Dispersion modelling approaches for near road applications involving noise barriers
The talk will present comparisons with two datasets of the barrier algorithms implemented in two different dispersion models: US EPA’s R-LINE (a research dispersion modelling tool under development by the US EPA’s Office of Research and Development) and CERC’s A...
NASA Astrophysics Data System (ADS)
Tironi, Antonio; Marin, Víctor H.; Campuzano, Francisco J.
2010-05-01
This article introduces a management tool for salmon farming, with a scope in the local sustainability of salmon aquaculture of the Aysen Fjord, Chilean Patagonia. Based on Integrated Coastal Zone Management (ICZM) principles, the tool combines a large 3-level nested hydrodynamic model, a particle tracking module and a GIS application into an assessment tool for particulate waste dispersal of salmon farming activities. The model offers an open source alternative to particulate waste modeling and evaluation, contributing with valuable information for local decision makers in the process of locating new facilities and monitoring stations.
A new statistical model for subgrid dispersion in large eddy simulations of particle-laden flows
NASA Astrophysics Data System (ADS)
Muela, Jordi; Lehmkuhl, Oriol; Pérez-Segarra, Carles David; Oliva, Asensi
2016-09-01
Dispersed multiphase turbulent flows are present in many industrial and commercial applications like internal combustion engines, turbofans, dispersion of contaminants, steam turbines, etc. Therefore, there is a clear interest in the development of models and numerical tools capable of performing detailed and reliable simulations about these kind of flows. Large Eddy Simulations offer good accuracy and reliable results together with reasonable computational requirements, making it a really interesting method to develop numerical tools for particle-laden turbulent flows. Nonetheless, in multiphase dispersed flows additional difficulties arises in LES, since the effect of the unresolved scales of the continuous phase over the dispersed phase is lost due to the filtering procedure. In order to solve this issue a model able to reconstruct the subgrid velocity seen by the particles is required. In this work a new model for the reconstruction of the subgrid scale effects over the dispersed phase is presented and assessed. This innovative methodology is based in the reconstruction of statistics via Probability Density Functions (PDFs).
Modeling dispersion of traffic-related pollutants in the NEXUS health study
Dispersion modeling tools have traditionally provided critical information for air quality management decisions, but have been used recently to provide exposure estimates to support health studies. However, these models can be challenging to implement, particularly in near-road s...
MAFALDA: An early warning modeling tool to forecast volcanic ash dispersal and deposition
NASA Astrophysics Data System (ADS)
Barsotti, S.; Nannipieri, L.; Neri, A.
2008-12-01
Forecasting the dispersal of ash from explosive volcanoes is a scientific challenge to modern volcanology. It also represents a fundamental step in mitigating the potential impact of volcanic ash on urban areas and transport routes near explosive volcanoes. To this end we developed a Web-based early warning modeling tool named MAFALDA (Modeling and Forecasting Ash Loading and Dispersal in the Atmosphere) able to quantitatively forecast ash concentrations in the air and on the ground. The main features of MAFALDA are the usage of (1) a dispersal model, named VOL-CALPUFF, that couples the column ascent phase with the ash cloud transport and (2) high-resolution weather forecasting data, the capability to run and merge multiple scenarios, and the Web-based structure of the procedure that makes it suitable as an early warning tool. MAFALDA produces plots for a detailed analysis of ash cloud dynamics and ground deposition, as well as synthetic 2-D maps of areas potentially affected by dangerous concentrations of ash. A first application of MAFALDA to the long-lasting weak plumes produced at Mt. Etna (Italy) is presented. A similar tool can be useful to civil protection authorities and volcanic observatories in reducing the impact of the eruptive events. MAFALDA can be accessed at http://mafalda.pi.ingv.it.
AIR QUALITY SIMULATION MODEL PERFORMANCE FOR ONE-HOUR AVERAGES
If a one-hour standard for sulfur dioxide were promulgated, air quality dispersion modeling in the vicinity of major point sources would be an important air quality management tool. Would currently available dispersion models be suitable for use in demonstrating attainment of suc...
Dispersion modeling tools have traditionally provided critical information for air quality management decisions, but have been used recently to provide exposure estimates to support health studies. However, these models can be challenging to implement, particularly in near-road s...
ADDRESSING ENVIRONMENTAL ENGINEERING CHALLENGES WITH COMPUTATIONAL FLUID DYNAMICS
In the field of environmental engineering, modeling tools are playing an ever larger role in addressing air quality issues, including source pollutant emissions, atmospheric dispersion and human exposure risks. More detailed modeling of environmental flows requires tools for c...
Microscale Obstacle Resolving Air Quality Model Evaluation with the Michelstadt Case
Rakai, Anikó; Kristóf, Gergely
2013-01-01
Modelling pollutant dispersion in cities is challenging for air quality models as the urban obstacles have an important effect on the flow field and thus the dispersion. Computational Fluid Dynamics (CFD) models with an additional scalar dispersion transport equation are a possible way to resolve the flowfield in the urban canopy and model dispersion taking into consideration the effect of the buildings explicitly. These models need detailed evaluation with the method of verification and validation to gain confidence in their reliability and use them as a regulatory purpose tool in complex urban geometries. This paper shows the performance of an open source general purpose CFD code, OpenFOAM for a complex urban geometry, Michelstadt, which has both flow field and dispersion measurement data. Continuous release dispersion results are discussed to show the strengths and weaknesses of the modelling approach, focusing on the value of the turbulent Schmidt number, which was found to give best statistical metric results with a value of 0.7. PMID:24027450
Microscale obstacle resolving air quality model evaluation with the Michelstadt case.
Rakai, Anikó; Kristóf, Gergely
2013-01-01
Modelling pollutant dispersion in cities is challenging for air quality models as the urban obstacles have an important effect on the flow field and thus the dispersion. Computational Fluid Dynamics (CFD) models with an additional scalar dispersion transport equation are a possible way to resolve the flowfield in the urban canopy and model dispersion taking into consideration the effect of the buildings explicitly. These models need detailed evaluation with the method of verification and validation to gain confidence in their reliability and use them as a regulatory purpose tool in complex urban geometries. This paper shows the performance of an open source general purpose CFD code, OpenFOAM for a complex urban geometry, Michelstadt, which has both flow field and dispersion measurement data. Continuous release dispersion results are discussed to show the strengths and weaknesses of the modelling approach, focusing on the value of the turbulent Schmidt number, which was found to give best statistical metric results with a value of 0.7.
NASA Astrophysics Data System (ADS)
Rose, Michael Benjamin
A novel trajectory and attitude control and navigation analysis tool for powered ascent is developed. The tool is capable of rapid trade-space analysis and is designed to ultimately reduce turnaround time for launch vehicle design, mission planning, and redesign work. It is streamlined to quickly determine trajectory and attitude control dispersions, propellant dispersions, orbit insertion dispersions, and navigation errors and their sensitivities to sensor errors, actuator execution uncertainties, and random disturbances. The tool is developed by applying both Monte Carlo and linear covariance analysis techniques to a closed-loop, launch vehicle guidance, navigation, and control (GN&C) system. The nonlinear dynamics and flight GN&C software models of a closed-loop, six-degree-of-freedom (6-DOF), Monte Carlo simulation are formulated and developed. The nominal reference trajectory (NRT) for the proposed lunar ascent trajectory is defined and generated. The Monte Carlo truth models and GN&C algorithms are linearized about the NRT, the linear covariance equations are formulated, and the linear covariance simulation is developed. The performance of the launch vehicle GN&C system is evaluated using both Monte Carlo and linear covariance techniques and their trajectory and attitude control dispersion, propellant dispersion, orbit insertion dispersion, and navigation error results are validated and compared. Statistical results from linear covariance analysis are generally within 10% of Monte Carlo results, and in most cases the differences are less than 5%. This is an excellent result given the many complex nonlinearities that are embedded in the ascent GN&C problem. Moreover, the real value of this tool lies in its speed, where the linear covariance simulation is 1036.62 times faster than the Monte Carlo simulation. Although the application and results presented are for a lunar, single-stage-to-orbit (SSTO), ascent vehicle, the tools, techniques, and mathematical formulations that are discussed are applicable to ascent on Earth or other planets as well as other rocket-powered systems such as sounding rockets and ballistic missiles.
Lovreglio, Ruggiero; Ronchi, Enrico; Maragkos, Georgios; Beji, Tarek; Merci, Bart
2016-11-15
The release of toxic gases due to natural/industrial accidents or terrorist attacks in populated areas can have tragic consequences. To prevent and evaluate the effects of these disasters different approaches and modelling tools have been introduced in the literature. These instruments are valuable tools for risk managers doing risk assessment of threatened areas. Despite the significant improvements in hazard assessment in case of toxic gas dispersion, these analyses do not generally include the impact of human behaviour and people movement during emergencies. This work aims at providing an approach which considers both modelling of gas dispersion and evacuation movement in order to improve the accuracy of risk assessment for disasters involving toxic gases. The approach is applied to a hypothetical scenario including a ship releasing Nitrogen dioxide (NO2) on a crowd attending a music festival. The difference between the results obtained with existing static methods (people do not move) and a dynamic approach (people move away from the danger) which considers people movement with different degrees of sophistication (either a simple linear path or more complex behavioural modelling) is discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rest, J.; Hofman, G.L.
1997-12-01
The Dispersion Analysis Research Tool (DART) contains models for fission-gas-induced fuel swelling, interaction of fuel with the matrix aluminum, for the resultant reaction-product swelling, and for the calculation of the stress gradient within the fuel particle. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by a comparison of DART calculations of fuel swelling of U{sub 3}SiAl-Al and U{sub 3}Si{sub 2}-Al for various dispersion fuel element designs with the data.
Yu, Hesheng; Thé, Jesse
2017-05-01
The dispersion of gaseous pollutant around buildings is complex due to complex turbulence features such as flow detachment and zones of high shear. Computational fluid dynamics (CFD) models are one of the most promising tools to describe the pollutant distribution in the near field of buildings. Reynolds-averaged Navier-Stokes (RANS) models are the most commonly used CFD techniques to address turbulence transport of the pollutant. This research work studies the use of [Formula: see text] closure model for the gas dispersion around a building by fully resolving the viscous sublayer for the first time. The performance of standard [Formula: see text] model is also included for comparison, along with results of an extensively validated Gaussian dispersion model, the U.S. Environmental Protection Agency (EPA) AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model). This study's CFD models apply the standard [Formula: see text] and the [Formula: see text] turbulence models to obtain wind flow field. A passive concentration transport equation is then calculated based on the resolved flow field to simulate the distribution of pollutant concentrations. The resultant simulation of both wind flow and concentration fields are validated rigorously by extensive data using multiple validation metrics. The wind flow field can be acceptably modeled by the [Formula: see text] model. However, the [Formula: see text] model fails to simulate the gas dispersion. The [Formula: see text] model outperforms [Formula: see text] in both flow and dispersion simulations, with higher hit rates for dimensionless velocity components and higher "factor of 2" of observations (FAC2) for normalized concentration. All these validation metrics of [Formula: see text] model pass the quality assurance criteria recommended by The Association of German Engineers (Verein Deutscher Ingenieure, VDI) guideline. Furthermore, these metrics are better than or the same as those in the literature. Comparison between the performances of [Formula: see text] and AERMOD shows that the CFD simulation is superior to Gaussian-type model for pollutant dispersion in the near wake of obstacles. AERMOD can perform as a screening tool for near-field gas dispersion due to its expeditious calculation and the ability to handle complicated cases. The utilization of [Formula: see text] to simulate gaseous pollutant dispersion around an isolated building is appropriate and is expected to be suitable for complex urban environment. Multiple validation metrics of [Formula: see text] turbulence model in CFD quantitatively indicated that this turbulence model was appropriate for the simulation of gas dispersion around buildings. CFD is, therefore, an attractive alternative to wind tunnel for modeling gas dispersion in urban environment due to its excellent performance, and lower cost.
2015-01-01
UNCLASSIFIED I N S T I T U T E F O R D E F E N S E A N A L Y S E S Comparison of a Riverine Waterborne Transport ...F E N S E A N A L Y S E S IDA Document D-5330 Comparison of a Riverine Waterborne Transport and Dispersion Model and Yellowstone...tool for predicting waterborne transport and dispersion of hazardous materials. In a preliminary analysis, IDA reviewed the code’s technical
Fast analysis of radionuclide decay chain migration
NASA Astrophysics Data System (ADS)
Chen, J. S.; Liang, C. P.; Liu, C. W.; Li, L.
2014-12-01
A novel tool for rapidly predicting the long-term plume behavior of an arbitrary length radionuclide decay chain is presented in this study. This fast tool is achieved based on generalized analytical solutions in compact format derived for a set of two-dimensional advection-dispersion equations coupled with sequential first-order decay reactions in groundwater system. The performance of the developed tool is evaluated by a numerical model using a Laplace transform finite difference scheme. The results of performance evaluation indicate that the developed model is robust and accurate. The developed model is then used to fast understand the transport behavior of a four-member radionuclide decay chain. Results show that the plume extents and concentration levels of any target radionuclide are very sensitive to longitudinal, transverse dispersion, decay rate constant and retardation factor. The developed model are useful tools for rapidly assessing the ecological and environmental impact of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean seawater in the vicinity of the nuclear plant.
The smoke-fireplume model : tool for eventual application to prescribed burns and wildland fires.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, D. F.; Dunn, W. E.; Lazaro, M. A.
Land managers are increasingly implementing strategies that employ the use of fire in prescribed burns to sustain ecosystems and plan to sustain the rate of increase in its use over the next five years. In planning and executing expanded use of fire in wildland treatment it is important to estimate the human health and safety consequences, property damage, and the extent of visibility degradation from the resulting conflagration-pyrolysis gases, soot and smoke generated during flaming, smoldering and/or glowing fires. Traditional approaches have often employed the analysis of weather observations and forecasts to determine whether a prescribed burn will affect populations,more » property, or protected Class I areas. However, the complexity of the problem lends itself to advanced PC-based models that are simple to use for both calculating the emissions from the burning of wildland fuels and the downwind dispersion of smoke and other products of pyrolysis, distillation, and/or fuels combustion. These models will need to address the effects of residual smoldering combustion, including plume dynamics and optical effects. In this paper, we discuss a suite of tools that can be applied for analyzing dispersion. These tools include the dispersion models FIREPLUME and SMOKE, together with the meteorological preprocessor SEBMET.« less
NATIONAL URBAN DATABASE AND ACCESS PROTAL TOOL
Current mesoscale weather prediction and microscale dispersion models are limited in their ability to perform accurate assessments in urban areas. A project called the National Urban Database with Access Portal Tool (NUDAPT) is beginning to provide urban data and improve the para...
FracFit: A Robust Parameter Estimation Tool for Anomalous Transport Problems
NASA Astrophysics Data System (ADS)
Kelly, J. F.; Bolster, D.; Meerschaert, M. M.; Drummond, J. D.; Packman, A. I.
2016-12-01
Anomalous transport cannot be adequately described with classical Fickian advection-dispersion equations (ADE). Rather, fractional calculus models may be used, which capture non-Fickian behavior (e.g. skewness and power-law tails). FracFit is a robust parameter estimation tool based on space- and time-fractional models used to model anomalous transport. Currently, four fractional models are supported: 1) space fractional advection-dispersion equation (sFADE), 2) time-fractional dispersion equation with drift (TFDE), 3) fractional mobile-immobile equation (FMIE), and 4) tempered fractional mobile-immobile equation (TFMIE); additional models may be added in the future. Model solutions using pulse initial conditions and continuous injections are evaluated using stable distribution PDFs and CDFs or subordination integrals. Parameter estimates are extracted from measured breakthrough curves (BTCs) using a weighted nonlinear least squares (WNLS) algorithm. Optimal weights for BTCs for pulse initial conditions and continuous injections are presented, facilitating the estimation of power-law tails. Two sample applications are analyzed: 1) continuous injection laboratory experiments using natural organic matter and 2) pulse injection BTCs in the Selke river. Model parameters are compared across models and goodness-of-fit metrics are presented, assisting model evaluation. The sFADE and time-fractional models are compared using space-time duality (Baeumer et. al., 2009), which links the two paradigms.
Goodness-of-fit tests and model diagnostics for negative binomial regression of RNA sequencing data.
Mi, Gu; Di, Yanming; Schafer, Daniel W
2015-01-01
This work is about assessing model adequacy for negative binomial (NB) regression, particularly (1) assessing the adequacy of the NB assumption, and (2) assessing the appropriateness of models for NB dispersion parameters. Tools for the first are appropriate for NB regression generally; those for the second are primarily intended for RNA sequencing (RNA-Seq) data analysis. The typically small number of biological samples and large number of genes in RNA-Seq analysis motivate us to address the trade-offs between robustness and statistical power using NB regression models. One widely-used power-saving strategy, for example, is to assume some commonalities of NB dispersion parameters across genes via simple models relating them to mean expression rates, and many such models have been proposed. As RNA-Seq analysis is becoming ever more popular, it is appropriate to make more thorough investigations into power and robustness of the resulting methods, and into practical tools for model assessment. In this article, we propose simulation-based statistical tests and diagnostic graphics to address model adequacy. We provide simulated and real data examples to illustrate that our proposed methods are effective for detecting the misspecification of the NB mean-variance relationship as well as judging the adequacy of fit of several NB dispersion models.
NASA Astrophysics Data System (ADS)
Yu, Hesheng; Thé, Jesse
2016-11-01
The prediction of the dispersion of air pollutants in urban areas is of great importance to public health, homeland security, and environmental protection. Computational Fluid Dynamics (CFD) emerges as an effective tool for pollutant dispersion modelling. This paper reports and quantitatively validates the shear stress transport (SST) k-ω turbulence closure model and its transitional variant for pollutant dispersion under complex urban environment for the first time. Sensitivity analysis is performed to establish recommendation for the proper use of turbulence models in urban settings. The current SST k-ω simulation is validated rigorously by extensive experimental data using hit rate for velocity components, and the "factor of two" of observations (FAC2) and fractional bias (FB) for concentration field. The simulation results show that current SST k-ω model can predict flow field nicely with an overall hit rate of 0.870, and concentration dispersion with FAC2 = 0.721 and FB = 0.045. The flow simulation of the current SST k-ω model is slightly inferior to that of a detached eddy simulation (DES), but better than that of standard k-ε model. However, the current study is the best among these three model approaches, when validated against measurements of pollutant dispersion in the atmosphere. This work aims to provide recommendation for proper use of CFD to predict pollutant dispersion in urban environment.
Development of Adaptive Management Tools to Guide Habitat Allocations for At-Risk Species
2014-01-01
Results indicated that the mating system assumptions can have a large impact on the ability of the model to approximate data collected in the field...indicated that strength of habitat preferences during dispersal for juvenile and subadult male dispersal also significantly impacted model fit. Certainly...the influence of habitat loss, as these structural (or geometric) changes are often confounded in real landscapes, the impact of fragmentation is
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rest, J.
1995-08-01
This report describes the primary physical models that form the basis of the DART mechanistic computer model for calculating fission-product-induced swelling of aluminum dispersion fuels; the calculated results are compared with test data. In addition, DART calculates irradiation-induced changes in the thermal conductivity of the dispersion fuel, as well as fuel restructuring due to aluminum fuel reaction, amorphization, and recrystallization. Input instructions for execution on mainframe, workstation, and personal computers are provided, as is a description of DART output. The theory of fission gas behavior and its effect on fuel swelling is discussed. The behavior of these fission products inmore » both crystalline and amorphous fuel and in the presence of irradiation-induced recrystallization and crystalline-to-amorphous-phase change phenomena is presented, as are models for these irradiation-induced processes.« less
Hong S. He; Robert E. Keane; Louis R. Iverson
2008-01-01
Forest landscape models have become important tools for understanding large-scale and long-term landscape (spatial) processes such as climate change, fire, windthrow, seed dispersal, insect outbreak, disease propagation, forest harvest, and fuel treatment, because controlled field experiments designed to study the effects of these processes are often not possible (...
"Dispersion modeling approaches for near road | Science ...
Roadway design and roadside barriers can have significant effects on the dispersion of traffic-generated pollutants, especially in the near-road environment. Dispersion models that can accurately simulate these effects are needed to fully assess these impacts for a variety of applications. For example, such models can be useful for evaluating the mitigation potential of roadside barriers in reducing near-road exposures and their associated adverse health effects. Two databases, a tracer field study and a wind tunnel study, provide measurements used in the development and/or validation of algorithms to simulate dispersion in the presence of noise barriers. The tracer field study was performed in Idaho Falls, ID, USA with a 6-m noise barrier and a finite line source in a variety of atmospheric conditions. The second study was performed in the meteorological wind tunnel at the US EPA and simulated line sources at different distances from a model noise barrier to capture the effect on emissions from individual lanes of traffic. In both cases, velocity and concentration measurements characterized the effect of the barrier on dispersion.This paper presents comparisons with the two datasets of the barrier algorithms implemented in two different dispersion models: US EPA’s R-LINE (a research dispersion modelling tool under development by the US EPA’s Office of Research and Development) and CERC’s ADMS model (ADMS-Urban). In R-LINE the physical features reveal
Integrating individual movement behaviour into dispersal functions.
Heinz, Simone K; Wissel, Christian; Conradt, Larissa; Frank, Karin
2007-04-21
Dispersal functions are an important tool for integrating dispersal into complex models of population and metapopulation dynamics. Most approaches in the literature are very simple, with the dispersal functions containing only one or two parameters which summarise all the effects of movement behaviour as for example different movement patterns or different perceptual abilities. The summarising nature of these parameters makes assessing the effect of one particular behavioural aspect difficult. We present a way of integrating movement behavioural parameters into a particular dispersal function in a simple way. Using a spatial individual-based simulation model for simulating different movement behaviours, we derive fitting functions for the functional relationship between the parameters of the dispersal function and several details of movement behaviour. This is done for three different movement patterns (loops, Archimedean spirals, random walk). Additionally, we provide measures which characterise the shape of the dispersal function and are interpretable in terms of landscape connectivity. This allows an ecological interpretation of the relationships found.
Mars Exploration Rovers Landing Dispersion Analysis
NASA Technical Reports Server (NTRS)
Knocke, Philip C.; Wawrzyniak, Geoffrey G.; Kennedy, Brian M.; Desai, Prasun N.; Parker, TImothy J.; Golombek, Matthew P.; Duxbury, Thomas C.; Kass, David M.
2004-01-01
Landing dispersion estimates for the Mars Exploration Rover missions were key elements in the site targeting process and in the evaluation of landing risk. This paper addresses the process and results of the landing dispersion analyses performed for both Spirit and Opportunity. The several contributors to landing dispersions (navigation and atmospheric uncertainties, spacecraft modeling, winds, and margins) are discussed, as are the analysis tools used. JPL's MarsLS program, a MATLAB-based landing dispersion visualization and statistical analysis tool, was used to calculate the probability of landing within hazardous areas. By convolving this with the probability of landing within flight system limits (in-spec landing) for each hazard area, a single overall measure of landing risk was calculated for each landing ellipse. In-spec probability contours were also generated, allowing a more synoptic view of site risks, illustrating the sensitivity to changes in landing location, and quantifying the possible consequences of anomalies such as incomplete maneuvers. Data and products required to support these analyses are described, including the landing footprints calculated by NASA Langley's POST program and JPL's AEPL program, cartographically registered base maps and hazard maps, and flight system estimates of in-spec landing probabilities for each hazard terrain type. Various factors encountered during operations, including evolving navigation estimates and changing atmospheric models, are discussed and final landing points are compared with approach estimates.
One-dimensional Analytical Modelling of Floating Seed Dispersal in Tidal Channels
NASA Astrophysics Data System (ADS)
Shi, W.; Purnama, A.; Shao, D.; Cui, B.; Gao, W.
2017-12-01
Seed dispersal is a primary factor influencing plant community development, and thus plays a critical role in maintaining wetland ecosystem functioning. However, compared with fluvial seed dispersal of riparian plants, dispersal of saltmarsh plant seeds in tidal channels is much less studied due to its complex behavior, and relevant mathematical modelling is particularly lacking. In this study, we developed a one-dimensional advection-dispersion model to explore the patterns of tidal seed dispersal. Oscillatory tidal current and water depth were assumed to represent the tidal effects. An exponential decay coefficient λ was introduced to account for seed deposition and retention. Analytical solution in integral form was derived using Green's function and further evaluated using numerical integration. The developed model was applied to simulate Spartina densiflora seed dispersal in a tidal channel located at the Mad River Slough in North Humboldt Bay, California, USA, to demonstrate its practical applicability. Model predictions agree satisfactorily with field observation and simulation results from Delft3D numerical model. Sensitivity analyses were also conducted to evaluate the effects of varying calibrated parameters on model predictions. The range of the seed dispersion as well as the distribution of the seed concentration were further analyzed through statistical parameters such as centroid displacement and variance of the seed cloud together with seed concentration contours. Implications of the modelling results on tidal marsh restoration and protection, e.g., revegetation through seed addition, were also discussed through scenario analysis. The developed analytical model provides a useful tool for ecological management of tidal marshes.
Towards a C2 Poly-Visualization Tool: Leveraging the Power of Social-Network Analysis and GIS
2011-06-01
from Magsino.14 AutoMap, a product of CASOS at Carnegie Mellon University, is a text-mining tool that enables the extraction of network data from...enables community leaders to prepare for biological attacks using computational models. BioWar is a CASOS package that combines many factors into a...models, demographically accurate agent modes, wind dispersion models, and an error-diagnostic model. Construct, also developed by CASOS , is a
NASA Astrophysics Data System (ADS)
Drew, G. H.; Smith, R.; Gerard, V.; Burge, C.; Lowe, M.; Kinnersley, R.; Sneath, R.; Longhurst, P. J.
Odour emissions are episodic, characterised by periods of high emission rates, interspersed with periods of low emissions. It is frequently the short term, high concentration peaks that result in annoyance in the surrounding population. Dispersion modelling is accepted as a useful tool for odour impact assessment, and two approaches can be adopted. The first approach of modelling the hourly average concentration can underestimate total odour concentration peaks, resulting in annoyance and complaints. The second modelling approach involves the use of short averaging times. This study assesses the appropriateness of using different averaging times to model the dispersion of odour from a landfill site. We also examine perception of odour in the community in conjunction with the modelled odour dispersal, by using community monitors to record incidents of odour. The results show that with the shorter averaging times, the modelled pattern of dispersal reflects the pattern of observed odour incidents recorded in the community monitoring database, with the modelled odour dispersing further in a north easterly direction. Therefore, the current regulatory method of dispersion modelling, using hourly averaging times, is less successful at capturing peak concentrations, and does not capture the pattern of odour emission as indicated by the community monitoring database. The use of short averaging times is therefore of greater value in predicting the likely nuisance impact of an odour source and in framing appropriate regulatory controls.
MOVES-Matrix and distributed computing for microscale line source dispersion analysis.
Liu, Haobing; Xu, Xiaodan; Rodgers, Michael O; Xu, Yanzhi Ann; Guensler, Randall L
2017-07-01
MOVES and AERMOD are the U.S. Environmental Protection Agency's recommended models for use in project-level transportation conformity and hot-spot analysis. However, the structure and algorithms involved in running MOVES make analyses cumbersome and time-consuming. Likewise, the modeling setup process, including extensive data requirements and required input formats, in AERMOD lead to a high potential for analysis error in dispersion modeling. This study presents a distributed computing method for line source dispersion modeling that integrates MOVES-Matrix, a high-performance emission modeling tool, with the microscale dispersion models CALINE4 and AERMOD. MOVES-Matrix was prepared by iteratively running MOVES across all possible iterations of vehicle source-type, fuel, operating conditions, and environmental parameters to create a huge multi-dimensional emission rate lookup matrix. AERMOD and CALINE4 are connected with MOVES-Matrix in a distributed computing cluster using a series of Python scripts. This streamlined system built on MOVES-Matrix generates exactly the same emission rates and concentration results as using MOVES with AERMOD and CALINE4, but the approach is more than 200 times faster than using the MOVES graphical user interface. Because AERMOD requires detailed meteorological input, which is difficult to obtain, this study also recommends using CALINE4 as a screening tool for identifying the potential area that may exceed air quality standards before using AERMOD (and identifying areas that are exceedingly unlikely to exceed air quality standards). CALINE4 worst case method yields consistently higher concentration results than AERMOD for all comparisons in this paper, as expected given the nature of the meteorological data employed. The paper demonstrates a distributed computing method for line source dispersion modeling that integrates MOVES-Matrix with the CALINE4 and AERMOD. This streamlined system generates exactly the same emission rates and concentration results as traditional way to use MOVES with AERMOD and CALINE4, which are regulatory models approved by the U.S. EPA for conformity analysis, but the approach is more than 200 times faster than implementing the MOVES model. We highlighted the potentially significant benefit of using CALINE4 as screening tool for identifying potential area that may exceeds air quality standards before using AERMOD, which requires much more meteorology input than CALINE4.
Stability of volcanic ash aggregates and break-up processes.
Mueller, Sebastian B; Kueppers, Ulrich; Ametsbichler, Jonathan; Cimarelli, Corrado; Merrison, Jonathan P; Poret, Matthieu; Wadsworth, Fabian B; Dingwell, Donald B
2017-08-07
Numerical modeling of ash plume dispersal is an important tool for forecasting and mitigating potential hazards from volcanic ash erupted during explosive volcanism. Recent tephra dispersal models have been expanded to account for dynamic ash aggregation processes. However, there are very few studies on rates of disaggregation during transport. It follows that current models regard ash aggregation as irrevocable and may therefore overestimate aggregation-enhanced sedimentation. In this experimental study, we use industrial granulation techniques to artificially produce aggregates. We subject these to impact tests and evaluate their resistance to break-up processes. We find a dependence of aggregate stability on primary particle size distribution and solid particle binder concentration. We posit that our findings could be combined with eruption source parameters and implemented in future tephra dispersal models.
RANS modeling of scalar dispersion from localized sources within a simplified urban-area model
NASA Astrophysics Data System (ADS)
Rossi, Riccardo; Capra, Stefano; Iaccarino, Gianluca
2011-11-01
The dispersion of a passive scalar downstream a localized source within a simplified urban-like geometry is examined by means of RANS scalar flux models. The computations are conducted under conditions of neutral stability and for three different incoming wind directions (0°, 45°, 90°) at a roughness Reynolds number of Ret = 391. A Reynolds stress transport model is used to close the flow governing equations whereas both the standard eddy-diffusivity closure and algebraic flux models are employed to close the transport equation for the passive scalar. The comparison with a DNS database shows improved reliability from algebraic scalar flux models towards predicting both the mean concentration and the plume structure. Since algebraic flux models do not increase substantially the computational effort, the results indicate that the use of tensorial-diffusivity can be promising tool for dispersion simulations for the urban environment.
NASA Astrophysics Data System (ADS)
Kurihara, Osamu; Kim, Eunjoo; Kunishima, Naoaki; Tani, Kotaro; Ishikawa, Tetsuo; Furuyama, Kazuo; Hashimoto, Shozo; Akashi, Makoto
2017-09-01
A tool was developed to facilitate the calculation of the early internal doses to residents involved in the Fukushima Nuclear Disaster based on atmospheric transport and dispersion model (ATDM) simulations performed using Worldwide version of System for Prediction of Environmental Emergency Information 2nd version (WSPEEDI-II) together with personal behavior data containing the history of the whereabouts of individul's after the accident. The tool generates hourly-averaged air concentration data for the simulation grids nearest to an individual's whereabouts using WSPEEDI-II datasets for the subsequent calculation of internal doses due to inhalation. This paper presents an overview of the developed tool and provides tentative comparisons between direct measurement-based and ATDM-based results regarding the internal doses received by 421 persons from whom personal behavior data available.
Dispersant Effectiveness, In-Situ Droplet Size Distribution and ...
This report summarizes two projects covered under an Interagency Agreement between the Bureau of Safety and Environmental Enforcement (BSEE) and the U.S. Environmental Protection Agency (EPA) in collaboration with the Bedford Institute of Oceanography, Department of Fisheries and Oceans Canada (BIO DFO), New Jersey Institute of Technology (NJIT) and Dalhousie University. Both projects dovetail together in addressing the ability to differentiate physical from chemical dispersion effectiveness using dispersed oil simulations within a flume tank for improving forensic response monitoring tools. This report is split into separateTasks based upon the two projects funded by BSEE: 1) Dispersant Effectiveness, In-Situ Droplet Size Distribution and Numerical Modeling to Assess Subsurface Dispersant Injection as a Deepwater Blowout Oil Spill Response Option. 2) Evaluation of Oil Fluorescence Characteristics to Improve Forensic Response Tools. This report summarizes 2 collaborative projects funded through an Interagency Agreement with DOI BSEE and a Cooperative Agreement with DFO Canada. BSEE required that the projects be combined into one report as they are both covered under the one Interagency Agreement. Task B (Fluorescence of oils) is an SHC 3.62 FY16 product.
SIRANERISK: Modelling dispersion of steady and unsteady pollutant releases in the urban canopy
NASA Astrophysics Data System (ADS)
Soulhac, L.; Lamaison, G.; Cierco, F.-X.; Ben Salem, N.; Salizzoni, P.; Mejean, P.; Armand, P.; Patryl, L.
2016-09-01
SIRANERISK is an operational model for the simulation of the dispersion of unsteady atmospheric releases of pollutant within and above an urban area. SIRANERISK is built on the same principles as the SIRANE model, and couples a street network model for the pollutant transfers within the urban canopy with a Gaussian puff model for the transfers above it. The performance of the model are here analysed by a detailed comparisons with wind-tunnel experiments. These experiments concern the dispersion of steady and unsteady pollutant releases within and above obstacle arrays with varying geometrical configurations, representing different topologies of idealised urban districts. The overall good agreement between numerical and experimental data demonstrates the reliability of SIRANERISK as an operational tool for the assessment of risk analysis and for the management of crises due to the accidental release of harmful airborne pollutants within a built environment.
DIDEM - An integrated model for comparative health damage costs calculation of air pollution
NASA Astrophysics Data System (ADS)
Ravina, Marco; Panepinto, Deborah; Zanetti, Maria Chiara
2018-01-01
Air pollution represents a continuous hazard to human health. Administration, companies and population need efficient indicators of the possible effects given by a change in decision, strategy or habit. The monetary quantification of health effects of air pollution through the definition of external costs is increasingly recognized as a useful indicator to support decision and information at all levels. The development of modelling tools for the calculation of external costs can provide support to analysts in the development of consistent and comparable assessments. In this paper, the DIATI Dispersion and Externalities Model (DIDEM) is presented. The DIDEM model calculates the delta-external costs of air pollution comparing two alternative emission scenarios. This tool integrates CALPUFF's advanced dispersion modelling with the latest WHO recommendations on concentration-response functions. The model is based on the impact pathway method. It was designed to work with a fine spatial resolution and a local or national geographic scope. The modular structure allows users to input their own data sets. The DIDEM model was tested on a real case study, represented by a comparative analysis of the district heating system in Turin, Italy. Additional advantages and drawbacks of the tool are discussed in the paper. A comparison with other existing models worldwide is reported.
A review of numerical models to predict the atmospheric dispersion of radionuclides.
Leelőssy, Ádám; Lagzi, István; Kovács, Attila; Mészáros, Róbert
2018-02-01
The field of atmospheric dispersion modeling has evolved together with nuclear risk assessment and emergency response systems. Atmospheric concentration and deposition of radionuclides originating from an unintended release provide the basis of dose estimations and countermeasure strategies. To predict the atmospheric dispersion and deposition of radionuclides several numerical models are available coupled with numerical weather prediction (NWP) systems. This work provides a review of the main concepts and different approaches of atmospheric dispersion modeling. Key processes of the atmospheric transport of radionuclides are emission, advection, turbulent diffusion, dry and wet deposition, radioactive decay and other physical and chemical transformations. A wide range of modeling software are available to simulate these processes with different physical assumptions, numerical approaches and implementation. The most appropriate modeling tool for a specific purpose can be selected based on the spatial scale, the complexity of meteorology, land surface and physical and chemical transformations, also considering the available data and computational resource. For most regulatory and operational applications, offline coupled NWP-dispersion systems are used, either with a local scale Gaussian, or a regional to global scale Eulerian or Lagrangian approach. The dispersion model results show large sensitivity on the accuracy of the coupled NWP model, especially through the description of planetary boundary layer turbulence, deep convection and wet deposition. Improvement of dispersion predictions can be achieved by online coupling of mesoscale meteorology and atmospheric transport models. The 2011 Fukushima event was the first large-scale nuclear accident where real-time prognostic dispersion modeling provided decision support. Dozens of dispersion models with different approaches were used for prognostic and retrospective simulations of the Fukushima release. An unknown release rate proved to be the largest factor of uncertainty, underlining the importance of inverse modeling and data assimilation in future developments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dispersed Fringe Sensing Analysis - DFSA
NASA Technical Reports Server (NTRS)
Sigrist, Norbert; Shi, Fang; Redding, David C.; Basinger, Scott A.; Ohara, Catherine M.; Seo, Byoung-Joon; Bikkannavar, Siddarayappa A.; Spechler, Joshua A.
2012-01-01
Dispersed Fringe Sensing (DFS) is a technique for measuring and phasing segmented telescope mirrors using a dispersed broadband light image. DFS is capable of breaking the monochromatic light ambiguity, measuring absolute piston errors between segments of large segmented primary mirrors to tens of nanometers accuracy over a range of 100 micrometers or more. The DFSA software tool analyzes DFS images to extract DFS encoded segment piston errors, which can be used to measure piston distances between primary mirror segments of ground and space telescopes. This information is necessary to control mirror segments to establish a smooth, continuous primary figure needed to achieve high optical quality. The DFSA tool is versatile, allowing precise piston measurements from a variety of different optical configurations. DFSA technology may be used for measuring wavefront pistons from sub-apertures defined by adjacent segments (such as Keck Telescope), or from separated sub-apertures used for testing large optical systems (such as sub-aperture wavefront testing for large primary mirrors using auto-collimating flats). An experimental demonstration of the coarse-phasing technology with verification of DFSA was performed at the Keck Telescope. DFSA includes image processing, wavelength and source spectral calibration, fringe extraction line determination, dispersed fringe analysis, and wavefront piston sign determination. The code is robust against internal optical system aberrations and against spectral variations of the source. In addition to the DFSA tool, the software package contains a simple but sophisticated MATLAB model to generate dispersed fringe images of optical system configurations in order to quickly estimate the coarse phasing performance given the optical and operational design requirements. Combining MATLAB (a high-level language and interactive environment developed by MathWorks), MACOS (JPL s software package for Modeling and Analysis for Controlled Optical Systems), and DFSA provides a unique optical development, modeling and analysis package to study current and future approaches to coarse phasing controlled segmented optical systems.
Stochastic analysis of concentration field in a wake region.
Yassin, Mohamed F; Elmi, Abdirashid A
2011-02-01
Identifying geographic locations in urban areas from which air pollutants enter the atmosphere is one of the most important information needed to develop effective mitigation strategies for pollution control. Stochastic analysis is a powerful tool that can be used for estimating concentration fluctuation in plume dispersion in a wake region around buildings. Only few studies have been devoted to evaluate applications of stochastic analysis to pollutant dispersion in an urban area. This study was designed to investigate the concentration fields in the wake region using obstacle model such as an isolated building model. We measured concentration fluctuations at centerline of various downwind distances from the source, and different heights with the frequency of 1 KHz. Concentration fields were analyzed stochastically, using the probability density functions (pdf). Stochastic analysis was performed on the concentration fluctuation and the pdf of mean concentration, fluctuation intensity, and crosswind mean-plume dispersion. The pdf of the concentration fluctuation data have shown a significant non-Gaussian behavior. The lognormal distribution appeared to be the best fit to the shape of concentration measured in the boundary layer. We observed that the plume dispersion pdf near the source was shorter than the plume dispersion far from the source. Our findings suggest that the use of stochastic technique in complex building environment can be a powerful tool to help understand the distribution and location of air pollutants.
This report summarizes two projects covered under an Interagency Agreement between the Bureau of Safety and Environmental Enforcement (BSEE) and the U.S. Environmental Protection Agency (EPA) in collaboration with the Bedford Institute of Oceanography, Department of Fisheries and...
Dispersion of pollutants in densely populated urban areas is a research area of clear importance. Currently, few numerical tools exist capable of describing airflow and dispersion patterns in these complex regions in a time efficient manner. (QUIC), Quick Urban & Industrial C...
NASA Astrophysics Data System (ADS)
Weber, Eric E.
Concentrated animal feeding operations (CAFOs) have been experiencing increased resistance from surrounding residents making construction of new facilities or expansion of existing ones increasingly limited (Jacobson et al., 2002). Such concerns often include the impact of nuisance odor on peoples’ lives and on the environment (Huang and Miller, 2006). Vegetative environmental buffers (VEBs) have been suggested as a possible odor control technology. They have been found to impact odor plume dispersion and have shown the possibility of being an effective tool for odor abatement when used alone or in combination with other technologies (Lin et al., 2006). The main objective of this study was to use Gaussian-type dispersion modeling to determine the feasibility of use and the effectiveness of a VEB at controlling the spread of odor from a swine feeding operation. First, wind tunnel NH3 dispersion trends were compared to model generated dispersion trends to determine the accuracy of the model at handling VEB dispersion. Next, facility-scale (northern Missouri specific) model simulations with and without a VEB were run to determine its viability as an option for dispersion reduction. Finally, dispersion forecasts that integrated numerical weather forecasts were developed and compared to collected concentration data to determine forecast accuracy. The results of this study found that dispersion models can be used to simulate dispersion around a VEB. AERMOD-generated dispersion trends were found to follow similar patterns of decreasing downwind concentration to those of both wind tunnel simulations and previous research. This shows that a VEB can be incorporated into AERMOD and that the model can be used to determine its effectiveness as an odor control option. The results of this study also showed that a VEB has an effect on odor dispersion by reducing downwind concentrations. This was confirmed by both wind tunnel and AERMOD simulations of dispersion displaying decreased downwind concentrations from a control scenario. This shows that VEBs have the potential to act as an odor control option for CAFOs. This study also found that a forecast method that integrated numerical weather prediction into dispersion models could be developed to forecast areas of high concentration. Model-forecasted dispersion trends had a high spatial correlation with collected concentrations for days when the facility was emitting. This shows that dispersion models can accurately predict high concentration areas using forecasted weather data. The information provided by this study may ultimately prove useful for this particular facility and others and may help to lower tensions with surrounding residents.
Various approaches and tools exist to estimate local and regional PM2.5 impacts from a single emissions source, ranging from simple screening techniques to Gaussian based dispersion models and complex grid-based Eulerian photochemical transport models. These approache...
Developing a Short-Period, Fundamental-Mode Rayleigh-Wave Attenuation Model for Asia
NASA Astrophysics Data System (ADS)
Yang, X.; Levshin, A. L.; Barmin, M. P.; Ritzwoller, M. H.
2008-12-01
We are developing a 2D, short-period (12 - 22 s), fundamental-mode Rayleigh-wave attenuation model for Asia. This model can be used to invert for a 3D attenuation model of the Earth's crust and upper mantle as well as to implement more accurate path corrections in regional surface-wave magnitude calculations. The prerequisite for developing a reliable Rayleigh-wave attenuation model is the availability of accurate fundamental-mode Rayleigh-wave amplitude measurements. Fundamental-mode Rayleigh-wave amplitudes could be contaminated by a variety of sources such as multipathing, focusing and defocusing, body wave, higher-mode surface wave, and other noise sources. These contaminations must be reduced to the largest extent possible. To achieve this, we designed a procedure by taking advantage of certain Rayleigh-wave characteristics, such as dispersion and elliptical particle motion, for accurate amplitude measurements. We first analyze the dispersion of the surface-wave data using a spectrogram. Based on the characteristics of the data dispersion, we design a phase-matched filter by using either a manually picked dispersion curve, or a group-velocity-model predicted dispersion curve, or the dispersion of the data, and apply the filter to the seismogram. Intelligent filtering of the seismogram and windowing of the resulting cross-correlation based on the spectrogram analysis and the comparison between the phase-match filtered data spectrum, the raw-data spectrum and the theoretical source spectrum effectively reduces amplitude contaminations and results in reliable amplitude measurements in many cases. We implemented these measuring techniques in a graphic-user-interface tool called Surface Wave Amplitude Measurement Tool (SWAMTOOL). Using the tool, we collected and processed waveform data for 200 earthquakes occurring throughout 2003-2006 inside and around Eurasia. The records from 135 broadband stations were used. After obtaining the Rayleigh-wave amplitude measurements, we analyzed the attenuation behavior of the amplitudes using source- and receiver-specific terms calculated from a 3D velocity model of the region. Based on the results, we removed amplitudes that yielded negative average attenuation coefficients, and included an additional parameter in the inversion to account for the possible bias of the CMT moments. Using the high-quality amplitude measurements in a tomographic inversion, we obtained a fundamental-mode Rayleigh-wave attenuation- coefficient model for periods between 12 and 22 s for Asia and surrounding regions. The inverted attenuation model is consistent with the geological features of Asia. We observe low attenuation in stable regions such as eastern Europe, the Siberian platforms, the Indian shield, the Arabian platform, the Yangtze craton, and others. High attenuation is observed in tectonically active regions such as the Himalayas, the Tian Shan, Pamir and Zagros mountains.
Integrated Modeling Environment
NASA Technical Reports Server (NTRS)
Mosier, Gary; Stone, Paul; Holtery, Christopher
2006-01-01
The Integrated Modeling Environment (IME) is a software system that establishes a centralized Web-based interface for integrating people (who may be geographically dispersed), processes, and data involved in a common engineering project. The IME includes software tools for life-cycle management, configuration management, visualization, and collaboration.
Fagan, William F; Lutscher, Frithjof
2006-04-01
Spatially explicit models for populations are often difficult to tackle mathematically and, in addition, require detailed data on individual movement behavior that are not easily obtained. An approximation known as the "average dispersal success" provides a tool for converting complex models, which may include stage structure and a mechanistic description of dispersal, into a simple matrix model. This simpler matrix model has two key advantages. First, it is easier to parameterize from the types of empirical data typically available to conservation biologists, such as survivorship, fecundity, and the fraction of juveniles produced in a study area that also recruit within the study area. Second, it is more amenable to theoretical investigation. Here, we use the average dispersal success approximation to develop estimates of the critical reserve size for systems comprising single patches or simple metapopulations. The quantitative approach can be used for both plants and animals; however, to provide a concrete example of the technique's utility, we focus on a special case pertinent to animals. Specifically, for territorial animals, we can characterize such an estimate of minimum viable habitat area in terms of the number of home ranges that the reserve contains. Consequently, the average dispersal success framework provides a framework through which home range size, natal dispersal distances, and metapopulation dynamics can be linked to reserve design. We briefly illustrate the approach using empirical data for the swift fox (Vulpes velox).
Modelling larval dispersal dynamics of common sole (Solea solea) along the western Iberian coast
NASA Astrophysics Data System (ADS)
Tanner, Susanne E.; Teles-Machado, Ana; Martinho, Filipe; Peliz, Álvaro; Cabral, Henrique N.
2017-08-01
Individual-based coupled physical-biological models have become the standard tool for studying ichthyoplankton dynamics and assessing fish recruitment. Here, common sole (Solea solea L.), a flatfish of high commercial importance in Europe was used to evaluate transport of eggs and larvae and investigate the connectivity between spawning and nursery areas along the western Iberian coast as spatio-temporal variability in dispersal and recruitment patterns can result in very strong or weak year-classes causing large fluctuations in stock size. A three-dimensional particle tracking model coupled to Regional Ocean Modelling System model was used to investigate variability of sole larvae dispersal along the western Iberian coast over a five-year period (2004-2009). A sensitivity analysis evaluating: (1) the importance of diel vertical migrations of larvae and (2) the size of designated recruitment areas was performed. Results suggested that connectivity patterns of sole larvae dispersal and their spatio-temporal variability are influenced by the configuration of the coast with its topographical structures and thus the suitable recruitment area available as well as the wind-driven mesoscale circulation along the Iberian coast.
Effects of vertical shear in modelling horizontal oceanic dispersion
NASA Astrophysics Data System (ADS)
Lanotte, A. S.; Corrado, R.; Palatella, L.; Pizzigalli, C.; Schipa, I.; Santoleri, R.
2016-02-01
The effect of vertical shear on the horizontal dispersion properties of passive tracer particles on the continental shelf of the South Mediterranean is investigated by means of observation and model data. In situ current measurements reveal that vertical gradients of horizontal velocities in the upper mixing layer decorrelate quite fast ( ˜ 1 day), whereas an eddy-permitting ocean model, such as the Mediterranean Forecasting System, tends to overestimate such decorrelation time because of finite resolution effects. Horizontal dispersion, simulated by the Mediterranean sea Forecasting System, is mostly affected by: (1) unresolved scale motions, and mesoscale motions that are largely smoothed out at scales close to the grid spacing; (2) poorly resolved time variability in the profiles of the horizontal velocities in the upper layer. For the case study we have analysed, we show that a suitable use of deterministic kinematic parametrizations is helpful to implement realistic statistical features of tracer dispersion in two and three dimensions. The approach here suggested provides a functional tool to control the horizontal spreading of small organisms or substance concentrations, and is thus relevant for marine biology, pollutant dispersion as well as oil spill applications.
The role of vertical shear on the horizontal oceanic dispersion
NASA Astrophysics Data System (ADS)
Lanotte, A. S.; Corrado, R.; Lacorata, G.; Palatella, L.; Pizzigalli, C.; Schipa, I.; Santoleri, R.
2015-09-01
The effect of vertical shear on the horizontal dispersion properties of passive tracer particles on the continental shelf of South Mediterranean is investigated by means of observative and model data. In-situ current measurements reveal that vertical velocity gradients in the upper mixed layer decorrelate quite fast (∼ 1 day), whereas basin-scale ocean circulation models tend to overestimate such decorrelation time because of finite resolution effects. Horizontal dispersion simulated by an eddy-permitting ocean model, like, e.g., the Mediterranean Forecasting System, is mosty affected by: (1) unresolved scale motions, and mesoscale motions that are largely smoothed out; (2) poorly resolved time variability of vertical velocity profiles in the upper layer. For the case study we have analysed, we show that a suitable use of kinematic parameterisations is helpful to implement realistic statistical features of tracer dispersion in two and three dimensions. The approach here suggested provides a functional tool to control the horizontal spreading of small organisms or substance concentrations, and is thus relevant for marine biology, pollutant dispersion as well as oil spill applications.
NASA Technical Reports Server (NTRS)
Blotzer, Michael J.; Woods, Jody L.
2009-01-01
This viewgraph presentation reviews computational fluid dynamics as a tool for modelling the dispersion of carbon monoxide at the Stennis Space Center's A3 Test Stand. The contents include: 1) Constellation Program; 2) Constellation Launch Vehicles; 3) J2X Engine; 4) A-3 Test Stand; 5) Chemical Steam Generators; 6) Emission Estimates; 7) Located in Existing Test Complex; 8) Computational Fluid Dynamics; 9) Computational Tools; 10) CO Modeling; 11) CO Model results; and 12) Next steps.
Wave propagation in composite media and material characterization
NASA Technical Reports Server (NTRS)
Datta, Subhendu K.; Shah, A. H.; Karunasena, W.
1990-01-01
Characteristics of wave propagation in an undamaged composite medium are influenced by many factors, the most important of which are: microstructure, constituent properties, interfaces, residual stress fields, and ply lay-ups. Measurements of wave velocities, attenuation, and dispersion provide a powerful tool for nondestructive evaluation of these properties. Recent developments are reviewed for modeling ultrasonic wave propagation in fiber and particle-reinforced composite media. Additionally, some modeling studies are reviewed for the effects of interfaces and layering on attenuation and dispersion. These studies indicate possible ways of characterizing material properties by ultrasonic means.
Dispersal of Fine Sediment in the Coastal Ocean: Sensitivity to Aggregation and Stratification
2008-01-01
Venice. They have used this model as both a research tool (Bignami et al., 2007) and to construct an operational model ( Chiggiato and Oddo, 2006... Chiggiato , J. and Oddo, P., 2006. Operational ocean models in the Adriatic Sea: a skill assessment. Ocean Science Discussions, 3: 2087 - 2116. Haidvogel
Ultrasound-contrast-agent dispersion and velocity imaging for prostate cancer localization.
van Sloun, Ruud Jg; Demi, Libertario; Postema, Arnoud W; de la Rosette, Jean Jmch; Wijkstra, Hessel; Mischi, Massimo
2017-01-01
Prostate cancer (PCa) is the second-leading cause of cancer death in men; however, reliable tools for detection and localization are still lacking. Dynamic Contrast Enhanced UltraSound (DCE-US) is a diagnostic tool that is suitable for analysis of vascularization, by imaging an intravenously injected microbubble bolus. The localization of angiogenic vascularization associated with the development of tumors is of particular interest. Recently, methods for the analysis of the bolus convective dispersion process have shown promise to localize angiogenesis. However, independent estimation of dispersion was not possible due to the ambiguity between convection and dispersion. Therefore, in this study we propose a new method that considers the vascular network as a dynamic linear system, whose impulse response can be locally identified. To this end, model-based parameter estimation is employed, that permits extraction of the apparent dispersion coefficient (D), velocity (v), and Péclet number (Pe) of the system. Clinical evaluation using data recorded from 25 patients shows that the proposed method can be applied effectively to DCE-US, and is able to locally characterize the hemodynamics, yielding promising results (receiver-operating-characteristic curve area of 0.84) for prostate cancer localization. Copyright © 2016 Elsevier B.V. All rights reserved.
Before the U.S. Environmental Protection Agency issued the 1988 Guidelines for Estimating Exposures, it published proposed guidelines in the Federal Register for public review and comment. he guidelines are intended to give risk analysis a basic framework and the tools they need ...
Dynamic occupancy models for explicit colonization processes
Broms, Kristin M.; Hooten, Mevin B.; Johnson, Devin S.; Altwegg, Res; Conquest, Loveday
2016-01-01
The dynamic, multi-season occupancy model framework has become a popular tool for modeling open populations with occupancies that change over time through local colonizations and extinctions. However, few versions of the model relate these probabilities to the occupancies of neighboring sites or patches. We present a modeling framework that incorporates this information and is capable of describing a wide variety of spatiotemporal colonization and extinction processes. A key feature of the model is that it is based on a simple set of small-scale rules describing how the process evolves. The result is a dynamic process that can account for complicated large-scale features. In our model, a site is more likely to be colonized if more of its neighbors were previously occupied and if it provides more appealing environmental characteristics than its neighboring sites. Additionally, a site without occupied neighbors may also become colonized through the inclusion of a long-distance dispersal process. Although similar model specifications have been developed for epidemiological applications, ours formally accounts for detectability using the well-known occupancy modeling framework. After demonstrating the viability and potential of this new form of dynamic occupancy model in a simulation study, we use it to obtain inference for the ongoing Common Myna (Acridotheres tristis) invasion in South Africa. Our results suggest that the Common Myna continues to enlarge its distribution and its spread via short distance movement, rather than long-distance dispersal. Overall, this new modeling framework provides a powerful tool for managers examining the drivers of colonization including short- vs. long-distance dispersal, habitat quality, and distance from source populations.
NASA Astrophysics Data System (ADS)
Sanchez, E. Y.; Colman Lerner, J. E.; Porta, A.; Jacovkis, P. M.
2013-11-01
Information on spatial and time dependent concentration patterns of hazardous substances, as well as on the potential effects on population, is necessary to assist in chemical emergency planning and response. To that end, some models predict transport and dispersion of hazardous substances, and others estimate potential effects upon exposed population. Taken together, both groups constitute a powerful tool to estimate vulnerable regions and to evaluate environmental impact upon affected populations. The development of methodologies and models with direct application to the context in which we live allows us to draft a more clear representation of the risk scenario and, hence, to obtain the adequate tools for an optimal response. By means of the recently developed DDC (Damage Differential Coupling) exposure model, it was possible to optimize, from both the qualitative and the quantitative points of view, the estimation of the population affected by a toxic cloud, because the DDC model has a very good capacity to couple with different atmospheric dispersion models able to provide data over time. In this way, DDC analyzes the different concentration profiles (output from the transport model) associating them with some reference concentration to identify risk zones. In this work we present a disaster scenario in Chicago (USA), by coupling DDC with two transport models of different complexity, showing the close relationship between a representative result and the run time of the models. In the same way, it becomes evident that knowing the time evolution of the toxic cloud and of the affected regions significantly improves the probability of taking the correct decisions on planning and response facing the emergency.
Vigh, Tamás; Drávavölgyi, Gábor; Sóti, Péter L; Pataki, Hajnalka; Igricz, Tamás; Wagner, István; Vajna, Balázs; Madarász, János; Marosi, György; Nagy, Zsombor K
2014-09-01
Raman spectrometry was utilized to estimate degraded drug percentage, residual drug crystallinity and glass-transition temperature in the case of melt-extruded pharmaceutical products. Tight correlation was shown between the results obtained by confocal Raman mapping and transmission Raman spectrometry, a PAT-compatible potential in-line analytical tool. Immediate-release spironolactone-Eudragit E solid dispersions were the model system, owing to the achievable amorphization and the heat-sensitivity of the drug compound. The deep investigation of the relationship between process parameters, residual drug crystallinity and degradation was performed using statistical tools and a factorial experimental design defining 54 different circumstances for the preparation of solid dispersions. From the examined factors, drug content (10, 20 and 30%), temperature (110, 130 and 150°C) and residence time (2.75, 11.00 and 24.75min) were found to have significant and considerable effect. By forming physically stable homogeneous dispersions, the originally very slow dissolution of the lipophilic and poorly water-soluble spironolactone was reasonably improved, making 3minute release possible in acidic medium. Copyright © 2014 Elsevier B.V. All rights reserved.
Luciano, Antonella; Torretta, Vincenzo; Mancini, Giuseppe; Eleuteri, Andrea; Raboni, Massimo; Viotti, Paolo
2017-03-01
Two scenarios in terms of odour impact assessment were studied during the phase of upgrading of an existing waste treatment plant: CALPUFF was used for the simulation of odour dispersion. Olfactometric measures, carried out over different periods and different positions in the plant, were used for model calibration. Results from simulations were reported in terms of statistics of odour concentrations and isopleths maps of the 98th percentile of the hourly peak concentrations, as requested from the European legislation and standards. The excess perception thresholds and emissions were utilized to address the plant upgrade options. The hourly evaluation of odours was performed to determine the most impacting period of the day. An inverse application of the numerical simulation starting from defining the odour threshold at the receptor was made to allow the definition of the required abatement efficiency at the odours source location. Results from the proposed approach confirmed the likelihood to adopt odour dispersion modelling, not only in the authorization phase, but also as a tool for driving technical and managing actions in plant upgrade so to reduce impacts and improve the public acceptance. The upgrade actions in order to achieve the expected efficiency are reported as well.
Norton, G V; Novarini, J C
2007-06-01
Ultrasonic imaging in medical applications involves propagation and scattering of acoustic waves within and by biological tissues that are intrinsically dispersive. Analytical approaches for modeling propagation and scattering in inhomogeneous media are difficult and often require extremely simplifying approximations in order to achieve a solution. To avoid such approximations, the direct numerical solution of the wave equation via the method of finite differences offers the most direct tool, which takes into account diffraction and refraction. It also allows for detailed modeling of the real anatomic structure and combination/layering of tissues. In all cases the correct inclusion of the dispersive properties of the tissues can make the difference in the interpretation of the results. However, the inclusion of dispersion directly in the time domain proved until recently to be an elusive problem. In order to model the transient signal a convolution operator that takes into account the dispersive characteristics of the medium is introduced to the linear wave equation. To test the ability of this operator to handle scattering from localized scatterers, in this work, two-dimensional numerical modeling of scattering from an infinite cylinder with physical properties associated with biological tissue is calculated. The numerical solutions are compared with the exact solution synthesized from the frequency domain for a variety of tissues having distinct dispersive properties. It is shown that in all cases, the use of the convolutional propagation operator leads to the correct solution for the scattered field.
Combining a dispersal model with network theory to assess habitat connectivity.
Lookingbill, Todd R; Gardner, Robert H; Ferrari, Joseph R; Keller, Cherry E
2010-03-01
Assessing the potential for threatened species to persist and spread within fragmented landscapes requires the identification of core areas that can sustain resident populations and dispersal corridors that can link these core areas with isolated patches of remnant habitat. We developed a set of GIS tools, simulation methods, and network analysis procedures to assess potential landscape connectivity for the Delmarva fox squirrel (DFS; Sciurus niger cinereus), an endangered species inhabiting forested areas on the Delmarva Peninsula, USA. Information on the DFS's life history and dispersal characteristics, together with data on the composition and configuration of land cover on the peninsula, were used as input data for an individual-based model to simulate dispersal patterns of millions of squirrels. Simulation results were then assessed using methods from graph theory, which quantifies habitat attributes associated with local and global connectivity. Several bottlenecks to dispersal were identified that were not apparent from simple distance-based metrics, highlighting specific locations for landscape conservation, restoration, and/or squirrel translocations. Our approach links simulation models, network analysis, and available field data in an efficient and general manner, making these methods useful and appropriate for assessing the movement dynamics of threatened species within landscapes being altered by human and natural disturbances.
Application of the DART Code for the Assessment of Advanced Fuel Behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rest, J.; Totev, T.
2007-07-01
The Dispersion Analysis Research Tool (DART) code is a dispersion fuel analysis code that contains mechanistically-based fuel and reaction-product swelling models, a one dimensional heat transfer analysis, and mechanical deformation models. DART has been used to simulate the irradiation behavior of uranium oxide, uranium silicide, and uranium molybdenum aluminum dispersion fuels, as well as their monolithic counterparts. The thermal-mechanical DART code has been validated against RERTR tests performed in the ATR for irradiation data on interaction thickness, fuel, matrix, and reaction product volume fractions, and plate thickness changes. The DART fission gas behavior model has been validated against UO{sub 2}more » fission gas release data as well as measured fission gas-bubble size distributions. Here DART is utilized to analyze various aspects of the observed bubble growth in U-Mo/Al interaction product. (authors)« less
Lord, Dominique
2006-07-01
There has been considerable research conducted on the development of statistical models for predicting crashes on highway facilities. Despite numerous advancements made for improving the estimation tools of statistical models, the most common probabilistic structure used for modeling motor vehicle crashes remains the traditional Poisson and Poisson-gamma (or Negative Binomial) distribution; when crash data exhibit over-dispersion, the Poisson-gamma model is usually the model of choice most favored by transportation safety modelers. Crash data collected for safety studies often have the unusual attributes of being characterized by low sample mean values. Studies have shown that the goodness-of-fit of statistical models produced from such datasets can be significantly affected. This issue has been defined as the "low mean problem" (LMP). Despite recent developments on methods to circumvent the LMP and test the goodness-of-fit of models developed using such datasets, no work has so far examined how the LMP affects the fixed dispersion parameter of Poisson-gamma models used for modeling motor vehicle crashes. The dispersion parameter plays an important role in many types of safety studies and should, therefore, be reliably estimated. The primary objective of this research project was to verify whether the LMP affects the estimation of the dispersion parameter and, if it is, to determine the magnitude of the problem. The secondary objective consisted of determining the effects of an unreliably estimated dispersion parameter on common analyses performed in highway safety studies. To accomplish the objectives of the study, a series of Poisson-gamma distributions were simulated using different values describing the mean, the dispersion parameter, and the sample size. Three estimators commonly used by transportation safety modelers for estimating the dispersion parameter of Poisson-gamma models were evaluated: the method of moments, the weighted regression, and the maximum likelihood method. In an attempt to complement the outcome of the simulation study, Poisson-gamma models were fitted to crash data collected in Toronto, Ont. characterized by a low sample mean and small sample size. The study shows that a low sample mean combined with a small sample size can seriously affect the estimation of the dispersion parameter, no matter which estimator is used within the estimation process. The probability the dispersion parameter becomes unreliably estimated increases significantly as the sample mean and sample size decrease. Consequently, the results show that an unreliably estimated dispersion parameter can significantly undermine empirical Bayes (EB) estimates as well as the estimation of confidence intervals for the gamma mean and predicted response. The paper ends with recommendations about minimizing the likelihood of producing Poisson-gamma models with an unreliable dispersion parameter for modeling motor vehicle crashes.
Analysis on design and optimization of dispersion-managed communication systems
NASA Astrophysics Data System (ADS)
El-Aasser, Mostafa A.; Dua, Puneit; Dutta, Niloy K.
2002-07-01
The variational method is a useful tool that can be used for design and optimization of dispersion-managed communication systems. Using this powerful tool, we evaluate the characteristics of a carrier signal for certain system parameters and describe several features of a dispersion-managed soliton.
NASA Astrophysics Data System (ADS)
Koeck, Barbara; Gérigny, Olivia; Durieux, Eric Dominique Henri; Coudray, Sylvain; Garsi, Laure-Hélène; Bisgambiglia, Paul-Antoine; Galgani, François; Agostini, Sylvia
2015-03-01
The Strait of Bonifacio constitutes one of the rare transboundary Marine Protected Areas (MPA) of the Mediterranean Sea (between Sardinia, Italy and Corsica, France). Based on the hypothesis that no-take zones will produce more fish larvae, compared to adjacent fished areas, we modeled the outcome of larvae released by coastal fishes inside the no-take zones of the MPA in order to: (1) characterize the dispersal patterns across the Strait of Bonifacio; (2) identify the main potential settlement areas; (3) quantify the connectivity and the larval supply from the MPAs to the surrounding areas. A high resolution hydrodynamic model (MARS 3D, Corse 400 m) combined to an individual based model (Ichthyop software) was used to model the larval dispersal of fish following various scenarios (Pelagic Larval Duration PLD and release depth) over the main spawning period (i.e. between April and September). Dispersal model outputs were then compared with those obtained from an ichthyoplankton sampling cruise performed in August 2012. There was a significant influence of PLD to the connectivity between coastal areas. The synchronization between spawning and hydrodynamic conditions appeared to be determinant in the larval transport success. Biotic and abiotic parameters affecting the dispersal dynamic of fish larvae within the Strait of Bonifacio were identified and synthesis maps were established as a tool for conservation planning.
Lu, Ding; McDowell, Julia Z.; Davis, George M.; Spear, Robert C.; Remais, Justin V.
2012-01-01
Environmental models, often applied to questions on the fate and transport of chemical hazards, have recently become important in tracing certain environmental pathogens to their upstream sources of contamination. These tools, such as first order decay models applied to contaminants in surface waters, offer promise for quantifying the fate and transport of pathogens with multiple environmental stages and/or multiple hosts, in addition to those pathogens whose environmental stages are entirely waterborne. Here we consider the fate and transport capabilities of the human schistosome Schistosoma japonicum, which exhibits two waterborne stages and is carried by an amphibious intermediate snail host. We present experimentally-derived dispersal estimates for the intermediate snail host and fate and transport estimates for the passive downstream diffusion of cercariae, the waterborne, human-infective parasite stage. Using a one dimensional advective transport model exhibiting first-order decay, we simulate the added spatial reach and relative increase in cercarial concentrations that dispersing snail hosts contribute to downstream sites. Simulation results suggest that snail dispersal can substantially increase the concentrations of cercariae reaching downstream locations, relative to no snail dispersal, effectively putting otherwise isolated downstream sites at increased risk of exposure to cercariae from upstream sources. The models developed here can be applied to other infectious diseases with multiple life-stages and hosts, and have important implications for targeted ecological control of disease spread. PMID:23162675
Non-Parabolic Hydrodynamic Formulations for the Simulation of Inhomogeneous Semiconductor Devices
NASA Technical Reports Server (NTRS)
Smith, A. W.; Brennan, K. F.
1996-01-01
Hydrodynamic models are becoming prevalent design tools for small scale devices and other devices in which high energy effects can dominate transport. Most current hydrodynamic models use a parabolic band approximation to obtain fairly simple conservation equations. Interest in accounting for band structure effects in hydrodynamic device simulation has begun to grow since parabolic models cannot fully describe the transport in state of the art devices due to the distribution populating non-parabolic states within the band. This paper presents two different non-parabolic formulations or the hydrodynamic model suitable for the simulation of inhomogeneous semiconductor devices. The first formulation uses the Kane dispersion relationship ((hk)(exp 2)/2m = W(1 + alphaW). The second formulation makes use of a power law ((hk)(exp 2)/2m = xW(exp y)) for the dispersion relation. Hydrodynamic models which use the first formulation rely on the binomial expansion to obtain moment equations with closed form coefficients. This limits the energy range over which the model is valid. The power law formulation readily produces closed form coefficients similar to those obtained using the parabolic band approximation. However, the fitting parameters (x,y) are only valid over a limited energy range. The physical significance of the band non-parabolicity is discussed as well as the advantages/disadvantages and approximations of the two non-parabolic models. A companion paper describes device simulations based on the three dispersion relationships; parabolic, Kane dispersion and power law dispersion.
Non-parabolic hydrodynamic formulations for the simulation of inhomogeneous semiconductor devices
NASA Technical Reports Server (NTRS)
Smith, Arlynn W.; Brennan, Kevin F.
1995-01-01
Hydrodynamic models are becoming prevalent design tools for small scale devices and other devices in which high energy effects can dominate transport. Most current hydrodynamic models use a parabolic band approximation to obtain fairly simple conservation equations. Interest in accounting for band structure effects in hydrodynamic device simulation has begun to grow since parabolic models can not fully describe the transport in state of the art devices due to the distribution populating non-parabolic states within the band. This paper presents two different non-parabolic formulations of the hydrodynamic model suitable for the simulation of inhomogeneous semiconductor devices. The first formulation uses the Kane dispersion relationship (hk)(exp 2)/2m = W(1 + alpha(W)). The second formulation makes use of a power law ((hk)(exp 2)/2m = xW(sup y)) for the dispersion relation. Hydrodynamic models which use the first formulation rely on the binomial expansion to obtain moment equations with closed form coefficients. This limits the energy range over which the model is valid. The power law formulation readily produces closed form coefficients similar to those obtained using the parabolic band approximation. However, the fitting parameters (x,y) are only valid over a limited energy range. The physical significance of the band non-parabolicity is discussed as well as the advantages/disadvantages and approximations of the two non-parabolic models. A companion paper describes device simulations based on the three dispersion relationships: parabolic, Kane dispersion, and power low dispersion.
NASA Astrophysics Data System (ADS)
Dacre, H.; Prata, A.; Shine, K. P.; Irvine, E.
2017-12-01
The volcanic ash clouds produced by Icelandic volcano Eyjafjallajökull in April/May 2010 resulted in `no fly zones' which paralysed European aircraft activity and cost the airline industry an estimated £1.1 billion. In response to the crisis, the Civil Aviation Authority (CAA), in collaboration with Rolls Royce, produced the `safe-to-fly' chart. As ash concentrations are the primary output of dispersion model forecasts, the chart was designed to illustrate how engine damage progresses as a function of ash concentration. Concentration thresholds were subsequently derived based on previous ash encounters. Research scientists and aircraft manufactures have since recognised the importance of volcanic ash dosages; the accumulated concentration over time. Dosages are an improvement to concentrations as they can be used to identify pernicious situations where ash concentrations are acceptably low but the exposure time is long enough to cause damage to aircraft engines. Here we present a proof-of-concept volcanic ash dosage calculator; an innovative, web-based research tool, developed in close collaboration with operators and regulators, which utilises interactive data visualisation to communicate the uncertainty inherent in dispersion model simulations and subsequent dosage calculations. To calculate dosages, we use NAME (Numerical Atmospheric-dispersion Modelling Environment) to simulate several Icelandic eruption scenarios, which result in tephra dispersal across the North Atlantic, UK and Europe. Ash encounters are simulated based on flight-optimal routes derived from aircraft routing software. Key outputs of the calculator include: the along-flight dosage, exposure time and peak concentration. The design of the tool allows users to explore the key areas of uncertainty in the dosage calculation and to visualise how this changes as the planned flight path is varied. We expect that this research will result in better informed decisions from key stakeholders during volcanic ash events through a deeper understanding of the associated uncertainties in dosage calculations.
NASA Astrophysics Data System (ADS)
Liu, Yushi; Poh, Hee Joo
2014-11-01
The Computational Fluid Dynamics analysis has become increasingly important in modern urban planning in order to create highly livable city. This paper presents a multi-scale modeling methodology which couples Weather Research and Forecasting (WRF) Model with open source CFD simulation tool, OpenFOAM. This coupling enables the simulation of the wind flow and pollutant dispersion in urban built-up area with high resolution mesh. In this methodology meso-scale model WRF provides the boundary condition for the micro-scale CFD model OpenFOAM. The advantage is that the realistic weather condition is taken into account in the CFD simulation and complexity of building layout can be handled with ease by meshing utility of OpenFOAM. The result is validated against the Joint Urban 2003 Tracer Field Tests in Oklahoma City and there is reasonably good agreement between the CFD simulation and field observation. The coupling of WRF- OpenFOAM provide urban planners with reliable environmental modeling tool in actual urban built-up area; and it can be further extended with consideration of future weather conditions for the scenario studies on climate change impact.
Gao, Kai; Huang, Lianjie
2017-08-31
The rotated staggered-grid (RSG) finite-difference method is a powerful tool for elastic-wave modeling in 2D anisotropic media where the symmetry axes of anisotropy are not aligned with the coordinate axes. We develop an improved RSG scheme with fourth-order temporal accuracy to reduce the numerical dispersion associated with prolonged wave propagation or a large temporal step size. The high-order temporal accuracy is achieved by including high-order temporal derivatives, which can be converted to high-order spatial derivatives to reduce computational cost. Dispersion analysis and numerical tests show that our method exhibits very low temporal dispersion even with a large temporal step sizemore » for elastic-wave modeling in complex anisotropic media. Using the same temporal step size, our method is more accurate than the conventional RSG scheme. In conclusion, our improved RSG scheme is therefore suitable for prolonged modeling of elastic-wave propagation in 2D anisotropic media.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Kai; Huang, Lianjie
The rotated staggered-grid (RSG) finite-difference method is a powerful tool for elastic-wave modeling in 2D anisotropic media where the symmetry axes of anisotropy are not aligned with the coordinate axes. We develop an improved RSG scheme with fourth-order temporal accuracy to reduce the numerical dispersion associated with prolonged wave propagation or a large temporal step size. The high-order temporal accuracy is achieved by including high-order temporal derivatives, which can be converted to high-order spatial derivatives to reduce computational cost. Dispersion analysis and numerical tests show that our method exhibits very low temporal dispersion even with a large temporal step sizemore » for elastic-wave modeling in complex anisotropic media. Using the same temporal step size, our method is more accurate than the conventional RSG scheme. In conclusion, our improved RSG scheme is therefore suitable for prolonged modeling of elastic-wave propagation in 2D anisotropic media.« less
A total variation diminishing finite difference algorithm for sonic boom propagation models
NASA Technical Reports Server (NTRS)
Sparrow, Victor W.
