineering applications. We provide a specific range for both the spectral bandwidth of the dynamical process as well as the background wave steepness and, thus, quantify the applicability of the PB in modeling rogue waves in realistic oceanic conditions. Our results may motivate analogous studies in fields of physics such as optics and plasma to quantify the limitations of exact weakly nonlinear models, such as solitons and breathers, within the framework of the fully nonlinear governing equations of the corresponding medium.

  7. The development of methods for predicting and measuring distribution patterns of aerial sprays

    NASA Technical Reports Server (NTRS)

    Ormsbee, A. I.; Bragg, M. B.; Maughmer, M. D.

    1979-01-01

    The capability of conducting scale model experiments which involve the ejection of small particles into the wake of an aircraft close to the ground is developed. A set of relationships used to scale small-sized dispersion studies to full-size results are experimentally verified and, with some qualifications, basic deposition patterns are presented. In the process of validating these scaling laws, the basic experimental techniques used in conducting such studies, both with and without an operational propeller, were developed. The procedures that evolved are outlined. The envelope of test conditions that can be accommodated in the Langley Vortex Research Facility, which were developed theoretically, are verified using a series of vortex trajectory experiments that help to define the limitations due to wall interference effects for models of different sizes.

  8. Multilevel Effects in a Driven Generalized Rabi Model

    NASA Astrophysics Data System (ADS)

    Pietikäinen, I.; Danilin, S.; Kumar, K. S.; Tuorila, J.; Paraoanu, G. S.

    2018-01-01

    We study numerically the onset of higher-level excitations and resonance frequency shifts in the generalized multilevel Rabi model with dispersive coupling under strong driving. The response to a weak probe is calculated using the Floquet method, which allows us to calculate the probe spectrum and extract the resonance frequency. We test our predictions using a superconducting circuit consisting of a transmon coupled capacitively to a coplanar waveguide resonator. This system is monitored by a weak probe field and at the same time driven at various powers by a stronger microwave tone. We show that the transition from the quantum to the classical regime is accompanied by a rapid increase of the transmon occupation and consequently that the qubit approximation is valid only in the extreme quantum limit.

  9. Multilevel Effects in a Driven Generalized Rabi Model

    NASA Astrophysics Data System (ADS)

    Pietikäinen, I.; Danilin, S.; Kumar, K. S.; Tuorila, J.; Paraoanu, G. S.

    2018-06-01

    We study numerically the onset of higher-level excitations and resonance frequency shifts in the generalized multilevel Rabi model with dispersive coupling under strong driving. The response to a weak probe is calculated using the Floquet method, which allows us to calculate the probe spectrum and extract the resonance frequency. We test our predictions using a superconducting circuit consisting of a transmon coupled capacitively to a coplanar waveguide resonator. This system is monitored by a weak probe field and at the same time driven at various powers by a stronger microwave tone. We show that the transition from the quantum to the classical regime is accompanied by a rapid increase of the transmon occupation and consequently that the qubit approximation is valid only in the extreme quantum limit.

  10. High-Contrast Gratings based Spoof Surface Plasmons

    NASA Astrophysics Data System (ADS)

    Li, Zhuo; Liu, Liangliang; Xu, Bingzheng; Ning, Pingping; Chen, Chen; Xu, Jia; Chen, Xinlei; Gu, Changqing; Qing, Quan

    2016-02-01

    In this work, we explore the existence of spoof surface plasmons (SSPs) supported by deep-subwavelength high-contrast gratings (HCGs) on a perfect electric conductor plane. The dispersion relation of the HCGs-based SSPs is derived analyt- ically by combining multimode network theory with rigorous mode matching method, which has nearly the same form with and can be degenerated into that of the SSPs arising from deep-subwavelength metallic gratings (MGs). Numerical simula- tions validate the analytical dispersion relation and an effective medium approximation is also presented to obtain the same analytical dispersion formula. This work sets up a unified theoretical framework for SSPs and opens up new vistas in surface plasmon optics.

  11. Heterodyne detection using spectral line pairing for spectral phase encoding optical code division multiple access and dynamic dispersion compensation.

    PubMed

    Yang, Yi; Foster, Mark; Khurgin, Jacob B; Cooper, A Brinton

    2012-07-30

    A novel coherent optical code-division multiple access (OCDMA) scheme is proposed that uses spectral line pairing to generate signals suitable for heterodyne decoding. Both signal and local reference are transmitted via a single optical fiber and a simple balanced receiver performs sourceless heterodyne detection, canceling speckle noise and multiple-access interference (MAI). To validate the idea, a 16 user fully loaded phase encoded system is simulated. Effects of fiber dispersion on system performance are studied as well. Both second and third order dispersion management is achieved by using a spectral phase encoder to adjust phase shifts of spectral components at the optical network unit (ONU).

  12. Physical models of polarization mode dispersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menyuk, C.R.; Wai, P.K.A.

    The effect of randomly varying birefringence on light propagation in optical fibers is studied theoretically in the parameter regime that will be used for long-distance communications. In this regime, the birefringence is large and varies very rapidly in comparison to the nonlinear and dispersive scale lengths. We determine the polarization mode dispersion, and we show that physically realistic models yield the same result for polarization mode dispersion as earlier heuristic models that were introduced by Poole. We also prove an ergodic theorem.

  13. Genetics of dispersal

    PubMed Central

    Bocedi, Greta; Cote, Julien; Legrand, Delphine; Guillaume, Frédéric; Wheat, Christopher W.; Fronhofer, Emanuel A.; Garcia, Cristina; Henry, Roslyn; Husby, Arild; Baguette, Michel; Bonte, Dries; Coulon, Aurélie; Kokko, Hanna; Matthysen, Erik; Niitepõld, Kristjan; Nonaka, Etsuko; Stevens, Virginie M.; Travis, Justin M. J.; Donohue, Kathleen; Bullock, James M.; del Mar Delgado, Maria

    2017-01-01

    ABSTRACT Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal‐related phenotypes or evidence for the micro‐evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment‐dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non‐additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non‐equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context‐dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits. PMID:28776950

  14. Non-random dispersal in the butterfly Maniola jurtina: implications for metapopulation models.

    PubMed Central

    Conradt, L; Bodsworth, E J; Roper, T J; Thomas, C D

    2000-01-01

    The dispersal patterns of animals are important in metapopulation ecology because they affect the dynamics and survival of populations. Theoretical models assume random dispersal but little is known in practice about the dispersal behaviour of individual animals or the strategy by which dispersers locate distant habitat patches. In the present study, we released individual meadow brown butterflies (Maniola jurtina) in a non-habitat and investigated their ability to return to a suitable habitat. The results provided three reasons for supposing that meadow brown butterflies do not seek habitat by means of random flight. First, when released within the range of their normal dispersal distances, the butterflies orientated towards suitable habitat at a higher rate than expected at random. Second, when released at larger distances from their habitat, they used a non-random, systematic, search strategy in which they flew in loops around the release point and returned periodically to it. Third, butterflies returned to a familiar habitat patch rather than a non-familiar one when given a choice. If dispersers actively orientate towards or search systematically for distant habitat, this may be problematic for existing metapopulation models, including models of the evolution of dispersal rates in metapopulations. PMID:11007325

  15. Calibration of Discrete Random Walk (DRW) Model via G.I Taylor's Dispersion Theory

    NASA Astrophysics Data System (ADS)

    Javaherchi, Teymour; Aliseda, Alberto

    2012-11-01

    Prediction of particle dispersion in turbulent flows is still an important challenge with many applications to environmental, as well as industrial, fluid mechanics. Several models of dispersion have been developed to predict particle trajectories and their relative velocities, in combination with a RANS-based simulation of the background flow. The interaction of the particles with the velocity fluctuations at different turbulent scales represents a significant difficulty in generalizing the models to the wide range of flows where they are used. We focus our attention on the Discrete Random Walk (DRW) model applied to flow in a channel, particularly to the selection of eddies lifetimes as realizations of a Poisson distribution with a mean value proportional to κ / ɛ . We present a general method to determine the constant of this proportionality by matching the DRW model dispersion predictions for fluid element and particle dispersion to G.I Taylor's classical dispersion theory. This model parameter is critical to the magnitude of predicted dispersion. A case study of its influence on sedimentation of suspended particles in a tidal channel with an array of Marine Hydrokinetic (MHK) turbines highlights the dependency of results on this time scale parameter. Support from US DOE through the Northwest National Marine Renewable Energy Center, a UW-OSU partnership.

  16. Between-Site Differences in the Scale of Dispersal and Gene Flow in Red Oak

    PubMed Central

    Moran, Emily V.; Clark, James S.

    2012-01-01

    Background Nut-bearing trees, including oaks (Quercus spp.), are considered to be highly dispersal limited, leading to concerns about their ability to colonize new sites or migrate in response to climate change. However, estimating seed dispersal is challenging in species that are secondarily dispersed by animals, and differences in disperser abundance or behavior could lead to large spatio-temporal variation in dispersal ability. Parentage and dispersal analyses combining genetic and ecological data provide accurate estimates of current dispersal, while spatial genetic structure (SGS) can shed light on past patterns of dispersal and establishment. Methodology and Principal Findings In this study, we estimate seed and pollen dispersal and parentage for two mixed-species red oak populations using a hierarchical Bayesian approach. We compare these results to those of a genetic ML parentage model. We also test whether observed patterns of SGS in three size cohorts are consistent with known site history and current dispersal patterns. We find that, while pollen dispersal is extensive at both sites, the scale of seed dispersal differs substantially. Parentage results differ between models due to additional data included in Bayesian model and differing genotyping error assumptions, but both indicate between-site dispersal differences. Patterns of SGS in large adults, small adults, and seedlings are consistent with known site history (farmed vs. selectively harvested), and with long-term differences in seed dispersal. This difference is consistent with predator/disperser satiation due to higher acorn production at the low-dispersal site. While this site-to-site variation results in substantial differences in asymptotic spread rates, dispersal for both sites is substantially lower than required to track latitudinal temperature shifts. Conclusions Animal-dispersed trees can exhibit considerable spatial variation in seed dispersal, although patterns may be surprisingly constant over time. However, even under favorable conditions, migration in heavy-seeded species is likely to lag contemporary climate change. PMID:22563504

  17. Delta 2 Explosion Plume Analysis Report

    NASA Technical Reports Server (NTRS)

    Evans, Randolph J.

    2000-01-01

    A Delta II rocket exploded seconds after liftoff from Cape Canaveral Air Force Station (CCAFS) on 17 January 1997. The cloud produced by the explosion provided an opportunity to evaluate the models which are used to track potentially toxic dispersing plumes and clouds at CCAFS. The primary goal of this project was to conduct a case study of the dispersing cloud and the models used to predict the dispersion resulting from the explosion. The case study was conducted by comparing mesoscale and dispersion model results with available meteorological and plume observations. This study was funded by KSC under Applied Meteorology Unit (AMU) option hours. The models used in the study are part of the Eastern Range Dispersion Assessment System (ERDAS) and include the Regional Atmospheric Modeling System (RAMS), HYbrid Particle And Concentration Transport (HYPACT), and Rocket Exhaust Effluent Dispersion Model (REEDM). The primary observations used for explosion cloud verification of the study were from the National Weather Service's Weather Surveillance Radar 1988-Doppler (WSR-88D). Radar reflectivity measurements of the resulting cloud provided good estimates of the location and dimensions of the cloud over a four-hour period after the explosion. The results indicated that RAMS and HYPACT models performed reasonably well. Future upgrades to ERDAS are recommended.

  18. The evolution of the competition-dispersal trade-off affects α- and β-diversity in a heterogeneous metacommunity.

    PubMed

    Laroche, Fabien; Jarne, Philippe; Perrot, Thomas; Massol, Francois

    2016-04-27

    Difference in dispersal ability is a key driver of species coexistence in metacommunities. However, the available frameworks for interpreting species diversity patterns in natura often overlook trade-offs and evolutionary constraints associated with dispersal. Here, we build a metacommunity model accounting for dispersal evolution and a competition-dispersal trade-off. Depending on the distribution of carrying capacities among communities, species dispersal values are distributed either around a single strategy (evolutionarily stable strategy, ESS), or around distinct strategies (evolutionary branching, EB). We show that limited dispersal generates spatial aggregation of dispersal traits in ESS and EB scenarios, and that the competition-dispersal trade-off strengthens the pattern in the EB scenario. Importantly, individuals in larger (respectively (resp.) smaller) communities tend to harbour lower (resp. higher) dispersal, especially under the EB scenario. We explore how dispersal evolution affects species diversity patterns by comparing those from our model to the predictions of a neutral metacommunity model. The most marked difference is detected under EB, with distinctive values of both α- and β-diversity (e.g. the dissimilarity in species composition between small and large communities was significantly larger than neutral predictions). We conclude that, from an empirical perspective, jointly assessing community carrying capacity with species dispersal strategies should improve our understanding of diversity patterns in metacommunities. © 2016 The Author(s).

  19. Asymmetric Dispersal Can Maintain Larval Polymorphism: A Model Motivated by Streblospio benedicti

    PubMed Central

    Zakas, Christina; Hall, David W.

    2012-01-01

    Polymorphism in traits affecting dispersal occurs in a diverse variety of taxa. Typically, the maintenance of a dispersal polymorphism is attributed to environmental heterogeneity where parental bet-hedging can be favored. There are, however, examples of dispersal polymorphisms that occur across similar environments. For example, the estuarine polychaete Streblospio benedicti has a highly heritable offspring dimorphism that affects larval dispersal potential. We use analytical models of dispersal to determine the conditions necessary for a stable dispersal polymorphism to exist. We show that in asexual haploids, sexual haploids, and in sexual diploids in the absence of overdominance, asymmetric dispersal is required in order to maintain a dispersal polymorphism when patches do not vary in intrinsic quality. Our study adds an additional factor, dispersal asymmetry, to the short list of mechanisms that can maintain polymorphism in nature. The region of the parameter space in which polymorphism is possible is limited, suggesting why dispersal polymorphisms within species are rare. PMID:22576818

  20. "Dispersion modeling approaches for near road

    EPA Science Inventory

    Roadway design and roadside barriers can have significant effects on the dispersion of traffic-generated pollutants, especially in the near-road environment. Dispersion models that can accurately simulate these effects are needed to fully assess these impacts for a variety of app...

  1. Wave dispersion and propagation in state-based peridynamics

    NASA Astrophysics Data System (ADS)

    Butt, Sahir N.; Timothy, Jithender J.; Meschke, Günther

    2017-11-01

    Peridynamics is a nonlocal continuum model which offers benefits over classical continuum models in cases, where discontinuities, such as cracks, are present in the deformation field. However, the nonlocal characteristics of peridynamics leads to a dispersive dynamic response of the medium. In this study we focus on the dispersion properties of a state-based linear peridynamic solid model and specifically investigate the role of the peridynamic horizon. We derive the dispersion relation for one, two and three dimensional cases and investigate the effect of horizon size, mesh size (lattice spacing) and the influence function on the dispersion properties. We show how the influence function can be used to minimize wave dispersion at a fixed lattice spacing and demonstrate it qualitatively by wave propagation analysis in one- and two-dimensional models of elastic solids. As a main contribution of this paper, we propose to associate peridynamic non-locality expressed by the horizon with a characteristic length scale related to the material microstructure. To this end, the dispersion curves obtained from peridynamics are compared with experimental data for two kinds of sandstone.

  2. Refining climate change projections for organisms with low dispersal abilities: a case study of the Caspian whip snake.

    PubMed

    Sahlean, Tiberiu C; Gherghel, Iulian; Papeş, Monica; Strugariu, Alexandru; Zamfirescu, Ştefan R

    2014-01-01

    Climate warming is one of the most important threats to biodiversity. Ectothermic organisms such as amphibians and reptiles are especially vulnerable as climatic conditions affect them directly. Ecological niche models (ENMs) are increasingly popular in ecological studies, but several drawbacks exist, including the limited ability to account for the dispersal potential of the species. In this study, we use ENMs to explore the impact of global climate change on the Caspian whip snake (Dolichophis caspius) as model for organisms with low dispersal abilities and to quantify dispersal to novel areas using GIS techniques. Models generated using Maxent 3.3.3 k and GARP for current distribution were projected on future climatic scenarios. A cost-distance analysis was run in ArcGIS 10 using geomorphological features, ecological conditions, and human footprint as "costs" to dispersal of the species to obtain a Maximum Dispersal Range (MDR) estimate. All models developed were statistically significant (P<0.05) and recovered the currently known distribution of D. caspius. Models projected on future climatic conditions using Maxent predicted a doubling of suitable climatic area, while GARP predicted a more conservative expansion. Both models agreed on an expansion of suitable area northwards, with minor decreases at the southern distribution limit. The MDR area calculated using the Maxent model represented a third of the total area of the projected model. The MDR based on GARP models recovered only about 20% of the total area of the projected model. Thus, incorporating measures of species' dispersal abilities greatly reduced estimated area of potential future distributions.

  3. Effect of numerical dispersion as a source of structural noise in the calibration of a highly parameterized saltwater intrusion model

    USGS Publications Warehouse

    Langevin, Christian D.; Hughes, Joseph D.

    2010-01-01

    A model with a small amount of numerical dispersion was used to represent saltwater 7 intrusion in a homogeneous aquifer for a 10-year historical calibration period with one 8 groundwater withdrawal location followed by a 10-year prediction period with two groundwater 9 withdrawal locations. Time-varying groundwater concentrations at arbitrary locations in this low-10 dispersion model were then used as observations to calibrate a model with a greater amount of 11 numerical dispersion. The low-dispersion model was solved using a Total Variation Diminishing 12 numerical scheme; an implicit finite difference scheme with upstream weighting was used for 13 the calibration simulations. Calibration focused on estimating a three-dimensional hydraulic 14 conductivity field that was parameterized using a regular grid of pilot points in each layer and a 15 smoothness constraint. Other model parameters (dispersivity, porosity, recharge, etc.) were 16 fixed at the known values. The discrepancy between observed and simulated concentrations 17 (due solely to numerical dispersion) was reduced by adjusting hydraulic conductivity through the 18 calibration process. Within the transition zone, hydraulic conductivity tended to be lower than 19 the true value for the calibration runs tested. The calibration process introduced lower hydraulic 20 conductivity values to compensate for numerical dispersion and improve the match between 21 observed and simulated concentration breakthrough curves at monitoring locations. 22 Concentrations were underpredicted at both groundwater withdrawal locations during the 10-23 year prediction period.

  4. NO to NO2 conversion rate analysis and implications for dispersion model chemistry methods using Las Vegas, Nevada near-road field measurements

    EPA Science Inventory

    Nitrogen dioxide/oxides of nitrogen (NO2/NOX) ratios are an important surrogate for nitric oxide (NO) NO-to-NO2 chemistry in dispersion models when estimating NOX emissions in a near-road environment. Existing dispersion models use different techniques and assumptions to represe...

  5. Matching oceanography and genetics at the basin scale. Seascape connectivity of the Mediterranean shore crab in the Adriatic Sea.

    PubMed

    Schiavina, M; Marino, I A M; Zane, L; Melià, P

    2014-11-01

    Investigating the interactions between the physical environment and early life history is crucial to understand the mechanisms that shape the genetic structure of marine populations. Here, we assessed the genetic differentiation in a species with larval dispersal, the Mediterranean shore crab (Carcinus aestuarii) in the Adriatic Sea (central Mediterranean), and we investigated the role of oceanic circulation in shaping population structure. To this end, we screened 11 polymorphic microsatellite loci from 431 individuals collected at eight different sites. We found a weak, yet significant, genetic structure into three major clusters: a northern Adriatic group, a central Adriatic group and one group including samples from southern Adriatic and Ionian seas. Genetic analyses were compared, under a seascape genetics approach, with estimates of potential larval connectivity obtained with a coupled physical-biological model that integrates a water circulation model and a description of biological traits affecting dispersal. The cross-validation of the results of the two approaches supported the view that genetic differentiation reflects an oceanographic subdivision of the Adriatic Sea into three subbasins, with circulation patterns allowing the exchange of larvae through permanent connections linking north Adriatic sites and ephemeral connections like those linking the central Adriatic with northern and southern locations. © 2014 John Wiley & Sons Ltd.

  6. Near-infrared Raman spectroscopy to detect anti-Toxoplasma gondii antibody in blood sera of domestic cats: quantitative analysis based on partial least-squares multivariate statistics

    NASA Astrophysics Data System (ADS)

    Duarte, Janaína; Pacheco, Marcos T. T.; Villaverde, Antonio Balbin; Machado, Rosangela Z.; Zângaro, Renato A.; Silveira, Landulfo

    2010-07-01

    Toxoplasmosis is an important zoonosis in public health because domestic cats are the main agents responsible for the transmission of this disease in Brazil. We investigate a method for diagnosing toxoplasmosis based on Raman spectroscopy. Dispersive near-infrared Raman spectra are used to quantify anti-Toxoplasma gondii (IgG) antibodies in blood sera from domestic cats. An 830-nm laser is used for sample excitation, and a dispersive spectrometer is used to detect the Raman scattering. A serological test is performed in all serum samples by the enzyme-linked immunosorbent assay (ELISA) for validation. Raman spectra are taken from 59 blood serum samples and a quantification model is implemented based on partial least squares (PLS) to quantify the sample's serology by Raman spectra compared to the results provided by the ELISA test. Based on the serological values provided by the Raman/PLS model, diagnostic parameters such as sensitivity, specificity, accuracy, positive prediction values, and negative prediction values are calculated to discriminate negative from positive samples, obtaining 100, 80, 90, 83.3, and 100%, respectively. Raman spectroscopy, associated with the PLS, is promising as a serological assay for toxoplasmosis, enabling fast and sensitive diagnosis.

  7. Electromagnetic drift waves dispersion for arbitrarily collisional plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Wonjae, E-mail: wol023@ucsd.edu; Krasheninnikov, Sergei I., E-mail: skrash@mae.ucsd.edu; Angus, J. R.

    2015-07-15

    The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionlessmore » and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.« less

  8. Continuum Mean-Field Theories for Molecular Fluids, and Their Validity at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Hanna, C. B.; Peyronel, F.; MacDougall, C.; Marangoni, A.; Pink, D. A.; AFMNet-NCE Collaboration

    2011-03-01

    We present a calculation of the physical properties of solid triglyceride particles dispersed in an oil phase, using atomic- scale molecular dynamics. Significant equilibrium density oscillations in the oil appear when the interparticle distance, d , becomes sufficiently small, with a global minimum in the free energy found at d ~ 1.4 nm. We compare the simulation values of the Hamaker coefficient with those of models which assume that the oil is a homogeneous continuum: (i) Lifshitz theory, (ii) the Fractal Model, and (iii) a Lennard-Jones 6-12 potential model. The last-named yields a minimum in the free energy at d ~ 0.26 nm. We conclude that, at the nanoscale, continuum Lifshitz theory and other continuum mean-field theories based on the assumption of homogeneous fluid density can lead to erroneous conclusions. CBH supported by NSF DMR-0906618. DAP supported by NSERC. This work supported by AFMNet-NCE.

  9. Modelling the transport of solid contaminants originated from a point source

    NASA Astrophysics Data System (ADS)

    Salgueiro, Dora V.; Conde, Daniel A. S.; Franca, Mário J.; Schleiss, Anton J.; Ferreira, Rui M. L.