1993-01-01
It is difficult to accurately model the rise phases of sonic boom waveforms with traditional finite difference algorithms because of finite difference phase dispersion. This paper introduces the concept of a total variation diminishing (TVD) finite difference method as a tool for accurately modeling the rise phases of sonic booms. A standard second order finite difference algorithm and its TVD modified counterpart are both applied to the one-way propagation of a square pulse. The TVD method clearly outperforms the non-TVD method, showing great potential as a new computational tool in the analysis of sonic boom propagation.
National Urban Database and Access Portal Tool
Based on the need for advanced treatments of high resolution urban morphological features (e.g., buildings, trees) in meteorological, dispersion, air quality and human exposure modeling systems for future urban applications, a new project was launched called the National Urban Da...
NASA Astrophysics Data System (ADS)
Barrett, Steven R. H.; Britter, Rex E.
Predicting long-term mean pollutant concentrations in the vicinity of airports, roads and other industrial sources are frequently of concern in regulatory and public health contexts. Many emissions are represented geometrically as ground-level line or area sources. Well developed modelling tools such as AERMOD and ADMS are able to model dispersion from finite (i.e. non-point) sources with considerable accuracy, drawing upon an up-to-date understanding of boundary layer behaviour. Due to mathematical difficulties associated with line and area sources, computationally expensive numerical integration schemes have been developed. For example, some models decompose area sources into a large number of line sources orthogonal to the mean wind direction, for which an analytical (Gaussian) solution exists. Models also employ a time-series approach, which involves computing mean pollutant concentrations for every hour over one or more years of meteorological data. This can give rise to computer runtimes of several days for assessment of a site. While this may be acceptable for assessment of a single industrial complex, airport, etc., this level of computational cost precludes national or international policy assessments at the level of detail available with dispersion modelling. In this paper, we extend previous work [S.R.H. Barrett, R.E. Britter, 2008. Development of algorithms and approximations for rapid operational air quality modelling. Atmospheric Environment 42 (2008) 8105-8111] to line and area sources. We introduce approximations which allow for the development of new analytical solutions for long-term mean dispersion from line and area sources, based on hypergeometric functions. We describe how these solutions can be parameterized from a single point source run from an existing advanced dispersion model, thereby accounting for all processes modelled in the more costly algorithms. The parameterization method combined with the analytical solutions for long-term mean dispersion are shown to produce results several orders of magnitude more efficiently with a loss of accuracy small compared to the absolute accuracy of advanced dispersion models near sources. The method can be readily incorporated into existing dispersion models, and may allow for additional computation time to be expended on modelling dispersion processes more accurately in future, rather than on accounting for source geometry.
NASA Astrophysics Data System (ADS)
O'Regan, H. J.; Turner, A.; Bishop, L. C.; Elton, S.; Lamb, A. L.
2011-06-01
Discoveries of fossil Homo outside Africa predating 1.0 Ma have generated much discussion about hominin dispersal routes. However, tool-using bipeds were only one element of the inter-continental mammalian dispersals that occurred during the climatic changes of the Pliocene and Pleistocene. This paper will place hominin movements in the context of those of the wider mammalian fauna, which includes carnivores, bovids and non-human primates. The distribution of these different taxa suggests that species moved individually when the environmental conditions were right for them, rather than in multi-species waves of dispersal, and allows evaluation of the contextual evidence for the newly emerging 'Out of Asia' paradigm as well as the established 'Out of Africa' model.
The Lagrangian particle dispersion model FLEXPART version 10
NASA Astrophysics Data System (ADS)
Pisso, Ignacio; Sollum, Espen; Grythe, Henrik; Kristiansen, Nina; Cassiani, Massimo; Eckhardt, Sabine; Thompson, Rona; Groot Zwaaftnik, Christine; Evangeliou, Nikolaos; Hamburger, Thomas; Sodemann, Harald; Haimberger, Leopold; Henne, Stephan; Brunner, Dominik; Burkhart, John; Fouilloux, Anne; Fang, Xuekun; Phillip, Anne; Seibert, Petra; Stohl, Andreas
2017-04-01
The Lagrangian particle dispersion model FLEXPART was in its first original release in 1998 designed for calculating the long-range and mesoscale dispersion of air pollutants from point sources, such as after an accident in a nuclear power plant. The model has now evolved into a comprehensive tool for atmospheric transport modelling and analysis. Its application fields are extended to a range of atmospheric transport processes for both atmospheric gases and aerosols, e.g. greenhouse gases, short-lived climate forces like black carbon, volcanic ash and gases as well as studies of the water cycle. We present the newest release, FLEXPART version 10. Since the last publication fully describing FLEXPART (version 6.2), the model code has been parallelised in order to allow for the possibility to speed up computation. A new, more detailed gravitational settling parametrisation for aerosols was implemented, and the wet deposition scheme for aerosols has been heavily modified and updated to provide a more accurate representation of this physical process. In addition, an optional new turbulence scheme for the convective boundary layer is available, that considers the skewness in the vertical velocity distribution. Also, temporal variation and temperature dependence of the OH-reaction are included. Finally, user input files are updated to a more convenient and user-friendly namelist format, and the option to produce the output-files in netCDF-format instead of binary format is implemented. We present these new developments and show recent model applications. Moreover, we also introduce some tools for the preparation of the meteorological input data, as well as for the processing of FLEXPART output data.
Finite-difference time-domain simulation of electromagnetic bandgap and bi-anisotropic metamaterials
NASA Astrophysics Data System (ADS)
Bray, Matthew G.
The term "Metamaterial" has been introduced into the electromagnetic lexicon in recent years to describe new artificial materials with electromagnetic properties that are not found in naturally occurring materials. Metamaterials exhibit electromagnetic properties that are not observed in its constituent materials, and/or not observed in nature. This thesis will analyze two different classes of metamaterials through the use of the finite-difference time-domain (FDTD) technique. The first class of metamaterials are artificial magnetic conductors (AMC) which approximate the behavior of a perfect magnetic conductor (PMC) over a finite frequency range. The AMC metamaterials are created through the use of an electromagnetic bandgap (EBG) structure. A periodic FDTD code is used to simulate a full-wave model of the metallodielectric EBG structures. The AMCs developed with the aid of the FDTD tool are then used to create low-profile antenna systems consisting of a dipole antenna in close proximity to an AMC surface. Through the use of this FDTD tool, several original contributions were made to the electromagnetic community. These include the first dual-band independently tunable EBG AMC ground plane and the first linearly polarized single-band and dual-band tunable antenna/EBG systems. The second class of materials analyzed are bi-anisotropic metamaterials. Bi-anisotropic media are the largest class of linear media which is able to describe the macroscopic material properties of artificial dielectrics, artificial magnetics, artificial chiral materials, left-handed materials, and other composite materials. The dispersive properties of these materials can be approximated by the oscillator model. This model assumes a Lorentzian frequency profile for the permittivity and permeability and a Condon model for chirality. A new FDTD formulation is introduced which can simulate this type of bi-anisotropic media. This FDTD method incorporates the dispersive material properties through a Z-transform technique derived from the constitutive relations for bi-anisotropic media. This is the first FDTD formulation to be able to simulate dispersive chiral media on a single FDTD grid. This tool was also used to perform the first simulations of dispersive chiral frequency selective surfaces.
Effects of clay dispersion on aquifer storage and recovery in coastal aquifers
Konikow, Leonard F.; August, L.L.; Voss, C.I.
2001-01-01
Cyclic injection, storage, and withdrawal of freshwater in brackish aquifers is a form of aquifer storage and recovery (ASR) that can beneficially supplement water supplies in coastal areas. A 1970s field experiment in Norfolk, Virginia, showed that clay dispersion in the unconsolidated sedimentary aquifer occurred because of cation exchange on clay minerals as freshwater displaced brackish formation water. Migration of interstitial clay particles clogged pores, reduced permeability, and decreased recovery efficiency, but a calcium preflush was found to reduce clay dispersion and lead to a higher recovery efficiency. Column experiments were performed in this study to quantify the relations between permeability changes and clay mineralogy, clay content, and initial water salinity. The results of these experiments indicate that dispersion of montmorillonite clay is a primary contributor to formation damage. The reduction in permeability by clay dispersion may be expressed as a linear function of chloride content. Incorporating these simple functions into a radial, cross-sectional, variable-density, ground-water flow and transport model yielded a satisfactory simulation of the Norfolk field test - and represented an improvement over the model that ignored changes in permeability. This type of model offers a useful planning and design tool for ASR operations in coastal clastic aquifer systems.
Biomimetic Dissolution: A Tool to Predict Amorphous Solid Dispersion Performance.
Puppolo, Michael M; Hughey, Justin R; Dillon, Traciann; Storey, David; Jansen-Varnum, Susan
2017-11-01
The presented study describes the development of a membrane permeation non-sink dissolution method that can provide analysis of complete drug speciation and emulate the in vivo performance of poorly water-soluble Biopharmaceutical Classification System class II compounds. The designed membrane permeation methodology permits evaluation of free/dissolved/unbound drug from amorphous solid dispersion formulations with the use of a two-cell apparatus, biorelevant dissolution media, and a biomimetic polymer membrane. It offers insight into oral drug dissolution, permeation, and absorption. Amorphous solid dispersions of felodipine were prepared by hot melt extrusion and spray drying techniques and evaluated for in vitro performance. Prior to ranking performance of extruded and spray-dried felodipine solid dispersions, optimization of the dissolution methodology was performed for parameters such as agitation rate, membrane type, and membrane pore size. The particle size and zeta potential were analyzed during dissolution experiments to understand drug/polymer speciation and supersaturation sustainment of felodipine solid dispersions. Bland-Altman analysis was performed to measure the agreement or equivalence between dissolution profiles acquired using polymer membranes and porcine intestines and to establish the biomimetic nature of the treated polymer membranes. The utility of the membrane permeation dissolution methodology is seen during the evaluation of felodipine solid dispersions produced by spray drying and hot melt extrusion. The membrane permeation dissolution methodology can suggest formulation performance and be employed as a screening tool for selection of candidates to move forward to pharmacokinetic studies. Furthermore, the presented model is a cost-effective technique.
Jones, Brendon R; Brouwers, Luke B; Van Tonder, Warren D; Dippenaar, Matthys A
2017-05-01
The vadose zone typically comprises soil underlain by fractured rock. Often, surface water and groundwater parameters are readily available, but variably saturated flow through soil and rock are oversimplified or estimated as input for hydrological models. In this paper, a series of geotechnical centrifuge experiments are conducted to contribute to the knowledge gaps in: (i) variably saturated flow and dispersion in soil and (ii) variably saturated flow in discrete vertical and horizontal fractures. Findings from the research show that the hydraulic gradient, and not the hydraulic conductivity, is scaled for seepage flow in the geotechnical centrifuge. Furthermore, geotechnical centrifuge modelling has been proven as a viable experimental tool for the modelling of hydrodynamic dispersion as well as the replication of similar flow mechanisms for unsaturated fracture flow, as previously observed in literature. Despite the imminent challenges of modelling variable saturation in the vadose zone, the geotechnical centrifuge offers a powerful experimental tool to physically model and observe variably saturated flow. This can be used to give valuable insight into mechanisms associated with solid-fluid interaction problems under these conditions. Findings from future research can be used to validate current numerical modelling techniques and address the subsequent influence on aquifer recharge and vulnerability, contaminant transport, waste disposal, dam construction, slope stability and seepage into subsurface excavations.
Modeling and Visualizing Flow of Chemical Agents Across Complex Terrain
NASA Technical Reports Server (NTRS)
Kao, David; Kramer, Marc; Chaderjian, Neal
2005-01-01
Release of chemical agents across complex terrain presents a real threat to homeland security. Modeling and visualization tools are being developed that capture flow fluid terrain interaction as well as point dispersal downstream flow paths. These analytic tools when coupled with UAV atmospheric observations provide predictive capabilities to allow for rapid emergency response as well as developing a comprehensive preemptive counter-threat evacuation plan. The visualization tools involve high-end computing and massive parallel processing combined with texture mapping. We demonstrate our approach across a mountainous portion of North California under two contrasting meteorological conditions. Animations depicting flow over this geographical location provide immediate assistance in decision support and crisis management.
Modeling the GPR response of leaking, buried pipes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powers, M.H.; Olhoeft, G.R.
1996-11-01
Using a 2.5D, dispersive, full waveform GPR modeling program that generates complete GPR response profiles in minutes on a Pentium PC, the effects of leaking versus non-leaking buried pipes are examined. The program accounts for the dispersive, lossy nature of subsurface materials to GPR wave propagation, and accepts complex functions of dielectric permittivity and magnetic permeability versus frequency through Cole-Cole parameters fit to laboratory data. Steel and plastic pipes containing a DNAPL chlorinated solvent, an LNAPL hydrocarbon, and natural gas are modeled in a surrounding medium of wet, moist, and dry sand. Leaking fluids are found to be more detectablemore » when the sand around the pipes is fully water saturated. The short runtimes of the modeling program and its execution on a PC make it a useful tool for exploring various subsurface models.« less
Konikow, Leonard F.
1981-01-01
Undesirable salinity increases occur in both groundwater and surface water and are commonly related to agricultural practices. Groundwater recharge from precipitation or irrigation will transport and disperse residual salts concentrated by evapotranspiration, salts leached from soil and aquifer materials, as well as some dissolved fertilizers and pesticides. Where stream salinity is affected by agricultural practices, the increases in salt load usually are attributable mostly to a groundwater component of flow. Thus, efforts to predict, manage, or control stream salinity increases should consider the role of groundwater in salt transport. Two examples of groundwater salinity problems in Colorado, U.S.A., illustrate that a model which simulates accurately the transport and dispersion of solutes in flowing groundwater can be (1) a valuable investigative tool to help understand the processes and parameters controlling the movement and fate of the salt, and (2) a valuable management tool for predicting responses and optimizing the development and use of the total water resource. ?? 1981.
Earliest evidence for the structure of Homo sapiens populations in Africa
NASA Astrophysics Data System (ADS)
Scerri, Eleanor M. L.; Drake, Nick A.; Jennings, Richard; Groucutt, Huw S.
2014-10-01
Understanding the structure and variation of Homo sapiens populations in Africa is critical for interpreting multiproxy evidence of their subsequent dispersals into Eurasia. However, there is no consensus on early H. sapiens demographic structure, or its effects on intra-African dispersals. Here, we show how a patchwork of ecological corridors and bottlenecks triggered a successive budding of populations across the Sahara. Using a temporally and spatially explicit palaeoenvironmental model, we found that the Sahara was not uniformly ameliorated between ∼130 and 75 thousand years ago (ka), as has been stated. Model integration with multivariate analyses of corresponding stone tools then revealed several spatially defined technological clusters which correlated with distinct palaeobiomes. Similarities between technological clusters were such that they decreased with distance except where connected by palaeohydrological networks. These results indicate that populations at the Eurasian gateway were strongly structured, which has implications for refining the demographic parameters of dispersals out of Africa.
Multiscale dispersion-state characterization of nanocomposites using optical coherence tomography
Schneider, Simon; Eppler, Florian; Weber, Marco; Olowojoba, Ganiu; Weiss, Patrick; Hübner, Christof; Mikonsaari, Irma; Freude, Wolfgang; Koos, Christian
2016-01-01
Nanocomposite materials represent a success story of nanotechnology. However, development of nanomaterial fabrication still suffers from the lack of adequate analysis tools. In particular, achieving and maintaining well-dispersed particle distributions is a key challenge, both in material development and industrial production. Conventional methods like optical or electron microscopy need laborious, costly sample preparation and do not permit fast extraction of nanoscale structural information from statistically relevant sample volumes. Here we show that optical coherence tomography (OCT) represents a versatile tool for nanomaterial characterization, both in a laboratory and in a production environment. The technique does not require sample preparation and is applicable to a wide range of solid and liquid material systems. Large particle agglomerates can be directly found by OCT imaging, whereas dispersed nanoparticles are detected by model-based analysis of depth-dependent backscattering. Using a model system of polystyrene nanoparticles, we demonstrate nanoparticle sizing with high accuracy. We further prove the viability of the approach by characterizing highly relevant material systems based on nanoclays or carbon nanotubes. The technique is perfectly suited for in-line metrology in a production environment, which is demonstrated using a state-of-the-art compounding extruder. These experiments represent the first demonstration of multiscale nanomaterial characterization using OCT. PMID:27557544
Multiscale dispersion-state characterization of nanocomposites using optical coherence tomography.
Schneider, Simon; Eppler, Florian; Weber, Marco; Olowojoba, Ganiu; Weiss, Patrick; Hübner, Christof; Mikonsaari, Irma; Freude, Wolfgang; Koos, Christian
2016-08-25
Nanocomposite materials represent a success story of nanotechnology. However, development of nanomaterial fabrication still suffers from the lack of adequate analysis tools. In particular, achieving and maintaining well-dispersed particle distributions is a key challenge, both in material development and industrial production. Conventional methods like optical or electron microscopy need laborious, costly sample preparation and do not permit fast extraction of nanoscale structural information from statistically relevant sample volumes. Here we show that optical coherence tomography (OCT) represents a versatile tool for nanomaterial characterization, both in a laboratory and in a production environment. The technique does not require sample preparation and is applicable to a wide range of solid and liquid material systems. Large particle agglomerates can be directly found by OCT imaging, whereas dispersed nanoparticles are detected by model-based analysis of depth-dependent backscattering. Using a model system of polystyrene nanoparticles, we demonstrate nanoparticle sizing with high accuracy. We further prove the viability of the approach by characterizing highly relevant material systems based on nanoclays or carbon nanotubes. The technique is perfectly suited for in-line metrology in a production environment, which is demonstrated using a state-of-the-art compounding extruder. These experiments represent the first demonstration of multiscale nanomaterial characterization using OCT.
NASA Astrophysics Data System (ADS)
Tsai, M.; Lee, C.; Yu, H.
2013-12-01
In the last 20 years, the Yunlin offshore industrial park has significantly contributed to the economic development of Taiwan. Its annual production value has reached almost 12 % of Taiwan's GDP in 2012. The offshore industrial park also balanced development of urban and rural in areas. However, the offshore industrial park is considered the major source of air pollution to nearby counties, especially, the emission of Volatile Organic Compounds(VOCs). Studies have found that exposures to high level of some VOCs have caused adverse health effects on both human and ecosystem. Since both health and ecological effects of air pollution have been the subject of numerous studies in recent years, it is a critical issue in estimating VOCs emissions. Nowadays emission estimation techniques are usually used emissions factors in calculation. Because the methodology considered totality of equipment activities based on statistical assumptions, it would encounter great uncertainty between these coefficients. This study attempts to estimate VOCs emission of the Yunlin Offshore Industrial Park using an inverse atmospheric dispersion model. The inverse modeling approach will be applied to the combination of dispersion modeling result which input a given one-unit concentration and observations at air quality stations in Yunlin. The American Meteorological Society-Environmental Protection Agency Regulatory Model (AERMOD) is chosen as the tool for dispersion modeling in the study. Observed concentrations of VOCs are collected by the Taiwanese Environmental Protection Administration (TW EPA). In addition, the study also analyzes meteorological data including wind speed, wind direction, pressure and temperature etc. VOCs emission estimations from the inverse atmospheric dispersion model will be compared to the official statistics released by Yunlin Offshore Industrial Park. Comparison of estimated concentration from inverse dispersion modeling and official statistical concentrations will give a better understanding about the uncertainty of regulatory methodology. The model results will be discussed with the importance of evaluating air pollution exposure in risk assessment.
Multi-objective spatial tools to inform maritime spatial planning in the Adriatic Sea.
Depellegrin, Daniel; Menegon, Stefano; Farella, Giulio; Ghezzo, Michol; Gissi, Elena; Sarretta, Alessandro; Venier, Chiara; Barbanti, Andrea
2017-12-31
This research presents a set of multi-objective spatial tools for sea planning and environmental management in the Adriatic Sea Basin. The tools address four objectives: 1) assessment of cumulative impacts from anthropogenic sea uses on environmental components of marine areas; 2) analysis of sea use conflicts; 3) 3-D hydrodynamic modelling of nutrient dispersion (nitrogen and phosphorus) from riverine sources in the Adriatic Sea Basin and 4) marine ecosystem services capacity assessment from seabed habitats based on an ES matrix approach. Geospatial modelling results were illustrated, analysed and compared on country level and for three biogeographic subdivisions, Northern-Central-Southern Adriatic Sea. The paper discusses model results for their spatial implications, relevance for sea planning, limitations and concludes with an outlook towards the need for more integrated, multi-functional tools development for sea planning. Copyright © 2017. Published by Elsevier B.V.
CFD Modeling of LNG Spill: Humidity Effect on Vapor Dispersion
NASA Astrophysics Data System (ADS)
Giannissi, S. G.; Venetsanos, A. G.; Markatos, N.
2015-09-01
The risks entailed by an accidental spill of Liquefied Natural Gas (LNG) should be indentified and evaluated, in order to design measures for prevention and mitigation in LNG terminals. For this purpose, simulations are considered a useful tool to study LNG spills and to understand the mechanisms that influence the vapor dispersion. In the present study, the ADREA-HF CFD code is employed to simulate the TEEX1 experiment. The experiment was carried out at the Brayton Fire Training Field, which is affiliated with the Texas A&M University system and involves LNG release and dispersion over water surface in open- obstructed environment. In the simulation the source was modeled as a two-phase jet enabling the prediction of both the vapor dispersion and the liquid pool spreading. The conservation equations for the mixture are solved along with the mass fraction for natural gas. Due to the low prevailing temperatures during the spill ambient humidity condenses and this might affect the vapor dispersion. This effect was examined in this work by solving an additional conservation equation for the water mass fraction. Two different models were tested: the hydrodynamic equilibrium model which assumes kinetic equilibrium between the phases and the non hydrodynamic equilibrium model, in order to assess the effect of slip velocity on the prediction. The slip velocity is defined as the difference between the liquid phase and the vapor phase and is calculated using the algebraic slip model. Constant droplet diameter of three different sizes and a lognormal distribution of the droplet diameter were applied and the results are discussed and compared with the measurements.
NASA Astrophysics Data System (ADS)
Folch, Arnau; Barcons, Jordi; Kozono, Tomofumi; Costa, Antonio
2017-06-01
Atmospheric dispersal of a gas denser than air can threat the environment and surrounding communities if the terrain and meteorological conditions favour its accumulation in topographic depressions, thereby reaching toxic concentration levels. Numerical modelling of atmospheric gas dispersion constitutes a useful tool for gas hazard assessment studies, essential for planning risk mitigation actions. In complex terrains, microscale winds and local orographic features can have a strong influence on the gas cloud behaviour, potentially leading to inaccurate results if not captured by coarser-scale modelling. We introduce a methodology for microscale wind field characterisation based on transfer functions that couple a mesoscale numerical weather prediction model with a microscale computational fluid dynamics (CFD) model for the atmospheric boundary layer. The resulting time-dependent high-resolution microscale wind field is used as input for a shallow-layer gas dispersal model (TWODEE-2.1) to simulate the time evolution of CO2 gas concentration at different heights above the terrain. The strategy is applied to review simulations of the 1986 Lake Nyos event in Cameroon, where a huge CO2 cloud released by a limnic eruption spread downslopes from the lake, suffocating thousands of people and animals across the Nyos and adjacent secondary valleys. Besides several new features introduced in the new version of the gas dispersal code (TWODEE-2.1), we have also implemented a novel impact criterion based on the percentage of human fatalities depending on CO2 concentration and exposure time. New model results are quantitatively validated using the reported percentage of fatalities at several locations. The comparison with previous simulations that assumed coarser-scale steady winds and topography illustrates the importance of high-resolution modelling in complex terrains.
Zhang, X L; Su, G F; Yuan, H Y; Chen, J G; Huang, Q Y
2014-09-15
Atmospheric dispersion models play an important role in nuclear power plant accident management. A reliable estimation of radioactive material distribution in short range (about 50 km) is in urgent need for population sheltering and evacuation planning. However, the meteorological data and the source term which greatly influence the accuracy of the atmospheric dispersion models are usually poorly known at the early phase of the emergency. In this study, a modified ensemble Kalman filter data assimilation method in conjunction with a Lagrangian puff-model is proposed to simultaneously improve the model prediction and reconstruct the source terms for short range atmospheric dispersion using the off-site environmental monitoring data. Four main uncertainty parameters are considered: source release rate, plume rise height, wind speed and wind direction. Twin experiments show that the method effectively improves the predicted concentration distribution, and the temporal profiles of source release rate and plume rise height are also successfully reconstructed. Moreover, the time lag in the response of ensemble Kalman filter is shortened. The method proposed here can be a useful tool not only in the nuclear power plant accident emergency management but also in other similar situation where hazardous material is released into the atmosphere. Copyright © 2014 Elsevier B.V. All rights reserved.
EPAUS9R - An Energy Systems Database for use with the Market Allocation (MARKAL) Model
EPA’s MARKAL energy system databases estimate future-year technology dispersals and associated emissions. These databases are valuable tools for exploring a variety of future scenarios for the U.S. energy-production systems that can impact climate change c
NASA Astrophysics Data System (ADS)
Ben Salem, N.; Salizzoni, P.; Soulhac, L.
2017-01-01
We present an inverse atmospheric model to estimate the mass flow rate of an impulsive source of pollutant, whose position is known, from concentration signals registered at receptors placed downwind of the source. The originality of this study is twofold. Firstly, the inversion is performed using high-frequency fluctuating, i.e. turbulent, concentration signals. Secondly, the inverse algorithm is applied to a dispersion process within a dense urban canopy, at the district scale, and a street network model, SIRANERISK, is adopted. The model, which is tested against wind tunnel experiments, simulates the dispersion of short-duration releases of pollutant in different typologies of idealised urban geometries. Results allow us to discuss the reliability of the inverse model as an operational tool for crisis management and the risk assessments related to the accidental release of toxic and flammable substances.
Osuch, Tomasz; Markowski, Konrad; Jędrzejewski, Kazimierz
2015-06-10
A versatile numerical model for spectral transmission/reflection, group delay characteristic analysis, and design of tapered fiber Bragg gratings (TFBGs) is presented. This approach ensures flexibility with defining both distribution of refractive index change of the gratings (including apodization) and shape of the taper profile. Additionally, sensing and tunable dispersion properties of the TFBGs were fully examined, considering strain-induced effects. The presented numerical approach, together with Pareto optimization, were also used to design the best tanh apodization profiles of the TFBG in terms of maximizing its spectral width with simultaneous minimization of the group delay oscillations. Experimental verification of the model confirms its correctness. The combination of model versatility and possibility to define the other objective functions of Pareto optimization creates a universal tool for TFBG analysis and design.
Web Site on Marine Connecivity Around Australia
NASA Astrophysics Data System (ADS)
Condie, Scott
2005-06-01
The Commonwealth Scientific and Industrial Research Organisation (CSIRO), with support from the Western Australian Government, has developed an online tool for marine scientists and managers to investigate the largescale patterns of spatial connectivity around Australia that are associated with ocean current transport (,Figure 1). This tool, referred to as the Australian Connectivity Interface, or Aus-ConnIe, is expected to find applications in areas such as tracer dispersion studies (see example by Ridgway and Condie [2004](, larval dispersion and recruitment, and the development of scenarios and preliminary risk assessments for contaminant dispersion in the marine environment. After selecting a region of interest, users can investigate where material carried into that region comes from, or where material originating in that region goes to, over a range of timescales (weeks to months). These connectivity statistics are based on large numbers of particle trajctories (one million at any given time) estimated from satellite altimeter data, coastal tide-gauge data, and winds from meteorological models. Users can save the results in a variety of formats (CSV, Excel, or XML) and, as an option, may save their sessions by first registering.
Huang, Wenjun; Mandal, Taraknath; Larson, Ronald G
2017-10-02
We recently developed coarse-grained (CG) force fields for hydroxypropyl methylcellulose acetate succinate (HPMCAS) polymers and the model drug molecule phenytoin, and a continuum transport model to study the polymer-drug nanostructures presented during a dissolution test after solvation of solid dispersion particles. We model the polymer-drug interactions that contribute to suppression of drug aggregation, release, and crystal growth during the dissolution process, and we take these as indicators of polymer effectiveness. We find that the size and the intermolecular interaction strength of the functional group and the drug loading concentration are the major factors that impact the effectiveness of the polymeric excipient. The hydroxypropyl acetyl group is the most effective functional group, followed by the acetyl group, while the deprotonated succinyl group is the least effective functional group, except that the deprotonated succinyl group at the 6-position is very effective in slowing down the phenytoin crystal growth. Our simulation results thus suggest HPMCAS with higher acetyl and lower succinyl content is more effective in promoting phenytoin solubility in dissolution media, and polymers become less effective when drug loading becomes high (i.e., 50% of the mass of the polymer/drug solid dispersion), agreeing with previous experimental studies. In addition, our transport model indicates that the drug release time from a solid dispersion particle of 2 μm diameter is less than 10 min, correlating well with the experimental time scale for a typical dissolution profile to reach maximum peak concentration. Our modeling effort, therefore, provides new avenues to understand the dissolution behavior of complex HPMCAS-phenytoin solid dispersions and offers a new design tool to optimize the formulation. Moreover, the systematic and robust approach used in our computational models can be extended to other polymeric excipients and drug candidates.
Dynamic sensor management of dispersed and disparate sensors for tracking resident space objects
NASA Astrophysics Data System (ADS)
El-Fallah, A.; Zatezalo, A.; Mahler, R.; Mehra, R. K.; Donatelli, D.
2008-04-01
Dynamic sensor management of dispersed and disparate sensors for space situational awareness presents daunting scientific and practical challenges as it requires optimal and accurate maintenance of all Resident Space Objects (RSOs) of interest. We demonstrate an approach to the space-based sensor management problem by extending a previously developed and tested sensor management objective function, the Posterior Expected Number of Targets (PENT), to disparate and dispersed sensors. This PENT extension together with observation models for various sensor platforms, and a Probability Hypothesis Density Particle Filter (PHD-PF) tracker provide a powerful tool for tackling this challenging problem. We demonstrate the approach using simulations for tracking RSOs by a Space Based Visible (SBV) sensor and ground based radars.
Prediction of U-Mo dispersion nuclear fuels with Al-Si alloy using artificial neural network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susmikanti, Mike, E-mail: mike@batan.go.id; Sulistyo, Jos, E-mail: soj@batan.go.id
2014-09-30
Dispersion nuclear fuels, consisting of U-Mo particles dispersed in an Al-Si matrix, are being developed as fuel for research reactors. The equilibrium relationship for a mixture component can be expressed in the phase diagram. It is important to analyze whether a mixture component is in equilibrium phase or another phase. The purpose of this research it is needed to built the model of the phase diagram, so the mixture component is in the stable or melting condition. Artificial neural network (ANN) is a modeling tool for processes involving multivariable non-linear relationships. The objective of the present work is to developmore » code based on artificial neural network models of system equilibrium relationship of U-Mo in Al-Si matrix. This model can be used for prediction of type of resulting mixture, and whether the point is on the equilibrium phase or in another phase region. The equilibrium model data for prediction and modeling generated from experimentally data. The artificial neural network with resilient backpropagation method was chosen to predict the dispersion of nuclear fuels U-Mo in Al-Si matrix. This developed code was built with some function in MATLAB. For simulations using ANN, the Levenberg-Marquardt method was also used for optimization. The artificial neural network is able to predict the equilibrium phase or in the phase region. The develop code based on artificial neural network models was built, for analyze equilibrium relationship of U-Mo in Al-Si matrix.« less
Oxley, Tim; Dore, Anthony J; ApSimon, Helen; Hall, Jane; Kryza, Maciej
2013-11-01
Integrated assessment modelling has evolved to support policy development in relation to air pollutants and greenhouse gases by providing integrated simulation tools able to produce quick and realistic representations of emission scenarios and their environmental impacts without the need to re-run complex atmospheric dispersion models. The UK Integrated Assessment Model (UKIAM) has been developed to investigate strategies for reducing UK emissions by bringing together information on projected UK emissions of SO2, NOx, NH3, PM10 and PM2.5, atmospheric dispersion, criteria for protection of ecosystems, urban air quality and human health, and data on potential abatement measures to reduce emissions, which may subsequently be linked to associated analyses of costs and benefits. We describe the multi-scale model structure ranging from continental to roadside, UK emission sources, atmospheric dispersion of emissions, implementation of abatement measures, integration with European-scale modelling, and environmental impacts. The model generates outputs from a national perspective which are used to evaluate alternative strategies in relation to emissions, deposition patterns, air quality metrics and ecosystem critical load exceedance. We present a selection of scenarios in relation to the 2020 Business-As-Usual projections and identify potential further reductions beyond those currently being planned. © 2013.
Dispersive shock waves and modulation theory
NASA Astrophysics Data System (ADS)
El, G. A.; Hoefer, M. A.
2016-10-01
There is growing physical and mathematical interest in the hydrodynamics of dissipationless/dispersive media. Since G.B. Whitham's seminal publication fifty years ago that ushered in the mathematical study of dispersive hydrodynamics, there has been a significant body of work in this area. However, there has been no comprehensive survey of the field of dispersive hydrodynamics. Utilizing Whitham's averaging theory as the primary mathematical tool, we review the rich mathematical developments over the past fifty years with an emphasis on physical applications. The fundamental, large scale, coherent excitation in dispersive hydrodynamic systems is an expanding, oscillatory dispersive shock wave or DSW. Both the macroscopic and microscopic properties of DSWs are analyzed in detail within the context of the universal, integrable, and foundational models for uni-directional (Korteweg-de Vries equation) and bi-directional (Nonlinear Schrödinger equation) dispersive hydrodynamics. A DSW fitting procedure that does not rely upon integrable structure yet reveals important macroscopic DSW properties is described. DSW theory is then applied to a number of physical applications: superfluids, nonlinear optics, geophysics, and fluid dynamics. Finally, we survey some of the more recent developments including non-classical DSWs, DSW interactions, DSWs in perturbed and inhomogeneous environments, and two-dimensional, oblique DSWs.
Using demography and movement behavior to predict range expansion of the southern sea otter.
Tinker, M.T.; Doak, D.F.; Estes, J.A.
2008-01-01
In addition to forecasting population growth, basic demographic data combined with movement data provide a means for predicting rates of range expansion. Quantitative models of range expansion have rarely been applied to large vertebrates, although such tools could be useful for restoration and management of many threatened but recovering populations. Using the southern sea otter (Enhydra lutris nereis) as a case study, we utilized integro-difference equations in combination with a stage-structured projection matrix that incorporated spatial variation in dispersal and demography to make forecasts of population recovery and range recolonization. In addition to these basic predictions, we emphasize how to make these modeling predictions useful in a management context through the inclusion of parameter uncertainty and sensitivity analysis. Our models resulted in hind-cast (1989–2003) predictions of net population growth and range expansion that closely matched observed patterns. We next made projections of future range expansion and population growth, incorporating uncertainty in all model parameters, and explored the sensitivity of model predictions to variation in spatially explicit survival and dispersal rates. The predicted rate of southward range expansion (median = 5.2 km/yr) was sensitive to both dispersal and survival rates; elasticity analysis indicated that changes in adult survival would have the greatest potential effect on the rate of range expansion, while perturbation analysis showed that variation in subadult dispersal contributed most to variance in model predictions. Variation in survival and dispersal of females at the south end of the range contributed most of the variance in predicted southward range expansion. Our approach provides guidance for the acquisition of further data and a means of forecasting the consequence of specific management actions. Similar methods could aid in the management of other recovering populations.
NASA Astrophysics Data System (ADS)
Huang, Junqi; Goltz, Mark N.
2017-06-01
To greatly simplify their solution, the equations describing radial advective/dispersive transport to an extraction well in a porous medium typically neglect molecular diffusion. While this simplification is appropriate to simulate transport in the saturated zone, it can result in significant errors when modeling gas phase transport in the vadose zone, as might be applied when simulating a soil vapor extraction (SVE) system to remediate vadose zone contamination. A new analytical solution for the equations describing radial gas phase transport of a sorbing contaminant to an extraction well is presented. The equations model advection, dispersion (including both mechanical dispersion and molecular diffusion), and rate-limited mass transfer of dissolved, separate phase, and sorbed contaminants into the gas phase. The model equations are analytically solved by using the Laplace transform with respect to time. The solutions are represented by confluent hypergeometric functions in the Laplace domain. The Laplace domain solutions are then evaluated using a numerical Laplace inversion algorithm. The solutions can be used to simulate the spatial distribution and the temporal evolution of contaminant concentrations during operation of a soil vapor extraction well. Results of model simulations show that the effect of gas phase molecular diffusion upon concentrations at the extraction well is relatively small, although the effect upon the distribution of concentrations in space is significant. This study provides a tool that can be useful in designing SVE remediation strategies, as well as verifying numerical models used to simulate SVE system performance.
The FALL3D Ash Cloud Dispersion Model and its Implementation at the Buenos Aires VAAC
NASA Astrophysics Data System (ADS)
Folch, A.; Suaya, M.; Costa, A.; Viramonte, J.
2009-12-01
Airborne volcanic ash and aerosols threat aerial navigation and affect the quality of air at medium to large distances downwind from the volcano. Airplane re-routing and airport disruption carry important socioeconomic consequences at regional and national levels. Models to forecast volcanic ash clouds constitute, together with satellite imagery, a valuable predictive tool during a crisis. FALL3D is an Eulerian ash cloud dispersion model based on the advection-diffusion-sedimentation equation. The model runs at any scale, from regional to global. The dispersion model is off-line coupled with global (e.g. GFS, NMM-b) and mesoscalar (e.g. NMM-b, WRF, ETA) meteorological models and with re-analysis datasets. FALL3D has been recently installed at the Buenos Aires VAAC, depending on the Argentinean National Meteorological Service (SMN). In this presentation we summarize the characteristics of the model and its implementation at the VAAC, including the different domains, the meteorological forecast inputs (ETA or GFS) and the scenarios assumed for some critical volcanoes (Chaitén, Llaima, Lascar, etc.). Pre-defined scenarios are necessary to give an early first order prediction when data is poor or unavailable. This is particularly critical in Central Andes, were most active volcanoes are located in remote areas with poor or inexistent monitoring.
NASA Astrophysics Data System (ADS)
Sinha, Neeraj; Zambon, Andrea; Ott, James; Demagistris, Michael
2015-06-01
Driven by the continuing rapid advances in high-performance computing, multi-dimensional high-fidelity modeling is an increasingly reliable predictive tool capable of providing valuable physical insight into complex post-detonation reacting flow fields. Utilizing a series of test cases featuring blast waves interacting with combustible dispersed clouds in a small-scale test setup under well-controlled conditions, the predictive capabilities of a state-of-the-art code are demonstrated and validated. Leveraging physics-based, first principle models and solving large system of equations on highly-resolved grids, the combined effects of finite-rate/multi-phase chemical processes (including thermal ignition), turbulent mixing and shock interactions are captured across the spectrum of relevant time-scales and length scales. Since many scales of motion are generated in a post-detonation environment, even if the initial ambient conditions are quiescent, turbulent mixing plays a major role in the fireball afterburning as well as in dispersion, mixing, ignition and burn-out of combustible clouds in its vicinity. Validating these capabilities at the small scale is critical to establish a reliable predictive tool applicable to more complex and large-scale geometries of practical interest.
Reside, April E; VanDerWal, Jeremy; Kutt, Alex S
2012-01-01
Identifying the species most vulnerable to extinction as a result of climate change is a necessary first step in mitigating biodiversity decline. Species distribution modeling (SDM) is a commonly used tool to assess potential climate change impacts on distributions of species. We use SDMs to predict geographic ranges for 243 birds of Australian tropical savannas, and to project changes in species richness and ranges under a future climate scenario between 1990 and 2080. Realistic predictions require recognition of the variability in species capacity to track climatically suitable environments. Here we assess the effect of dispersal on model results by using three approaches: full dispersal, no dispersal and a partial-dispersal scenario permitting species to track climate change at a rate of 30 km per decade. As expected, the projected distributions and richness patterns are highly sensitive to the dispersal scenario. Projected future range sizes decreased for 66% of species if full dispersal was assumed, but for 89% of species when no dispersal was assumed. However, realistic future predictions should not assume a single dispersal scenario for all species and as such, we assigned each species to the most appropriate dispersal category based on individual mobility and habitat specificity; this permitted the best estimates of where species will be in the future. Under this “realistic” dispersal scenario, projected ranges sizes decreased for 67% of species but showed that migratory and tropical-endemic birds are predicted to benefit from climate change with increasing distributional area. Richness hotspots of tropical savanna birds are expected to move, increasing in southern savannas and southward along the east coast of Australia, but decreasing in the arid zone. Understanding the complexity of effects of climate change on species’ range sizes by incorporating dispersal capacities is a crucial step toward developing adaptation policies for the conservation of vulnerable species. PMID:22837819
Numerical simulations of LNG vapor dispersion in Brayton Fire Training Field tests with ANSYS CFX.
Qi, Ruifeng; Ng, Dedy; Cormier, Benjamin R; Mannan, M Sam
2010-11-15
Federal safety regulations require the use of validated consequence models to determine the vapor cloud dispersion exclusion zones for accidental liquefied natural gas (LNG) releases. One tool that is being developed in industry for exclusion zone determination and LNG vapor dispersion modeling is computational fluid dynamics (CFD). This paper uses the ANSYS CFX CFD code to model LNG vapor dispersion in the atmosphere. Discussed are important parameters that are essential inputs to the ANSYS CFX simulations, including the atmospheric conditions, LNG evaporation rate and pool area, turbulence in the source term, ground surface temperature and roughness height, and effects of obstacles. A sensitivity analysis was conducted to illustrate uncertainties in the simulation results arising from the mesh size and source term turbulence intensity. In addition, a set of medium-scale LNG spill tests were performed at the Brayton Fire Training Field to collect data for validating the ANSYS CFX prediction results. A comparison of test data with simulation results demonstrated that CFX was able to describe the dense gas behavior of LNG vapor cloud, and its prediction results of downwind gas concentrations close to ground level were in approximate agreement with the test data. Copyright © 2010 Elsevier B.V. All rights reserved.
Two-photon spectroscopy of excitons with entangled photons.
Schlawin, Frank; Mukamel, Shaul
2013-12-28
The utility of quantum light as a spectroscopic tool is demonstrated for frequency-dispersed pump-probe, integrated pump-probe, and two-photon fluorescence signals which show Ramsey fringes. Simulations of the frequency-dispersed transmission of a broadband pulse of entangled photons interacting with a three-level model of matter reveal how the non-classical time-bandwidth properties of entangled photons can be used to disentangle congested spectra, and reveal otherwise unresolved features. Quantum light effects are most pronounced at weak intensities when entangled photon pairs are well separated, and are gradually diminished at higher intensities when different photon pairs overlap.
Two-photon spectroscopy of excitons with entangled photons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlawin, Frank, E-mail: Frank.Schlawin@physik.uni-freiburg.de; Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79108 Freiburg; Mukamel, Shaul, E-mail: smukamel@uci.edu
The utility of quantum light as a spectroscopic tool is demonstrated for frequency-dispersed pump-probe, integrated pump-probe, and two-photon fluorescence signals which show Ramsey fringes. Simulations of the frequency-dispersed transmission of a broadband pulse of entangled photons interacting with a three-level model of matter reveal how the non-classical time-bandwidth properties of entangled photons can be used to disentangle congested spectra, and reveal otherwise unresolved features. Quantum light effects are most pronounced at weak intensities when entangled photon pairs are well separated, and are gradually diminished at higher intensities when different photon pairs overlap.
The κ-generalized distribution: A new descriptive model for the size distribution of incomes
NASA Astrophysics Data System (ADS)
Clementi, F.; Di Matteo, T.; Gallegati, M.; Kaniadakis, G.
2008-05-01
This paper proposes the κ-generalized distribution as a model for describing the distribution and dispersion of income within a population. Formulas for the shape, moments and standard tools for inequality measurement-such as the Lorenz curve and the Gini coefficient-are given. A method for parameter estimation is also discussed. The model is shown to fit extremely well the data on personal income distribution in Australia and in the United States.
Kim, Cheol-Hee; Park, Jin-Ho; Park, Cheol-Jin; Na, Jin-Gyun
2004-03-01
The Chemical Accidents Response Information System (CARIS) was developed at the Center for Chemical Safety Management in South Korea in order to track and predict the dispersion of hazardous chemicals in the case of an accident or terrorist attack involving chemical companies. The main objective of CARIS is to facilitate an efficient emergency response to hazardous chemical accidents by rapidly providing key information in the decision-making process. In particular, the atmospheric modeling system implemented in CARIS, which is composed of a real-time numerical weather forecasting model and an air pollution dispersion model, can be used as a tool to forecast concentrations and to provide a wide range of assessments associated with various hazardous chemicals in real time. This article introduces the components of CARIS and describes its operational modeling system. Some examples of the operational modeling system and its use for emergency preparedness are presented and discussed. Finally, this article evaluates the current numerical weather prediction model for Korea.
Embracing Distance Education in a Blended Learning Model: Challenges and Prospects
ERIC Educational Resources Information Center
Fresen, Jill W.
2018-01-01
Distance education reaches out to non-traditional students in geographically dispersed locations, who are unable to attend face-to-face classes. Contact institutions have been quick to realise the many advantages of distance (online) learning, such as easy access to learning materials, interactive activities, assessment and communication tools.…
Controlling Release Kinetics of PLG Microspheres Using a Manufacturing Technique
NASA Astrophysics Data System (ADS)
Berchane, Nader
2005-11-01
Controlled drug delivery offers numerous advantages compared with conventional free dosage forms, in particular: improved efficacy and patient compliance. Emulsification is a widely used technique to entrap drugs in biodegradable microspheres for controlled drug delivery. The size of the formed microspheres has a significant influence on drug release kinetics. Despite the advantages of controlled drug delivery, previous attempts to achieve predetermined release rates have seen limited success. This study develops a tool to tailor desired release kinetics by combining microsphere batches of specified mean diameter and size distribution. A fluid mechanics based correlation that predicts the average size of Poly(Lactide-co-Glycolide) [PLG] microspheres from the manufacturing technique, is constructed and validated by comparison with experimental results. The microspheres produced are accurately represented by the Rosin-Rammler mathematical distribution function. A mathematical model is formulated that incorporates the microsphere distribution function to predict the release kinetics from mono-dispersed and poly-dispersed populations. Through this mathematical model, different release kinetics can be achieved by combining different sized populations in different ratios. The resulting design tool should prove useful for the pharmaceutical industry to achieve designer release kinetics.
DISQOVER the Landcover - R based tools for quantitative vegetation reconstruction
NASA Astrophysics Data System (ADS)
Theuerkauf, Martin; Couwenberg, John; Kuparinen, Anna; Liebscher, Volkmar
2016-04-01
Quantitative methods have gained increasing attention in the field of vegetation reconstruction over the past decade. The DISQOVER package implements key tools in the R programming environment for statistical computing. This implementation has three main goals: 1) Provide a user-friendly, transparent, and open implementation of the methods 2) Provide full flexibility in all parameters (including the underlying pollen dispersal model) 3) Provide a sandbox for testing the sensitivity of the methods. We illustrate the possibilities of the package with tests of the REVEALS model and of the extended downscaling approach (EDA). REVEALS (Sugita 2007) is designed to translate pollen data from large lakes into regional vegetation composition. We applied REVEALSinR on pollen data from Lake Tiefer See (NE-Germany) and validated the results with historic landcover data. The results clearly show that REVEALS is sensitive to the underlying pollen dispersal model; REVEALS performs best when applied with the state of the art Lagrangian stochastic dispersal model. REVEALS applications with the conventional Gauss model can produce realistic results, but only if unrealistic pollen productivity estimates are used. The EDA (Theuerkauf et al. 2014) employs pollen data from many sites across a landscape to explore whether species distributions in the past were related to know stable patterns in the landscape, e.g. the distribution of soil types. The approach had so far only been implemented in simple settings with few taxa. Tests with EDAinR show that it produces sharp results in complex settings with many taxa as well. The DISQOVER package is open source software, available from disqover.uni-greifswald.de. This website can be used as a platform to discuss and improve quantitative methods in vegetation reconstruction. To introduce the tool we plan a short course in autumn of this year. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution (ICLEA; www.iclea.de) of the Helmholtz Association (Grant Number VH-VI-415) and is supported by Helmholtz infrastructure of the Terrestrial Environmental Observatory (TERENO) North-eastern Germany.
Modelling threats to water quality from fire suppression chemicals and post-fire erosion
NASA Astrophysics Data System (ADS)
Hyde, Kevin; Ziemniak, Chris; Elliot, William; Samuels, William
2014-05-01
Misapplication of fire retardant chemicals into streams and rivers may threaten aquatic life. The possible threat depends on the contaminant concentration that, in part, is controlled by dispersion within flowing water. In the event of a misapplication, methods are needed to rapidly estimate the chemical mass entering the waterway and the dispersion and transport within the system. Here we demonstrate a new tool that calculates the chemical mass based on aircraft delivery system, fire chemical type, and stream and intersect geometry. The estimated mass is intended to be transferred into a GIS module that uses real-time stream data to map and simulate the dispersion and transport downstream. This system currently accounts only for aqueous transport. We envision that the GIS module can be modified to incorporate sediment transport, specifically to model movement of sediments from post-fire erosion. This modification could support assessment of threats of post-fire erosion to water quality and water supply systems.
Methodologies for evaluating performance and assessing uncertainty of atmospheric dispersion models
NASA Astrophysics Data System (ADS)
Chang, Joseph C.
This thesis describes methodologies to evaluate the performance and to assess the uncertainty of atmospheric dispersion models, tools that predict the fate of gases and aerosols upon their release into the atmosphere. Because of the large economic and public-health impacts often associated with the use of the dispersion model results, these models should be properly evaluated, and their uncertainty should be properly accounted for and understood. The CALPUFF, HPAC, and VLSTRACK dispersion modeling systems were applied to the Dipole Pride (DP26) field data (˜20 km in scale), in order to demonstrate the evaluation and uncertainty assessment methodologies. Dispersion model performance was found to be strongly dependent on the wind models used to generate gridded wind fields from observed station data. This is because, despite the fact that the test site was a flat area, the observed surface wind fields still showed considerable spatial variability, partly because of the surrounding mountains. It was found that the two components were comparable for the DP26 field data, with variability more important than uncertainty closer to the source, and less important farther away from the source. Therefore, reducing data errors for input meteorology may not necessarily increase model accuracy due to random turbulence. DP26 was a research-grade field experiment, where the source, meteorological, and concentration data were all well-measured. Another typical application of dispersion modeling is a forensic study where the data are usually quite scarce. An example would be the modeling of the alleged releases of chemical warfare agents during the 1991 Persian Gulf War, where the source data had to rely on intelligence reports, and where Iraq had stopped reporting weather data to the World Meteorological Organization since the 1981 Iran-Iraq-war. Therefore the meteorological fields inside Iraq must be estimated by models such as prognostic mesoscale meteorological models, based on observational data from areas outside of Iraq, and using the global fields simulated by the global meteorological models as the initial and boundary conditions for the mesoscale models. It was found that while comparing model predictions to observations in areas outside of Iraq, the predicted surface wind directions had errors between 30 to 90 deg, but the inter-model differences (or uncertainties) in the predicted surface wind directions inside Iraq, where there were no onsite data, were fairly constant at about 70 deg. (Abstract shortened by UMI.)
Fractional vector calculus for fractional advection dispersion
NASA Astrophysics Data System (ADS)
Meerschaert, Mark M.; Mortensen, Jeff; Wheatcraft, Stephen W.
2006-07-01
We develop the basic tools of fractional vector calculus including a fractional derivative version of the gradient, divergence, and curl, and a fractional divergence theorem and Stokes theorem. These basic tools are then applied to provide a physical explanation for the fractional advection-dispersion equation for flow in heterogeneous porous media.
Dispersal Ecology Informs Design of Large-Scale Wildlife Corridors.
Benz, Robin A; Boyce, Mark S; Thurfjell, Henrik; Paton, Dale G; Musiani, Marco; Dormann, Carsten F; Ciuti, Simone
Landscape connectivity describes how the movement of animals relates to landscape structure. The way in which movement among populations is affected by environmental conditions is important for predicting the effects of habitat fragmentation, and for defining conservation corridors. One approach has been to map resistance surfaces to characterize how environmental variables affect animal movement, and to use these surfaces to model connectivity. However, current connectivity modelling typically uses information on species location or habitat preference rather than movement, which unfortunately may not capture dispersal limitations. Here we emphasize the importance of implementing dispersal ecology into landscape connectivity, i.e., observing patterns of habitat selection by dispersers during different phases of new areas' colonization to infer habitat connectivity. Disperser animals undertake a complex sequence of movements concatenated over time and strictly dependent on species ecology. Using satellite telemetry, we investigated the movement ecology of 54 young male elk Cervus elaphus, which commonly disperse, to design a corridor network across the Northern Rocky Mountains. Winter residency period is often followed by a spring-summer movement phase, when young elk migrate with mothers' groups to summering areas, and by a further dispersal bout performed alone to a novel summer area. After another summer residency phase, dispersers usually undertake a final autumnal movement to reach novel wintering areas. We used resource selection functions to identify winter and summer habitats selected by elk during residency phases. We then extracted movements undertaken during spring to move from winter to summer areas, and during autumn to move from summer to winter areas, and modelled them using step selection functions. We built friction surfaces, merged the different movement phases, and eventually mapped least-cost corridors. We showed an application of this tool by creating a scenario with movement predicted as there were no roads, and mapping highways' segments impeding elk connectivity.
Dispersal Ecology Informs Design of Large-Scale Wildlife Corridors
Benz, Robin A.; Boyce, Mark S.; Thurfjell, Henrik; Paton, Dale G.; Musiani, Marco; Dormann, Carsten F.; Ciuti, Simone
2016-01-01
Landscape connectivity describes how the movement of animals relates to landscape structure. The way in which movement among populations is affected by environmental conditions is important for predicting the effects of habitat fragmentation, and for defining conservation corridors. One approach has been to map resistance surfaces to characterize how environmental variables affect animal movement, and to use these surfaces to model connectivity. However, current connectivity modelling typically uses information on species location or habitat preference rather than movement, which unfortunately may not capture dispersal limitations. Here we emphasize the importance of implementing dispersal ecology into landscape connectivity, i.e., observing patterns of habitat selection by dispersers during different phases of new areas’ colonization to infer habitat connectivity. Disperser animals undertake a complex sequence of movements concatenated over time and strictly dependent on species ecology. Using satellite telemetry, we investigated the movement ecology of 54 young male elk Cervus elaphus, which commonly disperse, to design a corridor network across the Northern Rocky Mountains. Winter residency period is often followed by a spring-summer movement phase, when young elk migrate with mothers’ groups to summering areas, and by a further dispersal bout performed alone to a novel summer area. After another summer residency phase, dispersers usually undertake a final autumnal movement to reach novel wintering areas. We used resource selection functions to identify winter and summer habitats selected by elk during residency phases. We then extracted movements undertaken during spring to move from winter to summer areas, and during autumn to move from summer to winter areas, and modelled them using step selection functions. We built friction surfaces, merged the different movement phases, and eventually mapped least-cost corridors. We showed an application of this tool by creating a scenario with movement predicted as there were no roads, and mapping highways’ segments impeding elk connectivity. PMID:27657496
Importance of a 3D forward modeling tool for surface wave analysis methods
NASA Astrophysics Data System (ADS)
Pageot, Damien; Le Feuvre, Mathieu; Donatienne, Leparoux; Philippe, Côte; Yann, Capdeville
2016-04-01
Since a few years, seismic surface waves analysis methods (SWM) have been widely developed and tested in the context of subsurface characterization and have demonstrated their effectiveness for sounding and monitoring purposes, e.g., high-resolution tomography of the principal geological units of California or real time monitoring of the Piton de la Fournaise volcano. Historically, these methods are mostly developed under the assumption of semi-infinite 1D layered medium without topography. The forward modeling is generally based on Thomson-Haskell matrix based modeling algorithm and the inversion is driven by Monte-Carlo sampling. Given their efficiency, SWM have been transfered to several scale of which civil engineering structures in order to, e.g., determine the so-called V s30 parameter or assess other critical constructional parameters in pavement engineering. However, at this scale, many structures may often exhibit 3D surface variations which drastically limit the efficiency of SWM application. Indeed, even in the case of an homogeneous structure, 3D geometry can bias the dispersion diagram of Rayleigh waves up to obtain discontinuous phase velocity curves which drastically impact the 1D mean velocity model obtained from dispersion inversion. Taking advantages of high-performance computing center accessibility and wave propagation modeling algorithm development, it is now possible to consider the use of a 3D elastic forward modeling algorithm instead of Thomson-Haskell method in the SWM inversion process. We use a parallelized 3D elastic modeling code based on the spectral element method which allows to obtain accurate synthetic data with very low numerical dispersion and a reasonable numerical cost. In this study, we choose dike embankments as an illustrative example. We first show that their longitudinal geometry may have a significant effect on dispersion diagrams of Rayleigh waves. Then, we demonstrate the necessity of 3D elastic modeling as a forward problem for the inversion of dispersion curves.
Doucet, Nicolas
2011-04-01
Despite impressive progress in protein engineering and design, our ability to create new and efficient enzyme activities remains a laborious and time-consuming endeavor. In the past few years, intricate combinations of rational mutagenesis, directed evolution and computational methods have paved the way to exciting engineering examples and are now offering a new perspective on the structural requirements of enzyme activity. However, these structure-function analyses are usually guided by the time-averaged static models offered by enzyme crystal structures, which often fail to describe the functionally relevant 'invisible states' adopted by proteins in space and time. To alleviate such limitations, NMR relaxation dispersion experiments coupled to mutagenesis studies have recently been applied to the study of enzyme catalysis, effectively complementing 'structure-function' analyses with 'flexibility-function' investigations. In addition to offering quantitative, site-specific information to help characterize residue motion, these NMR methods are now being applied to enzyme engineering purposes, providing a powerful tool to help characterize the effects of controlling long-range networks of flexible residues affecting enzyme function. Recent advancements in this emerging field are presented here, with particular attention to mutagenesis reports highlighting the relevance of NMR relaxation dispersion tools in enzyme engineering.
NASA Astrophysics Data System (ADS)
Gama Goicochea, A.; Balderas Altamirano, M. A.; Lopez-Esparza, R.; Waldo-Mendoza, Miguel A.; Perez, E.
2015-09-01
The connection between fundamental interactions acting in molecules in a fluid and macroscopically measured properties, such as the viscosity between colloidal particles coated with polymers, is studied here. The role that hydrodynamic and Brownian forces play in colloidal dispersions is also discussed. It is argued that many-body systems in which all these interactions take place can be accurately solved using computational simulation tools. One of those modern tools is the technique known as dissipative particle dynamics, which incorporates Brownian and hydrodynamic forces, as well as basic conservative interactions. A case study is reported, as an example of the applications of this technique, which consists of the prediction of the viscosity and friction between two opposing parallel surfaces covered with polymer chains, under the influence of a steady flow. This work is intended to serve as an introduction to the subject of colloidal dispersions and computer simulations, for final-year undergraduate students and beginning graduate students who are interested in beginning research in soft matter systems. To that end, a computational code is included that students can use right away to study complex fluids in equilibrium.
Numerical simulation of water injection into vapor-dominated reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruess, K.
1995-01-01
Water injection into vapor-dominated reservoirs is a means of condensate disposal, as well as a reservoir management tool for enhancing energy recovery and reservoir life. We review different approaches to modeling the complex fluid and heat flow processes during injection into vapor-dominated systems. Vapor pressure lowering, grid orientation effects, and physical dispersion of injection plumes from reservoir heterogeneity are important considerations for a realistic modeling of injection effects. An example of detailed three-dimensional modeling of injection experiments at The Geysers is given.
NASA Astrophysics Data System (ADS)
Reymond, Dominique
2017-04-01
We present a tool for computing the complete arrival times of the dispersed wave-train of a tsunami. The calculus is made using the exact formulation of the tsunami dispersion (and without approximations), at any desired periods between one hour or more (concerning the gravity waves propagation) until 10s (the highly dispersed mode). The computation of the travel times is based on the a summation of the necessary time for a tsunami to cross all the elementary blocs of a grid of bathymetry following a path between the source and receiver at a given period. In addition the source dimensions and the focal mechanism are taken into account to adjust the minimum travel time to the different possible points of emission of the source. A possible application of this tool is to forecast the arrival time of late arrivals of tsunami waves that could produce the resonnance of some bays and sites at higher frequencies than the gravity mode. The theoretical arrival times are compared to the observed ones and to the results obtained by TTT (P. Wessel, 2009) and the ones obtained by numerical simulations. References: Wessel, P. (2009). Analysis of oberved and predicted tsunami travel times for the Pacic and Indian oceans. Pure Appl. Geophys., 166:301-324.
Road traffic air and noise pollution exposure assessment - A review of tools and techniques.
Khan, Jibran; Ketzel, Matthias; Kakosimos, Konstantinos; Sørensen, Mette; Jensen, Steen Solvang
2018-09-01
Road traffic induces air and noise pollution in urban environments having negative impacts on human health. Thus, estimating exposure to road traffic air and noise pollution (hereafter, air and noise pollution) is important in order to improve the understanding of human health outcomes in epidemiological studies. The aims of this review are (i) to summarize current practices of modelling and exposure assessment techniques for road traffic air and noise pollution (ii) to highlight the potential of existing tools and techniques for their combined exposure assessment for air and noise together with associated challenges, research gaps and priorities. The study reviews literature about air and noise pollution from urban road traffic, including other relevant characteristics such as the employed dispersion models, Geographic Information System (GIS)-based tool, spatial scale of exposure assessment, study location, sample size, type of traffic data and building geometry information. Deterministic modelling is the most frequently used assessment technique for both air and noise pollution of short-term and long-term exposure. We observed a larger variety among air pollution models as compared to the applied noise models. Correlations between air and noise pollution vary significantly (0.05-0.74) and are affected by several parameters such as traffic attributes, building attributes and meteorology etc. Buildings act as screens for the dispersion of pollution, but the reduction effect is much larger for noise than for air pollution. While, meteorology has a greater influence on air pollution levels as compared to noise, although also important for noise pollution. There is a significant potential for developing a standard tool to assess combined exposure of traffic related air and noise pollution to facilitate health related studies. GIS, due to its geographic nature, is well established and has a significant capability to simultaneously address both exposures. Copyright © 2018 Elsevier B.V. All rights reserved.
A Tale of Two Regions: Landscape Ecological Planning for Shale Gas Energy Futures
NASA Astrophysics Data System (ADS)
Murtha, T., Jr.; Schroth, O.; Orland, B.; Goldberg, L.; Mazurczyk, T.
2015-12-01
As we increasingly embrace deep shale gas deposits to meet global energy demands new and dispersed local and regional policy and planning challenges emerge. Even in regions with long histories of energy extraction, such as coal, shale gas and the infrastructure needed to produce the gas and transport it to market offers uniquely complex transformations in land use and landcover not previously experienced. These transformations are fast paced, dispersed and can overwhelm local and regional planning and regulatory processes. Coupled to these transformations is a structural confounding factor. While extraction and testing are carried out locally, regulation and decision-making is multilayered, often influenced by national and international factors. Using a geodesign framework, this paper applies a set of geospatial landscape ecological planning tools in two shale gas settings. First, we describe and detail a series of ongoing studies and tools that we have developed for communities in the Marcellus Shale region of the eastern United States, specifically the northern tier of Pennsylvania. Second, we apply a subset of these tools to potential gas development areas of the Fylde region in Lancashire, United Kingdom. For the past five years we have tested, applied and refined a set of place based and data driven geospatial models for forecasting, envisioning, analyzing and evaluating shale gas activities in northern Pennsylvania. These models are continuously compared to important landscape ecological planning challenges and priorities in the region, e.g. visual and cultural resource preservation. Adapting and applying these tools to a different landscape allow us to not only isolate and define important regulatory and policy exigencies in each specific setting, but also to develop and refine these models for broader application. As we continue to explore increasingly complex energy solutions globally, we need an equally complex comparative set of landscape ecological planning tools to inform policy, design and regional planning. Adapting tools and techniques developed in Pennsylvania where shale gas extraction is ongoing to Lancashire, where industry is still in the exploratory phase offers a key opportunity to test and refine more generalizable models.
Breusing, Corinna; Biastoch, Arne; Drews, Annika; Metaxas, Anna; Jollivet, Didier; Vrijenhoek, Robert C; Bayer, Till; Melzner, Frank; Sayavedra, Lizbeth; Petersen, Jillian M; Dubilier, Nicole; Schilhabel, Markus B; Rosenstiel, Philip; Reusch, Thorsten B H
2016-09-12
Deep-sea hydrothermal vents are patchily distributed ecosystems inhabited by specialized animal populations that are textbook meta-populations. Many vent-associated species have free-swimming, dispersive larvae that can establish connections between remote populations. However, connectivity patterns among hydrothermal vents are still poorly understood because the deep sea is undersampled, the molecular tools used to date are of limited resolution, and larval dispersal is difficult to measure directly. A better knowledge of connectivity is urgently needed to develop sound environmental management plans for deep-sea mining. Here, we investigated larval dispersal and contemporary connectivity of ecologically important vent mussels (Bathymodiolus spp.) from the Mid-Atlantic Ridge by using high-resolution ocean modeling and population genetic methods. Even when assuming a long pelagic larval duration, our physical model of larval drift suggested that arrival at localities more than 150 km from the source site is unlikely and that dispersal between populations requires intermediate habitats ("phantom" stepping stones). Dispersal patterns showed strong spatiotemporal variability, making predictions of population connectivity challenging. The assumption that mussel populations are only connected via additional stepping stones was supported by contemporary migration rates based on neutral genetic markers. Analyses of population structure confirmed the presence of two southern and two hybridizing northern mussel lineages that exhibited a substantial, though incomplete, genetic differentiation. Our study provides insights into how vent animals can disperse between widely separated vent habitats and shows that recolonization of perturbed vent sites will be subject to chance events, unless connectivity is explicitly considered in the selection of conservation areas. Copyright © 2016 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
We integrated classic and Bayesian phylogeographic tools with a paleodistribution modeling approach to study the historical demographic processes that shaped the distribution of the invasive ant Wasmannia auropunctata in its native South America. We generated mitochondrial Cytochrome Oxidase I seque...
Li, Jing; Fan, Na; Wang, Xin; Li, Chang; Sun, Mengchi; Wang, Jian; Fu, Qiang; He, Zhonggui
2017-08-30
The present work studied interfacial interactions of amorphous solid dispersions matrix of indometacin (IMC) that established using PVP K30 (PVP) and PEG 6000 (PEG) by focusing on their interaction forces and wetting process. Infrared spectroscopy (IR), raman spectroscopy, X-ray photoelectron spectra and contact angle instrument were used throughout the study. Hydrogen bond energy formed between PEG and IMC were stronger than that of PVP and IMC evidenced by molecular modeling measurement. The blue shift of raman spectroscopy confirmed that hydrogen bonding forces were formed between IMC and two polymers. The contact angle study can be used as an easy method to determine the dissolution mechanism of amorphous solid dispersions through fitting the profile of contact angle of water on a series of tablets. It is believed that the track of interfacial interactions will certainly become powerful tools to for designing and evaluating amorphous solid dispersions. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Jordan, F. L., Jr.; Mclemore, H. C.; Bragg, M. B.
1978-01-01
The current status of aerial applications technology research at the Langley's Vortex Research Facility and Full-Scale Wind Tunnel is reviewed. Efforts have been directed mainly toward developing and validating the required experimental and theoretical research tools. A capability to simulate aerial dispersal of materials from agricultural airplanes with small-scale airplane models, numerical methods, and dynamically scaled test particles was demonstrated. Tests on wake modification concepts have proved the feasibility of tailoring wake properties aerodynamically to produce favorable changes in deposition and to provide drift control. An aerodynamic evaluation of the Thrush Commander 800 agricultural airplane with various dispersal systems installed is described. A number of modifications intended to provide system improvement to both airplane and dispersal system are examined, and a technique for documenting near-field spray characteristics is evaluated.
NASA Astrophysics Data System (ADS)
Mignani, A. G.; Ciaccheri, L.; Mencaglia, A. A.; Di Sanzo, R.; Carabetta, S.; Russo, M. T.
2005-05-01
Raman spectroscopy performed using optical fibers, with excitation at 1064 nm and a dispersive detection scheme, was utilized to analyze a selection of unifloral honeys produced in the Italian region of Calabria. The honey samples had three different botanical origins: chestnut, citrus, and acacia, respectively. A multivariate processing of the spectroscopic data enabled us to distinguish their botanical origin, and to build predictive models for quantifying their main sugars. This experiment indicates the excellent potentials of Raman spectroscopy as an analytical tool for the nondestructive and rapid assessment of food-quality indicators.
NASA Astrophysics Data System (ADS)
Verginelli, Iason; Nocentini, Massimo; Baciocchi, Renato
2017-09-01
Simplified analytical solutions of fate and transport models are often used to carry out risk assessment on contaminated sites, to evaluate the long-term air quality in relation to volatile organic compounds in either soil or groundwater. Among the different assumptions employed to develop these solutions, in this work we focus on those used in the ASTM-RBCA ;box model; for the evaluation of contaminant dispersion in the atmosphere. In this simple model, it is assumed that the contaminant volatilized from the subsurface is dispersed in the atmosphere within a mixing height equal to two meters, i.e. the height of the breathing zone. In certain cases, this simplification could lead to an overestimation of the outdoor air concentration at the point of exposure. In this paper we first discuss the maximum source lengths (in the wind direction) for which the application of the ;box model; can be considered acceptable. Specifically, by comparing the results of ;box model; with the SCREEN3 model of U.S.EPA we found that under very stable atmospheric conditions (class F) the ASTM-RBCA approach provides acceptable results for source lengths up to 200 m while for very unstable atmospheric conditions (class A and B) the overestimation of the concentrations at the point of the exposure can be already observed for source lengths of only 10 m. In the latter case, the overestimation of the ;box model; can be of more than one order of magnitude for source lengths above 500 m. To overcome this limitation, in this paper we introduce a simple analytical solution that can be used for the calculation of the concentration at the point of exposure for large contaminated sites. The method consists in the introduction of an equivalent mixing zone height that allows to account for the dispersion of the contaminants along the source length while keeping the simplistic ;box model; approach that is implemented in most of risk assessment tools that are based on the ASTM-RBCA standard (e.g. RBCA toolkit). Based on our testing, we found that the developed model replicates very well the results of the more sophisticated dispersion SCREEN3 model with deviations always below 10%. The key advantage of this approach is that it can be very easily incorporated in the current risk assessment screening tools that are based on the ASTM standards while ensuring a more accurate evaluation of the concentration at the point of exposure.
USE OF CHEMICAL DISPERSANTS FOR MARINE OIL SPILLS
Chemical dispersants are one of the tools available to oil spill response personnel to control the spread of an oil slick. The manual presents information from the literature relative to dispersant effectiveness, toxicity and other environmental factors, regulatory and administra...
Effects of Salinity on Oil Spill Dispersant Toxicity in Estuarine Organisms
NASA Astrophysics Data System (ADS)
Eckmann, C. A.
2016-02-01
Chemical dispersants can be a useful tool to mitigate oil spills, but the potential risks to sensitive estuarine species should be carefully considered. To improve the decision making process, more information is needed regarding the effects of oil spill dispersants on the health of coastal ecosystems under variable environmental conditions such as salinity. The two oil dispersants used in this study were Corexit ® 9500 and Finasol ® OSR 52. Corexit ® 9500 was the primary dispersant used during the 2010 Deepwater Horizon oil spill event, while Finasol® OSR 52 is another dispersant approved for oil spill response in the U.S., yet considerably less is known regarding its toxicity to estuarine species. The grass shrimp, Palaemonetes pugio, was used as a model estuarine species. It is a euryhaline species that tolerates salinities from brackish to full strength seawater. Adult and larval life stages were tested with each dispersant at three salinities, 5ppt, 20ppt, and 30ppt. Median acute lethal toxicity thresholds were calculated. Lipid peroxidation assays were conducted on surviving shrimp to investigate sublethal effects. The toxicity of both dispersants was significantly influenced by salinity, with greatest toxicity observed at the lowest salinity tested. Larval shrimp were significantly more sensitive than adult shrimp to both dispersants, and both life stages were significantly more sensitive to Finasol than to Corexit. Furthermore, significant sublethal effects were seen at higher concentrations of both dispersants compared to the control. These data will enable environmental managers to make informed decisions regarding dispersant use in future oil spills.
Effects of Salinity on Oil Spill Dispersant Toxicity in Estuarine Organisms
NASA Astrophysics Data System (ADS)
Eckmann, C. A.