    2017-04-01

    The solid phases of natural flows can comprise an important repository for contaminants in aquatic ecosystems and can propagate as turbidity currents generating a stratified environment. Contaminants can be desorbed under specific environmental conditions becoming re-suspended, with a potential impact on the aquatic biota. Forecasting the distribution of the contaminated turbidity current is thus crucial for a complete assessment of environmental exposure. In this work we validate the ability of the model STAV-2D, developed at CERIS (IST), to simulate stratified flows such as those resulting from turbidity currents in complex geometrical environments. The validation involves not only flow phenomena inherent to flows generated by density imbalance but also convective effects brought about by the complex geometry of the water basin where the current propagates. This latter aspect is of paramount importance since, in real applications, currents may propagate in semi-confined geometries in plan view, generating important convective accelerations. Velocity fields and mass distributions obtained from experiments carried out at CERIS - (IST) are used as validation data for the model. The experimental set-up comprises a point source in a rectangular basin with a wall placed perpendicularly to the outer walls. Thus generates a complex 2D flow with an advancing wave front and shocks due to the flow reflection from the walls. STAV-2D is based on the depth- and time-averaged mass and momentum equations for mixtures of water and sediment, understood as continua. It is closed in terms of flow resistance and capacity bedload discharge by a set of classic closure models and a specific high concentration formulation. The two-layer model is derived from layer-averaged Navier-Stokes equations, resulting in a system of layer-specific non-linear shallow-water equations, solved through explicit first or second-order schemes. According to the experimental data for mass distribution, the results obtained with STAV-2D show the formation of a shock wave, radially propagating from the point discharge, and secondary shocks originated by reflections at the basin walls. Laboratory results evidenced the presence of two main disturbances: a wave front near the side wall and another one resulting from dispersive processes. The dispersive phenomenon suggests the presence of oscillations, instead of the constant energy state that is characteristic of isolated rarefaction waves. The ability of the existing model to reproduce these details of the experiment is assessed and discussed. The validated two-layer hydrodynamics model is seen as a proxy for fluvial flows with different sediment concentration regions and can be used for the prediction and monitoring of spatial and temporal distribution of sediments and the adsorbed phases of contaminants. Acknowledgements This research was partially funded by the Portuguese Foundation for Science and Technology (FCT) through project RECI/ECM-HID/0371/2012 and through a H2Doc - Environmental Hydraulics and Hydrology doctoral grant (PD/BD/113620/2015) and by the Laboratory of Hydraulic Constructions (LCH), École polytechnique fédérale de Lausanne.

  10. The behavior of groundwater with dispersion in coastal aquifers

    NASA Astrophysics Data System (ADS)

    Kakinuma, Tadao; Kishi, Yosuke; Inouchi, Kunimitsu

    1988-04-01

    A three-dimensional steady-state hydrodynamic dispersion model is used to simulate seawater encroachment in the confined aquifers in the estuaries of the Naka and Kiki Rivers in Japan. Two expressions of the dispersion coefficient are considered; one is constant over the entire region of the aquifer and the other is dependent on the flow velocity of the groundwater. The magnitudes of the constant dispersion coefficients in the horizontal and vertical directions, Dxx and Dzz, as well as the longitudinal and lateral dispersivities, aL and aT, are determined so as to reproduce the regional distributions of salt concentration in the confined aquifers in both estuaries. It is found that Dxx = 5 cm 2s -1, Dzz = 5-0.5 cm 2s -1 and aL = 1000-1250 m, aT = 100-125 m in the estuary of the Naka River; and Dxx = 0.2 cm 2s -1, Dzz = 0.2-0.02 cm 2s -1 and aL = 200 m, aT = 200-20 m in the estuary of the Kiki River. Examining the local distributions of the dispersion coefficient computed from the dispersivity and velocity fields of groundwater in both estuaries, the same value as estimated in the analysis with the constant dispersion coefficient is located in the middle layer of the aquifer. In the estuary of the Naka River, the piezometric surface predicted with the dispersion model with the velocity-dependent dispersion coefficient is almost the same as that predicted with the dispersion model with the constant dispersion coefficient and they are 5 10% lower than that predicted with the interface model (Kakinuma et al., 1984). They are, however, about 1.3 times the observed one.

  11. Horizontal pre-asymptotic solute transport in a plane fracture with significant density contrasts.

    PubMed

    Bouquain, J; Meheust, Y; Davy, P

    2011-03-01

    We investigate the dispersion of a finite amount of solute after it has been injected into the laminar flow occurring in a horizontal smooth fracture of constant aperture. When solute buoyancy is negligible, the dispersion process eventually leads to the well-known asymptotic Taylor-Aris dispersion regime, in which the solute progresses along the fracture at the average fluid velocity, according to a one-dimensional longitudinal advection-dispersion process. This paper addresses more realistic configurations for which the solute-induced density contrasts within the fluid play an important role on solute transport, in particular at small and moderate times. Flow and transport are coupled, since the solute distribution impacts the variations in time of the advecting velocity field. Transport is simulated using (i) a mathematical description based on the Boussinesq approximation and (ii) a numerical scheme based on a finite element analysis. This enables complete characterization of the process, in particular at moderate times for which existing analytical models are not valid. At very short times as well as very long times, the overall downward advective solute mass flow is observed to scale as the square of the injected concentration. The asymptotic Taylor-Aris effective dispersion coefficient is reached eventually, but vertical density currents, which are significant at short and moderate times, are responsible for a systematic retardation of the asymptotic mean solute position with respect to the frame moving at the mean fluid velocity, as well as for a time shift in the establishment of the asymptotic dispersion regime. These delays are characterized as functions of the Péclet number and another non-dimensional number which we call advective Archimedes number, and which quantifies the ratio of buoyancy to viscous forces. Depending on the Péclet number, the asymptotic dispersion is measured to be either larger or smaller than what it would be in the absence of buoyancy effects. Breakthrough curves measured at distances larger than the typical distance needed to reach the asymptotic dispersion regime are impacted accordingly. These findings suggest that, under certain conditions, density/buoyancy effects may have to be taken into consideration when interpreting field measurement of solute transport in fractured media. They also allow an estimate of the conditions under which density effects related to fracture wall roughness are likely to be significant. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Computational fluid dynamics modeling of gas dispersion in multi impeller bioreactor.

    PubMed

    Ahmed, Syed Ubaid; Ranganathan, Panneerselvam; Pandey, Ashok; Sivaraman, Savithri

    2010-06-01

    In the present study, experiments have been carried out to identify various flow regimes in a dual Rushton turbines stirred bioreactor for different gas flow rates and impeller speeds. The hydrodynamic parameters like fractional gas hold-up, power consumption and mixing time have been measured. A two fluid model along with MUSIG model to handle polydispersed gas flow has been implemented to predict the various flow regimes and hydrodynamic parameters in the dual turbines stirred bioreactor. The computational model has been mapped on commercial solver ANSYS CFX. The flow regimes predicted by numerical simulations are validated with the experimental results. The present model has successfully captured the flow regimes as observed during experiments. The measured gross flow characteristics like fractional gas hold-up, and mixing time have been compared with numerical simulations. Also the effect of gas flow rate and impeller speed on gas hold-up and power consumption have been investigated. (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Utilizing Diffusion Theory to predict carbon dioxide concentration in an indoor environment

    NASA Astrophysics Data System (ADS)

    Kramer, Andrew R.

    This research details a new method of relating sources of carbon dioxide to carbon dioxide concentration in a room operating in a reduced ventilation mode by utilizing Diffusion Theory. The theoretical basis of this research involved solving Fick's Second Law of Diffusion in spherical coordinates for a source of carbon dioxide flowing at a constant rate and located in the center of an impermeable spherical boundary. The solution was developed using a Laplace Transformation. A spherical diffusion test chamber was constructed and used to validate and benchmark the developed theory. The method was benchmarked by using Dispersion Coefficients for large carbon dioxide flow rates due to diffusion induced convection. The theoretical model was adapted to model a room operating with restricted ventilation in the presence of a known, constant source of carbon dioxide. The room was modeled as a sphere of volume equal to the room and utilized a Dispersion Coefficient that is consistent with published values. The developed Diffusion Model successfully predicted the spatial concentration of carbon dioxide in a room operating in a reduced ventilation mode in the presence of a source of carbon dioxide. The flow rates of carbon dioxide that were used in the room are comparable to the average flow rate of carbon dioxide from a person during quiet breathing, also known as the Tidal Breathing. This indicates the Diffusion Model developed from this research has the potential to correlate carbon dioxide concentration with static occupancy levels which can lead to energy savings through a reduction in air exchange rates when low occupancy is detected.

  14. Dispersion analysis and measurement of circular cylindrical wedge-like acoustic waveguides.

    PubMed

    Yu, Tai-Ho

    2015-09-01

    This study investigated the propagation of flexural waves along the outer edge of a circular cylindrical wedge, the phase velocities, and the corresponding mode displacements. Thus far, only approximate solutions have been derived because the corresponding boundary-value problems are complex. In this study, dispersion curves were determined using the bi-dimensional finite element method and derived through the separation of variables and the Hamilton principle. Modal displacement calculations clarified that the maximal deformations appeared at the outer edge of the wedge tip. Numerical examples indicated how distinct thin-film materials deposited on the outer surface of the circular cylindrical wedge influenced the dispersion curves. Additionally, dispersion curves were measured using a laser-induced guided wave, a knife-edge measurement scheme, and a two-dimensional fast Fourier transform method. Both the numerical and experimental results correlated closely, thus validating the numerical solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Uncoupling the Effects of Seed Predation and Seed Dispersal by Granivorous Ants on Plant Population Dynamics

    PubMed Central

    Arnan, Xavier; Molowny-Horas, Roberto; Rodrigo, Anselm; Retana, Javier

    2012-01-01

    Secondary seed dispersal is an important plant-animal interaction, which is central to understanding plant population and community dynamics. Very little information is still available on the effects of dispersal on plant demography and, particularly, for ant-seed dispersal interactions. As many other interactions, seed dispersal by animals involves costs (seed predation) and benefits (seed dispersal), the balance of which determines the outcome of the interaction. Separate quantification of each of them is essential in order to understand the effects of this interaction. To address this issue, we have successfully separated and analyzed the costs and benefits of seed dispersal by seed-harvesting ants on the plant population dynamics of three shrub species with different traits. To that aim a stochastic, spatially-explicit individually-based simulation model has been implemented based on actual data sets. The results from our simulation model agree with theoretical models of plant response dependent on seed dispersal, for one plant species, and ant-mediated seed predation, for another one. In these cases, model predictions were close to the observed values at field. Nonetheless, these ecological processes did not affect in anyway a third species, for which the model predictions were far from the observed values. This indicates that the balance between costs and benefits associated to secondary seed dispersal is clearly related to specific traits. This study is one of the first works that analyze tradeoffs of secondary seed dispersal on plant population dynamics, by disentangling the effects of related costs and benefits. We suggest analyzing the effects of interactions on population dynamics as opposed to merely analyzing the partners and their interaction strength. PMID:22880125

  16. Life history trade-off moderates model predictions of diversity loss from climate change.

    PubMed

    Moor, Helen

    2017-01-01

    Climate change can trigger species range shifts, local extinctions and changes in diversity. Species interactions and dispersal capacity are important mediators of community responses to climate change. The interaction between multispecies competition and variation in dispersal capacity has recently been shown to exacerbate the effects of climate change on diversity and to increase predictions of extinction risk dramatically. Dispersal capacity, however, is part of a species' overall ecological strategy and are likely to trade off with other aspects of its life history that influence population growth and persistence. In plants, a well-known example is the trade-off between seed mass and seed number. The presence of such a trade-off might buffer the diversity loss predicted by models with random but neutral (i.e. not impacting fitness otherwise) differences in dispersal capacity. Using a trait-based metacommunity model along a warming climatic gradient the effect of three different dispersal scenarios on model predictions of diversity change were compared. Adding random variation in species dispersal capacity caused extinctions by the introduction of strong fitness differences due an inherent property of the dispersal kernel. Simulations including a fitness-equalising trade-off based on empirical relationships between seed mass (here affecting dispersal distance, establishment probability, and seedling biomass) and seed number (fecundity) maintained higher initial species diversity and predicted lower extinction risk and diversity loss during climate change than simulations with variable dispersal capacity. Large seeded species persisted during climate change, but developed lags behind their climate niche that may cause extinction debts. Small seeded species were more extinction-prone during climate change but tracked their niches through dispersal and colonisation, despite competitive resistance from residents. Life history trade-offs involved in coexistence mechanisms may increase community resilience to future climate change and are useful guides for model development.

  17. iCFD: Interpreted Computational Fluid Dynamics - Degeneration of CFD to one-dimensional advection-dispersion models using statistical experimental design - The secondary clarifier.

    PubMed

    Guyonvarch, Estelle; Ramin, Elham; Kulahci, Murat; Plósz, Benedek Gy

    2015-10-15

    The present study aims at using statistically designed computational fluid dynamics (CFD) simulations as numerical experiments for the identification of one-dimensional (1-D) advection-dispersion models - computationally light tools, used e.g., as sub-models in systems analysis. The objective is to develop a new 1-D framework, referred to as interpreted CFD (iCFD) models, in which statistical meta-models are used to calculate the pseudo-dispersion coefficient (D) as a function of design and flow boundary conditions. The method - presented in a straightforward and transparent way - is illustrated using the example of a circular secondary settling tank (SST). First, the significant design and flow factors are screened out by applying the statistical method of two-level fractional factorial design of experiments. Second, based on the number of significant factors identified through the factor screening study and system understanding, 50 different sets of design and flow conditions are selected using Latin Hypercube Sampling (LHS). The boundary condition sets are imposed on a 2-D axi-symmetrical CFD simulation model of the SST. In the framework, to degenerate the 2-D model structure, CFD model outputs are approximated by the 1-D model through the calibration of three different model structures for D. Correlation equations for the D parameter then are identified as a function of the selected design and flow boundary conditions (meta-models), and their accuracy is evaluated against D values estimated in each numerical experiment. The evaluation and validation of the iCFD model structure is carried out using scenario simulation results obtained with parameters sampled from the corners of the LHS experimental region. For the studied SST, additional iCFD model development was carried out in terms of (i) assessing different density current sub-models; (ii) implementation of a combined flocculation, hindered, transient and compression settling velocity function; and (iii) assessment of modelling the onset of transient and compression settling. Furthermore, the optimal level of model discretization both in 2-D and 1-D was undertaken. Results suggest that the iCFD model developed for the SST through the proposed methodology is able to predict solid distribution with high accuracy - taking a reasonable computational effort - when compared to multi-dimensional numerical experiments, under a wide range of flow and design conditions. iCFD tools could play a crucial role in reliably predicting systems' performance under normal and shock events. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Oak habitat recovery on California's largest islands: Scenarios for the role of corvid seed dispersal

    USGS Publications Warehouse

    Pesendorfer, Mario B.; Baker, Christopher M.; Stringer, Martin; McDonald-Madden, Eve; Bode, Michael; McEachern, A. Kathryn; Morrison, Scott A.; Sillett, T. Scott

    2018-01-01

    Seed dispersal by birds is central to the passive restoration of many tree communities. Reintroduction of extinct seed dispersers can therefore restore degraded forests and woodlands. To test this, we constructed a spatially explicit simulation model, parameterized with field data, to consider the effect of different seed dispersal scenarios on the extent of oak populations. We applied the model to two islands in California's Channel Islands National Park (USA), one of which has lost a key seed disperser.We used an ensemble modelling approach to simulate island scrub oak (Quercus pacifica) demography. The model was developed and trained to recreate known population changes over a 20-year period on 250-km2 Santa Cruz Island, and incorporated acorn dispersal by island scrub-jays (Aphelocoma insularis), deer mice (Peromyscus maniculatus) and gravity, as well as seed predation. We applied the trained model to 215-km2 Santa Rosa Island to examine how reintroducing island scrub-jays would affect the rate and pattern of oak population expansion. Oak habitat on Santa Rosa Island has been greatly reduced from its historical extent due to past grazing by introduced ungulates, the last of which were removed by 2011.Our simulation model predicts that a seed dispersal scenario including island scrub-jays would increase the extent of the island scrub oak population on Santa Rosa Island by 281% over 100 years, and by 544% over 200 years. Scenarios without jays would result in little expansion. Simulated long-distance seed dispersal by jays also facilitates establishment of discontinuous patches of oaks, and increases their elevational distribution.Synthesis and applications. Scenario planning provides powerful decision support for conservation managers. We used ensemble modelling of plant demographic and seed dispersal processes to investigate whether the reintroduction of seed dispersers could provide cost-effective means of achieving broader ecosystem restoration goals on California's second-largest island. The simulation model, extensively parameterized with field data, suggests that re-establishing the mutualism with seed-hoarding jays would accelerate the expansion of island scrub oak, which could benefit myriad species of conservation concern.

  19. Development and testing of meteorology and air dispersion models for Mexico City

    NASA Astrophysics Data System (ADS)

    Williams, M. D.; Brown, M. J.; Cruz, X.; Sosa, G.; Streit, G.

    Los Alamos National Laboratory and Instituto Mexicano del Petróleo are completing a joint study of options for improving air quality in Mexico City. We have modified a three-dimensional, prognostic, higher-order turbulence model for atmospheric circulation (HOTMAC) and a Monte Carlo dispersion and transport model (RAPTAD) to treat domains that include an urbanized area. We used the meteorological model to drive models which describe the photochemistry and air transport and dispersion. The photochemistry modeling is described in a separate paper. We tested the model against routine measurements and those of a major field program. During the field program, measurements included: (1) lidar measurements of aerosol transport and dispersion, (2) aircraft measurements of winds, turbulence, and chemical species aloft, (3) aircraft measurements of skin temperatures, and (4) Tethersonde measurements of winds and ozone. We modified the meteorological model to include provisions for time-varying synoptic-scale winds, adjustments for local wind effects, and detailed surface-coverage descriptions. We developed a new method to define mixing-layer heights based on model outputs. The meteorology and dispersion models were able to provide reasonable representations of the measurements and to define the sources of some of the major uncertainties in the model-measurement comparisons.

  20. Evolutionarily stable and convergent stable strategies in reaction-diffusion models for conditional dispersal.

    PubMed

    Lam, King-Yeung; Lou, Yuan

    2014-02-01

    We consider a mathematical model of two competing species for the evolution of conditional dispersal in a spatially varying, but temporally constant environment. Two species are different only in their dispersal strategies, which are a combination of random dispersal and biased movement upward along the resource gradient. In the absence of biased movement or advection, Hastings showed that the mutant can invade when rare if and only if it has smaller random dispersal rate than the resident. When there is a small amount of biased movement or advection, we show that there is a positive random dispersal rate that is both locally evolutionarily stable and convergent stable. Our analysis of the model suggests that a balanced combination of random and biased movement might be a better habitat selection strategy for populations.

  1. A Bayesian method to rank different model forecasts of the same volcanic ash cloud: Chapter 24

    USGS Publications Warehouse

    Denlinger, Roger P.; Webley, P.; Mastin, Larry G.; Schwaiger, Hans F.

    2012-01-01

    Volcanic eruptions often spew fine ash high into the atmosphere, where it is carried downwind, forming long ash clouds that disrupt air traffic and pose a hazard to air travel. To mitigate such hazards, the community studying ash hazards must assess risk of ash ingestion for any flight path and provide robust and accurate forecasts of volcanic ash dispersal. We provide a quantitative and objective method to evaluate the efficacy of ash dispersal estimates from different models, using Bayes theorem to assess the predictions that each model makes about ash dispersal. We incorporate model and measurement uncertainty and produce a posterior probability for model input parameters. The integral of the posterior over all possible combinations of model inputs determines the evidence for each model and is used to compare models. We compare two different types of transport models, an Eulerian model (Ash3d) and a Langrangian model (PUFF), as applied to the 2010 eruptions of Eyjafjallajökull volcano in Iceland. The evidence for each model benefits from common physical characteristics of ash dispersal from an eruption column and provides a measure of how well each model forecasts cloud transport. Given the complexity of the wind fields, we find that the differences between these models depend upon the differences in the way the models disperse ash into the wind from the source plume. With continued observation, the accuracy of the estimates made by each model increases, increasing the efficacy of each model’s ability to simulate ash dispersal.

  2. Dispersal leads to spatial autocorrelation in species distributions: A simulation model

    USGS Publications Warehouse

    Bahn, V.; Krohn, W.B.; O'Connor, R.J.

    2008-01-01

    Compared to population growth regulated by local conditions, dispersal has been underappreciated as a central process shaping the spatial distribution of populations. This paper asks: (a) which conditions increase the importance of dispersers relative to local recruits in determining population sizes? and (b) how does dispersal influence the spatial distribution patterns of abundances among connected populations? We approached these questions with a simulation model of populations on a coupled lattice with cells of continuously varying habitat quality expressed as carrying capacities. Each cell contained a population with the basic dynamics of density-regulated growth, and was connected to other populations by immigration and emigration. The degree to which dispersal influenced the distribution of population sizes depended most strongly on the absolute amount of dispersal, and then on the potential population growth rate. Dispersal decaying in intensity with distance left close neighbours more alike in population size than distant populations, leading to an increase in spatial autocorrelation. The spatial distribution of species with low potential growth rates is more dependent on dispersal than that of species with high growth rates; therefore, distribution modelling for species with low growth rates requires particular attention to autocorrelation, and conservation management of these species requires attention to factors curtailing dispersal, such as fragmentation and dispersal barriers. ?? 2007 Elsevier B.V. All rights reserved.

  3. A new statistical model for subgrid dispersion in large eddy simulations of particle-laden flows

    NASA Astrophysics Data System (ADS)

    Muela, Jordi; Lehmkuhl, Oriol; Pérez-Segarra, Carles David; Oliva, Asensi

    2016-09-01

    Dispersed multiphase turbulent flows are present in many industrial and commercial applications like internal combustion engines, turbofans, dispersion of contaminants, steam turbines, etc. Therefore, there is a clear interest in the development of models and numerical tools capable of performing detailed and reliable simulations about these kind of flows. Large Eddy Simulations offer good accuracy and reliable results together with reasonable computational requirements, making it a really interesting method to develop numerical tools for particle-laden turbulent flows. Nonetheless, in multiphase dispersed flows additional difficulties arises in LES, since the effect of the unresolved scales of the continuous phase over the dispersed phase is lost due to the filtering procedure. In order to solve this issue a model able to reconstruct the subgrid velocity seen by the particles is required. In this work a new model for the reconstruction of the subgrid scale effects over the dispersed phase is presented and assessed. This innovative methodology is based in the reconstruction of statistics via Probability Density Functions (PDFs).