2015-12-01
Chemical dispersants can be a useful tool to mitigate oil spills, but the potential risks to sensitive estuarine species should be carefully considered. To improve the decision making process, more information is needed regarding the effects of oil spill dispersants on the health of coastal ecosystems under variable environmental conditions such as salinity. The two oil dispersants used in this study were Corexit ® 9500 and Finasol ® OSR 52. Corexit ® 9500 was the primary dispersant used during the 2010 Deepwater Horizon oil spill event, while Finasol® OSR 52 is another dispersant approved for oil spill response in the U.S., yet considerably less is known regarding its toxicity to estuarine species. The grass shrimp, Palaemonetes pugio, was used as a model estuarine species. It is a euryhaline species that tolerates salinities from brackish to full strength seawater. Adult and larval life stages were tested with each dispersant at three salinities, 5ppt, 20ppt, and 30ppt. Median acute lethal toxicity thresholds were calculated. Lipid peroxidation assays were conducted on surviving shrimp to investigate sublethal effects. The toxicity of both dispersants was significantly influenced by salinity, with greatest toxicity observed at the lowest salinity tested. Larval shrimp were significantly more sensitive than adult shrimp to both dispersants, and both life stages were significantly more sensitive to Finasol than to Corexit. Furthermore, significant sublethal effects were seen at higher concentrations of both dispersants compared to the control. These data will enable environmental managers to make informed decisions regarding dispersant use in future oil spills.
NASA Astrophysics Data System (ADS)
Önnerud, Hans; Wallin, Sara; Östmark, Henric; Menning, Dennis; Ek, Stefan; Ellis, Hanna; Kölhed, Malin
2011-06-01
Results of dispersion experiments and dispersion modelling of explosives, drugs, and their precursors will be presented. The dispersion of chemicals evolving during preparation of home made explosives and a drug produced in an improvised manner in an ordinary kitchen has been measured. Experiments with concentration of hydrogen peroxide have been performed during spring and summer of 2009 and 2010 and further experiments with concentration of hydrogen peroxide, synthesis and drying of TATP and Methamphetamine are planned for the spring and summer of 2011. Results from the experiments are compared to dispersion modelling to achieve a better understanding of the dispersion processes and the resulting substances and amounts available for detection outside the kitchen at distances of 10-30 m and longer. Typical concentration levels have been determined as a function of environmental conditions. The experiments and modelling are made as a part of the LOTUS project aimed at detecting and locating the illicit production of explosives and drugs in an urban environment. It can be concluded that the proposed LOTUS system concept, using mobile automatic sensors, data transfer, location via GSM/GPS for on-line detection of illicit production of explosive or precursors to explosives and drugs is a viable approach and is in accordance with historical and today's illicit bomb manufacturing. The overall objective and approach of the LOTUS project will also be presented together with two more projects called PREVAIL and EMPHASIS both aiming at hindering or finding illicit production of home made explosives.
Tracking aerosol plumes: lidar, modeling, and in situ measurement
NASA Astrophysics Data System (ADS)
Calhoun, Ron J.; Heap, Robert; Sommer, Jeffrey; Princevac, Marko; Peccia, Jordan; Fernando, H.
2004-09-01
The authors report on recent progress of on-going research at Arizona State University for tracking aerosol plumes using remote sensing and modeling approaches. ASU participated in a large field experiment, Joint Urban 2003, focused on urban and suburban flows and dispersion phenomena which took place in Oklahoma City during summer 2003. A variety of instruments were deployed, including two Doppler-lidars. ASU deployed one lidar and the Army Research deployed the other. Close communication and collaboration has produced datasets which will be available for dual Doppler analysis. The lidars were situated in a way to provide insight into dynamical flow structures caused by the urban core. Complementary scanning by the two lidars during the July 4 firework display in Oklahoma City demonstrated that smoke plumes could be tracked through the atmosphere above the urban area. Horizontal advection and dispersion of the smoke plumes were tracked on two horizontal planes by the ASU lidar and in two vertical planes with a similar lidar operated by the Army Research Laboratory. A number of plume dispersion modeling systems are being used at ASU for the modeling of plumes in catastrophic release scenarios. Progress using feature tracking techniques and data fusion approaches is presented for utilizing single and dual radial velocity fields from coherent Doppler lidar to improve dispersion modeling. The possibility of producing sensor/computational tools for civil and military defense applications appears worth further investigation. An experiment attempting to characterize bioaerosol plumes (using both lidar and in situ biological measurements) associated with the application of biosolids on agricultural fields is in progress at the time of writing.
NASA Astrophysics Data System (ADS)
Golanski, L.; Guiot, A.; Pras, M.; Malarde, M.; Tardif, F.
2012-07-01
It is of great interest to set up a reproducible and sensitive method able to qualify nanomaterials before their market introduction in terms of their constitutive nanoparticle release-ability in usage. Abrasion was performed on polycarbonate, epoxy, and PA11 polymers containing carbone nanotubes (CNT) up to 4 %wt. Using Taber linear standard tool and standard abrasion conditions no release from polymer coatings containing CNT was measured. In this study, new practical tools inducing non-standardized stresses able to compete with van der Waals forces were developed and tested on model polymers, showing controlled CNT dispersion. These stresses are still realistic, corresponding to scratching, instantaneous mechanical shocks, and abrasion of the surface. They offer an efficient way to quantify if release is possible from nanomaterials under different mechanical stresses and therefore give an idea about the mechanisms that favors it. Release under mechanical shocks and hard abrasion was obtained using these tools but only when nanomaterials present a bad dispersion of CNT within the epoxy matrix. Under the same conditions no release was obtained from the same material presenting a good dispersion. The CNT used in this study showed an external diameter Dext = 12 nm, an internal diameter Din = 5 nm, and a mean length of 1 μm. Release from paints under hard abrasion using a standard rotative Taber tool was obtained from a intentionaly non-optimized paint containing SiO2 nanoparticles up to 35 %wt. The primary diameter of the SiO2 was estimated to be around 12 nm. A metallic rake was efficient to remove nanoparticles from a non-woven fabric nanomaterial.
User’s Guide for the SAS (Stand-Off Attack Simulation) Computer Model.
1982-01-15
A99QAXFD000-01 Albuquerque, New Mexico 87110 I1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Director 15 January 1982 Defense Nuclear Aqency 13...computer model. SAS is an effective survivability and security system design tool which allows an analyst to compare the relative effectiveness of selected...mounted against other systems during uploading for dispersal or for non -emergency relocation. GLCM and LANCE must be mobilized and formed into convoys
NASA Astrophysics Data System (ADS)
Lien, F. S.; Yee, E.; Ji, H.; Keats, A.; Hsieh, K. J.
2006-06-01
The release of chemical, biological, radiological, or nuclear (CBRN) agents by terrorists or rogue states in a North American city (densely populated urban centre) and the subsequent exposure, deposition and contamination are emerging threats in an uncertain world. The modeling of the transport, dispersion, deposition and fate of a CBRN agent released in an urban environment is an extremely complex problem that encompasses potentially multiple space and time scales. The availability of high-fidelity, time-dependent models for the prediction of a CBRN agent's movement and fate in a complex urban environment can provide the strongest technical and scientific foundation for support of Canada's more broadly based effort at advancing counter-terrorism planning and operational capabilities.The objective of this paper is to report the progress of developing and validating an integrated, state-of-the-art, high-fidelity multi-scale, multi-physics modeling system for the accurate and efficient prediction of urban flow and dispersion of CBRN (and other toxic) materials discharged into these flows. Development of this proposed multi-scale modeling system will provide the real-time modeling and simulation tool required to predict injuries, casualties and contamination and to make relevant decisions (based on the strongest technical and scientific foundations) in order to minimize the consequences of a CBRN incident in a populated centre.
What Can We Learn from Hadronic and Radiative Decays of Light Mesons?
NASA Astrophysics Data System (ADS)
Kubis, Bastian
2013-04-01
Chiral perturbation theory offers a powerful tool for the investigation of light pseudoscalar mesons. It incorporates the fundamental symmetries of QCD, interrelates various processes, and allows to link these to the light quark masses. Its shortcomings lie in a limited energy range: the radius of convergence of the chiral expansion is confined to below resonance scales. Furthermore, the strongest consequences of chiral symmetry are manifest for pseudoscalars (pions, kaons, eta) only: vector mesons, e.g., have a severe impact in particular for reactions involving photons. In this talk, I advocate dispersions relations as another model-independent tool to extend the applicability range of chiral perturbation theory. They even allow to tackle the physics of vector mesons in a rigorous way. It will be shown how dispersive methods can be used to resum large rescattering effects, and to provide model-independent links between hadronic and radiative decay modes. Examples to be discussed will include decays of the eta meson, giving access to light-quark-mass ratios or allowing to test the chiral anomaly; and meson transition form factors, which have an important impact on the hadronic light-by-light-scattering contribution to the anomalous magnetic moment of the muon.
Prince, Roger C; Butler, Josh D
2014-01-01
Dispersants are important tools in oil spill response. Taking advantage of the energy in even small waves, they disperse floating oil slicks into tiny droplets (<70 μm) that entrain in the water column and drift apart so that they do not re-agglomerate to re-form a floating slick. The dramatically increased surface area allows microbial access to much more of the oil, and diffusion and dilution lead to oil concentrations where natural background levels of biologically available oxygen, nitrogen, and phosphorus are sufficient for microbial growth and oil consumption. Dispersants are only used on substantial spills in relatively deep water (usually >10 m), conditions that are impossible to replicate in the laboratory. To date, laboratory experiments aimed at following the biodegradation of dispersed oil usually show only minimal stimulation of the rate of biodegradation, but principally because the oil in these experiments disperses fairly effectively without dispersant. What is needed is a test protocol that allows comparison between an untreated slick that remains on the water surface during the entire biodegradation study and dispersant-treated oil that remains in the water column as small dispersed oil droplets. We show here that when this is accomplished, the rate of biodegradation is dramatically stimulated by an effective dispersant, Corexit 9500. Further development of this approach might result in a useful tool for comparing the full benefits of different dispersants.
The primary biodegradation of dispersed crude oil in the sea.
Prince, Roger C; McFarlin, Kelly M; Butler, Josh D; Febbo, Eric J; Wang, Frank C Y; Nedwed, Tim J
2013-01-01
Dispersants are important tools for stimulating the biodegradation of large oil spills. They are essentially a bioremediation tool - aiming to stimulate the natural process of aerobic oil biodegradation by dispersing oil into micron-sized droplets that become so dilute in the water column that the natural levels of biologically available nitrogen, phosphorus and oxygen are sufficient for microbial growth. Many studies demonstrate the efficacy of dispersants in getting oil off the water surface. Here we show that biodegradation of dispersed oil is prompt and extensive when oil is present at the ppm levels expected from a successful application of dispersants - more than 80% of the hydrocarbons of lightly weathered Alaska North Slope crude oil were degraded in 60 d at 8 °C in unamended New Jersey (USA) seawater when the oil was present at 2.5 ppm by volume. The apparent halftime of the biodegradation of the hydrocarbons was 13.8 d in the absence of dispersant, and 11 d in the presence of Corexit 9500 - similar to rates extrapolated from the field in the Deepwater Horizon response. Copyright © 2012 Elsevier Ltd. All rights reserved.
Two-dimensional sparse wavenumber recovery for guided wavefields
NASA Astrophysics Data System (ADS)
Sabeti, Soroosh; Harley, Joel B.
2018-04-01
The multi-modal and dispersive behavior of guided waves is often characterized by their dispersion curves, which describe their frequency-wavenumber behavior. In prior work, compressive sensing based techniques, such as sparse wavenumber analysis (SWA), have been capable of recovering dispersion curves from limited data samples. A major limitation of SWA, however, is the assumption that the structure is isotropic. As a result, SWA fails when applied to composites and other anisotropic structures. There have been efforts to address this issue in the literature, but they either are not easily generalizable or do not sufficiently express the data. In this paper, we enhance the existing approaches by employing a two-dimensional wavenumber model to account for direction-dependent velocities in anisotropic media. We integrate this model with tools from compressive sensing to reconstruct a wavefield from incomplete data. Specifically, we create a modified two-dimensional orthogonal matching pursuit algorithm that takes an undersampled wavefield image, with specified unknown elements, and determines its sparse wavenumber characteristics. We then recover the entire wavefield from the sparse representations obtained with our small number of data samples.
Drawing lines and borders: how the dehiscent fruit of Arabidopsis is patterned.
Dinneny, José R; Yanofsky, Martin F
2005-01-01
The advent of fruits marked a key innovation in the evolution of flowering plants and helped generate a diverse array of mechanisms for seed dispersal. In the model plant, Arabidopsis thaliana, seed dispersal occurs through a process known as "pod-shatter" in which the fruit structure falls to pieces upon light mechanical pressures. This dispersal mechanism is dependent on the careful patterning of tissues in the fruit, which perform diverse functions that enable the fruit to open at maturation. Using the genetic power of Arabidopsis, many of the molecular components that help specify these tissues have been identified. Studies of the interactions among these genes have revealed a regulatory network that limits processes such as cell-cell separation and lignification to discreet regions of the fruit. Knowledge of these processes in a model fruit creates a foundation on which to build an understanding of the evolution of fruit form in other species and provides tools to engineer shatter-resistant seed pods to prevent crop loss in plants of agronomic importance such as canola. Copyright 2004 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Lundquist, J. K.; Sugiyama, G.; Nasstrom, J.
2007-12-01
This presentation describes the tools and services provided by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL) for modeling the impacts of airborne hazardous materials. NARAC provides atmospheric plume modeling tools and services for chemical, biological, radiological, and nuclear airborne hazards. NARAC can simulate downwind effects from a variety of scenarios, including fires, industrial and transportation accidents, radiation dispersal device explosions, hazardous material spills, sprayers, nuclear power plant accidents, and nuclear detonations. NARAC collaborates on radiological dispersion source terms and effects models with Sandia National Laboratories and the U.S. Nuclear Regulatory Commission. NARAC was designated the interim provider of capabilities for the Department of Homeland Security's Interagency Modeling and Atmospheric Assessment Center by the Homeland Security Council in April 2004. The NARAC suite of software tools include simple stand-alone, local-scale plume modeling tools for end-user's computers, and Web- and Internet-based software to access advanced modeling tools and expert analyses from the national center at LLNL. Initial automated, 3-D predictions of plume exposure limits and protective action guidelines for emergency responders and managers are available from the center in 5-10 minutes. These can be followed immediately by quality-assured, refined analyses by 24 x 7 on-duty or on-call NARAC staff. NARAC continues to refine calculations using updated on-scene information, including measurements, until all airborne releases have stopped and the hazardous threats are mapped and impacts assessed. Model predictions include the 3-D spatial and time-varying effects of weather, land use, and terrain, on scales from the local to regional to global. Real-time meteorological data and forecasts are provided by redundant communications links to the U.S. National Oceanic and Atmospheric Administration (NOAA), U.S. Navy, and U.S. Air Force, as well as an in-house mesoscale numerical weather prediction model. NARAC provides an easy-to-use Geographical Information System (GIS) for display of plume predictions with affected population counts and detailed maps, and the ability to export plume predictions to other standard GIS capabilities. Data collection and product distribution is provided through a variety of communication methods, including dial-up, satellite, and wired and wireless networks. Ongoing research and development activities will be highlighted. The NARAC scientific support team is developing urban parameterizations for use in a regional dispersion model (see companion paper by Delle Monache). Modifications to the numerical weather prediction model WRF to account for characteristics of urban dynamics are also in progress, as is boundary-layer turbulence model development for simulations with resolutions greater than 1km. The NARAC building-resolving computational fluid dynamics capability, FEM3MP, enjoys ongoing development activities such as the expansion of its ability to model releases of dense gases. Other research activities include sensor-data fusion, such as the reconstruction of unknown source terms from sparse and disparate observations. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. The Department of Homeland Security sponsored the production of this material under the Department of Energy contract for the management and operation of Lawrence Livermore National Laboratory. UCRL-PROC-234355
NASA Astrophysics Data System (ADS)
Lu, Dianchen; Seadawy, Aly R.; Ali, Asghar
2018-06-01
The Equal-Width and Modified Equal-Width equations are used as a model in partial differential equations for the simulation of one-dimensional wave transmission in nonlinear media with dispersion processes. In this article we have employed extend simple equation method and the exp(-varphi(ξ)) expansion method to construct the exact traveling wave solutions of equal width and modified equal width equations. The obtained results are novel and have numerous applications in current areas of research in mathematical physics. It is exposed that our method, with the help of symbolic computation, provides a effective and powerful mathematical tool for solving different kind nonlinear wave problems.
The model SIRANE for atmospheric urban pollutant dispersion; part I, presentation of the model
NASA Astrophysics Data System (ADS)
Soulhac, Lionel; Salizzoni, Pietro; Cierco, F.-X.; Perkins, Richard
2011-12-01
In order to control and manage urban air quality, public authorities require an integrated approach that incorporates direct measurements and modelling of mean pollutant concentrations. These have to be performed by means of operational modelling tools, that simulate the transport of pollutants within and above the urban canopy over a large number of streets. The operational models must be able to assess rapidly a large variety of situations and with limited computing resources. SIRANE is an operational urban dispersion model based on a simplified description of the urban geometry that adopts parametric relations for the pollutant transfer phenomena within and out of the urban canopy. The streets in a city district are modelled as a network of connected street segments. The flow within each street is driven by the component of the external wind parallel to the street, and the pollutant is assumed to be uniformly mixed within the street. The model contains three main mechanisms for transport in and out of a street: advection along the street axis, diffusion across the interface between the street and the overlying air flow and exchanges with other streets at street intersections. The dispersion of pollutants advected or diffused out of the streets is taken into account using a Gaussian plume model, with the standard deviations σ y and σ z parameterised by the similarity theory. The input data for the final model are the urban geometry, the meteorological parameters, the background concentration of pollutants advected into the model domain by the wind and the emissions within each street in the network.
de Lara-Castells, María Pilar; Stoll, Hermann; Mitrushchenkov, Alexander O
2014-08-21
As a prototypical dispersion-dominated physisorption problem, we analyze here the performance of dispersionless and dispersion-accounting methodologies on the helium interaction with cluster models of the TiO2(110) surface. A special focus has been given to the dispersionless density functional dlDF and the dlDF+Das construction for the total interaction energy (K. Pernal, R. Podeswa, K. Patkowski, and K. Szalewicz, Phys. Rev. Lett. 2009, 109, 263201), where Das is an effective interatomic pairwise functional form for the dispersion. Likewise, the performance of symmetry-adapted perturbation theory (SAPT) method is evaluated, where the interacting monomers are described by density functional theory (DFT) with the dlDF, PBE, and PBE0 functionals. Our benchmarks include CCSD(T)-F12b calculations and comparative analysis on the nuclear bound states supported by the He-cluster potentials. Moreover, intra- and intermonomer correlation contributions to the physisorption interaction are analyzed through the method of increments (H. Stoll, J. Chem. Phys. 1992, 97, 8449) at the CCSD(T) level of theory. This method is further applied in conjunction with a partitioning of the Hartree-Fock interaction energy to estimate individual interaction energy components, comparing them with those obtained using the different SAPT(DFT) approaches. The cluster size evolution of dispersionless and dispersion-accounting energy components is then discussed, revealing the reduced role of the dispersionless interaction and intramonomer correlation when the extended nature of the surface is better accounted for. On the contrary, both post-Hartree-Fock and SAPT(DFT) results clearly demonstrate the high-transferability character of the effective pairwise dispersion interaction whatever the cluster model is. Our contribution also illustrates how the method of increments can be used as a valuable tool not only to achieve the accuracy of CCSD(T) calculations using large cluster models but also to evaluate the performance of SAPT(DFT) methods for the physically well-defined contributions to the total interaction energy. Overall, our work indicates the excellent performance of a dlDF+Das approach in which the parameters are optimized using the smallest cluster model of the target surface to treat van der Waals adsorbate-surface interactions.
NASA Astrophysics Data System (ADS)
Chen, Jui-Sheng; Li, Loretta Y.; Lai, Keng-Hsin; Liang, Ching-Ping
2017-11-01
A novel solution method is presented which leads to an analytical model for the advective-dispersive transport in a semi-infinite domain involving a wide spectrum of boundary inputs, initial distributions, and zero-order productions. The novel solution method applies the Laplace transform in combination with the generalized integral transform technique (GITT) to obtain the generalized analytical solution. Based on this generalized analytical expression, we derive a comprehensive set of special-case solutions for some time-dependent boundary distributions and zero-order productions, described by the Dirac delta, constant, Heaviside, exponentially-decaying, or periodically sinusoidal functions as well as some position-dependent initial conditions and zero-order productions specified by the Dirac delta, constant, Heaviside, or exponentially-decaying functions. The developed solutions are tested against an analytical solution from the literature. The excellent agreement between the analytical solutions confirms that the new model can serve as an effective tool for investigating transport behaviors under different scenarios. Several examples of applications, are given to explore transport behaviors which are rarely noted in the literature. The results show that the concentration waves resulting from the periodically sinusoidal input are sensitive to dispersion coefficient. The implication of this new finding is that a tracer test with a periodic input may provide additional information when for identifying the dispersion coefficients. Moreover, the solution strategy presented in this study can be extended to derive analytical models for handling more complicated problems of solute transport in multi-dimensional media subjected to sequential decay chain reactions, for which analytical solutions are not currently available.
Fagerlind Ståhl, Anna-Carin; Gustavsson, Maria; Karlsson, Nadine; Johansson, Gun; Ekberg, Kerstin
2015-03-01
The effect of lean production on conditions for learning is debated. This study aimed to investigate how tools inspired by lean production (standardization, resource reduction, visual monitoring, housekeeping, value flow analysis) were associated with an innovative learning climate and with collective dispersion of ideas in organizations, and whether decision latitude contributed to these associations. A questionnaire was sent out to employees in public, private, production and service organizations (n = 4442). Multilevel linear regression analyses were used. Use of lean tools and decision latitude were positively associated with an innovative learning climate and collective dispersion of ideas. A low degree of decision latitude was a modifier in the association to collective dispersion of ideas. Lean tools can enable shared understanding and collective spreading of ideas, needed for the development of work processes, especially when decision latitude is low. Value flow analysis played a pivotal role in the associations. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Record, Sydne; Strecker, Angela; Tuanmu, Mao-Ning; Beaudrot, Lydia; Zarnetske, Phoebe; Belmaker, Jonathan; Gerstner, Beth
2018-01-01
There is ample evidence that biotic factors, such as biotic interactions and dispersal capacity, can affect species distributions and influence species' responses to climate change. However, little is known about how these factors affect predictions from species distribution models (SDMs) with respect to spatial grain and extent of the models. Understanding how spatial scale influences the effects of biological processes in SDMs is important because SDMs are one of the primary tools used by conservation biologists to assess biodiversity impacts of climate change. We systematically reviewed SDM studies published from 2003-2015 using ISI Web of Science searches to: (1) determine the current state and key knowledge gaps of SDMs that incorporate biotic interactions and dispersal; and (2) understand how choice of spatial scale may alter the influence of biological processes on SDM predictions. We used linear mixed effects models to examine how predictions from SDMs changed in response to the effects of spatial scale, dispersal, and biotic interactions. There were important biases in studies including an emphasis on terrestrial ecosystems in northern latitudes and little representation of aquatic ecosystems. Our results suggest that neither spatial extent nor grain influence projected climate-induced changes in species ranges when SDMs include dispersal or biotic interactions. We identified several knowledge gaps and suggest that SDM studies forecasting the effects of climate change should: 1) address broader ranges of taxa and locations; and 1) report the grain size, extent, and results with and without biological complexity. The spatial scale of analysis in SDMs did not affect estimates of projected range shifts with dispersal and biotic interactions. However, the lack of reporting on results with and without biological complexity precluded many studies from our analysis.
Arterial waveguide model for shear wave elastography: implementation and in vitro validation
NASA Astrophysics Data System (ADS)
Vaziri Astaneh, Ali; Urban, Matthew W.; Aquino, Wilkins; Greenleaf, James F.; Guddati, Murthy N.
2017-07-01
Arterial stiffness is found to be an early indicator of many cardiovascular diseases. Among various techniques, shear wave elastography has emerged as a promising tool for estimating local arterial stiffness through the observed dispersion of guided waves. In this paper, we develop efficient models for the computational simulation of guided wave dispersion in arterial walls. The models are capable of considering fluid-loaded tubes, immersed in fluid or embedded in a solid, which are encountered in in vitro/ex vivo, and in vivo experiments. The proposed methods are based on judiciously combining Fourier transformation and finite element discretization, leading to a significant reduction in computational cost while fully capturing complex 3D wave propagation. The developed methods are implemented in open-source code, and verified by comparing them with significantly more expensive, fully 3D finite element models. We also validate the models using the shear wave elastography of tissue-mimicking phantoms. The computational efficiency of the developed methods indicates the possibility of being able to estimate arterial stiffness in real time, which would be beneficial in clinical settings.
Computer simulation models as tools for identifying research needs: A black duck population model
Ringelman, J.K.; Longcore, J.R.
1980-01-01
Existing data on the mortality and production rates of the black duck (Anas rubripes) were used to construct a WATFIV computer simulation model. The yearly cycle was divided into 8 phases: hunting, wintering, reproductive, molt, post-molt, and juvenile dispersal mortality, and production from original and renesting attempts. The program computes population changes for sex and age classes during each phase. After completion of a standard simulation run with all variable default values in effect, a sensitivity analysis was conducted by changing each of 50 input variables, 1 at a time, to assess the responsiveness of the model to changes in each variable. Thirteen variables resulted in a substantial change in population level. Adult mortality factors were important during hunting and wintering phases. All production and mortality associated with original nesting attempts were sensitive, as was juvenile dispersal mortality. By identifying those factors which invoke the greatest population change, and providing an indication of the accuracy required in estimating these factors, the model helps to identify those variables which would be most profitable topics for future research.
Barton, Catherine A; Zarzecki, Charles J; Russell, Mark H
2010-04-01
This work assessed the usefulness of a current air quality model (American Meteorological Society/Environmental Protection Agency Regulatory Model [AERMOD]) for predicting air concentrations and deposition of perfluorooctanoate (PFO) near a manufacturing facility. Air quality models play an important role in providing information for verifying permitting conditions and for exposure assessment purposes. It is important to ensure traditional modeling approaches are applicable to perfluorinated compounds, which are known to have unusual properties. Measured field data were compared with modeling predictions to show that AERMOD adequately located the maximum air concentration in the study area, provided representative or conservative air concentration estimates, and demonstrated bias and scatter not significantly different than that reported for other compounds. Surface soil/grass concentrations resulting from modeled deposition flux also showed acceptable bias and scatter compared with measured concentrations of PFO in soil/grass samples. Errors in predictions of air concentrations or deposition may be best explained by meteorological input uncertainty and conservatism in the PRIME algorithm used to account for building downwash. In general, AERMOD was found to be a useful screening tool for modeling the dispersion and deposition of PFO in air near a manufacturing facility.
New software to model energy dispersive X-ray diffraction in polycrystalline materials
NASA Astrophysics Data System (ADS)
Ghammraoui, B.; Tabary, J.; Pouget, S.; Paulus, C.; Moulin, V.; Verger, L.; Duvauchelle, Ph.
2012-02-01
Detection of illicit materials, such as explosives or drugs, within mixed samples is a major issue, both for general security and as part of forensic analyses. In this paper, we describe a new code simulating energy dispersive X-ray diffraction patterns in polycrystalline materials. This program, SinFullscat, models diffraction of any object in any diffractometer system taking all physical phenomena, including amorphous background, into account. Many system parameters can be tuned: geometry, collimators (slit and cylindrical), sample properties, X-ray source and detector energy resolution. Good agreement between simulations and experimental data was obtained. Simulations using explosive materials indicated that parameters such as the diffraction angle or the energy resolution of the detector have a significant impact on the diffraction signature of the material inspected. This software will be a convenient tool to test many diffractometer configurations, providing information on the one that best restores the spectral diffraction signature of the materials of interest.
Mercury Dispersion Modeling And Purge Ventilation Stack Height Determination For Tank 40H
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivera-Giboyeaux, A.
2017-05-19
The SRNL Atmospheric Technologies Group performed an analysis for mercury emissions from H-Tank Farm - Tank 40 ventilation system exhaust in order to assess whether the Short Term Exposure Limit (STEL), or Threshold Limit Value (TLV) levels for mercury will be exceeded during bulk sludge slurry mixing and sludge removal operations. The American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) was used as the main dispersion modelling tool for this analysis. The results indicated that a 45-foot stack is sufficient to raise the plume centerline from the Tank 40 release to prevent mercury exposure problems for any of the stackmore » discharge scenarios provided. However, a 42-foot stack at Tank 40 is sufficient to prevent mercury exposure concerns in all emission scenarios except the 50 mg/m 3 release. At a 42-foot stack height, values exceeding the exposure standards are only measured on receptors located above 34 feet.« less
NASA Astrophysics Data System (ADS)
Łuszczak, Katarzyna; Persano, Cristina; Stuart, Finlay; Brown, Roderick
2016-04-01
Apatite (U-Th-Sm)/He (AHe) thermochronometry is a powerful technique for deciphering denudation of the uppermost crust. However, the age dispersion of single grains from the same rock is typical, and this hampers establishing accurate thermal histories when low grain numbers are analysed. Dispersion arising from the analysis of broken crystal fragments[1] has been proposed as an important cause of age dispersion, along with grain size and radiation damage. A new tool, Helfrag[2], allows constraints to be placed on the low temperature history derived from the analysis of apatite crystal fragments. However, the age dispersion model has not been fully tested on natural samples yet. We have performed AHe analysis of multiple (n = 20-25) grains from four rock samples from the Scottish Southern Uplands, which were subjected to the same exhumation episodes, although, the amount of exhumation varied between the localities. This is evident from the range of AFT ages (˜60 to ˜200 Ma) and variable thermal histories showing either strong, moderate and no support for a rapid cooling event at ˜60 Ma. Different apatite size and fragment geometry were analysed in order to maximise age dispersion. In general, the age dispersion increases with increasing AFT age (from 47% to 127%), consistent with the prediction from the fragmentation model. Thermal histories obtained using Helfrag were compared with those obtained by standard codes based on the spherical approximation. In one case, the Helfrag model was capable of resolving the higher complexity of the thermal history of the rock, constraining several heating/cooling events that are not predicted by the standard models, but are in good agreement with the regional geology. In other cases, the thermal histories are similar for both Helfrag and standard models and the age predictions for the Helfrag are only slightly better than for standard model, implying that the grain size has the dominant role in generating the age dispersion. Rather than suggesting that grain size is the predominant factor in controlling age dispersion in all data sets, our results may be linked to the actual size of the picked grains; for grain widths smaller than 100 μm, the He profile within the crystal may not be differentiated enough to produce a dispersion measureable outside the uncertainty associated with the age. It is also easier for long-thin and short-thick than long-thick and short-thin grains to be preserved; this minimises the age dispersion that can be generated from fragmentation. We suggest, that in order to obtain valuable information from both fragmentation and grain size >20 large (width >100 μm) grain fragments of variable length have to be analyzed, together with a few smaller grains. Our results point to a strategy that favours multiple single-grain AHe ages determinations on carefully selected samples, with good quality apatite crystals of variable dimensions rather than fewer determinations on many samples. [1] Brown, R. et al. 2013.Geochim. Cosmochim. Acta.122, 478-497 [2] Beucher, R. et al. 2013.Geochim. Cosmochim. Acta. 120, 395-416.
Fast and accurate modeling of nonlinear pulse propagation in graded-index multimode fibers.
Conforti, Matteo; Mas Arabi, Carlos; Mussot, Arnaud; Kudlinski, Alexandre
2017-10-01
We develop a model for the description of nonlinear pulse propagation in multimode optical fibers with a parabolic refractive index profile. It consists of a 1+1D generalized nonlinear Schrödinger equation with a periodic nonlinear coefficient, which can be solved in an extremely fast and efficient way. The model is able to quantitatively reproduce recently observed phenomena like geometric parametric instability and broadband dispersive wave emission. We envisage that our equation will represent a valuable tool for the study of spatiotemporal nonlinear dynamics in the growing field of multimode fiber optics.
Dickson, Dionne; Liu, Guangliang; Li, Chenzhong; Tachiev, Georgio; Cai, Yong
2012-01-01
The aggregation and sedimentation of iron oxide nanoparticles (IONPs) can significantly affect the mobility and reactivity of IONPs and subsequently influence the interaction between IONPs and environmental contaminants. Dispersing bare IONPs into a stable suspension within nanoscale range is an important step for studying the interaction of IONPs with contaminants (e.g., toxic metals). In this study, different techniques to disperse bare IONPs (vortex, bath sonication and probe ultrasonication) and the effects of important environmental factors such as dissolved organic matter and ionic strength on the stability of IONPs dispersions were investigated. Vortex minimally dispersed IONPs with hydrodynamic diameter outside the “nanosize range” (698–2400nm). Similar to vortex, bath sonication could not disperse IONPs efficiently. Probe ultrasonication was more effective at dispersing IONPs (50% or more) with hydrodynamic diameters ranging from 120–140 nm with minimal changes in size and sedimentation of IONPs for a prolonged period of time. Over the course of 168 hours, considerable amounts of IONPs remained dispersed in the presence and absence of low ionic strength (0.1 mM of NaCl) and 100 mg/L of humic acid (HA). These results indicate that IONPs can be broken down efficiently into “nanosize range” by probe ultrasonication and a degree of stability can be achieved without the use of synthetic modifiers to enhance colloidal stability. This dispersion tool could be used to develop a laboratory method to study the adsorption mechanism between dispersed bare IONPs and toxic contaminants. PMID:22289174
CFD simulation of liquid-liquid dispersions in a stirred tank bioreactor
NASA Astrophysics Data System (ADS)
Gelves, R.
2013-10-01
In this paper simulations were developed in order to allow the examinations of drop sizes in liquid-liquid dispersions (oil-water) in a stirred tank bioreactor using CFD simulations (Computational Fluid Dynamics). The effects of turbulence, rotating flow, drop breakage were simulated by using the k-e, MRF (Multiple Reference Frame) and PBM (Population Balance Model), respectively. The numerical results from different operational conditions are compared with experimental data obtained from an endoscope technique and good agreement is achieved. Motivated by these simulated and experimental results CFD simulations are qualified as a very promising tool for predicting hydrodynamics and drop sizes especially useful for liquid-liquid applications which are characterized by the challenging problem of emulsion stability due to undesired drop sizes.
NASA Astrophysics Data System (ADS)
Jayakarthick, C.; Povendhan, A. P.; Vaira Vignesh, R.; Padmanaban, R.
2018-02-01
Aluminium alloy AA5083 was friction stir processed to improve the intergranular corrosion (IGC) resistance. FSP trials were performed by varying the process parameters as per Taguchi’s L18 orthogonal array. IGC resistance of the friction stir processed specimens were found by immersing them in concentrated nitric acid and measuring the mass loss per unit area. Results indicate that dispersion and partial dissolution of secondary phase increased IGC resistance of the friction stir processed specimens. A Sugeno fuzzy model was developed to study the effect of FSP process parameters on the IGC susceptibility of friction stir processed specimens. Tool Rotation Speed, Tool Traverse Speed and Shoulder Diameter have a significant effect on the IGC susceptibility of the friction stir processed specimens.
Hydration water dynamics in biopolymers from NMR relaxation in the rotating frame.
Blicharska, Barbara; Peemoeller, Hartwig; Witek, Magdalena
2010-12-01
Assuming dipole-dipole interaction as the dominant relaxation mechanism of protons of water molecules adsorbed onto macromolecule (biopolymer) surfaces we have been able to model the dependences of relaxation rates on temperature and frequency. For adsorbed water molecules the correlation times are of the order of 10(-5)s, for which the dispersion region of spin-lattice relaxation rates in the rotating frame R(1)(ρ)=1/T(1)(ρ) appears over a range of easily accessible B(1) values. Measurements of T(1)(ρ) at constant temperature and different B(1) values then give the "dispersion profiles" for biopolymers. Fitting a theoretical relaxation model to these profiles allows for the estimation of correlation times. This way of obtaining the correlation time is easier and faster than approaches involving measurements of the temperature dependence of R(1)=1/T(1). The T(1)(ρ) dispersion approach, as a tool for molecular dynamics study, has been demonstrated for several hydrated biopolymer systems including crystalline cellulose, starch of different origins (potato, corn, oat, wheat), paper (modern, old) and lyophilized proteins (albumin, lysozyme). Copyright © 2010 Elsevier Inc. All rights reserved.
Genetic and archaeological perspectives on the initial modern human colonization of southern Asia.
Mellars, Paul; Gori, Kevin C; Carr, Martin; Soares, Pedro A; Richards, Martin B
2013-06-25
It has been argued recently that the initial dispersal of anatomically modern humans from Africa to southern Asia occurred before the volcanic "supereruption" of the Mount Toba volcano (Sumatra) at ∼74,000 y before present (B.P.)-possibly as early as 120,000 y B.P. We show here that this "pre-Toba" dispersal model is in serious conflict with both the most recent genetic evidence from both Africa and Asia and the archaeological evidence from South Asian sites. We present an alternative model based on a combination of genetic analyses and recent archaeological evidence from South Asia and Africa. These data support a coastally oriented dispersal of modern humans from eastern Africa to southern Asia ∼60-50 thousand years ago (ka). This was associated with distinctively African microlithic and "backed-segment" technologies analogous to the African "Howiesons Poort" and related technologies, together with a range of distinctively "modern" cultural and symbolic features (highly shaped bone tools, personal ornaments, abstract artistic motifs, microblade technology, etc.), similar to those that accompanied the replacement of "archaic" Neanderthal by anatomically modern human populations in other regions of western Eurasia at a broadly similar date.
NASA Astrophysics Data System (ADS)
Palazzi, E.
The evaluation of atmospheric dispersion of a cloud, arising from a sudden release of flammable or toxic materials, is an essential tool for properly designing flares, vents and other safety devices and to quantify the potential risk related to the existing ones or arising from the various kinds of accidents which can occur in chemical plants. Among the methods developed to treat the important case of upward-directed jets, Hoehne's procedure for determining the behaviour and extent of flammability zone is extensively utilized, particularly concerning petrochemical plants. In a previous study, a substantial simplification of the aforesaid procedure was achieved, by correlating the experimental data with an empirical formula, allowing to obtain a mathematical description of the boundaries of the flammable cloud. Following a theoretical approach, a most general model is developed in the present work, applicable to the various kinds of design problems and/or risk evaluation regarding upward-directed releases from high velocity sources. It is also demonstrated that the model gives conservative results, if applied outside the range of the Hoehne's experimental conditions. Moreover, with simple modifications, the same approach could be easily applied to deal with the atmospheric dispersion of anyhow directed releases.
Jeffrey Yang, Y; Goodrich, James A; Clark, Robert M; Li, Sylvana Y
2008-03-01
A modified one-dimensional Danckwerts convection-dispersion-reaction (CDR) model is numerically simulated to explain the observed chlorine residual loss for a "slug" of reactive contaminants instantaneously introduced into a drinking water pipe of assumed no or negligible wall demand. In response to longitudinal dispersion, a contaminant propagates into the bulk phase where it reacts with disinfectants in the water. This process generates a U-shaped pattern of chlorine residual loss in a time-series concentration plot. Numerical modeling indicates that the residual loss curve geometry (i.e., slope, depth, and width) is a function of several variables such as axial Péclet number, reaction rate constants, molar fraction of the fast- and slow-reacting contaminants, and the quasi-steady-state chlorine decay inside the "slug" which serves as a boundary condition of the CDR model. Longitudinal dispersion becomes dominant for less reactive contaminants. Pilot-scale pipe flow experiments for a non-reactive sodium fluoride tracer and the fast-reacting aldicarb, a pesticide, were conducted under turbulent flow conditions (Re=9020 and 25,000). Both the experimental results and the CDR modeling are in agreement showing a close relationship among the aldicarb contaminant "slug", chlorine residual loss and its variations, and a concentration increase of chloride as the final reaction product. Based on these findings, the residual loss curve and its geometry are useful tools to identify the presence of a contaminant "slug" and infer its reactive properties in adaptive contaminant detections.
Diaz-de-Quijano, Maria; Joly, Daniel; Gilbert, Daniel; Toussaint, Marie-Laure; Franchi, Marielle; Fallot, Jean-Michel; Bernard, Nadine
2016-07-01
Trace elements (TEs) transported by atmospheric fluxes can negatively impact isolated ecosystems. Modelling based on moss-borne TE accumulation makes tracking TE deposition in remote areas without monitoring stations possible. Using a single moss species from ombrotrophic hummock peatlands reinforces estimate quality. This study used a validated geomatic model of particulate matter dispersion to identify the origin of Cd, Zn, Pb and Cu accumulated in Sphagnum capillifolium and the distance transported from their emission sources. The residential and industrial sectors of particulate matter emissions showed the highest correlations with the TEs accumulated in S. capillifolium (0.28(Zn)-0.56(Cu)) and (0.27(Zn)-0.47(Cu), respectively). Distances of dispersion varied depending on the sector of emissions and the considered TE. The greatest transportation distances for mean emissions values were found in the industrial (10.6 km when correlating with all TEs) and roads sectors (13 km when correlating with Pb). The residential sector showed the shortest distances (3.6 km when correlating with Cu, Cd, and Zn). The model presented here is a new tool for evaluating the efficacy of air pollution abatement policies in non-monitored areas and provides high-resolution (200 × 200 m) maps of TE accumulation that make it possible to survey the potential impacts of TEs on isolated ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Duffa, Céline; Bailly du Bois, Pascal; Caillaud, Matthieu; Charmasson, Sabine; Couvez, Céline; Didier, Damien; Dumas, Franck; Fievet, Bruno; Morillon, Mehdi; Renaud, Philippe; Thébault, Hervé
2016-01-01
The Fukushima nuclear accident resulted in the largest ever accidental release of artificial radionuclides in coastal waters. This accident has shown the importance of marine assessment capabilities for emergency response and the need to develop tools for adequately predicting the evolution and potential impact of radioactive releases to the marine environment. The French Institute for Radiological Protection and Nuclear Safety (IRSN) equips its emergency response centre with operational tools to assist experts and decision makers in the event of accidental atmospheric releases and contamination of the terrestrial environment. The on-going project aims to develop tools for the management of marine contamination events in French coastal areas. This should allow us to evaluate and anticipate post-accident conditions, including potential contamination sites, contamination levels and potential consequences. In order to achieve this goal, two complementary tools are developed: site-specific marine data sheets and a dedicated simulation tool (STERNE, Simulation du Transport et du transfert d'Eléments Radioactifs dans l'environNEment marin). Marine data sheets are used to summarize the marine environment characteristics of the various sites considered, and to identify vulnerable areas requiring implementation of population protection measures, such as aquaculture areas, beaches or industrial water intakes, as well as areas of major ecological interest. Local climatological data (dominant sea currents as a function of meteorological or tidal conditions) serving as the basis for an initial environmental sampling strategy is provided whenever possible, along with a list of possible local contacts for operational management purposes. The STERNE simulation tool is designed to predict radionuclide dispersion and contamination in seawater and marine species by incorporating spatio-temporal data. 3D hydrodynamic forecasts are used as input data. Direct discharge points or atmospheric deposition source terms can be taken into account. STERNE calculates Eulerian radionuclide dispersion using advection and diffusion equations established offline from hydrodynamic calculations. A radioecological model based on dynamic transfer equations is implemented to evaluate activity concentrations in aquatic organisms. Essential radioecological parameters (concentration factors and single or multicomponent biological half-lives) have been compiled for main radionuclides and generic marine species (fish, molluscs, crustaceans and algae). Dispersion and transfer calculations are performed simultaneously on a 3D grid. Results can be plotted on maps, with possible tracking of spatio-temporal evolution. Post-processing and visualization can then be performed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modeling of the dispersion of depleted uranium aerosol.
Mitsakou, C; Eleftheriadis, K; Housiadas, C; Lazaridis, M
2003-04-01
Depleted uranium is a low-cost radioactive material that, in addition to other applications, is used by the military in kinetic energy weapons against armored vehicles. During the Gulf and Balkan conflicts concern has been raised about the potential health hazards arising from the toxic and radioactive material released. The aerosol produced during impact and combustion of depleted uranium munitions can potentially contaminate wide areas around the impact sites or can be inhaled by civilians and military personnel. Attempts to estimate the extent and magnitude of the dispersion were until now performed by complex modeling tools employing unclear assumptions and input parameters of high uncertainty. An analytical puff model accommodating diffusion with simultaneous deposition is developed, which can provide a reasonable estimation of the dispersion of the released depleted uranium aerosol. Furthermore, the period of the exposure for a given point downwind from the release can be estimated (as opposed to when using a plume model). The main result is that the depleted uranium mass is deposited very close to the release point. The deposition flux at a couple of kilometers from the release point is more than one order of magnitude lower than the one a few meters near the release point. The effects due to uncertainties in the key input variables are addressed. The most influential parameters are found to be atmospheric stability, height of release, and wind speed, whereas aerosol size distribution is less significant. The output from the analytical model developed was tested against the numerical model RPM-AERO. Results display satisfactory agreement between the two models.
Assesment of longwave radiation effects on air quality modelling in street canyons
NASA Astrophysics Data System (ADS)
Soucasse, L.; Buchan, A.; Pain, C.
2016-12-01
Computational Fluid Dynamics is widely used as a predictive tool to evaluate people's exposure to pollutants in urban street canyons. However, in low-wind conditions, flow and pollutant dispersion in the canyons are driven by thermal effects and may be affected by longwave (infrared) radiation due to the absorption and emission of water vapor contained in the air. These effects are mostly ignored in the literature dedicated to air quality modelling at this scale. This study aims at quantifying the uncertainties due to neglecting thermal radiation in air quality models. The Large-Eddy-Simulation of air flow in a single 2D canyon with a heat source on the ground is considered for Rayleigh and Reynolds numbers in the range of [10e8-10e10] and [5.10e3-5.10e4] respectively. The dispersion of a tracer is monitored once the statistically steady regime is reached. Incoming radiation is computed for a mid-latitude summer atmosphere and canyon surfaces are assumed to be black. Water vapour is the only radiating molecule considered and a global model is used to treat the spectral dependancy of its absorption coefficient. Flow and radiation fields are solved in a coupled way using the finite element solvers Fluidity and Fetch which have the capability of adapting their space and angular resolution according to an estimate of the solution error. Results show significant effects of thermal radiation on flow patterns and tracer dispersion. When radiation is taken into account, the air is heated far from the heat source leading to a stronger natural convection flow. The tracer is then dispersed faster out of the canyon potentially decreasing people's exposure to pollution within the street canyon.
Community Near-Port Modeling System (C-PORT): Briefing for ...
What C-PORT is: Screening level tool for assessing port activities and exploring the range of potential impacts that changes to port operations might have on local air quality; Analysis of decision alternatives through mapping of the likely pattern of potential pollutant dispersion and an estimated change in pollutant concentrations for user-designated scenarios; Designed primarily to evaluate the local air quality impacts of proposed port expansion or modernization, as well as to identify options for mitigating any impacts; Currently includes data from 21 US seaports and features a map-based interface similar to the widely used Google Earth; Still under development, C-PORT is designed as an easy-to-use computer modeling tool for users, such as state air quality managers and planners. This is part of our product outreach prior to model public release and to solicit for additional beta testers.
Guyonvarch, Estelle; Ramin, Elham; Kulahci, Murat; Plósz, Benedek Gy
2015-10-15
The present study aims at using statistically designed computational fluid dynamics (CFD) simulations as numerical experiments for the identification of one-dimensional (1-D) advection-dispersion models - computationally light tools, used e.g., as sub-models in systems analysis. The objective is to develop a new 1-D framework, referred to as interpreted CFD (iCFD) models, in which statistical meta-models are used to calculate the pseudo-dispersion coefficient (D) as a function of design and flow boundary conditions. The method - presented in a straightforward and transparent way - is illustrated using the example of a circular secondary settling tank (SST). First, the significant design and flow factors are screened out by applying the statistical method of two-level fractional factorial design of experiments. Second, based on the number of significant factors identified through the factor screening study and system understanding, 50 different sets of design and flow conditions are selected using Latin Hypercube Sampling (LHS). The boundary condition sets are imposed on a 2-D axi-symmetrical CFD simulation model of the SST. In the framework, to degenerate the 2-D model structure, CFD model outputs are approximated by the 1-D model through the calibration of three different model structures for D. Correlation equations for the D parameter then are identified as a function of the selected design and flow boundary conditions (meta-models), and their accuracy is evaluated against D values estimated in each numerical experiment. The evaluation and validation of the iCFD model structure is carried out using scenario simulation results obtained with parameters sampled from the corners of the LHS experimental region. For the studied SST, additional iCFD model development was carried out in terms of (i) assessing different density current sub-models; (ii) implementation of a combined flocculation, hindered, transient and compression settling velocity function; and (iii) assessment of modelling the onset of transient and compression settling. Furthermore, the optimal level of model discretization both in 2-D and 1-D was undertaken. Results suggest that the iCFD model developed for the SST through the proposed methodology is able to predict solid distribution with high accuracy - taking a reasonable computational effort - when compared to multi-dimensional numerical experiments, under a wide range of flow and design conditions. iCFD tools could play a crucial role in reliably predicting systems' performance under normal and shock events. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modeling flow around bluff bodies and predicting urban dispersion using large eddy simulation.
Tseng, Yu-Heng; Meneveau, Charles; Parlange, Marc B
2006-04-15
Modeling air pollutant transport and dispersion in urban environments is especially challenging due to complex ground topography. In this study, we describe a large eddy simulation (LES) tool including a new dynamic subgrid closure and boundary treatment to model urban dispersion problems. The numerical model is developed, validated, and extended to a realistic urban layout. In such applications fairly coarse grids must be used in which each building can be represented using relatively few grid-points only. By carrying out LES of flow around a square cylinder and of flow over surface-mounted cubes, the coarsest resolution required to resolve the bluff body's cross section while still producing meaningful results is established. Specifically, we perform grid refinement studies showing that at least 6-8 grid points across the bluff body are required for reasonable results. The performance of several subgrid models is also compared. Although effects of the subgrid models on the mean flow are found to be small, dynamic Lagrangian models give a physically more realistic subgrid-scale (SGS) viscosity field. When scale-dependence is taken into consideration, these models lead to more realistic resolved fluctuating velocities and spectra. These results set the minimum grid resolution and subgrid model requirements needed to apply LES in simulations of neutral atmospheric boundary layer flow and scalar transport over a realistic urban geometry. The results also illustrate the advantages of LES over traditional modeling approaches, particularly its ability to take into account the complex boundary details and the unsteady nature of atmospheric boundary layer flow. Thus LES can be used to evaluate probabilities of extreme events (such as probabilities of exceeding threshold pollutant concentrations). Some comments about computer resources required for LES are also included.
Resolving precipitation-induced water content profiles through inversion of dispersive GPR data
NASA Astrophysics Data System (ADS)
Mangel, A. R.; Moysey, S. M.; Van Der Kruk, J.
2015-12-01
Ground-penetrating radar (GPR) has become a popular tool for monitoring hydrologic processes. When monitoring infiltration, the thin wetted zone that occurs near the ground surface at early times may act as a dispersive waveguide. This low-velocity layer traps the GPR waves, causing specific frequencies of the signal to travel at different phase velocities, confounding standard traveltime analysis. In a previous numerical study we demonstrated the potential of dispersion analysis for estimating the depth distribution of waveguide water contents. Here, we evaluate the effectiveness of the methodology when applying it to experimental time-lapse dispersive GPR data collected during a laboratory infiltration experiment in a relatively homogenous soil. A large sand-filled tank is equipped with an automated gantry to independently control the position of 1000 MHz source and receiver antennas. The system was programmed to repeatedly collect a common mid-point (CMP) profile at the center of the tank followed by two constant offset profiles (COP) in the x and y direction. Each collection was completed in 30 s and repeated 50 times during a 28 min experiment. Two minutes after the start of measurements, the surface of the sand was irrigated at a constant flux rate of 0.006 cm/sec for 23 minutes. Time-lapse COPs show increases in traveltime to reflectors in the tank associated with increasing water content, as well as the development of a wetting front reflection. From 4-10 min, the CMPs show a distinct shingling characteristic that is indicative of waveguide dispersion. Forward models where the waveguide is conceptualized as discrete layers and a piece-wise linear function were used to invert picked dispersion curves for waveguide properties. We show the results from both inversion approaches for multiple dispersive CMPs and show how the single layer model fails to represent the gradational nature of the wetting front.
Evaluation of hydrodynamic ocean models as a first step in larval dispersal modelling
NASA Astrophysics Data System (ADS)
Vasile, Roxana; Hartmann, Klaas; Hobday, Alistair J.; Oliver, Eric; Tracey, Sean
2018-01-01
Larval dispersal modelling, a powerful tool in studying population connectivity and species distribution, requires accurate estimates of the ocean state, on a high-resolution grid in both space (e.g. 0.5-1 km horizontal grid) and time (e.g. hourly outputs), particularly of current velocities and water temperature. These estimates are usually provided by hydrodynamic models based on which larval trajectories and survival are computed. In this study we assessed the accuracy of two hydrodynamic models around Australia - Bluelink ReANalysis (BRAN) and Hybrid Coordinate Ocean Model (HYCOM) - through comparison with empirical data from the Australian National Moorings Network (ANMN). We evaluated the models' predictions of seawater parameters most relevant to larval dispersal - temperature, u and v velocities and current speed and direction - on the continental shelf where spawning and nursery areas for major fishery species are located. The performance of each model in estimating ocean parameters was found to depend on the parameter investigated and to vary from one geographical region to another. Both BRAN and HYCOM models systematically overestimated the mean water temperature, particularly in the top 140 m of water column, with over 2 °C bias at some of the mooring stations. HYCOM model was more accurate than BRAN for water temperature predictions in the Great Australian Bight and along the east coast of Australia. Skill scores between each model and the in situ observations showed lower accuracy in the models' predictions of u and v ocean current velocities compared to water temperature predictions. For both models, the lowest accuracy in predicting ocean current velocities, speed and direction was observed at 200 m depth. Low accuracy of both model predictions was also observed in the top 10 m of the water column. BRAN had more accurate predictions of both u and v velocities in the upper 50 m of water column at all mooring station locations. While HYCOM predictions of ocean current speed were generally more accurate than BRAN, BRAN predictions of both ocean current speed and direction were more accurate than HYCOM along the southeast coast of Australia and Tasmania. This study identified important inaccuracies in the hydrodynamic models' estimations of the real ocean parameters and on time scales relevant to larval dispersal studies. These findings highlight the importance of the choice and validation of hydrodynamic models, and calls for estimates of such bias to be incorporated in dispersal studies.
Dispersion relations with crossing symmetry for {pi}{pi} D- and F-wave amplitudes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaminski, R.
A set of once subtracted dispersion relations with imposed crossing symmetry condition for the {pi}{pi} D- and F-wave amplitudes is derived and analyzed. An example of numerical calculations in the effective two-pion mass range from the threshold to 1.1 GeV is presented. It is shown that these new dispersion relations impose quite strong constraints on the analyzed {pi}{pi} interactions and are very useful tools to test the {pi}{pi} amplitudes. One of the goals of this work is to provide a complete set of equations required for easy use. Full analytical expressions are presented. Along with the well-known dispersion relations successfulmore » in testing the {pi}{pi} S- and P-wave amplitudes, those presented here for the D and F waves give a complete set of tools for analyses of the {pi}{pi} interactions.« less
CFD simulation of copper(II) extraction with TFA in non-dispersive hollow fiber membrane contactors.
Muhammad, Amir; Younas, Mohammad; Rezakazemi, Mashallah
2018-04-01
This study presents computational fluid dynamics (CFD) simulation of dispersion-free liquid-liquid extraction of copper(II) with trifluoroacetylacetone (TFA) in hollow fiber membrane contactor (HFMC). Mass and momentum balance Navier-Stokes equations were coupled to address the transport of copper(II) solute across membrane contactor. Model equations were simulated using COMSOL Multiphysics™. The simulation was run to study the detailed concentration distribution of copper(II) and to investigate the effects of various parameters like membrane characteristics, partition coefficient, and flow configuration on extraction efficiency. Once-through extraction was found to be increased from 10 to 100% when partition coefficient was raised from 1 to 10. Similarly, the extraction efficiency was almost doubled when porosity to tortuosity ratio of membrane was increased from 0.05 to 0.81. Furthermore, the study revealed that CFD can be used as an effective optimization tool for the development of economical membrane-based dispersion-free extraction processes.
Mortazavi, Majid; Brandenburg, Jan Gerit; Maurer, Reinhard J; Tkatchenko, Alexandre
2018-01-18
Accurate prediction of structure and stability of molecular crystals is crucial in materials science and requires reliable modeling of long-range dispersion interactions. Semiempirical electronic structure methods are computationally more efficient than their ab initio counterparts, allowing structure sampling with significant speedups. We combine the Tkatchenko-Scheffler van der Waals method (TS) and the many-body dispersion method (MBD) with third-order density functional tight-binding (DFTB3) via a charge population-based method. We find an overall good performance for the X23 benchmark database of molecular crystals, despite an underestimation of crystal volume that can be traced to the DFTB parametrization. We achieve accurate lattice energy predictions with DFT+MBD energetics on top of vdW-inclusive DFTB3 structures, resulting in a speedup of up to 3000 times compared with a full DFT treatment. This suggests that vdW-inclusive DFTB3 can serve as a viable structural prescreening tool in crystal structure prediction.
Baker, Ronald J.; Reilly, Timothy J.; Lopez, Anthony R.; Romanok, Kristin M.; Wengrowski, Edward W
2015-01-01
A screening tool for quantifying levels of concern for contaminants detected in monitoring wells on or near landfills to down-gradient receptors (streams, wetlands and residential lots) was developed and evaluated. The tool uses Quick Domenico Multi-scenario (QDM), a spreadsheet implementation of Domenico-based solute transport, to estimate concentrations of contaminants reaching receptors under steady-state conditions from a constant-strength source. Unlike most other available Domenico-based model applications, QDM calculates the time for down-gradient contaminant concentrations to approach steady state and appropriate dispersivity values, and allows for up to fifty simulations on a single spreadsheet. Sensitivity of QDM solutions to critical model parameters was quantified. The screening tool uses QDM results to categorize landfills as having high, moderate and low levels of concern, based on contaminant concentrations reaching receptors relative to regulatory concentrations. The application of this tool was demonstrated by assessing levels of concern (as defined by the New Jersey Pinelands Commission) for thirty closed, uncapped landfills in the New Jersey Pinelands National Reserve, using historic water-quality data from monitoring wells on and near landfills and hydraulic parameters from regional flow models. Twelve of these landfills are categorized as having high levels of concern, indicating a need for further assessment. This tool is not a replacement for conventional numerically-based transport model or other available Domenico-based applications, but is suitable for quickly assessing the level of concern posed by a landfill or other contaminant point source before expensive and lengthy monitoring or remediation measures are taken. In addition to quantifying the level of concern using historic groundwater-monitoring data, the tool allows for archiving model scenarios and adding refinements as new data become available.
Our trial to develop a risk assessment tool for CO2 geological storage (GERAS-CO2GS)
NASA Astrophysics Data System (ADS)
Tanaka, A.; Sakamoto, Y.; Komai, T.
2012-12-01
We will introduce our researches about to develop a risk assessment tool named 'GERAS-CO2GS' (Geo-environmental Risk Assessment System, CO2 Geological Storage Risk Assessment System) for 'Carbon Dioxide Geological Storage (Geological CCS)'. It aims to facilitate understanding of size of impact of risks related with upper migration of injected CO2. For gaining public recognition about feasibility of Geological CCS, quantitative estimation of risks is essential, to let public knows the level of the risk: whether it is negligible or not. Generally, in preliminary hazard analysis procedure, potential hazards could be identified within Geological CCS's various facilities such as: reservoir, cap rock, upper layers, CO2 injection well, CO2 injection plant and CO2 transport facilities. Among them, hazard of leakage of injected C02 is crucial, because it is the clue to estimate risks around a specific injection plan in terms of safety, environmental protection effect and economy. Our risk assessment tool named GERAS-CO2GS evaluates volume and rate of retention and leakage of injected CO2 in relation with fractures and/or faults, and then it estimates impact of seepages on the surface of the earth. GERAS-CO2GS has four major processing segments: (a) calculation of CO2 retention and leakage volume and rate, (b) data processing of CO2 dispersion on the surface and ambient air, (c) risk data definition and (d) evaluation of risk. Concerning to the injection site, we defined a model, which is consisted from an injection well and a geological strata model: which involves a reservoir, a cap rock, an upper layer, faults, seabed, sea, the surface of the earth and the surface of the sea. For retention rate of each element of CO2 injection site model, we use results of our experimental and numerical studies on CO2 migration within reservoirs and faults with specific lithological conditions. For given CO2 injection rate, GERAS-CO2GS calculates CO2 retention and leakage of each segment of injection site model. It also evaluates dispersion of CO2 on the surface of the earth and ambient air, and displays evaluated risk level on Goole earth contour of risk levels with color classification. As regard with numerical estimation of CO2's surface dispersion, we use ADMER 2.5 (Atmospheric Dispersion Model for Exposure and Risk Assessment, AIST), which assesses ambient dispersion of materials using real observed atmospheric data such as wind direction and temperatures by meteorological observatory. As far as our simulations, it is obvious that cause of Lake Nyos type accident is owes its maar topography of the lake and the volume and duration of the CO2 outburst (about 1 km3). It's unlikely to cause similar happenings in geological CCS site, because there are significant difference amount of CO2 and topography. At this moment, GERAS-CO2GS is prototype system. We are going to extend GERAS-CO2GS functions and evaluate risks of further risk scenarios. Concerning to the route of seabed to sea and the surface of the sea, we hope to implement outer research findings into our logics. In the course of further research, we are going to develop GERAS-CO2GS will be able to estimate broader risks, and to contribute to the efforts for legislations and standards of CO2 Geological storage.
Time Domain Tool Validation Using ARES I-X Flight Data
NASA Technical Reports Server (NTRS)
Hough, Steven; Compton, James; Hannan, Mike; Brandon, Jay
2011-01-01
The ARES I-X vehicle was launched from NASA's Kennedy Space Center (KSC) on October 28, 2009 at approximately 11:30 EDT. ARES I-X was the first test flight for NASA s ARES I launch vehicle, and it was the first non-Shuttle launch vehicle designed and flown by NASA since Saturn. The ARES I-X had a 4-segment solid rocket booster (SRB) first stage and a dummy upper stage (US) to emulate the properties of the ARES I US. During ARES I-X pre-flight modeling and analysis, six (6) independent time domain simulation tools were developed and cross validated. Each tool represents an independent implementation of a common set of models and parameters in a different simulation framework and architecture. Post flight data and reconstructed models provide the means to validate a subset of the simulations against actual flight data and to assess the accuracy of pre-flight dispersion analysis. Post flight data consists of telemetered Operational Flight Instrumentation (OFI) data primarily focused on flight computer outputs and sensor measurements as well as Best Estimated Trajectory (BET) data that estimates vehicle state information from all available measurement sources. While pre-flight models were found to provide a reasonable prediction of the vehicle flight, reconstructed models were generated to better represent and simulate the ARES I-X flight. Post flight reconstructed models include: SRB propulsion model, thrust vector bias models, mass properties, base aerodynamics, and Meteorological Estimated Trajectory (wind and atmospheric data). The result of the effort is a set of independently developed, high fidelity, time-domain simulation tools that have been cross validated and validated against flight data. This paper presents the process and results of high fidelity aerospace modeling, simulation, analysis and tool validation in the time domain.
Bisseleua, D H B; Vidal, Stefan
2011-02-01
The spatio-temporal distribution of Sahlbergella singularis Haglung, a major pest of cacao trees (Theobroma cacao) (Malvaceae), was studied for 2 yr in traditional cacao forest gardens in the humid forest area of southern Cameroon. The first objective was to analyze the dispersion of this insect on cacao trees. The second objective was to develop sampling plans based on fixed levels of precision for estimating S. singularis populations. The following models were used to analyze the data: Taylor's power law, Iwao's patchiness regression, the Nachman model, and the negative binomial distribution. Our results document that Taylor's power law was a better fit for the data than the Iwao and Nachman models. Taylor's b and Iwao's β were both significantly >1, indicating that S. singularis aggregated on specific trees. This result was further supported by the calculated common k of 1.75444. Iwao's α was significantly <0, indicating that the basic distribution component of S. singularis was the individual insect. Comparison of negative binomial (NBD) and Nachman models indicated that the NBD model was appropriate for studying S. singularis distribution. Optimal sample sizes for fixed precision levels of 0.10, 0.15, and 0.25 were estimated with Taylor's regression coefficients. Required sample sizes increased dramatically with increasing levels of precision. This is the first study on S. singularis dispersion in cacao plantations. Sampling plans, presented here, should be a tool for research on population dynamics and pest management decisions of mirid bugs on cacao. © 2011 Entomological Society of America
Stream Lifetimes Against Planetary Encounters
NASA Technical Reports Server (NTRS)
Valsecchi, G. B.; Lega, E.; Froeschle, Cl.
2011-01-01
We study, both analytically and numerically, the perturbation induced by an encounter with a planet on a meteoroid stream. Our analytical tool is the extension of pik s theory of close encounters, that we apply to streams described by geocentric variables. The resulting formulae are used to compute the rate at which a stream is dispersed by planetary encounters into the sporadic background. We have verified the accuracy of the analytical model using a numerical test.
2011-09-01
tectonically active regions such as the Middle East. For example, we previously applied the code to determine the crust and upper mantle structure...Objective Optimization (MOO) for Multiple Datasets The primary goal of our current project is to develop a tool for estimating crustal structure that...be used to obtain crustal velocity structures by modeling broadband waveform, receiver function, and surface wave dispersion data. The code has been
Accounting for aquifer heterogeneity from geological data to management tools.
Blouin, Martin; Martel, Richard; Gloaguen, Erwan
2013-01-01
A nested workflow of multiple-point geostatistics (MPG) and sequential Gaussian simulation (SGS) was tested on a study area of 6 km(2) located about 20 km northwest of Quebec City, Canada. In order to assess its geological and hydrogeological parameter heterogeneity and to provide tools to evaluate uncertainties in aquifer management, direct and indirect field measurements are used as inputs in the geostatistical simulations to reproduce large and small-scale heterogeneities. To do so, the lithological information is first associated to equivalent hydrogeological facies (hydrofacies) according to hydraulic properties measured at several wells. Then, heterogeneous hydrofacies (HF) realizations are generated using a prior geological model as training image (TI) with the MPG algorithm. The hydraulic conductivity (K) heterogeneity modeling within each HF is finally computed using SGS algorithm. Different K models are integrated in a finite-element hydrogeological model to calculate multiple transport simulations. Different scenarios exhibit variations in mass transport path and dispersion associated with the large- and small-scale heterogeneity respectively. Three-dimensional maps showing the probability of overpassing different thresholds are presented as examples of management tools. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.
Development of a Scale-up Tool for Pervaporation Processes
Thiess, Holger; Strube, Jochen
2018-01-01
In this study, an engineering tool for the design and optimization of pervaporation processes is developed based on physico-chemical modelling coupled with laboratory/mini-plant experiments. The model incorporates the solution-diffusion-mechanism, polarization effects (concentration and temperature), axial dispersion, pressure drop and the temperature drop in the feed channel due to vaporization of the permeating components. The permeance, being the key model parameter, was determined via dehydration experiments on a mini-plant scale for the binary mixtures ethanol/water and ethyl acetate/water. A second set of experimental data was utilized for the validation of the model for two chemical systems. The industrially relevant ternary mixture, ethanol/ethyl acetate/water, was investigated close to its azeotropic point and compared to a simulation conducted with the determined binary permeance data. Experimental and simulation data proved to agree very well for the investigated process conditions. In order to test the scalability of the developed engineering tool, large-scale data from an industrial pervaporation plant used for the dehydration of ethanol was compared to a process simulation conducted with the validated physico-chemical model. Since the membranes employed in both mini-plant and industrial scale were of the same type, the permeance data could be transferred. The comparison of the measured and simulated data proved the scalability of the derived model. PMID:29342956
Analysis of group-velocity dispersion of high-frequency Rayleigh waves for near-surface applications
Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.
2011-01-01
The Multichannel Analysis of Surface Waves (MASW) method is an efficient tool to obtain the vertical shear (S)-wave velocity profile using the dispersive characteristic of Rayleigh waves. Most MASW researchers mainly apply Rayleigh-wave phase-velocity dispersion for S-wave velocity estimation with a few exceptions applying Rayleigh-wave group-velocity dispersion. Herein, we first compare sensitivities of fundamental surface-wave phase velocities with group velocities with three four-layer models including a low-velocity layer or a high-velocity layer. Then synthetic data are simulated by a finite difference method. Images of group-velocity dispersive energy of the synthetic data are generated using the Multiple Filter Analysis (MFA) method. Finally we invert a high-frequency surface-wave group-velocity dispersion curve of a real-world example. Results demonstrate that (1) the sensitivities of group velocities are higher than those of phase velocities and usable frequency ranges are wider than that of phase velocities, which is very helpful in improving inversion stability because for a stable inversion system, small changes in phase velocities do not result in a large fluctuation in inverted S-wave velocities; (2) group-velocity dispersive energy can be measured using single-trace data if Rayleigh-wave fundamental-mode energy is dominant, which suggests that the number of shots required in data acquisition can be dramatically reduced and the horizontal resolution can be greatly improved using analysis of group-velocity dispersion; and (3) the suspension logging results of the real-world example demonstrate that inversion of group velocities generated by the MFA method can successfully estimate near-surface S-wave velocities. ?? 2011 Elsevier B.V.
Dispersive Raman spectroscopy for the nondestructive and rapid assessment of honey quality
NASA Astrophysics Data System (ADS)
Mignani, A. G.; Ciaccheri, L.; Mencaglia, A. A.; Di Sanzo, R.; Carabetta, S.; Russo, M. T.
2015-09-01
Raman spectroscopy performed using optical fibers, with excitation at 1064 nm and a dispersive detection scheme, was utilized to measure a selection of unifloral honeys produced in the Italian region of Calabria. The honey samples had three different botanical origins: chestnut, citrus, and acacia, respectively. A multivariate processing of the spectroscopic data enabled us to distinguish their botanical origin, and to build predictive models for quantifying important nutraceutic indicators such as the main sugars and potassium. Furthermore, the Raman spectra of chestnut honeys were compared with the taste profile measured by an electronic tongue, and a good correlation to bitter/savory taste was obtained. This experiment indicates the excellent potentials of Raman spectroscopy as an analytical tool for the nondestructive and rapid assessment of food-quality indicators.
NASA Astrophysics Data System (ADS)
Yoshiura, Shintaro; Takahashi, Keitaro
2018-01-01
The dispersion measure (DM) of high-redshift (z ≳ 6) transient objects such as fast radio bursts can be a powerful tool to probe the intergalactic medium during the Epoch of Reionization. In this paper, we study the variance of the DMs of objects with the same redshift as a potential probe of the size distribution of ionized bubbles. We calculate the DM variance with a simple model with randomly distributed spherical bubbles. It is found that the DM variance reflects the characteristics of the probability distribution of the bubble size. We find that the variance can be measured precisely enough to obtain the information on the typical size with a few hundred sources at a single redshift.
Biodegradation of dispersed oil in seawater is not inhibited by a commercial oil spill dispersant.
Brakstad, Odd G; Ribicic, Deni; Winkler, Anika; Netzer, Roman
2018-04-01
Chemical dispersants are well-established as oil spill response tools. Several studies have emphasized their positive effects on oil biodegradation, but recent studies have claimed that dispersants may actually inhibit the oil biodegradation process. In this study, biodegradation of oil dispersions in natural seawater at low temperature (5°C) was compared, using oil without dispersant, and oil premixed with different concentrations of Slickgone NS, a widely used oil spill dispersant in Europe. Saturates (nC10-nC36 alkanes), naphthalenes and 2- to 5-ring polycyclic aromatic hydrocarbons (PAH) were biotransformed at comparable rates in all dispersions, both with and without dispersant. Microbial communities differed primarily between samples with or without oil, and they were not significantly affected by increasing dispersant concentrations. Our data therefore showed that a common oil spill dispersant did not inhibit biodegradation of oil at dispersant concentrations relevant for response operations. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitt, Nikolai; Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder; Scheid, Claire
2016-07-01
The interaction of light with metallic nanostructures is increasingly attracting interest because of numerous potential applications. Sub-wavelength metallic structures, when illuminated with a frequency close to the plasma frequency of the metal, present resonances that cause extreme local field enhancements. Exploiting the latter in applications of interest requires a detailed knowledge about the occurring fields which can actually not be obtained analytically. For the latter mentioned reason, numerical tools are thus an absolute necessity. The insight they provide is very often the only way to get a deep enough understanding of the very rich physics at play. For the numericalmore » modeling of light-structure interaction on the nanoscale, the choice of an appropriate material model is a crucial point. Approaches that are adopted in a first instance are based on local (i.e. with no interaction between electrons) dispersive models, e.g. Drude or Drude–Lorentz models. From the mathematical point of view, when a time-domain modeling is considered, these models lead to an additional system of ordinary differential equations coupled to Maxwell's equations. However, recent experiments have shown that the repulsive interaction between electrons inside the metal makes the response of metals intrinsically non-local and that this effect cannot generally be overlooked. Technological achievements have enabled the consideration of metallic structures in a regime where such non-localities have a significant influence on the structures' optical response. This leads to an additional, in general non-linear, system of partial differential equations which is, when coupled to Maxwell's equations, significantly more difficult to treat. Nevertheless, dealing with a linearized non-local dispersion model already opens the route to numerous practical applications of plasmonics. In this work, we present a Discontinuous Galerkin Time-Domain (DGTD) method able to solve the system of Maxwell's equations coupled to a linearized non-local dispersion model relevant to plasmonics. While the method is presented in the general 3D case, numerical results are given for 2D simulation settings.« less
Sakai, Toshiro; Thommes, Markus
2014-02-01
The goal of this investigation was to qualify the DSM Xplore Pharma Micro Extruder as a formulation screening tool for early-stage hot-melt extrusion. Dispersive and distributive mixing was investigated using soluplus, copovidone or basic butylated methacrylate copolymer with sodium chloride (NaCl) in a batch size of 5 g. Eleven types of solid dispersions were prepared using various drugs and carriers in batches of 5 g in accordance with the literature. The dispersive mixing was a function of screw speed and recirculation time and the particle size was remarkably reduced after 1 min of processing, regardless of the polymers. An inverse relationship between the particle size and specific mechanical energy (SME) was also found. The SME values were higher than those in large-scale extruders. After 1 min recirculation at 200 rpm, the uniformity of NaCl content met the criteria of the European Pharmacopoeia, indicating that distributive mixing was achieved in this time. For the solid dispersions preparations, the results from different scanning calorimetry, powder X-ray diffractometry and in-vitro dissolution tests confirmed that all solid-dispersion systems were successfully prepared. These findings demonstrated that the extruder is a useful tool to screen solid-dispersion formulations and their material properties on a small scale. © 2013 Royal Pharmaceutical Society.