  4. Spatial seed and pollen games: dispersal, sex allocation, and the evolution of dioecy.

    PubMed

    Fromhage, Lutz; Kokko, Hanna

    2010-09-01

    The evolutionary forces shaping within- and across-species variation in the investment in male and female sex function are still incompletely understood. Despite earlier suggestions that in plants the evolution or cosexuality vs. dioecy, as well as sex allocation among cosexuals, is affected by seed and pollen dispersal, no formal model has explicitly used dispersal distances to address this problem. Here, we present a game-theory model as well as a simulation study that fills in this gap. Our model predicts that dioecy should evolve if seeds and pollen disperse widely and that sex allocation among cosexuals should be biased towards whichever sex function produces more widely dispersing units. Dispersal limitations stabilize cosexuality by reinforcing competition between spatially clumped dispersal units from the same source, leading to saturating fitness returns that render sexual specialization unprofitable. However, limited pollen dispersal can also increase the risk of selfing, thus potentially selecting for dioecy as an outbreeding mechanism. Finally, we refute a recent claim that cosexuals should always invest equally in both sex functions.

  5. Effect of tidal fluctuations on transient dispersion of simulated contaminant concentrations in coastal aquifers

    USGS Publications Warehouse

    La Licata, Ivana; Langevin, Christian D.; Dausman, Alyssa M.; Alberti, Luca

    2011-01-01

    Variable-density groundwater models require extensive computational resources, particularly for simulations representing short-term hydrologic variability such as tidal fluctuations. Saltwater-intrusion models usually neglect tidal fluctuations and this may introduce errors in simulated concentrations. The effects of tides on simulated concentrations in a coastal aquifer were assessed. Three analyses are reported: in the first, simulations with and without tides were compared for three different dispersivity values. Tides do not significantly affect the transfer of a hypothetical contaminant into the ocean; however, the concentration difference between tidal and non-tidal simulations could be as much as 15%. In the second analysis, the dispersivity value for the model without tides was increased in a zone near the ocean boundary. By slightly increasing dispersivity in this zone, the maximum concentration difference between the simulations with and without tides was reduced to as low as 7%. In the last analysis, an apparent dispersivity value was calculated for each model cell using the simulated velocity variations from the model with tides. Use of apparent dispersivity values in models with a constant ocean boundary seems to provide a reasonable approach for approximating tidal effects in simulations where explicit representation of tidal fluctuations is not feasible.

  6. Effect of tidal fluctuations on transient dispersion of simulated contaminant concentrations in coastal aquifers

    USGS Publications Warehouse

    La Licata, Ivana; Langevin, Christian D.; Dausman, Alyssa M.; Alberti, Luca

    2013-01-01

    Variable-density groundwater models require extensive computational resources, particularly for simulations representing short-term hydrologic variability such as tidal fluctuations. Saltwater-intrusion models usually neglect tidal fluctuations and this may introduce errors in simulated concentrations. The effects of tides on simulated concentrations in a coastal aquifer were assessed. Three analyses are reported: in the first, simulations with and without tides were compared for three different dispersivity values. Tides do not significantly affect the transfer of a hypothetical contaminant into the ocean; however, the concentration difference between tidal and non-tidal simulations could be as much as 15%. In the second analysis, the dispersivity value for the model without tides was increased in a zone near the ocean boundary. By slightly increasing dispersivity in this zone, the maximum concentration difference between the simulations with and without tides was reduced to as low as 7%. In the last analysis, an apparent dispersivity value was calculated for each model cell using the simulated velocity variations from the model with tides. Use of apparent dispersivity values in models with a constant ocean boundary seems to provide a reasonable approach for approximating tidal effects in simulations where explicit representation of tidal fluctuations is not feasible.

  7. A mean-density model of ionic surfactants for the dispersion of carbon nanotubes in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Joung, Young Soo

    2018-05-01

    We propose a new analytical model of ionic surfactants used for the dispersion of carbon nanotubes (CNTs) in aqueous solutions. Although ionic surfactants are commonly used to facilitate the dispersion of CNTs in aqueous solutions, understanding the dispersion process is challenging and time-consuming owing to its complexity and nonlinearity. In this work, we develop a mean-density model of ionic surfactants to simplify the calculation of interaction forces between CNTs stabilized by ionic surfactants. Using this model, we can evaluate various interaction forces between the CNTs and ionic surfactants under different conditions. The dispersion mechanism is investigated by estimating the potential of mean force (PMF) as a function of van der Waals forces, electrostatic forces, interfacial tension, and osmotic pressure. To verify the proposed model, we compare the PMFs derived using our method with those derived from molecular dynamics simulations using comparable CNTs and ionic surfactants. Notably, for stable dispersions, the osmotic pressure and interfacial energy are important for long-range and short-range interactions, respectively, in comparison with the effect of electrostatic forces. Our model effectively prescribes specific surfactants and their concentrations to achieve stable aqueous suspensions of CNTs.

  8. Metapopulation dynamics and the evolution of dispersal

    NASA Astrophysics Data System (ADS)

    Parvinen, Kalle

    A metapopulation consists of local populations living in habitat patches. In this chapter metapopulation dynamics and the evolution of dispersal is studied in two metapopulation models defined in discrete time. In the first model there are finitely many patches, and in the other one there are infinitely many patches, which allows to incorporate catastrophes into the model. In the first model, cyclic local population dynamics can be either synchronized or not, and increasing dispersal both synchronizes and stabilizes metapopulation dynamics. On the other hand, the type of dynamics has a strong effect on the evolution of dispersal. In case of non-synchronized metapopulation dynamics, dispersal is much more beneficial than in the case of synchronized metapopulation dynamics. Local dynamics has a substantial effect also on the possibility of evolutionary branching in both models. Furthermore, with an Allee effect in the local dynamics of the second model, even evolutionary suicide can occur. It is an evolutionary process in which a viable population adapts in such a way that it can no longer persist.

  9. Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy.

    PubMed

    Haas, Fernando; Mahmood, Shahzad

    2015-11-01

    Linear and nonlinear ion-acoustic waves are studied in a fluid model for nonrelativistic, unmagnetized quantum plasma with electrons with an arbitrary degeneracy degree. The equation of state for electrons follows from a local Fermi-Dirac distribution function and applies equally well both to fully degenerate and classical, nondegenerate limits. Ions are assumed to be cold. Quantum diffraction effects through the Bohm potential are also taken into account. A general coupling parameter valid for dilute and dense plasmas is proposed. The linear dispersion relation of the ion-acoustic waves is obtained and the ion-acoustic speed is discussed for the limiting cases of extremely dense or dilute systems. In the long-wavelength limit, the results agree with quantum kinetic theory. Using the reductive perturbation method, the appropriate Korteweg-de Vries equation for weakly nonlinear solutions is obtained and the corresponding soliton propagation is analyzed. It is found that soliton hump and dip structures are formed depending on the value of the quantum parameter for the degenerate electrons, which affect the phase velocities in the dispersive medium.

  10. Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy

    NASA Astrophysics Data System (ADS)

    Haas, Fernando; Mahmood, Shahzad

    2015-11-01

    Linear and nonlinear ion-acoustic waves are studied in a fluid model for nonrelativistic, unmagnetized quantum plasma with electrons with an arbitrary degeneracy degree. The equation of state for electrons follows from a local Fermi-Dirac distribution function and applies equally well both to fully degenerate and classical, nondegenerate limits. Ions are assumed to be cold. Quantum diffraction effects through the Bohm potential are also taken into account. A general coupling parameter valid for dilute and dense plasmas is proposed. The linear dispersion relation of the ion-acoustic waves is obtained and the ion-acoustic speed is discussed for the limiting cases of extremely dense or dilute systems. In the long-wavelength limit, the results agree with quantum kinetic theory. Using the reductive perturbation method, the appropriate Korteweg-de Vries equation for weakly nonlinear solutions is obtained and the corresponding soliton propagation is analyzed. It is found that soliton hump and dip structures are formed depending on the value of the quantum parameter for the degenerate electrons, which affect the phase velocities in the dispersive medium.

  11. Diffusion of a particle in the spatially correlated exponential random energy landscape: Transition from normal to anomalous diffusion.

    PubMed

    Novikov, S V

    2018-01-14

    Diffusive transport of a particle in a spatially correlated random energy landscape having exponential density of states has been considered. We exactly calculate the diffusivity in the nondispersive quasi-equilibrium transport regime for the 1D transport model and found that for slow decaying correlation functions the diffusivity becomes singular at some particular temperature higher than the temperature of the transition to the true non-equilibrium dispersive transport regime. It means that the diffusion becomes anomalous and does not follow the usual ∝ t 1/2 law. In such situation, the fully developed non-equilibrium regime emerges in two stages: first, at some temperature there is the transition from the normal to anomalous diffusion, and then at lower temperature the average velocity for the infinite medium goes to zero, thus indicating the development of the true dispersive regime. Validity of the Einstein relation is discussed for the situation where the diffusivity does exist. We provide also some arguments in favor of conservation of the major features of the new transition scenario in higher dimensions.

  12. Semi-analytical discontinuous Galerkin finite element method for the calculation of dispersion properties of guided waves in plates.

    PubMed

    Hebaz, Salah-Eddine; Benmeddour, Farouk; Moulin, Emmanuel; Assaad, Jamal

    2018-01-01

    The development of reliable guided waves inspection systems is conditioned by an accurate knowledge of their dispersive properties. The semi-analytical finite element method has been proven to be very practical for modeling wave propagation in arbitrary cross-section waveguides. However, when it comes to computations on complex geometries to a given accuracy, it still has a major drawback: the high consumption of resources. Recently, discontinuous Galerkin finite element method (DG-FEM) has been found advantageous over the standard finite element method when applied as well in the frequency domain. In this work, a high-order method for the computation of Lamb mode characteristics in plates is proposed. The problem is discretised using a class of DG-FEM, namely, the interior penalty methods family. The analytical validation is performed through the homogeneous isotropic case with traction-free boundary conditions. Afterwards, functionally graded material plates are analysed and a numerical example is presented. It was found that the obtained results are in good agreement with those found in the literature.

  13. Instability of elliptic liquid jets: Temporal linear stability theory and experimental analysis

    NASA Astrophysics Data System (ADS)

    Amini, Ghobad; Lv, Yu; Dolatabadi, Ali; Ihme, Matthias

    2014-11-01

    The instability dynamics of inviscid liquid jets issuing from elliptical orifices is studied, and effects of the surrounding gas and the liquid surface tension on the stability behavior are investigated. A dispersion relation for the zeroth azimuthal (axisymmetric) instability mode is derived. Consistency of the analysis is confirmed by demonstrating that these equations reduce to the well-known dispersion equations for the limiting cases of round and planar jets. It is shown that the effect of the ellipticity is to increase the growth rate over a large range of wavenumbers in comparison to those of a circular jet. For higher Weber numbers, at which capillary forces have a stabilizing effect, the growth rate decreases with increasing ellipticity. Similar to circular and planar jets, increasing the density ratio between gas and liquid increases the growth of disturbances significantly. These theoretical investigations are complemented by experiments to validate the local linear stability results. Comparisons of predicted growth rates with measurements over a range of jet ellipticities confirm that the theoretical model provides a quantitatively accurate description of the instability dynamics in the Rayleigh and first wind-induced regimes.

  14. Flow and Pollutant Transport in Urban Street Canyons of Different Aspect Ratios with Ground Heating: Large-Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Li, Xian-Xiang; Britter, Rex E.; Norford, Leslie K.; Koh, Tieh-Yong; Entekhabi, Dara

    2012-02-01

    A validated large-eddy simulation model was employed to study the effect of the aspect ratio and ground heating on the flow and pollutant dispersion in urban street canyons. Three ground-heating intensities (neutral, weak and strong) were imposed in street canyons of aspect ratio 1, 2, and 0.5. The detailed patterns of flow, turbulence, temperature and pollutant transport were analyzed and compared. Significant changes of flow and scalar patterns were caused by ground heating in the street canyon of aspect ratio 2 and 0.5, while only the street canyon of aspect ratio 0.5 showed a change in flow regime (from wake interference flow to skimming flow). The street canyon of aspect ratio 1 does not show any significant change in the flow field. Ground heating generated strong mixing of heat and pollutant; the normalized temperature inside street canyons was approximately spatially uniform and somewhat insensitive to the aspect ratio and heating intensity. This study helps elucidate the combined effects of urban geometry and thermal stratification on the urban canyon flow and pollutant dispersion.