NASA Astrophysics Data System (ADS)
Murtha, T., Jr.; Orland, B.; Goldberg, L.; Hammond, R.
2014-12-01
Deep shale natural gas deposits made accessible by new technologies are quickly becoming a considerable share of North America's energy portfolio. Unlike traditional deposits and extraction footprints, shale gas offers dispersed and complex landscape and community challenges. These challenges are both cultural and environmental. This paper describes the development and application of creative geospatial tools as a means to engage communities along the northern tier counties of Pennsylvania, experiencing Marcellus shale drilling in design and planning. Uniquely combining physical landscape models with predictive models of exploration activities, including drilling, pipeline construction and road reconstruction, the tools quantify the potential impacts of drilling activities for communities and landscapes in the commonwealth of Pennsylvania. Dividing the state into 9836 watershed sub-basins, we first describe the current state of Marcellus related activities through 2014. We then describe and report the results of three scaled predictive models designed to investigate probable sub-basins where future activities will be focused. Finally, the core of the paper reports on the second level of tools we have now developed to engage communities in planning for unconventional gas extraction in Pennsylvania. Using a geodesign approach we are working with communities to transfer information for comprehensive landscape planning and informed decision making. These tools not only quantify physical landscape impacts, but also quantify potential visual, aesthetic and cultural resource implications.
Air-mediated pollen flow from genetically modified to conventional crops.
Kuparinen, Anna; Schurr, Frank; Tackenberg, Oliver; O'Hara, Robert B
2007-03-01
Tools for estimating pollen dispersal and the resulting gene flow are necessary to assess the risk of gene flow from genetically modified (GM) to conventional fields, and to quantify the effectiveness of measures that may prevent such gene flow. A mechanistic simulation model is presented and used to simulate pollen dispersal by wind in different agricultural scenarios over realistic pollination periods. The relative importance of landscape-related variables such as isolation distance, topography, spatial configuration of the fields, GM field size and barrier, and environmental variation are examined in order to find ways to minimize gene flow and to detect possible risk factors. The simulations demonstrated a large variation in pollen dispersal and in the predicted amount of contamination between different pollination periods. This was largely due to variation in vertical wind. As this variation in wind conditions is difficult to control through management measures, it should be carefully considered when estimating the risk of gene flow from GM crops. On average, the predicted level of gene flow decreased with increasing isolation distance and with increasing depth of the conventional field, and increased with increasing GM field size. Therefore, at a national scale and over the long term these landscape properties should be accounted for when setting regulations for controlling gene flow. However, at the level of an individual field the level of gene flow may be dominated by uncontrollable variation. Due to the sensitivity of pollen dispersal to the wind, we conclude that gene flow cannot be summarized only by the mean contamination; information about the frequency of extreme events should also be considered. The modeling approach described in this paper offers a way to predict and compare pollen dispersal and gene flow in varying environmental conditions, and to assess the effectiveness of different management measures.
Gilroy, James J; Lockwood, Julie L
2012-01-01
Dispersal is a critically important process in ecology, but robust predictive models of animal dispersal remain elusive. We identify a potentially ubiquitous component of variation in animal dispersal that has been largely overlooked until now: the influence of mate encounters on settlement probability. We use an individual-based model to simulate dispersal in sexually-reproducing organisms that follow a simple set of movement rules based on conspecific encounters, within an environment lacking spatial habitat heterogeneity. We show that dispersal distances vary dramatically with fluctuations in population density in such a model, even in the absence of variation in dispersive traits between individuals. In a simple random-walk model with promiscuous mating, dispersal distributions become increasingly 'fat-tailed' at low population densities due to the increasing scarcity of mates. Similar variation arises in models incorporating territoriality. In a model with polygynous mating, we show that patterns of sex-biased dispersal can even be reversed across a gradient of population density, despite underlying dispersal mechanisms remaining unchanged. We show that some widespread dispersal patterns found in nature (e.g. fat tailed distributions) can arise as a result of demographic variability in the absence of heterogeneity in dispersive traits across the population. This implies that models in which individual dispersal distances are considered to be fixed traits might be unrealistic, as dispersal distances vary widely under a single dispersal mechanism when settlement is influenced by mate encounters. Mechanistic models offer a promising means of advancing our understanding of dispersal in sexually-reproducing organisms.
Manna, F; Pradel, R; Choquet, R; Fréville, H; Cheptou, P-O
2017-10-01
In plants, the presence of a seed bank challenges the application of classical metapopulation models to aboveground presence surveys; ignoring seed bank leads to overestimated extinction and colonization rates. In this article, we explore the possibility to detect seed bank using hidden Markov models in the analysis of aboveground patch occupancy surveys of an annual plant with limited dispersal. Patch occupancy data were generated by simulation under two metapopulation sizes (N = 200 and N = 1,000 patches) and different metapopulation scenarios, each scenario being a combination of the presence/absence of a 1-yr seed bank and the presence/absence of limited dispersal in a circular 1-dimension configuration of patches. In addition, because local conditions often vary among patches in natural metapopulations, we simulated patch occupancy data with heterogeneous germination rate and patch disturbance. Seed bank is not observable from aboveground patch occupancy surveys, hence hidden Markov models were designed to account for uncertainty in patch occupancy. We explored their ability to retrieve the correct scenario. For 10 yr surveys and metapopulation sizes of N = 200 or 1,000 patches, the correct metapopulation scenario was detected at a rate close to 100%, whatever the underlying scenario considered. For smaller, more realistic, survey duration, the length for a reliable detection of the correct scenario depends on the metapopulation size: 3 yr for N = 1,000 and 6 yr for N = 200 are enough. Our method remained powerful to disentangle seed bank from dispersal in the presence of patch heterogeneity affecting either seed germination or patch extinction. Our work shows that seed bank and limited dispersal generate different signatures on aboveground patch occupancy surveys. Therefore, our method provides a powerful tool to infer metapopulation dynamics in a wide range of species with an undetectable life form. © 2017 by the Ecological Society of America.
Shirani, Sahar; Hellweger, Ferdi L
2017-08-01
Molecular observations reveal substantial biogeographic patterns of cyanobacteria within systems of connected lakes. An important question is the relative role of environmental selection and neutral processes in the biogeography of these systems. Here, we quantify the effect of genetic drift and dispersal limitation by simulating individual cyanobacteria cells using an agent-based model (ABM). In the model, cells grow (divide), die, and migrate between lakes. Each cell has a full genome that is subject to neutral mutation (i.e., the growth rate is independent of the genome). The model is verified by simulating simplified lake systems, for which theoretical solutions are available. Then, it is used to simulate the biogeography of the cyanobacterium Microcystis aeruginosa in a number of real systems, including the Great Lakes, Klamath River, Yahara River, and Chattahoochee River. Model output is analyzed using standard bioinformatics tools (BLAST, MAFFT). The emergent patterns of nucleotide divergence between lakes are dynamic, including gradual increases due to accumulation of mutations and abrupt changes due to population takeovers by migrant cells (coalescence events). The model predicted nucleotide divergence is heterogeneous within systems, and for weakly connected lakes, it can be substantial. For example, Lakes Superior and Michigan are predicted to have an average genomic nucleotide divergence of 8200 bp or 0.14%. The divergence between more strongly connected lakes is much lower. Our results provide a quantitative baseline for future biogeography studies. They show that dispersal limitation can be an important factor in microbe biogeography, which is contrary to the common belief, and could affect how a system responds to environmental change.
van Turnhout, J.
2016-01-01
The dielectric spectra of colloidal systems often contain a typical low frequency dispersion, which usually remains unnoticed, because of the presence of strong conduction losses. The KK relations offer a means for converting ε′ into ε″ data. This allows us to calculate conduction free ε″ spectra in which the l.f. dispersion will show up undisturbed. This interconversion can be done on line with a moving frame of logarithmically spaced ε′ data. The coefficients of the conversion frames were obtained by kernel matching and by using symbolic differential operators. Logarithmic derivatives and differences of ε′ and ε″ provide another option for conduction free data analysis. These difference-based functions actually derived from approximations to the distribution function, have the additional advantage of improving the resolution power of dielectric studies. A high resolution is important because of the rich relaxation structure of colloidal suspensions. The development of all-in-1 modeling facilitates the conduction free and high resolution data analysis. This mathematical tool allows the apart-together fitting of multiple data and multiple model functions. It proved also useful to go around the KK conversion altogether. This was achieved by the combined approximating ε′ and ε″ data with a complex rational fractional power function. The all-in-1 minimization turned out to be also highly useful for the dielectric modeling of a suspension with the complex dipolar coefficient. It guarantees a secure correction for the electrode polarization, so that the modeling with the help of the differences ε′ and ε″ can zoom in on the genuine colloidal relaxations. PMID:27242997
Master stability functions reveal diffusion-driven pattern formation in networks
NASA Astrophysics Data System (ADS)
Brechtel, Andreas; Gramlich, Philipp; Ritterskamp, Daniel; Drossel, Barbara; Gross, Thilo
2018-03-01
We study diffusion-driven pattern formation in networks of networks, a class of multilayer systems, where different layers have the same topology, but different internal dynamics. Agents are assumed to disperse within a layer by undergoing random walks, while they can be created or destroyed by reactions between or within a layer. We show that the stability of homogeneous steady states can be analyzed with a master stability function approach that reveals a deep analogy between pattern formation in networks and pattern formation in continuous space. For illustration, we consider a generalized model of ecological meta-food webs. This fairly complex model describes the dispersal of many different species across a region consisting of a network of individual habitats while subject to realistic, nonlinear predator-prey interactions. In this example, the method reveals the intricate dependence of the dynamics on the spatial structure. The ability of the proposed approach to deal with this fairly complex system highlights it as a promising tool for ecology and other applications.
Optimisation of dispersion parameters of Gaussian plume model for CO₂ dispersion.
Liu, Xiong; Godbole, Ajit; Lu, Cheng; Michal, Guillaume; Venton, Philip
2015-11-01
The carbon capture and storage (CCS) and enhanced oil recovery (EOR) projects entail the possibility of accidental release of carbon dioxide (CO2) into the atmosphere. To quantify the spread of CO2 following such release, the 'Gaussian' dispersion model is often used to estimate the resulting CO2 concentration levels in the surroundings. The Gaussian model enables quick estimates of the concentration levels. However, the traditionally recommended values of the 'dispersion parameters' in the Gaussian model may not be directly applicable to CO2 dispersion. This paper presents an optimisation technique to obtain the dispersion parameters in order to achieve a quick estimation of CO2 concentration levels in the atmosphere following CO2 blowouts. The optimised dispersion parameters enable the Gaussian model to produce quick estimates of CO2 concentration levels, precluding the necessity to set up and run much more complicated models. Computational fluid dynamics (CFD) models were employed to produce reference CO2 dispersion profiles in various atmospheric stability classes (ASC), different 'source strengths' and degrees of ground roughness. The performance of the CFD models was validated against the 'Kit Fox' field measurements, involving dispersion over a flat horizontal terrain, both with low and high roughness regions. An optimisation model employing a genetic algorithm (GA) to determine the best dispersion parameters in the Gaussian plume model was set up. Optimum values of the dispersion parameters for different ASCs that can be used in the Gaussian plume model for predicting CO2 dispersion were obtained.
Solution conformation of carbohydrates: a view by using NMR assisted by modeling.
Díaz, Dolores; Canales-Mayordomo, Angeles; Cañada, F Javier; Jiménez-Barbero, Jesús
2015-01-01
Structural elucidation of complex carbohydrates in solution is not a trivial task. From the NMR view point, the limited chemical shift dispersion of sugar NMR spectra demands the combination of a variety of NMR techniques as well as the employment of molecular modeling methods. Herein, a general protocol for assignment of resonances and determination of inter-proton distances within the saccharides by homonuclear and heteronuclear experiments (i.e., (1)H and (13)C) is described. In addition, several computational tools and procedures for getting a final ensemble of geometries that represent the structure in solution are presented.
Andrello, Marco; Mouillot, David; Beuvier, Jonathan; Albouy, Camille; Thuiller, Wilfried; Manel, Stéphanie
2013-01-01
Marine protected areas (MPAs) are major tools to protect biodiversity and sustain fisheries. For species with a sedentary adult phase and a dispersive larval phase, the effectiveness of MPA networks for population persistence depends on connectivity through larval dispersal. However, connectivity patterns between MPAs remain largely unknown at large spatial scales. Here, we used a biophysical model to evaluate connectivity between MPAs in the Mediterranean Sea, a region of extremely rich biodiversity that is currently protected by a system of approximately a hundred MPAs. The model was parameterized according to the dispersal capacity of the dusky grouper Epinephelus marginatus, an archetypal conservation-dependent species, with high economic importance and emblematic in the Mediterranean. Using various connectivity metrics and graph theory, we showed that Mediterranean MPAs are far from constituting a true, well-connected network. On average, each MPA was directly connected to four others and MPAs were clustered into several groups. Two MPAs (one in the Balearic Islands and one in Sardinia) emerged as crucial nodes for ensuring multi-generational connectivity. The high heterogeneity of MPA distribution, with low density in the South-Eastern Mediterranean, coupled with a mean dispersal distance of 120 km, leaves about 20% of the continental shelf without any larval supply. This low connectivity, here demonstrated for a major Mediterranean species, poses new challenges for the creation of a future Mediterranean network of well-connected MPAs providing recruitment to the whole continental shelf. This issue is even more critical given that the expected reduction of pelagic larval duration following sea temperature rise will likely decrease connectivity even more. PMID:23861917
Comparison of Non-Parabolic Hydrodynamic Simulations for Semiconductor Devices
NASA Technical Reports Server (NTRS)
Smith, A. W.; Brennan, K. F.
1996-01-01
Parabolic drift-diffusion simulators are common engineering level design tools for semiconductor devices. Hydrodynamic simulators, based on the parabolic band approximation, are becoming more prevalent as device dimensions shrink and energy transport effects begin to dominate device characteristic. However, band structure effects present in state-of-the-art devices necessitate relaxing the parabolic band approximation. This paper presents simulations of ballistic diodes, a benchmark device, of Si and GaAs using two different non-parabolic hydrodynamic formulations. The first formulation uses the Kane dispersion relationship in the derivation of the conservation equations. The second model uses a power law dispersion relation {(hk)(exp 2)/2m = xW(exp Y)}. Current-voltage relations show that for the ballistic diodes considered. the non-parabolic formulations predict less current than the parabolic case. Explanations of this will be provided by examination of velocity and energy profiles. At low bias, the simulations based on the Kane formulation predict greater current flow than the power law formulation. As the bias is increased this trend changes and the power law predicts greater current than the Kane formulation. It will be shown that the non-parabolicity and energy range of the hydrodynamic model based on the Kane dispersion relation are limited due to the binomial approximation which was utilized in the derivation.
Genetic and archaeological perspectives on the initial modern human colonization of southern Asia
Mellars, Paul; Gori, Kevin C.; Carr, Martin; Soares, Pedro A.; Richards, Martin B.
2013-01-01
It has been argued recently that the initial dispersal of anatomically modern humans from Africa to southern Asia occurred before the volcanic “supereruption” of the Mount Toba volcano (Sumatra) at ∼74,000 y before present (B.P.)—possibly as early as 120,000 y B.P. We show here that this “pre-Toba” dispersal model is in serious conflict with both the most recent genetic evidence from both Africa and Asia and the archaeological evidence from South Asian sites. We present an alternative model based on a combination of genetic analyses and recent archaeological evidence from South Asia and Africa. These data support a coastally oriented dispersal of modern humans from eastern Africa to southern Asia ∼60–50 thousand years ago (ka). This was associated with distinctively African microlithic and “backed-segment” technologies analogous to the African “Howiesons Poort” and related technologies, together with a range of distinctively “modern” cultural and symbolic features (highly shaped bone tools, personal ornaments, abstract artistic motifs, microblade technology, etc.), similar to those that accompanied the replacement of “archaic” Neanderthal by anatomically modern human populations in other regions of western Eurasia at a broadly similar date. PMID:23754394
Consequence modeling using the fire dynamics simulator.
Ryder, Noah L; Sutula, Jason A; Schemel, Christopher F; Hamer, Andrew J; Van Brunt, Vincent
2004-11-11
The use of Computational Fluid Dynamics (CFD) and in particular Large Eddy Simulation (LES) codes to model fires provides an efficient tool for the prediction of large-scale effects that include plume characteristics, combustion product dispersion, and heat effects to adjacent objects. This paper illustrates the strengths of the Fire Dynamics Simulator (FDS), an LES code developed by the National Institute of Standards and Technology (NIST), through several small and large-scale validation runs and process safety applications. The paper presents two fire experiments--a small room fire and a large (15 m diameter) pool fire. The model results are compared to experimental data and demonstrate good agreement between the models and data. The validation work is then extended to demonstrate applicability to process safety concerns by detailing a model of a tank farm fire and a model of the ignition of a gaseous fuel in a confined space. In this simulation, a room was filled with propane, given time to disperse, and was then ignited. The model yields accurate results of the dispersion of the gas throughout the space. This information can be used to determine flammability and explosive limits in a space and can be used in subsequent models to determine the pressure and temperature waves that would result from an explosion. The model dispersion results were compared to an experiment performed by Factory Mutual. Using the above examples, this paper will demonstrate that FDS is ideally suited to build realistic models of process geometries in which large scale explosion and fire failure risks can be evaluated with several distinct advantages over more traditional CFD codes. Namely transient solutions to fire and explosion growth can be produced with less sophisticated hardware (lower cost) than needed for traditional CFD codes (PC type computer verses UNIX workstation) and can be solved for longer time histories (on the order of hundreds of seconds of computed time) with minimal computer resources and length of model run. Additionally results that are produced can be analyzed, viewed, and tabulated during and following a model run within a PC environment. There are some tradeoffs, however, as rapid computations in PC's may require a sacrifice in the grid resolution or in the sub-grid modeling, depending on the size of the geometry modeled.
City scale pollen concentration variability
NASA Astrophysics Data System (ADS)
van der Molen, Michiel; van Vliet, Arnold; Krol, Maarten
2016-04-01
Pollen are emitted in the atmosphere both in the country-side and in cities. Yet the majority of the population is exposed to pollen in cities. Allergic reactions may be induced by short-term exposure to pollen. This raises the question how variable pollen concentration in cities are in temporally and spatially, and how much of the pollen in cities are actually produced in the urban region itself. We built a high resolution (1 × 1 km) pollen dispersion model based on WRF-Chem to study a city's pollen budget and the spatial and temporal variability in concentration. It shows that the concentrations are highly variable, as a result of source distribution, wind direction and boundary layer mixing, as well as the release rate as a function of temperature, turbulence intensity and humidity. Hay Fever Forecasts based on such high resolution emission and physical dispersion modelling surpass traditional hay fever warning methods based on temperature sum methods. The model gives new insights in concentration variability, personal and community level exposure and prevention. The model will be developped into a new forecast tool to serve allergic people to minimize their exposure and reduce nuisance, coast of medication and sick leave. This is an innovative approach in hay fever warning systems.
Exposure to traffic pollution: comparison between measurements and a model.
Alili, F; Momas, I; Callais, F; Le Moullec, Y; Sacre, C; Chiron, M; Flori, J P
2001-01-01
French researchers from the Building Scientific and Technical Center have produced a traffic-exposure index. To achieve this, they used an air pollution dispersion model that enabled them to calculate automobile pollutant concentrations in front of subjects' residences and places of work. Researchers used this model, which was tested at 27 Paris canyon street sites, and compared nitrogen oxides measurements obtained with passive samplers during a 6-wk period and calculations derived from the model. There was a highly significant correlation (r = .83) between the 2 series of values; their mean concentrations were not significantly different. The results suggested that the aforementioned model could be a useful epidemiological tool for the classification of city dwellers by present-or even cumulative exposure to automobile air pollution.
Development of Tool Representations in the Dorsal and Ventral Visual Object Processing Pathways
Kersey, Alyssa J.; Clark, Tyia S.; Lussier, Courtney A.; Mahon, Bradford Z.; Cantlon, Jessica F.
2016-01-01
Tools represent a special class of objects, because they are processed across both the dorsal and ventral visual object processing pathways. Three core regions are known to be involved in tool processing: the left posterior middle temporal gyrus, the medial fusiform gyrus (bilaterally), and the left inferior parietal lobule. A critical and relatively unexplored issue concerns whether, in development, tool preferences emerge at the same time and to a similar degree across all regions of the tool-processing network. To test this issue, we used functional magnetic resonance imaging to measure the neural amplitude, peak location, and the dispersion of tool-related neural responses in the youngest sample of children tested to date in this domain (ages 4–8 years). We show that children recruit overlapping regions of the adult tool-processing network and also exhibit similar patterns of co-activation across the network to adults. The amplitude and co-activation data show that the core components of the tool-processing network are established by age 4. Our findings on the distributions of peak location and dispersion of activation indicate that the tool network undergoes refinement between ages 4 and 8 years. PMID:26108614
Larval fish dispersal in a coral-reef seascape.
Almany, Glenn R; Planes, Serge; Thorrold, Simon R; Berumen, Michael L; Bode, Michael; Saenz-Agudelo, Pablo; Bonin, Mary C; Frisch, Ashley J; Harrison, Hugo B; Messmer, Vanessa; Nanninga, Gerrit B; Priest, Mark A; Srinivasan, Maya; Sinclair-Taylor, Tane; Williamson, David H; Jones, Geoffrey P
2017-05-08
Larval dispersal is a critical yet enigmatic process in the persistence and productivity of marine metapopulations. Empirical data on larval dispersal remain scarce, hindering the use of spatial management tools in efforts to sustain ocean biodiversity and fisheries. Here we document dispersal among subpopulations of clownfish (Amphiprion percula) and butterflyfish (Chaetodon vagabundus) from eight sites across a large seascape (10,000 km 2 ) in Papua New Guinea across 2 years. Dispersal of clownfish was consistent between years, with mean observed dispersal distances of 15 km and 10 km in 2009 and 2011, respectively. A Laplacian statistical distribution (the dispersal kernel) predicted a mean dispersal distance of 13-19 km, with 90% of settlement occurring within 31-43 km. Mean dispersal distances were considerably greater (43-64 km) for butterflyfish, with kernels declining only gradually from spawning locations. We demonstrate that dispersal can be measured on spatial scales sufficient to inform the design of and test the performance of marine reserve networks.
Benamrane, Y; Wybo, J-L; Armand, P
2013-12-01
The threat of a major accidental or deliberate event that would lead to hazardous materials emission in the atmosphere is a great cause of concern to societies. This is due to the potential large scale of casualties and damages that could result from the release of explosive, flammable or toxic gases from industrial plants or transport accidents, radioactive material from nuclear power plants (NPPs), and chemical, biological, radiological or nuclear (CBRN) terrorist attacks. In order to respond efficiently to such events, emergency services and authorities resort to appropriate planning and organizational patterns. This paper focuses on the use of atmospheric dispersion modeling (ADM) as a support tool for emergency planning and response, to assess the propagation of the hazardous cloud and thereby, take adequate counter measures. This paper intends to illustrate the noticeable evolution in the operational use of ADM tools over 25 y and especially in emergency situations. This study is based on data available in scientific publications and exemplified using the two most severe nuclear accidents: Chernobyl (1986) and Fukushima (2011). It appears that during the Chernobyl accident, ADM were used few days after the beginning of the accident mainly in a diagnosis approach trying to reconstruct what happened, whereas 25 y later, ADM was also used during the first days and weeks of the Fukushima accident to anticipate the potentially threatened areas. We argue that the recent developments in ADM tools play an increasing role in emergencies and crises management, by supporting stakeholders in anticipating, monitoring and assessing post-event damages. However, despite technological evolutions, its prognostic and diagnostic use in emergency situations still arise many issues. Copyright © 2013 Elsevier Ltd. All rights reserved.
A guided wave dispersion compensation method based on compressed sensing
NASA Astrophysics Data System (ADS)
Xu, Cai-bin; Yang, Zhi-bo; Chen, Xue-feng; Tian, Shao-hua; Xie, Yong
2018-03-01
The ultrasonic guided wave has emerged as a promising tool for structural health monitoring (SHM) and nondestructive testing (NDT) due to their capability to propagate over long distances with minimal loss and sensitivity to both surface and subsurface defects. The dispersion effect degrades the temporal and spatial resolution of guided waves. A novel ultrasonic guided wave processing method for both single mode and multi-mode guided waves dispersion compensation is proposed in this work based on compressed sensing, in which a dispersion signal dictionary is built by utilizing the dispersion curves of the guided wave modes in order to sparsely decompose the recorded dispersive guided waves. Dispersion-compensated guided waves are obtained by utilizing a non-dispersion signal dictionary and the results of sparse decomposition. Numerical simulations and experiments are implemented to verify the effectiveness of the developed method for both single mode and multi-mode guided waves.
Kershenbaum, Arik; Blank, Lior; Sinai, Iftach; Merilä, Juha; Blaustein, Leon; Templeton, Alan R
2014-06-01
When populations reside within a heterogeneous landscape, isolation by distance may not be a good predictor of genetic divergence if dispersal behaviour and therefore gene flow depend on landscape features. Commonly used approaches linking landscape features to gene flow include the least cost path (LCP), random walk (RW), and isolation by resistance (IBR) models. However, none of these models is likely to be the most appropriate for all species and in all environments. We compared the performance of LCP, RW and IBR models of dispersal with the aid of simulations conducted on artificially generated landscapes. We also applied each model to empirical data on the landscape genetics of the endangered fire salamander, Salamandra infraimmaculata, in northern Israel, where conservation planning requires an understanding of the dispersal corridors. Our simulations demonstrate that wide dispersal corridors of the low-cost environment facilitate dispersal in the IBR model, but inhibit dispersal in the RW model. In our empirical study, IBR explained the genetic divergence better than the LCP and RW models (partial Mantel correlation 0.413 for IBR, compared to 0.212 for LCP, and 0.340 for RW). Overall dispersal cost in salamanders was also well predicted by landscape feature slope steepness (76%), and elevation (24%). We conclude that fire salamander dispersal is well characterised by IBR predictions. Together with our simulation findings, these results indicate that wide dispersal corridors facilitate, rather than hinder, salamander dispersal. Comparison of genetic data to dispersal model outputs can be a useful technique in inferring dispersal behaviour from population genetic data.
Teixeira, Sara; Assis, Jorge; Serrão, Ester A.; Gonçalves, Emanuel J.; Borges, Rita
2016-01-01
Adults of most marine benthic and demersal fish are site-attached, with the dispersal of their larval stages ensuring connectivity among populations. In this study we aimed to infer spatial and temporal variation in population connectivity and dispersal of a marine fish species, using genetic tools and comparing these with oceanographic transport. We focused on an intertidal rocky reef fish species, the shore clingfish Lepadogaster lepadogaster, along the southwest Iberian Peninsula, in 2011 and 2012. We predicted high levels of self-recruitment and distinct populations, due to short pelagic larval duration and because all its developmental stages have previously been found near adult habitats. Genetic analyses based on microsatellites countered our prediction and a biophysical dispersal model showed that oceanographic transport was a good explanation for the patterns observed. Adult sub-populations separated by up to 300 km of coastline displayed no genetic differentiation, revealing a single connected population with larvae potentially dispersing long distances over hundreds of km. Despite this, parentage analysis performed on recruits from one focal site within the Marine Park of Arrábida (Portugal), revealed self-recruitment levels of 2.5% and 7.7% in 2011 and 2012, respectively, suggesting that both long- and short-distance dispersal play an important role in the replenishment of these populations. Population differentiation and patterns of dispersal, which were highly variable between years, could be linked to the variability inherent in local oceanographic processes. Overall, our measures of connectivity based on genetic and oceanographic data highlight the relevance of long-distance dispersal in determining the degree of connectivity, even in species with short pelagic larval durations. PMID:27911952
Gigot, C.; de Vallavieille-Pope, C.; Huber, L.; Saint-Jean, S.
2014-01-01
Background and Aims Recent developments in plant disease management have led to a growing interest in alternative strategies, such as increasing host diversity and decreasing the use of pesticides. Use of cultivar mixtures is one option, allowing the spread of plant epidemics to be slowed down. As dispersal of fungal foliar pathogens over short distances by rain-splash droplets is a major contibutor to the spread of disease, this study focused on modelling the physical mechanisms involved in dispersal of a non-specialized pathogen within heterogeneous canopies of cultivar mixtures, with the aim of optimizing host diversification at the intra-field level. Methods Virtual 3-D wheat-like plants (Triticum aestivum) were used to consider interactions between plant architecture and disease progression in heterogeneous canopies. A combined mechanistic and stochastic model, taking into account splash droplet dispersal and host quantitative resistance within a 3-D heterogeneous canopy, was developed. It consists of four sub-models that describe the spatial patterns of two cultivars within a complex canopy, the pathway of rain-splash droplets within this canopy, the proportion of leaf surface area impacted by dispersal via the droplets and the progression of disease severity after each dispersal event. Key Results Different spatial organization, proportions and resistance levels of the cultivars of two-component mixtures were investigated. For the eight spatial patterns tested, the protective effect against disease was found to vary by almost 2-fold, with the greatest effect being obtained with the smallest genotype unit area, i.e. the ground area occupied by an independent unit of the host population that is genetically homogeneous. Increasing both the difference between resistance levels and the proportion of the most resistant cultivar often resulted in a greater protective effect; however, this was not observed for situations in which the most resistant of the two cultivars in the mixture had a relatively low level of resistance. Conclusions The results show agreement with previous data obtained using experimental approaches. They demonstrate that in order to maximize the potential mixture efficiency against a splash-dispersed pathogen, optimal susceptible/resistant cultivar proportions (ranging from 1/9 to 5/5) have to be established based on host resistance levels. The results also show that taking into account dispersal processes in explicit 3-D plant canopies can be a key tool for investigating disease progression in heterogeneous canopies such as cultivar mixtures. PMID:24989786
Dispersion flattened single etch-step waveguide based on subwavelength grating
NASA Astrophysics Data System (ADS)
Jafari, Zeinab; Zarifkar, Abbas
2017-06-01
A novel subwavelength-grating-assisted (SWG-assisted) waveguide is proposed for dispersion flattening. Tuning the refractive index, which is a powerful tool in dispersion engineering, can be carried out through adjusting the properties of the SWG regions. It is particularly beneficial for controlling the flattened dispersion bandwidth. This will also eliminate the need for integration of other less compatible materials with silicon. Moreover, the SWG-assisted waveguide can be easily fabricated through a single etch-step process. By engineering the structural parameters of the waveguide, an ultra-flat dispersion profile with a total dispersion variation of 10 (ps/nm/km) over a wide bandwidth of 1615 nm is obtained. The possibility of bandwidth expansion, the fabrication friendly design, and the flattened dispersion profile of the proposed waveguide make it promising for wideband nonlinear applications.
GADEN: A 3D Gas Dispersion Simulator for Mobile Robot Olfaction in Realistic Environments.
Monroy, Javier; Hernandez-Bennets, Victor; Fan, Han; Lilienthal, Achim; Gonzalez-Jimenez, Javier
2017-06-23
This work presents a simulation framework developed under the widely used Robot Operating System (ROS) to enable the validation of robotics systems and gas sensing algorithms under realistic environments. The framework is rooted in the principles of computational fluid dynamics and filament dispersion theory, modeling wind flow and gas dispersion in 3D real-world scenarios (i.e., accounting for walls, furniture, etc.). Moreover, it integrates the simulation of different environmental sensors, such as metal oxide gas sensors, photo ionization detectors, or anemometers. We illustrate the potential and applicability of the proposed tool by presenting a simulation case in a complex and realistic office-like environment where gas leaks of different chemicals occur simultaneously. Furthermore, we accomplish quantitative and qualitative validation by comparing our simulated results against real-world data recorded inside a wind tunnel where methane was released under different wind flow profiles. Based on these results, we conclude that our simulation framework can provide a good approximation to real world measurements when advective airflows are present in the environment.
GADEN: A 3D Gas Dispersion Simulator for Mobile Robot Olfaction in Realistic Environments
Hernandez-Bennetts, Victor; Fan, Han; Lilienthal, Achim; Gonzalez-Jimenez, Javier
2017-01-01
This work presents a simulation framework developed under the widely used Robot Operating System (ROS) to enable the validation of robotics systems and gas sensing algorithms under realistic environments. The framework is rooted in the principles of computational fluid dynamics and filament dispersion theory, modeling wind flow and gas dispersion in 3D real-world scenarios (i.e., accounting for walls, furniture, etc.). Moreover, it integrates the simulation of different environmental sensors, such as metal oxide gas sensors, photo ionization detectors, or anemometers. We illustrate the potential and applicability of the proposed tool by presenting a simulation case in a complex and realistic office-like environment where gas leaks of different chemicals occur simultaneously. Furthermore, we accomplish quantitative and qualitative validation by comparing our simulated results against real-world data recorded inside a wind tunnel where methane was released under different wind flow profiles. Based on these results, we conclude that our simulation framework can provide a good approximation to real world measurements when advective airflows are present in the environment. PMID:28644375
A case study of assigning conservation value to dispersed habitat units for conservation planning
Rohweder, Jason J.; Sara C. Vacek,; Crimmins, Shawn M.; Thogmartin, Wayne E.
2015-01-01
Resource managers are increasingly tasked with developing habitat conservation plans in the face of numerous, sometimes competing, objectives. These plans must often be implemented across dispersed habitat conservation units that may contribute unequally to overall conservation objectives. Using U.S. Fish and Wildlife Service waterfowl production areas (WPA) in western Minnesota as our conservation landscape, we develop a landscape-scale approach for evaluating the conservation value of dispersed habitat conservation units with multiple conservation priorities. We evaluated conservation value based on a suite of variables directly applicable to conservation management practices, thus providing a direct link between conservation actions and outcomes. We developed spatial models specific to each of these conservation objectives and also developed two freely available prioritization tools to implement these analyses. We found that some WPAs provided high conservation value across a range of conservation objectives, suggesting that managing these specific areas would achieve multiple conservation goals. Conversely, other WPAs provided low conservation value for some objectives, suggesting they would be most effectively managed for a distinct set of specific conservation goals. Approaches such as ours provide a direct means of assessing the conservation value of dispersed habitat conservation units and could be useful in the development of habitat management plans, particularly when faced with multiple conservation objectives.
Seed Dispersal Near and Far: Patterns Across Temperate and Tropical Forests
James S. Clark; Miles Silman; Ruth Kern; Eric Macklin; Janneke HilleRisLambers
1999-01-01
Dispersal affects community dynamics and vegetation response to global change. Understanding these effects requires descriptions of dispersal at local and regional scales and statistical models that permit estimation. Classical models of dispersal describe local or long-distance dispersal, but not both. The lack of statistical methods means that models have rarely been...
Ares I-X Flight Test Validation of Control Design Tools in the Frequency-Domain
NASA Technical Reports Server (NTRS)
Johnson, Matthew; Hannan, Mike; Brandon, Jay; Derry, Stephen
2011-01-01
A major motivation of the Ares I-X flight test program was to Design for Data, in order to maximize the usefulness of the data recorded in support of Ares I modeling and validation of design and analysis tools. The Design for Data effort was intended to enable good post-flight characterizations of the flight control system, the vehicle structural dynamics, and also the aerodynamic characteristics of the vehicle. To extract the necessary data from the system during flight, a set of small predetermined Programmed Test Inputs (PTIs) was injected directly into the TVC signal. These PTIs were designed to excite the necessary vehicle dynamics while exhibiting a minimal impact on loads. The method is similar to common approaches in aircraft flight test programs, but with unique launch vehicle challenges due to rapidly changing states, short duration of flight, a tight flight envelope, and an inability to repeat any test. This paper documents the validation effort of the stability analysis tools to the flight data which was performed by comparing the post-flight calculated frequency response of the vehicle to the frequency response calculated by the stability analysis tools used to design and analyze the preflight models during the control design effort. The comparison between flight day frequency response and stability tool analysis for flight of the simulated vehicle shows good agreement and provides a high level of confidence in the stability analysis tools for use in any future program. This is true for both a nominal model as well as for dispersed analysis, which shows that the flight day frequency response is enveloped by the vehicle s preflight uncertainty models.
Variability in oceanographic barriers to coral larval dispersal: Do currents shape biodiversity?
NASA Astrophysics Data System (ADS)
Thompson, D. M.; Kleypas, J.; Castruccio, F.; Curchitser, E. N.; Pinsky, M. L.; Jönsson, B.; Watson, J. R.
2018-07-01
The global center of marine biodiversity is located in the western tropical Pacific in a region known as the "Coral Triangle" (CT). This region is also considered the most threatened of all coral reef regions, because multiple impacts, including rising temperatures and coral bleaching, have already caused high mortality of reef corals over large portions of the CT. Larval dispersal and recruitment play a critical role in reef recovery after such disturbances, but our understanding of reproductive connectivity between reefs is limited by a paucity of observations. Oceanographic modeling can provide an economical and efficient way to augment our understanding of reef connectivity, particularly over an area as large as the CT, where marine ecosystem management has become a priority. This work combines daily averaged surface current velocity and direction from a Regional Ocean Modeling System developed for the CT region (CT-ROMS) with a Lagrangian particle tracking tool (TRACMASS) to investigate the probability of larval transport between reefs for a typical broadcasting coral. A 47-year historical simulation (1960-2006) was used to analyze the potential connectivity, the physical drivers of larval transport, and its variability following bi-annual spawning events in April and September. Potential connectivity between reefs was highly variable from year to year, emphasizing the need for long simulations. The results suggest that although reefs in this region are highly self-seeded, comparatively rare long-distance dispersal events may play a vital role in shaping regional patterns of reef biodiversity and recovery following disturbance. The spatial pattern of coral "subpopulations," which are based on the potential connectivity between reefs, agrees with observed regional-scale patterns of biodiversity, suggesting that the physical barriers to larval dispersal are a first-order driver of coral biodiversity in the CT region. These physical barriers persist through the 21st Century when the model is forced with the Community Earth System Model (CESM) RCP8.5 climate scenario, despite some regional changes in connectivity between reefs.
Thatcher, T L; Wilson, D J; Wood, E E; Craig, M J; Sextro, R G
2004-08-01
Scale modeling is a useful tool for analyzing complex indoor spaces. Scale model experiments can reduce experimental costs, improve control of flow and temperature conditions, and provide a practical method for pretesting full-scale system modifications. However, changes in physical scale and working fluid (air or water) can complicate interpretation of the equivalent effects in the full-scale structure. This paper presents a detailed scaling analysis of a water tank experiment designed to model a large indoor space, and experimental results obtained with this model to assess the influence of furniture and people in the pollutant concentration field at breathing height. Theoretical calculations are derived for predicting the effects from losses of molecular diffusion, small scale eddies, turbulent kinetic energy, and turbulent mass diffusivity in a scale model, even without Reynolds number matching. Pollutant dispersion experiments were performed in a water-filled 30:1 scale model of a large room, using uranine dye injected continuously from a small point source. Pollutant concentrations were measured in a plane, using laser-induced fluorescence techniques, for three interior configurations: unobstructed, table-like obstructions, and table-like and figure-like obstructions. Concentrations within the measurement plane varied by more than an order of magnitude, even after the concentration field was fully developed. Objects in the model interior had a significant effect on both the concentration field and fluctuation intensity in the measurement plane. PRACTICAL IMPLICATION: This scale model study demonstrates both the utility of scale models for investigating dispersion in indoor environments and the significant impact of turbulence created by furnishings and people on pollutant transport from floor level sources. In a room with no furniture or occupants, the average concentration can vary by about a factor of 3 across the room. Adding furniture and occupants can increase this spatial variation by another factor of 3.
Self-Assembled Magnetic Surface Swimmers: Theoretical Model
NASA Astrophysics Data System (ADS)
Aranson, Igor; Belkin, Maxim; Snezhko, Alexey
2009-03-01
The mechanisms of self-propulsion of living microorganisms are a fascinating phenomenon attracting enormous attention in the physics community. A new type of self-assembled micro-swimmers, magnetic snakes, is an excellent tool to model locomotion in a simple table-top experiment. The snakes self-assemble from a dispersion of magnetic microparticles suspended on the liquid-air interface and subjected to an alternating magnetic field. Formation and dynamics of these swimmers are captured in the framework of theoretical model coupling paradigm equation for the amplitude of surface waves, conservation law for the density of particles, and the Navier-Stokes equation for hydrodynamic flows. The results of continuum modeling are supported by hybrid molecular dynamics simulations of magnetic particles floating on the surface of fluid.
Imaging Carbon Nanotubes in High Performance Polymer Composites via Magnetic Force Microscope
NASA Technical Reports Server (NTRS)
Lillehei, Peter T.; Park, Cheol; Rouse, Jason H.; Siochi, Emilie J.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
Application of carbon nanotubes as reinforcement in structural composites is dependent on the efficient dispersion of the nanotubes in a high performance polymer matrix. The characterization of such dispersion is limited by the lack of available tools to visualize the quality of the matrix/carbon nanotube interaction. The work reported herein demonstrates the use of magnetic force microscopy (MFM) as a promising technique for characterizing the dispersion of nanotubes in a high performance polymer matrix.
Hsieh, Fu-Yu; Lin, Hsin-Hua; Hsu, Shan-Hui
2015-12-01
The 3D bioprinting technology serves as a powerful tool for building tissue in the field of tissue engineering. Traditional 3D printing methods involve the use of heat, toxic organic solvents, or toxic photoinitiators for fabrication of synthetic scaffolds. In this study, two thermoresponsive water-based biodegradable polyurethane dispersions (PU1 and PU2) were synthesized which may form gel near 37 °C without any crosslinker. The stiffness of the hydrogel could be easily fine-tuned by the solid content of the dispersion. Neural stem cells (NSCs) were embedded into the polyurethane dispersions before gelation. The dispersions containing NSCs were subsequently printed and maintained at 37 °C. The NSCs in 25-30% PU2 hydrogels (∼680-2400 Pa) had excellent proliferation and differentiation but not in 25-30% PU1 hydrogels. Moreover, NSC-laden 25-30% PU2 hydrogels injected into the zebrafish embryo neural injury model could rescue the function of impaired nervous system. However, NSC-laden 25-30% PU1 hydrogels only showed a minor repair effect in the zebrafish model. In addition, the function of adult zebrafish with traumatic brain injury was rescued after implantation of the 3D-printed NSC-laden 25% PU2 constructs. Therefore, the newly developed 3D bioprinting technique involving NSCs embedded in the thermoresponsive biodegradable polyurethane ink offers new possibilities for future applications of 3D bioprinting in neural tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.
Homo sapiens in Arabia by 85,000 years ago.
Groucutt, Huw S; Grün, Rainer; Zalmout, Iyad A S; Drake, Nick A; Armitage, Simon J; Candy, Ian; Clark-Wilson, Richard; Louys, Julien; Breeze, Paul S; Duval, Mathieu; Buck, Laura T; Kivell, Tracy L; Pomeroy, Emma; Stephens, Nicholas B; Stock, Jay T; Stewart, Mathew; Price, Gilbert J; Kinsley, Leslie; Sung, Wing Wai; Alsharekh, Abdullah; Al-Omari, Abdulaziz; Zahir, Muhammad; Memesh, Abdullah M; Abdulshakoor, Ammar J; Al-Masari, Abdu M; Bahameem, Ahmed A; Al Murayyi, Khaled M S; Zahrani, Badr; Scerri, Eleanor L M; Petraglia, Michael D
2018-05-01
Understanding the timing and character of the expansion of Homo sapiens out of Africa is critical for inferring the colonization and admixture processes that underpin global population history. It has been argued that dispersal out of Africa had an early phase, particularly ~130-90 thousand years ago (ka), that reached only the East Mediterranean Levant, and a later phase, ~60-50 ka, that extended across the diverse environments of Eurasia to Sahul. However, recent findings from East Asia and Sahul challenge this model. Here we show that H. sapiens was in the Arabian Peninsula before 85 ka. We describe the Al Wusta-1 (AW-1) intermediate phalanx from the site of Al Wusta in the Nefud desert, Saudi Arabia. AW-1 is the oldest directly dated fossil of our species outside Africa and the Levant. The palaeoenvironmental context of Al Wusta demonstrates that H. sapiens using Middle Palaeolithic stone tools dispersed into Arabia during a phase of increased precipitation driven by orbital forcing, in association with a primarily African fauna. A Bayesian model incorporating independent chronometric age estimates indicates a chronology for Al Wusta of ~95-86 ka, which we correlate with a humid episode in the later part of Marine Isotope Stage 5 known from various regional records. Al Wusta shows that early dispersals were more spatially and temporally extensive than previously thought. Early H. sapiens dispersals out of Africa were not limited to winter rainfall-fed Levantine Mediterranean woodlands immediately adjacent to Africa, but extended deep into the semi-arid grasslands of Arabia, facilitated by periods of enhanced monsoonal rainfall.
Validating data analysis of broadband laser ranging
NASA Astrophysics Data System (ADS)
Rhodes, M.; Catenacci, J.; Howard, M.; La Lone, B.; Kostinski, N.; Perry, D.; Bennett, C.; Patterson, J.
2018-03-01
Broadband laser ranging combines spectral interferometry and a dispersive Fourier transform to achieve high-repetition-rate measurements of the position of a moving surface. Telecommunications fiber is a convenient tool for generating the large linear dispersions required for a dispersive Fourier transform, but standard fiber also has higher-order dispersion that distorts the Fourier transform. Imperfections in the dispersive Fourier transform significantly complicate the ranging signal and must be dealt with to make high-precision measurements. We describe in detail an analysis process for interpreting ranging data when standard telecommunications fiber is used to perform an imperfect dispersive Fourier transform. This analysis process is experimentally validated over a 27-cm scan of static positions, showing an accuracy of 50 μm and a root-mean-square precision of 4.7 μm.
Quantitative dispersion microscopy
Fu, Dan; Choi, Wonshik; Sung, Yongjin; Yaqoob, Zahid; Dasari, Ramachandra R.; Feld, Michael
2010-01-01
Refractive index dispersion is an intrinsic optical property and a useful source of contrast in biological imaging studies. In this report, we present the first dispersion phase imaging of living eukaryotic cells. We have developed quantitative dispersion microscopy based on the principle of quantitative phase microscopy. The dual-wavelength quantitative phase microscope makes phase measurements at 310 nm and 400 nm wavelengths to quantify dispersion (refractive index increment ratio) of live cells. The measured dispersion of living HeLa cells is found to be around 1.088, which agrees well with that measured directly for protein solutions using total internal reflection. This technique, together with the dry mass and morphology measurements provided by quantitative phase microscopy, could prove to be a useful tool for distinguishing different types of biomaterials and studying spatial inhomogeneities of biological samples. PMID:21113234
Approximate Dispersion Relations for Waves on Arbitrary Shear Flows
NASA Astrophysics Data System (ADS)
Ellingsen, S. À.; Li, Y.
2017-12-01
An approximate dispersion relation is derived and presented for linear surface waves atop a shear current whose magnitude and direction can vary arbitrarily with depth. The approximation, derived to first order of deviation from potential flow, is shown to produce good approximations at all wavelengths for a wide range of naturally occuring shear flows as well as widely used model flows. The relation reduces in many cases to a 3-D generalization of the much used approximation by Skop (1987), developed further by Kirby and Chen (1989), but is shown to be more robust, succeeding in situations where the Kirby and Chen model fails. The two approximations incur the same numerical cost and difficulty. While the Kirby and Chen approximation is excellent for a wide range of currents, the exact criteria for its applicability have not been known. We explain the apparently serendipitous success of the latter and derive proper conditions of applicability for both approximate dispersion relations. Our new model has a greater range of applicability. A second order approximation is also derived. It greatly improves accuracy, which is shown to be important in difficult cases. It has an advantage over the corresponding second-order expression proposed by Kirby and Chen that its criterion of accuracy is explicitly known, which is not currently the case for the latter to our knowledge. Our second-order term is also arguably significantly simpler to implement, and more physically transparent, than its sibling due to Kirby and Chen.
NASA Astrophysics Data System (ADS)
Rao, K. Shankar; Eckman, Richard M.; Hosker, Rayford P., Jr.
1989-07-01
During the 1984 ASCOT field study in Brush Creek Valley, two perfluorocarbon tracers were released into the nocturnal drainage flow at two different heights. The resulting surface concentrations were sampled at 90 sites, and vertical concentration profiles at 11 sites. These detailed tracer measurements provide a valuable dataset for developing and testing models of pollutant transport and dispersion in valleys.In this paper, we present the results of Gaussian puff model simulations of the tracer releases in Brush Creek Valley. The model was modified to account for the restricted lateral dispersion in the valley, and for the gross elevation differences between the release site and the receptors. The variable wind fields needed to transport the puffs were obtained by interpolation between wind profiles measured using tethered balloons at five along-valley sites. Direct turbulence measurements were used to estimate diffusion. Subsidence in the valley flow was included for elevated releases.Two test simulations-covering different nights, tracers, and release heights-were performed. The predicted hourly concentrations were compared with observations at 51 ground-level locations. At most sites, the predicted and observed concentrations agree within a factor of 2 to 6. For the elevated release simulation, the observed mean concentration is 40 pL/L, the predicted mean is 21 pL/L, the correlation coefficient between the observed and predicted concentrations is 0.24, and the index of agreement is 0.46. For the surface release simulation, the observed mean is 85 pL/L, and the predicted mean is 73 pL/L. The correlation coefficient is 0.23, and the index of agreement is 0.42. The results suggest that this modified puff model can be used as a practical tool for simulating pollutant transport and dispersion in deep valleys.
Bochmann, Esther S; Steffens, Kristina E; Gryczke, Andreas; Wagner, Karl G
2018-03-01
Simulation of HME processes is a valuable tool for increased process understanding and ease of scale-up. However, the experimental determination of all required input parameters is tedious, namely the melt rheology of the amorphous solid dispersion (ASD) in question. Hence, a procedure to simplify the application of hot-melt extrusion (HME) simulation for forming amorphous solid dispersions (ASD) is presented. The commercial 1D simulation software Ludovic ® was used to conduct (i) simulations using a full experimental data set of all input variables including melt rheology and (ii) simulations using model-based melt viscosity data based on the ASDs glass transition and the physical properties of polymeric matrix only. Both types of HME computation were further compared to experimental HME results. Variation in physical properties (e.g. heat capacity, density) and several process characteristics of HME (residence time distribution, energy consumption) among the simulations and experiments were evaluated. The model-based melt viscosity was calculated by using the glass transition temperature (T g ) of the investigated blend and the melt viscosity of the polymeric matrix by means of a T g -viscosity correlation. The results of measured melt viscosity and model-based melt viscosity were similar with only few exceptions, leading to similar HME simulation outcomes. At the end, the experimental effort prior to HME simulation could be minimized and the procedure enables a good starting point for rational development of ASDs by means of HME. As model excipients, Vinylpyrrolidone-vinyl acetate copolymer (COP) in combination with various APIs (carbamazepine, dipyridamole, indomethacin, and ibuprofen) or polyethylene glycol (PEG 1500) as plasticizer were used to form the ASDs. Copyright © 2017 Elsevier B.V. All rights reserved.
Numerical simulation of disperse particle flows on a graphics processing unit
NASA Astrophysics Data System (ADS)
Sierakowski, Adam J.
In both nature and technology, we commonly encounter solid particles being carried within fluid flows, from dust storms to sediment erosion and from food processing to energy generation. The motion of uncountably many particles in highly dynamic flow environments characterizes the tremendous complexity of such phenomena. While methods exist for the full-scale numerical simulation of such systems, current computational capabilities require the simplification of the numerical task with significant approximation using closure models widely recognized as insufficient. There is therefore a fundamental need for the investigation of the underlying physical processes governing these disperse particle flows. In the present work, we develop a new tool based on the Physalis method for the first-principles numerical simulation of thousands of particles (a small fraction of an entire disperse particle flow system) in order to assist in the search for new reduced-order closure models. We discuss numerous enhancements to the efficiency and stability of the Physalis method, which introduces the influence of spherical particles to a fixed-grid incompressible Navier-Stokes flow solver using a local analytic solution to the flow equations. Our first-principles investigation demands the modeling of unresolved length and time scales associated with particle collisions. We introduce a collision model alongside Physalis, incorporating lubrication effects and proposing a new nonlinearly damped Hertzian contact model. By reproducing experimental studies from the literature, we document extensive validation of the methods. We discuss the implementation of our methods for massively parallel computation using a graphics processing unit (GPU). We combine Eulerian grid-based algorithms with Lagrangian particle-based algorithms to achieve computational throughput up to 90 times faster than the legacy implementation of Physalis for a single central processing unit. By avoiding all data communication between the GPU and the host system during the simulation, we utilize with great efficacy the GPU hardware with which many high performance computing systems are currently equipped. We conclude by looking forward to the future of Physalis with multi-GPU parallelization in order to perform resolved disperse flow simulations of more than 100,000 particles and further advance the development of reduced-order closure models.
NASA Astrophysics Data System (ADS)
Eckhardt, Sabine; Cassiani, Massimo; Sollum, Espen; Evangeliou, Nikolaos; Stohl, Andreas
2017-04-01
Lagrangian particle dispersion models are popular tools to simulate the dispersion of trace gases, aerosols or radionuclides in the atmosphere. If they consider only linear processes, they are self-adjoint, i.e., they can be run forward and backward in time without changes to the source code. Backward simulations are very efficient if the number of receptors is smaller than the number of sources, and they are well suited to establish source-receptor (s-r) relationships for measurements of various trace substances in air. However, not only the air concentrations are of interest, but also the s-r relationships for deposition are important for interpreting measurement data. E.g., deposition of dust is measured regularly in ice cores, partly also as a proxy to understand changes in aridity in dust source regions. Contamination of snow by black carbon (BC) aerosols has recently become a hot topic because of the potential impact of BC on the snow albedo. To interpret such deposition measurements and study the sources of the deposited substance, it would be convenient to have a model that is capable of efficient s-r relationship calculations for such types of measurements. We present here the implementation of such an algorithm into the Lagrangian particle dispersion model FLEXPART, and test the new scheme by comparisons with results from forward simulations as well as comparisons with measurements. As an application, we analyse source regions for elemental carbon (EC) measured in snow over the years 2014-2016 in the Russian Arctic. Simulations using an annual constant black carbon inventory based on ECLIPSE V5 and GFED (Global Fire Emission Database), have been performed. The meteorological data used in the simulation are 3 hourly operational data from the European Centre of Medium Range Weather Forecast (ECMWF) on a 1 degree grid resolution and 138 vertical levels. The model is able to capture very well the measured concentrations. Gas flaring and residential/commercial combustion can be identified as the most important sources. High concentrations measured near the Ob River (up to 170 ng g-1) can be associated with air masses coming from Europe.
Stochastic differential equations and turbulent dispersion
NASA Technical Reports Server (NTRS)
Durbin, P. A.
1983-01-01
Aspects of the theory of continuous stochastic processes that seem to contribute to an understanding of turbulent dispersion are introduced and the theory and philosophy of modelling turbulent transport is emphasized. Examples of eddy diffusion examined include shear dispersion, the surface layer, and channel flow. Modeling dispersion with finite-time scale is considered including the Langevin model for homogeneous turbulence, dispersion in nonhomogeneous turbulence, and the asymptotic behavior of the Langevin model for nonhomogeneous turbulence.
Providing pressure inputs to multizone building models
Herring, Steven J.; Batchelor, Simon; Bieringer, Paul E.; ...
2016-02-13
A study to assess how the fidelity of wind pressure inputs and indoor model complexity affect the predicted air change rate for a study building is presented. The purpose of the work is to support the development of a combined indoor-outdoor hazard prediction tool, which links the CONTAM multizone building simulation tool with outdoor dispersion models. The study building, representing a large office block of a simple rectangular geometry under natural ventilation, was based on a real building used in the Joint Urban 2003 experiment. A total of 1600 indoor model flow simulations were made, driven by 100 meteorological conditionsmore » which provided a wide range of building surface pressures. These pressures were applied at four levels of resolution to four different building configurations with varying numbers of internal zones and indoor and outdoor flow paths. Analysis of the results suggests that surface pressures and flow paths across the envelope should be specified at a resolution consistent with the dimensions of the smallest volume of interest, to ensure that appropriate outputs are obtained.« less
NASA Astrophysics Data System (ADS)
Hrycik, Janelle M.; Chassé, Joël; Ruddick, Barry R.; Taggart, Christopher T.
2013-11-01
Early life-stage dispersal influences recruitment and is of significance in explaining the distribution and connectivity of marine species. Motivations for quantifying dispersal range from biodiversity conservation to the design of marine reserves and the mitigation of species invasions. Here we compare estimates of real particle dispersion in a coastal marine environment with similar estimates provided by hydrodynamic modelling. We do so by using a system of magnetically attractive particles (MAPs) and a magnetic-collector array that provides measures of Lagrangian dispersion based on the time-integration of MAPs dispersing through the array. MAPs released as a point source in a coastal marine location dispersed through the collector array over a 5-7 d period. A virtual release and observed (real-time) environmental conditions were used in a high-resolution three-dimensional hydrodynamic model to estimate the dispersal of virtual particles (VPs). The number of MAPs captured throughout the collector array and the number of VPs that passed through each corresponding model location were enumerated and compared. Although VP dispersal reflected several aspects of the observed MAP dispersal, the comparisons demonstrated model sensitivity to the small-scale (random-walk) particle diffusivity parameter (Kp). The one-dimensional dispersal kernel for the MAPs had an e-folding scale estimate in the range of 5.19-11.44 km, while those from the model simulations were comparable at 1.89-6.52 km, and also demonstrated sensitivity to Kp. Variations among comparisons are related to the value of Kp used in modelling and are postulated to be related to MAP losses from the water column and (or) shear dispersion acting on the MAPs; a process that is constrained in the model. Our demonstration indicates a promising new way of 1) quantitatively and empirically estimating the dispersal kernel in aquatic systems, and 2) quantitatively assessing and (or) improving regional hydrodynamic models.
Aerosol bolus dispersion in acinar airways—influence of gravity and airway asymmetry
Ma, Baoshun
2012-01-01
The aerosol bolus technique can be used to estimate the degree of convective mixing in the lung; however, contributions of different lung compartments to measured dispersion cannot be differentiated unambiguously. To estimate dispersion in the distal lung, we studied the effect of gravity and airway asymmetry on the dispersion of 1 μm-diameter particle boluses in three-dimensional computational models of the lung periphery, ranging from a single alveolar sac to four-generation (g4) structures of bifurcating airways that deformed homogeneously during breathing. Boluses were introduced at the beginning of a 2-s inhalation, immediately followed by a 3-s exhalation. Dispersion was estimated by the half-width of the exhaled bolus. Dispersion was significantly affected by the spatial orientation of the models in normal gravity and was less in zero gravity than in normal gravity. Dispersion was strongly correlated with model volume in both normal and zero gravity. Predicted pulmonary dispersion based on a symmetric g4 acinar model was 391 ml and 238 ml under normal and zero gravity, respectively. These results accounted for a significant amount of dispersion measured experimentally. In zero gravity, predicted dispersion in a highly asymmetric model accounted for ∼20% of that obtained in a symmetric model with comparable volume and number of alveolated branches, whereas normal gravity dispersions were comparable in both models. These results suggest that gravitational sedimentation and not geometrical asymmetry is the dominant factor in aerosol dispersion in the lung periphery. PMID:22678957
Aerosol bolus dispersion in acinar airways--influence of gravity and airway asymmetry.
Ma, Baoshun; Darquenne, Chantal
2012-08-01
The aerosol bolus technique can be used to estimate the degree of convective mixing in the lung; however, contributions of different lung compartments to measured dispersion cannot be differentiated unambiguously. To estimate dispersion in the distal lung, we studied the effect of gravity and airway asymmetry on the dispersion of 1 μm-diameter particle boluses in three-dimensional computational models of the lung periphery, ranging from a single alveolar sac to four-generation (g4) structures of bifurcating airways that deformed homogeneously during breathing. Boluses were introduced at the beginning of a 2-s inhalation, immediately followed by a 3-s exhalation. Dispersion was estimated by the half-width of the exhaled bolus. Dispersion was significantly affected by the spatial orientation of the models in normal gravity and was less in zero gravity than in normal gravity. Dispersion was strongly correlated with model volume in both normal and zero gravity. Predicted pulmonary dispersion based on a symmetric g4 acinar model was 391 ml and 238 ml under normal and zero gravity, respectively. These results accounted for a significant amount of dispersion measured experimentally. In zero gravity, predicted dispersion in a highly asymmetric model accounted for ∼20% of that obtained in a symmetric model with comparable volume and number of alveolated branches, whereas normal gravity dispersions were comparable in both models. These results suggest that gravitational sedimentation and not geometrical asymmetry is the dominant factor in aerosol dispersion in the lung periphery.
Development of Tool Representations in the Dorsal and Ventral Visual Object Processing Pathways.
Kersey, Alyssa J; Clark, Tyia S; Lussier, Courtney A; Mahon, Bradford Z; Cantlon, Jessica F
2016-07-01
Tools represent a special class of objects, because they are processed across both the dorsal and ventral visual object processing pathways. Three core regions are known to be involved in tool processing: the left posterior middle temporal gyrus, the medial fusiform gyrus (bilaterally), and the left inferior parietal lobule. A critical and relatively unexplored issue concerns whether, in development, tool preferences emerge at the same time and to a similar degree across all regions of the tool-processing network. To test this issue, we used functional magnetic resonance imaging to measure the neural amplitude, peak location, and the dispersion of tool-related neural responses in the youngest sample of children tested to date in this domain (ages 4-8 years). We show that children recruit overlapping regions of the adult tool-processing network and also exhibit similar patterns of co-activation across the network to adults. The amplitude and co-activation data show that the core components of the tool-processing network are established by age 4. Our findings on the distributions of peak location and dispersion of activation indicate that the tool network undergoes refinement between ages 4 and 8 years. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Khan, Farman U; Qamar, Shamsul
2017-05-01
A set of analytical solutions are presented for a model describing the transport of a solute in a fixed-bed reactor of cylindrical geometry subjected to the first (Dirichlet) and third (Danckwerts) type inlet boundary conditions. Linear sorption kinetic process and first-order decay are considered. Cylindrical geometry allows the use of large columns to investigate dispersion, adsorption/desorption and reaction kinetic mechanisms. The finite Hankel and Laplace transform techniques are adopted to solve the model equations. For further analysis, statistical temporal moments are derived from the Laplace-transformed solutions. The developed analytical solutions are compared with the numerical solutions of high-resolution finite volume scheme. Different case studies are presented and discussed for a series of numerical values corresponding to a wide range of mass transfer and reaction kinetics. A good agreement was observed in the analytical and numerical concentration profiles and moments. The developed solutions are efficient tools for analyzing numerical algorithms, sensitivity analysis and simultaneous determination of the longitudinal and transverse dispersion coefficients from a laboratory-scale radial column experiment. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rayleigh-wave dispersive energy imaging using a high-resolution linear radon transform
Luo, Y.; Xia, J.; Miller, R.D.; Xu, Y.; Liu, J.; Liu, Q.
2008-01-01
Multichannel Analysis of Surface Waves (MASW) analysis is an efficient tool to obtain the vertical shear-wave profile. One of the key steps in the MASW method is to generate an image of dispersive energy in the frequency-velocity domain, so dispersion curves can be determined by picking peaks of dispersion energy. In this paper, we propose to image Rayleigh-wave dispersive energy by high-resolution linear Radon transform (LRT). The shot gather is first transformed along the time direction to the frequency domain and then the Rayleigh-wave dispersive energy can be imaged by high-resolution LRT using a weighted preconditioned conjugate gradient algorithm. Synthetic data with a set of linear events are presented to show the process of generating dispersive energy. Results of synthetic and real-world examples demonstrate that, compared with the slant stacking algorithm, high-resolution LRT can improve the resolution of images of dispersion energy by more than 50%. ?? Birkhaueser 2008.
Baudin, Marine; Cinquin, Bertrand; Sclavi, Bianca; Pareau, Dominique; Lopes, Filipa
2017-09-01
Confocal laser scanning microscopy (CLSM) is one of the most relevant technologies for studying biofilms in situ. Several tools have been developed to investigate and quantify the architecture of biofilms. However, an approach to quantify correctly the evolution of intensity of a fluorescent signal as a function of the structural parameters of a biofilm is still lacking. Here we present a tool developed in the ImageJ open source software that can be used to extract both structural and fluorescence intensity from CLSM data: BIAM (Biofilm Intensity and Architecture Measurement). This is of utmost significance when studying the fundamental mechanisms of biofilm growth, differentiation and development or when aiming to understand the effect of external molecules on biofilm phenotypes. In order to provide an example of the potential of such a tool in this study we focused on biofilm dispersion. cis-2-Decenoic acid (CDA) is a molecule known to induce biofilm dispersion of multiple bacterial species. The mechanisms by which CDA induces dispersion are still poorly understood. To investigate the effects of CDA on biofilms, we used a reporter strain of Escherichia coli (E. coli) that expresses the GFPmut2 protein under control of the rrnBP1 promoter. Experiments were done in flow cells and image acquisition was made with CLSM. Analysis carried out using the new tool, BIAM, indicates that CDA affects the fluorescence intensity of the biofilm structures as well as biofilm architectures. Indeed, our results demonstrate that CDA removes more than 35% of biofilm biovolume and suggest that it results in an increase of the biofilm's mean fluorescence intensity (MFI) by more than 26% compared to the control biofilm in the absence of CDA. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Agrawal, M.; Pulliam, J.; Sen, M. K.
2013-12-01
The seismic structure beneath Texas Gulf Coast Plain (GCP) is determined via velocity analysis of stacked common conversion point (CCP) Ps and Sp receiver functions and surface wave dispersion. The GCP is a portion of a ocean-continental transition zone, or 'passive margin', where seismic imaging of lithospheric Earth structure via passive seismic techniques has been rare. Seismic data from a temporary array of 22 broadband stations, spaced 16-20 km apart, on a ~380-km-long profile from Matagorda Island, a barrier island in the Gulf of Mexico, to Johnson City, Texas were employed to construct a coherent image of the crust and uppermost mantle. CCP stacking was applied to data from teleseismic earthquakes to enhance the signal-to-noise ratios of converted phases, such as Ps phases. An inaccurate velocity model, used for time-to-depth conversion in CCP stacking, may produce higher errors, especially in a region of substantial lateral velocity variations. An accurate velocity model is therefore essential to constructing high quality depth-domain images. To find accurate velocity P- and S-wave models, we applied a joint modeling approach that searches for best-fitting models via simulated annealing. This joint inversion approach, which we call 'multi objective optimization in seismology' (MOOS), simultaneously models Ps receiver functions, Sp receiver functions and group velocity surface wave dispersion curves after assigning relative weights for each objective function. Weights are computed from the standard deviations of the data. Statistical tools such as the posterior parameter correlation matrix and posterior probability density (PPD) function are used to evaluate the constraints that each data type places on model parameters. They allow us to identify portions of the model that are well or poorly constrained.
On the estimation of dispersal and movement of birds
Kendall, W.L.; Nichols, J.D.
2004-01-01
The estimation of dispersal and movement is important to evolutionary and population ecologists, as well as to wildlife managers. We review statistical methodology available to estimate movement probabilities. We begin with cases where individual birds can be marked and their movements estimated with the use of multisite capture-recapture methods. Movements can be monitored either directly, using telemetry, or by accounting for detection probability when conventional marks are used. When one or more sites are unobservable, telemetry, band recoveries, incidental observations, a closed- or open-population robust design, or partial determinism in movements can be used to estimate movement. When individuals cannot be marked, presence-absence data can be used to model changes in occupancy over time, providing indirect inferences about movement. Where abundance estimates over time are available for multiple sites, potential coupling of their dynamics can be investigated using linear cross-correlation or nonlinear dynamic tools.
T1ρ Dispersion in Articular Cartilage
Besier, Thor F.; Pauly, John M.; Smith, R. Lane; Delp, Scott L.; Beaupre, Gary S.; Gold, Garry E.
2015-01-01
Objective This study assessed T1ρ relaxation dispersion, measured by magnetic resonance imaging (MRI), as a tool to noninvasively evaluate cartilage material and biochemical properties. The specific objective was to answer two questions: (1) does cartilage initial elastic modulus (E0) correlate with T1ρ dispersion effects and (2) does collagen or proteoglycan content correlate with T1ρ dispersion effects? Design Cadaveric patellae with and without visible cartilage damage on conventional MR were included. T2 and T1ρ relaxation times at 500 and 1000 Hz spin-lock field amplitudes were measured. We estimated T1ρ dispersion effects by measuring T1ρ relaxation time at 500 and 1000 Hz and T2 relaxation time and using a new tool, the ratio T1ρ/T2. Cartilage initial elastic modulus, E0, was measured from initial response of mechanical indentation creep tests. Collagen and proteoglycan contents were measured at the indentation test sites; proteoglycan content was measured by their covalently linked sulfated glycosaminoglycans (sGAG). Pearson correlation coefficients were determined, taking into account the clustering of multiple samples within a single patella specimen. Results Cartilage initial elastic modulus, E0, increased with decreasing values of T1ρ/T2 measurements at both 500 Hz (P = 0.034) and 1000 Hz (P = 0.022). 1/T1ρ relaxation time (500 Hz) increased with increasing sGAG content (P = 0.041). Conclusions T1ρ/T2 ratio, a new tool, and cartilage initial elastic modulus are both measures of water–protein interactions, are dependent on the cartilage structure, and were correlated in this study. PMID:26069714
Characterizing SWCNT Dispersion in Polymer Composites
NASA Technical Reports Server (NTRS)
Lillehei, Peter T.; Kim, Jae-Woo; Gibbons, Luke; Park, Cheol
2007-01-01
The new wave of single wall carbon nanotube (SWCNT) infused composites will yield structurally sound multifunctional nanomaterials. The SWCNT network requires thorough dispersion within the polymer matrix in order to maximize the benefits of the nanomaterial. However, before any nanomaterials can be used in aerospace applications a means of quality assurance and quality control must be certified. Quality control certification requires a means of quantification, however, the measurement protocol mandates a method of seeing the dispersion first. We describe here the new tools that we have developed and implemented to first be able to see carbon nanotubes in polymers and second to measure or quantify the dispersion of the nanotubes.
O'Doherty, Jim; Chilcott, Anna; Dunn, Joel
2015-11-01
Arterial sampling with dispersion correction is routinely performed for kinetic analysis of PET studies. Because of the the advent of PET-MRI systems, non-MR safe instrumentation will be required to be kept outside the scan room, which requires the length of the tubing between the patient and detector to increase, thus worsening the effects of dispersion. We examined the effects of dispersion in idealized radioactive blood studies using various lengths of tubing (1.5, 3, and 4.5 m) and applied a well-known transmission-dispersion model to attempt to correct the resulting traces. A simulation study was also carried out to examine noise characteristics of the model. The model was applied to patient traces using a 1.5 m acquisition tubing and extended to its use at 3 m. Satisfactory dispersion correction of the blood traces was achieved in the 1.5 m line. Predictions on the basis of experimental measurements, numerical simulations and noise analysis of resulting traces show that corrections of blood data can also be achieved using the 3 m tubing. The effects of dispersion could not be corrected for the 4.5 m line by the selected transmission-dispersion model. On the basis of our setup, correction of dispersion in arterial sampling tubing up to 3 m by the transmission-dispersion model can be performed. The model could not dispersion correct data acquired using a 4.5 m arterial tubing.
NASA Astrophysics Data System (ADS)
Chen, J. S.; Chiang, S. Y.; Liang, C. P.
2017-12-01
It is essential to develop multispecies transport analytical models based on a set of advection-dispersion equations (ADEs) coupled with sequential first-order decay reactions for the synchronous prediction of plume migrations of both parent and its daughter species of decaying contaminants such as radionuclides, dissolved chlorinated organic compounds, pesticides and nitrogen. Although several analytical models for multispecies transport have already been reported, those currently available in the literature have primarily been derived based on ADEs with constant dispersion coefficients. However, there have been a number of studies demonstrating that the dispersion coefficients increase with the solute travel distance as a consequence of variation in the hydraulic properties of the porous media. This study presents novel analytical models for multispecies transport with distance-dependent dispersion coefficients. The correctness of the derived analytical models is confirmed by comparing them against the numerical models. Results show perfect agreement between the analytical and numerical models. Comparison of our new analytical model for multispecies transport with scale-dependent dispersion to an analytical model with constant dispersion is made to illustrate the effects of the dispersion coefficients on the multispecies transport of decaying contaminants.
Crash data modeling with a generalized estimator.
Ye, Zhirui; Xu, Yueru; Lord, Dominique
2018-08-01
The investigation of relationships between traffic crashes and relevant factors is important in traffic safety management. Various methods have been developed for modeling crash data. In real world scenarios, crash data often display the characteristics of over-dispersion. However, on occasions, some crash datasets have exhibited under-dispersion, especially in cases where the data are conditioned upon the mean. The commonly used models (such as the Poisson and the NB regression models) have associated limitations to cope with various degrees of dispersion. In light of this, a generalized event count (GEC) model, which can be generally used to handle over-, equi-, and under-dispersed data, is proposed in this study. This model was first applied to case studies using data from Toronto, characterized by over-dispersion, and then to crash data from railway-highway crossings in Korea, characterized with under-dispersion. The results from the GEC model were compared with those from the Negative binomial and the hyper-Poisson models. The cases studies show that the proposed model provides good performance for crash data characterized with over- and under-dispersion. Moreover, the proposed model simplifies the modeling process and the prediction of crash data. Copyright © 2018 Elsevier Ltd. All rights reserved.
Luo, Y.; Xia, J.; Miller, R.D.; Liu, J.; Xu, Y.; Liu, Q.
2008-01-01
Multichannel Analysis of Surface Waves (MASW) analysis is an efficient tool to obtain the vertical shear-wave profile. One of the key steps in the MASW method is to generate an image of dispersive energy in the frequency-velocity domain, so dispersion curves can be determined by picking peaks of dispersion energy. In this paper, we image Rayleigh-wave dispersive energy and separate multimodes from a multichannel record by high-resolution linear Radon transform (LRT). We first introduce Rayleigh-wave dispersive energy imaging by high-resolution LRT. We then show the process of Rayleigh-wave mode separation. Results of synthetic and real-world examples demonstrate that (1) compared with slant stacking algorithm, high-resolution LRT can improve the resolution of images of dispersion energy by more than 50% (2) high-resolution LRT can successfully separate multimode dispersive energy of Rayleigh waves with high resolution; and (3) multimode separation and reconstruction expand frequency ranges of higher mode dispersive energy, which not only increases the investigation depth but also provides a means to accurately determine cut-off frequencies.
Model-Based Infrared Metrology for Advanced Technology Nodes and 300 mm Wafer Processing
NASA Astrophysics Data System (ADS)
Rosenthal, Peter A.; Duran, Carlos; Tower, Josh; Mazurenko, Alex; Mantz, Ulrich; Weidner, Peter; Kasic, Alexander
2005-09-01
The use of infrared spectroscopy for production semiconductor process monitoring has evolved recently from primarily unpatterned, i.e. blanket test wafer measurements in a limited historical application space of blanket epitaxial, BPSG, and FSG layers to new applications involving patterned product wafer measurements, and new measurement capabilities. Over the last several years, the semiconductor industry has adopted a new set of materials associated with copper/low-k interconnects, and new structures incorporating exotic materials including silicon germanium, SOI substrates and high aspect ratio trenches. The new device architectures and more chemically sophisticated materials have raised new process control and metrology challenges that are not addressed by current measurement technology. To address the challenges we have developed a new infrared metrology tool designed for emerging semiconductor production processes, in a package compatible with modern production and R&D environments. The tool incorporates recent advances in reflectance instrumentation including highly accurate signal processing, optimized reflectometry optics, and model-based calibration and analysis algorithms. To meet the production requirements of the modern automated fab, the measurement hardware has been integrated with a fully automated 300 mm platform incorporating front opening unified pod (FOUP) interfaces, automated pattern recognition and high throughput ultra clean robotics. The tool employs a suite of automated dispersion-model analysis algorithms capable of extracting a variety of layer properties from measured spectra. The new tool provides excellent measurement precision, tool matching, and a platform for deploying many new production and development applications. In this paper we will explore the use of model based infrared analysis as a tool for characterizing novel bottle capacitor structures employed in high density dynamic random access memory (DRAM) chips. We will explore the capability of the tool for characterizing multiple geometric parameters associated with the manufacturing process that are important to the yield and performance of advanced bottle DRAM devices.
An Early-Warning System for Volcanic Ash Dispersal: The MAFALDA Procedure
NASA Astrophysics Data System (ADS)
Barsotti, S.; Nannipieri, L.; Neri, A.
2006-12-01
Forecasts of the dispersal of volcanic ash is a fundamental goal in order to mitigate its potential impact on urbanized areas and transport routes surrounding explosive volcanoes. To this aim we developed an early- warning procedure named MAFALDA (Modeling And Forecasting Ash Loading and Dispersal in the Atmosphere). Such tool is able to quantitatively forecast the atmospheric concentration of ash as well as the ground deposition as a function of time over a 3D spatial domain.\\The main features of MAFALDA are: (1) the use of the hybrid Lagrangian-Eulerian code VOL-CALPUFF able to describe both the rising column phase and the atmospheric dispersal as a function of weather conditions, (2) the use of high-resolution weather forecasting data, (3) the short execution time that allows to analyse a set of scenarios and (4) the web-based CGI software application (written in Perl programming language) that shows the results in a standard graphical web interface and makes it suitable as an early-warning system during volcanic crises.\\MAFALDA is composed by a computational part that simulates the ash cloud dynamics and a graphical interface for visualizing the modelling results. The computational part includes the codes for elaborating the meteorological data, the dispersal code and the post-processing programs. These produces hourly 2D maps of aerial ash concentration at several vertical levels, extension of "threat" area on air and 2D maps of ash deposit on the ground, in addition to graphs of hourly variations of column height.\\The processed results are available on the web by the graphical interface and the users can choose, by drop-down menu, which data to visualize. \\A first partial application of the procedure has been carried out for Mt. Etna (Italy). In this case, the procedure simulates four volcanological scenarios characterized by different plume intensities and uses 48-hrs weather forecasting data with a resolution of 7 km provided by the Italian Air Force.
Evaluating Force-Field London Dispersion Coefficients Using the Exchange-Hole Dipole Moment Model.
Mohebifar, Mohamad; Johnson, Erin R; Rowley, Christopher N
2017-12-12
London dispersion interactions play an integral role in materials science and biophysics. Force fields for atomistic molecular simulations typically represent dispersion interactions by the 12-6 Lennard-Jones potential using empirically determined parameters. These parameters are generally underdetermined, and there is no straightforward way to test if they are physically realistic. Alternatively, the exchange-hole dipole moment (XDM) model from density-functional theory predicts atomic and molecular London dispersion coefficients from first principles, providing an innovative strategy to validate the dispersion terms of molecular-mechanical force fields. In this work, the XDM model was used to obtain the London dispersion coefficients of 88 organic molecules relevant to biochemistry and pharmaceutical chemistry and the values compared with those derived from the Lennard-Jones parameters of the CGenFF, GAFF, OPLS, and Drude polarizable force fields. The molecular dispersion coefficients for the CGenFF, GAFF, and OPLS models are systematically higher than the XDM-calculated values by a factor of roughly 1.5, likely due to neglect of higher order dispersion terms and premature truncation of the dispersion-energy summation. The XDM dispersion coefficients span a large range for some molecular-mechanical atom types, suggesting an unrecognized source of error in force-field models, which assume that atoms of the same type have the same dispersion interactions. Agreement with the XDM dispersion coefficients is even poorer for the Drude polarizable force field. Popular water models were also examined, and TIP3P was found to have dispersion coefficients similar to the experimental and XDM references, although other models employ anomalously high values. Finally, XDM-derived dispersion coefficients were used to parametrize molecular-mechanical force fields for five liquids-benzene, toluene, cyclohexane, n-pentane, and n-hexane-which resulted in improved accuracy in the computed enthalpies of vaporization despite only having to evaluate a much smaller section of the parameter space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Ronald J.; Reilly, Timothy J.; Lopez, Anthony
2015-09-15
Highlights: • A spreadsheet-based risk screening tool for groundwater affected by landfills is presented. • Domenico solute transport equations are used to estimate downgradient contaminant concentrations. • Landfills are categorized as presenting high, moderate or low risks. • Analysis of parameter sensitivity and examples of the method’s application are given. • The method has value to regulators and those considering redeveloping closed landfills. - Abstract: A screening tool for quantifying levels of concern for contaminants detected in monitoring wells on or near landfills to down-gradient receptors (streams, wetlands and residential lots) was developed and evaluated. The tool uses Quick Domenicomore » Multi-scenario (QDM), a spreadsheet implementation of Domenico-based solute transport, to estimate concentrations of contaminants reaching receptors under steady-state conditions from a constant-strength source. Unlike most other available Domenico-based model applications, QDM calculates the time for down-gradient contaminant concentrations to approach steady state and appropriate dispersivity values, and allows for up to fifty simulations on a single spreadsheet. Sensitivity of QDM solutions to critical model parameters was quantified. The screening tool uses QDM results to categorize landfills as having high, moderate and low levels of concern, based on contaminant concentrations reaching receptors relative to regulatory concentrations. The application of this tool was demonstrated by assessing levels of concern (as defined by the New Jersey Pinelands Commission) for thirty closed, uncapped landfills in the New Jersey Pinelands National Reserve, using historic water-quality data from monitoring wells on and near landfills and hydraulic parameters from regional flow models. Twelve of these landfills are categorized as having high levels of concern, indicating a need for further assessment. This tool is not a replacement for conventional numerically-based transport model or other available Domenico-based applications, but is suitable for quickly assessing the level of concern posed by a landfill or other contaminant point source before expensive and lengthy monitoring or remediation measures are taken. In addition to quantifying the level of concern using historic groundwater-monitoring data, the tool allows for archiving model scenarios and adding refinements as new data become available.« less
Interactive Visualization of Complex Seismic Data and Models Using Bokeh
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, Chengping; Ammon, Charles J.; Maceira, Monica
Visualizing multidimensional data and models becomes more challenging as the volume and resolution of seismic data and models increase. But thanks to the development of powerful and accessible computer systems, a model web browser can be used to visualize complex scientific data and models dynamically. In this paper, we present four examples of seismic model visualization using an open-source Python package Bokeh. One example is a visualization of a surface-wave dispersion data set, another presents a view of three-component seismograms, and two illustrate methods to explore a 3D seismic-velocity model. Unlike other 3D visualization packages, our visualization approach has amore » minimum requirement on users and is relatively easy to develop, provided you have reasonable programming skills. Finally, utilizing familiar web browsing interfaces, the dynamic tools provide us an effective and efficient approach to explore large data sets and models.« less
Interactive Visualization of Complex Seismic Data and Models Using Bokeh
Chai, Chengping; Ammon, Charles J.; Maceira, Monica; ...
2018-02-14
Visualizing multidimensional data and models becomes more challenging as the volume and resolution of seismic data and models increase. But thanks to the development of powerful and accessible computer systems, a model web browser can be used to visualize complex scientific data and models dynamically. In this paper, we present four examples of seismic model visualization using an open-source Python package Bokeh. One example is a visualization of a surface-wave dispersion data set, another presents a view of three-component seismograms, and two illustrate methods to explore a 3D seismic-velocity model. Unlike other 3D visualization packages, our visualization approach has amore » minimum requirement on users and is relatively easy to develop, provided you have reasonable programming skills. Finally, utilizing familiar web browsing interfaces, the dynamic tools provide us an effective and efficient approach to explore large data sets and models.« less
Gigot, C; de Vallavieille-Pope, C; Huber, L; Saint-Jean, S
2014-09-01
Recent developments in plant disease management have led to a growing interest in alternative strategies, such as increasing host diversity and decreasing the use of pesticides. Use of cultivar mixtures is one option, allowing the spread of plant epidemics to be slowed down. As dispersal of fungal foliar pathogens over short distances by rain-splash droplets is a major contibutor to the spread of disease, this study focused on modelling the physical mechanisms involved in dispersal of a non-specialized pathogen within heterogeneous canopies of cultivar mixtures, with the aim of optimizing host diversification at the intra-field level. Virtual 3-D wheat-like plants (Triticum aestivum) were used to consider interactions between plant architecture and disease progression in heterogeneous canopies. A combined mechanistic and stochastic model, taking into account splash droplet dispersal and host quantitative resistance within a 3-D heterogeneous canopy, was developed. It consists of four sub-models that describe the spatial patterns of two cultivars within a complex canopy, the pathway of rain-splash droplets within this canopy, the proportion of leaf surface area impacted by dispersal via the droplets and the progression of disease severity after each dispersal event. Different spatial organization, proportions and resistance levels of the cultivars of two-component mixtures were investigated. For the eight spatial patterns tested, the protective effect against disease was found to vary by almost 2-fold, with the greatest effect being obtained with the smallest genotype unit area, i.e. the ground area occupied by an independent unit of the host population that is genetically homogeneous. Increasing both the difference between resistance levels and the proportion of the most resistant cultivar often resulted in a greater protective effect; however, this was not observed for situations in which the most resistant of the two cultivars in the mixture had a relatively low level of resistance. The results show agreement with previous data obtained using experimental approaches. They demonstrate that in order to maximize the potential mixture efficiency against a splash-dispersed pathogen, optimal susceptible/resistant cultivar proportions (ranging from 1/9 to 5/5) have to be established based on host resistance levels. The results also show that taking into account dispersal processes in explicit 3-D plant canopies can be a key tool for investigating disease progression in heterogeneous canopies such as cultivar mixtures. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
On the role of final-state interactions in Dalitz plot studies
NASA Astrophysics Data System (ADS)
Kubis, Bastian; Niecknig, Franz; Schneider, Sebastian P.
2012-04-01
The study of Dalitz plots of heavy-meson decays to multi-hadron final states has received intensified interest by the possibility to gain access to precision investigations of CP violation. A thorough understanding of the hadronic final-state interactions is a prerequisite to achieve a highly sensitive, model-independent study of such Dalitz plots. We illustrate some of the theoretical tools, predominantly taken from dispersion theory, available for these and related purposes, and discuss the low-energy decays ω,ϕ→3π in some more detail.
A new application of PVDF line-focus transducers on measuring dispersion curves of a layered medium
NASA Astrophysics Data System (ADS)
Lee, Yung-Chun; Ko, Shin-Pin
2000-05-01
In the past few years, PVDF line-focus acoustic transducers have been proven to be a useful and convenient tool for accurately measuring surface wave velocity. The transducer is very easy to construct and the measurement system can be readily established with conventional ultrasonic instruments. In this investigation, however, the capability of PVDF line-focus transducers will be further extended to the measurement of dispersion relation of surface acoustic waves of a layered medium. To achieve this, a number of line-focus transducers are first fabricated with PVDF films of various thickness so that they can operate at different frequencies. Experimental testing on these transducers shows that surface acoustic waves of frequency ranging from 2 MHz to 20 MHz can be effectively generated and detected. For the determination of surface wave velocity as a function of frequency, a new method of processing the measured waveforms during a z-direction defocusing measurements is developed. A mathematical model is given to explain how this method works. With the transducers and the analyzing method, the surface wave dispersion relation of a layer/substrate configuration have been experimentally determined. Samples include thick polymeric films as well as metal films deposited on glass, aluminum, and silicon crystal. Possibility of determining material properties of the layers from the measured dispersion curves will be discussed.
Heikkinen, Risto K; Bocedi, Greta; Kuussaari, Mikko; Heliölä, Janne; Leikola, Niko; Pöyry, Juha; Travis, Justin M J
2014-01-01
Dynamic models for range expansion provide a promising tool for assessing species' capacity to respond to climate change by shifting their ranges to new areas. However, these models include a number of uncertainties which may affect how successfully they can be applied to climate change oriented conservation planning. We used RangeShifter, a novel dynamic and individual-based modelling platform, to study two potential sources of such uncertainties: the selection of land cover data and the parameterization of key life-history traits. As an example, we modelled the range expansion dynamics of two butterfly species, one habitat specialist (Maniola jurtina) and one generalist (Issoria lathonia). Our results show that projections of total population size, number of occupied grid cells and the mean maximal latitudinal range shift were all clearly dependent on the choice made between using CORINE land cover data vs. using more detailed grassland data from three alternative national databases. Range expansion was also sensitive to the parameterization of the four considered life-history traits (magnitude and probability of long-distance dispersal events, population growth rate and carrying capacity), with carrying capacity and magnitude of long-distance dispersal showing the strongest effect. Our results highlight the sensitivity of dynamic species population models to the selection of existing land cover data and to uncertainty in the model parameters and indicate that these need to be carefully evaluated before the models are applied to conservation planning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, Larry K.; Allwine, K Jerry; Rutz, Frederick C.
2004-08-23
A new modeling system has been developed to provide a non-meteorologist with tools to predict air pollution transport in regions of complex terrain. This system couples the Penn State/NCAR Mesoscale Model 5 (MM5) with Earth Tech’s CALMET-CALPUFF system using a unique Graphical User Interface (GUI) developed at Pacific Northwest National Laboratory. This system is most useful in data-sparse regions, where there are limited observations to initialize the CALMET model. The user is able to define the domain of interest, provide details about the source term, and enter a surface weather observation through the GUI. The system then generates initial conditionsmore » and time constant boundary conditions for use by MM5. MM5 is run and the results are piped to CALPUFF for the dispersion calculations. Contour plots of pollutant concentration are prepared for the user. The primary advantages of the system are the streamlined application of MM5 and CALMET, limited data requirements, and the ability to run the coupled system on a desktop or laptop computer. In comparison with data collected as part of a field campaign, the new modeling system shows promise that a full-physics mesoscale model can be used in an applied modeling system to effectively simulate locally thermally-driven winds with minimal observations as input. An unexpected outcome of this research was how well CALMET represented the locally thermally-driven flows.« less
Carroll, Carlos; Fredrickson, Richard J; Lacy, Robert C
2014-02-01
Restoring connectivity between fragmented populations is an important tool for alleviating genetic threats to endangered species. Yet recovery plans typically lack quantitative criteria for ensuring such population connectivity. We demonstrate how models that integrate habitat, genetic, and demographic data can be used to develop connectivity criteria for the endangered Mexican wolf (Canis lupus baileyi), which is currently being restored to the wild from a captive population descended from 7 founders. We used population viability analysis that incorporated pedigree data to evaluate the relation between connectivity and persistence for a restored Mexican wolf metapopulation of 3 populations of equal size. Decreasing dispersal rates greatly increased extinction risk for small populations (<150-200), especially as dispersal rates dropped below 0.5 genetically effective migrants per generation. We compared observed migration rates in the Northern Rocky Mountains (NRM) wolf metapopulation to 2 habitat-based effective distance metrics, least-cost and resistance distance. We then used effective distance between potential primary core populations in a restored Mexican wolf metapopulation to evaluate potential dispersal rates. Although potential connectivity was lower in the Mexican wolf versus the NRM wolf metapopulation, a connectivity rate of >0.5 genetically effective migrants per generation may be achievable via natural dispersal under current landscape conditions. When sufficient data are available, these methods allow planners to move beyond general aspirational connectivity goals or rules of thumb to develop objective and measurable connectivity criteria that more effectively support species recovery. The shift from simple connectivity rules of thumb to species-specific analyses parallels the previous shift from general minimum-viable-population thresholds to detailed viability modeling in endangered species recovery planning. © 2013 Society for Conservation Biology.
Representing uncertainty in a spatial invasion model that incorporates human-mediated dispersal
Frank H. Koch; Denys Yemshanov; Robert A. Haack
2013-01-01
Most modes of human-mediated dispersal of invasive species are directional and vector-based. Classical spatial spread models usually depend on probabilistic dispersal kernels that emphasize distance over direction and have limited ability to depict rare but influential long-distance dispersal events. These aspects are problematic if such models are used to estimate...
Using Dispersed Modes During Model Correlation
NASA Technical Reports Server (NTRS)
Stewart, Eric C.; Hathcock, Megan L.
2017-01-01
The model correlation process for the modal characteristics of a launch vehicle is well established. After a test, parameters within the nominal model are adjusted to reflect structural dynamics revealed during testing. However, a full model correlation process for a complex structure can take months of man-hours and many computational resources. If the analyst only has weeks, or even days, of time in which to correlate the nominal model to the experimental results, then the traditional correlation process is not suitable. This paper describes using model dispersions to assist the model correlation process and decrease the overall cost of the process. The process creates thousands of model dispersions from the nominal model prior to the test and then compares each of them to the test data. Using mode shape and frequency error metrics, one dispersion is selected as the best match to the test data. This dispersion is further improved by using a commercial model correlation software. In the three examples shown in this paper, this dispersion based model correlation process performs well when compared to models correlated using traditional techniques and saves time in the post-test analysis.
GIRAFE, a campaign forecast tool for anthropogenic and biomass burning plumes
NASA Astrophysics Data System (ADS)
Fontaine, Alain; Mari, Céline; Drouin, Marc-Antoine; Lussac, Laure
2015-04-01
GIRAFE (reGIonal ReAl time Fire plumEs, http://girafe.pole-ether.fr, alain.fontaine@obs-mip.fr) is a forecast tool supported by the French atmospheric chemistry data centre Ether (CNES and CNRS), build on the lagrangian particle dispersion model FLEXPART coupled with ECMWF meteorological fields and emission inventories. GIRAFE was used during the CHARMEX campaign (Chemistry-Aerosol Mediterranean Experiment http://charmex.lsce.ipsl.fr) in order to provide daily 5-days plumes trajectory forecast over the Mediterranean Sea. For this field experiment, the lagrangian model was used to mimic carbon monoxide pollution plumes emitted either by anthropogenic or biomass burning emissions. Sources from major industrial areas as Fos-Berre or the Po valley were extracted from the MACC-TNO inventory. Biomass burning sources were estimated based on MODIS fire detection. Comparison with MACC and CHIMERE APIFLAME models revealed that GIRAFE followed pollution plumes from small and short-duration fires which were not captured by low resolution models. GIRAFE was used as a decision-making tool to schedule field campaign like airbone operations or balloons launching. Thanks to recent features, GIRAFE is able to read the ECCAD database (http://eccad.pole-ether.fr) inventories. Global inventories such as MACCITY and ECLIPSE will be used to predict CO plumes trajectories from major urban and industrial sources over West Africa for the DACCIWA campaign (Dynamic-Aerosol-Chemistry-Cloud interactions in West Africa).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rest, J.; Hofman, G.L.
1997-06-01
The Dispersion Analysis Research Tool (DART) contains models for fission-gas induced fuel swelling, interaction of fuel with the matrix aluminum, resultant reaction-product swelling, and calculation of the stress gradient within the fuel particle. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by a comparison of DART calculations of fuel swelling of U{sub 3}SiAl-Al and U{sub 3}Si{sub 2}-Al for various dispersion fuel element designs with the data. DART results are compared with data for fuel swelling Of U{sub 3}SiAl-Al in plate, tube, and rod configurations as a function of fission density.more » Plate and tube calculations were performed at a constant fuel temperature of 373 K and 518 K, respectively. An irradiation temperature of 518 K results in a calculated aluminide layer thickness for the Russian tube that is in the center of the measured range (16 {mu}m). Rod calculations were performed with a temperature gradient across the rod characterized by surface and central temperatures of 373 K and 423 K, respectively. The effective yield stress of irradiated Al matrix material and the aluminide was determined by comparing the results of DART calculations with postirradiation immersion volume measurement of U{sub 3}SiAl plates. The values for the effective yield stress were used in all subsequent simulations. The lower calculated fuel swelling in the rod-type element is due to an assumed biaxial stress state. Fuel swelling in plates results in plate thickness increase only. Likewise, in tubes, only the wall thickness increases. Irradiation experiments have shown that plate-type dispersion fuel elements can develop blisters or pillows at high U-235 burnup when fuel compounds exhibiting breakaway swelling are used at moderate to high fuel volume fractions. DART-calculated interaction layer thickness and fuel swelling follows the trends of the observations. 3 refs., 2 figs.« less
Brown, Jason L; Bennett, Joseph R; French, Connor M
2017-01-01
SDMtoolbox 2.0 is a software package for spatial studies of ecology, evolution, and genetics. The release of SDMtoolbox 2.0 allows researchers to use the most current ArcGIS software and MaxEnt software, and reduces the amount of time that would be spent developing common solutions. The central aim of this software is to automate complicated and repetitive spatial analyses in an intuitive graphical user interface. One core tenant facilitates careful parameterization of species distribution models (SDMs) to maximize each model's discriminatory ability and minimize overfitting. This includes carefully processing of occurrence data, environmental data, and model parameterization. This program directly interfaces with MaxEnt, one of the most powerful and widely used species distribution modeling software programs, although SDMtoolbox 2.0 is not limited to species distribution modeling or restricted to modeling in MaxEnt. Many of the SDM pre- and post-processing tools have 'universal' analogs for use with any modeling software. The current version contains a total of 79 scripts that harness the power of ArcGIS for macroecology, landscape genetics, and evolutionary studies. For example, these tools allow for biodiversity quantification (such as species richness or corrected weighted endemism), generation of least-cost paths and corridors among shared haplotypes, assessment of the significance of spatial randomizations, and enforcement of dispersal limitations of SDMs projected into future climates-to only name a few functions contained in SDMtoolbox 2.0. Lastly, dozens of generalized tools exists for batch processing and conversion of GIS data types or formats, which are broadly useful to any ArcMap user.
Thompson, Sally E; Katul, Gabriel G
2013-06-01
Migration of plant populations is a potential survival response to climate change that depends critically on seed dispersal. Biological and physical factors determine dispersal and migration of wind-dispersed species. Recent field and wind tunnel studies demonstrate biological adaptations that bias seed release toward conditions of higher wind velocity, promoting longer dispersal distances and faster migration. However, another suite of international studies also recently highlighted a global decrease in near-surface wind speeds, or 'global stilling'. This study assessed the implications of both factors on potential plant population migration rates, using a mechanistic modeling framework. Nonrandom abscission was investigated using models of three seed release mechanisms: (i) a simple drag model; (ii) a seed deflection model; and (iii) a 'wear and tear' model. The models generated a single functional relationship between the frequency of seed release and statistics of the near-surface wind environment, independent of the abscission mechanism. An Inertial-Particle, Coupled Eulerian-Lagrangian Closure model (IP-CELC) was used to investigate abscission effects on seed dispersal kernels and plant population migration rates under contemporary and potential future wind conditions (based on reported global stilling trends). The results confirm that nonrandom seed abscission increased dispersal distances, particularly for light seeds. The increases were mitigated by two physical feedbacks: (i) although nonrandom abscission increased the initial acceleration of seeds from rest, the sensitivity of the seed dispersal to this initial condition declined as the wind speed increased; and (ii) while nonrandom abscission increased the mean dispersal length, it reduced the kurtosis of seasonal dispersal kernels, and thus the chance of long-distance dispersal. Wind stilling greatly reduced the modeled migration rates under biased seed release conditions. Thus, species that require high wind velocities for seed abscission could experience threshold-like reductions in dispersal and migration potential if near-surface wind speeds continue to decline. © 2013 Blackwell Publishing Ltd.
The evolution of dispersal conditioned on migration status
Asaduzzaman, Sarder Mohammed; Wild, Geoff
2012-01-01
We consider a model for the evolution of dispersal of offspring. Dispersal is treated as a parental trait that is expressed conditional upon a parent’s own “migration status,” that is, whether a parent, itself, is native or nonnative to the area in which it breeds. We compare the evolution of this kind of conditional dispersal to the evolution of unconditional dispersal, in order to determine the extent to which the former changes predictions about population-wide levels of dispersal. We use numerical simulations of an inclusive-fitness model, and individual-based simulations to predict population-average dispersal rates for the case in which dispersal based on migration status occurs. When our model predictions are compared to predictions that neglect conditional dispersal, observed differences between rates are only slight, and never exceed 0.06. While the effect of dispersal conditioned upon migration status could be detected in a carefully designed experiment, we argue that less-than-ideal experimental conditions, and factors such as dispersal conditioned on sex are likely to play a larger role that the type of conditional dispersal studied here. PMID:22837829
Estimating near-road pollutant dispersion: a model inter-comparison
A model inter-comparison study to assess the abilities of steady-state Gaussian dispersion models to capture near-road pollutant dispersion has been carried out with four models (AERMOD, run with both the area-source and volume-source options to represent roadways, CALINE, versio...
Douglas J. Rhodes; Jane Leslie Hayes; Chris Steiner
1998-01-01
If retained, markers used in mark-release-recapture studies of bark beetle dispersal could provide valuable tools in the determination of post-dispersal fate. Retention of the internal marker rubidium (Rb) and of the external marker fluorescent powder during egg gallery construction, oviposition, and feeding were quantified at intervals from 0 to 96 hours by allowing...
Optimal weighted combinatorial forecasting model of QT dispersion of ECGs in Chinese adults.
Wen, Zhang; Miao, Ge; Xinlei, Liu; Minyi, Cen
2016-07-01
This study aims to provide a scientific basis for unifying the reference value standard of QT dispersion of ECGs in Chinese adults. Three predictive models including regression model, principal component model, and artificial neural network model are combined to establish the optimal weighted combination model. The optimal weighted combination model and single model are verified and compared. Optimal weighted combinatorial model can reduce predicting risk of single model and improve the predicting precision. The reference value of geographical distribution of Chinese adults' QT dispersion was precisely made by using kriging methods. When geographical factors of a particular area are obtained, the reference value of QT dispersion of Chinese adults in this area can be estimated by using optimal weighted combinatorial model and reference value of the QT dispersion of Chinese adults anywhere in China can be obtained by using geographical distribution figure as well.
NASA Astrophysics Data System (ADS)
Zaburdaev, V.; Denisov, S.; Klafter, J.
2015-04-01
Random walk is a fundamental concept with applications ranging from quantum physics to econometrics. Remarkably, one specific model of random walks appears to be ubiquitous across many fields as a tool to analyze transport phenomena in which the dispersal process is faster than dictated by Brownian diffusion. The Lévy-walk model combines two key features, the ability to generate anomalously fast diffusion and a finite velocity of a random walker. Recent results in optics, Hamiltonian chaos, cold atom dynamics, biophysics, and behavioral science demonstrate that this particular type of random walk provides significant insight into complex transport phenomena. This review gives a self-consistent introduction to Lévy walks, surveys their existing applications, including latest advances, and outlines further perspectives.
Radiating dipoles in photonic crystals
Busch; Vats; John; Sanders
2000-09-01
The radiation dynamics of a dipole antenna embedded in a photonic crystal are modeled by an initially excited harmonic oscillator coupled to a non-Markovian bath of harmonic oscillators representing the colored electromagnetic vacuum within the crystal. Realistic coupling constants based on the natural modes of the photonic crystal, i.e., Bloch waves and their associated dispersion relation, are derived. For simple model systems, well-known results such as decay times and emission spectra are reproduced. This approach enables direct incorporation of realistic band structure computations into studies of radiative emission from atoms and molecules within photonic crystals. We therefore provide a predictive and interpretative tool for experiments in both the microwave and optical regimes.
NASA Astrophysics Data System (ADS)
Agrawal, Mohit; Pulliam, Jay; Sen, Mrinal K.; Dutta, Utpal; Pasyanos, Michael E.; Mellors, Robert
2015-05-01
Seismic velocity models are found, along with uncertainty estimates, for 11 sites in the Middle East by jointly modelling Ps and Sp receiver functions and surface (Rayleigh) wave group velocity dispersion. The approach performs a search for models that satisfy goodness-of-fit criteria guided by a variant of simulated annealing and uses statistical tools to assess these products of searches. These tools, a parameter correlation matrix and marginal posterior probability density (PPD) function, allow us to evaluate quantitatively the constraints that each data type imposes on model parameters and to identify portions of each model that are well-constrained relative to other portions. This joint modelling technique, which we call `multi-objective optimization for seismology', does not require a good starting solution, although such a model can be incorporated easily, if available, and can reduce the computation time significantly. Applying the process described above to broadband seismic data reveals that crustal thickness varies from 15 km beneath Djibouti (station ATD) to 45 km beneath Saudi Arabia (station RAYN). A pronounced low velocity zone for both Vp and Vs is present at a depth of ˜12 km beneath station KIV located in northern part of greater Caucasus, which may be due to the presence of a relatively young volcano. Similarly, we also noticed a 6-km-thick low velocity zone for Vp beginning at 20 km depth beneath seismic station AGIN, on the Anatolian plateau, while positive velocity gradients prevail elsewhere in eastern Turkey. Beneath station CSS, located in Cyprus, an anomalously slow layer is found in the uppermost mantle, which may indicate the presence of altered lithospheric material. Crustal P- and S-wave velocities beneath station D2, located in the northeastern portion of central Zagros, range between 5.2-6.2 and 3.2-3.8 km s-1, respectively. In Oman, we find a Moho depth of 34.0 ± 1.0 km and 25.0 ± 1.0 to 30.0 ± 1.0 km beneath stations S02 and S04, respectively.
Connectivity modeling and graph theory analysis predict recolonization in transient populations
NASA Astrophysics Data System (ADS)
Rognstad, Rhiannon L.; Wethey, David S.; Oliver, Hilde; Hilbish, Thomas J.
2018-07-01
Population connectivity plays a major role in the ecology and evolution of marine organisms. In these systems, connectivity of many species occurs primarily during a larval stage, when larvae are frequently too small and numerous to track directly. To indirectly estimate larval dispersal, ocean circulation models have emerged as a popular technique. Here we use regional ocean circulation models to estimate dispersal of the intertidal barnacle Semibalanus balanoides at its local distribution limit in Southwest England. We incorporate historical and recent repatriation events to provide support for our modeled dispersal estimates, which predict a recolonization rate similar to that observed in two recolonization events. Using graph theory techniques to describe the dispersal landscape, we identify likely physical barriers to dispersal in the region. Our results demonstrate the use of recolonization data to support dispersal models and how these models can be used to describe population connectivity.
Zhang, Hai-Mei; Chen, Shi-Lu
2015-06-09
The lack of dispersion in the B3LYP functional has been proposed to be the main origin of big errors in quantum chemical modeling of a few enzymes and transition metal complexes. In this work, the essential dispersion effects that affect quantum chemical modeling are investigated. With binuclear zinc isoaspartyl dipeptidase (IAD) as an example, dispersion is included in the modeling of enzymatic reactions by two different procedures, i.e., (i) geometry optimizations followed by single-point calculations of dispersion (approach I) and (ii) the inclusion of dispersion throughout geometry optimization and energy evaluation (approach II). Based on a 169-atom chemical model, the calculations show a qualitative consistency between approaches I and II in energetics and most key geometries, demonstrating that both approaches are available with the latter preferential since both geometry and energy are dispersion-corrected in approach II. When a smaller model without Arg233 (147 atoms) was used, an inconsistency was observed, indicating that the missing dispersion interactions are essentially responsible for determining equilibrium geometries. Other technical issues and mechanistic characteristics of IAD are also discussed, in particular with respect to the effects of Arg233.
A review of methods for predicting air pollution dispersion
NASA Technical Reports Server (NTRS)
Mathis, J. J., Jr.; Grose, W. L.
1973-01-01
Air pollution modeling, and problem areas in air pollution dispersion modeling were surveyed. Emission source inventory, meteorological data, and turbulent diffusion are discussed in terms of developing a dispersion model. Existing mathematical models of urban air pollution, and highway and airport models are discussed along with their limitations. Recommendations for improving modeling capabilities are included.
A new statistical dispersion model for tracer tests and contaminant spread in porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ates, H.; Kasap, E.
Dispersion of solutes moving in permeable media is an essential control to describe fluid flow in permeable media. Dispersion can be thought of as a spreading of a solute caused by the presence of microscopic inhomogeneities. An accurate model for dispersion is needed for accurate estimation of oil recovery efficiencies and clean up costs of subsurface contaminants. Current approaches utilizing the fickian assumption fall short in describing the real physics of spreading during a solute transport process. Numerous field investigations have shown that dispersivities measured in the field are much larger than those measured in the lab for the samemore » type of porous material. Moreover, field measured dispersivities have been shown to be scale dependent, that is, a tracer test conducted over a longer travel path will yield a larger dispersivity value than a tracer test conducted in the same geologic formation over a shorter travel path. Numerous approaches to address this problem have been developed yet none attempted to go beyond the Fickian dispersion assumption. In this study, a convective dispersivity is introduced. New model assumes that dispersion is dimensionless and mainly determined by pore size distribution. The new model results in a spread that increases linearly with time contrary to conventional model, which predicts a mixing zone length that increases with square root of time. Therefore, new model explains the field test results that indicate increasing dispersivity with distance. The model validations are in perfect agreement with experimental results, which include; Ganapathy et al.`s slug experiment on Antolini sandstone, Handy`s radioactive tracer experiment on Alhambra sandstone, and CT experiment conducted at BDM-OK/NIPER facilities on Tallant sandstone.« less
Radiotelemetry; techniques and analysis
Sybill K. Amelon; David C. Dalton; Joshua J. Millspaugh; Sandy A. Wolf
2009-01-01
Radiotelemetry has become and important tool in studies of animal behavior, ecology, management, and conservation. From the first decades following the introduction of radio transmitters, radiotelemetry emerged as a prominent and critically important tool in wildlife science for the study of physiology, animal movements (migration, dispersal, and home range), survival...
The report gives results of a research project to develop tools and methodologies to measure aerosol chemical and particle dispersion through space. These tools can be used to devise pollution prevention strategies that could reduce occupant chemical exposures and guide manufactu...
Mercury emission and dispersion models from soils contaminated by cinnabar mining and metallurgy.
Llanos, Willians; Kocman, David; Higueras, Pablo; Horvat, Milena
2011-12-01
The laboratory flux measurement system (LFMS) and dispersion models were used to investigate the kinetics of mercury emission flux (MEF) from contaminated soils. Representative soil samples with respect to total Hg concentration (26-9770 μg g(-1)) surrounding a decommissioned mercury-mining area (Las Cuevas Mine), and a former mercury smelter (Cerco Metalúrgico de Almadenejos), in the Almadén mercury mining district (South Central Spain), were collected. Altogether, 14 samples were analyzed to determine the variation in mercury emission flux (MEF) versus distance from the sources, regulating two major environmental parameters comprising soil temperature and solar radiation. In addition, the fraction of the water-soluble mercury in these samples was determined in order to assess how MEF from soil is related to the mercury in the aqueous soil phase. Measured MEFs ranged from less than 140 to over 10,000 ng m(-2) h(-1), with the highest emissions from contaminated soils adjacent to point sources. A significant decrease of MEF was then observed with increasing distance from these sites. Strong positive effects of both temperature and solar radiation on MEF was observed. Moreover, MEF was found to occur more easily in soils with higher proportions of soluble mercury compared to soils where cinnabar prevails. Based on the calculated Hg emission rates and with the support of geographical information system (GIS) tools and ISC AERMOD software, dispersion models for atmospheric mercury were implemented. In this way, the gaseous mercury plume generated by the soil-originated emissions at different seasons was modeled. Modeling efforts revealed that much higher emissions and larger mercury plumes are generated in dry and warm periods (summer), while the plume is smaller and associated with lower concentrations of atmospheric mercury during colder periods with higher wind activity (fall). Based on the calculated emissions and the model implementation, yearly emissions from the "Cerco Metalúrgico de Almadenejos" decommissioned metallurgical precinct were estimated at 16.4 kg Hg y(-1), with significant differences between seasons.
40 CFR 503.43 - Pollutant limits.
Code of Federal Regulations, 2012 CFR
2012-07-01
... with § 503.43(e). (e) Air dispersion modeling and performance testing. (1) The air dispersion model... the type of sewage sludge incinerator. (2) For air dispersion modeling initiated after September 3, 1999, the modeling results shall be submitted to the permitting authority 30 days after completion of...
40 CFR 503.43 - Pollutant limits.
Code of Federal Regulations, 2013 CFR
2013-07-01
... with § 503.43(e). (e) Air dispersion modeling and performance testing. (1) The air dispersion model... the type of sewage sludge incinerator. (2) For air dispersion modeling initiated after September 3, 1999, the modeling results shall be submitted to the permitting authority 30 days after completion of...
40 CFR 503.43 - Pollutant limits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... with § 503.43(e). (e) Air dispersion modeling and performance testing. (1) The air dispersion model... the type of sewage sludge incinerator. (2) For air dispersion modeling initiated after September 3, 1999, the modeling results shall be submitted to the permitting authority 30 days after completion of...
Inversion of Surface-wave Dispersion Curves due to Low-velocity-layer Models
NASA Astrophysics Data System (ADS)
Shen, C.; Xia, J.; Mi, B.
2016-12-01
A successful inversion relies on exact forward modeling methods. It is a key step to accurately calculate multi-mode dispersion curves of a given model in high-frequency surface-wave (Rayleigh wave and Love wave) methods. For normal models (shear (S)-wave velocity increasing with depth), their theoretical dispersion curves completely match the dispersion spectrum that is generated based on wave equation. For models containing a low-velocity-layer, however, phase velocities calculated by existing forward-modeling algorithms (e.g. Thomson-Haskell algorithm, Knopoff algorithm, fast vector-transfer algorithm and so on) fail to be consistent with the dispersion spectrum at a high frequency range. They will approach a value that close to the surface-wave velocity of the low-velocity-layer under the surface layer, rather than that of the surface layer when their corresponding wavelengths are short enough. This phenomenon conflicts with the characteristics of surface waves, which results in an erroneous inverted model. By comparing the theoretical dispersion curves with simulated dispersion energy, we proposed a direct and essential solution to accurately compute surface-wave phase velocities due to low-velocity-layer models. Based on the proposed forward modeling technique, we can achieve correct inversion for these types of models. Several synthetic data proved the effectiveness of our method.
Magnetic resonance dispersion imaging for localization of angiogenesis and cancer growth.
Mischi, Massimo; Turco, Simona; Lavini, Cristina; Kompatsiari, Kyveli; de la Rosette, Jean J M C H; Breeuwer, Marcel; Wijkstra, Hessel
2014-08-01
Cancer angiogenesis can be imaged by using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Pharmacokinetic modeling can be used to assess vascular perfusion and permeability, but the assessment of angiogenic changes in the microvascular architecture remains challenging. This article presents 2 models enabling the characterization of the microvascular architecture by DCE-MRI. The microvascular architecture is reflected in the dispersion coefficient according to the convective dispersion equation. A solution of this equation, combined with the Tofts model, permits defining a dispersion model for magnetic resonance imaging. A reduced dispersion model is also presented. The proposed models were evaluated for prostate cancer diagnosis. Dynamic contrast-enhanced magnetic resonance imaging was performed, and concentration-time curves were calculated in each voxel. The simultaneous generation of parametric maps related to permeability and dispersion was obtained through model fitting. A preliminary validation was carried out through comparison with the histology in 15 patients referred for radical prostatectomy. Cancer localization was accurate with both dispersion models, with an area under the receiver operating characteristic curve greater than 0.8. None of the compared parameters, aimed at assessing vascular permeability and perfusion, showed better results. A new DCE-MRI method is proposed to characterize the microvascular architecture through the assessment of intravascular dispersion, without the need for separate arterial-input-function estimation. The results are promising and encourage further research.
Modeling compressible multiphase flows with dispersed particles in both dense and dilute regimes
NASA Astrophysics Data System (ADS)
McGrath, T.; St. Clair, J.; Balachandar, S.
2018-05-01
Many important explosives and energetics applications involve multiphase formulations employing dispersed particles. While considerable progress has been made toward developing mathematical models and computational methodologies for these flows, significant challenges remain. In this work, we apply a mathematical model for compressible multiphase flows with dispersed particles to existing shock and explosive dispersal problems from the literature. The model is cast in an Eulerian framework, treats all phases as compressible, is hyperbolic, and satisfies the second law of thermodynamics. It directly applies the continuous-phase pressure gradient as a forcing function for particle acceleration and thereby retains relaxed characteristics for the dispersed particle phase that remove the constituent material sound velocity from the eigenvalues. This is consistent with the expected characteristics of dispersed particle phases and can significantly improve the stable time-step size for explicit methods. The model is applied to test cases involving the shock and explosive dispersal of solid particles and compared to data from the literature. Computed results compare well with experimental measurements, providing confidence in the model and computational methods applied.
Uncertainty in spatially explicit animal dispersal models
Mooij, Wolf M.; DeAngelis, Donald L.
2003-01-01
Uncertainty in estimates of survival of dispersing animals is a vexing difficulty in conservation biology. The current notion is that this uncertainty decreases the usefulness of spatially explicit population models in particular. We examined this problem by comparing dispersal models of three levels of complexity: (1) an event-based binomial model that considers only the occurrence of mortality or arrival, (2) a temporally explicit exponential model that employs mortality and arrival rates, and (3) a spatially explicit grid-walk model that simulates the movement of animals through an artificial landscape. Each model was fitted to the same set of field data. A first objective of the paper is to illustrate how the maximum-likelihood method can be used in all three cases to estimate the means and confidence limits for the relevant model parameters, given a particular set of data on dispersal survival. Using this framework we show that the structure of the uncertainty for all three models is strikingly similar. In fact, the results of our unified approach imply that spatially explicit dispersal models, which take advantage of information on landscape details, suffer less from uncertainly than do simpler models. Moreover, we show that the proposed strategy of model development safeguards one from error propagation in these more complex models. Finally, our approach shows that all models related to animal dispersal, ranging from simple to complex, can be related in a hierarchical fashion, so that the various approaches to modeling such dispersal can be viewed from a unified perspective.
NASA Astrophysics Data System (ADS)
McVeigh, Doreen M.; Eggleston, David B.; Todd, Austin C.; Young, Craig M.; He, Ruoying
2017-09-01
Many fundamental questions in marine ecology require an understanding of larval dispersal and connectivity, yet direct observations of larval trajectories are difficult or impossible to obtain. Although biophysical models provide an alternative approach, in the deep sea, essential biological parameters for these models have seldom been measured empirically. In this study, we used a biophysical model to explore the role of behaviorally mediated migration from two methane seep sites in the Gulf of Mexico on potential larval dispersal patterns and population connectivity of the deep-sea mussel ;Bathymodiolus; childressi, a species for which some biological information is available. Three possible larval dispersal strategies were evaluated for larvae with a Planktonic Larval Duration (PLD) of 395 days: (1) demersal drift, (2) dispersal near the surface early in larval life followed by an extended demersal period before settlement, and (3) dispersal near the surface until just before settlement. Upward swimming speeds varied in the model based on the best data available. Average dispersal distances for simulated larvae varied between 16 km and 1488 km. Dispersal in the upper water column resulted in the greatest dispersal distance (1173 km ± 2.00), followed by mixed dispersal depth (921 km ± 2.00). Larvae originating in the Gulf of Mexico can potentially seed most known seep metapopulations on the Atlantic continental margin, whereas larvae drifting demersally cannot (237 km ± 1.43). Depth of dispersal is therefore shown to be a critical parameter for models of deep-sea connectivity.
NASA Astrophysics Data System (ADS)
Warner, Thomas T.; Sheu, Rong-Shyang; Bowers, James F.; Sykes, R. Ian; Dodd, Gregory C.; Henn, Douglas S.
2002-05-01
Ensemble simulations made using a coupled atmospheric dynamic model and a probabilistic Lagrangian puff dispersion model were employed in a forensic analysis of the transport and dispersion of a toxic gas that may have been released near Al Muthanna, Iraq, during the Gulf War. The ensemble study had two objectives, the first of which was to determine the sensitivity of the calculated dosage fields to the choices that must be made about the configuration of the atmospheric dynamic model. In this test, various choices were used for model physics representations and for the large-scale analyses that were used to construct the model initial and boundary conditions. The second study objective was to examine the dispersion model's ability to use ensemble inputs to predict dosage probability distributions. Here, the dispersion model was used with the ensemble mean fields from the individual atmospheric dynamic model runs, including the variability in the individual wind fields, to generate dosage probabilities. These are compared with the explicit dosage probabilities derived from the individual runs of the coupled modeling system. The results demonstrate that the specific choices made about the dynamic-model configuration and the large-scale analyses can have a large impact on the simulated dosages. For example, the area near the source that is exposed to a selected dosage threshold varies by up to a factor of 4 among members of the ensemble. The agreement between the explicit and ensemble dosage probabilities is relatively good for both low and high dosage levels. Although only one ensemble was considered in this study, the encouraging results suggest that a probabilistic dispersion model may be of value in quantifying the effects of uncertainties in a dynamic-model ensemble on dispersion model predictions of atmospheric transport and dispersion.
Quantifiable Assessment of SWNT Dispersion in Polymer Composites
NASA Technical Reports Server (NTRS)
Park, Cheol; Kim, Jae-Woo; Wise, Kristopher E.; Working, Dennis; Siochi, Mia; Harrison, Joycelyn; Gibbons, Luke; Siochi, Emilie J.; Lillehei, Peter T.; Cantrell, Sean;
2007-01-01
NASA LaRC has established a new protocol for visualizing the nanomaterials in structural polymer matrix resins. Using this new technique and reconstructing the 3D distribution of the nanomaterials allows us to compare this distribution against a theoretically perfect distribution. Additional tertiary structural information can now be obtained and quantified with the electron tomography studies. These tools will be necessary to establish the structural-functional relationships between the nano and the bulk. This will also help define the critical length scales needed for functional properties. Field ready tool development and calibration can begin by using these same samples and comparing the response. i.e. gold standards of good and bad dispersion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cipcigan, Flaviu S., E-mail: flaviu.cipcigan@ed.ac.uk; National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW; Sokhan, Vlad P.
One key factor that limits the predictive power of molecular dynamics simulations is the accuracy and transferability of the input force field. Force fields are challenged by heterogeneous environments, where electronic responses give rise to biologically important forces such as many-body polarisation and dispersion. The importance of polarisation in the condensed phase was recognised early on, as described by Cochran in 1959 [Philosophical Magazine 4 (1959) 1082–1086] [32]. Currently in molecular simulation, dispersion forces are treated at the two-body level and in the dipole limit, although the importance of three-body terms in the condensed phase was demonstrated by Barker inmore » the 1980s [Phys. Rev. Lett. 57 (1986) 230–233] [72]. One approach for treating both polarisation and dispersion on an equal basis is to coarse grain the electrons surrounding a molecular moiety to a single quantum harmonic oscillator (cf. Hirschfelder, Curtiss and Bird 1954 [The Molecular Theory of Gases and Liquids (1954)] [37]). The approach, when solved in strong coupling beyond the dipole limit, gives a description of long-range forces that includes two- and many-body terms to all orders. In the last decade, the tools necessary to implement the strong coupling limit have been developed, culminating in a transferable model of water with excellent predictive power across the phase diagram. Transferability arises since the environment automatically identifies the important long range interactions, rather than the modeler through a limited set of expressions. Here, we discuss the role of electronic coarse-graining in predictive multiscale materials modelling and describe the first implementation of the method in a general purpose molecular dynamics software: QDO-MD. - Highlights: • Electronic coarse graining unites many-body dispersion and polarisation beyond the dipole limit. • It consists of replacing the electrons of a molecule using a quantum harmonic oscillator, called a Quantum Drude Oscillator. • We present the first general implementation of Quantum Drude Oscillators in the molecular dynamics package QDO-MD. • We highlight the successful construction of a new, transferable molecular model of water: QDO-water. - Graphical abstract:.« less
NASA Astrophysics Data System (ADS)
Majdalani, Samer; Guinot, Vincent; Delenne, Carole; Gebran, Hicham
2018-06-01
This paper is devoted to theoretical and experimental investigations of solute dispersion in heterogeneous porous media. Dispersion in heterogenous porous media has been reported to be scale-dependent, a likely indication that the proposed dispersion models are incompletely formulated. A high quality experimental data set of breakthrough curves in periodic model heterogeneous porous media is presented. In contrast with most previously published experiments, the present experiments involve numerous replicates. This allows the statistical variability of experimental data to be accounted for. Several models are benchmarked against the data set: the Fickian-based advection-dispersion, mobile-immobile, multirate, multiple region advection dispersion models, and a newly proposed transport model based on pure advection. A salient property of the latter model is that its solutions exhibit a ballistic behaviour for small times, while tending to the Fickian behaviour for large time scales. Model performance is assessed using a novel objective function accounting for the statistical variability of the experimental data set, while putting equal emphasis on both small and large time scale behaviours. Besides being as accurate as the other models, the new purely advective model has the advantages that (i) it does not exhibit the undesirable effects associated with the usual Fickian operator (namely the infinite solute front propagation speed), and (ii) it allows dispersive transport to be simulated on every heterogeneity scale using scale-independent parameters.
NASA Astrophysics Data System (ADS)
Tasker, M. N.
1984-01-01
Dense gas dispersion is the study of the spreading and dilution of a gas that has a density greater than that of ambient air. Models to predict the dispersion of such dense gases as chlorine, sulfur dioxide, liquefied natural gas, and liquid propane are necessary to prevent a catastrophe in environmental and/or human terms. A basic physical picture of dense gas dispersion is provided. Mathematical and wind tunnel models of dense gas flow are presented and discussed, including the constraints and disadvantages of modelling techniques. Special emphasis is given to heat transfer during dense gas dispersion.
Millerón, M; López de Heredia, U; Lorenzo, Z; Alonso, J; Dounavi, A; Gil, L; Nanos, N
2013-03-01
Spatial discordance between primary and effective dispersal in plant populations indicates that postdispersal processes erase the seed rain signal in recruitment patterns. Five different models were used to test the spatial concordance of the primary and effective dispersal patterns in a European beech (Fagus sylvatica) population from central Spain. An ecological method was based on classical inverse modelling (SSS), using the number of seed/seedlings as input data. Genetic models were based on direct kernel fitting of mother-to-offspring distances estimated by a parentage analysis or were spatially explicit models based on the genotype frequencies of offspring (competing sources model and Moran-Clark's Model). A fully integrated mixed model was based on inverse modelling, but used the number of genotypes as input data (gene shadow model). The potential sources of error and limitations of each seed dispersal estimation method are discussed. The mean dispersal distances for seeds and saplings estimated with these five methods were higher than those obtained by previous estimations for European beech forests. All the methods show strong discordance between primary and effective dispersal kernel parameters, and for dispersal directionality. While seed rain was released mostly under the canopy, saplings were established far from mother trees. This discordant pattern may be the result of the action of secondary dispersal by animals or density-dependent effects; that is, the Janzen-Connell effect. © 2013 Blackwell Publishing Ltd.
Numerical Upscaling of Solute Transport in Fractured Porous Media Based on Flow Aligned Blocks
NASA Astrophysics Data System (ADS)
Leube, P.; Nowak, W.; Sanchez-Vila, X.
2013-12-01
High-contrast or fractured-porous media (FPM) pose one of the largest unresolved challenges for simulating large hydrogeological systems. The high contrast in advective transport between fast conduits and low-permeability rock matrix, including complex mass transfer processes, leads to the typical complex characteristics of early bulk arrivals and long tailings. Adequate direct representation of FPM requires enormous numerical resolutions. For large scales, e.g. the catchment scale, and when allowing for uncertainty in the fracture network architecture or in matrix properties, computational costs quickly reach an intractable level. In such cases, multi-scale simulation techniques have become useful tools. They allow decreasing the complexity of models by aggregating and transferring their parameters to coarser scales and so drastically reduce the computational costs. However, these advantages come at a loss of detail and accuracy. In this work, we develop and test a new multi-scale or upscaled modeling approach based on block upscaling. The novelty is that individual blocks are defined by and aligned with the local flow coordinates. We choose a multi-rate mass transfer (MRMT) model to represent the remaining sub-block non-Fickian behavior within these blocks on the coarse scale. To make the scale transition simple and to save computational costs, we capture sub-block features by temporal moments (TM) of block-wise particle arrival times to be matched with the MRMT model. By predicting spatial mass distributions of injected tracers in a synthetic test scenario, our coarse-scale solution matches reasonably well with the corresponding fine-scale reference solution. For predicting higher TM-orders (such as arrival time and effective dispersion), the prediction accuracy steadily decreases. This is compensated to some extent by the MRMT model. If the MRMT model becomes too complex, it loses its effect. We also found that prediction accuracy is sensitive to the choice of the effective dispersion coefficients and on the block resolution. A key advantage of the flow-aligned blocks is that the small-scale velocity field is reproduced quite accurately on the block-scale through their flow alignment. Thus, the block-scale transverse dispersivities remain in the similar magnitude as local ones, and they do not have to represent macroscopic uncertainty. Also, the flow-aligned blocks minimize numerical dispersion when solving the large-scale transport problem.
Medarević, Djordje P; Kleinebudde, Peter; Djuriš, Jelena; Djurić, Zorica; Ibrić, Svetlana
2016-01-01
This study for the first time demonstrates combined application of mixture experimental design and artificial neural networks (ANNs) in the solid dispersions (SDs) development. Ternary carbamazepine-Soluplus®-poloxamer 188 SDs were prepared by solvent casting method to improve carbamazepine dissolution rate. The influence of the composition of prepared SDs on carbamazepine dissolution rate was evaluated using d-optimal mixture experimental design and multilayer perceptron ANNs. Physicochemical characterization proved the presence of the most stable carbamazepine polymorph III within the SD matrix. Ternary carbamazepine-Soluplus®-poloxamer 188 SDs significantly improved carbamazepine dissolution rate compared to pure drug. Models developed by ANNs and mixture experimental design well described the relationship between proportions of SD components and percentage of carbamazepine released after 10 (Q10) and 20 (Q20) min, wherein ANN model exhibit better predictability on test data set. Proportions of carbamazepine and poloxamer 188 exhibited the highest influence on carbamazepine release rate. The highest carbamazepine release rate was observed for SDs with the lowest proportions of carbamazepine and the highest proportions of poloxamer 188. ANNs and mixture experimental design can be used as powerful data modeling tools in the systematic development of SDs. Taking into account advantages and disadvantages of both techniques, their combined application should be encouraged.
Jalas, S.; Dornmair, I.; Lehe, R.; ...
2017-03-20
Particle in Cell (PIC) simulations are a widely used tool for the investigation of both laser- and beam-driven plasma acceleration. It is a known issue that the beam quality can be artificially degraded by numerical Cherenkov radiation (NCR) resulting primarily from an incorrectly modeled dispersion relation. Pseudo-spectral solvers featuring infinite order stencils can strongly reduce NCR - or even suppress it - and are therefore well suited to correctly model the beam properties. For efficient parallelization of the PIC algorithm, however, localized solvers are inevitable. Arbitrary order pseudo-spectral methods provide this needed locality. Yet, these methods can again be pronemore » to NCR. Here in this paper, we show that acceptably low solver orders are sufficient to correctly model the physics of interest, while allowing for parallel computation by domain decomposition.« less
Dey, S.
2017-01-01
We present a method to construct and analyse 3D models of underwater scenes using a single cost-effective camera on a standard laptop with (a) free or low-cost software, (b) no computer programming ability, and (c) minimal man hours for both filming and analysis. This study focuses on four key structural complexity metrics: point-to-point distances, linear rugosity (R), fractal dimension (D), and vector dispersion (1/k). We present the first assessment of accuracy and precision of structure-from-motion (SfM) 3D models from an uncalibrated GoPro™ camera at a small scale (4 m2) and show that they can provide meaningful, ecologically relevant results. Models had root mean square errors of 1.48 cm in X-Y and 1.35 in Z, and accuracies of 86.8% (R), 99.6% (D at scales 30–60 cm), 93.6% (D at scales 1–5 cm), and 86.9 (1/k). Values of R were compared to in-situ chain-and-tape measurements, while values of D and 1/k were compared with ground truths from 3D printed objects modelled underwater. All metrics varied less than 3% between independently rendered models. We thereby improve and rigorously validate a tool for ecologists to non-invasively quantify coral reef structural complexity with a variety of multi-scale metrics. PMID:28406937
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jalas, S.; Dornmair, I.; Lehe, R.
Particle in Cell (PIC) simulations are a widely used tool for the investigation of both laser- and beam-driven plasma acceleration. It is a known issue that the beam quality can be artificially degraded by numerical Cherenkov radiation (NCR) resulting primarily from an incorrectly modeled dispersion relation. Pseudo-spectral solvers featuring infinite order stencils can strongly reduce NCR - or even suppress it - and are therefore well suited to correctly model the beam properties. For efficient parallelization of the PIC algorithm, however, localized solvers are inevitable. Arbitrary order pseudo-spectral methods provide this needed locality. Yet, these methods can again be pronemore » to NCR. Here in this paper, we show that acceptably low solver orders are sufficient to correctly model the physics of interest, while allowing for parallel computation by domain decomposition.« less
Li, Zhengkai; Spaulding, Malcolm; French McCay, Deborah; Crowley, Deborah; Payne, James R
2017-01-15
An oil droplet size model was developed for a variety of turbulent conditions based on non-dimensional analysis of disruptive and restorative forces, which is applicable to oil droplet formation under both surface breaking-wave and subsurface-blowout conditions, with or without dispersant application. This new model was calibrated and successfully validated with droplet size data obtained from controlled laboratory studies of dispersant-treated and non-treated oil in subsea dispersant tank tests and field surveys, including the Deep Spill experimental release and the Deepwater Horizon blowout oil spill. This model is an advancement over prior models, as it explicitly addresses the effects of the dispersed phase viscosity, resulting from dispersant application and constrains the maximum stable droplet size based on Rayleigh-Taylor instability that is invoked for a release from a large aperture. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of different dispersal patterns on the presence-absence of multiple species
NASA Astrophysics Data System (ADS)
Mohd, Mohd Hafiz; Murray, Rua; Plank, Michael J.; Godsoe, William
2018-03-01
Predicting which species will be present (or absent) across a geographical region remains one of the key problems in ecology. Numerous studies have suggested several ecological factors that can determine species presence-absence: environmental factors (i.e. abiotic environments), interactions among species (i.e. biotic interactions) and dispersal process. While various ecological factors have been considered, less attention has been given to the problem of understanding how different dispersal patterns, in interaction with other factors, shape community assembly in the presence of priority effects (i.e. where relative initial abundances determine the long-term presence-absence of each species). By employing both local and non-local dispersal models, we investigate the consequences of different dispersal patterns on the occurrence of priority effects and coexistence in multi-species communities. In the case of non-local, but short-range dispersal, we observe agreement with the predictions of local models for weak and medium dispersal strength, but disagreement for relatively strong dispersal levels. Our analysis shows the existence of a threshold value in dispersal strength (i.e. saddle-node bifurcation) above which priority effects disappear. These results also reveal a co-dimension 2 point, corresponding to a degenerate transcritical bifurcation: at this point, the transcritical bifurcation changes from subcritical to supercritical with corresponding creation of a saddle-node bifurcation curve. We observe further contrasting effects of non-local dispersal as dispersal distance changes: while very long-range dispersal can lead to species extinctions, intermediate-range dispersal can permit more outcomes with multi-species coexistence than short-range dispersal (or purely local dispersal). Overall, our results show that priority effects are more pronounced in the non-local dispersal models than in the local dispersal models. Taken together, our findings highlight the profound delicacy in the mediation of priority effects by dispersal processes: ;big steps; can have more influence than many ;small steps;.
Modeling of dispersion near roadways based on the vehicle-induced turbulence concept
NASA Astrophysics Data System (ADS)
Sahlodin, Ali M.; Sotudeh-Gharebagh, Rahmat; Zhu, Yifang
A mathematical model is developed for dispersion near roadways by incorporating vehicle-induced turbulence (VIT) into Gaussian dispersion modeling using computational fluid dynamics (CFD). The model is based on the Gaussian plume equation in which roadway is regarded as a series of point sources. The Gaussian dispersion parameters are modified by simulation of the roadway using CFD in order to evaluate turbulent kinetic energy (TKE) as a measure of VIT. The model was evaluated against experimental carbon monoxide concentrations downwind of two major freeways reported in the literature. Good agreements were achieved between model results and the literature data. A significant difference was observed between the model results with and without considering VIT. The difference is rather high for data very close to the freeways. This model, after evaluation with additional data, may be used as a framework for predicting dispersion and deposition from any roadway for different traffic (vehicle type and speed) conditions.
Fattebert, Julien; Robinson, Hugh S; Balme, Guy; Slotow, Rob; Hunter, Luke
2015-10-01
Natal dispersal promotes inter-population linkage, and is key to spatial distribution of populations. Degradation of suitable landscape structures beyond the specific threshold of an individual's ability to disperse can therefore lead to disruption of functional landscape connectivity and impact metapopulation function. Because it ignores behavioral responses of individuals, structural connectivity is easier to assess than functional connectivity and is often used as a surrogate for landscape connectivity modeling. However using structural resource selection models as surrogate for modeling functional connectivity through dispersal could be erroneous. We tested how well a second-order resource selection function (RSF) models (structural connectivity), based on GPS telemetry data from resident adult leopard (Panthera pardus L.), could predict subadult habitat use during dispersal (functional connectivity). We created eight non-exclusive subsets of the subadult data based on differing definitions of dispersal to assess the predictive ability of our adult-based RSF model extrapolated over a broader landscape. Dispersing leopards used habitats in accordance with adult selection patterns, regardless of the definition of dispersal considered. We demonstrate that, for a wide-ranging apex carnivore, functional connectivity through natal dispersal corresponds to structural connectivity as modeled by a second-order RSF. Mapping of the adult-based habitat classes provides direct visualization of the potential linkages between populations, without the need to model paths between a priori starting and destination points. The use of such landscape scale RSFs may provide insight into predicting suitable dispersal habitat peninsulas in human-dominated landscapes where mitigation of human-wildlife conflict should be focused. We recommend the use of second-order RSFs for landscape conservation planning and propose a similar approach to the conservation of other wide-ranging large carnivore species where landscape-scale resource selection data already exist.
The magic triangle goes MAD: experimental phasing with a bromine derivative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, Tobias, E-mail: tbeck@shelx.uni-ac.gwdg.de; Gruene, Tim; Sheldrick, George M.
2010-04-01
5-Amino-2, 4, 6-tribromoisophthalic acid is used as a phasing tool for protein structure determination by MAD phasing. It is the second representative of a novel class of compounds for heavy-atom derivatization that combine heavy atoms with amino and carboxyl groups for binding to proteins. Experimental phasing is an essential technique for the solution of macromolecular structures. Since many heavy-atom ion soaks suffer from nonspecific binding, a novel class of compounds has been developed that combines heavy atoms with functional groups for binding to proteins. The phasing tool 5-amino-2, 4, 6-tribromoisophthalic acid (B3C) contains three functional groups (two carboxylate groups andmore » one amino group) that interact with proteins via hydrogen bonds. Three Br atoms suitable for anomalous dispersion phasing are arranged in an equilateral triangle and are thus readily identified in the heavy-atom substructure. B3C was incorporated into proteinase K and a multiwavelength anomalous dispersion (MAD) experiment at the Br K edge was successfully carried out. Radiation damage to the bromine–carbon bond was investigated. A comparison with the phasing tool I3C that contains three I atoms for single-wavelength anomalous dispersion (SAD) phasing was also carried out.« less
Casini, R; Papari, G; Andreone, A; Marrazzo, D; Patti, A; Russo, P
2015-07-13
We investigate the use of Terahertz (THz) Time Domain Spectroscopy (TDS) as a tool for the measurement of the index dispersion of multi-walled carbon nanotubes (MWCNT) in polypropylene (PP) based composites. Samples containing 0.5% by volume concentration of non-functionalized and functionalized carbon nanotubes are prepared by melt compounding technology. Results indicate that the THz response of the investigated nanocomposites is strongly dependent on the kind of nanotube functionalization, which in turn impacts on the level of dispersion inside the polymer matrix. We show that specific dielectric parameters such as the refractive index and the absorption coefficient measured by THz spectroscopy can be both correlated to the index of dispersion as estimated using conventional optical microscopy.
A routinely applied atmospheric dispersion model was modified to evaluate alternative modeling techniques which allowed for more detailed source data, onsite meteorological data, and several dispersion methodologies. These were evaluated with hourly SO2 concentrations measured at...
Quantitative metal magnetic memory reliability modeling for welded joints
NASA Astrophysics Data System (ADS)
Xing, Haiyan; Dang, Yongbin; Wang, Ben; Leng, Jiancheng
2016-03-01
Metal magnetic memory(MMM) testing has been widely used to detect welded joints. However, load levels, environmental magnetic field, and measurement noises make the MMM data dispersive and bring difficulty to quantitative evaluation. In order to promote the development of quantitative MMM reliability assessment, a new MMM model is presented for welded joints. Steel Q235 welded specimens are tested along the longitudinal and horizontal lines by TSC-2M-8 instrument in the tensile fatigue experiments. The X-ray testing is carried out synchronously to verify the MMM results. It is found that MMM testing can detect the hidden crack earlier than X-ray testing. Moreover, the MMM gradient vector sum K vs is sensitive to the damage degree, especially at early and hidden damage stages. Considering the dispersion of MMM data, the K vs statistical law is investigated, which shows that K vs obeys Gaussian distribution. So K vs is the suitable MMM parameter to establish reliability model of welded joints. At last, the original quantitative MMM reliability model is first presented based on the improved stress strength interference theory. It is shown that the reliability degree R gradually decreases with the decreasing of the residual life ratio T, and the maximal error between prediction reliability degree R 1 and verification reliability degree R 2 is 9.15%. This presented method provides a novel tool of reliability testing and evaluating in practical engineering for welded joints.
Hydrodynamics of CNT dispersion in high shear dispersion mixers
NASA Astrophysics Data System (ADS)
Park, Young Min; Lee, Dong Hyun; Hwang, Wook Ryol; Lee, Sang Bok; Jung, Seung-Il
2014-11-01
In this work, we investigate the carbon nanotube (CNT) fragmentation mechanism and dispersion in high shear homogenizers as a plausible dispersion technique, correlating with device geometries and processing conditions, for mass production of CNT-aluminum composites for automobile industries. A CNT dispersion model has been established in a turbulent flow regime and an experimental method in characterizing the critical yield stress of CNT flocs are presented. Considering CNT dispersion in ethanol as a model system, we tested two different geometries of high shear mixers — blade-stirrer type and rotor-stator type homogenizers — and reported the particle size distributions in time and the comparison has been made with the modeling approach and partly with the computational results.
OpenKIM - Building a Knowledgebase of Interatomic Models
NASA Astrophysics Data System (ADS)
Bierbaum, Matthew; Tadmor, Ellad; Elliott, Ryan; Wennblom, Trevor; Alemi, Alexander; Chen, Yan-Jiun; Karls, Daniel; Ludvik, Adam; Sethna, James
2014-03-01
The Knowledgebase of Interatomic Models (KIM) is an effort by the computational materials community to provide a standard interface for the development, characterization, and use of interatomic potentials. The KIM project has developed an API between simulation codes and interatomic models written in several different languages including C, Fortran, and Python. This interface is already supported in popular simulation environments such as LAMMPS and ASE, giving quick access to over a hundred compatible potentials that have been contributed so far. To compare and characterize models, we have developed a computational processing pipeline which automatically runs a series of tests for each model in the system, such as phonon dispersion relations and elastic constant calculations. To view the data from these tests, we created a rich set of interactive visualization tools located online. Finally, we created a Web repository to store and share these potentials, tests, and visualizations which can be found at https://openkim.org along with futher information.
Flow in the Proximity of the Pin-Tool in Friction Stir Welding and Its Relation to Weld Homogeneity
NASA Technical Reports Server (NTRS)
Nunes, Arthur C., Jr.
2000-01-01
In the Friction Stir Welding (FSW) process a rotating pin inserted into a seam literally stirs the metal from each side of the seam together. It is proposed that the flow in the vicinity of the pin-tool comprises a primary rapid shear over a cylindrical envelope covering the pin-tool and a relatively slow secondary flow taking the form of a ring vortex about the tool circumference. This model is consistent with a plastic characterization of metal flow, where discontinuities in shear flow are allowed but not viscous effects. It is consistent with experiments employing several different kinds of tracer: atomic markers, shot, and wire. If a rotating disc with angular velocity w is superposed on a translating continuum with linear velocity omega, the trajectories of tracer points become circular arcs centered upon a point displaced laterally a distance v/omega from the center of rotation of the disc in the direction of the advancing side of the disc. In the present model a stream of metal approaching the tool (taken as the coordinate system of observation) is sheared at the slip surface, rapidly rotated around the tool, sheared again on the opposite side of the tool, and deposited in the wake of the tool. Local shearing rates are high, comparable to metal cutting in this model. The flow patterns in the vicinity of the pin-tool determine the level of homogenization and dispersal of contaminants that occurs in the FSW process. The approaching metal streams enfold one another as they are rotated around the tool. Neglecting mixing they return to the same lateral position in the wake of the tool preserving lateral tracer positions as if the metal had flowed past the tool like an extrusion instead of being rotated around it. (The seam is, however, obliterated.) The metal stream of thickness approximately that of the tool diameter D is wiped past the tool at elevated temperatures drawn out to a thickness of v/2(omega) in the wiping zone. Mixing distances in the wiping zone are multiplied in the unfolded metal. Inhomogeneities on a smaller scale than the mixing length are obliterated, but structure on a larger scale may be transmitted to the wake of a FSW weld.
Behavioral tradeoffs when dispersing across a patchy landscape.
Patrick A. Zollner; Steven L. Lima
2005-01-01
A better understanding of the behavior of dispersing animals will assist in determining the factors that limit their success and ultimately help improve the way dispersal is incorporated into population models. To that end, we used a simulation model to investigate three questions about behavioral tradeoffs that dispersing animals might face: (i) speed of movement...
An improved version of the consequence analysis model for chemical emergencies, ESCAPE
NASA Astrophysics Data System (ADS)
Kukkonen, J.; Nikmo, J.; Riikonen, K.
2017-02-01
We present a refined version of a mathematical model called ESCAPE, "Expert System for Consequence Analysis and Preparing for Emergencies". The model has been designed for evaluating the releases of toxic and flammable gases into the atmosphere, their atmospheric dispersion and the effects on humans and the environment. We describe (i) the mathematical treatments of this model, (ii) a verification and evaluation of the model against selected experimental field data, and (iii) a new operational implementation of the model. The new mathematical treatments include state-of-the-art atmospheric vertical profiles and new submodels for dense gas and passive atmospheric dispersion. The model performance was first successfully verified using the data of the Thorney Island campaign, and then evaluated against the Desert Tortoise campaign. For the latter campaign, the geometric mean bias was 1.72 (this corresponds to an underprediction of approximately 70%) and 0.71 (overprediction of approximately 30%) for the concentration and the plume half-width, respectively. The geometric variance was <1.5 (this corresponds to an agreement that is better than a factor of two). These values can be considered to indicate a good agreement of predictions and data, in comparison to values evaluated for a range of other similar models. The model has also been adapted to be able to automatically use the real time predictions and forecasts of the numerical weather prediction model HIRLAM, "HIgh Resolution Limited Area Model". The operational implementation of the ESCAPE modelling system can be accessed anywhere using internet browsers, on laptop computers, tablets and mobile phones. The predicted results can be post-processed using geographic information systems. The model has already proved to be a useful tool of assessment for the needs of emergency response authorities in contingency planning.