  15. Analytical and numerical treatment of drift-tearing modes in plasma slab

    NASA Astrophysics Data System (ADS)

    Mirnov, V. V.; Hegna, C. C.; Sovinec, C. R.; Howell, E. C.

    2016-10-01

    Two-fluid corrections to linear tearing modes includes 1) diamagnetic drifts that reduce the growth rate and 2) electron and ion decoupling on short scales that can lead to fast reconnection. We have recently developed an analytical model that includes effects 1) and 2) and important contribution from finite electron parallel thermal conduction. Both the tendencies 1) and 2) are confirmed by an approximate analytic dispersion relation that is derived using a perturbative approach of small ion-sound gyroradius ρs. This approach is only valid at the beginning of the transition from the collisional to semi-collisional regimes. Further analytical and numerical work is performed to cover the full interval of ρs connecting these two limiting cases. Growth rates are computed from analytic theory with a shooting method. They match the resistive MHD regime with the dispersion relations known at asymptotically large ion-sound gyroradius. A comparison between this analytical treatment and linear numerical simulations using the NIMROD code with cold ions and hot electrons in plasma slab is reported. The material is based on work supported by the U.S. DOE and NSF.

  16. Estimation by capture-recapture of recruitment and dispersal over several sites

    USGS Publications Warehouse

    Lebreton, J.D.; Hines, J.E.; Pradel, R.; Nichols, J.D.; Spendelow, J.A.

    2003-01-01

    Dispersal in animal populations is intimately linked with accession to reproduction, i.e. recruitment, and population regulation. Dispersal processes are thus a key component of population dynamics to the same extent as reproduction or mortality processes. Despite the growing interest in spatial aspects of population dynamics, the methodology for estimating dispersal, in particular in relation with recruitment, is limited. In many animal populations, in particular vertebrates, the impossibility of following individuals over space and time in an exhaustive way leads to the need to frame the estimation of dispersal in the context of capture-recapture methodology. We present here a class of age-dependent multistate capture-recapture models for the simultaneous estimation of natal dispersal, breeding dispersal, and age-dependent recruitment. These models are suitable for populations in which individuals are marked at birth and then recaptured over several sites. Under simple constraints, they can be used in populations where non-breeders are not observed, as is often the case with colonial waterbirds monitored on their breeding grounds. Biological questions can be addressed by comparing models differing in structure, according to the generalized linear model philosophy broadly used in capture-recapture methodology. We illustrate the potential of this approach by an analysis of recruitment and dispersal in the roseate tern Sterna dougallii.

  17. Are Plant Species Able to Keep Pace with the Rapidly Changing Climate?

    PubMed Central

    Cunze, Sarah; Heydel, Felix; Tackenberg, Oliver

    2013-01-01

    Future climate change is predicted to advance faster than the postglacial warming. Migration may therefore become a key driver for future development of biodiversity and ecosystem functioning. For 140 European plant species we computed past range shifts since the last glacial maximum and future range shifts for a variety of Intergovernmental Panel on Climate Change (IPCC) scenarios and global circulation models (GCMs). Range shift rates were estimated by means of species distribution modelling (SDM). With process-based seed dispersal models we estimated species-specific migration rates for 27 dispersal modes addressing dispersal by wind (anemochory) for different wind conditions, as well as dispersal by mammals (dispersal on animal's coat – epizoochory and dispersal by animals after feeding and digestion – endozoochory) considering different animal species. Our process-based modelled migration rates generally exceeded the postglacial range shift rates indicating that the process-based models we used are capable of predicting migration rates that are in accordance with realized past migration. For most of the considered species, the modelled migration rates were considerably lower than the expected future climate change induced range shift rates. This implies that most plant species will not entirely be able to follow future climate-change-induced range shifts due to dispersal limitation. Animals with large day- and home-ranges are highly important for achieving high migration rates for many plant species, whereas anemochory is relevant for only few species. PMID:23894290

  18. Signal Construction-Based Dispersion Compensation of Lamb Waves Considering Signal Waveform and Amplitude Spectrum Preservation

    PubMed Central

    Cai, Jian; Yuan, Shenfang; Wang, Tongguang

    2016-01-01

    The results of Lamb wave identification for the aerospace structures could be easily affected by the nonlinear-dispersion characteristics. In this paper, dispersion compensation of Lamb waves is of particular concern. Compared with the similar research works on the traditional signal domain transform methods, this study is based on signal construction from the viewpoint of nonlinear wavenumber linearization. Two compensation methods of linearly-dispersive signal construction (LDSC) and non-dispersive signal construction (NDSC) are proposed. Furthermore, to improve the compensation effect, the influence of the signal construction process on the other crucial signal properties, including the signal waveform and amplitude spectrum, is considered during the investigation. The linear-dispersion and non-dispersion effects are firstly analyzed. Then, after the basic signal construction principle is explored, the numerical realization of LDSC and NDSC is discussed, in which the signal waveform and amplitude spectrum preservation is especially regarded. Subsequently, associated with the delay-and-sum algorithm, LDSC or NDSC is employed for high spatial resolution damage imaging, so that the adjacent multi-damage or quantitative imaging capacity of Lamb waves can be strengthened. To verify the proposed signal construction and damage imaging methods, the experimental and numerical validation is finally arranged on the aluminum plates. PMID:28772366

  19. Signal Construction-Based Dispersion Compensation of Lamb Waves Considering Signal Waveform and Amplitude Spectrum Preservation.

    PubMed

    Cai, Jian; Yuan, Shenfang; Wang, Tongguang

    2016-12-23

    The results of Lamb wave identification for the aerospace structures could be easily affected by the nonlinear-dispersion characteristics. In this paper, dispersion compensation of Lamb waves is of particular concern. Compared with the similar research works on the traditional signal domain transform methods, this study is based on signal construction from the viewpoint of nonlinear wavenumber linearization. Two compensation methods of linearly-dispersive signal construction (LDSC) and non-dispersive signal construction (NDSC) are proposed. Furthermore, to improve the compensation effect, the influence of the signal construction process on the other crucial signal properties, including the signal waveform and amplitude spectrum, is considered during the investigation. The linear-dispersion and non-dispersion effects are firstly analyzed. Then, after the basic signal construction principle is explored, the numerical realization of LDSC and NDSC is discussed, in which the signal waveform and amplitude spectrum preservation is especially regarded. Subsequently, associated with the delay-and-sum algorithm, LDSC or NDSC is employed for high spatial resolution damage imaging, so that the adjacent multi-damage or quantitative imaging capacity of Lamb waves can be strengthened. To verify the proposed signal construction and damage imaging methods, the experimental and numerical validation is finally arranged on the aluminum plates.

  20. Appropriateness of selecting different averaging times for modelling chronic and acute exposure to environmental odours

    NASA Astrophysics Data System (ADS)

    Drew, G. H.; Smith, R.; Gerard, V.; Burge, C.; Lowe, M.; Kinnersley, R.; Sneath, R.; Longhurst, P. J.

    Odour emissions are episodic, characterised by periods of high emission rates, interspersed with periods of low emissions. It is frequently the short term, high concentration peaks that result in annoyance in the surrounding population. Dispersion modelling is accepted as a useful tool for odour impact assessment, and two approaches can be adopted. The first approach of modelling the hourly average concentration can underestimate total odour concentration peaks, resulting in annoyance and complaints. The second modelling approach involves the use of short averaging times. This study assesses the appropriateness of using different averaging times to model the dispersion of odour from a landfill site. We also examine perception of odour in the community in conjunction with the modelled odour dispersal, by using community monitors to record incidents of odour. The results show that with the shorter averaging times, the modelled pattern of dispersal reflects the pattern of observed odour incidents recorded in the community monitoring database, with the modelled odour dispersing further in a north easterly direction. Therefore, the current regulatory method of dispersion modelling, using hourly averaging times, is less successful at capturing peak concentrations, and does not capture the pattern of odour emission as indicated by the community monitoring database. The use of short averaging times is therefore of greater value in predicting the likely nuisance impact of an odour source and in framing appropriate regulatory controls.

  1. A semi-analytical beam model for the vibration of railway tracks

    NASA Astrophysics Data System (ADS)

    Kostovasilis, D.; Thompson, D. J.; Hussein, M. F. M.

    2017-04-01

    The high frequency dynamic behaviour of railway tracks, in both vertical and lateral directions, strongly affects the generation of rolling noise as well as other phenomena such as rail corrugation. An improved semi-analytical model of a beam on an elastic foundation is introduced that accounts for the coupling of the vertical and lateral vibration. The model includes the effects of cross-section asymmetry, shear deformation, rotational inertia and restrained warping. Consideration is given to the fact that the loads at the rail head, as well as those exerted by the railpads at the rail foot, may not act through the centroid of the section. The response is evaluated for a harmonic load and the solution is obtained in the wavenumber domain. Results are presented as dispersion curves for free and supported rails and are validated with the aid of a Finite Element (FE) and a waveguide finite element (WFE) model. Closed form expressions are derived for the forced response, and validated against the WFE model. Track mobilities and decay rates are presented to assess the potential implications for rolling noise and the influence of the various sources of vertical-lateral coupling. Comparison is also made with measured data. Overall, the model presented performs very well, especially for the lateral vibration, although it does not contain the high frequency cross-section deformation modes. The most significant effects on the response are shown to be the inclusion of torsion and foundation eccentricity, which mainly affect the lateral response.

  2. Numerical Investigation of Plasma Detachment in Magnetic Nozzle Experiments

    NASA Technical Reports Server (NTRS)

    Sankaran, Kamesh; Polzin, Kurt A.

    2008-01-01

    At present there exists no generally accepted theoretical model that provides a consistent physical explanation of plasma detachment from an externally-imposed magnetic nozzle. To make progress towards that end, simulation of plasma flow in the magnetic nozzle of an arcjet experiment is performed using a multidimensional numerical simulation tool that includes theoretical models of the various dispersive and dissipative processes present in the plasma. This is an extension of the simulation tool employed in previous work by Sankaran et al. The aim is to compare the computational results with various proposed magnetic nozzle detachment theories to develop an understanding of the physical mechanisms that cause detachment. An applied magnetic field topology is obtained using a magnetostatic field solver (see Fig. I), and this field is superimposed on the time-dependent magnetic field induced in the plasma to provide a self-consistent field description. The applied magnetic field and model geometry match those found in experiments by Kuriki and Okada. This geometry is modeled because there is a substantial amount of experimental data that can be compared to the computational results, allowing for validation of the model. In addition, comparison of the simulation results with the experimentally obtained plasma parameters will provide insight into the mechanisms that lead to plasma detachment, revealing how they scale with different input parameters. Further studies will focus on modeling literature experiments both for the purpose of additional code validation and to extract physical insight regarding the mechanisms driving detachment.

  3. NOAA Atmospheric Sciences Modeling Division support to the US Environmental Protection Agency

    NASA Astrophysics Data System (ADS)

    Poole-Kober, Evelyn M.; Viebrock, Herbert J.