NASA Astrophysics Data System (ADS)
Choi, Yongje; Kim, Donghyun; Son, Kyungsik; Lee, Sanghyuk; Chung, Wonsub
2015-11-01
The electrodeposition of Ni-diamond composites was investigated to improve the dispersion and adhesion of the diamond particles, and thus, increase the performance of cutting tools. The additives, so called firstclass brighteners, benzoic sulfimide, benzene sulfonamide, and benzene sulfonic acid were used as dispersants to enhance the dispersivity of diamond particles. The dispersivity was analyzed with Image-Pro software, which was used to asses optical microscopy images, and the number of individual diamond particles and area fraction were calculated. In addition, electrochemical tests were performed, including zeta potential and galvanostatic measurements, and the adhesion strengths was tested by evaluating the wear resistance using ball-on-disk tester. The dispersion and adhesion of the diamond particles were improved when benzoic sulfimide was added to the composite plating bath at a concentration of 0.06 g/L. The number of individual diamond particles was 56 EA/mm2, and the weight loss of alumina ball and specimen was 2.88 mg and 0.80 mg, respectively.
A modeling framework was developed to investigate the interactive effects of life history characteristics and landscape heterogeneity on dispersal success. An individual-based model was used to examine how dispersal between resource patches is affected by four landscape characte...
NASA Astrophysics Data System (ADS)
Cipcigan, Flaviu S.; Sokhan, Vlad P.; Crain, Jason; Martyna, Glenn J.
2016-12-01
One key factor that limits the predictive power of molecular dynamics simulations is the accuracy and transferability of the input force field. Force fields are challenged by heterogeneous environments, where electronic responses give rise to biologically important forces such as many-body polarisation and dispersion. The importance of polarisation in the condensed phase was recognised early on, as described by Cochran in 1959 [Philosophical Magazine 4 (1959) 1082-1086] [32]. Currently in molecular simulation, dispersion forces are treated at the two-body level and in the dipole limit, although the importance of three-body terms in the condensed phase was demonstrated by Barker in the 1980s [Phys. Rev. Lett. 57 (1986) 230-233] [72]. One approach for treating both polarisation and dispersion on an equal basis is to coarse grain the electrons surrounding a molecular moiety to a single quantum harmonic oscillator (cf. Hirschfelder, Curtiss and Bird 1954 [The Molecular Theory of Gases and Liquids (1954)] [37]). The approach, when solved in strong coupling beyond the dipole limit, gives a description of long-range forces that includes two- and many-body terms to all orders. In the last decade, the tools necessary to implement the strong coupling limit have been developed, culminating in a transferable model of water with excellent predictive power across the phase diagram. Transferability arises since the environment automatically identifies the important long range interactions, rather than the modeller through a limited set of expressions. Here, we discuss the role of electronic coarse-graining in predictive multiscale materials modelling and describe the first implementation of the method in a general purpose molecular dynamics software: QDO_MD.
NASA Astrophysics Data System (ADS)
Niino, Yuu
2018-05-01
We investigate how the statistical properties of dispersion measure (DM) and apparent flux density/fluence of (nonrepeating) fast radio bursts (FRBs) are determined by unknown cosmic rate density history [ρ FRB(z)] and luminosity function (LF) of the transient events. We predict the distributions of DMs, flux densities, and fluences of FRBs taking account of the variation of the receiver efficiency within its beam, using analytical models of ρ FRB(z) and LF. Comparing the predictions with the observations, we show that the cumulative distribution of apparent fluences suggests that FRBs originate at cosmological distances and ρ FRB increases with redshift resembling the cosmic star formation history (CSFH). We also show that an LF model with a bright-end cutoff at log10 L ν (erg s‑1 Hz‑1) ∼ 34 are favored to reproduce the observed DM distribution if ρ FRB(z) ∝ CSFH, although the statistical significance of the constraints obtained with the current size of the observed sample is not high. Finally, we find that the correlation between DM and flux density of FRBs is potentially a powerful tool to distinguish whether FRBs are at cosmological distances or in the local universe more robustly with future observations.
Howell, Bryan; McIntyre, Cameron C
2016-06-01
Deep brain stimulation (DBS) is an adjunctive therapy that is effective in treating movement disorders and shows promise for treating psychiatric disorders. Computational models of DBS have begun to be utilized as tools to optimize the therapy. Despite advancements in the anatomical accuracy of these models, there is still uncertainty as to what level of electrical complexity is adequate for modeling the electric field in the brain and the subsequent neural response to the stimulation. We used magnetic resonance images to create an image-based computational model of subthalamic DBS. The complexity of the volume conductor model was increased by incrementally including heterogeneity, anisotropy, and dielectric dispersion in the electrical properties of the brain. We quantified changes in the load of the electrode, the electric potential distribution, and stimulation thresholds of descending corticofugal (DCF) axon models. Incorporation of heterogeneity altered the electric potentials and subsequent stimulation thresholds, but to a lesser degree than incorporation of anisotropy. Additionally, the results were sensitive to the choice of method for defining anisotropy, with stimulation thresholds of DCF axons changing by as much as 190%. Typical approaches for defining anisotropy underestimate the expected load of the stimulation electrode, which led to underestimation of the extent of stimulation. More accurate predictions of the electrode load were achieved with alternative approaches for defining anisotropy. The effects of dielectric dispersion were small compared to the effects of heterogeneity and anisotropy. The results of this study help delineate the level of detail that is required to accurately model electric fields generated by DBS electrodes.
NASA Astrophysics Data System (ADS)
Howell, Bryan; McIntyre, Cameron C.
2016-06-01
Objective. Deep brain stimulation (DBS) is an adjunctive therapy that is effective in treating movement disorders and shows promise for treating psychiatric disorders. Computational models of DBS have begun to be utilized as tools to optimize the therapy. Despite advancements in the anatomical accuracy of these models, there is still uncertainty as to what level of electrical complexity is adequate for modeling the electric field in the brain and the subsequent neural response to the stimulation. Approach. We used magnetic resonance images to create an image-based computational model of subthalamic DBS. The complexity of the volume conductor model was increased by incrementally including heterogeneity, anisotropy, and dielectric dispersion in the electrical properties of the brain. We quantified changes in the load of the electrode, the electric potential distribution, and stimulation thresholds of descending corticofugal (DCF) axon models. Main results. Incorporation of heterogeneity altered the electric potentials and subsequent stimulation thresholds, but to a lesser degree than incorporation of anisotropy. Additionally, the results were sensitive to the choice of method for defining anisotropy, with stimulation thresholds of DCF axons changing by as much as 190%. Typical approaches for defining anisotropy underestimate the expected load of the stimulation electrode, which led to underestimation of the extent of stimulation. More accurate predictions of the electrode load were achieved with alternative approaches for defining anisotropy. The effects of dielectric dispersion were small compared to the effects of heterogeneity and anisotropy. Significance. The results of this study help delineate the level of detail that is required to accurately model electric fields generated by DBS electrodes.
Gromke, Christof
2011-01-01
A new vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel investigations was developed. The modeling concept is based on fluid dynamical similarity aspects and allows the small-scale modeling of various kinds of vegetation, e.g. field crops, shrubs, hedges, single trees and forest stands. The applicability of the modeling concept was validated in wind tunnel pollutant dispersion studies. Avenue trees in urban street canyons were modeled and their implications on traffic pollutant dispersion were investigated. The dispersion experiments proved the modeling concept to be practicable for wind tunnel studies and suggested to provide reliable concentration results. Unfavorable effects of trees on pollutant dispersion and natural ventilation in street canyons were revealed. Increased traffic pollutant concentrations were found in comparison to the tree-free reference case. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
2010-01-01
Topics covered include: Burnishing Techniques Strengthen Hip Implants; Signal Processing Methods Monitor Cranial Pressure; Ultraviolet-Blocking Lenses Protect, Enhance Vision; Hyperspectral Systems Increase Imaging Capabilities; Programs Model the Future of Air Traffic Management; Tail Rotor Airfoils Stabilize Helicopters, Reduce Noise; Personal Aircraft Point to the Future of Transportation; Ducted Fan Designs Lead to Potential New Vehicles; Winglets Save Billions of Dollars in Fuel Costs; Sensor Systems Collect Critical Aerodynamics Data; Coatings Extend Life of Engines and Infrastructure; Radiometers Optimize Local Weather Prediction; Energy-Efficient Systems Eliminate Icing Danger for UAVs; Rocket-Powered Parachutes Rescue Entire Planes; Technologies Advance UAVs for Science, Military; Inflatable Antennas Support Emergency Communication; Smart Sensors Assess Structural Health; Hand-Held Devices Detect Explosives and Chemical Agents; Terahertz Tools Advance Imaging for Security, Industry; LED Systems Target Plant Growth; Aerogels Insulate Against Extreme Temperatures; Image Sensors Enhance Camera Technologies; Lightweight Material Patches Allow for Quick Repairs; Nanomaterials Transform Hairstyling Tools; Do-It-Yourself Additives Recharge Auto Air Conditioning; Systems Analyze Water Quality in Real Time; Compact Radiometers Expand Climate Knowledge; Energy Servers Deliver Clean, Affordable Power; Solutions Remediate Contaminated Groundwater; Bacteria Provide Cleanup of Oil Spills, Wastewater; Reflective Coatings Protect People and Animals; Innovative Techniques Simplify Vibration Analysis; Modeling Tools Predict Flow in Fluid Dynamics; Verification Tools Secure Online Shopping, Banking; Toolsets Maintain Health of Complex Systems; Framework Resources Multiply Computing Power; Tools Automate Spacecraft Testing, Operation; GPS Software Packages Deliver Positioning Solutions; Solid-State Recorders Enhance Scientific Data Collection; Computer Models Simulate Fine Particle Dispersion; Composite Sandwich Technologies Lighten Components; Cameras Reveal Elements in the Short Wave Infrared; Deformable Mirrors Correct Optical Distortions; Stitching Techniques Advance Optics Manufacturing; Compact, Robust Chips Integrate Optical Functions; Fuel Cell Stations Automate Processes, Catalyst Testing; Onboard Systems Record Unique Videos of Space Missions; Space Research Results Purify Semiconductor Materials; and Toolkits Control Motion of Complex Robotics.
Reduced-form air quality modeling for community-scale ...
Transportation plays an important role in modern society, but its impact on air quality has been shown to have significant adverse effects on public health. Numerous reviews (HEI, CDC, WHO) summarizing findings of hundreds of studies conducted mainly in the last decade, conclude that exposures to traffic emissions near roads are a public health concern. The Community LINE Source Model (C-LINE) is a web-based model designed to inform the community user of local air quality impacts due to roadway vehicles in their region of interest using a simplified modeling approach. Reduced-form air quality modeling is a useful tool for examining what-if scenarios of changes in emissions, such as those due to changes in traffic volume, fleet mix, or vehicle speed. Examining various scenarios of air quality impacts in this way can identify potentially at-risk populations located near roadways, and the effects that a change in traffic activity may have on them. C-LINE computes dispersion of primary mobile source pollutants using meteorological conditions for the region of interest and computes air-quality concentrations corresponding to these selected conditions. C-LINE functionality has been expanded to model emissions from port-related activities (e.g. ships, trucks, cranes, etc.) in a reduced-form modeling system for local-scale near-port air quality analysis. This presentation describes the Community modeling tools C-LINE and C-PORT that are intended to be used by local gove
Garrard, Georgia E; McCarthy, Michael A; Vesk, Peter A; Radford, James Q; Bennett, Andrew F
2012-01-01
1. Informative Bayesian priors can improve the precision of estimates in ecological studies or estimate parameters for which little or no information is available. While Bayesian analyses are becoming more popular in ecology, the use of strongly informative priors remains rare, perhaps because examples of informative priors are not readily available in the published literature. 2. Dispersal distance is an important ecological parameter, but is difficult to measure and estimates are scarce. General models that provide informative prior estimates of dispersal distances will therefore be valuable. 3. Using a world-wide data set on birds, we develop a predictive model of median natal dispersal distance that includes body mass, wingspan, sex and feeding guild. This model predicts median dispersal distance well when using the fitted data and an independent test data set, explaining up to 53% of the variation. 4. Using this model, we predict a priori estimates of median dispersal distance for 57 woodland-dependent bird species in northern Victoria, Australia. These estimates are then used to investigate the relationship between dispersal ability and vulnerability to landscape-scale changes in habitat cover and fragmentation. 5. We find evidence that woodland bird species with poor predicted dispersal ability are more vulnerable to habitat fragmentation than those species with longer predicted dispersal distances, thus improving the understanding of this important phenomenon. 6. The value of constructing informative priors from existing information is also demonstrated. When used as informative priors for four example species, predicted dispersal distances reduced the 95% credible intervals of posterior estimates of dispersal distance by 8-19%. Further, should we have wished to collect information on avian dispersal distances and relate it to species' responses to habitat loss and fragmentation, data from 221 individuals across 57 species would have been required to obtain estimates with the same precision as those provided by the general model. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.
Modeling interpopulation dispersal by banner-tailed kangaroo rats
Skvarla, J.L.; Nichols, J.D.; Hines, J.E.; Waser, P.M.
2004-01-01
Many metapopulation models assume rules of population connectivity that are implicitly based on what we know about within-population dispersal, but especially for vertebrates, few data exist to assess whether interpopulation dispersal is just within-population dispersal "scaled up." We extended existing multi-stratum mark-release-recapture models to incorporate the robust design, allowing us to compare patterns of within- and between-population movement in the banner-tailed kangaroo rat (Dipodomys spectabilis). Movement was rare among eight populations separated by only a few hundred meters: seven years of twice-annual sampling captured >1200 individuals but only 26 interpopulation dispersers. We developed a program that implemented models with parameters for capture, survival, and interpopulation movement probability and that evaluated competing hypotheses in a model selection framework. We evaluated variants of the island, stepping-stone, and isolation-by-distance models of interpopulation movement, incorporating effects of age, season, and habitat (short or tall grass). For both sexes, QAICc values clearly favored isolation-by-distance models, or models combining the effects of isolation by distance and habitat. Models with probability of dispersal expressed as linear-logistic functions of distance and as negative exponentials of distance fit the data equally well. Interpopulation movement probabilities were similar among sexes (perhaps slightly biased toward females), greater for juveniles than adults (especially for females), and greater before than during the breeding season (especially for females). These patterns resemble those previously described for within-population dispersal in this species, which we interpret as indicating that the same processes initiate both within- and between-population dispersal.
Electronic processes in TTF-derived complexes studied by IR spectroscopy
NASA Astrophysics Data System (ADS)
Graja, Andrzej
2001-09-01
We focus our attention on the plasma-edge-like dispersion of the reflectance spectra of the selected bis(ethylenodithio)tetrathiafulvalene (BEDT-TTF)-derived organic conductors. The standard procedure to determine the electron transport parameters in low-dimensional organic conductors consists of fitting the appropriate theoretical models with the experimental reflectance data. This procedure provides us with basic information like plasma frequency, the optical effective mass of charge carriers, their number, mean free path and damping constant. Therefore, it is concluded that the spectroscopy is a powerful tool to study the electronic processes in conducting organic solids.
WUVS simulator: detectability of spectral lines with the WSO-UV spectrographs
NASA Astrophysics Data System (ADS)
Marcos-Arenal, Pablo; de Castro, Ana I. Gómez; Abarca, Belén Perea; Sachkov, Mikhail
2017-04-01
The World Space Observatory Ultraviolet telescope is equipped with high dispersion (55,000) spectrographs working in the 1150 to 3100 Å spectral range. To evaluate the impact of the design on the scientific objectives of the mission, a simulation software tool has been developed. This simulator builds on the development made for the PLATO space mission and it is designed to generate synthetic time-series of images by including models of all important noise sources. We describe its design and performance. Moreover, its application to the detectability of important spectral features for star formation and exoplanetary research is addressed.
A dielectrophoresis-impedance method for protein detection and analysis
NASA Astrophysics Data System (ADS)
Mohamad, Ahmad Sabry; Hamzah, Roszymah; Hoettges, Kai F.; Hughes, Michael Pycraft
2017-01-01
Dielectrophoresis (DEP) has increasingly been used for the assessment of the electrical properties of molecular scale objects including proteins, DNA, nanotubes and nanowires. However, whilst techniques have been developed for the electrical characterisation of frequency-dependent DEP response, biomolecular study is usually limited to observation using fluorescent markers, limiting its applicability as a characterisation tool. In this paper we present a label-free, impedance-based method of characterisation applied to the determination of the electrical properties of colloidal protein molecules, specifically Bovine Serum Albumin (BSA). By monitoring the impedance between electrodes as proteins collect, it is shown to be possible to observe multi-dispersion behaviour. A DEP dispersion exhibited at 400 kHz is attributable to the orientational dispersion of the molecule, whilst a second, higher-frequency dispersion is attributed to a Maxwell-Wagner type dispersion; changes in behaviour with medium conductivity suggest that this is strongly influenced by the electrical double layer surrounding the molecule.
Leadership Trust in Virtual Teams Using Communication Tools: A Quantitative Correlational Study
ERIC Educational Resources Information Center
Clark, Robert Lynn
2014-01-01
The purpose of this quantitative correlational study was to address leadership trust in virtual teams using communication tools in a small south-central, family-owned pharmaceutical organization, with multiple dispersed locations located in the United States. The results of the current research study could assist leaders to develop a communication…
NEW DEVELOPMENT IN DISPERSION EXPERIMENTS AND MODELS FOR THE CONVECTIVE BOUNDARY LAYER
We present recent experiments and modeling studies of dispersion in the convective boundary layer (CBL) with focus on highly-buoyant plumes that "loft" near the CBL top and resist downward mixing. Such plumes have been a significant problem in earlier dispersion models; they a...
Bioaerosols from composting facilities—a review
Wéry, Nathalie
2014-01-01
Bioaerosols generated at composting plants are released during processes that involve the vigorous movement of material such as shredding, compost pile turning, or compost screening. Such bioaerosols are a cause of concern because of their potential impact on both occupational health and the public living in close proximity to such facilities. The biological hazards potentially associated with bioaerosol emissions from composting activities include fungi, bacteria, endotoxin, and 1-3 β-glucans. There is a major lack of knowledge concerning the dispersal of airborne microorganisms emitted by composting plants as well as the potential exposure of nearby residents. This is due in part to the difficulty of tracing specifically these microorganisms in air. In recent years, molecular tools have been used to develop new tracers which should help in risk assessments. This review summarizes current knowledge of microbial diversity in composting aerosols and of the associated risks to health. It also considers methodologies introduced recently to enhance understanding of bioaerosol dispersal, including new molecular indicators and modeling. PMID:24772393
Modulating fat digestion through food structure design.
Guo, Qing; Ye, Aiqian; Bellissimo, Nick; Singh, Harjinder; Rousseau, Dérick
2017-10-01
Dietary fats and oils are an important component of our diet and a significant contributor to total energy and intake of lipophilic nutrients and bioactives. We discuss their fate in a wide variety of engineered, processed and naturally-occurring foods as they pass through the gastrointestinal tract and the implicit role of the food matrix within which they reside. Important factors that control fat and oil digestion include: 1) Their physical state (liquid or solid); 2) Dispersion of oil as emulsion droplets and control of the interfacial structure of emulsified oils; 3) The structure and rheology of the food matrix surrounding dispersed oil droplets; and 4) Alteration of emulsified oil droplet size and concentration. Using examples based on model foods such as emulsion gels and everyday foods such as almonds and cheese, we demonstrate that food structure design may be used as a tool to modulate fat and oil digestion potentially resulting in a number of targeted physiological outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.
LatMix 2011 and 2012 Dispersion Analysis
2015-09-30
work included the airborne lidar operations as well as a substantial part of the field operations and analysis. A primary objective of our LatMix... lidar ) surveys of evolving dye experiments as a tool for studying submesoscale lateral dispersion. 2 Numerous papers by our group relating to the...drifter / lidar effort, however, there are additional aspects of the data and analysis that are beyond the scope of these already-in-progress
NASA Astrophysics Data System (ADS)
Cain, Michelle; France, James; Pyle, John; Warwick, Nicola; Fisher, Rebecca; Lowry, Dave; Allen, Grant; O'Shea, Sebastian; Illingworth, Samuel; Jones, Ben; Gallagher, Martin; Welpott, Axel; Muller, Jennifer; Bauguitte, Stephane; George, Charles; Hayman, Garry; Manning, Alistair; Myhre, Catherine Lund; Lanoisellé, Mathias; Nisbet, Euan
2016-04-01
An airmass of enhanced methane was sampled during a research flight at ~600 m to ~2000 m altitude between the North coast of Norway and Svalbard on 21 July 2012. The largest source of methane in the summertime Arctic is wetland emissions. Did this enhancement in methane come from wetland emissions? The airmass was identified through continuous methane measurements using a Los Gatos fast greenhouse gas analyser on board the UK's BAe-146 Atmospheric Research Aircraft (ARA) as part of the MAMM (Methane in the Arctic: Measurements and Modelling) campaign. A Lagrangian particle dispersion model (the UK Met Office's NAME model) was run backwards to identify potential methane source regions. This was combined with a methane emission inventory to create "pseudo observations" to compare with the aircraft observations. This modelling was used to constrain the δ13C CH4 wetland source signature (where δ13C CH4 is the ratio of 13C to 12C in methane), resulting in a most likely signature of -73‰ (±4‰7‰). The NAME back trajectories suggest a methane source region of north-western Russian wetlands, and -73‰ is consistent with in situ measurements of wetland methane at similar latitudes in Scandinavia. This analysis has allowed us to study emissions from remote regions for which we do not have in situ observations, giving us an extra tool in the determination of the isotopic source variation of global methane emissions.
Heterogeneity, Mixing, and the Spatial Scales of Mosquito-Borne Pathogen Transmission
Perkins, T. Alex; Scott, Thomas W.; Le Menach, Arnaud; Smith, David L.
2013-01-01
The Ross-Macdonald model has dominated theory for mosquito-borne pathogen transmission dynamics and control for over a century. The model, like many other basic population models, makes the mathematically convenient assumption that populations are well mixed; i.e., that each mosquito is equally likely to bite any vertebrate host. This assumption raises questions about the validity and utility of current theory because it is in conflict with preponderant empirical evidence that transmission is heterogeneous. Here, we propose a new dynamic framework that is realistic enough to describe biological causes of heterogeneous transmission of mosquito-borne pathogens of humans, yet tractable enough to provide a basis for developing and improving general theory. The framework is based on the ecological context of mosquito blood meals and the fine-scale movements of individual mosquitoes and human hosts that give rise to heterogeneous transmission. Using this framework, we describe pathogen dispersion in terms of individual-level analogues of two classical quantities: vectorial capacity and the basic reproductive number, . Importantly, this framework explicitly accounts for three key components of overall heterogeneity in transmission: heterogeneous exposure, poor mixing, and finite host numbers. Using these tools, we propose two ways of characterizing the spatial scales of transmission—pathogen dispersion kernels and the evenness of mixing across scales of aggregation—and demonstrate the consequences of a model's choice of spatial scale for epidemic dynamics and for estimation of , both by a priori model formulas and by inference of the force of infection from time-series data. PMID:24348223
A simple approximation for larval retention around reefs
NASA Astrophysics Data System (ADS)
Cetina-Heredia, Paulina; Connolly, Sean R.
2011-09-01
Estimating larval retention at individual reefs by local scale three-dimensional flows is a significant problem for understanding, and predicting, larval dispersal. Determining larval dispersal commonly involves the use of computationally demanding and expensively calibrated/validated hydrodynamic models that resolve reef wake eddies. This study models variation in larval retention times for a range of reef shapes and circulation regimes, using a reef-scale three-dimensional hydrodynamic model. It also explores how well larval retention time can be estimated based on the "Island Wake Parameter", a measure of the degree of flow turbulence in the wake of reefs that is a simple function of flow speed, reef dimension, and vertical diffusion. The mean residence times found in the present study (0.48-5.64 days) indicate substantial potential for self-recruitment of species whose larvae are passive, or weak swimmers, for the first several days after release. Results also reveal strong and significant relationships between the Island Wake Parameter and mean residence time, explaining 81-92% of the variability in retention among reefs across a range of unidirectional flow speeds and tidal regimes. These findings suggest that good estimates of larval retention may be obtained from relatively coarse-scale characteristics of the flow, and basic features of reef geomorphology. Such approximations may be a valuable tool for modeling connectivity and meta-population dynamics over large spatial scales, where explicitly characterizing fine-scale flows around reef requires a prohibitive amount of computation and extensive model calibration.
Venetsanos, A G; Huld, T; Adams, P; Bartzis, J G
2003-12-12
Hydrogen is likely to be the most important future energy carrier, for many stationary and mobile applications, with the potential to make significant reductions in greenhouse gas emissions especially if renewable primary energy sources are used to produce the hydrogen. A safe transition to the use of hydrogen by members of the general public requires that the safety issues associated with hydrogen applications have to be investigated and fully understood. In order to assess the risks associated with hydrogen applications, its behaviour in realistic accident scenarios has to be predicted, allowing mitigating measures to be developed where necessary. A key factor in this process is predicting the release, dispersion and combustion of hydrogen in appropriate scenarios. This paper illustrates an application of CFD methods to the simulation of an actual hydrogen explosion. The explosion occurred on 3 March 1983 in a built up area of central Stockholm, Sweden, after the accidental release of approximately 13.5 kg of hydrogen from a rack of 18 interconnected 50 l industrial pressure vessels (200 bar working pressure) being transported by a delivery truck. Modelling of the source term, dispersion and combustion were undertaken separately using three different numerical tools, due to the differences in physics and scales between the different phenomena. Results from the dispersion calculations together with the official accident report were used to identify a possible ignition source and estimate the time at which ignition could have occurred. Ignition was estimated to occur 10s after the start of the release, coinciding with the time at which the maximum flammable hydrogen mass and cloud volume were found to occur (4.5 kg and 600 m(3), respectively). The subsequent simulation of the combustion adopts initial conditions for mean flow and turbulence from the dispersion simulations, and calculates the development of a fireball. This provides physical values, e.g. maximum overpressure and far-field overpressure that may be used as a comparison with the known accident details to give an indication of the validity of the models. The simulation results are consistent with both the reported near-field damage to buildings and persons and with the far-field damage to windows. The work was undertaken as part of the European Integrated Hydrogen Project-Phase 2 (EIHP2) with partial funding from the European Commission via the Fifth Framework Programme.
NASA Astrophysics Data System (ADS)
Liang, Ching-Ping; Hsu, Shao-Yiu; Chen, Jui-Sheng
2016-09-01
It is recommended that an in-situ infiltration tracer test is considered for simultaneously determining the longitudinal and transverse dispersion coefficients in soil. Analytical solutions have been derived for two-dimensional advective-dispersive transport in a radial geometry in the literature which can be used for interpreting the result of such a tracer test. However, these solutions were developed for a transport domain with an unbounded-radial extent and an infinite thickness of vadose zone which might not be realistically manifested in the actual solute transport during a field infiltration tracer test. Especially, the assumption of infinite thickness of vadose zone should be invalid for infiltration tracer tests conducted in soil with a shallow groundwater table. This paper describes an analytical model for interpreting the results of an infiltration tracer test based on improving the transport domain with a bounded-radial extent and a finite thickness of vadose zone. The analytical model is obtained with the successive application of appropriate integral transforms and their corresponding inverse transforms. A comparison of the newly derived analytical solution against the previous analytical solutions in which two distinct sets of radial extent and thickness of vadose zone are considered is conducted to determine the influence of the radial and exit boundary conditions on the solute transport. The results shows that both the radial and exit boundary conditions substantially affect the trailing segment of the breakthrough curves for a soil medium with large dispersion coefficients. Previous solutions derived for a transport domain with an unbounded-radial and an infinite thickness of vadose zone boundary conditions give lower concentration predictions compared with the proposed solution at late times. Moreover, the differences between two solutions are amplified when the observation positions are near the groundwater table. In addition, we compare our solution against the approximate solutions that derived from the previous analytical solution and has been suggested to serve as fast tools for simultaneously estimating the longitudinal and transverse dispersion coefficients. The results indicate that the approximate solutions offer predictions that are markedly distinct from our solution for the entire range of dispersion coefficient values. Thus, it is not appropriate to use the approximate solution for interpreting the results of an infiltration tracer test.
Estimating true instead of apparent survival using spatial Cormack-Jolly-Seber models
Schaub, Michael; Royle, J. Andrew
2014-01-01
Spatial CJS models enable study of dispersal and survival independent of study design constraints such as imperfect detection and size of the study area provided that some of the dispersing individuals remain in the study area. We discuss possible extensions of our model: alternative dispersal models and the inclusion of covariates and of a habitat suitability map.
Dennis, Andrew J; Westcott, David A
2006-10-01
The process of seed dispersal has a profound effect on vegetation structure and diversity in tropical forests. However, our understanding of the process and our ability to predict its outcomes at a community scale are limited by the frequently large number of interactions associated with it. Here, we outline an approach to dealing with this complexity that reduces the number of unique interactions considered by classifying the participants according to their functional similarity. We derived a classification of dispersers based on the nature of the dispersal service they provide to plants. We described the quantities of fruit handled, the quality of handling and the diversity of plants to which the service is provided. We used ten broad disperser traits to group 26 detailed measures for each disperser. We then applied this approach to vertebrate dispersers in Australia's tropical forests. Using this we also develop a classification that may be more generally applicable. For each disperser, data relating to each trait was obtained either from the field or published literature. First, we identified dispersers whose service outcomes were so distinct that statistical analysis was not required and assigned them to functional groups. The remaining dispersers were assigned to functional groups using cluster analysis. The combined processes created 15 functional groups from 65 vertebrate dispersers in Australian tropical forests. Our approach--grouping dispersers on the basis of the type of dispersal service provided and the fruit types it is provided to--represents a means of reducing the complexity encountered in tropical seed dispersal systems and could be effectively applied in community level studies. It also represents a useful tool for exploring changes in dispersal services when the distribution and abundance of animal populations change due to human impacts.
Automated system for smoke dispersion prediction due to wild fires in Alaska
NASA Astrophysics Data System (ADS)
Kulchitsky, A.; Stuefer, M.; Higbie, L.; Newby, G.
2007-12-01
Community climate models have enabled development of specific environmental forecast systems. The University of Alaska (UAF) smoke group was created to adapt a smoke forecast system to the Alaska region. The US Forest Service (USFS) Missoula Fire Science Lab had developed a smoke forecast system based on the Weather Research and Forecasting (WRF) Model including chemistry (WRF/Chem). Following the successful experience of USFS, which runs their model operationally for the contiguous U.S., we develop a similar system for Alaska in collaboration with scientists from the USFS Missoula Fire Science Lab. Wildfires are a significant source of air pollution in Alaska because the climate and vegetation favor annual summer fires that burn huge areas. Extreme cases occurred in 2004, when an area larger than Maryland (more than 25000~km2) burned. Small smoke particles with a diameter less than 10~μm can penetrate deep into lungs causing health problems. Smoke also creates a severe restriction to air transport and has tremendous economical effect. The smoke dispersion and forecast system for Alaska was developed at the Geophysical Institute (GI) and the Arctic Region Supercomputing Center (ARSC), both at University of Alaska Fairbanks (UAF). They will help the public and plan activities a few days in advance to avoid dangerous smoke exposure. The availability of modern high performance supercomputers at ARSC allows us to create and run high-resolution, WRF-based smoke dispersion forecast for the entire State of Alaska. The core of the system is a Python program that manages the independent pieces. Our adapted Alaska system performs the following steps \\begin{itemize} Calculate the medium-resolution weather forecast using WRF/Met. Adapt the near real-time satellite-derived wildfire location and extent data that are received via direct broadcast from UAF's "Geographic Information Network of Alaska" (GINA) Calculate fuel moisture using WRF forecasts and National Fire Danger Rating System (NFDRS) fuel maps Calculate smoke emission components using a first order fire emission model Model the smoke plume rise yielding a vertically distribution that accounts for one-dimensional (vertical) concentrations of smoke constituents in the atmosphere above the fire Run WRF/Chem at high resolution for the forecast Use standard graphical tools to provide accessible smoke dispersion The system run twice each day at ARSC. The results will be freely available from a dedicated wildfire smoke web portal at ARSC.
Saastamoinen, Marjo; Bocedi, Greta; Cote, Julien; Legrand, Delphine; Guillaume, Frédéric; Wheat, Christopher W; Fronhofer, Emanuel A; Garcia, Cristina; Henry, Roslyn; Husby, Arild; Baguette, Michel; Bonte, Dries; Coulon, Aurélie; Kokko, Hanna; Matthysen, Erik; Niitepõld, Kristjan; Nonaka, Etsuko; Stevens, Virginie M; Travis, Justin M J; Donohue, Kathleen; Bullock, James M; Del Mar Delgado, Maria
2018-02-01
Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal-related phenotypes or evidence for the micro-evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment-dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non-additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non-equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context-dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits. © 2017 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.
Extended Poisson process modelling and analysis of grouped binary data.
Faddy, Malcolm J; Smith, David M
2012-05-01
A simple extension of the Poisson process results in binomially distributed counts of events in a time interval. A further extension generalises this to probability distributions under- or over-dispersed relative to the binomial distribution. Substantial levels of under-dispersion are possible with this modelling, but only modest levels of over-dispersion - up to Poisson-like variation. Although simple analytical expressions for the moments of these probability distributions are not available, approximate expressions for the mean and variance are derived, and used to re-parameterise the models. The modelling is applied in the analysis of two published data sets, one showing under-dispersion and the other over-dispersion. More appropriate assessment of the precision of estimated parameters and reliable model checking diagnostics follow from this more general modelling of these data sets. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The evolution of dispersal in a Levins' type metapopulation model.
Jansen, Vincent A A; Vitalis, Renaud
2007-10-01
We study the evolution of the dispersal rate in a metapopulation model with extinction and colonization dynamics, akin to the model as originally described by Levins. To do so we extend the metapopulation model with a description of the within patch dynamics. By means of a separation of time scales we analytically derive a fitness expression from first principles for this model. The fitness function can be written as an inclusive fitness equation (Hamilton's rule). By recasting this equation in a form that emphasizes the effects of competition we show the effect of the local competition and the local population size on the evolution of dispersal. We find that the evolution of dispersal cannot be easily interpreted in terms of avoidance of kin competition, but rather that increased dispersal reduces the competitive ability. Our model also yields a testable prediction in term of relatedness and life-history parameters.
Snyder, Darin C; Delmore, James E; Tranter, Troy; Mann, Nick R; Abbott, Michael L; Olson, John E
2012-08-01
Fractionation of the two longer-lived radioactive cesium isotopes ((135)Cs and (137)Cs) produced by above ground nuclear tests have been measured and used to clarify the dispersal mechanisms of cesium deposited in the area between the Nevada Nuclear Security Site and Lake Mead in the southwestern United States. Fractionation of these isotopes is due to the 135-decay chain requiring several days to completely decay to (135)Cs, and the 137-decay chain less than one hour decay to (137)Cs. Since the Cs precursors are gases, iodine and xenon, the (135)Cs plume was deposited farther downwind than the (137)Cs plume. Sediment core samples were obtained from the Las Vegas arm of Lake Mead, sub-sampled and analyzed for (135)Cs/(137)Cs ratios by thermal ionization mass spectrometry. The layers proved to have nearly identical highly fractionated isotope ratios. This information is consistent with a model where the cesium was initially deposited onto the land area draining into Lake Mead and the composite from all of the above ground shots subsequently washed onto Lake Mead by high intensity rain and wind storms producing a layering of Cs activity, where each layer is a portion of the composite. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tonini, Roberto; Selva, Jacopo; Costa, Antonio; Sandri, Laura
2014-05-01
Probabilistic Hazard Assessment (PHA) is becoming an essential tool for risk mitigation policies, since it allows to quantify the hazard due to hazardous phenomena and, differently from the deterministic approach, it accounts for both aleatory and epistemic uncertainties. On the other hand, one of the main disadvantages of PHA methods is that their results are not easy to understand and interpret by people who are not specialist in probabilistic tools. For scientists, this leads to the issue of providing tools that can be easily used and understood by decision makers (i.e., risk managers or local authorities). The work here presented fits into the problem of simplifying the transfer between scientific knowledge and land protection policies, by providing an interface between scientists, who produce PHA's results, and decision makers, who use PHA's results for risk analyses. In this framework we present pyPHaz, an open tool developed and designed to visualize and analyze PHA results due to one or more phenomena affecting a specific area of interest. The software implementation has been fully developed with the free and open-source Python programming language and some featured Python-based libraries and modules. The pyPHaz tool allows to visualize the Hazard Curves (HC) calculated in a selected target area together with different levels of uncertainty (mean and percentiles) on maps that can be interactively created and modified by the user, thanks to a dedicated Graphical User Interface (GUI). Moreover, the tool can be used to compare the results of different PHA models and to merge them, by creating ensemble models. The pyPHaz software has been designed with the features of storing and accessing all the data through a MySQL database and of being able to read as input the XML-based standard file formats defined in the frame of GEM (Global Earthquake Model). This format model is easy to extend also to any other kind of hazard, as it will be shown in the applications here used as examples of the pyPHaz potentialities, that are focused on a Probabilistic Volcanic Hazard Assessment (PVHA) for tephra dispersal and fallout applied to the municipality of Naples.
USDA-ARS?s Scientific Manuscript database
Reverse dispersion modeling has been used to determine air emission fluxes from ground-level area sources, including open-lot beef cattle feedlots. This research compared AERMOD, a Gaussian-based and currently the U.S. Environmental Protection Agency (EPA) preferred regulatory dispersion model, and ...
Physical models of polarization mode dispersion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menyuk, C.R.; Wai, P.K.A.
The effect of randomly varying birefringence on light propagation in optical fibers is studied theoretically in the parameter regime that will be used for long-distance communications. In this regime, the birefringence is large and varies very rapidly in comparison to the nonlinear and dispersive scale lengths. We determine the polarization mode dispersion, and we show that physically realistic models yield the same result for polarization mode dispersion as earlier heuristic models that were introduced by Poole. We also prove an ergodic theorem.
Bocedi, Greta; Cote, Julien; Legrand, Delphine; Guillaume, Frédéric; Wheat, Christopher W.; Fronhofer, Emanuel A.; Garcia, Cristina; Henry, Roslyn; Husby, Arild; Baguette, Michel; Bonte, Dries; Coulon, Aurélie; Kokko, Hanna; Matthysen, Erik; Niitepõld, Kristjan; Nonaka, Etsuko; Stevens, Virginie M.; Travis, Justin M. J.; Donohue, Kathleen; Bullock, James M.; del Mar Delgado, Maria
2017-01-01
ABSTRACT Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal‐related phenotypes or evidence for the micro‐evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment‐dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non‐additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non‐equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context‐dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits. PMID:28776950
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gowardhan, Akshay; Neuscamman, Stephanie; Donetti, John
Aeolus is an efficient three-dimensional computational fluid dynamics code based on finite volume method developed for predicting transport and dispersion of contaminants in a complex urban area. It solves the time dependent incompressible Navier-Stokes equation on a regular Cartesian staggered grid using a fractional step method. It also solves a scalar transport equation for temperature and using the Boussinesq approximation. The model also includes a Lagrangian dispersion model for predicting the transport and dispersion of atmospheric contaminants. The model can be run in an efficient Reynolds Average Navier-Stokes (RANS) mode with a run time of several minutes, or a moremore » detailed Large Eddy Simulation (LES) mode with run time of hours for a typical simulation. This report describes the model components, including details on the physics models used in the code, as well as several model validation efforts. Aeolus wind and dispersion predictions are compared to field data from the Joint Urban Field Trials 2003 conducted in Oklahoma City (Allwine et al 2004) including both continuous and instantaneous releases. Newly implemented Aeolus capabilities include a decay chain model and an explosive Radiological Dispersal Device (RDD) source term; these capabilities are described. Aeolus predictions using the buoyant explosive RDD source are validated against two experimental data sets: the Green Field explosive cloud rise experiments conducted in Israel (Sharon et al 2012) and the Full-Scale RDD Field Trials conducted in Canada (Green et al 2016).« less
Bennett, Joseph R.; French, Connor M.
2017-01-01
SDMtoolbox 2.0 is a software package for spatial studies of ecology, evolution, and genetics. The release of SDMtoolbox 2.0 allows researchers to use the most current ArcGIS software and MaxEnt software, and reduces the amount of time that would be spent developing common solutions. The central aim of this software is to automate complicated and repetitive spatial analyses in an intuitive graphical user interface. One core tenant facilitates careful parameterization of species distribution models (SDMs) to maximize each model’s discriminatory ability and minimize overfitting. This includes carefully processing of occurrence data, environmental data, and model parameterization. This program directly interfaces with MaxEnt, one of the most powerful and widely used species distribution modeling software programs, although SDMtoolbox 2.0 is not limited to species distribution modeling or restricted to modeling in MaxEnt. Many of the SDM pre- and post-processing tools have ‘universal’ analogs for use with any modeling software. The current version contains a total of 79 scripts that harness the power of ArcGIS for macroecology, landscape genetics, and evolutionary studies. For example, these tools allow for biodiversity quantification (such as species richness or corrected weighted endemism), generation of least-cost paths and corridors among shared haplotypes, assessment of the significance of spatial randomizations, and enforcement of dispersal limitations of SDMs projected into future climates—to only name a few functions contained in SDMtoolbox 2.0. Lastly, dozens of generalized tools exists for batch processing and conversion of GIS data types or formats, which are broadly useful to any ArcMap user. PMID:29230356
Non-random dispersal in the butterfly Maniola jurtina: implications for metapopulation models.
Conradt, L; Bodsworth, E J; Roper, T J; Thomas, C D
2000-01-01
The dispersal patterns of animals are important in metapopulation ecology because they affect the dynamics and survival of populations. Theoretical models assume random dispersal but little is known in practice about the dispersal behaviour of individual animals or the strategy by which dispersers locate distant habitat patches. In the present study, we released individual meadow brown butterflies (Maniola jurtina) in a non-habitat and investigated their ability to return to a suitable habitat. The results provided three reasons for supposing that meadow brown butterflies do not seek habitat by means of random flight. First, when released within the range of their normal dispersal distances, the butterflies orientated towards suitable habitat at a higher rate than expected at random. Second, when released at larger distances from their habitat, they used a non-random, systematic, search strategy in which they flew in loops around the release point and returned periodically to it. Third, butterflies returned to a familiar habitat patch rather than a non-familiar one when given a choice. If dispersers actively orientate towards or search systematically for distant habitat, this may be problematic for existing metapopulation models, including models of the evolution of dispersal rates in metapopulations. PMID:11007325
Calibration of Discrete Random Walk (DRW) Model via G.I Taylor's Dispersion Theory
NASA Astrophysics Data System (ADS)
Javaherchi, Teymour; Aliseda, Alberto
2012-11-01
Prediction of particle dispersion in turbulent flows is still an important challenge with many applications to environmental, as well as industrial, fluid mechanics. Several models of dispersion have been developed to predict particle trajectories and their relative velocities, in combination with a RANS-based simulation of the background flow. The interaction of the particles with the velocity fluctuations at different turbulent scales represents a significant difficulty in generalizing the models to the wide range of flows where they are used. We focus our attention on the Discrete Random Walk (DRW) model applied to flow in a channel, particularly to the selection of eddies lifetimes as realizations of a Poisson distribution with a mean value proportional to κ / ɛ . We present a general method to determine the constant of this proportionality by matching the DRW model dispersion predictions for fluid element and particle dispersion to G.I Taylor's classical dispersion theory. This model parameter is critical to the magnitude of predicted dispersion. A case study of its influence on sedimentation of suspended particles in a tidal channel with an array of Marine Hydrokinetic (MHK) turbines highlights the dependency of results on this time scale parameter. Support from US DOE through the Northwest National Marine Renewable Energy Center, a UW-OSU partnership.
Between-Site Differences in the Scale of Dispersal and Gene Flow in Red Oak
Moran, Emily V.; Clark, James S.
2012-01-01
Background Nut-bearing trees, including oaks (Quercus spp.), are considered to be highly dispersal limited, leading to concerns about their ability to colonize new sites or migrate in response to climate change. However, estimating seed dispersal is challenging in species that are secondarily dispersed by animals, and differences in disperser abundance or behavior could lead to large spatio-temporal variation in dispersal ability. Parentage and dispersal analyses combining genetic and ecological data provide accurate estimates of current dispersal, while spatial genetic structure (SGS) can shed light on past patterns of dispersal and establishment. Methodology and Principal Findings In this study, we estimate seed and pollen dispersal and parentage for two mixed-species red oak populations using a hierarchical Bayesian approach. We compare these results to those of a genetic ML parentage model. We also test whether observed patterns of SGS in three size cohorts are consistent with known site history and current dispersal patterns. We find that, while pollen dispersal is extensive at both sites, the scale of seed dispersal differs substantially. Parentage results differ between models due to additional data included in Bayesian model and differing genotyping error assumptions, but both indicate between-site dispersal differences. Patterns of SGS in large adults, small adults, and seedlings are consistent with known site history (farmed vs. selectively harvested), and with long-term differences in seed dispersal. This difference is consistent with predator/disperser satiation due to higher acorn production at the low-dispersal site. While this site-to-site variation results in substantial differences in asymptotic spread rates, dispersal for both sites is substantially lower than required to track latitudinal temperature shifts. Conclusions Animal-dispersed trees can exhibit considerable spatial variation in seed dispersal, although patterns may be surprisingly constant over time. However, even under favorable conditions, migration in heavy-seeded species is likely to lag contemporary climate change. PMID:22563504
Delta 2 Explosion Plume Analysis Report
NASA Technical Reports Server (NTRS)
Evans, Randolph J.
2000-01-01
A Delta II rocket exploded seconds after liftoff from Cape Canaveral Air Force Station (CCAFS) on 17 January 1997. The cloud produced by the explosion provided an opportunity to evaluate the models which are used to track potentially toxic dispersing plumes and clouds at CCAFS. The primary goal of this project was to conduct a case study of the dispersing cloud and the models used to predict the dispersion resulting from the explosion. The case study was conducted by comparing mesoscale and dispersion model results with available meteorological and plume observations. This study was funded by KSC under Applied Meteorology Unit (AMU) option hours. The models used in the study are part of the Eastern Range Dispersion Assessment System (ERDAS) and include the Regional Atmospheric Modeling System (RAMS), HYbrid Particle And Concentration Transport (HYPACT), and Rocket Exhaust Effluent Dispersion Model (REEDM). The primary observations used for explosion cloud verification of the study were from the National Weather Service's Weather Surveillance Radar 1988-Doppler (WSR-88D). Radar reflectivity measurements of the resulting cloud provided good estimates of the location and dimensions of the cloud over a four-hour period after the explosion. The results indicated that RAMS and HYPACT models performed reasonably well. Future upgrades to ERDAS are recommended.
Laroche, Fabien; Jarne, Philippe; Perrot, Thomas; Massol, Francois
2016-04-27
Difference in dispersal ability is a key driver of species coexistence in metacommunities. However, the available frameworks for interpreting species diversity patterns in natura often overlook trade-offs and evolutionary constraints associated with dispersal. Here, we build a metacommunity model accounting for dispersal evolution and a competition-dispersal trade-off. Depending on the distribution of carrying capacities among communities, species dispersal values are distributed either around a single strategy (evolutionarily stable strategy, ESS), or around distinct strategies (evolutionary branching, EB). We show that limited dispersal generates spatial aggregation of dispersal traits in ESS and EB scenarios, and that the competition-dispersal trade-off strengthens the pattern in the EB scenario. Importantly, individuals in larger (respectively (resp.) smaller) communities tend to harbour lower (resp. higher) dispersal, especially under the EB scenario. We explore how dispersal evolution affects species diversity patterns by comparing those from our model to the predictions of a neutral metacommunity model. The most marked difference is detected under EB, with distinctive values of both α- and β-diversity (e.g. the dissimilarity in species composition between small and large communities was significantly larger than neutral predictions). We conclude that, from an empirical perspective, jointly assessing community carrying capacity with species dispersal strategies should improve our understanding of diversity patterns in metacommunities. © 2016 The Author(s).
Longitudinal dispersion modeling in small streams
NASA Astrophysics Data System (ADS)
Pekarova, Pavla; Pekar, Jan; Miklanek, Pavol
2014-05-01
The environmental problems caused by the increasing of pollutant loads discharged into natural water bodies are very complex. For that reason the cognition of transport mechanism and mixing characteristics in natural streams is very important. The mathematical and numerical models have become very useful tools for solving the water management problems. The mathematical simulations based on numerical models of pollution mixing in streams can be used (for example) for prediction of spreading of accidental contaminant waves in rivers. The paper deals with the estimation of the longitudinal dispersion coefficients and with the numerical simulation of transport and transformation of accidental pollution in the small natural streams. There are different ways of solving problems of pollution spreading in open channels, in natural rivers. One of them is the hydrodynamic approach, which endeavours to understand and quantify the spreading phenomenon in a stream. The hydrodynamic models are based on advection-diffusion equation and the majority of them are one-dimensional models. Their disadvantage is inability to simulate the spread of pollution until complete dispersion of pollutant across the stream section is finished. Two-dimensional mixing models do not suffer from these limitations. On the other hand, the one-dimensional models are simpler than two-dimensional ones, they need not so much input data and they are often swifter. Three-dimensional models under conditions of natural streams are applicable with difficulties (or inapplicable) for their complexity and demands on accuracy and amount of input data. As there was mentioned above the two-dimensional models can be used also until complete dispersion of pollutant across the stream section is not finished, so we decided to apply the two-dimensional model SIRENIE. Experimental microbasin Rybarik is the part of the experimental Mostenik brook basin of IH SAS Bratislava. It was established as a Field Hydrological Laboratory in 1958. Since 1986 started a chemical program in the basin. The total area of the Rybarik basin is 0.119 km2. The length of the stream from spring to closing profile is 256 m, the mean slope of the stream is 9.1%, and the mean slope of the basin is 14.9%. The elevation is from 369 to 434 m above the sea level. The geological conditions in the Rybarik basin are characterized by flysh substrates (altering layers of clay and sandstones). The basin is from 2/3 cultivated by the state farm, private farmer covers the rest of the area. The forest coverage during the period 1986-2004 was approximately 10%, rest of the land is arable. NaCl (10-30 g) was injected to the Rybárik brook at different water levels and in different seasons. The electric conductivity was measured 100 and 250 m downstream the injection point. The samples were taken for Cl- concentration analyses during the first cases. The Cl and EC waves were identical. Coefficients of the longitudinal dispersion were estimated by trial-error method in the Rybárik brook using model SIRENIE. Coefficients were in range of 0.2 - 0.7 m2.s-1. Acknowledgement: This work was supported by project VEGA 0010/11.
Revisiting the Landau fluid closure.
NASA Astrophysics Data System (ADS)
Hunana, P.; Zank, G. P.; Webb, G. M.; Adhikari, L.
2017-12-01
Advanced fluid models that are much closer to the full kinetic description than the usual magnetohydrodynamic description are a very useful tool for studying astrophysical plasmas and for interpreting solar wind observational data. The development of advanced fluid models that contain certain kinetic effects is complicated and has attracted much attention over the past years. Here we focus on fluid models that incorporate the simplest possible forms of Landau damping, derived from linear kinetic theory expanded about a leading-order (gyrotropic) bi-Maxwellian distribution function f_0, under the approximation that the perturbed distribution function f_1 is gyrotropic as well. Specifically, we focus on various Pade approximants to the usual plasma response function (and to the plasma dispersion function) and examine possibilities that lead to a closure of the linear kinetic hierarchy of fluid moments. We present re-examination of the simplest Landau fluid closures.
Asymmetric Dispersal Can Maintain Larval Polymorphism: A Model Motivated by Streblospio benedicti
Zakas, Christina; Hall, David W.
2012-01-01
Polymorphism in traits affecting dispersal occurs in a diverse variety of taxa. Typically, the maintenance of a dispersal polymorphism is attributed to environmental heterogeneity where parental bet-hedging can be favored. There are, however, examples of dispersal polymorphisms that occur across similar environments. For example, the estuarine polychaete Streblospio benedicti has a highly heritable offspring dimorphism that affects larval dispersal potential. We use analytical models of dispersal to determine the conditions necessary for a stable dispersal polymorphism to exist. We show that in asexual haploids, sexual haploids, and in sexual diploids in the absence of overdominance, asymmetric dispersal is required in order to maintain a dispersal polymorphism when patches do not vary in intrinsic quality. Our study adds an additional factor, dispersal asymmetry, to the short list of mechanisms that can maintain polymorphism in nature. The region of the parameter space in which polymorphism is possible is limited, suggesting why dispersal polymorphisms within species are rare. PMID:22576818
"Dispersion modeling approaches for near road
Roadway design and roadside barriers can have significant effects on the dispersion of traffic-generated pollutants, especially in the near-road environment. Dispersion models that can accurately simulate these effects are needed to fully assess these impacts for a variety of app...
Wave dispersion and propagation in state-based peridynamics
NASA Astrophysics Data System (ADS)
Butt, Sahir N.; Timothy, Jithender J.; Meschke, Günther
2017-11-01
Peridynamics is a nonlocal continuum model which offers benefits over classical continuum models in cases, where discontinuities, such as cracks, are present in the deformation field. However, the nonlocal characteristics of peridynamics leads to a dispersive dynamic response of the medium. In this study we focus on the dispersion properties of a state-based linear peridynamic solid model and specifically investigate the role of the peridynamic horizon. We derive the dispersion relation for one, two and three dimensional cases and investigate the effect of horizon size, mesh size (lattice spacing) and the influence function on the dispersion properties. We show how the influence function can be used to minimize wave dispersion at a fixed lattice spacing and demonstrate it qualitatively by wave propagation analysis in one- and two-dimensional models of elastic solids. As a main contribution of this paper, we propose to associate peridynamic non-locality expressed by the horizon with a characteristic length scale related to the material microstructure. To this end, the dispersion curves obtained from peridynamics are compared with experimental data for two kinds of sandstone.
Sahlean, Tiberiu C; Gherghel, Iulian; Papeş, Monica; Strugariu, Alexandru; Zamfirescu, Ştefan R
2014-01-01
Climate warming is one of the most important threats to biodiversity. Ectothermic organisms such as amphibians and reptiles are especially vulnerable as climatic conditions affect them directly. Ecological niche models (ENMs) are increasingly popular in ecological studies, but several drawbacks exist, including the limited ability to account for the dispersal potential of the species. In this study, we use ENMs to explore the impact of global climate change on the Caspian whip snake (Dolichophis caspius) as model for organisms with low dispersal abilities and to quantify dispersal to novel areas using GIS techniques. Models generated using Maxent 3.3.3 k and GARP for current distribution were projected on future climatic scenarios. A cost-distance analysis was run in ArcGIS 10 using geomorphological features, ecological conditions, and human footprint as "costs" to dispersal of the species to obtain a Maximum Dispersal Range (MDR) estimate. All models developed were statistically significant (P<0.05) and recovered the currently known distribution of D. caspius. Models projected on future climatic conditions using Maxent predicted a doubling of suitable climatic area, while GARP predicted a more conservative expansion. Both models agreed on an expansion of suitable area northwards, with minor decreases at the southern distribution limit. The MDR area calculated using the Maxent model represented a third of the total area of the projected model. The MDR based on GARP models recovered only about 20% of the total area of the projected model. Thus, incorporating measures of species' dispersal abilities greatly reduced estimated area of potential future distributions.
Langevin, Christian D.; Hughes, Joseph D.
2010-01-01
A model with a small amount of numerical dispersion was used to represent saltwater 7 intrusion in a homogeneous aquifer for a 10-year historical calibration period with one 8 groundwater withdrawal location followed by a 10-year prediction period with two groundwater 9 withdrawal locations. Time-varying groundwater concentrations at arbitrary locations in this low-10 dispersion model were then used as observations to calibrate a model with a greater amount of 11 numerical dispersion. The low-dispersion model was solved using a Total Variation Diminishing 12 numerical scheme; an implicit finite difference scheme with upstream weighting was used for 13 the calibration simulations. Calibration focused on estimating a three-dimensional hydraulic 14 conductivity field that was parameterized using a regular grid of pilot points in each layer and a 15 smoothness constraint. Other model parameters (dispersivity, porosity, recharge, etc.) were 16 fixed at the known values. The discrepancy between observed and simulated concentrations 17 (due solely to numerical dispersion) was reduced by adjusting hydraulic conductivity through the 18 calibration process. Within the transition zone, hydraulic conductivity tended to be lower than 19 the true value for the calibration runs tested. The calibration process introduced lower hydraulic 20 conductivity values to compensate for numerical dispersion and improve the match between 21 observed and simulated concentration breakthrough curves at monitoring locations. 22 Concentrations were underpredicted at both groundwater withdrawal locations during the 10-23 year prediction period.
Nitrogen dioxide/oxides of nitrogen (NO2/NOX) ratios are an important surrogate for nitric oxide (NO) NO-to-NO2 chemistry in dispersion models when estimating NOX emissions in a near-road environment. Existing dispersion models use different techniques and assumptions to represe...
Rublee, Parke A; Remington, David L; Schaefer, Eric F; Marshall, Michael M
2005-01-01
Molecular methods, including conventional PCR, real-time PCR, denaturing gradient gel electrophoresis, fluorescent fragment detection PCR, and fluorescent in situ hybridization, have all been developed for use in identifying and studying the distribution of the toxic dinoflagellates Pfiesteria piscicida and P. shumwayae. Application of the methods has demonstrated a worldwide distribution of both species and provided insight into their environmental tolerance range and temporal changes in distribution. Genetic variability among geographic locations generally appears low in rDNA genes, and detection of the organisms in ballast water is consistent with rapid dispersal or high gene flow among populations, but additional sequence data are needed to verify this hypothesis. The rapid development and application of these tools serves as a model for study of other microbial taxa and provides a basis for future development of tools that can simultaneously detect multiple targets.
XIMPOL: a new x-ray polarimetry observation-simulation and analysis framework
NASA Astrophysics Data System (ADS)
Omodei, Nicola; Baldini, Luca; Pesce-Rollins, Melissa; di Lalla, Niccolò
2017-08-01
We present a new simulation framework, XIMPOL, based on the python programming language and the Scipy stack, specifically developed for X-ray polarimetric applications. XIMPOL is not tied to any specific mission or instrument design and is meant to produce fast and yet realistic observation-simulations, given as basic inputs: (i) an arbitrary source model including morphological, temporal, spectral and polarimetric information, and (ii) the response functions of the detector under study, i.e., the effective area, the energy dispersion, the point-spread function and the modulation factor. The format of the response files is OGIP compliant, and the framework has the capability of producing output files that can be directly fed into the standard visualization and analysis tools used by the X-ray community, including XSPEC which make it a useful tool not only for simulating physical systems, but also to develop and test end-to-end analysis chains.
Design and development of a dust dispersion chamber to quantify the dispersibility of rock dust.
Perera, Inoka E; Sapko, Michael J; Harris, Marcia L; Zlochower, Isaac A; Weiss, Eric S
2016-01-01
Dispersible rock dust must be applied to the surfaces of entries in underground coal mines in order to inert the coal dust entrained or made airborne during an explosion and prevent propagating explosions. 30 CFR. 75.2 states that "… [rock dust particles] when wetted and dried will not cohere to form a cake which will not be dispersed into separate particles by a light blast of air …" However, a proper definition or quantification of "light blast of air" is not provided. The National Institute for Occupational Safety and Health (NIOSH) has, consequently, designed a dust dispersion chamber to conduct quantitative laboratory-scale dispersibility experiments as a screening tool for candidate rock dusts. A reproducible pulse of air is injected into the chamber and across a shallow tray of rock dust. The dust dispersed and carried downwind is monitored. The mass loss of the dust tray and the airborne dust measurements determine the relative dispersibility of the dust with respect to a Reference rock dust. This report describes the design and the methodology to evaluate the relative dispersibility of rock dusts with and without anti-caking agents. Further, the results of this study indicate that the dispersibility of rock dusts varies with particle size, type of anti-caking agent used, and with the untapped bulk density. Untreated rock dusts, when wetted and dried forming a cake that was much less dispersible than the reference rock dust used in supporting the 80% total incombustible content rule.
A Fundamental Study of Tool Steels Processed from Rapidly Solidified Powders.
1981-12-01
structures, HIP or HIP and hot-worked high speed tool steels and powder forgings of low and medium alloy steels for load- bearing automotive...M7, M7S, M41, M42, M43S, T15 and M50 . These P/M tool steels exhibit a degree of alloy homogeneity and a fineness/uniformity of carbide dispersion...AD-AIl2 758 DREXEL UNIV PHILADEL.PH IA PA DEPT OF MATERIALS ENGINEERING F/6 11/6 A FUNDAMENTAL STUDY OF TOOL STEELS PROCESSED FROM L DEC 81 A
The behavior of groundwater with dispersion in coastal aquifers
NASA Astrophysics Data System (ADS)
Kakinuma, Tadao; Kishi, Yosuke; Inouchi, Kunimitsu
1988-04-01
A three-dimensional steady-state hydrodynamic dispersion model is used to simulate seawater encroachment in the confined aquifers in the estuaries of the Naka and Kiki Rivers in Japan. Two expressions of the dispersion coefficient are considered; one is constant over the entire region of the aquifer and the other is dependent on the flow velocity of the groundwater. The magnitudes of the constant dispersion coefficients in the horizontal and vertical directions, Dxx and Dzz, as well as the longitudinal and lateral dispersivities, aL and aT, are determined so as to reproduce the regional distributions of salt concentration in the confined aquifers in both estuaries. It is found that Dxx = 5 cm 2s -1, Dzz = 5-0.5 cm 2s -1 and aL = 1000-1250 m, aT = 100-125 m in the estuary of the Naka River; and Dxx = 0.2 cm 2s -1, Dzz = 0.2-0.02 cm 2s -1 and aL = 200 m, aT = 200-20 m in the estuary of the Kiki River. Examining the local distributions of the dispersion coefficient computed from the dispersivity and velocity fields of groundwater in both estuaries, the same value as estimated in the analysis with the constant dispersion coefficient is located in the middle layer of the aquifer. In the estuary of the Naka River, the piezometric surface predicted with the dispersion model with the velocity-dependent dispersion coefficient is almost the same as that predicted with the dispersion model with the constant dispersion coefficient and they are 5 10% lower than that predicted with the interface model (Kakinuma et al., 1984). They are, however, about 1.3 times the observed one.
Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis
Scimeca, Manuel; Bischetti, Simone; Lamsira, Harpreet Kaur; Bonfiglio, Rita; Bonanno, Elena
2018-01-01
The Energy Dispersive X-ray (EDX) microanalysis is a technique of elemental analysis associated to electron microscopy based on the generation of characteristic Xrays that reveals the presence of elements present in the specimens. The EDX microanalysis is used in different biomedical fields by many researchers and clinicians. Nevertheless, most of the scientific community is not fully aware of its possible applications. The spectrum of EDX microanalysis contains both semi-qualitative and semi-quantitative information. EDX technique is made useful in the study of drugs, such as in the study of drugs delivery in which the EDX is an important tool to detect nanoparticles (generally, used to improve the therapeutic performance of some chemotherapeutic agents). EDX is also used in the study of environmental pollution and in the characterization of mineral bioaccumulated in the tissues. In conclusion, the EDX can be considered as a useful tool in all works that require element determination, endogenous or exogenous, in the tissue, cell or any other sample. PMID:29569878
NASA Astrophysics Data System (ADS)
Kitanidis, P. K.
2017-08-01
The process of dispersion in porous media is the effect of combined variability in fluid velocity and concentration at scales smaller than the ones resolved that contributes to spreading and mixing. It is usually introduced in textbooks and taught in classes through the Fick-Scheidegger parameterization, which is introduced as a scientific law of universal validity. This parameterization is based on observations in bench-scale laboratory experiments using homogeneous media. Fickian means that dispersive flux is proportional to the gradient of the resolved concentration while the Scheidegger parameterization is a particular way to compute the dispersion coefficients. The unresolved scales are thus associated with the pore-grain geometry that is ignored when the composite pore-grain medium is replaced by a homogeneous continuum. However, the challenge faced in practice is how to account for dispersion in numerical models that discretize the domain into blocks, often cubic meters in size, that contain multiple geologic facies. Although the Fick-Scheidegger parameterization is by far the one most commonly used, its validity has been questioned. This work presents a method of teaching dispersion that emphasizes the physical basis of dispersion and highlights the conditions under which a Fickian dispersion model is justified. In particular, we show that Fickian dispersion has a solid physical basis provided that an equilibrium condition is met. The issue of the Scheidegger parameterization is more complex but it is shown that the approximation that the dispersion coefficients should scale linearly with the mean velocity is often reasonable, at least as a practical approximation, but may not necessarily be always appropriate. Generally in Hydrogeology, the Scheidegger feature of constant dispersivity is considered as a physical law and inseparable from the Fickian model, but both perceptions are wrong. We also explain why Fickian dispersion fails under certain conditions, such as dispersion inside and directly upstream of a contaminant source. Other issues discussed are the relevance of column tests and confusion regarding the meaning of terms dispersion and Fickian.
Amador Carrascal, Carolina; Chen, Shigao; Urban, Matthew W; Greenleaf, James F
2018-01-01
Ultrasound shear wave elastography is a promising noninvasive, low cost, and clinically viable tool for liver fibrosis staging. Current shear wave imaging technologies on clinical ultrasound scanners ignore shear wave dispersion and use a single group velocity measured over the shear wave bandwidth to estimate tissue elasticity. The center frequency and bandwidth of shear waves induced by acoustic radiation force depend on the ultrasound push beam (push duration, -number, etc.) and the viscoelasticity of the medium, and therefore are different across scanners from different vendors. As a result, scanners from different vendors may give different tissue elasticity measurements within the same patient. Various methods have been proposed to evaluate shear wave dispersion to better estimate tissue viscoelasticity. A rheological model such as the Kelvin-Voigt model is typically fitted to the shear wave dispersion to solve for the elasticity and viscosity of tissue. However, these rheological models impose strong assumptions about frequency dependence of elasticity and viscosity. Here, we propose a new method called Acoustic Radiation Force Induced Creep-Recovery (ARFICR) capable of quantifying rheological model-independent measurements of elasticity and viscosity for more robust tissue health assessment. In ARFICR, the creep-recovery time signal at the focus of the push beam is used to calculate the relative elasticity and viscosity (scaled by an unknown constant) over a wide frequency range. Shear waves generated during the ARFICR measurement are also detected and used to calculate the shear wave velocity at its center frequency, which is then used to calibrate the relative elasticity and viscosity to absolute elasticity and viscosity. In this paper, finite-element method simulations and experiments in tissue mimicking phantoms are used to validate and characterize the extent of viscoelastic quantification of ARFICR. The results suggest that ARFICR can measure tissue viscoelasticity reliably. Moreover, the results showed the strong frequency dependence of viscoelastic parameters in tissue mimicking phantoms and healthy liver.
NASA Astrophysics Data System (ADS)
Carotenuto, Federico; Georgiadis, Teodoro; Gioli, Beniamino; Leyronas, Christel; Morris, Cindy E.; Nardino, Marianna; Wohlfahrt, Georg; Miglietta, Franco
2017-12-01
Microbial aerosols (mainly composed of bacterial and fungal cells) may constitute up to 74 % of the total aerosol volume. These biological aerosols are not only relevant to the dispersion of pathogens, but they also have geochemical implications. Some bacteria and fungi may, in fact, serve as cloud condensation or ice nuclei, potentially affecting cloud formation and precipitation and are active at higher temperatures compared to their inorganic counterparts. Simulations of the impact of microbial aerosols on climate are still hindered by the lack of information regarding their emissions from ground sources. This present work tackles this knowledge gap by (i) applying a rigorous micrometeorological approach to the estimation of microbial net fluxes above a Mediterranean grassland and (ii) developing a deterministic model (the PLAnET model) to estimate these emissions on the basis of a few meteorological parameters that are easy to obtain. The grassland is characterized by an abundance of positive net microbial fluxes and the model proves to be a promising tool capable of capturing the day-to-day variability in microbial fluxes with a relatively small bias and sufficient accuracy. PLAnET is still in its infancy and will benefit from future campaigns extending the available training dataset as well as the inclusion of ever more complex and critical phenomena triggering the emission of microbial aerosol (such as rainfall). The model itself is also adaptable as an emission module for dispersion and chemical transport models, allowing further exploration of the impact of land-cover-driven microbial aerosols on the atmosphere and climate.
Neuscamman, Stephanie J.; Yu, Kristen L.
2016-05-01
The results of the National Atmospheric Release Advisory Center (NARAC) model simulations are compared to measured data from the Full-Scale Radiological Dispersal Device (FSRDD) field trials. The series of explosive radiological dispersal device (RDD) experiments was conducted in 2012 by Defence Research and Development Canada (DRDC) and collaborating organizations. During the trials, a wealth of data was collected, including a variety of deposition and air concentration measurements. The experiments were conducted with one of the stated goals being to provide measurements to atmospheric dispersion modelers. These measurements can be used to facilitate important model validation studies. For this study, meteorologicalmore » observations recorded during the tests are input to the diagnostic meteorological model, ADAPT, which provides 3–D, time-varying mean wind and turbulence fields to the LODI dispersion model. LODI concentration and deposition results are compared to the measured data, and the sensitivity of the model results to changes in input conditions (such as the particle activity size distribution of the source) and model physics (such as the rise of the buoyant cloud of explosive products) is explored. The NARAC simulations predicted the experimentally measured deposition results reasonably well considering the complexity of the release. Lastly, changes to the activity size distribution of the modeled particles can improve the agreement of the model results to measurement.« less
Arnan, Xavier; Molowny-Horas, Roberto; Rodrigo, Anselm; Retana, Javier
2012-01-01
Secondary seed dispersal is an important plant-animal interaction, which is central to understanding plant population and community dynamics. Very little information is still available on the effects of dispersal on plant demography and, particularly, for ant-seed dispersal interactions. As many other interactions, seed dispersal by animals involves costs (seed predation) and benefits (seed dispersal), the balance of which determines the outcome of the interaction. Separate quantification of each of them is essential in order to understand the effects of this interaction. To address this issue, we have successfully separated and analyzed the costs and benefits of seed dispersal by seed-harvesting ants on the plant population dynamics of three shrub species with different traits. To that aim a stochastic, spatially-explicit individually-based simulation model has been implemented based on actual data sets. The results from our simulation model agree with theoretical models of plant response dependent on seed dispersal, for one plant species, and ant-mediated seed predation, for another one. In these cases, model predictions were close to the observed values at field. Nonetheless, these ecological processes did not affect in anyway a third species, for which the model predictions were far from the observed values. This indicates that the balance between costs and benefits associated to secondary seed dispersal is clearly related to specific traits. This study is one of the first works that analyze tradeoffs of secondary seed dispersal on plant population dynamics, by disentangling the effects of related costs and benefits. We suggest analyzing the effects of interactions on population dynamics as opposed to merely analyzing the partners and their interaction strength. PMID:22880125
Life history trade-off moderates model predictions of diversity loss from climate change.
Moor, Helen
2017-01-01
Climate change can trigger species range shifts, local extinctions and changes in diversity. Species interactions and dispersal capacity are important mediators of community responses to climate change. The interaction between multispecies competition and variation in dispersal capacity has recently been shown to exacerbate the effects of climate change on diversity and to increase predictions of extinction risk dramatically. Dispersal capacity, however, is part of a species' overall ecological strategy and are likely to trade off with other aspects of its life history that influence population growth and persistence. In plants, a well-known example is the trade-off between seed mass and seed number. The presence of such a trade-off might buffer the diversity loss predicted by models with random but neutral (i.e. not impacting fitness otherwise) differences in dispersal capacity. Using a trait-based metacommunity model along a warming climatic gradient the effect of three different dispersal scenarios on model predictions of diversity change were compared. Adding random variation in species dispersal capacity caused extinctions by the introduction of strong fitness differences due an inherent property of the dispersal kernel. Simulations including a fitness-equalising trade-off based on empirical relationships between seed mass (here affecting dispersal distance, establishment probability, and seedling biomass) and seed number (fecundity) maintained higher initial species diversity and predicted lower extinction risk and diversity loss during climate change than simulations with variable dispersal capacity. Large seeded species persisted during climate change, but developed lags behind their climate niche that may cause extinction debts. Small seeded species were more extinction-prone during climate change but tracked their niches through dispersal and colonisation, despite competitive resistance from residents. Life history trade-offs involved in coexistence mechanisms may increase community resilience to future climate change and are useful guides for model development.
NASA Astrophysics Data System (ADS)
Lee, Jonghyun; Rolle, Massimo; Kitanidis, Peter K.
2018-05-01
Most recent research on hydrodynamic dispersion in porous media has focused on whole-domain dispersion while other research is largely on laboratory-scale dispersion. This work focuses on the contribution of a single block in a numerical model to dispersion. Variability of fluid velocity and concentration within a block is not resolved and the combined spreading effect is approximated using resolved quantities and macroscopic parameters. This applies whether the formation is modeled as homogeneous or discretized into homogeneous blocks but the emphasis here being on the latter. The process of dispersion is typically described through the Fickian model, i.e., the dispersive flux is proportional to the gradient of the resolved concentration, commonly with the Scheidegger parameterization, which is a particular way to compute the dispersion coefficients utilizing dispersivity coefficients. Although such parameterization is by far the most commonly used in solute transport applications, its validity has been questioned. Here, our goal is to investigate the effects of heterogeneity and mass transfer limitations on block-scale longitudinal dispersion and to evaluate under which conditions the Scheidegger parameterization is valid. We compute the relaxation time or memory of the system; changes in time with periods larger than the relaxation time are gradually leading to a condition of local equilibrium under which dispersion is Fickian. The method we use requires the solution of a steady-state advection-dispersion equation, and thus is computationally efficient, and applicable to any heterogeneous hydraulic conductivity K field without requiring statistical or structural assumptions. The method was validated by comparing with other approaches such as the moment analysis and the first order perturbation method. We investigate the impact of heterogeneity, both in degree and structure, on the longitudinal dispersion coefficient and then discuss the role of local dispersion and mass transfer limitations, i.e., the exchange of mass between the permeable matrix and the low permeability inclusions. We illustrate the physical meaning of the method and we show how the block longitudinal dispersivity approaches, under certain conditions, the Scheidegger limit at large Péclet numbers. Lastly, we discuss the potential and limitations of the method to accurately describe dispersion in solute transport applications in heterogeneous aquifers.
NASA Astrophysics Data System (ADS)
Tulbure, Mirela G.; Kininmonth, Stuart; Broich, Mark
2014-11-01
The concept of habitat networks represents an important tool for landscape conservation and management at regional scales. Previous studies simulated degradation of temporally fixed networks but few quantified the change in network connectivity from disintegration of key features that undergo naturally occurring spatiotemporal dynamics. This is particularly of concern for aquatic systems, which typically show high natural spatiotemporal variability. Here we focused on the Swan Coastal Plain, a bioregion that encompasses a global biodiversity hotspot in Australia with over 1500 water bodies of high biodiversity. Using graph theory, we conducted a temporal analysis of water body connectivity over 13 years of variable climate. We derived large networks of surface water bodies using Landsat data (1999-2011). We generated an ensemble of 278 potential networks at three dispersal distances approximating the maximum dispersal distance of different water dependent organisms. We assessed network connectivity through several network topology metrics and quantified the resilience of the network topology during wet and dry phases. We identified ‘stepping stone’ water bodies across time and compared our networks with theoretical network models with known properties. Results showed a highly dynamic seasonal pattern of variability in network topology metrics. A decline in connectivity over the 13 years was noted with potential negative consequences for species with limited dispersal capacity. The networks described here resemble theoretical scale-free models, also known as ‘rich get richer’ algorithm. The ‘stepping stone’ water bodies are located in the area around the Peel-Harvey Estuary, a Ramsar listed site, and some are located in a national park. Our results describe a powerful approach that can be implemented when assessing the connectivity for a particular organism with known dispersal distance. The approach of identifying the surface water bodies that act as ‘stepping stone’ over time may help prioritize surface water bodies that are essential for maintaining regional scale connectivity.
Pesendorfer, Mario B.; Baker, Christopher M.; Stringer, Martin; McDonald-Madden, Eve; Bode, Michael; McEachern, A. Kathryn; Morrison, Scott A.; Sillett, T. Scott
2018-01-01
Seed dispersal by birds is central to the passive restoration of many tree communities. Reintroduction of extinct seed dispersers can therefore restore degraded forests and woodlands. To test this, we constructed a spatially explicit simulation model, parameterized with field data, to consider the effect of different seed dispersal scenarios on the extent of oak populations. We applied the model to two islands in California's Channel Islands National Park (USA), one of which has lost a key seed disperser.We used an ensemble modelling approach to simulate island scrub oak (Quercus pacifica) demography. The model was developed and trained to recreate known population changes over a 20-year period on 250-km2 Santa Cruz Island, and incorporated acorn dispersal by island scrub-jays (Aphelocoma insularis), deer mice (Peromyscus maniculatus) and gravity, as well as seed predation. We applied the trained model to 215-km2 Santa Rosa Island to examine how reintroducing island scrub-jays would affect the rate and pattern of oak population expansion. Oak habitat on Santa Rosa Island has been greatly reduced from its historical extent due to past grazing by introduced ungulates, the last of which were removed by 2011.Our simulation model predicts that a seed dispersal scenario including island scrub-jays would increase the extent of the island scrub oak population on Santa Rosa Island by 281% over 100 years, and by 544% over 200 years. Scenarios without jays would result in little expansion. Simulated long-distance seed dispersal by jays also facilitates establishment of discontinuous patches of oaks, and increases their elevational distribution.Synthesis and applications. Scenario planning provides powerful decision support for conservation managers. We used ensemble modelling of plant demographic and seed dispersal processes to investigate whether the reintroduction of seed dispersers could provide cost-effective means of achieving broader ecosystem restoration goals on California's second-largest island. The simulation model, extensively parameterized with field data, suggests that re-establishing the mutualism with seed-hoarding jays would accelerate the expansion of island scrub oak, which could benefit myriad species of conservation concern.
Development and testing of meteorology and air dispersion models for Mexico City
NASA Astrophysics Data System (ADS)
Williams, M. D.; Brown, M. J.; Cruz, X.; Sosa, G.; Streit, G.
Los Alamos National Laboratory and Instituto Mexicano del Petróleo are completing a joint study of options for improving air quality in Mexico City. We have modified a three-dimensional, prognostic, higher-order turbulence model for atmospheric circulation (HOTMAC) and a Monte Carlo dispersion and transport model (RAPTAD) to treat domains that include an urbanized area. We used the meteorological model to drive models which describe the photochemistry and air transport and dispersion. The photochemistry modeling is described in a separate paper. We tested the model against routine measurements and those of a major field program. During the field program, measurements included: (1) lidar measurements of aerosol transport and dispersion, (2) aircraft measurements of winds, turbulence, and chemical species aloft, (3) aircraft measurements of skin temperatures, and (4) Tethersonde measurements of winds and ozone. We modified the meteorological model to include provisions for time-varying synoptic-scale winds, adjustments for local wind effects, and detailed surface-coverage descriptions. We developed a new method to define mixing-layer heights based on model outputs. The meteorology and dispersion models were able to provide reasonable representations of the measurements and to define the sources of some of the major uncertainties in the model-measurement comparisons.
Co-processing as a tool to improve aqueous dispersibility of cellulose ethers.
Sharma, Payal; Modi, Sameer R; Bansal, Arvind K
2015-01-01
Cellulose ethers are important materials with numerous applications in pharmaceutical industry. They are widely employed as stabilizers and viscosity enhancers for dispersed systems, binders in granulation process and as film formers for tablets. These polymers, however, exhibit challenge during preparation of their aqueous dispersions. Rapid hydration of their surfaces causes formation of a gel that prevents water from reaching the inner core of the particle. Moreover, the surfaces of these particles become sticky, thus leading to agglomeration, eventually reducing their dispersion kinetics. Numerous procedures have been tested to improve dispersibility of cellulose ethers. These include the use of cross-linking agents, alteration in the synthesis process, adjustment of water content of cellulose ether, modification by attaching hydrophobic substituents and co-processing using various excipients. Among these, co-processing has provided the most encouraging results. This review focuses on the molecular mechanisms responsible for the poor dispersibility of cellulose ethers and the role of co-processing technologies in overcoming the challenge. An attempt has been made to highlight various co-processing techniques and specific role of excipients used for co-processing.
Lam, King-Yeung; Lou, Yuan
2014-02-01
We consider a mathematical model of two competing species for the evolution of conditional dispersal in a spatially varying, but temporally constant environment. Two species are different only in their dispersal strategies, which are a combination of random dispersal and biased movement upward along the resource gradient. In the absence of biased movement or advection, Hastings showed that the mutant can invade when rare if and only if it has smaller random dispersal rate than the resident. When there is a small amount of biased movement or advection, we show that there is a positive random dispersal rate that is both locally evolutionarily stable and convergent stable. Our analysis of the model suggests that a balanced combination of random and biased movement might be a better habitat selection strategy for populations.
A Bayesian method to rank different model forecasts of the same volcanic ash cloud: Chapter 24
Denlinger, Roger P.; Webley, P.; Mastin, Larry G.; Schwaiger, Hans F.
2012-01-01
Volcanic eruptions often spew fine ash high into the atmosphere, where it is carried downwind, forming long ash clouds that disrupt air traffic and pose a hazard to air travel. To mitigate such hazards, the community studying ash hazards must assess risk of ash ingestion for any flight path and provide robust and accurate forecasts of volcanic ash dispersal. We provide a quantitative and objective method to evaluate the efficacy of ash dispersal estimates from different models, using Bayes theorem to assess the predictions that each model makes about ash dispersal. We incorporate model and measurement uncertainty and produce a posterior probability for model input parameters. The integral of the posterior over all possible combinations of model inputs determines the evidence for each model and is used to compare models. We compare two different types of transport models, an Eulerian model (Ash3d) and a Langrangian model (PUFF), as applied to the 2010 eruptions of Eyjafjallajökull volcano in Iceland. The evidence for each model benefits from common physical characteristics of ash dispersal from an eruption column and provides a measure of how well each model forecasts cloud transport. Given the complexity of the wind fields, we find that the differences between these models depend upon the differences in the way the models disperse ash into the wind from the source plume. With continued observation, the accuracy of the estimates made by each model increases, increasing the efficacy of each model’s ability to simulate ash dispersal.
Gu, Bing; Linehan, Brian; Tseng, Yin-Chao
2015-08-01
A central composite design approach was applied to study the effect of polymer concentration, inlet temperature and air flow rate on the spray drying process of the Büchi B-90 nano spray dryer (B-90). Hypromellose acetate succinate-LF was used for the Design of Experiment (DoE) study. Statistically significant models to predict the yield, spray rate, and drying efficiency were generated from the study. The spray drying conditions were optimized according to the models to maximize the yield and efficiency of the process. The models were further validated using a poorly water-soluble investigational compound (BI064) from Boehringer Ingelheim Pharmaceuticals. The polymer/drug ratio ranged from 1/1 to 3/1w/w. The spray dried formulations were amorphous determined by differential scanning calorimetry and X-ray powder diffraction. The particle size of the spray dried formulations was 2-10 μm under polarized light microscopy. All the formulations were physically stable for at least 3h when suspended in an aqueous vehicle composed of 1% methyl cellulose. This study demonstrates that DoE is a useful tool to optimize the spray drying process, and the B-90 can be used to efficiently produce amorphous solid dispersions with a limited quantity of drug substance available during drug discovery stages. Copyright © 2015 Elsevier B.V. All rights reserved.
Dispersal leads to spatial autocorrelation in species distributions: A simulation model
Bahn, V.; Krohn, W.B.; O'Connor, R.J.
2008-01-01
Compared to population growth regulated by local conditions, dispersal has been underappreciated as a central process shaping the spatial distribution of populations. This paper asks: (a) which conditions increase the importance of dispersers relative to local recruits in determining population sizes? and (b) how does dispersal influence the spatial distribution patterns of abundances among connected populations? We approached these questions with a simulation model of populations on a coupled lattice with cells of continuously varying habitat quality expressed as carrying capacities. Each cell contained a population with the basic dynamics of density-regulated growth, and was connected to other populations by immigration and emigration. The degree to which dispersal influenced the distribution of population sizes depended most strongly on the absolute amount of dispersal, and then on the potential population growth rate. Dispersal decaying in intensity with distance left close neighbours more alike in population size than distant populations, leading to an increase in spatial autocorrelation. The spatial distribution of species with low potential growth rates is more dependent on dispersal than that of species with high growth rates; therefore, distribution modelling for species with low growth rates requires particular attention to autocorrelation, and conservation management of these species requires attention to factors curtailing dispersal, such as fragmentation and dispersal barriers. ?? 2007 Elsevier B.V. All rights reserved.
Utilizing traffic simulation tools with MOVES and AERMOD
DOT National Transportation Integrated Search
2011-01-01
Overview: Quantify the emissions and fuel consumption associated with traffic congestion from Commercial Motor Vehicle (CMV) crashes Project Description Traffic Simulation Emissions Analysis Future Use with Dispersion Analysis
Spatial seed and pollen games: dispersal, sex allocation, and the evolution of dioecy.
Fromhage, Lutz; Kokko, Hanna
2010-09-01
The evolutionary forces shaping within- and across-species variation in the investment in male and female sex function are still incompletely understood. Despite earlier suggestions that in plants the evolution or cosexuality vs. dioecy, as well as sex allocation among cosexuals, is affected by seed and pollen dispersal, no formal model has explicitly used dispersal distances to address this problem. Here, we present a game-theory model as well as a simulation study that fills in this gap. Our model predicts that dioecy should evolve if seeds and pollen disperse widely and that sex allocation among cosexuals should be biased towards whichever sex function produces more widely dispersing units. Dispersal limitations stabilize cosexuality by reinforcing competition between spatially clumped dispersal units from the same source, leading to saturating fitness returns that render sexual specialization unprofitable. However, limited pollen dispersal can also increase the risk of selfing, thus potentially selecting for dioecy as an outbreeding mechanism. Finally, we refute a recent claim that cosexuals should always invest equally in both sex functions.
La Licata, Ivana; Langevin, Christian D.; Dausman, Alyssa M.; Alberti, Luca
2011-01-01
Variable-density groundwater models require extensive computational resources, particularly for simulations representing short-term hydrologic variability such as tidal fluctuations. Saltwater-intrusion models usually neglect tidal fluctuations and this may introduce errors in simulated concentrations. The effects of tides on simulated concentrations in a coastal aquifer were assessed. Three analyses are reported: in the first, simulations with and without tides were compared for three different dispersivity values. Tides do not significantly affect the transfer of a hypothetical contaminant into the ocean; however, the concentration difference between tidal and non-tidal simulations could be as much as 15%. In the second analysis, the dispersivity value for the model without tides was increased in a zone near the ocean boundary. By slightly increasing dispersivity in this zone, the maximum concentration difference between the simulations with and without tides was reduced to as low as 7%. In the last analysis, an apparent dispersivity value was calculated for each model cell using the simulated velocity variations from the model with tides. Use of apparent dispersivity values in models with a constant ocean boundary seems to provide a reasonable approach for approximating tidal effects in simulations where explicit representation of tidal fluctuations is not feasible.
La Licata, Ivana; Langevin, Christian D.; Dausman, Alyssa M.; Alberti, Luca
2013-01-01
Variable-density groundwater models require extensive computational resources, particularly for simulations representing short-term hydrologic variability such as tidal fluctuations. Saltwater-intrusion models usually neglect tidal fluctuations and this may introduce errors in simulated concentrations. The effects of tides on simulated concentrations in a coastal aquifer were assessed. Three analyses are reported: in the first, simulations with and without tides were compared for three different dispersivity values. Tides do not significantly affect the transfer of a hypothetical contaminant into the ocean; however, the concentration difference between tidal and non-tidal simulations could be as much as 15%. In the second analysis, the dispersivity value for the model without tides was increased in a zone near the ocean boundary. By slightly increasing dispersivity in this zone, the maximum concentration difference between the simulations with and without tides was reduced to as low as 7%. In the last analysis, an apparent dispersivity value was calculated for each model cell using the simulated velocity variations from the model with tides. Use of apparent dispersivity values in models with a constant ocean boundary seems to provide a reasonable approach for approximating tidal effects in simulations where explicit representation of tidal fluctuations is not feasible.
An improved kinetics approach to describe the physical stability of amorphous solid dispersions.
Yang, Jiao; Grey, Kristin; Doney, John
2010-01-15
The recrystallization of amorphous solid dispersions may lead to a loss in the dissolution rate, and consequently reduce bioavailability. The purpose of this work is to understand factors governing the recrystallization of amorphous drug-polymer solid dispersions, and develop a kinetics model capable of accurately predicting their physical stability. Recrystallization kinetics was measured using differential scanning calorimetry for initially amorphous efavirenz-polyvinylpyrrolidone solid dispersions stored at controlled temperature and relative humidity. The experimental measurements were fitted by a new kinetic model to estimate the recrystallization rate constant and microscopic geometry of crystal growth. The new kinetics model was used to illustrate the governing factors of amorphous solid dispersions stability. Temperature was found to affect efavirenz recrystallization in an Arrhenius manner, while recrystallization rate constant was shown to increase linearly with relative humidity. Polymer content tremendously inhibited the recrystallization process by increasing the crystallization activation energy and decreasing the equilibrium crystallinity. The new kinetic model was validated by the good agreement between model fits and experiment measurements. A small increase in polyvinylpyrrolidone resulted in substantial stability enhancements of efavirenz amorphous solid dispersion. The new established kinetics model provided more accurate predictions than the Avrami equation.
NASA Astrophysics Data System (ADS)
Joung, Young Soo
2018-05-01
We propose a new analytical model of ionic surfactants used for the dispersion of carbon nanotubes (CNTs) in aqueous solutions. Although ionic surfactants are commonly used to facilitate the dispersion of CNTs in aqueous solutions, understanding the dispersion process is challenging and time-consuming owing to its complexity and nonlinearity. In this work, we develop a mean-density model of ionic surfactants to simplify the calculation of interaction forces between CNTs stabilized by ionic surfactants. Using this model, we can evaluate various interaction forces between the CNTs and ionic surfactants under different conditions. The dispersion mechanism is investigated by estimating the potential of mean force (PMF) as a function of van der Waals forces, electrostatic forces, interfacial tension, and osmotic pressure. To verify the proposed model, we compare the PMFs derived using our method with those derived from molecular dynamics simulations using comparable CNTs and ionic surfactants. Notably, for stable dispersions, the osmotic pressure and interfacial energy are important for long-range and short-range interactions, respectively, in comparison with the effect of electrostatic forces. Our model effectively prescribes specific surfactants and their concentrations to achieve stable aqueous suspensions of CNTs.
Metapopulation dynamics and the evolution of dispersal
NASA Astrophysics Data System (ADS)
Parvinen, Kalle
A metapopulation consists of local populations living in habitat patches. In this chapter metapopulation dynamics and the evolution of dispersal is studied in two metapopulation models defined in discrete time. In the first model there are finitely many patches, and in the other one there are infinitely many patches, which allows to incorporate catastrophes into the model. In the first model, cyclic local population dynamics can be either synchronized or not, and increasing dispersal both synchronizes and stabilizes metapopulation dynamics. On the other hand, the type of dynamics has a strong effect on the evolution of dispersal. In case of non-synchronized metapopulation dynamics, dispersal is much more beneficial than in the case of synchronized metapopulation dynamics. Local dynamics has a substantial effect also on the possibility of evolutionary branching in both models. Furthermore, with an Allee effect in the local dynamics of the second model, even evolutionary suicide can occur. It is an evolutionary process in which a viable population adapts in such a way that it can no longer persist.
Estimation by capture-recapture of recruitment and dispersal over several sites
Lebreton, J.D.; Hines, J.E.; Pradel, R.; Nichols, J.D.; Spendelow, J.A.
2003-01-01
Dispersal in animal populations is intimately linked with accession to reproduction, i.e. recruitment, and population regulation. Dispersal processes are thus a key component of population dynamics to the same extent as reproduction or mortality processes. Despite the growing interest in spatial aspects of population dynamics, the methodology for estimating dispersal, in particular in relation with recruitment, is limited. In many animal populations, in particular vertebrates, the impossibility of following individuals over space and time in an exhaustive way leads to the need to frame the estimation of dispersal in the context of capture-recapture methodology. We present here a class of age-dependent multistate capture-recapture models for the simultaneous estimation of natal dispersal, breeding dispersal, and age-dependent recruitment. These models are suitable for populations in which individuals are marked at birth and then recaptured over several sites. Under simple constraints, they can be used in populations where non-breeders are not observed, as is often the case with colonial waterbirds monitored on their breeding grounds. Biological questions can be addressed by comparing models differing in structure, according to the generalized linear model philosophy broadly used in capture-recapture methodology. We illustrate the potential of this approach by an analysis of recruitment and dispersal in the roseate tern Sterna dougallii.
Are Plant Species Able to Keep Pace with the Rapidly Changing Climate?
Cunze, Sarah; Heydel, Felix; Tackenberg, Oliver
2013-01-01
Future climate change is predicted to advance faster than the postglacial warming. Migration may therefore become a key driver for future development of biodiversity and ecosystem functioning. For 140 European plant species we computed past range shifts since the last glacial maximum and future range shifts for a variety of Intergovernmental Panel on Climate Change (IPCC) scenarios and global circulation models (GCMs). Range shift rates were estimated by means of species distribution modelling (SDM). With process-based seed dispersal models we estimated species-specific migration rates for 27 dispersal modes addressing dispersal by wind (anemochory) for different wind conditions, as well as dispersal by mammals (dispersal on animal's coat – epizoochory and dispersal by animals after feeding and digestion – endozoochory) considering different animal species. Our process-based modelled migration rates generally exceeded the postglacial range shift rates indicating that the process-based models we used are capable of predicting migration rates that are in accordance with realized past migration. For most of the considered species, the modelled migration rates were considerably lower than the expected future climate change induced range shift rates. This implies that most plant species will not entirely be able to follow future climate-change-induced range shifts due to dispersal limitation. Animals with large day- and home-ranges are highly important for achieving high migration rates for many plant species, whereas anemochory is relevant for only few species. PMID:23894290
NASA Technical Reports Server (NTRS)
Rabelo, Lisa; Sepulveda, Jose; Moraga, Reinaldo; Compton, Jeppie; Turner, Robert
2005-01-01
This article describes a decision-making system composed of a number of safety and environmental models for the launch phase of a NASA Space Shuttle mission. The components of this distributed simulation environment represent the different systems that must collaborate to establish the Expectation of Casualties (E(sub c)) caused by a failed Space Shuttle launch and subsequent explosion (accidental or instructed) of the spacecraft shortly after liftoff. This decision-making tool employs Space Shuttle reliability models, trajectory models, a blast model, weather dissemination systems, population models, amount and type of toxicants, gas dispersion models, human response functions to toxicants, and a geographical information system. Since one of the important features of this proposed simulation environment is to measure blast, toxic, and debris effects, the clear benefits is that it can help safety managers not only estimate the population at risk, but also to help plan evacuations, make sheltering decisions, establish the resources required to provide aid and comfort, and mitigate damages in case of a disaster.
NASA Astrophysics Data System (ADS)
Webley, P. W.; Dehn, J.; Mastin, L. G.; Steensen, T. S.
2011-12-01
Volcanic ash plumes and the dispersing clouds into the atmosphere are a hazard for local populations as well as for the aviation industry. Volcanic ash transport and dispersion (VATD) models, used to forecast the movement of these hazardous ash emissions, require eruption source parameters (ESP) such as plume height, eruption rate and duration. To estimate mass eruption rate, empirical relationships with observed plume height have been applied. Theoretical relationships defined by Morton et al. (1956) and Wilson et al. (1976) use default values for the environmental lapse rate (ELR), thermal efficiency, density of ash, specific heat capacity, initial temperature of the erupted material and final temperature of the material. Each volcano, based on its magma type, has a different density, specific heat capacity and initial eruptive temperature compared to these default parameters, and local atmospheric conditions can produce a very different ELR. Our research shows that a relationship between plume height and mass eruption rate can be defined for each eruptive event for each volcano. Additionally, using the one-dimensional modeling program, Plumeria, our analysis assesses the importance of factors such as vent diameter and eruption velocity on the relationship between the eruption rate and measured plume height. Coupling such a tool with a VATD model should improve pre-eruptive forecasts of ash emissions downwind and lead to improvements in ESP data that VATD models use for operational volcanic ash cloud forecasting.
Physical stability of API/polymer-blend amorphous solid dispersions.
Lehmkemper, Kristin; Kyeremateng, Samuel O; Bartels, Mareike; Degenhardt, Matthias; Sadowski, Gabriele
2018-03-01
The preparation of amorphous solid dispersions (ASDs) is a well-established strategy for formulating active pharmaceutical ingredients by embedding them in excipients, usually amorphous polymers. Different polymers can be combined for designing ASDs with desired properties like an optimized dissolution behavior. One important criterion for the development of ASD compositions is the physical stability. In this work, the physical stability of API/polymer-blend ASDs was investigated by thermodynamic modeling and stability studies. Amorphous naproxen (NAP) and acetaminophen (APAP) were embedded in blends of hydroxypropyl methylcellulose acetate succinate (HPMCAS) and either poly(vinylpyrrolidone) (PVP) or poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA64). Parameters for modeling the API solubility in the blends and the glass-transition temperature curves of the water-free systems with Perturbed-Chain Statistical Associating Fluid Theory and Kwei equation, respectively, were correlated to experimental data. The phase behavior for standardized storage conditions (0%, 60% and 75% relative humidity (RH)) was predicted and compared to six months-long stability studies. According to modeling and experimental results, the physical stability was reduced with increasing HPMCAS content and increasing RH. This trend was observed for all investigated systems, with both APIs (NAP and APAP) and both polymer blends (PVP/HPMCAS and PVPVA64/HPMCAS). PC-SAFT and the Kwei equation turned out to be suitable tools for modeling and predicting the physical stability of the investigated API/polymer-blends ASDs. Copyright © 2017 Elsevier B.V. All rights reserved.
NOAA Atmospheric Sciences Modeling Division support to the US Environmental Protection Agency
NASA Astrophysics Data System (ADS)
Poole-Kober, Evelyn M.; Viebrock, Herbert J.
1991-07-01
During FY-1990, the Atmospheric Sciences Modeling Division provided meteorological research and operational support to the U.S. Environmental Protection Agency. Basic meteorological operational support consisted of applying dispersion models and conducting dispersion studies and model evaluations. The primary research effort was the development and evaluation of air quality simulation models using numerical and physical techniques supported by field studies. Modeling emphasis was on the dispersion of photochemical oxidants and particulate matter on urban and regional scales, dispersion in complex terrain, and the transport, transformation, and deposition of acidic materials. Highlights included expansion of the Regional Acid Deposition Model/Engineering Model family to consist of the Tagged Species Engineering Model, the Non-Depleting Model, and the Sulfate Tracking Model; completion of the Acid-MODES field study; completion of the RADM2.1 evaluation; completion of the atmospheric processes section of the National Acid Precipitation Assessment Program 1990 Integrated Assessment; conduct of the first field study to examine the transport and entrainment processes of convective clouds; development of a Regional Oxidant Model-Urban Airshed Model interface program; conduct of an international sodar intercomparison experiment; incorporation of building wake dispersion in numerical models; conduct of wind-tunnel simulations of stack-tip downwash; and initiation of the publication of SCRAM NEWS.
Microcomputer pollution model for civilian airports and Air Force bases. Model description
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segal, H.M.; Hamilton, P.L.
1988-08-01
This is one of three reports describing the Emissions and Dispersion Modeling System (EDMS). EDMS is a complex source emissions/dispersion model for use at civilian airports and Air Force bases. It operates in both a refined and a screening mode and is programmed for an IBM-XT (or compatible) computer. This report--MODEL DESCRIPTION--provides the technical description of the model. It first identifies the key design features of both the emissions (EMISSMOD) and dispersion (GIMM) portions of EDMS. It then describes the type of meteorological information the dispersion model can accept and identifies the manner in which it preprocesses National Climatic Centermore » (NCC) data prior to a refined-model run. The report presents the results of running EDMS on a number of different microcomputers and compares EDMS results with those of comparable models. The appendices elaborate on the information noted above and list the source code.« less
Purves, Murray; Parkes, David
2016-05-01
Three atmospheric dispersion models--DIFFAL, HPAC, and HotSpot--of differing complexities have been validated against the witness plate deposition dataset taken during the Full-Scale Radiological Dispersal Device (FSRDD) Field Trials. The small-scale nature of these trials in comparison to many other historical radiological dispersion trials provides a unique opportunity to evaluate the near-field performance of the models considered. This paper performs validation of these models using two graphical methods of comparison: deposition contour plots and hotline profile graphs. All of the models tested are assessed to perform well, especially considering that previous model developments and validations have been focused on larger-scale scenarios. Of the models, HPAC generally produced the most accurate results, especially at locations within ∼100 m of GZ. Features present within the observed data, such as hot spots, were not well modeled by any of the codes considered. Additionally, it was found that an increase in the complexity of the meteorological data input to the models did not necessarily lead to an improvement in model accuracy; this is potentially due to the small-scale nature of the trials.
NASA Astrophysics Data System (ADS)
Gillham, R. W.; Sudicky, E. A.; Cherry, J. A.; Frind, E. O.
1984-03-01
In layered permeable deposits with flow predominately parallel to the bedding, advection causes rapid solute transport in the more permeable layers. As the solute advances more rapidly in these layers, solute mass is continually transferred to the less permeable layers as a result of molecular diffusion due to the concentration gradient between the layers. The interlayer solute transfer causes the concentration to decline along the permeable layers at the expense of increasing the concentration in the less permeable layers, which produces strongly dispersed concentration profiles in the direction of flow. The key parameters affecting the dispersive capability of the layered system are the diffusion coefficients for the less permeable layers, the thicknesses of the layers, and the hydraulic conductivity contrasts between the layers. Because interlayer solute transfer by transverse molecular diffusion is a time-dependent process, the advection-diffusion concept predicts a rate of longitudinal spreading during the development of the dispersion process that is inconsistent with the classical Fickian dispersion model. A second consequence of the solute-storage effect offered by transverse diffusion into low-permeability layers is a rate of migration of the frontal portion of a contaminant in the permeable layers that is less than the groundwater velocity. Although various lines of evidence are presented in support of the advection-diffusion concept, more work is required to determine the range of geological materials for which it is applicable and to develop mathematical expressions that will make it useful as a predictive tool for application to field cases of contaminant migration.
Dickau, Ruth; Ranere, Anthony J; Cooke, Richard G
2007-02-27
The Central American isthmus was a major dispersal route for plant taxa originally brought under cultivation in the domestication centers of southern Mexico and northern South America. Recently developed methodologies in the archaeological and biological sciences are providing increasing amounts of data regarding the timing and nature of these dispersals and the associated transition to food production in various regions. One of these methodologies, starch grain analysis, recovers identifiable microfossils of economic plants directly off the stone tools used to process them. We report on new starch grain evidence from Panama demonstrating the early spread of three important New World cultigens: maize (Zea mays), manioc (Manihot esculenta), and arrowroot (Maranta arundinacea). Maize starch recovered from stone tools at a site located in the Pacific lowlands of central Panama confirms previous archaeobotanical evidence for the use of maize there by 7800-7000 cal BP. Starch evidence from preceramic sites in the less seasonal, humid premontane forests of Chiriquí province, western Panama, shows that maize and root crops were present by 7400-5600 cal BP, several millennia earlier than previously documented. Several local starchy resources, including Zamia and Dioscorea spp., were also used. The data from both regions suggest that crop dispersals took place via diffusion or exchange of plant germplasm rather than movement of human populations practicing agriculture.
Dickau, Ruth; Ranere, Anthony J.; Cooke, Richard G.
2007-01-01
The Central American isthmus was a major dispersal route for plant taxa originally brought under cultivation in the domestication centers of southern Mexico and northern South America. Recently developed methodologies in the archaeological and biological sciences are providing increasing amounts of data regarding the timing and nature of these dispersals and the associated transition to food production in various regions. One of these methodologies, starch grain analysis, recovers identifiable microfossils of economic plants directly off the stone tools used to process them. We report on new starch grain evidence from Panama demonstrating the early spread of three important New World cultigens: maize (Zea mays), manioc (Manihot esculenta), and arrowroot (Maranta arundinacea). Maize starch recovered from stone tools at a site located in the Pacific lowlands of central Panama confirms previous archaeobotanical evidence for the use of maize there by 7800–7000 cal BP. Starch evidence from preceramic sites in the less seasonal, humid premontane forests of Chiriquí province, western Panama, shows that maize and root crops were present by 7400–5600 cal BP, several millennia earlier than previously documented. Several local starchy resources, including Zamia and Dioscorea spp., were also used. The data from both regions suggest that crop dispersals took place via diffusion or exchange of plant germplasm rather than movement of human populations practicing agriculture. PMID:17360697
RLINE: Re-formulation of Plume Spread for Near-Surface Dispersion
Recent concerns about effects of automobile emissions on the health of people living close to roads have motivated an examination of models to estimate dispersion in the surface boundary layer. During the development of a new line source dispersion model, RLINE (Snyder et al., 20...
High-order dispersion effects in two-photon interference
NASA Astrophysics Data System (ADS)
Mazzotta, Zeudi; Cialdi, Simone; Cipriani, Daniele; Olivares, Stefano; Paris, Matteo G. A.
2016-12-01
Two-photon interference and Hong-Ou-Mandel (HOM) effect are relevant tools for quantum metrology and quantum information processing. In optical coherence tomography, the HOM effect is exploited to achieve high-resolution measurements with the width of the HOM dip being the main parameter. On the other hand, applications like dense coding require high-visibility performance. Here we address high-order dispersion effects in two-photon interference and study, theoretically and experimentally, the dependence of the visibility and the width of the HOM dip on both the pump spectrum and the downconverted photon spectrum. In particular, a spatial light modulator is exploited to experimentally introduce and manipulate a custom phase function to simulate the high-order dispersion effects. Overall, we show that it is possible to effectively introduce high-order dispersion effects on the propagation of photons and also to compensate for such effect. Our results clarify the role of the different dispersion phenomena and pave the way for optimization procedures in quantum technological applications involving PDC photons and optical fibers.
Google-Earth Based Visualizations for Environmental Flows and Pollutant Dispersion in Urban Areas
Liu, Daoming; Kenjeres, Sasa
2017-01-01
In the present study, we address the development and application of an efficient tool for conversion of results obtained by an integrated computational fluid dynamics (CFD) and computational reaction dynamics (CRD) approach and their visualization in the Google Earth. We focus on results typical for environmental fluid mechanics studies at a city scale that include characteristic wind flow patterns and dispersion of reactive scalars. This is achieved by developing a code based on the Java language, which converts the typical four-dimensional structure (spatial and temporal dependency) of data results in the Keyhole Markup Language (KML) format. The visualization techniques most often used are revisited and implemented into the conversion tool. The potential of the tool is demonstrated in a case study of smog formation due to an intense traffic emission in Rotterdam (The Netherlands). It is shown that the Google Earth can provide a computationally efficient and user-friendly means of data representation. This feature can be very useful for visualization of pollution at street levels, which is of great importance for the city residents. Various meteorological and traffic emissions can be easily visualized and analyzed, providing a powerful, user-friendly tool for traffic regulations and urban climate adaptations. PMID:28257078
Electrokinetic dispersion in microfluidic separation systems
NASA Astrophysics Data System (ADS)
Molho, Joshua Irving
Numerous efforts have focused on engineering miniaturized chemical analysis devices that are faster, more portable and consume smaller volumes of expensive reagents than their macroscale counterparts. Many of these analysis devices employ electrokinetic effects to transport picoliter volumes of liquids and to separate chemical species from an initially mixed sample volume. In these microfluidic separation systems, dispersion must be minimized to obtain the highest resolution separation possible. This work focuses on modeling, simulation and experimental measurement of two electrokinetic dispersion mechanisms that can reduce the effectiveness of microfluidic separation systems: dispersion resulting from non-uniform wall zeta-potential, and dispersion caused by microchannel turns. When the surface of a microchannel has non-uniform zeta-potential (e.g., if the surface charge varies along the length of the microchannel), an applied electric field creates both electroosmotic and pressure-driven flow. A caged-fluorescence imaging technique was used to visualize the dispersion caused by this electrokinetically induced pressure-driven flow. A simple model for a single channel with an axially varying surface charge is presented and compared to experimental measurements. Microchannel turns have been shown to create dispersion of electrokinetically transported analyte bands. Using a method of moments analysis, a model is developed that quantifies this dispersion and identifies the conditions under which turn dispersion limits the resolution of a microfluidic separation system. Measurements using the caged-fluorescence visualization technique were used to verify this model. New turn geometries are presented and were optimized using both a reduced parameter technique as well as a more generalized, numerical shape optimization approach. These improved turn designs were manufactured using two fabrication techniques and then tested experimentally. The turn optimization approaches and resulting turn geometries described here are shown to reduce turn dispersion to less than 1% of the dispersion caused by unoptimized, constant-width turns.
Theoretical model for plasmonic photothermal response of gold nanostructures solutions
NASA Astrophysics Data System (ADS)
Phan, Anh D.; Nga, Do T.; Viet, Nguyen A.
2018-03-01
Photothermal effects of gold core-shell nanoparticles and nanorods dispersed in water are theoretically investigated using the transient bioheat equation and the extended Mie theory. Properly calculating the absorption cross section is an extremely crucial milestone to determine the elevation of solution temperature. The nanostructures are assumed to be randomly and uniformly distributed in the solution. Compared to previous experiments, our theoretical temperature increase during laser light illumination provides, in various systems, both reasonable qualitative and quantitative agreement. This approach can be a highly reliable tool to predict photothermal effects in experimentally unexplored structures. We also validate our approach and discuss itslimitations.
Garner, Bryan R.; Smith, Jane Ellen; Meyers, Robert J.; Godley, Mark D.
2010-01-01
Multiple evidence-based treatments for adolescents with substance use disorders are available; however, the diffusion of these treatments in practice remains minimal. A dissemination and implementation model incorporating research-based training components for simultaneous implementation across 33 dispersed sites and over 200 clinical staff is described. Key elements for the diffusion of the Adolescent Community Reinforcement Approach and Assertive Continuing Care were: (a) three years of funding to support local implementation; (b) comprehensive training, including a 3.5 day workshop, bi-weekly coaching calls, and ongoing performance feedback facilitated by a web tool; (c) a clinician certification process; (d) a supervisor certification process to promote long-term sustainability; and (e) random fidelity reviews after certification. Process data are summarized for 167 clinicians and 64 supervisors. PMID:21547241
Quantitative analysis of protein-ligand interactions by NMR.
Furukawa, Ayako; Konuma, Tsuyoshi; Yanaka, Saeko; Sugase, Kenji
2016-08-01
Protein-ligand interactions have been commonly studied through static structures of the protein-ligand complex. Recently, however, there has been increasing interest in investigating the dynamics of protein-ligand interactions both for fundamental understanding of the underlying mechanisms and for drug development. NMR is a versatile and powerful tool, especially because it provides site-specific quantitative information. NMR has widely been used to determine the dissociation constant (KD), in particular, for relatively weak interactions. The simplest NMR method is a chemical-shift titration experiment, in which the chemical-shift changes of a protein in response to ligand titration are measured. There are other quantitative NMR methods, but they mostly apply only to interactions in the fast-exchange regime. These methods derive the dissociation constant from population-averaged NMR quantities of the free and bound states of a protein or ligand. In contrast, the recent advent of new relaxation-based experiments, including R2 relaxation dispersion and ZZ-exchange, has enabled us to obtain kinetic information on protein-ligand interactions in the intermediate- and slow-exchange regimes. Based on R2 dispersion or ZZ-exchange, methods that can determine the association rate, kon, dissociation rate, koff, and KD have been developed. In these approaches, R2 dispersion or ZZ-exchange curves are measured for multiple samples with different protein and/or ligand concentration ratios, and the relaxation data are fitted to theoretical kinetic models. It is critical to choose an appropriate kinetic model, such as the two- or three-state exchange model, to derive the correct kinetic information. The R2 dispersion and ZZ-exchange methods are suitable for the analysis of protein-ligand interactions with a micromolar or sub-micromolar dissociation constant but not for very weak interactions, which are typical in very fast exchange. This contrasts with the NMR methods that are used to analyze population-averaged NMR quantities. Essentially, to apply NMR successfully, both the type of experiment and equation to fit the data must be carefully and specifically chosen for the protein-ligand interaction under analysis. In this review, we first explain the exchange regimes and kinetic models of protein-ligand interactions, and then describe the NMR methods that quantitatively analyze these specific interactions. Copyright © 2016 Elsevier B.V. All rights reserved.
James A. Powell; Barbara J. Bentz
2014-01-01
For species with irruptive population behavior, dispersal is an important component of outbreak dynamics. We developed and parameterized a mechanistic model describing mountain pine beetle (Dendroctonus ponderosae Hopkins) population demographics and dispersal across a landscape. Model components include temperature-dependent phenology, host tree colonization...
Cheong, Chang Heon; Lee, Seonhye
2018-01-01
The prevention of airborne infections in emergency departments is a very important issue. This study investigated the effects of architectural features on airborne pathogen dispersion in emergency departments by using a CFD (computational fluid dynamics) simulation tool. The study included three architectural features as the major variables: increased ventilation rate, inlet and outlet diffuser positions, and partitions between beds. The most effective method for preventing pathogen dispersion and reducing the pathogen concentration was found to be increasing the ventilation rate. Installing partitions between the beds and changing the ventilation system’s inlet and outlet diffuser positions contributed only minimally to reducing the concentration of airborne pathogens. PMID:29534043
Cheong, Chang Heon; Lee, Seonhye
2018-03-13
The prevention of airborne infections in emergency departments is a very important issue. This study investigated the effects of architectural features on airborne pathogen dispersion in emergency departments by using a CFD (computational fluid dynamics) simulation tool. The study included three architectural features as the major variables: increased ventilation rate, inlet and outlet diffuser positions, and partitions between beds. The most effective method for preventing pathogen dispersion and reducing the pathogen concentration was found to be increasing the ventilation rate. Installing partitions between the beds and changing the ventilation system's inlet and outlet diffuser positions contributed only minimally to reducing the concentration of airborne pathogens.
Gene expression models for prediction of longitudinal dispersion coefficient in streams
NASA Astrophysics Data System (ADS)
Sattar, Ahmed M. A.; Gharabaghi, Bahram
2015-05-01
Longitudinal dispersion is the key hydrologic process that governs transport of pollutants in natural streams. It is critical for spill action centers to be able to predict the pollutant travel time and break-through curves accurately following accidental spills in urban streams. This study presents a novel gene expression model for longitudinal dispersion developed using 150 published data sets of geometric and hydraulic parameters in natural streams in the United States, Canada, Europe, and New Zealand. The training and testing of the model were accomplished using randomly-selected 67% (100 data sets) and 33% (50 data sets) of the data sets, respectively. Gene expression programming (GEP) is used to develop empirical relations between the longitudinal dispersion coefficient and various control variables, including the Froude number which reflects the effect of reach slope, aspect ratio, and the bed material roughness on the dispersion coefficient. Two GEP models have been developed, and the prediction uncertainties of the developed GEP models are quantified and compared with those of existing models, showing improved prediction accuracy in favor of GEP models. Finally, a parametric analysis is performed for further verification of the developed GEP models. The main reason for the higher accuracy of the GEP models compared to the existing regression models is that exponents of the key variables (aspect ratio and bed material roughness) are not constants but a function of the Froude number. The proposed relations are both simple and accurate and can be effectively used to predict the longitudinal dispersion coefficients in natural streams.
Modeling the dispersion effects of contractile fibers in smooth muscles
NASA Astrophysics Data System (ADS)
Murtada, Sae-Il; Kroon, Martin; Holzapfel, Gerhard A.
2010-12-01
Micro-structurally based models for smooth muscle contraction are crucial for a better understanding of pathological conditions such as atherosclerosis, incontinence and asthma. It is meaningful that models consider the underlying mechanical structure and the biochemical activation. Hence, a simple mechanochemical model is proposed that includes the dispersion of the orientation of smooth muscle myofilaments and that is capable to capture available experimental data on smooth muscle contraction. This allows a refined study of the effects of myofilament dispersion on the smooth muscle contraction. A classical biochemical model is used to describe the cross-bridge interactions with the thin filament in smooth muscles in which calcium-dependent myosin phosphorylation is the only regulatory mechanism. A novel mechanical model considers the dispersion of the contractile fiber orientations in smooth muscle cells by means of a strain-energy function in terms of one dispersion parameter. All model parameters have a biophysical meaning and may be estimated through comparisons with experimental data. The contraction of the middle layer of a carotid artery is studied numerically. Using a tube the relationships between the internal pressure and the stretches are investigated as functions of the dispersion parameter, which implies a strong influence of the orientation of smooth muscle myofilaments on the contraction response. It is straightforward to implement this model in a finite element code to better analyze more complex boundary-value problems.
OCD: The offshore and coastal dispersion model. Volume 1. User's guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
DiCristofaro, D.C.; Hanna, S.R.
1989-11-01
The Offshore and Coastal Dispersion (OCD) Model has been developed to simulate the effect of offshore emissions from point, area, or line sources on the air quality of coastal regions. The OCD model was adapted from the EPA guideline model MPTER (EPA, 1980). Modifications were made to incorporate overwater plume transport and dispersion as well as changes that occur as the plume crosses the shoreline. This is a revised OCD model, the fourth version to date. The volume is the User's Guide which includes a Model overview, technical description, user's instructions, and notes on model evaluation and results.
User's Guide for Monthly Vector Wind Profile Model
NASA Technical Reports Server (NTRS)
Adelfang, S. I.
1999-01-01
The background, theoretical concepts, and methodology for construction of vector wind profiles based on a statistical model are presented. The derived monthly vector wind profiles are to be applied by the launch vehicle design community for establishing realistic estimates of critical vehicle design parameter dispersions related to wind profile dispersions. During initial studies a number of months are used to establish the model profiles that produce the largest monthly dispersions of ascent vehicle aerodynamic load indicators. The largest monthly dispersions for wind, which occur during the winter high-wind months, are used for establishing the design reference dispersions for the aerodynamic load indicators. This document includes a description of the computational process for the vector wind model including specification of input data, parameter settings, and output data formats. Sample output data listings are provided to aid the user in the verification of test output.
Aguilée, Robin; Raoul, Gaël; Rousset, François; Ronce, Ophélie
2016-01-01
Species may survive climate change by migrating to track favorable climates and/or adapting to different climates. Several quantitative genetics models predict that species escaping extinction will change their geographical distribution while keeping the same ecological niche. We introduce pollen dispersal in these models, which affects gene flow but not directly colonization. We show that plant populations may escape extinction because of both spatial range and ecological niche shifts. Exact analytical formulas predict that increasing pollen dispersal distance slows the expected spatial range shift and accelerates the ecological niche shift. There is an optimal distance of pollen dispersal, which maximizes the sustainable rate of climate change. These conclusions hold in simulations relaxing several strong assumptions of our analytical model. Our results imply that, for plants with long distance of pollen dispersal, models assuming niche conservatism may not accurately predict their future distribution under climate change. PMID:27621443
Aguilée, Robin; Raoul, Gaël; Rousset, François; Ronce, Ophélie
2016-09-27
Species may survive climate change by migrating to track favorable climates and/or adapting to different climates. Several quantitative genetics models predict that species escaping extinction will change their geographical distribution while keeping the same ecological niche. We introduce pollen dispersal in these models, which affects gene flow but not directly colonization. We show that plant populations may escape extinction because of both spatial range and ecological niche shifts. Exact analytical formulas predict that increasing pollen dispersal distance slows the expected spatial range shift and accelerates the ecological niche shift. There is an optimal distance of pollen dispersal, which maximizes the sustainable rate of climate change. These conclusions hold in simulations relaxing several strong assumptions of our analytical model. Our results imply that, for plants with long distance of pollen dispersal, models assuming niche conservatism may not accurately predict their future distribution under climate change.
NASA Astrophysics Data System (ADS)
Luís, Ruben S.; Cartaxo, Adolfo V. T.
2005-03-01
This paper proposes the definition of a cross-phase modulation (XPM)-induced power penalty for intensity modulation/direct detection (IM-DD) systems as a function of the normalized variance of the XPM-induced IM. This allows the definition of 1-dB power penalty reference values. New expressions of the equivalent linear model transfer functions for the XPM-induced IM and phase modulation (PM) that include the influence of self-phase modulation (SPM) as well as group-velocity dispersion are derived. The new expressions allow a significant extension for higher powers and dispersion parameters of expressions derived in previous papers for single-segment and multisegment fiber systems with dispersion compensation. Good agreement between analytical results and numerical simulations is obtained. Consistency with work performed numerically and experimentally by other authors is shown, validating the proposed model. Using the proposed model, the influence of residual dispersion and SPM on the limitations imposed by XPM on the performance of dispersion-compensated systems is assessed. It is shown that inline residual dispersion may lead to performance improvement for a properly tuned total residual dispersion. The influence of SPM is shown to degrade the system performance when nonzero-dispersion-shifted fiber is used. However, systems using standard single-mode fiber may benefit from the presence of SPM.
Row, Jeffrey R.; Knick, Steven T.; Oyler-McCance, Sara J.; Lougheed, Stephen C.; Fedy, Bradley C.
2017-01-01
Dispersal can impact population dynamics and geographic variation, and thus, genetic approaches that can establish which landscape factors influence population connectivity have ecological and evolutionary importance. Mixed models that account for the error structure of pairwise datasets are increasingly used to compare models relating genetic differentiation to pairwise measures of landscape resistance. A model selection framework based on information criteria metrics or explained variance may help disentangle the ecological and landscape factors influencing genetic structure, yet there are currently no consensus for the best protocols. Here, we develop landscape-directed simulations and test a series of replicates that emulate independent empirical datasets of two species with different life history characteristics (greater sage-grouse; eastern foxsnake). We determined that in our simulated scenarios, AIC and BIC were the best model selection indices and that marginal R2 values were biased toward more complex models. The model coefficients for landscape variables generally reflected the underlying dispersal model with confidence intervals that did not overlap with zero across the entire model set. When we controlled for geographic distance, variables not in the underlying dispersal models (i.e., nontrue) typically overlapped zero. Our study helps establish methods for using linear mixed models to identify the features underlying patterns of dispersal across a variety of landscapes.
NASA Astrophysics Data System (ADS)
Fallah-Shorshani, Masoud; Shekarrizfard, Maryam; Hatzopoulou, Marianne
2017-10-01
Dispersion of road transport emissions in urban metropolitan areas is typically simulated using Gaussian models that ignore the turbulence and drag induced by buildings, which are especially relevant for areas with dense downtown cores. To consider the effect of buildings, street canyon models are used but often at the level of single urban corridors and small road networks. In this paper, we compare and validate two dispersion models with widely varying algorithms, across a modelling domain consisting of the City of Montreal, Canada accounting for emissions of more 40,000 roads. The first dispersion model is based on flow decomposition into the urban canopy sub-flow as well as overlying airflow. It takes into account the specific height and geometry of buildings along each road. The second model is a Gaussian puff dispersion model, which handles complex terrain and incorporates three-dimensional meteorology, but accounts for buildings only through variations in the initial vertical mixing coefficient. Validation against surface observations indicated that both models under-predicted measured concentrations. Average weekly exposure surfaces derived from both models were found to be reasonably correlated (r = 0.8) although the Gaussian dispersion model tended to underestimate concentrations around the roadways compared to the street canyon model. In addition, both models were used to estimate exposures of a representative sample of the Montreal population composed of 1319 individuals. Large differences were noted whereby exposures derived from the Gaussian puff model were significantly lower than exposures derived from the street canyon model, an expected result considering the concentration of population around roadways. These differences have large implications for the analyses of health effects associated with NO2 exposure.
NASA Astrophysics Data System (ADS)
Abril, J. M.; Abdel-Aal, M. M.; Al-Gamal, S. A.; Abdel-Hay, F. A.; Zahar, H. M.
2000-04-01
In this paper we take advantage of the two field tracing experiments carried out under the IAEA project EGY/07/002, to develop a modelling study on the dispersion of radioactive pollution in the Suez Canal. The experiments were accomplished by using rhodamine B as a tracer, and water samples were measured by luminescence spectrometry. The presence of natural luminescent particles in the canal waters limited the use of some field data. During experiments, water levels, velocities, wind and other physical parameters were recorded to supply appropriate information for the modelling work. From this data set, the hydrodynamics of the studied area has been reasonably described. We apply a 1-D-Gaussian and 2-D modelling approaches to predict the position and the spatial shape of the plume. The use of different formulations for dispersion coefficients is studied. These dispersion coefficients are then applied in a 2-D-hydrodynamic and dispersion model for the Bitter Lake to investigate different scenarios of accidental discharges.
Tensile failure criteria for fiber composite materials
NASA Technical Reports Server (NTRS)
Rosen, B. W.; Zweben, C. H.
1972-01-01
The analysis provides insight into the failure mechanics of these materials and defines criteria which serve as tools for preliminary design material selection and for material reliability assessment. The model incorporates both dispersed and propagation type failures and includes the influence of material heterogeneity. The important effects of localized matrix damage and post-failure matrix shear stress transfer are included in the treatment. The model is used to evaluate the influence of key parameters on the failure of several commonly used fiber-matrix systems. Analyses of three possible failure modes were developed. These modes are the fiber break propagation mode, the cumulative group fracture mode, and the weakest link mode. Application of the new model to composite material systems has indicated several results which require attention in the development of reliable structural composites. Prominent among these are the size effect and the influence of fiber strength variability.
Lee, Kevin M; Wilson, Preston S; Wochner, Mark S
2017-12-01
The ultimate goal of this work is to accurately predict the attenuation through a collection of large (on the order of 10-cm-radius) tethered encapsulated bubbles used in underwater noise abatement systems. Measurements of underwater sound attenuation were performed during a set of lake experiments, where a low-frequency compact electromechanical sound source was surrounded by different arrays of encapsulated bubbles with various individual bubbles sizes and void fractions. The measurements were compared with an existing predictive model [Church, J. Acoust. Soc. Am. 97, 1510-1521 (1995)] of the dispersion relation for linear propagation in liquid containing encapsulated bubbles. Although the model was originally intended to describe ultrasound contrast agents, it is evaluated here for large bubbles, and hence low frequencies, as a design tool for future underwater noise abatement systems, and there is good quantitative agreement between the observations and the model.
Initial sediment transport model of the mining-affected Aries River Basin, Romania
Friedel, Michael J.; Linard, Joshua I.
2008-01-01
The Romanian government is interested in understanding the effects of existing and future mining activities on long-term dispersal, storage, and remobilization of sediment-associated metals. An initial Soil and Water Assessment Tool (SWAT) model was prepared using available data to evaluate hypothetical failure of the Valea Sesei tailings dam at the Rosia Poieni mine in the Aries River basin. Using the available data, the initial Aries River Basin SWAT model could not be manually calibrated to accurately reproduce monthly streamflow values observed at the Turda gage station. The poor simulation of the monthly streamflow is attributed to spatially limited soil and precipitation data, limited constraint information due to spatially and temporally limited streamflow measurements, and in ability to obtain optimal parameter values when using a manual calibration process. Suggestions to improve the Aries River basin sediment transport model include accounting for heterogeneity in model input, a two-tier nonlinear calibration strategy, and analysis of uncertainty in predictions.
Multiparametric dynamic contrast-enhanced ultrasound imaging of prostate cancer.
Wildeboer, Rogier R; Postema, Arnoud W; Demi, Libertario; Kuenen, Maarten P J; Wijkstra, Hessel; Mischi, Massimo
2017-08-01
The aim of this study is to improve the accuracy of dynamic contrast-enhanced ultrasound (DCE-US) for prostate cancer (PCa) localization by means of a multiparametric approach. Thirteen different parameters related to either perfusion or dispersion were extracted pixel-by-pixel from 45 DCE-US recordings in 19 patients referred for radical prostatectomy. Multiparametric maps were retrospectively produced using a Gaussian mixture model algorithm. These were subsequently evaluated on their pixel-wise performance in classifying 43 benign and 42 malignant histopathologically confirmed regions of interest, using a prostate-based leave-one-out procedure. The combination of the spatiotemporal correlation (r), mean transit time (μ), curve skewness (κ), and peak time (PT) yielded an accuracy of 81% ± 11%, which was higher than the best performing single parameters: r (73%), μ (72%), and wash-in time (72%). The negative predictive value increased to 83% ± 16% from 70%, 69% and 67%, respectively. Pixel inclusion based on the confidence level boosted these measures to 90% with half of the pixels excluded, but without disregarding any prostate or region. Our results suggest multiparametric DCE-US analysis might be a useful diagnostic tool for PCa, possibly supporting future targeting of biopsies or therapy. Application in other types of cancer can also be foreseen. • DCE-US can be used to extract both perfusion and dispersion-related parameters. • Multiparametric DCE-US performs better in detecting PCa than single-parametric DCE-US. • Multiparametric DCE-US might become a useful tool for PCa localization.
Coevolution of patch-type dependent emigration and patch-type dependent immigration.
Weigang, Helene C
2017-08-07
The three phases of dispersal - emigration, transfer and immigration - are affecting each other and the former and latter decisions may depend on patch types. Despite the inevitable fact of the complexity of the dispersal process, patch-type dependencies of dispersal decisions modelled as emigration and immigration are usually missing in theoretical dispersal models. Here, I investigate the coevolution of patch-type dependent emigration and patch-type dependent immigration in an extended Hamilton-May model. The dispersing population inhabits a landscape structured into many patches of two types and disperses during a continuous-time season. The trait under consideration is a four dimensional vector consisting of two values for emigration probability from the patches and two values for immigration probability into the patches of each type. Using the adaptive dynamics approach I show that four qualitatively different dispersal strategies may evolve in different parameter regions, including a counterintuitive strategy, where patches of one type are fully dispersed from (emigration probability is one) but individuals nevertheless always immigrate into them during the dispersal season (immigration probability is one). I present examples of evolutionary branching in a wide parameter range, when the patches with high local death rate during the dispersal season guarantee a high expected disperser output. I find that two dispersal strategies can coexist after evolutionary branching: a strategy with full immigration only into the patches with high expected disperser output coexists with a strategy that immigrates into any patch. Stochastic simulations agree with the numerical predictions. Since evolutionary branching is also found when immigration evolves alone, the present study is adding coevolutionary constraints on the emigration traits and hence finds that the coevolution of a higher dimensional trait sometimes hinders evolutionary diversification. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lee, Jonghyun; Rolle, Massimo; Kitanidis, Peter K
2017-09-15
Most recent research on hydrodynamic dispersion in porous media has focused on whole-domain dispersion while other research is largely on laboratory-scale dispersion. This work focuses on the contribution of a single block in a numerical model to dispersion. Variability of fluid velocity and concentration within a block is not resolved and the combined spreading effect is approximated using resolved quantities and macroscopic parameters. This applies whether the formation is modeled as homogeneous or discretized into homogeneous blocks but the emphasis here being on the latter. The process of dispersion is typically described through the Fickian model, i.e., the dispersive flux is proportional to the gradient of the resolved concentration, commonly with the Scheidegger parameterization, which is a particular way to compute the dispersion coefficients utilizing dispersivity coefficients. Although such parameterization is by far the most commonly used in solute transport applications, its validity has been questioned. Here, our goal is to investigate the effects of heterogeneity and mass transfer limitations on block-scale longitudinal dispersion and to evaluate under which conditions the Scheidegger parameterization is valid. We compute the relaxation time or memory of the system; changes in time with periods larger than the relaxation time are gradually leading to a condition of local equilibrium under which dispersion is Fickian. The method we use requires the solution of a steady-state advection-dispersion equation, and thus is computationally efficient, and applicable to any heterogeneous hydraulic conductivity K field without requiring statistical or structural assumptions. The method was validated by comparing with other approaches such as the moment analysis and the first order perturbation method. We investigate the impact of heterogeneity, both in degree and structure, on the longitudinal dispersion coefficient and then discuss the role of local dispersion and mass transfer limitations, i.e., the exchange of mass between the permeable matrix and the low permeability inclusions. We illustrate the physical meaning of the method and we show how the block longitudinal dispersivity approaches, under certain conditions, the Scheidegger limit at large Péclet numbers. Lastly, we discuss the potential and limitations of the method to accurately describe dispersion in solute transport applications in heterogeneous aquifers. Copyright © 2017. Published by Elsevier B.V.
Simulation of atmospheric dispersion of radionuclides using an Eulerian-Lagrangian modelling system.
Basit, Abdul; Espinosa, Francisco; Avila, Ruben; Raza, S; Irfan, N
2008-12-01
In this paper we present an atmospheric dispersion scenario for a proposed nuclear power plant in Pakistan involving the hypothetical accidental release of radionuclides. For this, a concept involving a Lagrangian stochastic particle model (LSPM) coupled with an Eulerian regional atmospheric modelling system (RAMS) is used. The atmospheric turbulent dispersion of radionuclides (represented by non-buoyant particles/neutral traces) in the LSPM is modelled by applying non-homogeneous turbulence conditions. The mean wind velocities governed by the topography of the region and the surface fluxes of momentum and heat are calculated by the RAMS code. A moving least squares (MLS) technique is introduced to calculate the concentration of radionuclides at ground level. The numerically calculated vertical profiles of wind velocity and temperature are compared with observed data. The results obtained demonstrate that in regions of complex terrain it is not sufficient to model the atmospheric dispersion of particles using a straight-line Gaussian plume model, and that by utilising a Lagrangian stochastic particle model and regional atmospheric modelling system a much more realistic estimation of the dispersion in such a hypothetical scenario was ascertained. The particle dispersion results for a 12 h ground release show that a triangular area of about 400 km(2) situated in the north-west quadrant of release is under radiological threat. The particle distribution shows that the use of a Gaussian plume model (GPM) in such situations will yield quite misleading results.
Habitat drives dispersal and survival of translocated juvenile desert tortoises
Nafus, Melia G.; Esque, Todd C.; Averill-Murray, Roy C.; Nussear, Kenneth E.; Swaisgood, Ronald R.
2017-01-01
5.Synthesis and applications. Resource managers using translocations as a conservation tool should prioritize acquiring data linking habitat to fitness. In particular, for species that depend on avoiding detection, refuges such as burrows and habitat that improved concealment had notable ability to improve survival and dispersal. Our study on juvenile Mojave desert tortoises showed that refuge availability or the distributions of habitat appropriate for concealment are important considerations for identifying translocation sites for species highly dependent on crypsis, camouflage, or other forms of habitat matching.
Cho, Kyung Hwa; Lee, Seungwon; Ham, Young Sik; Hwang, Jin Hwan; Cha, Sung Min; Park, Yongeun; Kim, Joon Ha
2009-01-01
The present study proposes a methodology for determining the effective dispersion coefficient based on the field measurements performed in Gwangju (GJ) Creek in South Korea which is environmentally degraded by the artificial interferences such as weirs and culverts. Many previous works determining the dispersion coefficient were limited in application due to the complexity and artificial interferences in natural stream. Therefore, the sequential combination of N-Tank-In-Series (NTIS) model and Advection-Dispersion-Reaction (ADR) model was proposed for evaluating dispersion process in complex stream channel in this study. The series of water quality data were intensively monitored in the field to determine the effective dispersion coefficient of E. coli in rainy day. As a result, the suggested methodology reasonably estimates the dispersion coefficient for GJ Creek with 1.25 m(2)/s. Also, the sequential combined method provided Number of tank-Velocity-Dispersion coefficient (NVD) curves for convenient evaluation of dispersion coefficient of other rivers or streams. Comparing the previous studies, the present methodology is quite general and simple for determining the effective dispersion coefficients which are applicable for other rivers and streams.
Corticosterone and Dispersal in Western Screech-Owls (Otus kennicottii)
James R. Belthoff; Alfred M., Jr. Dufty
1997-01-01
Belthoff and Dufty (in press) posed a model for dispersal in screech-owls and similar nonmigratory birds. The model is based on interactions among hormonal changes, body condition, and locomotor activity patterns. It predicts that corticosterone increases in blood plasma prior to dispersal under endogenous and exogenous influences, and this increase mediates the...
Why Trees Migrate So Fast: Confronting Theory with Dispersal Biology and the Paleorecord
James S. Clark
1998-01-01
Reid's paradox describes the fact that classical models cannot account for the rapid (102-103 yr-1) spread of trees at the end of the Pleistocene. I use field estimates of seed dispersal with an integrodifference equation and simulation models of population growth to show that dispersal data are...
The devil is in the dispersers: Predictions of landscape connectivity change with demography
Nicholas B. Elliot; Samuel A. Cushman; David W. Macdonald; Andrew J. Loveridge
2014-01-01
Concern about the effects of habitat fragmentation has led to increasing interest in dispersal and connectivity modelling. Most modern techniques for connectivity modelling have resistance surfaces as their foundation. However, resistance surfaces for animal movement are frequently estimated without considering dispersal, despite being the principal natural mechanism...
A model for long-distance dispersal of boll weevils (Coleoptera: Curculionidae)
NASA Astrophysics Data System (ADS)
Westbrook, John K.; Eyster, Ritchie S.; Allen, Charles T.
2011-07-01
The boll weevil, Anthonomus grandis (Boheman), has been a major insect pest of cotton production in the US, accounting for yield losses and control costs on the order of several billion US dollars since the introduction of the pest in 1892. Boll weevil eradication programs have eliminated reproducing populations in nearly 94%, and progressed toward eradication within the remaining 6%, of cotton production areas. However, the ability of weevils to disperse and reinfest eradicated zones threatens to undermine the previous investment toward eradication of this pest. In this study, the HYSPLIT atmospheric dispersion model was used to simulate daily wind-aided dispersal of weevils from the Lower Rio Grande Valley (LRGV) of southern Texas and northeastern Mexico. Simulated weevil dispersal was compared with weekly capture of weevils in pheromone traps along highway trap lines between the LRGV and the South Texas / Winter Garden zone of the Texas Boll Weevil Eradication Program. A logistic regression model was fit to the probability of capturing at least one weevil in individual pheromone traps relative to specific values of simulated weevil dispersal, which resulted in 60.4% concordance, 21.3% discordance, and 18.3% ties in estimating captures and non-captures. During the first full year of active eradication with widespread insecticide applications in 2006, the dispersal model accurately estimated 71.8%, erroneously estimated 12.5%, and tied 15.7% of capture and non-capture events. Model simulations provide a temporal risk assessment over large areas of weevil reinfestation resulting from dispersal by prevailing winds. Eradication program managers can use the model risk assessment information to effectively schedule and target enhanced trapping, crop scouting, and insecticide applications.
A model for long-distance dispersal of boll weevils (Coleoptera: Curculionidae).
Westbrook, John K; Eyster, Ritchie S; Allen, Charles T
2011-07-01
The boll weevil, Anthonomus grandis (Boheman), has been a major insect pest of cotton production in the US, accounting for yield losses and control costs on the order of several billion US dollars since the introduction of the pest in 1892. Boll weevil eradication programs have eliminated reproducing populations in nearly 94%, and progressed toward eradication within the remaining 6%, of cotton production areas. However, the ability of weevils to disperse and reinfest eradicated zones threatens to undermine the previous investment toward eradication of this pest. In this study, the HYSPLIT atmospheric dispersion model was used to simulate daily wind-aided dispersal of weevils from the Lower Rio Grande Valley (LRGV) of southern Texas and northeastern Mexico. Simulated weevil dispersal was compared with weekly capture of weevils in pheromone traps along highway trap lines between the LRGV and the South Texas/Winter Garden zone of the Texas Boll Weevil Eradication Program. A logistic regression model was fit to the probability of capturing at least one weevil in individual pheromone traps relative to specific values of simulated weevil dispersal, which resulted in 60.4% concordance, 21.3% discordance, and 18.3% ties in estimating captures and non-captures. During the first full year of active eradication with widespread insecticide applications in 2006, the dispersal model accurately estimated 71.8%, erroneously estimated 12.5%, and tied 15.7% of capture and non-capture events. Model simulations provide a temporal risk assessment over large areas of weevil reinfestation resulting from dispersal by prevailing winds. Eradication program managers can use the model risk assessment information to effectively schedule and target enhanced trapping, crop scouting, and insecticide applications.
On the Limitations of Breakthrough Curve Analysis in Fixed-Bed Adsorption
NASA Technical Reports Server (NTRS)
Knox, James C.; Ebner, Armin D.; LeVan, M. Douglas; Coker, Robert F.; Ritter, James A.
2016-01-01
This work examined in detail the a priori prediction of the axial dispersion coefficient from available correlations versus obtaining it and also mass transfer information from experimental breakthrough data and the consequences that may arise when doing so based on using a 1-D axially dispersed plug flow model and its associated Danckwerts outlet boundary condition. These consequences mainly included determining the potential for erroneous extraction of the axial dispersion coefficient and/or the LDF mass transfer coefficient from experimental data, especially when non-plug flow conditions prevailed in the bed. Two adsorbent/adsorbate cases were considered, i.e., carbon dioxide and water vapor in zeolite 5A, because they both experimentally exhibited significant non-plug flow behavior, and the water-zeolite 5A system exhibited unusual concentration front sharpening that destroyed the expected constant pattern behavior (CPB) when modeled with the 1-D axially dispersed plug flow model. Overall, this work showed that it was possible to extract accurate mass transfer and dispersion information from experimental breakthrough curves using a 1-D axial dispersed plug flow model when they were measured both inside and outside the bed. To ensure the extracted information was accurate, the inside the bed breakthrough curves and their derivatives from the model were plotted to confirm whether or not the adsorbate/adsorbent system was exhibiting CPB or any concentration front sharpening near the bed exit. Even when concentration front sharpening was occurring with the water-zeolite 5A system, it was still possible to use the experimental inside and outside the bed breakthrough curves to extract fundamental mass transfer and dispersion information from the 1-D axial dispersed plug flow model based on the systematic methodology developed in this work.
Eliminating time dispersion from seismic wave modeling
NASA Astrophysics Data System (ADS)
Koene, Erik F. M.; Robertsson, Johan O. A.; Broggini, Filippo; Andersson, Fredrik
2018-04-01
We derive an expression for the error introduced by the second-order accurate temporal finite-difference (FD) operator, as present in the FD, pseudospectral and spectral element methods for seismic wave modeling applied to time-invariant media. The `time-dispersion' error speeds up the signal as a function of frequency and time step only. Time dispersion is thus independent of the propagation path, medium or spatial modeling error. We derive two transforms to either add or remove time dispersion from synthetic seismograms after a simulation. The transforms are compared to previous related work and demonstrated on wave modeling in acoustic as well as elastic media. In addition, an application to imaging is shown. The transforms enable accurate computation of synthetic seismograms at reduced cost, benefitting modeling applications in both exploration and global seismology.
Strategies and trajectories of coral reef fish larvae optimizing self-recruitment.
Irisson, Jean-Olivier; LeVan, Anselme; De Lara, Michel; Planes, Serge
2004-03-21
Like many marine organisms, most coral reef fishes have a dispersive larval phase. The fate of this phase is of great concern for their ecology as it may determine population demography and connectivity. As direct study of the larval phase is difficult, we tackle the question of dispersion from an opposite point of view and study self-recruitment. In this paper, we propose a mathematical model of the pelagic phase, parameterized by a limited number of factors (currents, predator and prey distributions, energy budgets) and which focuses on the behavioral response of the larvae to these factors. We evaluate optimal behavioral strategies of the larvae (i.e. strategies that maximize the probability of return to the natal reef) and examine the trajectories of dispersal that they induce. Mathematically, larval behavior is described by a controlled Markov process. A strategy induces a sequence, indexed by time steps, of "decisions" (e.g. looking for food, swimming in a given direction). Biological, physical and topographic constraints are captured through the transition probabilities and the sets of possible decisions. Optimal strategies are found by means of the so-called stochastic dynamic programming equation. A computer program is developed and optimal decisions and trajectories are numerically derived. We conclude that this technique can be considered as a good tool to represent plausible larval behaviors and that it has great potential in terms of theoretical investigations and also for field applications.
Roy, Debananda; Singh, Gurdeep; Yadav, Pankaj
2016-10-01
Source apportionment study of PM 10 (Particulate Matter) in a critically polluted area of Jharia coalfield, India has been carried out using Dispersion model, Principle Component Analysis (PCA) and Chemical Mass Balance (CMB) techniques. Dispersion model Atmospheric Dispersion Model (AERMOD) was introduced to simplify the complexity of sources in Jharia coalfield. PCA and CMB analysis indicates that monitoring stations near the mining area were mainly affected by the emission from open coal mining and its associated activities such as coal transportation, loading and unloading of coal. Mine fire emission also contributed a considerable amount of particulate matters in monitoring stations. Locations in the city area were mostly affected by vehicular, Liquid Petroleum Gas (LPG) & Diesel Generator (DG) set emissions, residential, and commercial activities. The experimental data sampling and their analysis could aid understanding how dispersion based model technique along with receptor model based concept can be strategically used for quantitative analysis of Natural and Anthropogenic sources of PM 10 . Copyright © 2016. Published by Elsevier B.V.
Criteria for Yielding of Dispersion-Strengthened Alloys
NASA Technical Reports Server (NTRS)
Ansell, G. S.; Lenel, F. V.
1960-01-01
A dislocation model is presented in order to account for the yield behavior of alloys with a finely dispersed second-phase. The criteria for yielding used in the model, is that appreciable yielding occurs in these alloys when the shear stress due to piled-up groups of dislocations is sufficient to fracture or plastically deform the dispersed second-phase particles, relieving the back stress on the dislocation sources. Equations derived on the basis of this model, predict that the yield stress of the alloys varies as the reciprocal square root of the mean free path between dispersed particles. Experimental data is presented for several SAP-Type alloys, precipitation-hardened alloys and steels which are in good agreement with the yield strength variation as a function of dispersion spacing predicted by this theoretical treatment.
Evaluation of the ERP dispersion model using Darlington tracer-study data. Report No. 90-200-K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, S.C.
1990-01-01
In this study, site-boundary atmospheric dilution factors calculated by the atmospheric dispersion model used in the ERP (Emergency Response Planning) computer code were compared to data collected during the Darlington tracer study. The purpose of this comparison was to obtain estimates of model uncertainty under a variety of conditions. This report provides background on ERP, the ERP dispersion model and the Darlington tracer study. Model evaluation techniques are discussed briefly, and the results of the comparison of model calculations with the field data are presented and reviewed.
Lord, Dominique; Park, Peter Young-Jin
2008-07-01
Traditionally, transportation safety analysts have used the empirical Bayes (EB) method to improve the estimate of the long-term mean of individual sites; to correct for the regression-to-the-mean (RTM) bias in before-after studies; and to identify hotspots or high risk locations. The EB method combines two different sources of information: (1) the expected number of crashes estimated via crash prediction models, and (2) the observed number of crashes at individual sites. Crash prediction models have traditionally been estimated using a negative binomial (NB) (or Poisson-gamma) modeling framework due to the over-dispersion commonly found in crash data. A weight factor is used to assign the relative influence of each source of information on the EB estimate. This factor is estimated using the mean and variance functions of the NB model. With recent trends that illustrated the dispersion parameter to be dependent upon the covariates of NB models, especially for traffic flow-only models, as well as varying as a function of different time-periods, there is a need to determine how these models may affect EB estimates. The objectives of this study are to examine how commonly used functional forms as well as fixed and time-varying dispersion parameters affect the EB estimates. To accomplish the study objectives, several traffic flow-only crash prediction models were estimated using a sample of rural three-legged intersections located in California. Two types of aggregated and time-specific models were produced: (1) the traditional NB model with a fixed dispersion parameter and (2) the generalized NB model (GNB) with a time-varying dispersion parameter, which is also dependent upon the covariates of the model. Several statistical methods were used to compare the fitting performance of the various functional forms. The results of the study show that the selection of the functional form of NB models has an important effect on EB estimates both in terms of estimated values, weight factors, and dispersion parameters. Time-specific models with a varying dispersion parameter provide better statistical performance in terms of goodness-of-fit (GOF) than aggregated multi-year models. Furthermore, the identification of hazardous sites, using the EB method, can be significantly affected when a GNB model with a time-varying dispersion parameter is used. Thus, erroneously selecting a functional form may lead to select the wrong sites for treatment. The study concludes that transportation safety analysts should not automatically use an existing functional form for modeling motor vehicle crashes without conducting rigorous analyses to estimate the most appropriate functional form linking crashes with traffic flow.