    1991-07-01

    During FY-1990, the Atmospheric Sciences Modeling Division provided meteorological research and operational support to the U.S. Environmental Protection Agency. Basic meteorological operational support consisted of applying dispersion models and conducting dispersion studies and model evaluations. The primary research effort was the development and evaluation of air quality simulation models using numerical and physical techniques supported by field studies. Modeling emphasis was on the dispersion of photochemical oxidants and particulate matter on urban and regional scales, dispersion in complex terrain, and the transport, transformation, and deposition of acidic materials. Highlights included expansion of the Regional Acid Deposition Model/Engineering Model family to consist of the Tagged Species Engineering Model, the Non-Depleting Model, and the Sulfate Tracking Model; completion of the Acid-MODES field study; completion of the RADM2.1 evaluation; completion of the atmospheric processes section of the National Acid Precipitation Assessment Program 1990 Integrated Assessment; conduct of the first field study to examine the transport and entrainment processes of convective clouds; development of a Regional Oxidant Model-Urban Airshed Model interface program; conduct of an international sodar intercomparison experiment; incorporation of building wake dispersion in numerical models; conduct of wind-tunnel simulations of stack-tip downwash; and initiation of the publication of SCRAM NEWS.

  4. Microcomputer pollution model for civilian airports and Air Force bases. Model description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segal, H.M.; Hamilton, P.L.

    1988-08-01

    This is one of three reports describing the Emissions and Dispersion Modeling System (EDMS). EDMS is a complex source emissions/dispersion model for use at civilian airports and Air Force bases. It operates in both a refined and a screening mode and is programmed for an IBM-XT (or compatible) computer. This report--MODEL DESCRIPTION--provides the technical description of the model. It first identifies the key design features of both the emissions (EMISSMOD) and dispersion (GIMM) portions of EDMS. It then describes the type of meteorological information the dispersion model can accept and identifies the manner in which it preprocesses National Climatic Centermore » (NCC) data prior to a refined-model run. The report presents the results of running EDMS on a number of different microcomputers and compares EDMS results with those of comparable models. The appendices elaborate on the information noted above and list the source code.« less

  5. RLINE: Re-formulation of Plume Spread for Near-Surface Dispersion

    EPA Science Inventory

    Recent concerns about effects of automobile emissions on the health of people living close to roads have motivated an examination of models to estimate dispersion in the surface boundary layer. During the development of a new line source dispersion model, RLINE (Snyder et al., 20...

  6. Quantum propagation in single mode fiber

    NASA Technical Reports Server (NTRS)

    Joneckis, Lance G.; Shapiro, Jeffrey H.

    1994-01-01

    This paper presents a theory for quantum light propagation in a single-mode fiber which includes the effects of the Kerr nonlinearity, group-velocity dispersion, and linear loss. The theory reproduces the results of classical self-phase modulation, quantum four-wave mixing, and classical solution physics, within their respective regions of validity. It demonstrates the crucial role played by the Kerr-effect material time constant, in limiting the quantum phase shifts caused by the broadband zero-point fluctuations that accompany any quantized input field. Operator moment equations - approximated, numerically, via a terminated cumulant expansion - are used to obtain results for homodyne-measurement noise spectra when dispersion is negligible. More complicated forms of these equations can be used to incorporate dispersion into the noise calculations.

  7. Electrokinetic dispersion in microfluidic separation systems

    NASA Astrophysics Data System (ADS)

    Molho, Joshua Irving

    Numerous efforts have focused on engineering miniaturized chemical analysis devices that are faster, more portable and consume smaller volumes of expensive reagents than their macroscale counterparts. Many of these analysis devices employ electrokinetic effects to transport picoliter volumes of liquids and to separate chemical species from an initially mixed sample volume. In these microfluidic separation systems, dispersion must be minimized to obtain the highest resolution separation possible. This work focuses on modeling, simulation and experimental measurement of two electrokinetic dispersion mechanisms that can reduce the effectiveness of microfluidic separation systems: dispersion resulting from non-uniform wall zeta-potential, and dispersion caused by microchannel turns. When the surface of a microchannel has non-uniform zeta-potential (e.g., if the surface charge varies along the length of the microchannel), an applied electric field creates both electroosmotic and pressure-driven flow. A caged-fluorescence imaging technique was used to visualize the dispersion caused by this electrokinetically induced pressure-driven flow. A simple model for a single channel with an axially varying surface charge is presented and compared to experimental measurements. Microchannel turns have been shown to create dispersion of electrokinetically transported analyte bands. Using a method of moments analysis, a model is developed that quantifies this dispersion and identifies the conditions under which turn dispersion limits the resolution of a microfluidic separation system. Measurements using the caged-fluorescence visualization technique were used to verify this model. New turn geometries are presented and were optimized using both a reduced parameter technique as well as a more generalized, numerical shape optimization approach. These improved turn designs were manufactured using two fabrication techniques and then tested experimentally. The turn optimization approaches and resulting turn geometries described here are shown to reduce turn dispersion to less than 1% of the dispersion caused by unoptimized, constant-width turns.

  8. AIR DISPERSION MODELING AT THE WASTE ISOLATION PILOT PLANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rucker, D.F.

    2000-08-01

    One concern at the Waste Isolation Pilot Plant (WIPP) is the amount of alpha-emitting radionuclides or hazardous chemicals that can become airborne at the facility and reach the Exclusive Use Area boundary as the result of a release from the Waste Handling Building (WHB) or from the underground during waste emplacement operations. The WIPP Safety Analysis Report (SAR), WIPP RCRA Permit, and WIPP Emergency Preparedness Hazards Assessments include air dispersion calculations to address this issue. Meteorological conditions at the WIPP facility will dictate direction, speed, and dilution of a contaminant plume of respirable material due to chronic releases or duringmore » an accident. Due to the paucity of meteorological information at the WIPP site prior to September 1996, the Department of Energy (DOE) reports had to rely largely on unqualified climatic data from the site and neighboring Carlsbad, which is situated approximately 40 km (26 miles) to the west of the site. This report examines the validity of the DOE air dispersion calculations using new meteorological data measured and collected at the WIPP site since September 1996. The air dispersion calculations in this report include both chronic and acute releases. Chronic release calculations were conducted with the EPA-approved code, CAP88PC and the calculations showed that in order for a violation of 40 CFR61 (NESHAPS) to occur, approximately 15 mCi/yr of 239Pu would have to be released from the exhaust stack or from the WHB. This is an extremely high value. Hence, it is unlikely that NESHAPS would be violated. A site-specific air dispersion coefficient was evaluated for comparison with that used in acute dose calculations. The calculations presented in Section 3.2 and 3.3 show that one could expect a slightly less dispersive plume (larger air dispersion coefficient) given greater confidence in the meteorological data, i.e. 95% worst case meteorological conditions. Calculations show that dispersion will decrease slightly if a more stable wind class is assumed, where very little vertical mixing occurs. It is recommended that previous reports which used fixed values for calculating the air dispersion coefficient be updated to reflect the new meteorological data, such as the WIPP Safety Analysis Report and the WIPP Emergency Preparedness Hazards Assessment. It is also recommended that uncertainty be incorporated into the calculations so that a more meaningful assessment of risk during accidents can be achieved.« less

  9. Atmospheric dispersion of natural carbon dioxide emissions on Vulcano Island, Italy

    NASA Astrophysics Data System (ADS)

    Granieri, D.; Carapezza, M. L.; Barberi, F.; Ranaldi, M.; Ricci, T.; Tarchini, L.

    2014-07-01

    La Fossa quiescent volcano and its surrounding area on the Island of Vulcano (Italy) are characterized by intensive, persistent degassing through both fumaroles and diffuse soil emissions. Periodic degassing crises occur, with marked increase in temperature and steam and gas output (mostly CO2) from crater fumaroles and in CO2 soil diffuse emission from the crater area as well as from the volcano flanks and base. The gas hazard of the most inhabited part of the island, Vulcano Porto, was investigated by simulating the CO2 dispersion in the atmosphere under different wind conditions. The DISGAS (DISpersion of GAS) code, an Eulerian model based on advection-diffusion equations, was used together with the mass-consistent Diagnostic Wind Model. Numerical simulations were validated by measurements of air CO2 concentration inside the village and along the crater's rim by means of a Soil CO2 Automatic Station and a Tunable Diode Laser device. The results show that in the village of Vulcano Porto, the CO2 air concentration is mostly due to local soil degassing, while the contribution from the crater gas emission is negligible at the breathing height for humans and always remains well below the lowest indoor CO2 concentration threshold recommended by the health authorities (1000 ppm). Outdoor excess CO2 maxima up to 200 ppm above local background CO2 air concentration are estimated in the center of the village and up to 100 ppm in other zones. However, in some ground excavations or in basements the health code threshold can be exceeded. In the crater area, because of the combined effect of fumaroles and diffuse soil emissions, CO2 air concentrations can reach 5000-7000 ppm in low-wind conditions and pose a health hazard for visitors.

  10. DISQOVER the Landcover - R based tools for quantitative vegetation reconstruction

    NASA Astrophysics Data System (ADS)

    Theuerkauf, Martin; Couwenberg, John; Kuparinen, Anna; Liebscher, Volkmar

    2016-04-01

    Quantitative methods have gained increasing attention in the field of vegetation reconstruction over the past decade. The DISQOVER package implements key tools in the R programming environment for statistical computing. This implementation has three main goals: 1) Provide a user-friendly, transparent, and open implementation of the methods 2) Provide full flexibility in all parameters (including the underlying pollen dispersal model) 3) Provide a sandbox for testing the sensitivity of the methods. We illustrate the possibilities of the package with tests of the REVEALS model and of the extended downscaling approach (EDA). REVEALS (Sugita 2007) is designed to translate pollen data from large lakes into regional vegetation composition. We applied REVEALSinR on pollen data from Lake Tiefer See (NE-Germany) and validated the results with historic landcover data. The results clearly show that REVEALS is sensitive to the underlying pollen dispersal model; REVEALS performs best when applied with the state of the art Lagrangian stochastic dispersal model. REVEALS applications with the conventional Gauss model can produce realistic results, but only if unrealistic pollen productivity estimates are used. The EDA (Theuerkauf et al. 2014) employs pollen data from many sites across a landscape to explore whether species distributions in the past were related to know stable patterns in the landscape, e.g. the distribution of soil types. The approach had so far only been implemented in simple settings with few taxa. Tests with EDAinR show that it produces sharp results in complex settings with many taxa as well. The DISQOVER package is open source software, available from disqover.uni-greifswald.de. This website can be used as a platform to discuss and improve quantitative methods in vegetation reconstruction. To introduce the tool we plan a short course in autumn of this year. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution (ICLEA; www.iclea.de) of the Helmholtz Association (Grant Number VH-VI-415) and is supported by Helmholtz infrastructure of the Terrestrial Environmental Observatory (TERENO) North-eastern Germany.

  11. Hierarchical Models for Type Ia Supernova Light Curves in the Optical and Near Infrared

    NASA Astrophysics Data System (ADS)

    Mandel, Kaisey; Narayan, G.; Kirshner, R. P.

    2011-01-01

    I have constructed a comprehensive statistical model for Type Ia supernova optical and near infrared light curves. Since the near infrared light curves are excellent standard candles and are less sensitive to dust extinction and reddening, the combination of near infrared and optical data better constrains the host galaxy extinction and improves the precision of distance predictions to SN Ia. A hierarchical probabilistic model coherently accounts for multiple random and uncertain effects, including photometric error, intrinsic supernova light curve variations and correlations across phase and wavelength, dust extinction and reddening, peculiar velocity dispersion and distances. An improved BayeSN MCMC code is implemented for computing probabilistic inferences for individual supernovae and the SN Ia and host galaxy dust populations. I use this hierarchical model to analyze nearby Type Ia supernovae with optical and near infared data from the PAIRITEL, CfA3, and CSP samples and the literature. Using cross-validation to test the robustness of the model predictions, I find that the rms Hubble diagram scatter of predicted distance moduli is 0.11 mag for SN with optical and near infrared data versus 0.15 mag for SN with only optical data. Accounting for the dispersion expected from random peculiar velocities, the rms intrinsic prediction error is 0.08-0.10 mag for SN with both optical and near infrared light curves. I discuss results for the inferred intrinsic correlation structures of the optical-NIR SN Ia light curves and the host galaxy dust distribution captured by the hierarchical model. The continued observation and analysis of Type Ia SN in the optical and near infrared is important for improving their utility as precise and accurate cosmological distance indicators.

  12. Modeling fine-scale coral larval dispersal and interisland connectivity to help designate mutually-supporting coral reef marine protected areas: Insights from Maui Nui, Hawaii

    USGS Publications Warehouse

    Storlazzi, Curt; van Ormondt, Maarten; Chen, Yi-Leng; Elias, Edwin P. L.

    2017-01-01

    Connectivity among individual marine protected areas (MPAs) is one of the most important considerations in the design of integrated MPA networks. To provide such information for managers in Hawaii, USA, a numerical circulation model was developed to determine the role of ocean currents in transporting coral larvae from natal reefs throughout the high volcanic islands of the Maui Nui island complex in the southeastern Hawaiian Archipelago. Spatially- and temporally-varying wind, wave, and circulation model outputs were used to drive a km-scale, 3-dimensional, physics-based circulation model for Maui Nui. The model was calibrated and validated using satellite-tracked ocean surface current drifters deployed during coral-spawning conditions, then used to simulate the movement of the larvae of the dominant reef-building coral, Porites compressa, from 17 reefs during eight spawning events in 2010–2013. These simulations make it possible to investigate not only the general dispersal patterns from individual coral reefs, but also how anomalous conditions during individual spawning events can result in large deviations from those general patterns. These data also help identify those reefs that are dominated by self-seeding and those where self-seeding is limited to determine their relative susceptibility to stressors and potential roadblocks to recovery. Overall, the numerical model results indicate that many of the coral reefs in Maui Nui seed reefs on adjacent islands, demonstrating the interconnected nature of the coral reefs in Maui Nui and providing a key component of the scientific underpinning essential for the design of a mutually supportive network of MPAs to enhance conservation of coral reefs.

  13. Phenology and density-dependent dispersal predict patterns of mountain pine beetle (Dendroctonus ponderosae) impact

    Treesearch

    James A. Powell; Barbara J. Bentz

    2014-01-01

    For species with irruptive population behavior, dispersal is an important component of outbreak dynamics. We developed and parameterized a mechanistic model describing mountain pine beetle (Dendroctonus ponderosae Hopkins) population demographics and dispersal across a landscape. Model components include temperature-dependent phenology, host tree colonization...

  14. Simultaneous wavelength conversion of ASK and DPSK signals based on four-wave-mixing in dispersion engineered silicon waveguides.

    PubMed

    Xu, Lin; Ophir, Noam; Menard, Michael; Lau, Ryan Kin Wah; Turner-Foster, Amy C; Foster, Mark A; Lipson, Michal; Gaeta, Alexander L; Bergman, Keren

    2011-06-20

    We experimentally demonstrate four-wave-mixing (FWM)-based continuous wavelength conversion of optical differential-phase-shift-keyed (DPSK) signals with large wavelength conversion ranges as well as simultaneous wavelength conversion of dual-wavelength channels with mixed modulation formats in 1.1-cm-long dispersion-engineered silicon waveguides. We first validate up to 100-nm wavelength conversion range for 10-Gb/s DPSK signals, showcasing the capability to perform phase-preserving operations at high bit rates in chip-scale devices over wide conversion ranges. We further validate the wavelength conversion of dual-wavelength channels modulated with 10-Gb/s packetized phase-shift-keyed (PSK) and amplitude-shift-keyed (ASK) signals; demonstrate simultaneous operation on multiple channels with mixed formats in chip-scale devices. For both configurations, we measure the spectral and temporal responses and evaluate the performances using bit-error-rate (BER) measurements.

  15. The direct simulation of acoustics on Earth, Mars, and Titan.

    PubMed

    Hanford, Amanda D; Long, Lyle N

    2009-02-01

    With the recent success of the Huygens lander on Titan, a moon of Saturn, there has been renewed interest in further exploring the acoustic environments of the other planets in the solar system. The direct simulation Monte Carlo (DSMC) method is used here for modeling sound propagation in the atmospheres of Earth, Mars, and Titan at a variety of altitudes above the surface. DSMC is a particle method that describes gas dynamics through direct physical modeling of particle motions and collisions. The validity of DSMC for the entire range of Knudsen numbers (Kn), where Kn is defined as the mean free path divided by the wavelength, allows for the exploration of sound propagation in planetary environments for all values of Kn. DSMC results at a variety of altitudes on Earth, Mars, and Titan including the details of nonlinearity, absorption, dispersion, and molecular relaxation in gas mixtures are given for a wide range of Kn showing agreement with various continuum theories at low Kn and deviation from continuum theory at high Kn. Despite large computation time and memory requirements, DSMC is the method best suited to study high altitude effects or where continuum theory is not valid.

  16. Gene expression models for prediction of longitudinal dispersion coefficient in streams

    NASA Astrophysics Data System (ADS)

    Sattar, Ahmed M. A.; Gharabaghi, Bahram

    2015-05-01

    Longitudinal dispersion is the key hydrologic process that governs transport of pollutants in natural streams. It is critical for spill action centers to be able to predict the pollutant travel time and break-through curves accurately following accidental spills in urban streams. This study presents a novel gene expression model for longitudinal dispersion developed using 150 published data sets of geometric and hydraulic parameters in natural streams in the United States, Canada, Europe, and New Zealand. The training and testing of the model were accomplished using randomly-selected 67% (100 data sets) and 33% (50 data sets) of the data sets, respectively. Gene expression programming (GEP) is used to develop empirical relations between the longitudinal dispersion coefficient and various control variables, including the Froude number which reflects the effect of reach slope, aspect ratio, and the bed material roughness on the dispersion coefficient. Two GEP models have been developed, and the prediction uncertainties of the developed GEP models are quantified and compared with those of existing models, showing improved prediction accuracy in favor of GEP models. Finally, a parametric analysis is performed for further verification of the developed GEP models. The main reason for the higher accuracy of the GEP models compared to the existing regression models is that exponents of the key variables (aspect ratio and bed material roughness) are not constants but a function of the Froude number. The proposed relations are both simple and accurate and can be effectively used to predict the longitudinal dispersion coefficients in natural streams.

  17. Modeling the dispersion effects of contractile fibers in smooth muscles

    NASA Astrophysics Data System (ADS)

    Murtada, Sae-Il; Kroon, Martin; Holzapfel, Gerhard A.

    2010-12-01

    Micro-structurally based models for smooth muscle contraction are crucial for a better understanding of pathological conditions such as atherosclerosis, incontinence and asthma. It is meaningful that models consider the underlying mechanical structure and the biochemical activation. Hence, a simple mechanochemical model is proposed that includes the dispersion of the orientation of smooth muscle myofilaments and that is capable to capture available experimental data on smooth muscle contraction. This allows a refined study of the effects of myofilament dispersion on the smooth muscle contraction. A classical biochemical model is used to describe the cross-bridge interactions with the thin filament in smooth muscles in which calcium-dependent myosin phosphorylation is the only regulatory mechanism. A novel mechanical model considers the dispersion of the contractile fiber orientations in smooth muscle cells by means of a strain-energy function in terms of one dispersion parameter. All model parameters have a biophysical meaning and may be estimated through comparisons with experimental data. The contraction of the middle layer of a carotid artery is studied numerically. Using a tube the relationships between the internal pressure and the stretches are investigated as functions of the dispersion parameter, which implies a strong influence of the orientation of smooth muscle myofilaments on the contraction response. It is straightforward to implement this model in a finite element code to better analyze more complex boundary-value problems.

  18. Molecular Treatment of Nano-Kaolinite Generations.

    PubMed

    Táborosi, Attila; Szilagyi, Robert K; Zsirka, Balázs; Fónagy, Orsolya; Horváth, Erzsébet; Kristóf, János

    2018-06-18

    A procedure is developed for defining a compositionally and structurally realistic, atomic-scale description of exfoliated clay nanoparticles from the kaolinite family of phylloaluminosilicates. By use of coordination chemical principles, chemical environments within a nanoparticle can be separated into inner, outer, and peripheral spheres. The edges of the molecular models of nanoparticles were protonated in a validated manner to achieve charge neutrality. Structural optimizations using semiempirical methods (NDDO Hamiltonians and DFTB formalism) and ab initio density functionals with a saturated basis set revealed previously overlooked molecular origins of morphological changes as a result of exfoliation. While the use of semiempirical methods is desirable for the treatment of nanoparticles composed of tens of thousands of atoms, the structural accuracy is rather modest in comparison to DFT methods. We report a comparative survey of our infrared data for untreated crystalline and various exfoliated states of kaolinite and halloysite. Given the limited availability of experimental techniques for providing direct structural information about nano-kaolinite, the vibrational spectra can be considered as an essential tool for validating structural models. The comparison of experimental and calculated stretching and bending frequencies further justified the use of the preferred level of theory. Overall, an optimal molecular model of the defect-free, ideal nano-kaolinite can be composed with respect to stationary structure and curvature of the potential energy surface using the PW91/SVP level of theory with empirical dispersion correction (PW91+D) and polarizable continuum solvation model (PCM) without the need for a scaled quantum chemical force field. This validated theoretical approach is essential in order to follow the formation of exfoliated clays and their surface reactivity that is experimentally unattainable.

  19. Ares I-X Flight Test Validation of Control Design Tools in the Frequency-Domain

    NASA Technical Reports Server (NTRS)

    Johnson, Matthew; Hannan, Mike; Brandon, Jay; Derry, Stephen

    2011-01-01

    A major motivation of the Ares I-X flight test program was to Design for Data, in order to maximize the usefulness of the data recorded in support of Ares I modeling and validation of design and analysis tools. The Design for Data effort was intended to enable good post-flight characterizations of the flight control system, the vehicle structural dynamics, and also the aerodynamic characteristics of the vehicle. To extract the necessary data from the system during flight, a set of small predetermined Programmed Test Inputs (PTIs) was injected directly into the TVC signal. These PTIs were designed to excite the necessary vehicle dynamics while exhibiting a minimal impact on loads. The method is similar to common approaches in aircraft flight test programs, but with unique launch vehicle challenges due to rapidly changing states, short duration of flight, a tight flight envelope, and an inability to repeat any test. This paper documents the validation effort of the stability analysis tools to the flight data which was performed by comparing the post-flight calculated frequency response of the vehicle to the frequency response calculated by the stability analysis tools used to design and analyze the preflight models during the control design effort. The comparison between flight day frequency response and stability tool analysis for flight of the simulated vehicle shows good agreement and provides a high level of confidence in the stability analysis tools for use in any future program. This is true for both a nominal model as well as for dispersed analysis, which shows that the flight day frequency response is enveloped by the vehicle s preflight uncertainty models.

  20. Analysis of Flame Deflector Spray Nozzles in Rocket Engine Test Stands

    NASA Technical Reports Server (NTRS)

    Sachdev, Jai S.; Ahuja, Vineet; Hosangadi, Ashvin; Allgood, Daniel C.

    2010-01-01

    The development of a unified tightly coupled multi-phase computational framework is described for the analysis and design of cooling spray nozzle configurations on the flame deflector in rocket engine test stands. An Eulerian formulation is used to model the disperse phase and is coupled to the gas-phase equations through momentum and heat transfer as well as phase change. The phase change formulation is modeled according to a modified form of the Hertz-Knudsen equation. Various simple test cases are presented to verify the validity of the numerical framework. The ability of the methodology to accurately predict the temperature load on the flame deflector is demonstrated though application to an actual sub-scale test facility. The CFD simulation was able to reproduce the result of the test-firing, showing that the spray nozzle configuration provided insufficient amount of cooling.

Top