Life history trade-off moderates model predictions of diversity loss from climate change
2017-01-01
Climate change can trigger species range shifts, local extinctions and changes in diversity. Species interactions and dispersal capacity are important mediators of community responses to climate change. The interaction between multispecies competition and variation in dispersal capacity has recently been shown to exacerbate the effects of climate change on diversity and to increase predictions of extinction risk dramatically. Dispersal capacity, however, is part of a species’ overall ecological strategy and are likely to trade off with other aspects of its life history that influence population growth and persistence. In plants, a well-known example is the trade-off between seed mass and seed number. The presence of such a trade-off might buffer the diversity loss predicted by models with random but neutral (i.e. not impacting fitness otherwise) differences in dispersal capacity. Using a trait-based metacommunity model along a warming climatic gradient the effect of three different dispersal scenarios on model predictions of diversity change were compared. Adding random variation in species dispersal capacity caused extinctions by the introduction of strong fitness differences due an inherent property of the dispersal kernel. Simulations including a fitness-equalising trade-off based on empirical relationships between seed mass (here affecting dispersal distance, establishment probability, and seedling biomass) and seed number (fecundity) maintained higher initial species diversity and predicted lower extinction risk and diversity loss during climate change than simulations with variable dispersal capacity. Large seeded species persisted during climate change, but developed lags behind their climate niche that may cause extinction debts. Small seeded species were more extinction-prone during climate change but tracked their niches through dispersal and colonisation, despite competitive resistance from residents. Life history trade-offs involved in coexistence mechanisms may increase community resilience to future climate change and are useful guides for model development. PMID:28520770
Uribe-Rivera, David E; Soto-Azat, Claudio; Valenzuela-Sánchez, Andrés; Bizama, Gustavo; Simonetti, Javier A; Pliscoff, Patricio
2017-07-01
Climate change is a major threat to biodiversity; the development of models that reliably predict its effects on species distributions is a priority for conservation biogeography. Two of the main issues for accurate temporal predictions from Species Distribution Models (SDM) are model extrapolation and unrealistic dispersal scenarios. We assessed the consequences of these issues on the accuracy of climate-driven SDM predictions for the dispersal-limited Darwin's frog Rhinoderma darwinii in South America. We calibrated models using historical data (1950-1975) and projected them across 40 yr to predict distribution under current climatic conditions, assessing predictive accuracy through the area under the ROC curve (AUC) and True Skill Statistics (TSS), contrasting binary model predictions against temporal-independent validation data set (i.e., current presences/absences). To assess the effects of incorporating dispersal processes we compared the predictive accuracy of dispersal constrained models with no dispersal limited SDMs; and to assess the effects of model extrapolation on the predictive accuracy of SDMs, we compared this between extrapolated and no extrapolated areas. The incorporation of dispersal processes enhanced predictive accuracy, mainly due to a decrease in the false presence rate of model predictions, which is consistent with discrimination of suitable but inaccessible habitat. This also had consequences on range size changes over time, which is the most used proxy for extinction risk from climate change. The area of current climatic conditions that was absent in the baseline conditions (i.e., extrapolated areas) represents 39% of the study area, leading to a significant decrease in predictive accuracy of model predictions for those areas. Our results highlight (1) incorporating dispersal processes can improve predictive accuracy of temporal transference of SDMs and reduce uncertainties of extinction risk assessments from global change; (2) as geographical areas subjected to novel climates are expected to arise, they must be reported as they show less accurate predictions under future climate scenarios. Consequently, environmental extrapolation and dispersal processes should be explicitly incorporated to report and reduce uncertainties in temporal predictions of SDMs, respectively. Doing so, we expect to improve the reliability of the information we provide for conservation decision makers under future climate change scenarios. © 2017 by the Ecological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yuanhang; Beran, Gregory J. O., E-mail: gregory.beran@ucr.edu
2015-07-28
Three-body and higher intermolecular interactions can play an important role in molecular condensed phases. Recent benchmark calculations found problematic behavior for many widely used density functional approximations in treating 3-body intermolecular interactions. Here, we demonstrate that the combination of second-order Møller-Plesset (MP2) perturbation theory plus short-range damped Axilrod-Teller-Muto (ATM) dispersion accurately describes 3-body interactions with reasonable computational cost. The empirical damping function used in the ATM dispersion term compensates both for the absence of higher-order dispersion contributions beyond the triple-dipole ATM term and non-additive short-range exchange terms which arise in third-order perturbation theory and beyond. Empirical damping enables this simplemore » model to out-perform a non-expanded coupled Kohn-Sham dispersion correction for 3-body intermolecular dispersion. The MP2 plus ATM dispersion model approaches the accuracy of O(N{sup 6}) methods like MP2.5 or even spin-component-scaled coupled cluster models for 3-body intermolecular interactions with only O(N{sup 5}) computational cost.« less
Species extinction thresholds in the face of spatially correlated periodic disturbance.
Liao, Jinbao; Ying, Zhixia; Hiebeler, David E; Wang, Yeqiao; Takada, Takenori; Nijs, Ivan
2015-10-20
The spatial correlation of disturbance is gaining attention in landscape ecology, but knowledge is still lacking on how species traits determine extinction thresholds under spatially correlated disturbance regimes. Here we develop a pair approximation model to explore species extinction risk in a lattice-structured landscape subject to aggregated periodic disturbance. Increasing disturbance extent and frequency accelerated population extinction irrespective of whether dispersal was local or global. Spatial correlation of disturbance likewise increased species extinction risk, but only for local dispersers. This indicates that models based on randomly simulated disturbances (e.g., mean-field or non-spatial models) may underestimate real extinction rates. Compared to local dispersal, species with global dispersal tolerated more severe disturbance, suggesting that the spatial correlation of disturbance favors long-range dispersal from an evolutionary perspective. Following disturbance, intraspecific competition greatly enhanced the extinction risk of distance-limited dispersers, while it surprisingly did not influence the extinction thresholds of global dispersers, apart from decreasing population density to some degree. As species respond differently to disturbance regimes with different spatiotemporal properties, different regimes may accommodate different species.
Analytical solutions for efficient interpretation of single-well push-pull tracer tests
NASA Astrophysics Data System (ADS)
Huang, Junqi; Christ, John A.; Goltz, Mark N.
2010-08-01
Single-well push-pull tracer tests have been used to characterize the extent, fate, and transport of subsurface contamination. Analytical solutions provide one alternative for interpreting test results. In this work, an exact analytical solution to two-dimensional equations describing the governing processes acting on a dissolved compound during a modified push-pull test (advection, longitudinal and transverse dispersion, first-order decay, and rate-limited sorption/partitioning in steady, divergent, and convergent flow fields) is developed. The coupling of this solution with inverse modeling to estimate aquifer parameters provides an efficient methodology for subsurface characterization. Synthetic data for single-well push-pull tests are employed to demonstrate the utility of the solution for determining (1) estimates of aquifer longitudinal and transverse dispersivities, (2) sorption distribution coefficients and rate constants, and (3) non-aqueous phase liquid (NAPL) saturations. Employment of the solution to estimate NAPL saturations based on partitioning and non-partitioning tracers is designed to overcome limitations of previous efforts by including rate-limited mass transfer. This solution provides a new tool for use by practitioners when interpreting single-well push-pull test results.
Lessons learned from LNG safety research.
Koopman, Ronald P; Ermak, Donald L
2007-02-20
During the period from 1977 to 1989, the Lawrence Livermore National Laboratory (LLNL) conducted a liquefied gaseous fuels spill effects program under the sponsorship of the US Department of Energy, Department of Transportation, Gas Research Institute and others. The goal of this program was to develop and validate tools that could be used to predict the effects of a large liquefied gas spill through the execution of large scale field experiments and the development of computer models to make predictions for conditions under which tests could not be performed. Over the course of the program, three series of LNG spill experiments were performed to study cloud formation, dispersion, combustion and rapid phase transition (RPT) explosions. The purpose of this paper is to provide an overview of this program, the lessons learned from 12 years of research as well as some recommendations for the future. The general conclusion from this program is that cold, dense gas related phenomena can dominate the dispersion of a large volume, high release rate spill of LNG especially under low ambient wind speed and stable atmospheric conditions, and therefore, it is necessary to include a detailed and validated description of these phenomena in computer models to adequately predict the consequences of a release. Specific conclusions include: * LNG vapor clouds are lower and wider than trace gas clouds and tend to follow the downhill slope of terrain due to dampened vertical turbulence and gravity flow within the cloud. Under low wind speed, stable atmospheric conditions, a bifurcated, two lobed structure develops. * Navier-Stokes models provide the most complete description of LNG dispersion, while more highly parameterized Lagrangian models were found to be well suited to emergency response applications. * The measured heat flux from LNG vapor cloud burns exceeded levels necessary for third degree burns and were large enough to ignite most flammable materials. * RPTs are of two types, source generated and enrichment generated, and were observed to increase the burn area by a factor of two and to extend the downwind burn distance by 65%. Additional large scale experiments and model development are recommended.
Upscaling of Solute Transport in Heterogeneous Media with Non-uniform Flow and Dispersion Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhijie; Meakin, Paul
2013-10-01
An analytical and computational model for non-reactive solute transport in periodic heterogeneous media with arbitrary non-uniform flow and dispersion fields within the unit cell of length ε is described. The model lumps the effect of non-uniform flow and dispersion into an effective advection velocity Ve and an effective dispersion coefficient De. It is shown that both Ve and De are scale-dependent (dependent on the length scale of the microscopic heterogeneity, ε), dependent on the Péclet number Pe, and on a dimensionless parameter α that represents the effects of microscopic heterogeneity. The parameter α, confined to the range of [-0.5, 0.5]more » for the numerical example presented, depends on the flow direction and non-uniform flow and dispersion fields. Effective advection velocity Ve and dispersion coefficient De can be derived for any given flow and dispersion fields, and . Homogenized solutions describing the macroscopic variations can be obtained from the effective model. Solutions with sub-unit-cell accuracy can be constructed by homogenized solutions and its spatial derivatives. A numerical implementation of the model compared with direct numerical solutions using a fine grid, demonstrated that the new method was in good agreement with direct solutions, but with significant computational savings.« less
Surampalli, Gurunath; K Nanjwade, Basavaraj; Patil, P A
2015-01-01
The aim of this study was to corroborate the effects of naringin, a P-glycoprotein inhibitor, on the intestinal absorption and pharmacokinetics of candesartan (CDS) from candesartan cilexetil (CAN) solid dispersions using in-situ rat models. Intestinal transport and absorption studies were examined by in-situ single pass perfusion and closed-loop models. We evaluated the intestinal membrane damage in the presence of naringin by measuring the release of protein and alkaline phosphatase (ALP). We noticed 1.47-fold increase in Peff of CDS from freeze-dried CAN-loaded solid dispersions with naringin (15 mg/kg, w/w) when compared with freeze-dried solid dispersion without naringin using in-situ single pass intestinal perfusion model. However, no intestinal membrane damage was observed in the presence of naringin. Our findings from in-situ closed-loop pharmacokinetic studies showed 1.34-fold increase in AUC with elevated Cmax and shortened tmax for freeze-dried solid dispersion with naringin as compared to freeze-dried solid dispersion without naringin. This study demonstrated that increased solubilization (favored by freeze-dried solid dispersion) and efflux pump inhibition (using naringin), the relative bioavailability of CDS can be increased, suggesting an alternative potential for improving oral bioavailability of CAN.
Rapid Effects of Marine Reserves via Larval Dispersal
Cudney-Bueno, Richard; Lavín, Miguel F.; Marinone, Silvio G.; Raimondi, Peter T.; Shaw, William W.
2009-01-01
Marine reserves have been advocated worldwide as conservation and fishery management tools. It is argued that they can protect ecosystems and also benefit fisheries via density-dependent spillover of adults and enhanced larval dispersal into fishing areas. However, while evidence has shown that marine reserves can meet conservation targets, their effects on fisheries are less understood. In particular, the basic question of if and over what temporal and spatial scales reserves can benefit fished populations via larval dispersal remains unanswered. We tested predictions of a larval transport model for a marine reserve network in the Gulf of California, Mexico, via field oceanography and repeated density counts of recently settled juvenile commercial mollusks before and after reserve establishment. We show that local retention of larvae within a reserve network can take place with enhanced, but spatially-explicit, recruitment to local fisheries. Enhancement occurred rapidly (2 yrs), with up to a three-fold increase in density of juveniles found in fished areas at the downstream edge of the reserve network, but other fishing areas within the network were unaffected. These findings were consistent with our model predictions. Our findings underscore the potential benefits of protecting larval sources and show that enhancement in recruitment can be manifested rapidly. However, benefits can be markedly variable within a local seascape. Hence, effects of marine reserve networks, positive or negative, may be overlooked when only focusing on overall responses and not considering finer spatially-explicit responses within a reserve network and its adjacent fishing grounds. Our results therefore call for future research on marine reserves that addresses this variability in order to help frame appropriate scenarios for the spatial management scales of interest. PMID:19129910
A time-space domain stereo finite difference method for 3D scalar wave propagation
NASA Astrophysics Data System (ADS)
Chen, Yushu; Yang, Guangwen; Ma, Xiao; He, Conghui; Song, Guojie
2016-11-01
The time-space domain finite difference methods reduce numerical dispersion effectively by minimizing the error in the joint time-space domain. However, their interpolating coefficients are related with the Courant numbers, leading to significantly extra time costs for loading the coefficients consecutively according to velocity in heterogeneous models. In the present study, we develop a time-space domain stereo finite difference (TSSFD) method for 3D scalar wave equation. The method propagates both the displacements and their gradients simultaneously to keep more information of the wavefields, and minimizes the maximum phase velocity error directly using constant interpolation coefficients for different Courant numbers. We obtain the optimal constant coefficients by combining the truncated Taylor series approximation and the time-space domain optimization, and adjust the coefficients to improve the stability condition. Subsequent investigation shows that the TSSFD can suppress numerical dispersion effectively with high computational efficiency. The maximum phase velocity error of the TSSFD is just 3.09% even with only 2 sampling points per minimum wavelength when the Courant number is 0.4. Numerical experiments show that to generate wavefields with no visible numerical dispersion, the computational efficiency of the TSSFD is 576.9%, 193.5%, 699.0%, and 191.6% of those of the 4th-order and 8th-order Lax-Wendroff correction (LWC) method, the 4th-order staggered grid method (SG), and the 8th-order optimal finite difference method (OFD), respectively. Meanwhile, the TSSFD is compatible to the unsplit convolutional perfectly matched layer (CPML) boundary condition for absorbing artificial boundaries. The efficiency and capability to handle complex velocity models make it an attractive tool in imaging methods such as acoustic reverse time migration (RTM).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkes, Douglas E.; Senor, David J.; Casella, Andrew M.
Numerous global programs are focused on the continued development of existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world’s remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Some of these programs are focused on development and qualification of a fuel design that consists of a uranium-molybdenum (U-Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. The current paper extends a failure model originally developed for UO2-stainless steel dispersion fuels and used currently available thermal-mechanical property information for the materials ofmore » interest in the current proposed design. A number of fabrication and irradiation parameters were investigated to understand the conditions at which failure of the matrix, classified as pore formation in the matrix, might occur. The results compared well with experimental observations published as part of the Reduced Enrichment for Research and Test Reactors (RERTR)-6 and -7 mini-plate experiments. Fission rate, a function of the 235U enrichment, appeared to be the most influential parameter in premature failure, mainly as a result of increased interaction layer formation and operational temperature, which coincidentally decreased the yield strength of the matrix and caused more rapid fission gas production and recoil into the surrounding matrix material. Addition of silicon to the matrix appeared effective at reducing the rate of interaction layer formation and can extend the performance of a fuel plate under a certain set of irradiation conditions, primarily moderate heat flux and burnup. Increasing the dispersed fuel particle diameter may also be effective, but only when combined with other parameters, e.g., lower enrichment and increased Si concentration. The model may serve as a valuable tool in initial experimental design.« less
Highly dispersed buckybowls as model carbocatalysts for C–H bond activation
Soykal, I. Ilgaz; Wang, Hui; Park, Jewook; ...
2015-03-19
Buckybowl fractions dispersed on mesoporous silica constitute an ideal model for studying the catalysis of graphitic forms of carbon since the dispersed carbon nanostructures contain a high ratio of edge defects and curvature induced by non-six-membered rings. Dispersion of the active centers on an easily accessible high surface area material allowed for high density of surface active sites associated with oxygenated structures. This report illustrates a facile method of creating model polycyclic aromatic nano-structures that are not only active for alkane C-H bond activation and oxidative dehydrogenation but also can be practical catalysts to be eventually used in industry.
NASA Astrophysics Data System (ADS)
Pathak, P.; Guyon, O.; Jovanovic, N.; Lozi, J.; Martinache, F.; Minowa, Y.; Kudo, T.; Kotani, T.; Takami, H.
2018-02-01
Adaptive optic (AO) systems delivering high levels of wavefront correction are now common at observatories. One of the main limitations to image quality after wavefront correction comes from atmospheric refraction. An atmospheric dispersion compensator (ADC) is employed to correct for atmospheric refraction. The correction is applied based on a look-up table consisting of dispersion values as a function of telescope elevation angle. The look-up table-based correction of atmospheric dispersion results in imperfect compensation leading to the presence of residual dispersion in the point spread function (PSF) and is insufficient when sub-milliarcsecond precision is required. The presence of residual dispersion can limit the achievable contrast while employing high-performance coronagraphs or can compromise high-precision astrometric measurements. In this paper, we present the first on-sky closed-loop correction of atmospheric dispersion by directly using science path images. The concept behind the measurement of dispersion utilizes the chromatic scaling of focal plane speckles. An adaptive speckle grid generated with a deformable mirror (DM) that has a sufficiently large number of actuators is used to accurately measure the residual dispersion and subsequently correct it by driving the ADC. We have demonstrated with the Subaru Coronagraphic Extreme AO (SCExAO) system on-sky closed-loop correction of residual dispersion to <1 mas across H-band. This work will aid in the direct detection of habitable exoplanets with upcoming extremely large telescopes (ELTs) and also provide a diagnostic tool to test the performance of instruments which require sub-milliarcsecond correction.
Xu, Suxin; Chen, Jiangang; Wang, Bijia; Yang, Yiqi
2015-11-15
Two predictive models were presented for the adsorption affinities and diffusion coefficients of disperse dyes in polylactic acid matrix. Quantitative structure-sorption behavior relationship would not only provide insights into sorption process, but also enable rational engineering for desired properties. The thermodynamic and kinetic parameters for three disperse dyes were measured. The predictive model for adsorption affinity was based on two linear relationships derived by interpreting the experimental measurements with molecular structural parameters and compensation effect: ΔH° vs. dye size and ΔS° vs. ΔH°. Similarly, the predictive model for diffusion coefficient was based on two derived linear relationships: activation energy of diffusion vs. dye size and logarithm of pre-exponential factor vs. activation energy of diffusion. The only required parameters for both models are temperature and solvent accessible surface area of the dye molecule. These two predictive models were validated by testing the adsorption and diffusion properties of new disperse dyes. The models offer fairly good predictive ability. The linkage between structural parameter of disperse dyes and sorption behaviors might be generalized and extended to other similar polymer-penetrant systems. Copyright © 2015 Elsevier Inc. All rights reserved.
Study on gas diffusion emitted from different height of point source.
Yassin, Mohamed F
2009-01-01
The flow and dispersion of stack-gas emitted from different elevated point source around flow obstacles in an urban environment have been investigated, using computational fluid dynamics models (CFD). The results were compared with the experimental results obtained from the diffusion wind tunnel under different conditions of thermal stability (stable, neutral or unstable). The flow and dispersion fields in the boundary layer in an urban environment were examined with different flow obstacles. Gaseous pollutant was discharged in the simulated boundary layer over the flat area. The CFD models used for the simulation were based on the steady-state Reynolds-Average Navier-Stoke equations (RANS) with kappa-epsilon turbulence models; standard kappa-epsilon and RNG kappa-epsilon models. The flow and dispersion data measured in the wind tunnel experiments were compared with the results of the CFD models in order to evaluate the prediction accuracy of the pollutant dispersion. The results of the CFD models showed good agreement with the results of the wind tunnel experiments. The results indicate that the turbulent velocity is reduced by the obstacles models. The maximum dispersion appears around the wake region of the obstacles.
Evolved dispersal strategies at range margins
Dytham, Calvin
2009-01-01
Dispersal is a key component of a species's ecology and will be under different selection pressures in different parts of the range. For example, a long-distance dispersal strategy suitable for continuous habitat at the range core might not be favoured at the margin, where the habitat is sparse. Using a spatially explicit, individual-based, evolutionary simulation model, the dispersal strategies of an organism that has only one dispersal event in its lifetime, such as a plant or sessile animal, are considered. Within the model, removing habitat, increasing habitat turnover, increasing the cost of dispersal, reducing habitat quality or altering vital rates imposes range limits. In most cases, there is a clear change in the dispersal strategies across the range, although increasing death rate towards the margin has little impact on evolved dispersal strategy across the range. Habitat turnover, reduced birth rate and reduced habitat quality all increase evolved dispersal distances at the margin, while increased cost of dispersal and reduced habitat density lead to lower evolved dispersal distances at the margins. As climate change shifts suitable habitat poleward, species ranges will also start to shift, and it will be the dispersal capabilities of marginal populations, rather than core populations, that will influence the rate of range shifting. PMID:19324810
Traveling waves in an optimal velocity model of freeway traffic.
Berg, P; Woods, A
2001-03-01
Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of one headway into a linear stable stream of a second headway. Numerical results of the governing equations identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time- dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by either another traveling wave or a dispersive wave further downstream matching the downstream headway. This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending on the upstream and downstream headway and the response time of the model. The results have profound consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles, the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is available [Y. Sugiyama, Traffic and Granular Flow (World Scientific, Singapore, 1995), p. 137].
Traveling waves in an optimal velocity model of freeway traffic
NASA Astrophysics Data System (ADS)
Berg, Peter; Woods, Andrew
2001-03-01
Car-following models provide both a tool to describe traffic flow and algorithms for autonomous cruise control systems. Recently developed optimal velocity models contain a relaxation term that assigns a desirable speed to each headway and a response time over which drivers adjust to optimal velocity conditions. These models predict traffic breakdown phenomena analogous to real traffic instabilities. In order to deepen our understanding of these models, in this paper, we examine the transition from a linear stable stream of cars of one headway into a linear stable stream of a second headway. Numerical results of the governing equations identify a range of transition phenomena, including monotonic and oscillating travelling waves and a time- dependent dispersive adjustment wave. However, for certain conditions, we find that the adjustment takes the form of a nonlinear traveling wave from the upstream headway to a third, intermediate headway, followed by either another traveling wave or a dispersive wave further downstream matching the downstream headway. This intermediate value of the headway is selected such that the nonlinear traveling wave is the fastest stable traveling wave which is observed to develop in the numerical calculations. The development of these nonlinear waves, connecting linear stable flows of two different headways, is somewhat reminiscent of stop-start waves in congested flow on freeways. The different types of adjustments are classified in a phase diagram depending on the upstream and downstream headway and the response time of the model. The results have profound consequences for autonomous cruise control systems. For an autocade of both identical and different vehicles, the control system itself may trigger formations of nonlinear, steep wave transitions. Further information is available [Y. Sugiyama, Traffic and Granular Flow (World Scientific, Singapore, 1995), p. 137].
Ganguly, Debabani; Chen, Jianhan
2011-04-01
Coupled binding and folding is frequently involved in specific recognition of so-called intrinsically disordered proteins (IDPs), a newly recognized class of proteins that rely on a lack of stable tertiary fold for function. Here, we exploit topology-based Gō-like modeling as an effective tool for the mechanism of IDP recognition within the theoretical framework of minimally frustrated energy landscape. Importantly, substantial differences exist between IDPs and globular proteins in both amino acid sequence and binding interface characteristics. We demonstrate that established Gō-like models designed for folded proteins tend to over-estimate the level of residual structures in unbound IDPs, whereas under-estimating the strength of intermolecular interactions. Such systematic biases have important consequences in the predicted mechanism of interaction. A strategy is proposed to recalibrate topology-derived models to balance intrinsic folding propensities and intermolecular interactions, based on experimental knowledge of the overall residual structure level and binding affinity. Applied to pKID/KIX, the calibrated Gō-like model predicts a dominant multistep sequential pathway for binding-induced folding of pKID that is initiated by KIX binding via the C-terminus in disordered conformations, followed by binding and folding of the rest of C-terminal helix and finally the N-terminal helix. This novel mechanism is consistent with key observations derived from a recent NMR titration and relaxation dispersion study and provides a molecular-level interpretation of kinetic rates derived from dispersion curve analysis. These case studies provide important insight into the applicability and potential pitfalls of topology-based modeling for studying IDP folding and interaction in general. Copyright © 2011 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Krein, Michael
After decades of development and use in a variety of application areas, Quantitative Structure Property Relationships (QSPRs) and related descriptor-based statistical learning methods have achieved a level of infamy due to their misuse. The field is rife with past examples of overtrained models, overoptimistic performance assessment, and outright cheating in the form of explicitly removing data to fit models. These actions do not serve the community well, nor are they beneficial to future predictions based on established models. In practice, in order to select combinations of descriptors and machine learning methods that might work best, one must consider the nature and size of the training and test datasets, be aware of existing hypotheses about the data, and resist the temptation to bias structure representation and modeling to explicitly fit the hypotheses. The definition and application of these best practices is important for obtaining actionable modeling outcomes, and for setting user expectations of modeling accuracy when predicting the endpoint values of unknowns. A wide variety of statistical learning approaches, descriptor types, and model validation strategies are explored herein, with the goals of helping end users understand the factors involved in creating and using QSPR models effectively, and to better understand relationships within the data, especially by looking at the problem space from multiple perspectives. Molecular relationships are commonly envisioned in a continuous high-dimensional space of numerical descriptors, referred to as chemistry space. Descriptor and similarity metric choice influence the partitioning of this space into regions corresponding to local structural similarity. These regions, known as domains of applicability, are most likely to be successfully modeled by a QSPR. In Chapter 2, the network topology and scaling relationships of several chemistry spaces are thoroughly investigated. Chemistry spaces studied include the ZINC data set, a qHTS PubChem bioassay, as well as the protein binding sites from the PDB. The characteristics of these networks are compared and contrasted with those of the bioassay Structure Activity Landscape Index (SALI) subnetwork, which maps discontinuities or cliffs in the structure activity landscape. Mapping this newly generated information over underlying chemistry space networks generated using different descriptors demonstrates local modeling capacity and can guide the choice of better local representations of chemistry space. Chapter 2 introduces and demonstrates this novel concept, which also enables future work in visualization and interpretation of chemical spaces. Initially, it was discovered that there were no community-available tools to leverage best-practice ideas to comprehensively build, compare, and interpret QSPRs. The Yet Another Modeling System (YAMS) tool performs a series of balanced, rational decisions in dataset preprocessing and parameter/feature selection over a choice of modeling methods. To date, YAMS is the only community-available informatics tool that performs such decisions consistently between methods while also providing multiple model performance comparisons and detailed descriptor importance information. The focus of the tool is thus to convey rich information about model quality and predictions that help to "close the loop" between modeling and experimental efforts, for example, in tailoring nanocomposite properties. Polymer nanocomposites (PNC) are complex material systems encompassing many potential structures, chemistries, and self assembled morphologies that could significantly impact commercial and military applications. There is a strong desire to characterize and understand the tradespace of nanocomposites, to identify the important factors relating nanostructure to materials properties and determine an effective way to control materials properties at the manufacturing scale. Due to the complexity of the systems, existing design approaches rely heavily on trial-and-error learning. By leveraging existing experimental data, Materials Quantitative Structure-Property Relationships (MQSPRs) relate molecular structures to the polar and dispersive components of corresponding surface tensions. In turn, existing theories relate polymer and nanofiller polar and dispersive surface tension components to the dispersion state and interfacial polymer relaxation times. These quantities may, in the future, be used as input to continuum mechanics approaches shown able to predict the thermomechanical response of nanocomposites. For a polymer dataset and a particle dataset, multiple structural representations and descriptor sets are benchmarked, including a set of high performance surface-property descriptors developed as part of this work. The systematic variation of structural representations as part of the informatics approach reveals important insight in modeling polymers, and should become common practice when defining new problem spaces.
Robin A. J. Taylor; Daniel A. Herms; Louis R. Iverson
2008-01-01
The dispersal of organisms is rarely random, although diffusion processes can be useful models for movement in approximately homogeneous environments. However, the environments through which all organisms disperse are far from uniform at all scales. The emerald ash borer (EAB), Agrilus planipennis, is obligate on ash (Fraxinus spp...
The formulations of the AMS/EPA Regulatory Model Improvement Committee's applied air dispersion model (AERMOD) are described. This is the second in a series of three articles. Part I describes the model's methods for characterizing the atmospheric boundary layer and complex ter...
The Importance of Seed Characteristics in the Dispersal of Splash-Cup Plants
NASA Astrophysics Data System (ADS)
Eklof, Joel; Pepper, Rachel Pepper; Echternach, Juliana
2016-11-01
Splash-cup plants disperse their seeds by exploiting the kinetic energy of raindrops. When raindrops impact the splash-cup, a 3-5 mm vessel that holds seeds, the seeds are projected up to 1 m away from the parent plant. It has been established, using 3D printed models, that a 40°cone angle maximizes dispersal distance when seeds are not present in the cup. We therefore use 40°cups with the addition of different types of seeds to determine the effect that seeds of varying characteristics have on the dispersal and splash dynamics of splash-cup plants. Splash characteristics and dispersal distances of seeds with differing characteristics such as size, shape, texture, density, and hydrophobicity were compared to one another, as well as to the case of having no seeds present. We found that the presence of seeds dramatically decreased dispersal distance and changed splash characteristics (are measured by the angle and velocity of the resulting splash). In addition, different types of seeds yielded splashes with differing dispersal distance and splash characteristics. Splash characteristics and dispersal distances of glass beads of differing hydrophobicity were compared to determine the effect hydrophobicity has on dispersal and splash dynamics. These beads yielded some differences in dispersal distance, but no notable difference in splash dynamics. Models of the conical fruit bodies of the splash-cups were 3D printed and high-speed video was used to find splash characteristics, and dispersal distance was calculated by measuring the distance from the model to the final resting position of the seeds and droplets.
NASA Astrophysics Data System (ADS)
Ebrahimi, Ali N.; Or, Dani
2014-09-01
The dispersal rates of self-propelled microorganisms affect their spatial interactions and the ecological functioning of microbial communities. Microbial dispersal rates affect risk of contamination of water resources by soil-borne pathogens, the inoculation of plant roots, or the rates of spoilage of food products. In contrast with the wealth of information on microbial dispersal in water replete systems, very little is known about their dispersal rates in unsaturated porous media. The fragmented aqueous phase occupying complex soil pore spaces suppress motility and limits dispersal ranges in unsaturated soil. The primary objective of this study was to systematically evaluate key factors that shape microbial dispersal in model unsaturated porous media to quantify effects of saturation, pore space geometry, and chemotaxis on characteristics of principles that govern motile microbial dispersion in unsaturated soil. We constructed a novel 3-D angular pore network model (PNM) to mimic aqueous pathways in soil for different hydration conditions; within the PNM, we employed an individual-based model that considers physiological and biophysical properties of motile and chemotactic bacteria. The effects of hydration conditions on first passage times in different pore networks were studied showing that fragmentation of aquatic habitats under dry conditions sharply suppresses nutrient transport and microbial dispersal rates in good agreement with limited experimental data. Chemotactically biased mean travel speed of microbial cells across 9 mm saturated PNM was ˜3 mm/h decreasing exponentially to 0.45 mm/h for the PNM at matric potential of -15 kPa (for -35 kPa, dispersal practically ceases and the mean travel time to traverse the 9 mm PNM exceeds 1 year). Results indicate that chemotaxis enhances dispersal rates by orders of magnitude relative to random (diffusive) motions. Model predictions considering microbial cell sizes relative to available liquid pathways sizes were in good agreement with experimental results for unsaturated soils. The new modeling platform enables quantitative consideration of key biophysical factors (e.g., pore space heterogeneities and hydration conditions) governing microbial interactions in 3-D soil pore spaces.
Eggimann, Sven; Truffer, Bernhard; Maurer, Max
2015-11-01
The strong reliance of most utility services on centralised network infrastructures is becoming increasingly challenged by new technological advances in decentralised alternatives. However, not enough effort has been made to develop planning tools designed to address the implications of these new opportunities and to determine the optimal degree of centralisation of these infrastructures. We introduce a planning tool for sustainable network infrastructure planning (SNIP), a two-step techno-economic heuristic modelling approach based on shortest path-finding and hierarchical-agglomerative clustering algorithms to determine the optimal degree of centralisation in the field of wastewater management. This SNIP model optimises the distribution of wastewater treatment plants and the sewer network outlay relative to several cost and sewer-design parameters. Moreover, it allows us to construct alternative optimal wastewater system designs taking into account topography, economies of scale as well as the full size range of wastewater treatment plants. We quantify and confirm that the optimal degree of centralisation decreases with increasing terrain complexity and settlement dispersion while showing that the effect of the latter exceeds that of topography. Case study results for a Swiss community indicate that the calculated optimal degree of centralisation is substantially lower than the current level. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Braman, Kalen; Raman, Venkat
2011-11-01
A novel direct numerical simulation (DNS) based a posteriori technique has been developed to investigate scalar transport modeling error. The methodology is used to test Reynolds-averaged Navier-Stokes turbulent scalar flux models for compressible boundary layer flows. Time-averaged DNS velocity and turbulence fields provide the information necessary to evolve the time-averaged scalar transport equation without requiring the use of turbulence modeling. With this technique, passive dispersion of a scalar from a boundary layer surface in a supersonic flow is studied with scalar flux modeling error isolated from any flowfield modeling errors. Several different scalar flux models are used. It is seen that the simple gradient diffusion model overpredicts scalar dispersion, while anisotropic scalar flux models underpredict dispersion. Further, the use of more complex models does not necessarily guarantee an increase in predictive accuracy, indicating that key physics is missing from existing models. Using comparisons of both a priori and a posteriori scalar flux evaluations with DNS data, the main modeling shortcomings are identified. Results will be presented for different boundary layer conditions.
NEXT Ion Thruster Performance Dispersion Analyses
NASA Technical Reports Server (NTRS)
Soulas, George C.; Patterson, Michael J.
2008-01-01
The NEXT ion thruster is a low specific mass, high performance thruster with a nominal throttling range of 0.5 to 7 kW. Numerous engineering model and one prototype model thrusters have been manufactured and tested. Of significant importance to propulsion system performance is thruster-to-thruster performance dispersions. This type of information can provide a bandwidth of expected performance variations both on a thruster and a component level. Knowledge of these dispersions can be used to more conservatively predict thruster service life capability and thruster performance for mission planning, facilitate future thruster performance comparisons, and verify power processor capabilities are compatible with the thruster design. This study compiles the test results of five engineering model thrusters and one flight-like thruster to determine unit-to-unit dispersions in thruster performance. Component level performance dispersion analyses will include discharge chamber voltages, currents, and losses; accelerator currents, electron backstreaming limits, and perveance limits; and neutralizer keeper and coupling voltages and the spot-to-plume mode transition flow rates. Thruster level performance dispersion analyses will include thrust efficiency.
NASA Astrophysics Data System (ADS)
Ratliff, Daniel J.
2017-11-01
Criticality plays a central role in the study of reductions and stability of hydrodynamical systems. At critical points, it is often the case that nonlinear reductions with dispersion arise to govern solution behavior. By considering when such models become bidirectional and lose their initial dispersive properties, it will be shown that higher order dispersive models may be supported in hydrodynamical systems. Precisely, this equation is a two-way Boussinesq equation with sixth order dispersion. The case of two layered shallow water is considered to illustrate this, and it is reasoned why such an environment is natural for such a system to emerge. Further, it is demonstrated that the regions in the parameter space for nontrivial flow, which admit this reduction, are vast and in fact form a continuum. The reduced model is then numerically simulated to illustrate how the two-way and higher dispersive properties suggest more exotic families of solitary wave solutions can emerge in stratified flows.
Electromagnetomechanical elastodynamic model for Lamb wave damage quantification in composites
NASA Astrophysics Data System (ADS)
Borkowski, Luke; Chattopadhyay, Aditi
2014-03-01
Physics-based wave propagation computational models play a key role in structural health monitoring (SHM) and the development of improved damage quantification methodologies. Guided waves (GWs), such as Lamb waves, provide the capability to monitor large plate-like aerospace structures with limited actuators and sensors and are sensitive to small scale damage; however due to the complex nature of GWs, accurate and efficient computation tools are necessary to investigate the mechanisms responsible for dispersion, coupling, and interaction with damage. In this paper, the local interaction simulation approach (LISA) coupled with the sharp interface model (SIM) solution methodology is used to solve the fully coupled electro-magneto-mechanical elastodynamic equations for the piezoelectric and piezomagnetic actuation and sensing of GWs in fiber reinforced composite material systems. The final framework provides the full three-dimensional displacement as well as electrical and magnetic potential fields for arbitrary plate and transducer geometries and excitation waveform and frequency. The model is validated experimentally and proven computationally efficient for a laminated composite plate. Studies are performed with surface bonded piezoelectric and embedded piezomagnetic sensors to gain insight into the physics of experimental techniques used for SHM. The symmetric collocation of piezoelectric actuators is modeled to demonstrate mode suppression in laminated composites for the purpose of damage detection. The effect of delamination and damage (i.e., matrix cracking) on the GW propagation is demonstrated and quantified. The developed model provides a valuable tool for the improvement of SHM techniques due to its proven accuracy and computational efficiency.
Numerical Investigation of Plasma Detachment in Magnetic Nozzle Experiments
NASA Technical Reports Server (NTRS)
Sankaran, Kamesh; Polzin, Kurt A.
2008-01-01
At present there exists no generally accepted theoretical model that provides a consistent physical explanation of plasma detachment from an externally-imposed magnetic nozzle. To make progress towards that end, simulation of plasma flow in the magnetic nozzle of an arcjet experiment is performed using a multidimensional numerical simulation tool that includes theoretical models of the various dispersive and dissipative processes present in the plasma. This is an extension of the simulation tool employed in previous work by Sankaran et al. The aim is to compare the computational results with various proposed magnetic nozzle detachment theories to develop an understanding of the physical mechanisms that cause detachment. An applied magnetic field topology is obtained using a magnetostatic field solver (see Fig. I), and this field is superimposed on the time-dependent magnetic field induced in the plasma to provide a self-consistent field description. The applied magnetic field and model geometry match those found in experiments by Kuriki and Okada. This geometry is modeled because there is a substantial amount of experimental data that can be compared to the computational results, allowing for validation of the model. In addition, comparison of the simulation results with the experimentally obtained plasma parameters will provide insight into the mechanisms that lead to plasma detachment, revealing how they scale with different input parameters. Further studies will focus on modeling literature experiments both for the purpose of additional code validation and to extract physical insight regarding the mechanisms driving detachment.
Description and evaluation of the QUIC bio-slurry scheme: droplet evaporation and surface deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zajic, Dragan; Brown, Michael J; Nelson, Matthew A
2010-01-01
The Quick Urban and Industrial Complex (QUIC) dispersion modeling system was developed with the goal of improving the transport and dispersion modeling capabilities within urban areas. The modeling system has the ability to rapidly obtain a detailed 3D flow field around building clusters and uses an urbanized Lagrangian random-walk approach to account for transport and dispersion (e.g., see Singh et al., 2008; Williams et al., 2009; and Gowardhan et al., 2009). In addition to wind-tunnel testing, the dispersion modeling system has been evaluated against full-scale urban tracer experiments performed in Salt Lake City, Oklahoma City, and New York City (Gowardhanmore » et al., 2006; Gowardhan et al., 2009; Allwine et al., 2008) and the wind model output to measurements taken in downtown Oklahoma City.« less
NASA Astrophysics Data System (ADS)
Salmasi, Mahbod; Potter, Michael
2018-07-01
Maxwell's equations are discretized on a Face-Centered Cubic (FCC) lattice instead of a simple cubic as an alternative to the standard Yee method for improvements in numerical dispersion characteristics and grid isotropy of the method. Explicit update equations and numerical dispersion expressions, and the stability criteria are derived. Also, several tools available to the standard Yee method such as PEC/PMC boundary conditions, absorbing boundary conditions, and scattered field formulation are extended to this method as well. A comparison between the FCC and the Yee formulations is made, showing that the FCC method exhibits better dispersion compared to its Yee counterpart. Simulations are provided to demonstrate both the accuracy and grid isotropy improvement of the method.
Weiss, M; Stedtler, C; Roberts, M S
1997-09-01
The dispersion model with mixed boundary conditions uses a single parameter, the dispersion number, to describe the hepatic elimination of xenobiotics and endogenous substances. An implicit a priori assumption of the model is that the transit time density of intravascular indicators is approximately by an inverse Gaussian distribution. This approximation is limited in that the model poorly describes the tail part of the hepatic outflow curves of vascular indicators. A sum of two inverse Gaussian functions is proposed as an alternative, more flexible empirical model for transit time densities of vascular references. This model suggests that a more accurate description of the tail portion of vascular reference curves yields an elimination rate constant (or intrinsic clearance) which is 40% less than predicted by the dispersion model with mixed boundary conditions. The results emphasize the need to accurately describe outflow curves in using them as a basis for determining pharmacokinetic parameters using hepatic elimination models.
Social factors influencing natal dispersal in male white-faced capuchins (Cebus capucinus).
Jack, Katharine M; Sheller, Claire; Fedigan, Linda M
2012-04-01
White-faced capuchin males disperse from their natal group at around 4.5 years of age, but there is much variation in dispersal timing: our youngest confirmed disperser was 19 months and the oldest 11 years old. In this study, we investigate possible factors influencing dispersal decisions in this species. Between 1983 and 2010, 64 males were born into three study groups in Santa Rosa National Park, Area de Conservación Guanacaste, and Costa Rica. As of August 2010, 21 died or were presumed dead (<14 months), 13 remained natal residents, and 30 were presumed dispersers. We used backward logistic regression to identify proximate factors that predict the occurrence of male natal dispersal. The occurrence of a takeover (significant positive association) and group size (nonsignificant negative association) were included in the model. Male age, number of maternal brothers, and number of adult males were not significant predictors of natal dispersal. The resultant model correctly classified 97% of dispersed and 89% of resident natal males, for an overall success rate of 95%. The occurrence of a group takeover was the strongest predictor of male dispersal, with natal males being 18.7 times more likely to disperse in the context of a group takeover than during peaceful times. A linear regression model showed that the tenure length of a male's probable father influences the age of natal dispersal, explaining 15% of the observed variation in age. However, when our oldest disperser was removed (an outlier) this effect disappeared. Collectively, these results indicate that group instability, as evidenced by the occurrence of a takeover, shorter tenure length of a natal male's father, and smaller group size, triggers natal dispersal in this species while the converse leads to a delay. These data add to our growing evidence of the enormous impact that takeovers have on the behavioral ecology of this species. © 2011 Wiley Periodicals, Inc.
Global patterns in post-dispersal seed removal by invertebrates and vertebrates.
Peco, Begoña; Laffan, Shawn W; Moles, Angela T
2014-01-01
It is commonly accepted that species interactions such as granivory are more intense in the tropics. However, this has rarely been tested. A global dataset of post-dispersal seed removal by invertebrates and vertebrates for 79 native plant species from semi-natural and natural terrestrial habitats ranging from 55° N to 45° S, was compiled from the global literature to test the hypothesis that post-dispersal seed removal by invertebrates and vertebrates is more intense at lower latitudes. We also quantified the relationship between post-dispersal seed removal by vertebrates and by invertebrates to global climatic features including temperature, actual evapotranspiration (AET) and rainfall seasonality. Linear mixed effect models were applied to describe the relationships between seed removal and latitude, hemisphere and climatic variables controlling for the effect of seed mass. Post-dispersal seed removal by invertebrates was negatively related to latitude. In contrast, post-dispersal seed removal by vertebrates was positively but weakly related to latitude. Mean annual temperature and actual evapotranspiration were positively related to post-dispersal seed removal by invertebrates, but not to post-dispersal seed removal by vertebrates, which was only marginally negatively related to rainfall seasonality. The inclusion of seed mass improved the fit of all models, but the term for seed mass was not significant in any model. Although a good climatic model for predicting post-dispersal seed predation by vertebrates at the global level was not found, our results suggest different and opposite latitudinal patterns of post-dispersal seed removal by invertebrates vs vertebrates. This is the first time that a negative relationship between post-dispersal seed removal by invertebrates and latitude, and a positive relationship with temperature and AET have been documented at a global-scale. These results have important implications for understanding global patterns in plant-animal interactions, and the factors that shape plant reproductive ecology, and also for predicting how this plant-animal interaction might respond to climate change.
Global Patterns in Post-Dispersal Seed Removal by Invertebrates and Vertebrates
Peco, Begoña; Laffan, Shawn W.; Moles, Angela T.
2014-01-01
It is commonly accepted that species interactions such as granivory are more intense in the tropics. However, this has rarely been tested. A global dataset of post-dispersal seed removal by invertebrates and vertebrates for 79 native plant species from semi-natural and natural terrestrial habitats ranging from 55° N to 45° S, was compiled from the global literature to test the hypothesis that post-dispersal seed removal by invertebrates and vertebrates is more intense at lower latitudes. We also quantified the relationship between post-dispersal seed removal by vertebrates and by invertebrates to global climatic features including temperature, actual evapotranspiration (AET) and rainfall seasonality. Linear mixed effect models were applied to describe the relationships between seed removal and latitude, hemisphere and climatic variables controlling for the effect of seed mass. Post-dispersal seed removal by invertebrates was negatively related to latitude. In contrast, post-dispersal seed removal by vertebrates was positively but weakly related to latitude. Mean annual temperature and actual evapotranspiration were positively related to post-dispersal seed removal by invertebrates, but not to post-dispersal seed removal by vertebrates, which was only marginally negatively related to rainfall seasonality. The inclusion of seed mass improved the fit of all models, but the term for seed mass was not significant in any model. Although a good climatic model for predicting post-dispersal seed predation by vertebrates at the global level was not found, our results suggest different and opposite latitudinal patterns of post-dispersal seed removal by invertebrates vs vertebrates. This is the first time that a negative relationship between post-dispersal seed removal by invertebrates and latitude, and a positive relationship with temperature and AET have been documented at a global-scale. These results have important implications for understanding global patterns in plant-animal interactions, and the factors that shape plant reproductive ecology, and also for predicting how this plant-animal interaction might respond to climate change. PMID:24618879
NASA Astrophysics Data System (ADS)
Belikov, Dmitry A.; Maksyutov, Shamil; Yaremchuk, Alexey; Ganshin, Alexander; Kaminski, Thomas; Blessing, Simon; Sasakawa, Motoki; Gomez-Pelaez, Angel J.; Starchenko, Alexander
2016-02-01
We present the development of the Adjoint of the Global Eulerian-Lagrangian Coupled Atmospheric (A-GELCA) model that consists of the National Institute for Environmental Studies (NIES) model as an Eulerian three-dimensional transport model (TM), and FLEXPART (FLEXible PARTicle dispersion model) as the Lagrangian Particle Dispersion Model (LPDM). The forward tangent linear and adjoint components of the Eulerian model were constructed directly from the original NIES TM code using an automatic differentiation tool known as TAF (Transformation of Algorithms in Fortran; http://www.FastOpt.com, with additional manual pre- and post-processing aimed at improving transparency and clarity of the code and optimizing the performance of the computing, including MPI (Message Passing Interface). The Lagrangian component did not require any code modification, as LPDMs are self-adjoint and track a significant number of particles backward in time in order to calculate the sensitivity of the observations to the neighboring emission areas. The constructed Eulerian adjoint was coupled with the Lagrangian component at a time boundary in the global domain. The simulations presented in this work were performed using the A-GELCA model in forward and adjoint modes. The forward simulation shows that the coupled model improves reproduction of the seasonal cycle and short-term variability of CO2. Mean bias and standard deviation for five of the six Siberian sites considered decrease roughly by 1 ppm when using the coupled model. The adjoint of the Eulerian model was shown, through several numerical tests, to be very accurate (within machine epsilon with mismatch around to ±6 e-14) compared to direct forward sensitivity calculations. The developed adjoint of the coupled model combines the flux conservation and stability of an Eulerian discrete adjoint formulation with the flexibility, accuracy, and high resolution of a Lagrangian backward trajectory formulation. A-GELCA will be incorporated into a variational inversion system designed to optimize surface fluxes of greenhouse gases.
Variability in reef connectivity in the Coral Triangle
NASA Astrophysics Data System (ADS)
Thompson, D. M.; Kleypas, J. A.; Castruccio, F. S.; Watson, J. R.; Curchitser, E. N.
2015-12-01
The Coral Triangle (CT) is not only the global center of marine biodiversity, it also supports the livelihoods of millions of people. Unfortunately, it is also considered the most threatened of all reef regions, with rising temperature and coral bleaching already taking a toll. Reproductive connectivity between reefs plays a critical role in the reef's capacity to recover after such disturbances. Thus, oceanographic modeling efforts to understand patterns of reef connectivity are essential to the effective design of a network of Marine Protected Areas (MPAs) to conserve marine ecosystems in the Coral Triangle. Here, we combine a Regional Ocean Modeling System developed for the Coral Triangle (CT-ROMS) with a Lagrangian particle tracking tool (TRACMASS) to investigate the probability of coral larval transport between reefs. A 47-year hindcast simulation (1960-2006) was used to investigate the variability in larval transport of a broadcasting coral following mass spawning events in April and September. Potential connectivity between reefs was highly variable and stochastic from year to year, emphasizing the importance of decadal or longer simulations in identifying connectivity patterns, key source and sink regions, and thus marine management targets for MPAs. The influence of temperature on realized connectivity (future work) may add further uncertainty to year-to-year patterns of connectivity between reefs. Nonetheless, the potential connectivity results we present here suggest that although reefs in this region are primarily self-seeded, rare long-distance dispersal may promote recovery and genetic exchange between reefs in the region. The spatial pattern of "subpopulations" based solely on the physical drivers of connectivity between reefs closely match regional patterns of biodiversity, suggesting that physical barriers to larval dispersal may be a key driver of reef biodiversity. Finally, 21st Century simulations driven by the Community Earth System Model (CESM) suggest that these major barriers to larval dispersal persist into the future under 8.5 W/m2 of climate forcing, despite some regional changes in connectivity between reefs.
Extrinsic and Intrinsic Frequency Dispersion of High-k Materials in Capacitance-Voltage Measurements
Tao, J.; Zhao, C.Z.; Zhao, C.; Taechakumput, P.; Werner, M.; Taylor, S.; Chalker, P. R.
2012-01-01
In capacitance-voltage (C-V) measurements, frequency dispersion in high-k dielectrics is often observed. The frequency dependence of the dielectric constant (k-value), that is the intrinsic frequency dispersion, could not be assessed before suppressing the effects of extrinsic frequency dispersion, such as the effects of the lossy interfacial layer (between the high-k thin film and silicon substrate) and the parasitic effects. The effect of the lossy interfacial layer on frequency dispersion was investigated and modeled based on a dual frequency technique. The significance of parasitic effects (including series resistance and the back metal contact of the metal-oxide-semiconductor (MOS) capacitor) on frequency dispersion was also studied. The effect of surface roughness on frequency dispersion is also discussed. After taking extrinsic frequency dispersion into account, the relaxation behavior can be modeled using the Curie-von Schweidler (CS) law, the Kohlrausch-Williams-Watts (KWW) relationship and the Havriliak-Negami (HN) relationship. Dielectric relaxation mechanisms are also discussed. PMID:28817021
Lateral mixing in the Mississippi River below the confluence with the Ohio River
Rathbun, R.E.; Rostad, C.E.
2004-01-01
Lateral dispersion coefficients for two dispersants were determined for three sections of the Mississippi River below the confluence with the Ohio River. The dispersants were the specific conductance and an industrial organic compound (trimethyltriazinetrione). Three models based on the stream tube concept were used, and lateral dispersion coefficients computed from these models were comparable. Coefficients for the two dispersants also were comparable. Lateral dispersion coefficients were consistent with expectations based on the characteristics of the river sections. Overall average values were 0.444 m2/s for a relatively straight section of river, 1.69 m2/s for a section containing two sharp bends, and 2.22 m2/s for a long section containing four sharp bends and several small islands. The lateral dispersion coefficients measured for the Mississippi River are consistent with literature data and a water discharge relation. Results of this study provide lateral dispersion coefficients for a water discharge not previously reported in the literature as well as new values for the Mississippi River.
Hu, Yue-Hua; Kitching, Roger L.; Lan, Guo-Yu; Zhang, Jiao-Lin; Sha, Li-Qing; Cao, Min
2014-01-01
We have investigated the processes of community assembly using size classes of trees. Specifically our work examined (1) whether point process models incorporating an effect of size-class produce more realistic summary outcomes than do models without this effect; (2) which of three selected models incorporating, respectively environmental effects, dispersal and the joint-effect of both of these, is most useful in explaining species-area relationships (SARs) and point dispersion patterns. For this evaluation we used tree species data from the 50-ha forest dynamics plot in Barro Colorado Island, Panama and the comparable 20 ha plot at Bubeng, Southwest China. Our results demonstrated that incorporating an size-class effect dramatically improved the SAR estimation at both the plots when the dispersal only model was used. The joint effect model produced similar improvement but only for the 50-ha plot in Panama. The point patterns results were not improved by incorporation of size-class effects using any of the three models. Our results indicate that dispersal is likely to be a key process determining both SARs and point patterns. The environment-only model and joint-effects model were effective at the species level and the community level, respectively. We conclude that it is critical to use multiple summary characteristics when modelling spatial patterns at the species and community levels if a comprehensive understanding of the ecological processes that shape species’ distributions is sought; without this results may have inherent biases. By influencing dispersal, the effect of size-class contributes to species assembly and enhances our understanding of species coexistence. PMID:25251538
Iwasaki, Toshiki; Nelson, Jonathan M.; Shimizu, Yasuyuki; Parker, Gary
2017-01-01
Asymptotic characteristics of the transport of bed load tracer particles in rivers have been described by advection-dispersion equations. Here we perform numerical simulations designed to study the role of free bars, and more specifically single-row alternate bars, on streamwise tracer particle dispersion. In treating the conservation of tracer particle mass, we use two alternative formulations for the Exner equation of sediment mass conservation: the flux-based formulation, in which bed elevation varies with the divergence of the bed load transport rate, and the entrainment-based formulation, in which bed elevation changes with the net deposition rate. Under the condition of no net bed aggradation/degradation, a 1-D flux-based deterministic model that does not describe free bars yields no streamwise dispersion. The entrainment-based 1-D formulation, on the other hand, models stochasticity via the probability density function (PDF) of particle step length, and as a result does show tracer dispersion. When the formulation is generalized to 2-D to include free alternate bars, however, both models yield almost identical asymptotic advection-dispersion characteristics, in which streamwise dispersion is dominated by randomness inherent in free bar morphodynamics. This randomness can result in a heavy-tailed PDF of waiting time. In addition, migrating bars may constrain the travel distance through temporary burial, causing a thin-tailed PDF of travel distance. The superdiffusive character of streamwise particle dispersion predicted by the model is attributable to the interaction of these two effects.
NASA Technical Reports Server (NTRS)
Knox, James Clinton
2016-01-01
The 1-D axially dispersed plug flow model is a mathematical model widely used for the simulation of adsorption processes. Lumped mass transfer coefficients such as the Glueckauf linear driving force (LDF) term and the axial dispersion coefficient are generally obtained by fitting simulation results to the experimental breakthrough test data. An approach is introduced where these parameters, along with the only free parameter in the energy balance equations, are individually fit to specific test data that isolates the appropriate physics. It is shown that with this approach this model provides excellent simulation results for the C02 on zeolite SA sorbent/sorbate system; however, for the H20 on zeolite SA system, non-physical deviations from constant pattern behavior occur when fitting dispersive experimental results with a large axial dispersion coefficient. A method has also been developed that determines a priori what values of the LDF and axial dispersion terms will result in non-physical simulation results for a specific sorbent/sorbate system when using the one-dimensional axially dispersed plug flow model. A relationship between the steepness of the adsorption equilibrium isotherm as indicated by the distribution factor, the magnitude of the axial dispersion and mass transfer coefficient, and the resulting non-physical behavior is derived. This relationship is intended to provide a guide for avoiding non-physical behavior by limiting the magnitude of the axial dispersion term on the basis of the mass transfer coefficient and distribution factor.
NASA Astrophysics Data System (ADS)
Iwasaki, Toshiki; Nelson, Jonathan; Shimizu, Yasuyuki; Parker, Gary
2017-04-01
Asymptotic characteristics of the transport of bed load tracer particles in rivers have been described by advection-dispersion equations. Here we perform numerical simulations designed to study the role of free bars, and more specifically single-row alternate bars, on streamwise tracer particle dispersion. In treating the conservation of tracer particle mass, we use two alternative formulations for the Exner equation of sediment mass conservation: the flux-based formulation, in which bed elevation varies with the divergence of the bed load transport rate, and the entrainment-based formulation, in which bed elevation changes with the net deposition rate. Under the condition of no net bed aggradation/degradation, a 1-D flux-based deterministic model that does not describe free bars yields no streamwise dispersion. The entrainment-based 1-D formulation, on the other hand, models stochasticity via the probability density function (PDF) of particle step length, and as a result does show tracer dispersion. When the formulation is generalized to 2-D to include free alternate bars, however, both models yield almost identical asymptotic advection-dispersion characteristics, in which streamwise dispersion is dominated by randomness inherent in free bar morphodynamics. This randomness can result in a heavy-tailed PDF of waiting time. In addition, migrating bars may constrain the travel distance through temporary burial, causing a thin-tailed PDF of travel distance. The superdiffusive character of streamwise particle dispersion predicted by the model is attributable to the interaction of these two effects.
A two-patch prey-predator model with predator dispersal driven by the predation strength.
Kang, Yun; Sasmal, Sourav Kumar; Messan, Komi
2017-08-01
Foraging movements of predator play an important role in population dynamics of prey-predator systems, which have been considered as mechanisms that contribute to spatial self-organization of prey and predator. In nature, there are many examples of prey-predator interactions where prey is immobile while predator disperses between patches non-randomly through different factors such as stimuli following the encounter of a prey. In this work, we formulate a Rosenzweig-MacArthur prey-predator two patch model with mobility only in predator and the assumption that predators move towards patches with more concentrated prey-predator interactions. We provide completed local and global analysis of our model. Our analytical results combined with bifurcation diagrams suggest that: (1) dispersal may stabilize or destabilize the coupled system; (2) dispersal may generate multiple interior equilibria that lead to rich bistable dynamics or may destroy interior equilibria that lead to the extinction of predator in one patch or both patches; (3) Under certain conditions, the large dispersal can promote the permanence of the system. In addition, we compare the dynamics of our model to the classic two patch model to obtain a better understanding how different dispersal strategies may have different impacts on the dynamics and spatial patterns.
Takeda, Koji; Gotoda, Yuto; Hirota, Daichi; Hidaka, Fumihiro; Sato, Tomo; Matsuura, Tsutashi; Imanaka, Hiroyuki; Ishida, Naoyuki; Imamura, Koreyoshi
2017-03-06
The technique for homogeneously dispersing hydrophobic drugs in a water-soluble solid matrix (solid dispersion) is a subject that has been extensively investigated in the pharmaceutical industry. Herein, a novel technique for dispersing a solid, without the need to use a surfactant, is reported. A freeze-dried amorphous sugar sample was dissolved in an organic solvent, which contained a soluble model hydrophobic component. The suspension of the sugar and the model hydrophobic component was vacuum foam dried to give a solid powder. Four types of sugars and methanol were used as representative sugars and the organic medium. Four model drugs (indomethacin, ibuprofen, gliclazide, and nifedipine) were employed. Differential scanning calorimetry analyses indicated that the sugar and model drug (100:1) did not undergo segregation during the drying process. The dissolution of the hydrophobic drugs in water from the solid dispersion was then evaluated, and the results indicated that the C max and AUC 0-60 min of the hydrophobic drug in water were increased when the surfactant-free solid dispersion was used. Palatinose and/or α-maltose were superior to the other tested carbohydrates in increasing C max and AUC 0-60 min for all tested model drugs, and the model drug with a lower water solubility tended to exhibit a greater extent of over-dissolution.
Highway Air Pollution Dispersion Modeling : Preliminary Evaluation of Thirteen Models
DOT National Transportation Integrated Search
1978-06-01
Thirteen highway air pollution dispersion models have been tested, using a portion of the Airedale air quality data base. The Transportation Air Pollution Studies (TAPS) System, a data base management system specifically designed for evaluating dispe...
Highway Air Pollution Dispersion Modeling : Preliminary Evaluation of Thirteen Models
DOT National Transportation Integrated Search
1977-01-01
Thirteen highway air pollution dispersion models have been tested, using a portion of the Airedale air quality data base. The Transportation Air Pollution Studies (TAPS) System, a data base management system specifically designed for evaluating dispe...
Implication of Broadband Dispersion Measurements in Constraining Upper Mantle Velocity Structures
NASA Astrophysics Data System (ADS)
Kuponiyi, A.; Kao, H.; Cassidy, J. F.; Darbyshire, F. A.; Dosso, S. E.; Gosselin, J. M.; Spence, G.
2017-12-01
Dispersion measurements from earthquake (EQ) data are traditionally inverted to obtain 1-D shear-wave velocity models, which provide information on deep earth structures. However, in many cases, EQ-derived dispersion measurements lack short-period information, which theoretically should provide details of shallow structures. We show that in at least some cases short-period information, such as can be obtained from ambient seismic noise (ASN) processing, must be combined with EQ dispersion measurements to properly constrain deeper (e.g. upper-mantle) structures. To verify this, synthetic dispersion data are generated using hypothetical velocity models under four scenarios: EQ only (with and without deep low-velocity layers) and combined EQ and ASN data (with and without deep low-velocity layers). The now "broadband" dispersion data are inverted using a trans-dimensional Bayesian framework with the aim of recovering the initial velocity models and assessing uncertainties. Our results show that the deep low-velocity layer could only be recovered from the inversion of the combined ASN-EQ dispersion measurements. Given this result, we proceed to describe a method for obtaining reliable broadband dispersion measurements from both ASN and EQ and show examples for real data. The implication of this study in the characterization of lithospheric and upper mantle structures, such as the Lithosphere-Asthenosphere Boundary (LAB), is also discussed.
Anders, Catherine B; Chess, Jordan J; Wingett, Denise G; Punnoose, Alex
2015-12-01
Agglomeration and sedimentation of nanoparticles (NPs) within biological solutions is a major limitation in their use in many downstream applications. It has been proposed that serum proteins associate with the NP surface to form a protein corona that limits agglomeration and sedimentation. Here, we investigate the effect of fetal bovine serum (FBS) proteins on the dispersion stability, dosimetry, and NP-induced cytotoxicity of cationic zinc oxide nanoparticles (nZnO) synthesized via forced hydrolysis with a core size of 10 nm. Two different in vitro cell culture models, suspension and adherent, were evaluated by comparing a phosphate buffered saline (PBS) nZnO dispersion (nZnO/PBS) and an FBS-stabilized PBS nZnO dispersion (nZnO - FBS/PBS). Surface interactions of FBS on nZnO were analyzed via spectroscopic and optical techniques. Fourier transformed infrared spectroscopy (FTIR) confirmed the adsorption of negatively charged protein components on the cationic nZnO surface through the disappearance of surfaced-adsorbed carboxyl functional groups and the subsequent detection of vibrational modes associated with the protein backbone of FBS-associated proteins. Further confirmation of these interactions was noted in the isoelectric point shift of the nZnO from the characteristic pH of 9.5 to a pH of 6.1. In nZnO - FBS/PBS dispersions, the FBS reduced agglomeration and sedimentation behaviors to impart long-term improvements (>24 h) to the nZnO dispersion stability. Furthermore, mathematical dosimetry models indicate that nZnO - FBS/PBS dispersions had consistent NP deposition patterns over time unlike unstable nZnO/PBS dispersions. In suspension cell models, the stable nZnO - FBS/PBS dispersion resulted in a ~33 % increase in the NP-induced cytotoxicity for both Jurkat leukemic and Hut-78 lymphoma cancer cells. In contrast, the nZnO - FBS/PBS dispersion resulted in 49 and 71 % reductions in the cytotoxicity observed towards the adherent breast (T-47D) and prostate (LNCaP) cancer cell lines, respectively. Presence of FBS in the NP dispersions also increased the reactive oxygen species generation. These observations indicate that the improved dispersion stability leads to increased NP bioavailability for suspension cell models and reduced NP sedimentation onto adherent cell layers resulting in more accurate in vitro toxicity assessments.
NASA Astrophysics Data System (ADS)
Anders, Catherine B.; Chess, Jordan J.; Wingett, Denise G.; Punnoose, Alex
2015-11-01
Agglomeration and sedimentation of nanoparticles (NPs) within biological solutions is a major limitation in their use in many downstream applications. It has been proposed that serum proteins associate with the NP surface to form a protein corona that limits agglomeration and sedimentation. Here, we investigate the effect of fetal bovine serum (FBS) proteins on the dispersion stability, dosimetry, and NP-induced cytotoxicity of cationic zinc oxide nanoparticles (nZnO) synthesized via forced hydrolysis with a core size of 10 nm. Two different in vitro cell culture models, suspension and adherent, were evaluated by comparing a phosphate buffered saline (PBS) nZnO dispersion (nZnO/PBS) and an FBS-stabilized PBS nZnO dispersion (nZnO - FBS/PBS). Surface interactions of FBS on nZnO were analyzed via spectroscopic and optical techniques. Fourier transformed infrared spectroscopy (FTIR) confirmed the adsorption of negatively charged protein components on the cationic nZnO surface through the disappearance of surfaced-adsorbed carboxyl functional groups and the subsequent detection of vibrational modes associated with the protein backbone of FBS-associated proteins. Further confirmation of these interactions was noted in the isoelectric point shift of the nZnO from the characteristic pH of 9.5 to a pH of 6.1. In nZnO - FBS/PBS dispersions, the FBS reduced agglomeration and sedimentation behaviors to impart long-term improvements (>24 h) to the nZnO dispersion stability. Furthermore, mathematical dosimetry models indicate that nZnO - FBS/PBS dispersions had consistent NP deposition patterns over time unlike unstable nZnO/PBS dispersions. In suspension cell models, the stable nZnO - FBS/PBS dispersion resulted in a ~33 % increase in the NP-induced cytotoxicity for both Jurkat leukemic and Hut-78 lymphoma cancer cells. In contrast, the nZnO - FBS/PBS dispersion resulted in 49 and 71 % reductions in the cytotoxicity observed towards the adherent breast (T-47D) and prostate (LNCaP) cancer cell lines, respectively. Presence of FBS in the NP dispersions also increased the reactive oxygen species generation. These observations indicate that the improved dispersion stability leads to increased NP bioavailability for suspension cell models and reduced NP sedimentation onto adherent cell layers resulting in more accurate in vitro toxicity assessments.
Weather explains high annual variation in butterfly dispersal
Rytteri, Susu; Heikkinen, Risto K.; Heliölä, Janne; von Bagh, Peter
2016-01-01
Weather conditions fundamentally affect the activity of short-lived insects. Annual variation in weather is therefore likely to be an important determinant of their between-year variation in dispersal, but conclusive empirical studies are lacking. We studied whether the annual variation of dispersal can be explained by the flight season's weather conditions in a Clouded Apollo (Parnassius mnemosyne) metapopulation. This metapopulation was monitored using the mark–release–recapture method for 12 years. Dispersal was quantified for each monitoring year using three complementary measures: emigration rate (fraction of individuals moving between habitat patches), average residence time in the natal patch, and average distance moved. There was much variation both in dispersal and average weather conditions among the years. Weather variables significantly affected the three measures of dispersal and together with adjusting variables explained 79–91% of the variation observed in dispersal. Different weather variables became selected in the models explaining variation in three dispersal measures apparently because of the notable intercorrelations. In general, dispersal rate increased with increasing temperature, solar radiation, proportion of especially warm days, and butterfly density, and decreased with increasing cloudiness, rainfall, and wind speed. These results help to understand and model annually varying dispersal dynamics of species affected by global warming. PMID:27440662
Bhugra, Chandan; Telang, Chitra; Schwabe, Robert; Zhong, Li
2016-09-06
API-polymer interactions, used to select the right polymeric matrix with an aim to stabilize an amorphous dispersion, are routinely studied using spectroscopic and/or calorimetric techniques (i.e., melting point depression). An alternate selection tool has been explored to rank order polymers for formation of stable amorphous dispersions as a pragmatic method for polymer selection. Reduced crystallization temperature of API, a parameter introduced by Zhou et al.,1 was utilized in this study for rank ordering interactions in API-polymeric systems. The trends in reduced crystallization temperature monitored over polymer concentration range of up to 20% polymer loading were utilized to calculate "crystallization parameter" or CP for two model systems (nifedipine and BI ABC). The rank order of CP, i.e., a measure of API-polymer interaction, for nifedipine followed the order PVP > PVP-VA > Soluplus > HPMCAS > PV Ac > PAA. This rank ordering was correlated to published results of molecular interactions and physical stability for nifedipine. A different rank ordering was observed for BI ABC: PAA > PVP > HPMCAS > Soluplus > PVPV-VA > PVAc. Interactions for BI ABC were not as differentiated when compared to nifedipine based on CP trends. BI ABC dispersions at drug loadings between 40 and 60% were physically stable for prolonged periods under ICH conditions as well as accelerated stress. We propose that large CP differences among polymers could be predictive of stability outcomes. Acceptable stability at pharmaceutically relevant drug loadings would suggest that the relative influence of downstream processes, such as polymer solubility in various solvents, process suitability and selection, and more importantly supersaturation potential, should be higher compared to stability considerations while developing compounds like BI ABC.
Bipartite charge fluctuations in one-dimensional Z2 superconductors and insulators
NASA Astrophysics Data System (ADS)
Herviou, Loïc; Mora, Christophe; Le Hur, Karyn
2017-09-01
Bipartite charge fluctuations (BCFs) have been introduced to provide an experimental indication of many-body entanglement. They have proved themselves to be a very efficient and useful tool to characterize quantum phase transitions in a variety of quantum models conserving the total number of particles (or magnetization for spin systems) and can be measured experimentally. We study the BCFs in generic one-dimensional Z2 (topological) models including the Kitaev superconducting wire model, the Ising chain, or various topological insulators such as the Su-Schrieffer-Heeger model. The considered charge (either the fermionic number or the relative density) is no longer conserved, leading to macroscopic fluctuations of the number of particles. We demonstrate that at phase transitions characterized by a linear dispersion, the BCFs probe the change in a winding number that allows one to pinpoint the transition and corresponds to the topological invariant for standard models. Additionally, we prove that a subdominant logarithmic contribution is still present at the exact critical point. Its quantized coefficient is universal and characterizes the critical model. Results are extended to the Rashba topological nanowires and to the X Y Z model.
Variation of surface ozone in Campo Grande, Brazil: meteorological effect analysis and prediction.
Pires, J C M; Souza, A; Pavão, H G; Martins, F G
2014-09-01
The effect of meteorological variables on surface ozone (O3) concentrations was analysed based on temporal variation of linear correlation and artificial neural network (ANN) models defined by genetic algorithms (GAs). ANN models were also used to predict the daily average concentration of this air pollutant in Campo Grande, Brazil. Three methodologies were applied using GAs, two of them considering threshold models. In these models, the variables selected to define different regimes were daily average O3 concentration, relative humidity and solar radiation. The threshold model that considers two O3 regimes was the one that correctly describes the effect of important meteorological variables in O3 behaviour, presenting also a good predictive performance. Solar radiation, relative humidity and rainfall were considered significant for both O3 regimes; however, wind speed (dispersion effect) was only significant for high concentrations. According to this model, high O3 concentrations corresponded to high solar radiation, low relative humidity and wind speed. This model showed to be a powerful tool to interpret the O3 behaviour, being useful to define policy strategies for human health protection regarding air pollution.
Bumstead, Matt; Liang, Kunyu; Hanta, Gregory; Hui, Lok Shu; Turak, Ayse
2018-01-24
Order classification is particularly important in photonics, optoelectronics, nanotechnology, biology, and biomedicine, as self-assembled and living systems tend to be ordered well but not perfectly. Engineering sets of experimental protocols that can accurately reproduce specific desired patterns can be a challenge when (dis)ordered outcomes look visually similar. Robust comparisons between similar samples, especially with limited data sets, need a finely tuned ensemble of accurate analysis tools. Here we introduce our numerical Mathematica package disLocate, a suite of tools to rapidly quantify the spatial structure of a two-dimensional dispersion of objects. The full range of tools available in disLocate give different insights into the quality and type of order present in a given dispersion, accessing the translational, orientational and entropic order. The utility of this package allows for researchers to extract the variation and confidence range within finite sets of data (single images) using different structure metrics to quantify local variation in disorder. Containing all metrics within one package allows for researchers to easily and rapidly extract many different parameters simultaneously, allowing robust conclusions to be drawn on the order of a given system. Quantifying the experimental trends which produce desired morphologies enables engineering of novel methods to direct self-assembly.